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Abstract

The plethora of unstructured textual data continually growing at an immense rate via call center logs where
interactions, using natural language, between agents and customers, happen at a scale of millions per day
elevate the urgency of solutions capable of identifying and summarizing relevant content in dialogues.

This internship took place at Talkdesk’s Innovative Lab located in Coimbra. Regarding the framework
developed, it will integrate the Agent Assist Product. With the clear target of revolutionizing the Con-
tact Center space, Talkdesk Agent Assist is an intelligent conversational guide that supplies real-time
contextualized suggested actions to aid and support agents in delivering quality customer interactions.

Agent Assist team already implemented a solution for summarizing calls. However, in this solution,
templates are created manually. So, the purpose of the internship is to automate this process by developing
a framework, receiving a set of already identified and classified moments, that automatically generates
template summaries.

Towards this goal, methods proposed by different researchers for the task of extracting information from
dialogues, or even, that summarize dialogues, were first investigated. Later, some datasets were examined
based on the linguistic richness, variation, and complexity, as well as the dimension, and therefore was
chosen the one most capable of representing the unstructured information present in dialogues.

We opted for an approach relying on triple extraction and clustering to extract the facts that will enter
the final templates. Results were obtained that reached 78% F1 for some domain types, which leads us
to conclude that our framework is capable of automating the process of generating templates/structural
summaries.

Keywords

Natural Language Processing, Information Extraction, Template Generation, Summarization, Triple Rep-
resentation
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Resumo

O excesso de dados textuais não estruturados que cresce consistemente a um elevado ritmo via "call
centers", onde as interações, usando linguagem natural, entre agentes e clientes ocorrem numa escala de
milhões por dia, elevam a urgência de soluções capazes de identificar e resumir o conteúdo relevante nos
diálogos.

Este estágio ocorreu no Laboratório Inovador da Talkdesk, localizado em Coimbra. Em relação ao produto
desenvolvido, este integrará o produto Agent Assist. Com o objetivo claro de revolucionar a forma como
os Contact Center funcionam, o Talkdesk Agent Assist é um guia inteligente de conversação que fornece
ações sugeridas contextualizadas em tempo real para ajudar e guiar os agentes na entrega de interações
de qualidade com os clientes.

A equipa do Agent Assist já implementou uma solução para resumir as chamadas de "call centers". No
entanto, nesta solução, os templates são criados manualmente. Portanto, o objetivo do estágio é autom-
atizar esse processo, desenvolvendo um produto, recebendo um conjunto de momentos já identificados e
classificados, que gere automaticamente resumos de templates.

Para alcançar esse objetivo, foram estudados os métodos seguidos por diferentes autores na tarefa de
extrair informações de diálogos e de sumarização dos mesmos. Posteriormente, alguns conjuntos de dados
foram examinados com base na variação e complexidade da riqueza linguística, bem como na dimensão,
sendo, depois, escolhido aquele que tinha mais capacidades de representar as informações não estruturadas
existentes nos diálogos.

Optamos por uma abordagem baseada na extração de triplos e no clustering para extrair fatos que irão
entrar nos templates finais. Foram obtidos resultados que atingiram 78% F1 para alguns domínios, o que
nos leva a concluir que o nosso produto é capaz de automatizar o processo de geração de templates.

Palavras-Chave

Processamento de Linguagem Natural, Extração de Informação, Geração de Templates, Sumarização,
Representação de Triplos
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Chapter 1

Introduction

The present document reflects the work implemented by the author. It describes the framework aimed
to be integrated as a microservice in the Talkdesk product. This project was developed in the scope of
the Master’s degree in Informatics Engineering, Specialization in Intelligent Systems, at the University of
Coimbra, during the academic year 2019/2020. The internship took place at Talkdesk’s Innovation Lab
(TDX), and it was supervised by both Pedro Verruma and Bruno Antunes, the Talkdesk advisors, and
Professor Hugo Gonçalo Oliveira, the Department of Informatics Engineering (DEI) advisor.

This introductory chapter intends to explain the fundamental guidelines of this Master Thesis, clarifying
its motivation and established objectives. Furthermore, it provides a contextualization of this proposal
and describes the structure of the document with a brief review of each chapter’s content.

1.1 Motivation

We are witnessing a relentless technological evolution where the field of Artificial Intelligence (AI) has
assumed a leading role. There are more and more intelligent systems developed to perform the most
diverse tasks, which imply solutions that will mimic the human capabilities. One of these will be the
ability to understand language leveraging the power of Natural Language Processing [38].

With the burgeoning amount of unstructured information that is available all over the web, which is trend-
ing to increase and not the opposite [18], knowledge workers are forced to manually read and analyze texts,
in order to collect valuable knowledge for their assignments. However, for many companies, performing
such task and simultaneously keep up with the fast-growing amount of information every day, from emails
to documents, reveals to be extremely time-consuming, and consequently financially unviable.

In a contact center, for example, the interactions are typically managed using natural language and are
processed at a scale of millions per day. In order to obtain worthy incomes and take actionable insights from
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these interactions, when a call ends agents need to be capable of distinguishing the relevant highlights from
all redundant information that conveys in between, and write down these highlights for later review. This
process leads to significant disadvantages. First, manually capturing and populating the call information
into a Customer Relationship Management (CRM) system is an exhausting and time-consuming task
conducted by agents. Secondly, difficulty in stick towards a streamlined process of capturing information
leads to inconsistent reporting. Last, but not least, if the customer contacts a new agent, and there is
no trail of the previous conversation, the latest agent is not prepared to provide the proper support that
ultimately impacts customer satisfaction. All these problems motivate and accelerate the need for an
automated technological process that helps optimize and reduce After Call Work.

1.2 Context

As previously said, the internship took place at TDX, an Innovation Lab of Talkdesk located in Coimbra,
whose purpose is to fast-track key technology initiatives. Talkdesk is a could-based communication software
that provides users with a call center hub that empowers companies to continuously improve their customer
experience. With the clear target of revolutionizing the Contact Center space, the company eliminates
the need to set up an on-premises call center, thus saving companies from the added related costs, and
has the capability of being integrated with business apps and systems, such as CRM, sales software, and
customer databases.

Figure 1.1: Agent Assist Process.

The framework developed during this internship will integrate the Agent Assist product. Talkdesk Agent
Assist is an intelligent conversational guide that supplies real-time contextualized suggested actions to aid
and guide agents in delivering quality customer interactions and outcome excellence.

The main objective of Agent Assist is to support agents guide customers towards a solution with reduced
effort boosting agent’s productivity and proficiency. The core components of Agent Assist, as shown in
figure 1.1, are:
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• Proactively deliver recommended responses in real-time, from Knowledge Bases, to any request form
the customer.

• Integrated with CRM systems, it also automates actions such as follow up tasks.

• Automate data entry tasks.

With the framework implemented in this internship, the Agent Assist product is a step closer to facilitate
interactions between customers and agents and make the process more efficient since the beginning of the
call.

1.3 Goals

At Talkdesk there is already a solution for summarizing call center calls, however, this solution requires
that templates have to be created manually, which is impracticable since this task is high consuming and
ineffective. Hence my internship, whose objective is to automate the process mentioned above, that is, to
automatically generate summary templates. This solution poses great challenges because it is necessary
to process multiple and varied examples of moments and find patterns on them that can be used in the
summary. This solution allows reducing the agent’s work and his After Call Work. By moments, we
mean a selected segment of dialogue, between a customer and an agent, with an intent. The system’s
components should be simple to change and upgrade, and, as such, its architecture should be as modular
as possible. The project should support the English language and be deployed in different domains.

From an academic point of view, the objectives of this project were to consolidate and acquire knowledge in
several areas of Artificial Intelligence and gain experience in the development of solutions at an enterprise
level, including processes and expected deliverables.

1.4 Structure

As for the structure of this thesis, it will be divided into the following chapters (this introductory chapter
is not included):

Chapter 2 - Background Knowledge

This chapter presents the most relevant concepts for the implementation of this project. It starts with
a concise description of the three main fields on Artificial Intelligence, Machine Learning (section
2.1), Deep Learning (section 2.2), and Natural Language Processing (section 2.3), and an explanation
on Summarization (section 2.4).
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Chapter 3 - State of the Art

This chapter describes the existing methods related to the purpose of this internship, as well as the
approaches that the different authors adopted (section 3.1), an analysis of resources and tools that
can help in the intern implementation (section 3.2), and an outline of the competitors to this project
alongside a comparative study between them (section 3.3).

Chapter 4 - Approach

This chapter describes the entire process that led to the specification of the framework (section 4.2),
and then, the system’s use cases, requirements, and constraints are presented (section 4.3). Following
that, a risk analysis is displayed (section 4.4), and an overall perspective on the architectural design
of the major constituents is given (section 4.5). The last section 4.6 provides a summary of the
development methodologies used and work planning.

Chapter 5 - Implementation

This chapter outlines the work that was done throughout the internship, the final result, as well as
some implementation details.

Chapter 6 - Validation and Results

This chapter presents all the validation tests realized. For each variant, a description is given, and
the results outlined.

Chapter 7 - Conclusion

Lastly, this chapter addresses the overall conclusions and retrospectives about this internship. It
serves as a recapitulation of the proposed work done through both semesters, as well as analyzing
some challenges that we had to surpass. We also reflected on possible improvements to incorporate
in the future work.
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Background Knowledge

This chapter sets the scene for this thesis and is divided into four sections. It starts by introducing, in
section 2.1, the concept and the purpose of Machine Learning, as well as the different types of learning
tasks in this field, and a brief description of the stages that compose a Machine Learning workflow. Section
2.2 explains the need for Deep Learning and how it makes use of Artificial Neural Networks. Section 2.3
presents Natural Language Processing and the various levels of knowledge concerning each type of analysis.
Ultimately, in order to understand the intent of this project and achieve an initial perception of the main
topic, section 2.4 specify the many variances of Summarization and the fundamental strategies that set a
tone for future researchers.

2.1 Machine Learning

Machine Learning (ML) is a branch of Computer Science and Artificial Intelligence that has become, over
the last two decades, a powerful and global tool in a wide variety of applications, such as medical services,
pattern recognition, or in language processing fields. The primary aim of ML is to create intelligent
machines that can learn, modify, or adapt their actions and therefore improve their performances by
gathering more data and experience without the intervention of humans. So, let us see the following
example: you are playing Chess, a famous board game, against a computer. In the beginning, it seems
that you are dominating, and the victories are succeeding. However, with an increase of games played,
the paradigm shifts, and triumphs start tending towards the computer side. Why does this happen? The
machine starts to learn and adjust actions accordingly, converting experience into expertise.

In today’s world, we are surrounded by machine learning-based technology. Anti-spam software, accident
prevention systems, and intelligent personal assistants are just a few examples we can list. Nevertheless,
how did they come about? Who introduced the concept of ML? Although this field coalesced in the 80s,
its roots lie way back. Alan Turing [79], in 1950, besides having published a paper in which he asked "Can
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machines think?" created the so-called "Turing Test" to determine if a computer could be considered
intelligent. Two years later, Arthur Samuel [71] created the first learning-program that helped an IBM
computer get better in the game of checkers. Another critical achievement occurred in 1967 when the first
pattern recognition program was able to detect a pattern in data [49].

Since then, with the exponential growth of data available online, coupled with the fact that there are more
and more subfields of ML dealing with different types of learning tasks, scaling up ML is an emerging
obligation. Reasons such as:

• Algorithm’s complexity and the need for adaptivity.

• Increase in the amount of observation that could be used as training data and data points with
several features.

• High dimensionality input.

• Dealing with inference time constraints.

substantiate the improvement observed in the last years, as well in the future ahead.

The next sections describe in more detail some of the current algorithms used and how they are classified,
as well as a further explanation of the steps that form a project in this field.

2.1.1 Machine Learning Approaches

Because ML is a very wide domain, ML algorithms are classified into these four main categories:

Supervised Learning: "a training set of examples with the correct responses (targets) is provided
and, based on this training set, the algorithm generalizes to respond correctly to all possible inputs"
[50]. This type of learning is the most used among ML algorithms and stands out in the applica-
tions indicated in figure 2.1. The main difference between the two applications presented is that
classification is the task of predicting a categorical, or discrete, class label while regression stands for
predicting a continuous quantity. Despite the various advantages that supervised learning leverages,
problems when dealing with non-linear relationships/decision boundaries, or intricate patterns can
be time-consuming.

Unsupervised Learning: the system is not provided with information classified or labeled to train,
but instead the algorithm tries to identify similarities between pairs of objects and thus model the
underlying structure of data. The algorithms in this category can be further classified into clus-
tering (grouping data points according to their similarities), association (find associations/relations
amongst data objects), and dimensionality reduction tasks [50]. The figure 2.2 shows the benefits of
solving them. However, since the data handled is labeled and not known, getting precise information
regarding data sorting and high accuracy on results is not feasible.
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Figure 2.1: Applications of Supervised Learning.

Semi-Supervised Learning: is midway between supervised and unsupervised learning. In addition
to unlabeled data, the algorithm is supplied with some supervision information — not required for all
examples [77]. It was introduced to counter the disadvantages of the two above mentioned types of
learning. That is, for supervised learning the dataset has to be hand-labeled, while for unsupervised
the application spectrum is limited.

Reinforcement Learning: agent, environment, and actions are the three components of this type
of learning. The algorithm is told when the answer is wrong, with a reward feedback, but is not
told how to correct it. The agent has to explore the environment and try out different possibilities
(actions) until it works out how to get the right answer [50].
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Figure 2.2: Applications of Unsupervised Learning.

2.1.2 Machine Learning Algorithms

ML has an extensive range of algorithms, including:

Logistic Regression: a statistical algorithm that builds a linear model based on a transformed
target value [10]. It is generally used to predict a binary outcome but can also be used to predict
multi-class problems if required.

K-Nearest Neighbors: learning algorithm that spends no time during the learning process, but
only for pre-processing and testing. The straightforward algorithm, memorizing the training set di-
rectly, makes predictions based on a similarity measure (e.g., Euclidean, Manhattan) and by checking
the k-nearest neighbors of the sample to classify. Then, according to the majority vote, the class
label is assigned to the sample [32].

Decision Trees: classifiers in the form of a tree-like structure built for regression and classification
applications based on a sequential decision process. That is, they evaluate instances/features by
starting from the root of the tree and moving along the branches until reaching a final leaf node,
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which generally represents the classification target. In figure 2.3, the classification target can be
either: Stay in, Go to beach, Go running, or Go to movies.

Figure 2.3: A Decision Tree example [67].

Support Vector Machines: capable of operating with both linear and non-linear scenarios is a
binary classifier that defines a separating hyperplane differentiating data points of distinct categories.
With this optimized hyperplane, the margin of training data is maximized, and new entry points
can be classified [78]. Figure 2.4 displays an example illustrating the separating hyperplane between
class -1 and 1.

The following equation represents the best hyperplane found, with x being the dataset of feature
vectors to classify:

w̄T x̄+ b = 0, (2.1)

Naive Bayes: a non-parametric probabilistic model that is used for classification tasks. Contingent
on Bayes’ theorem assumes that the presence of a variable value on a certain class is unrelated to
other variables [53]. In other words, if X and Y are conditionally independent given the event of Z,
knowledge of whether the variable X occurs presents no information on the likelihood of variable Y
occurring, and vice versa.

Hidden Markov Model (HMM): used for modeling sequences, that is, by observing a sequence
of states, it is possible to calculate the probability of a certain sequence of states. It is also often
used for classification applications [74]. For instance, we use an HMM to model a male voice and
a female voice. Then we can predict if a new voice sample whether or not belongs to a male or a
female.
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Figure 2.4: Bidimensional representation of a hyperplane [15].

2.1.3 Workflow of a Machine Learning Project

To build and guarantee a proper ML project is a highly iterative and experimental process. Although
these projects vary in scale and complexity, they follow a common step-by-step workflow:

Pre-processing: To achieve great results, before performing the following steps, raw data (col-
lected from various sources) must be clean and wrangle into an acceptable format. Missing data,
inconsistent text data, or the existence of values that deviate strongly from other observations in
data (known as outliers) are clear examples of the need for this step. Also, feature scaling is another
main process to accomplish. It is applied to independent variables and normalizes the data within
a specific range.

Learning: The first step is researching and choosing the model (between supervised and unsuper-
vised) that will be best and more suitable for the pre-processed data is the first step. Automatically
optimizing the hyperparameters of a model is an optional step. Hyperparameters are referred to as
the parameters which are not updated during the learning phase and applied in the model configu-
ration. Then the training process starts, and the data is divided into three groups:

1. Training set: build up the model from training data. At this stage, feature importance may be
employed. This process aims to assign a score to features based on how valuable they are at
predicting a target variable

2. Validation set: validate the model with k-fold cross-validation. This technique splits the input
data into k subsets of data. The model is trained on all but one of the subsets and then
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evaluated on the subset that was not used for training

3. Testing set: implement an unbiased evaluation of a model fit on the training dataset

Evaluation and Prediction: Model evaluation and prediction are integral parts that helps in
understanding how well the chosen model will work and assess his performance in previously unseen
test data.

2.2 Deep Learning

A dominant origin of difficulty in numerous real-world Artificial Intelligence (AI) applications is that many
of the factors of variation influence all pieces of data we are able to see. "Most applications require us to
disentangle the factors of variation and discard the ones that we do not care about" [30]. For instance,
a speaker’s attributes, such as gender or accent, are undoubtedly abstract features that require powerful
and almost human-level implements for being extracted from raw data. Deep Learning (DL) is considered
the answer to overcome these problems.

2.2.1 What is Deep Learning?

DL, an approach to ML, is about learning multiple levels of representation and abstraction, enabling the
computer to create complex concepts out of simpler ones like a nested hierarchy [30]. Unlike shallow
ML algorithms that fail to handle high-dimensional data or that are not very successful at tasks such
as recognizing patterns, this approach, due to its needlessness of domain expertise and hardcore feature
extraction, has seen tremendous growth lately. The ability to learn an implicit representation of the raw
data without manual effort was one of the main reasons why Deep Learning models increased accuracy,
complexity and prompted real-world impact solving complex problems, see figure 2.5.

Although DL seems like a recent field, it dates back to the 1940s. To be more precise, in 1943, when War-
ren McCulloch and Walter Pitts "introduced models of neurological networks, they recreated threshold
switches based on neurons and showed that even simple networks of this kind are able to calculate nearly
any logic or arithmetic function" [41]. Since then, there were three waves of development, reflecting dif-
ferent philosophical viewpoints: Deep Learning known as cybernetics (in the 1940s-1960s), connectionism
(in the 1980s-1990s) and, since 2006 the current uprising under the name of Deep Learning.

But the following question that arises is why now? Why only recently this field became so popular,
catching the attention of the science community? Two main reasons justify the enormous impact in areas
like automated driving, speech and audio processing, Natural Language Processing or medical research:

1. DL has become more useful as the amount of available training data has increased [30]
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Figure 2.5: Differences between ML and DL [1].

2. DL models have grown due to the advance of computing power and infrastructures (high-performance
GPUs/CPUs and faster network connectivity)

2.2.2 How does Deep Learning work?

Work on artificial neural networks, commonly referred to as "neural networks", has been triggered un-
deviatingly from its inception by the recognition that the human brain operates in an entirely distinct
way from the conventional digital computer. The brain is profoundly complex, nonlinear, and act as a
parallel computer. It can organize its structural constituents, recognized as neurons, to perform some
computations much quicker than the fastest digital computer in existence now [33]. DL algorithms are
roughly inspired by these abovemencioned networks and the structure of the brain. For example, in image
processing, the input of these algorithms is presented at the visible layer, containing the variables that
we can observe. Then a group of hidden layers extracts increasingly abstract features from the image
[30]. In these layers, each node performs an Activation Function to convert the input into output which
can then be used as input for other nodes. Finally, the output is obtained by combining all layers and
their information to identify objects present in the image in question. Figure 2.6 illustrates the previous
explanation.

When we approach the different types of Artificial Neural Networks (ANN), it is imperative to talk about
FeedForward Neural Networks. These networks, extensively used in pattern recognition, were among
the first and quintessential learning algorithms and have just one condition: the information must proceed
in only one direction with no back-loops, from the function being assessed from x, through the intermediate
computations applied to determine f, and subsequently to the output y [30]. They compose together several
distinct functions, and there are no limitations on the number of layers or connections between neurons.

Feedforward networks, and especially their specializations, are a key example of the successful use of ma-
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Figure 2.6: Illustration of a Deep Learning model [30].

chine learning applications. For instance, Convolutional Neural Networks (CNN) are particularly helpful
at problems like text classification, while Recurrent Neural Networks (RNN) play an important role in
finding patterns to predict what will happen next, given certain circumstances based in the past. These
networks are described next regarding their purpose and advantages.

Convolutional Neural Networks

CNN are a specialized type of neural network that has the particularity of eliminating the need for
manual feature extraction. They consist of an input and output layer, and n hidden processing
layers between them. Due to these hidden layers and their powerful aptitude to learn and extract
hierarchical representations automatically from data, these networks are currently one of the most
prominent algorithms for DL in various competitive benchmarks.
The topology of CNN is split into multiple learning stages constituted by a combination of three
types of hidden layers, as displayed in figure 2.7 with a concise explanation of each of them below.

1. Convolution layers: The layer’s parameters consist of learnable kernels that spread through
the entire depth of the input. From this, the network will learn which kernels ’fire’ when they
detect a specific feature at a certain spatial position of the input. These are generally identified
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Figure 2.7: Examples of hidden layers in CNN.

as activations. "Every kernel will have a corresponding activation map, of which will be stacked
along with the depth, dimension to form the full output volume from the convolutional layer"
[60].

2. Pooling layers: These layers will then simply perform downsampling along the spatial dimen-
sionality of the given input, further reducing the number of parameters within that activation
[60].

3. Fully-connected layers: They perform classification based on the features extracted by the
previous layers and then output the final result.

Recurrent Neural Networks

This type of neural network distinguishes itself from FeedForward or CNN in being capable of pro-
cessing and model sequential data, instead of fixed-data and assuming that all inputs are independent
of each other.
To better demonstrate the advantages of RNN lets study the following sentence:

After my allergy attack, the doctor resolved to attack the problem with a new remedy

When analyzing and classifying the previous example, understanding the surrounding context is an
obligation to do it successfully. In this sentence, the first use of the word “attack” is a noun, while
the second is a verb. So, how would a FeedForward Network, that models only a word at a time, will
be aware of the difference? We can infer now that features, such as internal memory, which captures
information about what has been "seen" so far, and a looping mechanism, that allows data flow
between steps, have a profound influence on the learning ability of the RNN and its performance.
However, when dealing with long sequences, RNN suffer from short-term memory, which means they
can only look a few steps backward and leave out valuable information. This problem is caused
by the vanishing gradient problem - small gradients mean small updates in the weights of a neural
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network, which implies that the early layers will not learn. To avoid this outcome, a main specialized
RNN named Long Short-Term Memory (LSTM) makes use of a memory block composed by
gating units that helps the network distinguishing which data can be thrown away and which needs
to be kept. This way, the network is more than capable of processing large sequences.

2.3 Natural Language Processing

Natural Language Processing (NLP) is a field of computer science and linguistics concerned with the
interactions between computers and human (natural) languages [42]. The ultimate purpose of NLP is
to examine, understand and achieve human-like comprehension of languages. It is a discipline that has
become embedded in our daily lives and is scaling to a myriad of industries related to finance or healthcare,
among others.The term natural language refers to any language (such as Portuguese or Russian) used in
the communication between humans, as distinct from formal languages (such as C+ or Python) which are
specifically developed to interact with a computer and understood by a machine [42].

NLP has come a long way, and despite the high growth we have witnessed in recent years, this field faces yet
many challenges. Dealing and extracting valuable insights from unstructured data hard to manipulate,
generated from social media posts like Twitter, text messages, reviews or other roots, and present in
the majority of enterprise’s data, is a clear example. Also, a very critical problem is the ambiguity,
that arises whenever an expression can be interpreted in different ways, which occurs at each level of
analysis/knowledge, and it has the potential to multiply across levels [27]. Just as an illustration, here are
presented two cases of the ambiguity problem [42]:

1. When the word "bank" can have two different meanings:
Withdraw some money from the bank
Do not go near the bank of the river

2. When the same sentence can be interpreted in more than one way:
I saw the boy with the telescope
The same sentence can be referred as "you saw the boy using a telescope", and at the same time as
"you saw the boy having a telescope with him". Who had the telescope?

Language processing essentially relies on the representation of knowledge related to the language accord-
ingly with specific levels that tend to focus on meaning and structure. The more capable an NLP system
is, the more levels it will utilize. Table 2.1 describes the different levels of knowledge in natural language:
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Description

Phonology Describes the systematic arrangement of sound. Deals with speech recognition
and generation.

Morphology

"Study of the way words are built up from smaller meaning-bearing units,
morphemes" [37]. There are two main types: derivational morphology (use
of affixes to turn a word from one grammatical level to another or to switch the
meaning of the word [25]) and inflectional morphology (addition of aspects
such as gender, number, person, and tense [25])

Lexical Responsible for identifying and analyzing all the relevant linguistic information
about each word, such as their type (noun, verb, etc).

Syntax

Refers to the study of formal relations between words from sentences. In this
phase, the legitimacy of a sentence according to the grammar rules is checked.
To perform syntactic analysis, both the knowledge of grammar and parsing
technique is required [42].

Semantics Knowledge about converting natural language sentences into a meaning repre-
sentation.

Pragmatics
Focuses on the relation between language and context of use, that is, trying
to perceive how speakers express their intended meaning and what deductions
the listeners draw in a given context.

Discourse
Knowledge about linguistic units larger than a single utterance [37]. Set of well-
formed and individually interpretable sentences regularly produces coherent
discourse [42].

Table 2.1: Summary of the distinct levels of knowledge

Notwithstanding the varied existence of levels, their usage depends on the purpose of the project to be
applied. Since the nature of this internship is to develop a framework mainly converged on text analysis
and template generation based on relevant content identified, the next sections will focus on the following
levels: Lexical, Syntax, Semantics, Pragmatics, and Discourse. It is worth saying that the Phonology level
will not be analyzed since Talkdesk have its speech-to-text service and in this work, we will be working
directly with transcriptions.

2.3.1 Lexical Analysis

In NLP, the first stage of processing input text is to examine each word in the sentence and is followed
by the lexical analysis that verifies the validity of words according to the lexicon. Lexicon stands for
a dictionary, and it is a "collection of words and/or phrases along with associated information, such as
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part-of-speech and sense definitions" [42][13]. To perform this kind of analysis some operations need to be
executed:

• Sentence Segmentation

One of the primary steps performed on texts is the process of breaking a running text into separate
sentences.

input: Hi there! Anything I can help with?

output: [Hi there!] [Anything I can help with?]

However, this is not a trivial task or straightforward since punctuation signs that mark the end of
a sentence are ambiguous. More explicitly, the period sign can denote an abbreviation ("Mr." or
"P.S."), a decimal point or the end of a sentence.

• Tokenization

"A word is the minimal unit that can convey meaning to a human. So any text string cannot be
further processed without going through tokenization". Tokenization is the process of dividing the
raw string into tokens. The complexity of tokenization diversifies according to the demand of the
NLP application, and the complexity of the language itself [31]. For instance, there are some cases
such as hyphens and apostrophes that need particular attention.

input: TDX is located in Coimbra.

output: [TDX] [is] [located] [in] [Coimbra] [.]

• Stop Words

Stop Words are high-frequency words that we often want to filter out of a document before further
processing. Stop words regularly have limited lexical content, and their appearance in a text folds
to discriminate it from others [13].

input: At Talkdesk we are reimagining how people experience contact centers

stop words identified: "we", "are", "how"

• Lemmatization

Lemmatization is a more systematic way of converting all the inflected forms to the root of the
word, named lemma, as it occurs in language dictionary. It uses context, to accurately lemmatize
ambiguous forms, and part of speech to determine the inflected form of the word and involves different
normalization rules for each part of the speech to get the root word [31].

E.g: The word "run" is the lemma of the words "runs", "running", and "ran"

• Stemming

Stemming consists of collapsing the morphological variants of a word together. This process when
applied, utilizes simple pattern matching to strip suffixes of tokens (e.g., remove “ing”, remove “s”).
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The primary advantage of utilizing stemming is that it enables a particular query term to match
documents comprising any of the morphological variants of the term [37].

E.g: In the words "booking" and "booked", when executed the stemming process, the output
will be the common form "book".

• N-Grams

An n-gram is a contiguous chain of n items from a provided sample of text or speech. N-gram models
formalize the idea of word prediction with probabilistic models foretelling the next word from the
prior n - 1 words [37]. Figure 2.8 exemplifies this operation with sequences of one, two, and three
items.

Figure 2.8: N-Grams example.

There are some challenges when dealing with n-grams. A short n-gram size advances high bias,
and an extensive n-gram size presents high variance. "Language is full of long-range dependencies
that we cannot capture because n is too small; at the same time, language datasets are full of rare
phenomena, whose probabilities we fail to estimate accurately because n is too large" [25].

• Spell Checking

Given an input file of text, the goal is to identify the words that are not properly written. A spelling
corrector both exposes misspelled words and attempts to determine the most likely correct word.
Correcting a misspelling requires a search of the word space to pick the nearest neighbor(s) of the
wrongly spelled word [63].

• Regular Expressions

A Regular Expression (RE), regex, is a sequence of characters that define a search pattern. They are
especially valuable for searching in texts when we have a pattern to seek for and a corpus of texts to
search through. A RE search function will explore through the corpus, replying all texts that match
the pattern[38]. In table 2.2 we present some of the variants of the regular expressions:
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Match
/[abc]/ ’a’,’b’, or ’c’
/[1234567890]/ any digit
/[a-z]/ a lower case letter
/[0-9]/ a single digit
/[^A-Z]/ not an upper case letter
/[a^ ]/ either a ’a’ or a ’^’

Table 2.2: Different types of regular expressions.

2.3.2 Syntactic Analysis

Syntactic Analysis is the second phase of the NLP pipeline and has the purpose of validating a sentence
according to certain grammar rules. To perform the syntactic analysis, the knowledge of grammar and
parsing techniques is required. Grammar is a specification of rules admissible in the language and parsing
is a technique for analyzing a sentence to discover its structure according to a grammar [42]. For instance,
the sentence "Boy the go the to store" [20] would be rejected after performed a syntactic analysis as a result
of the structural relationships between words (the knowledge required to order and pair words together).
However, this type of analysis is susceptible to problems that can arise due to reasons such as a word that
may function as distinct parts of speech in different contexts, or a structure of a sentence that has several
possible interpretations. Certain processes that involve this analysis include:

• Part-of-speech Tagging

This process consists of grammatical classes to which words are assigned, based on its context, that
is, its relationship with adjacent and associated words in a sentence, and role. Parts of speech are
considered a useful resource because they can unveil a lot about a word and its neighbors. Discerning
whether a word is a noun or a verb indicates us the likelihood of certain neighboring words (nouns
are usually preceded by determiners and adjectives, and verbs by nouns) and syntactic structure as
well, making this process a key aspect [38]. There are four main parts-of-speech tags, among others -
Noun (NOUN), Verb (VERB), Adjective (ADJ), and Adverb (ADV). Let’s consider the following
sentence with the result of this operation on the table 2.3.

input: I am going to Amsterdam next Friday

• Chunking

The following technique parts and labels multi-token sequences as illustrated in 2.9. The larger
boxes display higher-level chunking, and each of them is designated a chunk. Similar to tokenization,
which omits whitespace, chunking usually selects a subset of the tokens. Also like tokenization, the
items produced by a chunker do not overlap in the source text. This collection typically includes
phrases that match to the content-bearing parts-of-speech [13] [37]. There are generally 5 five major
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Tag
I PRP (pronoun)
am VBP (verb)
going VBG (verb)
to ADP (adposition)
Amsterdam NNP (noun)
next JJ (adjective)
Friday NNP (noun)

Table 2.3: Output after performing PoS Tagging.

categories of phrases, which are Noun phrase (NP), Adjective phrase (ADJP), Verb phrase (VP),
Adverb phrase (ADVP), and Prepositional phrase (PP).

Figure 2.9: Chunking example [13].

After performing the chunking process, you can have chunks with their chunk tags, along with
individuals words with their POS tags. These individual words are not relevant to the final result
and can be withdrawn. So, the concept of chinking is introduced. Chinking allow us to remove
from the chunk what we want and deal with the issue presented previously.

• Parsing

Parsing is the automatic analysis of a sentence concerning its syntactic structure based on an un-
derlying grammar (of the language) and plays an important role in applications such as Question
Answering or Information Extraction. There are two main types of parsing, which will be described
briefly:

– Constituency Parsing
This method strives to extract a constituency-based parse tree from a sentence representing its
syntactic structure according to a phrase structure grammar and in terms of a hierarchically
ordered structure of their constituents.
However, ambiguity can be a real problem, especially structural ambiguity that occurs when
the grammar can assign more than one parse to a sentence. Considering the following figure
2.10 of this type of ambiguity, here the "parse on the left corresponds to the humorous reading
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in which the elephant is in the pajamas, while the parse on the right corresponds to the reading
in which the photographer did the shooting in his pajamas" [38].

Figure 2.10: Two parse trees for an ambiguous sentence [38].

– Dependency Parsing
The associations between words in a sentence can be represented in a directed graph, based on
the lexicalized phrase-structure parse: form an edge (i, j) if word i is the peak of a phrase whose
child is a phrase headed by word j. Thus, in figure 2.11, we obtain "scratch" -> "cats" and
"cats" -> "the". These edges specify syntactic dependencies, a bi-lexical relationship among a
head and a dependent [25].

Figure 2.11: Unlabeled dependency tree [25].

2.3.3 Semantic Analysis

As the following phase of the NLP pipeline, semantics aims to study the meaning in language by pivoting
on the interactions among word-level meanings in the sentence. To be able to understand what a given
sentence means, it is important to understand some of the lexical-semantic relations, as shown in table
2.4.
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Description Example

Hyponymy Word or phrase whose semantic field is included
within that of another word, its hypernym

The word color is hypernym and the
color green, red are hyponyms

Homonymy Two different words with the same spelling and
with the same sound

The words peer (person belonging
to the same group in age and status)
and peer (look searchingly)

Synonymy Word with the same or nearly the same meaning
as another word The words destiny and fate

Antonymy Words which have the opposite (or nearly oppo-
site) meaning The words hot and cold

Table 2.4: Lexical-semantic Relations.

Performing this analysis involves two steps. The first one is called lexical semantics which studies the
meaning of individual words, and the last one has the purpose of studying the combination of the individual
words. Some of the processes that encompass the semantic analysis will be presented:

• Named Entities

Aside from PoS Tagging, a common labeling problem is locating meaningful entities in the text.
Examine the next example:

The United States Army captured a hill overlooking Atlanta on May 14, 1864 [25]

For the presented sentence, the first intention is to extract the called entity mentions that are com-
posed by the spans: "United States Army", "Atlanta", and "May 14, 1864", and then associate
with each a particular entity type. This two-step process is designated as Named Entity Recognition
(NER) and it is a critical subtask of information extraction which focuses on recognize and classify
information units according to a category group already defined, e.g, person names, organizations,
locations, time and dates, etc. However, there are complications with current named entity recogni-
tion systems. The necessity to fine-tune a system for every new domain constitutes a significant drop
in the performance and the quality of the output. Another quandary is the lack of semantic/context
and external knowledge particularly in informal texts where the public needs to recognize names
[31]. The other intent is to perform the entity linking task, which links the spans identified in the
previous step to entities in a knowledge base.
Additionally, techniques such as feature-based (e.g., embeddings, part-of-speech, and chunk label of
neighboring words) or neural sequence labeling (based on a bi-LSTM) achieve accurate results and
are set as viable solutions [38].
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• Relations
After obtaining the entities detected, the next task consists of identifying relations among them.
Relations, considering the order of the inputs, take precisely two arguments. Table 2.5 shows some
relation samples.

Relations Types Examples
Physical-Located PER-GPE He was in Tennessee
Part-Whole-Subsidiary ORG-ORG XYZ, the parent company of ABC
Person-Social-Family PER-PER Yoko’s husband John
ORG-AFF-Founder PER-ORG Steve Jobs, co-founder of Apple...

Table 2.5: Semantic relations with the involved named entity types [38].

From the previous table, factoids such as state = "Tennessee" and founder = "Steve Jobs" can be
extracted and turned into associations - located-in and founder-of, in this order. Another alternative
is to follow a metalanguage named Resource Description Framework (RDF) that represents the
relations through a triple, a tuple composed of a subject, predicate, and object. Triples represent
information in the form of relations among data elements and can interpret, without losing context,
a sentence in fewer words.
Three main approaches are capable of performing relation extraction, and each is dependent on a
specific circumstance:

– Relation Extraction via Supervised Learning: when is available a hand-annotated training
corpus with the entities and relations, and a trained classifier for searching pairs of related
entities.

– Semisupervised Relation Extraction via Bootstrapping: when seed tuples or patterns are
available. The Bootstrapping process is defined by utilizing entities into the seed pair and
finding sentences containing those entities.

– Unsupervised Relation Extraction: when no labeled data is provided, Open IE, for instance,
is responsible for the extraction of relation tuples from segments of text [8].

• Word Sense Disambiguation
In the majority of the cases, words share more than one meaning or sense, and those subtle dis-
tinctions indicate the paramountcy on choosing the correct interpretation of each word in order to
perceive the semantics of an entire sentence. The designated formal process of correctly interpreting
the contextual meaning of words is understood as word sense disambiguation. Word sense disam-
biguation is the problem of identifying the intended sense of each word token in a document [25].
Consider the following examples:
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The little girl saw a bear

Your efforts will bear fruit

These sentences are ambiguous because they contain the word "bear" that has multiple meanings,
or senses.

• Sentence Embeddings

Sentence Embeddings are representations of sentences through vectors of real numbers. Such rep-
resentation becomes very handy especially for tasks in the language understanding domain like
similarity and sentiment analysis. In order to obtain these representations a straightforward and
clear option is to use word embeddings as a proxy for a sentence embedding approach. To be more
precise, calculate the embeddings for a specific sentence based on the embedding of each word. For
instance, the approach known as Smooth Inverse Frequency (SIF) applies a weighting function to
word embeddings to obtain the final representation [9]. However, these types of approaches are
associated with some problems such as the incapacity to capture the semantic meaning of a sentence
or ignoring word order.

In chapter 5, this topic will be analyzed more deeply.

2.3.4 Pragmatic Analysis

After completing the lexical analysis, checking the grammatical rules through the syntactic analysis, and
extracting the true meaning of the sentence, it is time to study the relationship between language and
context of use. This analysis consists of deriving and reinterpreting several aspects of language in order to
understand the real intentions, plans, or goals present in a text. For example, for the following sentence:

Andre saw Pedro in a garden with a dog.

In this case, we have multiple interpretations, and we cannot say whether Andre is with the dog or, instead,
Pedro is with the dog. To infer who is with the animal, we require real-world knowledge and appropriate
context. Another example but this time associated with ambiguous references in noun phrases.

The X is writing a novel.

The above sentence requires resolution of the encountered reference "The X" with pragmatics. As sus-
tained, the majority of text’s meaning does have to do with the context in which a term appeared.
Ambiguity, and limiting ambiguity, are at the core of natural language processing, and that is the rea-
son why pragmatic analysis is critical for extracting meaning. Without this level, an NLP system may
correlate improbable or even unwittingly incompatible attributes/relations to such an object or term [19].
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2.3.5 Discourse Analysis

Natural language does not consist of unrelated sentences which can be interpreted isolated. Rather, it
consists of structured and coherent groups of sentences. The discourse level of NLP considers these groups
as a whole that conveys meaningful connections between. Different types of discourse processing can occur
at this level, being anaphora resolution and coherent discourse two of the most common. Consider this
example from [34].

John took a train from Paris to Istanbul. He likes spinach.

Jane took a train from Paris to Istanbul. She had to attend a conference.

We can infer from this sequence of sentences that they require resolution of the anaphoric terms "she"
and "he" in order to associate them with an object and a relation. The appearance of anaphoras indicates
how discourse is constructed and maintained.

Furthermore, inherited the perspective of coherent discourse, for the first example, it is unclear what is
the connection between a train trip and the appreciation for spinach. In the opposite, for the latter case,
there is a coherence relation between the sentences that connects them. More explicitly, a reason that
justifies the necessity of Jane taking a trip.

2.3.6 NLP Applications

As stated earlier, although the many challenges and complex tasks ahead that NLP will face, it is a field
developing at a remarkably quick pace and reaching high levels of advancement. Large companies are
exploiting this technique, taking profits of the numerous applications that exist, such as:

Machine Translation: focused on translating text from one language to another, this field has
the potential to transform society by facilitating communication between people anywhere in the
world. However we are still far from translation systems that match the nuance and depth of human
translations [25]. The major challenge of Machine Translation (MT) is the language barrier, that is,
the multitude of languages with totally different grammar and dialects while maintaining intact the
meaning of sentences after being translated.

Speech Recognition: ability to convert sound waves to individual letters and ultimately sentences.
With successfully obtaining a text dictation of a person’s speech, these systems become a real vantage
for home automation, virtual assistants, hands-free computing, and so on. The current use of speech
recognition is still limited due to noisy acoustic environments and systems for natural, free-style
speech, preventing achieving a recognition accuracy close to the human-like performance [82].
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Sentiment Analysis: this automatic process allows businesses to determine how their customers
are reacting (positively, negatively, neutral) and what they are saying about a product or service
launched and, simultaneously, extract valuable insights that lead to profitability [16]. The growth of
sentiment analysis coincide with those of the social media on the web, for example, forum reviews,
blogs, and social networks like Instagram and Twitter.

Question Answering: these systems automatically answer different templates of questions posed
in a natural language. Question Answering (QA) can be split into two paradigms. The first,
information-retrieval question answering, has the goal of find text segments or passages obtained
in documents or web and draw a response immediately. While the second, knowledge-based
question answering, map the natural language into a query over a structured database [38].

Information Extraction: with the current information overload in the form of news, social media,
and corporate files, for example, the automatic extraction of information embedded from unstruc-
tured sources opened a window for searching, organizing, and analyzing data by "drawing upon the
clean semantics of structured databases and the abundance of unstructured data" [73].

The Summarization application will be more in-depth and detailed in the succeeding sections.

2.4 Automatic Summarization

Recently, we are witnessing an exponential increase in the availability of online information spread from
various sources. This mass of text is a valuable origin of data and knowledge which needs to be accessed
and digested adequately to be useful. These concerns have provided influential impetus to the development
of automatic summarization systems accountable for producing a coherent, fluent and condensed summary,
conserving key content and meaning.

Text summarization can be used for multiple domains, for instance, a cluster of news and journals, scientific
articles, meeting recordings, contact centers dealing with millions of calls per day, legal contract analysis,
and so on. Despite these advantages that enhance the use of automatic systems, there are yet some
hurdles to take into account and give particular attention. The computer’s lack of language capability,
cohesion in text, information significance, detecting redundancy in information, sentence ordering, and
the dependency in use cases make very challenging and non-trivial the task of generating summaries.

2.4.1 Summarization Factors

There are many types of summarization according to certain criteria, which are grouped and classified by
the following factors: input, purpose, and output [36].

• Input Factors: these factors can be categorized according to table 2.6.
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Type Description
Number of input
documents Single Document Can accept only one document per summary, whether

a news story, scientific article, etc.

Multi Document

Multi-document summarization was driven by use
cases on the web. Given the amount of redundancy on-
line, summarization was often more helpful if it could
provide a brief digest of several documents on the same
topic or the same event. In the first deployed online
systems, multi-document summarization was applied
to clusters of news articles on the same event [58].

Language Mono Lingual
Input text only allows documents with a specific lan-
guage and the generated summary created on that lan-
guage.

Multi Lingual

Can summarize input documents with distinct lan-
guages and produce summary of different languages,
but it is difficult to implement because of the various
rules of grammar and semantics to deal.

Table 2.6: Input factors with the corresponding types and descriptions.

• Purpose Factors: in contrast with the input factors, the purpose factors are distinguished based
on the following three levels displayed 2.7.
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Type Description

Details Informative
With the difference of being shorter and without
redundant information, this summaries can be read
in place of the original text.

Indicative
It presents only the main idea of the original text
and enables the reader to figure out if that text is
worth reading.

Content Generic

Generic summarization makes few assumptions
about the audience or the goal for producing the
summary. Typically, it is assumed that the audi-
ence is a universal one: anyone may end up study-
ing the summary. Furthermore, no assumptions are
made about the genre or domain of the elements
that need to be summarized [58].

Query-based

Summarize solely the information in the input doc-
ument(s) that is related to a specific user query.
For instance, in the context of information retrieval,
"given a query issued by the user and a set of rel-
evant documents retrieved by the search engine, a
summary of each document could make it easier for
the user to determine which document is relevant"
[58].

Limitations Domain Dependent Restraining the input text to certain knowledge do-
mains such as medicine, biology, etc.

Genre Specific
The input text is restricted to accept only a specific
structure of text like newspaper articles or instruc-
tion manuals.

Table 2.7: Purpose factors with the corresponding types and descriptions.

• Output Factors: regarding this type of factors, there are two approaches for summarization: the
summarization by extraction, which consists of concatenating and reusing certain snippets of the
original input text as illustrated in the figure 2.12; and summarization by abstraction, which
involves creating a summary with novel and shorter sentences that describes the same content of the
original text.

Despite the emergence of abstractive techniques, extractive techniques are still attractive as they are
less complex, less expensive, and generate grammatically and semantically correct summaries most
of the time [57].
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Figure 2.12: Illustration of Extractive Multi Document Summarization [39]

2.4.2 Early Work

Automatic text summarization started gaining recognition at the beginning of the 1950s. Most early works
focused on approaches that primarily had the purpose of identifying important content at the sentence
level and worked on technical papers. Luhn, considered one of the pioneers of this subject, proposed that
the “significance” factor of a sentence derives from an analysis of its words. He introduced a method to
extract and score sentences from the text, applying a combination of measurements like frequency of word
occurrence in an article and the relative position within a sentence of significant words [48].

Edmundson’s [24] work was the foundation of several other trends in summarization research, which
eventually led to machine learning approaches in summarization [58]. He expanded on Luhn’s approach
by adding another combination of features:

• Cue Method: the presence or absence of certain words matching a pre-compiled list of cue words.

• Title Method: the sentence weight is measured as the sum of all the content words that appear in
the title or in section headings.

• Location Method: sentences appearing at a certain position or section of the text have a higher
probability of being relevant.

Since then, countless approaches have been published to address the problem of automatic text summa-
rization. Next, recognized methods will be presented following different based strategies.

• Unsupervised Data-driven Methods
Unsupervised methods for sentence extraction are the prevailing paradigm in extractive summariza-
tion. Labeled data in the form of human annotations for training statistical methods, for instance, is
not required. They are “data-driven” because they do not rely on any models or linguistic processing
and interpretation [58].
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Term Frequency - Inverse Document Frequency (TF-IDF)
This weighting technique assesses the relative frequency of words in a particular document,
then comparing with the inverse proportion of those words but concerning the collection of
every document. That is, it can determine if a word is just a frequent word or a meaningful
one. Assuming that c(w) will be the number of appearances of a word w in a given document,
D the total number of documents and d(w) the number of documents containing the word w,
the TF-IDF value is calculated as follows:

TF ⇤ IDF = c(w) ⇤ log D
d(w)

(2.2)

Clustering
Clustering is an automatic text summarization technique used mostly for documents containing
more than one topic. Radev, Jing, Stys, and Tam [65] proposed an approach that produces
summaries using cluster centroids and topic detection. This last one is responsible for clus-
tering together news articles that describe the same topic, and by generating TF-IDF vector
representations of the documents. Then, an algorithm operates over the TF-IDF vectors, suc-
cessively adding documents to clusters if the similarity measure between those TF-IDF values
and the centroids is within a threshold. Following this step, this method uses the centroids
to distinguish sentences in each cluster that are central to the topic of the entire cluster. For
this to be accomplished, the authors defined two metrics: cluster-based relative utility (CBRU)
and cross-sentence informational subsumption (CSIS). The first metric measures how relevant
is a particular sentence to the general topic of the entire cluster, while the second estimate the
redundancy amongst sentences.
Graph-Based
A graph-based ranking algorithm is a way of deciding on the importance of a vertex within a
graph, by taking into account global information recursively computed from the entire graph,
rather than relying only on local vertex-specific information [54]. Web Page ranking algorithms
such as PageRank or TextRank can be applied in summarization, where the graph is assembled
by adding a vertex for each existent sentence in the text. Using sentence inter-connections,
vertices are connected by weighted edges according to a similarity relation and later, sorted by
their scores.

• Machine Learning Methods

ML approaches can model the summarization as a classification problem categorizing sentences into
two classes — include or exclude from summary — through a set of features, given a training and
testing set of documents.

Naive Bayes
Kupiec describes a method using a Naive Bayes classifier that determines the probability of
a sentence to be included in an extract. New extracts can then be generated by ranking
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sentences according to this probability and selecting a user-specified number of the top-scoring
ones [43]. Considering a particular sentence s and k features assumed independent, the system
will estimate if that sentence will be included in a summary S using Bayes’ rule in equation
2.3:

P (s✏S|F1, F2, ..., Fk) =

Qk
i=1 P (Fi|s✏S) · P (s✏S)

Qk
i=1 P (Fi)

(2.3)

There are a set of features per sentence, which are all discrete:
1. Sentence Length Cut-off Feature: given a settled threshold (e.g., 6 words), the feature has

the value true for all sentences longer than the threshold
2. Fixed-Phrase Feature: sentences including key phrases or occurring instantly after a section

heading that contains a keyword (e.g., "conclusions", "discussions", etc) tend to be included
in summaries

3. Paragraph Feature: sentences are categorized according to their position in a paragraph
4. Thematic Word Feature: the most frequent content words are named thematic words, and

few of them are selected. Sentences are classified based on the frequency of those words.
5. Uppercase Word Feature: sentences are ranked according to the frequency of uppercase

words present in the document
Log-Linear Model
Osborne [59] used maximum entropy modeling for sentence extraction. The parametric form
of this model can be declared in equations 2.4 and 2.5:

P (c|s) = 1

Z(s)
exp

 
X

i

�ifi(c, s)

!
(2.4)

Z(s) =
X

c

exp

 
X

i

�ifi(c, s)

!
, (2.5)

where c is a label from the set C, s the item that will be labeled, fi the features applied, and
li the corresponding feature weight. C consists of two types of labels: "keep" and "reject"
meaning if the sentence is to be extracted or it is not. Also, to find the optimal set of weights
the conjugate gradient descent was used.
HMM
Conroy and O’Leary [22] determined how a HMM can be applied for summarization. Only
three features were considered: the position of a sentence in the document, number of terms
in a sentence, and likeliness of the sentence terms given the document terms. The authors
also deliberately exploit Markov dependencies: they suggest that the probability that the next
sentence in a document is included in a summary will depend on whether the current document
sentence is already part of the summary [58].
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• Methods using Semantics and Discourse
Language-dependent methods either rely on manually composed semantic resources, knowledge con-
cerning lexical items, or coreference tools.

Lexical Chains
Lexical chains are sets of semantically related words spread over an entire text. Computed
by the surface level analysis of a text, they can identify the topic of a document provided
or identify the sense of a certain word in a given context. For instance, a set composed of
the words: "students", "lecture", "science" can represent a specific topic or a context. These
chains, with the advantages mentioned, have the power to generate a cohesive summary for a
document. The process of obtaining lexical chains relies heavily on WordNet [56], a manually
compiled thesaurus which lists the different senses of each word, as well as word relationships
such as synonymy, antonymy, part-whole and general-specific [58].
Barzilay and Elhadad [11] presented a summarizer that contained the following steps: seg-
mentation of the text analyzed, identification of lexical chains, and sentence selection using
strong lexical chains. Each strong chain is associated with an aggregate score representing how
valuable it is.
Latent Semantic Analysis (LSA)
LSA is a theory and method for extracting and representing the contextual-usage meaning of
words by statistical computations applied to a large corpus of text. The underlying idea is that
the aggregate of all the word contexts in which a given word does and does not appear provides
a set of mutual constraints that largely determines the similarity of meaning of words and sets
of words to each other [44]. This method is applied to cluster similar documents, and to obtain
the most relevant sentences in the document.
Rhetorical Structure Theory (RST)
RST requires the text to follow a fully connected discourse structure that can be represented by
a tree. In RST trees, the tiniest units of text analysis, are designated elementary discourse units
(EDU), which are mostly sub-sentential clauses. This approach is based on finding rhetorical
relationships between two non-overlapping pieces of text spans: the nucleus and the satellite.
The first is considered more essential representing important information in a text, whereas
satellites contribute to the nucleus containing additional information about it.

• Neural-Based Methods
Since the bloom of DL and ANN, neural-based summarizers have captivated noteworthy attention
for automatic summarization. Unlike previous mentioned traditional models, with plentiful training
data, these deliver better performance with less human involvement and can also either be abstractive
or extractive.
Most neural approaches general use the following pipeline:

1. with BERT or GloVe, for example, word embeddings, words from the vocabulary that are
mapped to vectors of real numbers, are produced;
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2. with CNN or RNN as encoders, sentences/documents are represented as continuous vectors
based on the word embeddings;

3. sentence/document representations are then fed to a model for selection-based extraction or
generation-based abstraction, where neural models act like regressors for ranking or decoders.

Kågebäck proposed a method that leverages the use of continuous vector for sentence representation
as a basis for similarity measuring. Through the addition of word embeddings from Collobert and
Weston’s model, or using an unfolding Recursive Auto-encoder (RAE), taught in an unsupervised
way by the backpropagation method, on word embeddings, were obtained the continuous vectors
[39].

Meantime, Cao and his associates developed a method, PriorSum, which applies CNN to obtain the
prior summary independent features. The three features applied were: sentence position, averaged
term frequency of words in a sentence based on the document, and averaged term frequency of words
in a sentence based on the cluster. About CNN, the layers were composed of multiple pooling and
convolution operations, and the filters had different window sizes [17].

2.4.3 Evaluation

Evaluating a summary is complex and challenging task, mainly due to lack of agreement or consensus in
the research community on what an ideal summary should resemble. Also, there are other serious hurdles
to be knowledgeable of:

• Widespread application of diverse metrics. There is an absence of a standard human or automatic
metric.

• Approaches assessing the quality of the summaries by human evaluators are expensive, time-consuming,
and the obtained results are subjective and inconsistently.

• Cases where it is hard to arrive at a concept of what the correct output is. For example, it is feasible
that a system generates a good summary that is moderately different from a human-generated
summary.

• The increase in scale and complexity evaluating summaries at different compression rates.

Text Summarization evaluation methods can be broadly classified into two categories. First, an intrinsic
evaluation operates on the characteristics of the summary itself, assessing mainly the coherence and infor-
mativeness [29]. The second, an extrinsic evaluation, tests the quality of a summary based on how helpful
it can be for a specific task like relevance assessment or reading comprehension.

Next, some standard intrinsic automatic methods are reviewed.
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Recall-Oriented Understudy for Gisting Evaluation (ROUGE)

Lin [46] proposed a recall-oriented work that measures how much the words in the machine generated
summaries appeared in the human reference summaries. It became the most commonly used metric
for automatic evaluation between researchers due to its speed plus cheapness. There are several
varieties of ROUGE, and here only the most broadly used will be mentioned:

– ROUGE-N: measures the overlap of n-grams between the candidate summary and the refer-
ence summaries

– ROUGE-L: employs the notion of the longest common subsequence (LCS) between two series
of text. The longer the LCS between two summary sentences, the more alike they are

– ROUGE-S: calculates the overlap of skip-bigrams between two summaries. Skip-bigram means
any pair of words in a sentence in the order they appear, allowing for arbitrary gaps

Some variants were later extended to consider both the recall and precision. Also, stemming and
stopword removal can be regarded.

Bilingual Evaluation Understudy Score (BLEU)

On the other hand, BLEU [61] is a precision-oriented metric measuring how much the words in the
human reference summaries appeared in the machine generated summaries. It includes a brevity
penalty that penalizes machine-generated results which are shorter than the general length of a
reference.

For intrinsically evaluating a summary, other notable metrics are precision, recall, and F-measure [76]:

• Precision: the ratio of sentences occurring in both machine-generated and ideal summaries to the
number of sentences in the machine-generated summary

• Recall: the ratio of sentences occurring in both machine-generated and ideal summaries to the
number of sentences in the ideal summary

• F-Measure: weighted average of Precision and Recall

F �Measure = 2 ⇤ Precision ⇤Recall

Precision+Recall
(2.6)
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State of the Art

This chapter intends to present, in the first section, closely related work covering our approach domain or
subphases included, followed by an analysis of resources and tools that can help in the building of several
tasks related to summarization and information extraction and to the implementation of this project.
Additionally, the final section performs an outline of the applications/products available on the current
market that compete with the purposed approach of this internship. It represents a critical step in a project
as this competitor’s study may unveil if it is reasonable to proceed with the proposal and consequently
any likelihood of success.

3.1 Related Work

Several papers about information extraction or summarization in the context of dialogue conversations
were analyzed. Since they are related to our approach pipeline sub-steps, it is important to comprehend
how they developed these components. Performing this review has the ultimate goal of understanding
which approaches have already been evaluated and considered the most relevant. Prior to this step,
a strategy constituted of two criteria was followed to select and shorten the list of possible articles or
scientific papers most appropriate to an accurate review. Firstly, there was a focus on articles accepted by
relevant conferences such as the Association for Computational Linguistics (ACL), a premier conference
in the field of computational linguistics. Ultimately the number of citations linked was a key factor in the
criteria of acceptance.

In [64], the authors presented the GECOR, an end-to-end generative model responsible for the resolution of
ellipsis and co-reference in multi-turn dialogues. Ellipsis and co-reference occur regularly due to rhetorical
principles such as saving words and avoiding repetitions but leave utterances pragmatically incomplete if
separated from context. While humans understand and recognize utterances with anaphorically referenced
or absent information, as displayed in figure 3.1 (e.g., Q2 and Q3), dialogue systems fail to discern such
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utterances correctly. According to the dialogue context existent, to achieve the goal of automatically
supplement user utterances with information that is left out or substituted by anaphora, the model applies
a sequence-to-sequence method with two encoders, for reading the user utterance as well as the dialogue
context, and a decoder that generates the complete utterance. During the implementation phase of our
work, anaphora situations are also treated to associate entities with attributes or relations correctly.
However, this process, integrated with the proposed platform, is only one step to reach our final goal of
automating the template generation process.

Figure 3.1: Examples of ellipsis and co-reference resolution [64].

Regarding [81], the author’s approach, a novel scheme of spoken dialogue systems that use up-to-date
knowledge of the web, is based on information extraction defined by a predicate-argument structure and
realized by semantic parsing operation. The process of information extraction starts by converting a
natural language web text, and the user’s query, into a machine-understandable representation. The
system then matches the extracted information against the domain corpus. According to the groundtruth,
the system either answers the user’s question or returns a proactive presentation that matches partially
the most relevant information of the user’s request.
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Figure 3.2: Example of dialogue between a user and a system, with the user attributes column the potential
extracted information [80].

In this paper [80], the researchers leverage dialogues between conversational agents to automatically extract
user attributes. User attributes can be defined as structured representations or descriptions of a person’s
identity. The project’s purpose is to predict user information and represent that as a triple format (subject,
predicate, object). For instance, in figure 3.2, the triple (I, live-in, Florida) is extracted from the second
user utterance. A pipeline of three steps composes this information extraction task. The first one uses
a context encoder to capture utterance semantics, using a sequence of word embeddings as input. Then
the predicate prediction task takes actions by determining whether there is a predicate triggered by a
user utterance. In case there is a triggered predicate, the last step, the entity generation task, performs
and generates the subject and object phrases to complete the entire user attribute. In work developed,
triples are also extracted from dialogues and used to represent the utterances and the relevant information
contained on them. Again, this process is integrated into the proposed platform, which covers many other
steps towards our final goal.

In [51], the authors suggested a novel online call scene segmentation method for dialogues occurring in
call centers between an agent and a customer. Advantageous for subsequent tasks such as summarization
and information retrieval, they define call scene segmentation as "utterance-level sequential labeling" with
the following tag types: opening, requirement confirmation, response, customer confirmation, and closing.
Capture interactions among the agent and the customer are the main goal of this proposal. In order to
execute this step, a fully neural network-based method processes hierarchical LSTM-RNN that handles
both the sentence-sequence and the speaker role sequence with the advantage of capturing long-range
interactive information.

Raheja V. and Tetreault J. [66], in turn, developed a context-aware self-attention mechanism united with
a hierarchical recurrent neural network, for dialogue act classification across multiple domains. That
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is, each utterance is linked with a Dialogue Act label describing a function. The authors affirmed that
knowing the Dialogue Act labels of the previous utterance is valuable for help in the prediction of the
current Dialogue Act. The model used involves three major components: a RNN which role consists
in encoding the information within the utterances at both word and character-level; a context-aware
mechanism aggregating word representations into utterance representations; and a conversation-level RNN
working on the utterance encoding output of the previous mechanism.

Figure 3.3: Example of a conversation with the Dialogue Act labels [47].

Finally, [47], has the same goal as the previous one, dialogue act classification with each utterance in a
conversation associated with a predefined Dialogue Act tag set. Figure 3.3 exhibits the different types of
tags that exist. All the methods proposed by the authors incorporate context information with various
baselines, including a hierarchical RNN/LSTM and CNN to model the utterance sequence in the con-
versation, CNN vectors for input classification, and finally, sequence-level decoding based on the foretold
Dialogue Act probabilities.

The last three enounced papers were all related to a sub-task integrated on our pipeline, intent classifi-
cation. These intents are relevant to our approach because they can distinguish if a dialogue utterance
represents an important value or if it can be discarded and minimize the possibility of non-relevant infor-
mation enter on the final templates.

3.2 Libraries and Frameworks as Support Tools

The magnitude of tools accessible today and the increasing demand by the companies and researchers trying
to exploit these technologies, has led to a leap forward in the field of artificial intelligence. Nevertheless,
it is vital to identify the most useful and serviceable libraries and frameworks for the development of this
project.

These tools were carefully chosen following certain restrictions at different levels. At the first level, they
were selected based on certain factors defined by the company: must be able to be deployed on-cloud,
the need to support the English language, feedback from the community, the last release, as well as
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the amount of enriching documentation available on their platforms—more details of these restrictions
in section 4.3. Simultaneously, the tools are required to be capable of helping in tasks dealing with
computational approaches and components to natural language or machine learning applications like
clustering, classification, and regression without jeopardizing the performance or computational resources.

A shortened list of the libraries and their description follows.

• Apache OpenNLP1: Java open-source ML-based toolkit for the processing of natural language
text. The last stable release dates from 2018, and it is available in multiple languages. Provides
modules for tasks such as tokenization, named entity recognition, coreference resolution, language
detection, and speech recognition.

• FreeLing2: C++ open-source configurable linguistic analysis tool suite providing functionalities
such as morphological analysis, Word Sense Disambiguation, and Semantic Role Labelling, for a
variety of languages. FreeLing, stable released in 2016, also renders a command-line front-end that
analyzes documents and distinguish exporting the output in a particular wanted format (e.g., JSON,
XML, and CoNLL).

• MITIE3: built on top of a high-performance toolkit containing ML algorithms, dlib [40], this li-
brary makes use of state-of-the-art information extraction tools like distributional word embeddings,
named entity extraction and Structural Support Vector Machines [35]. MITIE, which uses a vari-
ety of linguistic resources such as Wikipedia and Gigaword, supports diverse pre-trained models for
particular languages and software languages, including Python, R, Java, C, and MATLAB.

• NLTK[13]: a leading open-source platform for Python applications in natural language and com-
putational linguistics. With the latest stable version in 2019, that offers over 50 corpora and lexical
resources such as WordNet, as well as several text processing libraries for classification, semantic
reasoning, among others. It also intends to support research in the field of NLP with his open-source
modules and tutorials.

• SpaCy4: Python open-source library meant to develop natural language understanding systems and
integrate or preprocess text for deep learning by interoperating seamlessly with TensorFlow, Keras,
Scikit-learn, or PyTorch. Stable released recently this year includes modules such as named entity
recognition, PoS tagging, labeled dependency parsing, and syntax-driven sentence segmentation.

• TextBlob5: stable released in 2020, it is a Python library for processing textual data that offers a
flexible and straightforward API to access its methods and perform standard NLP tasks. Meantime,
provides an easy to use interface to the NLTK library. It includes several features such as PoS
tagging, tokenization, parsing, n-grams, spelling correction, and word inflection.

1http://opennlp.apache.org/
2http://nlp.lsi.upc.edu/freeling/
3https://github.com/mit-nlp/MITIE
4https://spacy.io/api/doc
5https://textblob.readthedocs.io/en/dev/
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• SciPy6: Python open-source library used for mathematics, science, and engineering with his last sta-
ble release in 2019. Built to work with NumPy arrays, provides routines for clustering, optimization,
statistics, and linear algebra.

• LingPipe7: a paid Java toolkit for processing text and gathering data using computational linguis-
tics. Stable released in 2016, it is responsible for performing tasks such as detecting the names of
people, organizations, or locations in the news. It will also classify and categorize automatically
search results of the platform Twitter, and suggest spelling corrections.

• Scikit-learn8: the last stable released occurred in 2020. A complete Python open-source ML
library intends to process features such as classification, regression, dimensionality reduction, model
selection, preprocessing, and clustering algorithms. Capable of interoperating with the scientific
library SciPy.

Despite all of the following frameworks identified having suitable features for this proposal, the majority
of them will not be applied in the product developed during this internship due to compliance with certain
restrictions imposed. Regarding frameworks, high cost charged, and the fact of these services are external
to the company are acknowledged as the main impediments to their usability. However, it is relevant to
grasp how they operate. Plus, these tools can become useful through the testing stage by working as
comparison metrics when we reach some results.

• Google Cloud Natural Language API9: provides powerful ML models to reveal the structure
and meaning of text. This API allows the following operations:

– Extraction of multiple classes of entities within a document and label them by types such as a
person, location, events, and much more.

– Understand the overall sentiment or feeling expressed in a segment of text.
– Perform a syntax analysis for a block of text.

All the above features are made available via a REST API that supports multiple languages.

• Microsoft Azure Cognitive Search10: constituted by cloud-based services that contribute to the
implementation of some advanced NLP tasks:

– The Text Analytics API’s Sentiment Analysis feature applies a machine-learning classification
algorithm to evaluate a document or a sentence and return a sentiment score between the values
0 and 1. Scores proximal to 1 indicate positive sentiment. This feature is useful when detecting
sentiment in social media posts, customer reviews, and more.

6https://www.scipy.org/
7http://alias-i.com/lingpipe/index.html
8https://scikit-learn.org/
9https://cloud.google.com/natural-language/
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– The Text Analytics API’s Language Detection feature evaluates text input and detects a wide
variety of languages according to some identifiers. Returns a score that indicates the strength
and confidence of the analysis.

– The Text Analytics API’s Named Entity Recognition feature detects different entities in text.
When the occurrence of an entity with double meaning (e.g., "Mars") happens, the system
disambiguates that entity by associating text to supplementary information on the web.

– The Bing Search API’s Spelling Correction feature is capable of correct word-breaking issues,
spot common name errors and fix homonyms in a given context, and detect slang language.

• Stanford’s CoreNLP11: integrated framework for application development and NLP research. It
is extensible, multilingual, and open-source, unlike the remaining toolsets. Stanford CoreNLP can
run as a simple web service and integrates all Stanford NLP tools, including the POS tagger, the
parser, the coreference resolution, sentiment analysis, and information extraction tools.

• Amazon Comprehend12: uses NLP to uncover insights about the content of documents, as well
as finding relationships in the unstructured data. It includes, among others, the main features:
keyphrase extraction, sentiment analysis (identify negative reviews or estimate how well are the
interactions between customer and service agents), and topic modeling. This framework distinguishes
itself from the others due to his continuous and consistent learning from information sources such
as Amazon.com product specifications and consumer evaluations.

To complete this section tables 3.1 and 3.2 display the libraries and frameworks mentioned above and their
most relevant features, respectively. Those tables include information about their software licenses (paid
or free) and the programming languages supported. Concerning this approach’s domain, all these services
handle features relevant and helpful during the implementation phase. However, our priority is to keep up
with the imposed restrictions, as previously mentioned. Therefore the supported tools must possess all or
the most part features without applied charges associated, for instance.

Regarding the performance of these tools, despite various have similar modules, it was crucial to analyze
and effectuate a comparable study capable of distinguishing which of them are the preferable and go-to
tools. The justification for this comparative study focus on our primary goal: to implement an efficient
and friendly framework. Accordingly, for the following libraries, it was obtained an aggregate of compar-
isons from different papers and repositories. Simultaneously, since Talkdesk already deals and processes
with these modules, we were capable of having critical feedback of which performs better under certain
circumstances.

10https://azure.microsoft.com/en-us/services/cognitive-services/
11https://stanfordnlp.github.io/CoreNLP/
12https://aws.amazon.com/comprehend/
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License Free Free Free Free Free Free Free Paid Free

Programming Language Java C++ Multi Python Python Python Java Java Java

Lemmatization l l l l l l l l l

N-Grams l l l l l l l l l

Sentence Segmentation l l l l l l l l l

Stop Words l l l l l l l l l

Spell Checker l l l l l l l l l

Stemming l l l l l l l l l

Tokenization l l l l l l l l l

Chunking l l l l l l l l l

Constituency Parsing l l l l l l l l l

Dependency Parsing l l l l l l l l l

NER l l l l l l l l l

POS Tagging l l l l l l l l l

Clustering l l l l l l l l l

Table 3.1: Libraries and its features.
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Programming Language REST API REST API Multi REST API

Lemmatization l l l l

N-Grams l l l l

Sentence Segmentation l l l l

Stop Words l l l l

Spell Checker l l l l

Stemming l l l l

Tokenization l l l l

Chunking l l l l

Constituency Parsing l l l l

Dependency Parsing l l l l

NER l l l l

POS Tagging l l l l

Table 3.2: Frameworks and its features.
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3.3 Competitors

A competitor analysis constitutes a crucial and initial step during the development of a project. Once it
is established the vision of the product, and the problem it is attempting to solve, becomes imperative to
understand all the available alternatives - direct and indirect competitors - and gather information about
them. Direct competitors offer a similar product regarding the one whom we will implement within the
same industry. In contrast, indirect competitors advance a distinct type of product within the identical
need. This way, we can anticipate shifts in the market, establish a sustainable competitive advantage, and
show the stakeholders the viability and innovation of our proposal.

3.3.1 Comparative Analysis

Dialpad
The exclusive direct competitor here presented was founded in 2011 and head-
quartered in San Francisco, California, is a cloud-based platform for enterprise
communications that operates across all personal devices. Dialpad offers voice
calling, video conferencing, text messaging, and screen/document sharing ser-
vices and provides a suite of advanced tools designed to help the streamline
of the business communication, including a custom Interactive Voice Response
(IVR), and Google Apps integration. The company also automatically provides
a call summary in the form of actions and snippets, moments, and transcript
access employing NLP. They provide two products using these features: one
oriented for call summaries and another towards meetings and conferences [3].

Voicea
Based in San Jose, California, Voicea was founded in 2016 and then acquired
by Cisco Systems. It is a voice collaboration platform powered by an Enterprise
Voice Assistant named EVA, which leverages AI to facilitate the productivity
of meetings by making these last ones searchable. It captures the highlights
and shares them to create actionable recaps. The meetings are automatically
summarized within two types, notes or action items (e.g., action schedule a
meeting at 3 pm) and can be shared with collaborators via Slack or Salesforce
[7].
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RaeNotes
Recently endowed in the past year in Boston, MA, is an AI browser-based voice
processing platform. Converts voice data toward a searchable source of knowl-
edge by providing automated video/audio transcriptions, media content man-
agement, high-value search, and collaboration for meetings, interviews, talks.
RaeNotes extracts topics like decisions, questions, action items addressed in
meetings, as well as provides sturdy structure and mark-up aptitudes to anno-
tate the transcript with own categories linked with the recording [4].

Avoma
Founded in late 2017 in Palo Alto, CA, provides an end-to-end AI Meeting As-
sistance and Conversation Intelligence solution for customer-facing teams. The
company analyzes conversation insights and capture relevant customer infor-
mation in the moment’s pre, during, and post meetings. With Avoma, it is
possible to automatically record all the meetings, obtain complete transcripts
and summarized notes, and actionable insights synced instantly to Customer
Relationship Management (CRM) [2].

Reason8 AI
Established in 2016 and with its head office situated in Boston, MA, is a cloud-
based plus mobile-oriented speech-to-text solution to automate note-taking
and summary preparation from in-person business and scrum meetings. The
platform supports multi-devices and is available in iOS and Android. Rea-
son8 AI is currently working on collaboration features for teamwork, high-
level summarization, and as well as integrations with project management ser-
vices/communication tools [5].

Sonia AI
With his headquarters located in New York and founded in 2017, Sonia AI is a
workflow automation platform in the voice AI space geared, currently, towards
helping consultants and financial advisors. Transcribes conference calls and
extracts client meeting notes, automates CRM entries, and drafts client follow-
ups (this integration allows sending/amending composed templates) [6].
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The identified competitors were analyzed according to the following set of features, relevant for this work:

• Summarization by extraction or abstraction

• Summarization of conversations supported in multi-languages

• Summarization of key sentences based on trigger words

• Break down conversations into automated detected moments such as action items, next steps,
recommendations, and requests for cancelation. By definition and in this approach’s domain, mo-
ments are mainly topics that capture the activity performed by a client or a call center agent. For
instance, if a client reaches an agent with a request to reserve a night in a specific hotel, the moment
associated is designated as hotel booking

• Review of snippets considered quintessential as pointers towards transcript history. Snippets are
small segments of a conversation or call that help keeping track of past moments

Table 3.3 summarises the analysis of the coverage of the selected features by the competitors.
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Abstractive Summarization l l l l l l

Multi Lingual Summarization l l l l l l

Trigger Words Summarization l l l l l l

Automated Detected Moments l l l l l l

Availability of Snippets l l l l l l

Table 3.3: Competitors and their features.

3.3.2 Discussion

From this comparative analysis, it becomes evident the lack of solutions opting for generating novel
sentences from information obtained from the corpus, instead of the prevailing approach - directly extract
segments/blocks of text from the transcripts into the summary. Current offers are more focused on
solutions considered more straightforward, faster to run, and especially cheaper to implement.

The analysed systems present all a similar structure: the majority of them relies on conversation elements
to compose the summary, rather than truly summarizing into segments or a set of paragraphs. That
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is, dialogs are broken down into moments/categories that describe their intent. Regarding this feature,
Dialpad stands out from the rest and presents the widest spectrum of moment types detecting situations
such as an agent apologizing to the customer, a customer indicating if their problem has been solved, price
inquiries, and requests for cancelation/refund of an order.

On a final balance analyzing this comparison made and the information obtained by these competitors,
with a greater emphasis on the direct competitor Dialpad, it was not easy to position the intern approach
solution with the competitor’s solution. Since this approach intends to automate the process of sum-
marization calls by automatically generating template summaries, and the competitors do not explicitly
publicly, as expected, the pipeline beyond their process for summarization, clarifying the technological and
product differentiation factors prevails a challenge. Theoretically and by searching for scientific papers,
articles, documentation, or announcements, generating automatic templates remains a process until date
not explored by related companies, which translates, in reality, a unique differentiator in this domain. If
successfuly developed, the agent after-call work will reduce dramatically, and therefore a product with
these capabilities will be advertised at the level of marketing and directly influence the call center market
and behavior of the correlated companies.
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Approach

The choice of the dataset for this project influenced and directly dictated the selection of the adopted
approach. At an early stage, we were inclined to follow an approach based on Deep Learning. Nevertheless,
despite the several advantages, following an approach in this field entails specific requirements that we are
unable to meet at all. It requires a large quantity of data to train effectively and a substantial amount
of computing resources — both conditions considered impracticable to accomplish. Another feature that
led to a deviation from the initial plan correlates with the final product proposed to develop in this
internship. The main objective was the development of an end-to-end framework responsible for automatic
summarization a transcription of a dialogue handled by an agent in a contact center. However, since the
Agent Assist team was already dealing and attempting a promising solution, it was therefore agreed that
the internship role in this project would be to automate one of the components that compose the process
implementation mentioned above. The ultimate proposal, illustrated by figure 4.1, consists of automating
the template generation process through the representation of triples describing each moment of the call,
which is previously identified and classified. Subsequent to this representation, related and similar triples
are then grouped through a clustering algorithm. Ultimately, the information that will be provided with
the templates are extracted from the clusters generated. The following sections cover and explain each
step of the flow to obtain this final result.

4.1 Summarization Approach

There is already an approach being addressed by the Talkdesk team to extract call summaries and that is
outside the scope of this project. The approach follows three main components - Moment Identification,
Moment Classification, and Template Filling - which are explained in the next sections.
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Figure 4.1: Process Flow.

4.1.1 Moment Identification and Classification

Moment Identification is the primary phase of the Talkdesk approach pipeline. It is based on the following
procedure: existing sentences on the input transcript are split, and each separate sentence is automatically
classified with an intent. This sentence classification allows the detection of moment shift passages, and
therefore the moment identification. Consequently, the moment classification starts taking action and
returning a topic assignment for each moment.

Figure 4.2: Moment classification process.

In figure 4.3 we show with a real scenario, extracted from the MultiWOZ dataset, the process explained
previously. Each sentence was labeled with an intent - greeting, information relay, information request,
information acknowledgment, farewell, and moment shift. The moment shift intent is used to split the
transcript into moments, which are then classified as train booking and hotel booking.
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Figure 4.3: Moment classification example.

4.1.2 Template Filling

A template can be described as an efficient approach to structure information through a sample document.
Fundamentally, it behaves as a structural summary, with the difference of not allowing a call center agent
with the freedom to elaborate sentences. This template combines two components. The first one refers
to already defined sections of text. Regarding the second, it is a set of fill-in-the-black segments that
complement the previously mentioned sections when populated with relevant highlights extracted from
dialogue conversations. In the third phase of the approach pipeline, templates created manually are used
and filled with extracted content from the moments to generate a summary.

4.2 Automatic Template Generation

Since the Talkdesk approach requires that templates have to be created manually, the intern’s contribution
will focus on automating this time consuming and ineffective process. The solution developed automatically
generate summary templates, by processing multiple examples of moments, representing those moments
with triples, and finding patterns through clusters and facts which can be used in the summary.
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4.2.1 Triple Extraction

The internship implementation starts with the triple extraction task. As the human conversation is
inherently complex, ambiguous, and sometimes does not follow a sequential order, mastering how to
represent and associate properties to an intent can lead to misinterpretations and, consequently, a final
result with a performance below average. Another hurdle consists of dealing with phenomena such as
interruptions, and the question that arises here is how we perceive relations between terms. Furthermore,
when an anaphoric term emerges in a dialogue, associate that term with an entity can reveal to be intricate.
These challenges were addressed in the second semester and referred on the next chapter. As of now, let
us look at the following example to understand how the process evolves:

Figure 4.4: Triple Representation process.

For each moment, the dialogue between a customer and an agent will be composed by sets of subject-
predicate-object triples trying to identify and represent the intent and the needs of the first-mentioned
"actor." In figure 4.4, we have a moment in which a customer desires to book a train but has specific
demands such as the departure and arrival station, or the schedule of the voyage. Represented in yellow
boxes, are the vital information required to be extracted in the form of triples. The output expected for
this process is exhibited in figure 4.5.
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Figure 4.5: Triple Extraction example.

4.2.2 Clustering Formation

To fill templates with relevant facts extracted from triples, we start by placing those representative triples
into groups, or clusters, such that triples in a given cluster tend to be similar to each other in some
grammatically component or being content relatable. In figure 4.6, the system receives as input some
Hotel Booking dialogs and generates combined clusters with the triples that aggregate the utterances. In
this case, there are five clusters, and it is possible to see the similarity between the elements. For instance,
cluster 1 exemplifies the future extraction of the fact "Hotel Name."

Figure 4.6: Clustering Formation process.

By receiving several dialogs composing the same moment type, these clusters will facilitate the fact ex-
traction task, explained next, and identify useful patterns.
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4.2.3 Fact Extraction and Template Generation

Towards the purpose of automating the task of generating templates, we require to comprehend first how
to distinguish relevant information from factoids, and then find a way of performing this automatically.
Figures 4.7 and 4.8 allows a better understanding of what these factoids signify.

Figure 4.7: Fact Extraction process

In figure 4.7, two moments with the same topic, train booking, are outlined. Although both describe
the same action, different characterizing arguments are provided. As observed in figure 4.8, features that
are not highlighted, such as cost, train ID, and travel time are included in merely one moment. These
features are designated as factoids, the term mentioned earlier. Factoids can be defined as particular
characteristics to an individual dialog: a peculiar and non-common piece of information representing some
unique attribute. A summary englobing and compiling a sample of dialogues will never present this kind
of facts.

So how to generate a template of a particular moment if it can be represented in various styles? The
answer lies in finding patterns through the triples and the clusters. Patterns in this circumstance are
the similarities found between the triple representations of each moment, and those similarities help define
what type of information will constitute the template. More precisely, if we extract from a few number of
clusters and, consequently, their triples, the same fact, we can conclude that a pattern was encountered.
The more times a fact is extracted from a cluster, the more likely it is to be selected to join the template.
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Figure 4.8: Illustration of factoids.

The intern implementation based on these four main steps is not as linear as explained with these examples,
but the final product should resemble the demonstrated in figure 4.9. The process of filling the blank boxes
is outside the internship domain and therefore, will not be solved.

Figure 4.9: Template Generation example.

4.2.4 MultiWOZ Dataset

For completing this pipeline, we need a dataset with enough samples to perform these tasks. MultiWOZ is
a recently released, fully-labeled collection dataset composed of human-to-human conversations spanning
over multiple domains/topics including 3,406 single-domain dialogues, 7,032 multi-domain dialogues, and
a train, test, and development set. The linguistic richness variation and the significant size facilitate and
make it a benchmark for ongoing research within dialogue tasks [26]. Also, the various and broad possible
dialogue scenarios allow us to recreate some of the moments or situations that may occur in the contact
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center calls. These details motivated the preference of this dataset, especially during the implementation
phase, instead of others accessible online.

4.3 Requirements

Comprehending what components, referred beforehand, are obliged and how they all should integrate,
translates in a need for the requirement elicitation process. It does represent not only a guideline for the
development but serving also as a way to evaluate the project’s progress. The subsequent subsections
will specify the possible use cases, along with all the requirements, including the functional as well as the
non-functional requirements and the constraints that can be triggered. To accomplish these steps, first,
we need to define the structure of each requirement and the general labels that compose them:

• [ID - Name]: Unique identifier and corresponding designation

• [Description]: A succinct summary that explains its function

4.3.1 Use Cases

One of the most helpful techniques to organize and analyze the requirements is by designing user stories.
User stories are a tool adopted in agile software development that focuses on explaining how the system
should behave under various conditions [21]. They are constituted by a set of possible sequences of
interactions between systems and actors in a particular environment and related to a particular goal.
Table 4.1 displays the only use case defined for this project.

4.3.2 Functional Requirements

This type of requirement state the main functionalities the system should do, and since they are based on
the use cases, it becomes more straightforward to settle them. To achieve a better understanding of how
significant and how much effort each of them requires, they were prioritized following a MoSCoW analysis
and according to the following nomenclature:

• M (Must Have) - mandatory to be included.

• S (Should Have) - are not vital, but add significant value.

• C (Could Have) - helpful to have but with a small impact if left out.
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UC01 - Template Generation

Description
One external system will send a document to the framework so that it can
generate the template. At the end of the process, the template obtained
returns to the external system.

Scope System.
Actor(s) External System.
Preconditions The system receives a dialog transcript between an agent and a customer.

Basic Flow
The framework will receive the given document and will perform all of the
tasks, described in figure 4.11, and then return the result obtained from
them.

Exception Flow In case of an impediment when performing the respective feature, the frame-
work will report the error occurred.

Postconditions Template generated from the initial document and the information con-
tained on it.

Table 4.1: Use Case 1.

Figure 4.10: Diagram for Use Case 1.

• W (Will not have) - for this specific time frame they are not a priority

Knowing the priority and impact, it was also relevant to specify further, which were the dependencies.
That is, which requirements are subservient to others. By addressing these metrics, the current analysis
has become more detailed and reliable, but, simultaneously, has urged the necessity to combine two more
labels to the structure of the functional requirements - priority, and dependency. Therefore this project
shall fulfill the resulting requirements:
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FR1 - Anaphora representation
Description: The framework must be able to resolve anaphora situations and associate the correct
relations
Priority: C
Dependency: None

FR2 - Triple representation
Description: The framework must be able to extract triples of each moment in the form of (subject,
predicate, object)
Priority: M
Dependency: None

FR3 - Entity extraction
Description: The framework must be able to perform NER task
Priority: M
Dependency: FR2

FR4 - Part-of-speech tagging
Description: The framework should be able to generate a part-of-speech tag for each token in
order to identify the grammatical class
Priority: S
Dependency: FR2

FR5 - Triple relevance
Description: The framework should be able to deal with triples that represent no value
Priority: M
Dependency: FR2, FR3

FR6 - Utterance relevance
Description: The framework should be able to remove redundant and not relevant utterances
Priority: M
Dependency: FR5
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FR7 - Utterance representation
Description: The framework should be able to represent an utterance with sentence embeddings
Priority: S
Dependency: None

FR8 - Clustering representation
Description: The framework should be able to group into clusters utterances from the same type
of dialog
Priority: M
Dependency: FR7

FR9 - Clustering performance
Description: The framework should be able to find the optimal number of clusters
Priority: S
Dependency: FR8

FR10 - Fact extraction
Description: The framework should be able to distinguish which facts should enter to the templates
Priority: M
Dependency: FR3, FR4, FR8, FR9

FR11 - Generate synonyms
Description: The framework should be able to deal with synonyms and disambiguation
Priority: C
Dependency: FR10

FR12 - Template generation
Description: The framework must be able to generate structural summaries that characterize a
type of moment
Priority: M
Dependency: FR2, FR8, FR10
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FR13 - Grant access to the modules via REST API
Description: All the components must be accessible from a REST API for external use.
Priority: S
Dependency: None

It is noteworthy that, after the development phase starts, before every sprint, these requirements probably
will be discussed again with their priorities reviewed.

4.3.3 Non-Functional Requirements

Contrasting with functional requirements that define how a system should work, non-functional require-
ments detail the qualities that a system must-have. Associated with properties such as response time or
security, they can impose constraints or restrictions on the design of the system across the different agile
backlogs and become liabilities when failed to suffice [75]. The next list displays the existing non-functional
requirements:

NFR1 - Performance of the full pipeline
Description: The value for the metric F-Measure for the finished pipeline should be at least 70%.

NFR2 - Modifiability
Description: It must be possible to apply alterations or include further functionalities in the
module without affecting the current features.

NFR3 - Robustness
Description: The framework must be fault-tolerant. Events, such as a failed request, an invalid
input served, or invalid data, need to be handled appropriately without creating any consequence.

NFR4 - Reuse of internal components
Description: All the components must be built independently of each other to future re-utilization.

4.3.4 Business Constraints

Business constraints arise from business decisions and must be satisfied with the architecture of the system.
In this case, are:
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BC1 - Licenses (Commercial Level)
Description: The licenses of the tools used had to be under a license that allows their utilization
for commercial purposes.

BC2 - Licenses (Free Use)
Description: The licenses of the tools and data used should be available without any fee associated.

BC3 - Schedule
Description: Product development must be terminated by June 16, according to the internship
legislation, and the thesis delivered on June 29.

BC4 - Development Time
Description: The initial version of the software has to be developed throughout the internship’s
second semester.

BC5 - The system relies on external training data
Description: All training data used by the system comes from external sources, specifically from
the MultiWOZ dataset.

4.3.5 Technical Constraints

Similarly to business constraints, technical constraints are unalterable. The system under development
must obey the following constraints:

TC1 - Programming Language
Description: All development should be done using either Python or Java.

TC2 - Docker container
Description: The application must run inside a docker container.
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TC3 - Micro-service
Description: The product developed must consist of a micro-service.

4.3.6 Linguistic Constraints

The linguistics constraints that the development must follow are here stipulated:

LC1 - Language
Description: The framework must be able to deal with the English language.

4.4 Risk Management

Performing this analysis focused on identifying all potential risks and their likelihood, as well as inward-
looking the possible impact of events that escalate them, is a helpful tool that can avoid the probability
of failure when a project is underway. Anticipate these threats with prepared strategies becomes crucial
to reduce the possible adverse outcomes resulting in deviations on time estimates and therefore improves
the chances of obtaining a successful outcome. This section addresses the task of risk management on this
project, concentrating on the risk management procedure and the risk log.

4.4.1 Risk Management Procedure

Risk Management procedure sets how the risks associated will be analyzed, and managed, outlining the
actions performed throughout the lifecycle of this project.

Before proceeding to risk identification, we must define the risk attributes and their levels. All will be
ranked according to their probability (the likelihood of occurring) , impact (representative of the level of
threat it presents on the project thresholds of success), and timeframe (time to react and solve). This
classification will settle which risks are the most urgent to pursue and respond promptly.

The possibility of the occurrence of a specific risk can be classified as:

• L (Low) - the probability of happening is below 25%.

• M (Medium) - the probability of happening is between 25% and 75%.

• H (High) - the probability of happening is higher than 75%.
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As for the impact, it can have the following criteria:

• L (Low) - a risk with relatively little impact to affect project schedule or performance.

• M (Medium) - a risk that can slightly affect project schedule or performance.

• H (High) - a risk that has the potential to affect project schedule or performance significantly.

Regarding timeframe values, they are categorized as:

• S (Short) - required to deal with the risk within one week.

• M (Medium) - required to deal with the risk within three weeks.

• L (Long) - required to deal with the risk within one month.

4.4.2 Risk Log

Risks identified throughout the lifecycle of this project are:

R1 - Limited development time
Description: Since there is restricted development time (one semester), the implementation of
some functional requirements may not be fulfilled
Mitigation Plan: The development will be adjusted and concentrated only on the functional
requirements with higher priority, or the deadline can be postponed for September
Probability: S
Impact: H
Timeframe: M

R2 - Little expertise with summarization tools
Description: Not being familiarized with summarization techniques can lead to delays in the de-
velopment plan, demanding additional effort to accomplish the tasks
Mitigation Plan: Study the tools documentation and practice by doing some tutorials and exam-
ples online. Also, approach experienced colleagues at Talkdesk
Probability: H
Impact: M
Timeframe: M
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R3 - Quality of the tools and resources
Description: Since this project can rely on preexisting tools, the quality of the chosen tools can
drastically influence the results
Mitigation Plan: Perform extensive tests that will compare all the tools and choose the most
competent ones. In the case of unsatisfactory performances, the intern developing its solutions may
be an answer but as a last resort
Probability: M
Impact: H
Timeframe: M

R4 - Quality of the training resources
Description: The training resources (e.g., computational resources, validation datasets) available
may turn out to be insufficient, which would have a significant influence on the performance of the
product
Mitigation Plan: One solution could be the identification of new training datasets or the manual
creation of the corpus
Probability: M
Impact: H
Timeframe: L

R5 - Insufficient data
Description: Available data may be lacking, dependent on the chosen approach
Mitigation Plan: Request for data with the existing clients, or identify new testing datasets
Probability: S
Impact: M
Timeframe: M
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4.5 Architecture

In this section, taking into account the previous requirement analysis, the platform architecture is exposed
through a logical diagram, presented by figure 4.11, containing the core components and modules of the
system, clarifying which connections between them exist and how other services will be integrated.

Figure 4.11: Process Flow.

As previously stated, the primary intent of this project is to implement a framework capable of auto-
matically generating templates from dialogue transcripts. It is based on a micro-service architecture and
exposes an API if an external system/application wants to make use of this framework. In case of being
invoked the method for generating a template, and with the use of modules already implemented and
inserted in the NLP services, the framework returns a template to the external system to deploy.

Since this framework invokes implemented modules from the NLP services, it is crucial to reflect on the
propagation of errors through the services that precede the intern module. Firstly and because the product
will work with dialogue transcriptions, we need to perceive the error rate of those transcriptions. Talkdesk
uses the services of Deepgram for speech tasks, and their word error rate varies between 20 to 26%, which
presupposes that it is an aspect to upgrade for the future. Also, the sentence and moment classification
are modules to be considered. The module’s precision is around 75 to 80%, so there is still the capacity to
improve. Therefore, the performance of the framework developed during this internship can be jeopardized
and influenced.

Additionally, to this error reflection, it is relevant to have an assessment of the system as a whole. The
integration of this framework in the global context of the product architecture is still to be defined. As
for now, the framework is essentially an isolated project but with the potential to become a reality.
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4.6 Methodology and Work Plan

4.6.1 Work Methodology

This internship follows a development methodology adopted by Talkdesk, and the teams composed in the
different clusters, based on Scrum [70]. Scrum is, besides being iterative and incremental, an "adaptative
software development method" that offers the ability to adjust quickly to new features or changes in
requirements properties [12].

In the Scrum methodology, there are three essential roles, and the project responsibilities are divided
among them:

• Product Owner : responsible for maximizing the value of the product and deciding upon the
principal features.

• Scrum Master : responsible for the Scrum process, leading meetings and delegating tasks to the
development team.

• Development Team : responsible for building the product.

In this project, the role of the Product Owner is played by Bruno Antunes and the Scrum Master by
Pedro Verruma (both Talkdesk advisors). Concerning the Development Team, the intern integrates a
Data Science team, although it will focus only on the intern framework.

The methodology used produces three major artifacts:

Product Backlog - prioritized features list, including short descriptions explaining their function-
ality and new changes to implement.

Sprint Backlog - forecast by the Development Team to identify which functionality in the product
backlog will be developed in the next Increment.

Increments - integration of all the product backlog items resolved in the previous and current
sprints.

The Sprints on this project have a fixed duration of two weeks and take place one after the other, without
any pause. They usually start with a Sprint planning meeting, and every week a meeting is held to recap
the progress made and ponder future steps to take.

In terms of software, Jira 1was initially planned to be used but since the different company teams at the
time were not aligned in a SCRUM process, it would not make sense to create a Jira project destined to
a single person. Therefore, we opt to use Trello 2.

2https://trello.com/
2https://www.atlassian.com/software/jira
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4.6.2 Planning

Plans and schedules were established, adjusted, and debated frequently. It was fundamental to know where
we were on the timeline, what time was available to do what remained, and revise the plan accordingly
with sudden objectives and unforeseen events.

4.6.2.1 First Semester

Looking back at the first semester, the first weeks of the internship carried out a robust research component
and acquisition of knowledge in the field of Artificial Intelligence with great emphasis on the fields of NLP,
and Summarization which is the main focus on this proposal. During this period, the time was also spent
gathering the background knowledge, exploring the resources and tools that could become useful, and
studying the market and the competitors we are facing.

Posterior to this phase, specifying the use cases plus requirements/constraints determined for this project
and mapping these into architecture design were the tasks performed. After having the architecture
defined, the possible risks that could occur, and the respective contingency and mitigation plans, were
identified and described.

The last phase focused on developing the intermediate report for this internship, as well as preparing for
the intermediate presentation. With each week corresponding to 16 hours of work, the internship workload
initially established, the Gantt diagram of figure 4.12 shows the realistic temporal plan completed during
the first semester.

The Gantt chart does not represent the first estimates since the scope of the intern project changed during
the semester and consequently forced to redefine our related work, use case, and requirements.

4.6.2.2 Second Semester

Regarding this last semester, with each week corresponding to 40 hours of work, it was split into three
phases — implementation, validation, and thesis writing. As mentioned in section 4.6, every two weeks, a
sprint starts, and in total, eight sprints occur. Each sprint is now described:

1. Sprint #1: after receiving the dialogues constituted by different types of moments, a dataset was
generated that groups part of these dialogues in moments such as hotel booking, restaurant booking,
or train booking. Also existing triple extraction approaches were studied and scrutinized.

2. Sprint #2: implementation of an approach to extract triples from a dataset with ClausIE. Addi-
tionally we examined the many variances that triples with the same feature identified (e.g., price
range or departure time) can have in terms of subject, predicate or object.
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3. Sprint #3: implementation of an approach to measure the similarity between triples. This task
deals with metrics of similarity. Initially, we started to compare according to the subject, predicate,
or object. The other approach was to join these three components and compare the triples as if they
were sentences.

4. Sprint #4: study of different approaches for triple clustering, such as KMeans and DBSCAN, and
comparison of the outputs obtained.

5. Sprint #5: implementation of an approach for executing sentence embeddings. Several types of
sentence embeddings were tested. Also, we started to perform hierarchical clustering and find the
optimal number of clusters.

6. Sprint #6: investigation of approaches for feature extraction and feature relevance among triples
and utterances. Entity Extraction with SpaCy, Duckling and SpaCy Matcher was experimented.

7. Sprint #7: implementation of an approach to remove/clean utterances and triples not relevant and
based on the Entities, tested in the previous sprint, and part-of-speech tags. Duplicate triples were
also discarded.

8. Sprint #8: implementation of an approach for fact extraction after obtained the clusters. With the
extracted facts, we also developed a method to distinguish which facts will enter the final template.

Completed the implementation task, and respective sprints, to ensure that all the functionalities work
and meet all the defined requirements, the validation phase started. This phase consisted of requesting
participants to manually annotate templates from a dialogue. The final report started being written after
May.
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Figure 4.12: Internship plan for the 1st semester.
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Figure 4.13: Internship plan for the 2nd semester.
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Implementation

The chapter introduced here aims to present the system developed in more depth in terms of the more
technical aspects of implementing the functional requirements settled earlier. Further, this section states
the additional components in the planned architecture and the obstacles encountered during the imple-
mentation phase, as well as the decisions that mitigate them. One aspect to take into account was the
intention to develop a platform that uses minimal supervision or the need for specific configurations, and
therefore directly influenced the pipeline of the approach. Also, due to the high degree of novelty of this
pipeline and the lack of ideal results, the implementation is coupled with a strong research component.

As previously outlined, this internship consists of developing a framework proficient of automatically
generating templates, or structural summaries, from dialogue transcripts. To attain this target, and
respective functionalities, the tasks required were either fully implemented without the recourse to external
libraries, or built-on dependent on their use. The upcoming sections describe the full pipeline of this project
and the libraries and resources of support indispensable.

5.1 Dataset Construction

The experiments conducted used a dataset compiled by Cambridge Dialogue Systems [26] and previously
described in section 4.2.4. This dataset was composed of various dialogue scenarios ranging from demand-
ing necessary information about attractions through scheduling a train. However, due to the small samples
of dialogues from each scenario, only the data from the Train Booking, Hotel Booking, and Restaurant
Booking intents was handled. Table 5.1 presents a summary of the scenarios mentioned before:

71



Chapter 5

Hotel Booking Train Booking Restaurant Booking
Number of utterances 814 788 796
Number of dialogs 59 60 63

Table 5.1: Summary of the scenario dialogue used

After receiving and grouping the dialogues constituted by these different types of moments, we generated
an exploratory dataset that, for each utterance, four other fields were associated:

• "intent"

• "triples"

• "triple_relevance"

• "utterance_relevance"

The field "intent" corresponds to the utterance intent obtained from the already implemented NLP module
Sentence Classification. The following table 5.2 displays the current possible intents and demonstrates an
example of each of these intents.

Intent Type Utterance Example

GREETING Good morning.
Hi.

FAREWELL Thanks for using our service.
Have a great day.

MOMENT_SHIFT Great! Can I assist you with anything else today?
Can I help you with anything else?

INFORMATION_ACKNOWLEDGEMENT Of course.
Ok great.

INFORMATION_REQUEST How many nights will you be staying?
Where will you be departing from?

INFORMATION_RELAY I found 1 cheap hotel for you that includes parking.
Reference number is : 7GAWK763.

Table 5.2: Intent examples.

Regarding the remaining fields, their concepts and relations among them are going to be addressed more
explicitly in the following chapter sections.

With the structure of the dataset defined, initial pre-processing was necessary to convert the data to the
desired format—notably, punctuation removal and contraction expansion using a pre-defined mapping.
For example, when performing contraction expansion in the sentence:
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The hotel didn’t have a garage to park.

Would result in the normalization of the expression "didn’t" to "did not".

Additionally, we addressed the linguistic phenomenon described in section 2.3.5 - anaphora resolution.
This functionality was implemented using NeuralCoref 1, a pipeline extension for SpaCy, which annotates
and determines coreference clusters using a neural network. To be capable of using NeuralCoref, we needed
to have an English model for SpaCy. When applying this method to the following text sample:

How about the University Arms Hotel? It has free parking and wifi, and it is a 4 star rated hotel.

The output will be: [University Arms Hotel: [University Arms Hotel, It, It]]. Thus, it should detect and
associate the references to the entity mentioned.

To recap and infer the dataset structure, figure 5.1 exemplifies a simple dataset entry with the already
associated fields.

Figure 5.1: Dataset entry example.

5.2 Triple Extraction

After the initial pre-processing phase, the next step was to find a way of representing an utterance in
the form of a subject-predicate-object triple. The existing triple extraction approaches were studied and
scrutinized, and in this domain, four relevant approaches stood out - StanfordOpenIE, Open IE 5.0, MinIE,
and ClausIE.

1https://github.com/huggingface/neuralcoref
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• StanfordOpenIE: a classifier that learns to extract self-contained clauses from longer sentences by
traverse a dependency parse tree recursively. With natural logic inference over these clauses, it is
capable of determining specific arguments for each candidate triple by shortening these utterances
while maintaining the necessary context maximally. This approach is a case where there is a need
for a labeled dataset [8].

• Open IE 5.0: a combination of the analyzers CALMIE, responsible for the extraction from con-
junctive sentences, BONIE, bound with the extraction from numerical sentences, RelNoun for noun
relations extraction, and SRLIE which is accountable for identifying n-ary extractions [52].

• MinIE: built on top of ClausIE, along with the triples, the approach confers information about
polarity, modality, and quantities with semantic annotations. The polarity indicates the factuality
of each extraction, while modality refers to the triple certainty/possibility. Finally, a quantity is a
phrase that denotes an amount of something [28].

Since all of these extraction methods introduced own a license that makes commercial use impossible
without having to make the code publicly available, the chosen path was a ClausIE Python Wrapper,
an approach with a viable utilization license. Regarding our dataset, the field "triple" is filled with the
output resulted from performing him.

ClausIE, as the name suggests, is a clause-based approach that extracts relations, and their respective
arguments, from natural language text, by exploiting linguistic knowledge according to the grammatical
function of the sentence constituents. ClausIE is based on dependency parsing and a subset of domain-
independent lexica and requires no training data [23].

Due to the strategy followed by this approach, it manages to take a group of sentences and obtain seven
different types of clauses depending on the constituents, as illustrated in figure 5.2.
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Figure 5.2: Example of identified patterns and corresponding grammatical functions.

This research allowed, simultaneously, for a performance analysis focused on the effectiveness of the ap-
proach. More precisely, on the number of sentences in which a triple(s) was generated or not. Based on
the moments that characterize our dataset, the following results were collected: 35.6% of the utterances
were not associated with at least one triple. Two reasons can justify or mitigate this percentage: short
utterances composed by a couple of words, such as "Okay great"; and utterances lacking a predicate or
an object grammatical component.

5.3 Utterance Relevance

Before performing clustering and grouping together related utterances/triples, it was time to differentiate
which sentences contained redundant information and consequently, not relevant for our approach. Two
strategies were conducted to solve this problem: one focused on the sentence intent, and the other based
on the triples that constitute an utterance.

Regarding the first one, as previously stated, the module Sentence Classification correlates an utterance
with specific intent. Instantly, we can discard those with intents that we know, from the start, that
they never represent value or help us to obtain the final template. The following image 5.3 displays the
non-relevant intents and the corresponding percentage of appearance on our dataset:
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Figure 5.3: Non-relevant intents.

It is possible to see that these three types of intent combined translate in a weight of 15 to 20 percent,
which is a significant step for excluding utterances considered irrelevant on the approach pipeline.

The second approach heavily relies on the triples of each utterance. Intending to distinguish if a triple is
relevant, it was necessary to achieve two subtasks. Firstly, perform entity extraction. By entity extraction,
we mean extracting information from which component of the triple. A couple of different strategies were
used:

• Extract data present in the triple based on patterns defined by the intern: spaCy features a rule-
matching engine, Matcher 2, which allows us to write rules to find tokens, words, and phrases in a
text. When compared with regular expressions, mentioned in section 2.3.1, the advantage of this
matcher is the capacity to work over Doc and Token objects instead of only strings. Also, it reveals
to be more flexible by searching for lexical attributes.

Matcher patterns are lists of dictionaries, one for each token. The keys are the names of token
attributes, mapped to their expected values. For instance, figure 5.4 exemplifies a pattern that
includes two token attributes "TEXT" mapped to string values in the form of REGEX rules.

Figure 5.4: Example of a Matcher pattern.

2https://spacy.io/usage/rule-based-matching
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To use a pattern we need to load a model ("en_core_web_sm") and create the NLP object, initialize
the Matcher with the shared vocab from the model, and add a pattern to that vocab. For instance,

More specifically for this project, we used these patterns to extract, for instance, schedules ("11:18",
"11 AM"), ratings ("4 stars"), postcodes, durations ("5 nights"), persons ("three people"), and
addresses. This last was also detected with Pyap, an MIT Licensed text processing library for
parsing addresses.

• Extract data present in the triple based on the module NER of the libraries SpaCy and Duckling 3:
we used Docker to run a server and therefore connect to a Duckling container to perform requests to
this library. Furthermore, since both do not have the full capability to extract locations or restaurant
names, we opted to match the analyzed text to a predefined list of entities of this kind obtained
from public APIs.

However, extracting information is not enough to measure the triple relevance. The second subtask consists
of making use of the Part-of-speech tagging with the help again of the SpaCy library. Because we need
to consider the context, we grouped the triple components into a sentence. We know at the outset that
if a sentence contains a noun, adjective, number, or a proper noun, the likelihood of providing valuable
information is high. With the displaCy visualizer, for example, figure 5.5 exemplifies how a noun tag can
represent a suitable extractable feature.

Figure 5.5: Example of Part-of-speech tagging.

With the aggregation of these subtasks, the framework forthwith is competent to infer the triple relevance
and concurrently capture duplicate triples. Briefly, if a triple does not contain any entity extracted or
include a relevant part-of-speech tag, the triple under analysis is considered not admissible. Accordingly,
the dataset field "triple_relevance" is assigned with a boolean flag. If all the triples that compose an
utterance are assigned as not relevant, we conclude that utterance can be discarded and removed from
the system. From these combined methods, we can discard, on average, 17% of utterances.

3https://duckling.wit.ai/
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5.4 Clustering

To obtain better results, before proceeding to perform clustering, we tried to reduce the variance among
utterances and respective triples, and consequently, increasing their similarity. The first strategy consisted
of modifying the utterances with generic tags obtained from the previous entity extraction method. For
instance, for the example:

I want a reservation for four persons and four nights.

this approach will produce the following output:

I want a reservation for INFORMATION_PERSONS and INFORMATION_NIGHTS.

The second strategy englobes some steps: collect the tokens from an input utterance with a Word Tokenizer
and remove those who are stop words. Both these operations are implemented by applying the NLTK
library.

Moving on to the clustering method itself, the utterances entering this operation are represented in a
numeric vector: sentence embeddings. We tested four approaches:

• Sentence Embeddings with Word2Vec

• Sentence Embeddings with GloVe

• Sentence Embeddings with FastText

• Sentence-BERT

The first three calculate the embeddings for an utterance based on each word’s embedding and the average
weight obtained. Word2Vec, trained on Google News data, is provided by Google and based on 100 million
words with 300 dimensions [55]. Global Vectors for Word Representation (GloVe) rendered by Stanford
NLP with various models from 25 to 300 dimensions base on a maximum of 840 billion tokens. The word
embedding, in this case, is built with word co-occurrence probability [62]. Finally, FastText, which is
released by Facebook and provided by three models with 300 dimensions each, includes character n-grams
that enable computing word representations for words that did not emerge in the training data [14].

However, there are some issues when employing these type of approaches:

• Ignore word ordering. For instance, the utterance "Talkdesk product is straightforward to use,
I do not need any help" in this situation is similar to "I do need help, Talkdesk product is not
straightforward to use";
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• Incapability to capture the semantic meaning of a sentence. The word "crash" has multiple meanings
depending on the context, e.g., "I crashed my motorcycle", or "I crashed a party";

• Problems when dealing with long utterances length.

These issues justified our decision to opt with Sentence-BERT with a siamese or triplet network structure
to generate semantically meaningful sentence embeddings that can be applied in unsupervised scenarios
as clustering. We used an already trained Sentence Transformer model to embed sentences, which was
bert-large-nli-stsb-mean-tokens, and substantially outperform the previous approaches [69].

With the approach chosen for sentence embeddings, next, we required to define the most appropriate
clustering algorithm considering the domain of this project. Therefore we impose specific conditions such
as the algorithm that does not need to specify in advance what is the number of clusters to generate.
Immediately methods like K-Means and Spectral Clustering were rejected. The second restraint was the
algorithm’s capability to deal with large-sized datasets without compromising the time and memory com-
plexity. Again, we could cut the Affinity Propagation method of the candidate’s list. At this point, there
were two possible solutions. The pipeline will either include a density-based clustering approach, capable
of identifying arbitrarily shaped clusters where clusters are dense contiguous regions and outliers low dense
regions data points [72], or a hierarchical approach that seeks to build a hierarchy of groups. The third
condition was related to the input parameters needed to be defined. With the module sklearn.cluster, the
density-based method, DBSCAN, obligates us to determine the maximum distance between two samples
for one to be considered in the other neighborhood of the other. Coupled with this parameter, and the
fact that sometimes tend to generate a high number of clusters, it allowed us to reach a decision.

Thus, the clustering task was implemented using Hierarchical Clustering, more precisely the Agglomerative
Clustering, with the module scipy.cluster.hierarchy.fcluster. Inherent to this method, the algorithm is
straightforward. Initially, a proximity matrix is computed, and each existing data point is considered an
individual cluster settled in the ground level. At each iteration, the most similar clusters merge to the
next level, and the matrix updated. This process continues until a level with just one cluster is formed. A
cluster tree, referred to as a dendrogram, is built to represent the clusters and levels. Figure 5.6 displays
an example of a dendrogram.
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Figure 5.6: Example of a cluster tree.

The following are methods for calculating the proximity matrix:

• Simple: the distance between cluster c and cluster j is set as the shortest distance between two
points in each cluster.

• Average: the distance between cluster c and cluster j is set as the average distance between each
point in one cluster to every point in the other cluster.

• Complete: the distance between cluster c and cluster j is set as the longest distance between two
points in each cluster.

• Ward: criterion for choosing the pair of clusters to merge at each step is based on the Ward variance
minimization algorithm.

All these clusters linkage methods generate a linkage matrix Z as their output. Combined with this
linkage matrix, the hierarchical process further needs the maximum number of clusters to perform. For
this project, based on the average size of each type of dataset dialogue, the intern established as 35 the
maximum number of clusters possible.

The attendant step of the pipeline is to determine the optimal number of clusters. To obtain this number,
we used the silhouette score method from the sklearn library. The silhouette coefficient of data measures
how well data are assigned to its cluster and how far they are from the remaining. For instance, for the
Hotel Booking dataset, we calculate the silhouette score with the parameter "maxcluster" ranging between
25 and 35 and select the one with the best score. The following table 5.3 displays an illustration of this
selection.
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Number Clusters Silhouette Score
25 0.2884754253686447
26 0.29288795685468155
27 0.3015619161337606
28 0.30273834527858295
29 0.30343268056828454
30 0.2949018043657406
31 0.29786598597689024
32 0.2991436244804131
33 0.2995893658512116
34 0.28891683310076394

Table 5.3: Selection of the optimal number of clusters.

It is possible to infer that the optimal number of clusters for this dataset is 29, with a higher silhouette
score. Conclude this task, the clusters containing the dialog utterances are associated with the respective
triples.

5.5 Fact Extraction

Received the clusters with the utterances and respective triples, the next task on the approach pipeline
consists of extracting factoids and relevant data. As explained in the Approach chapter, factoids are
nothing more than unique features that merely characterize a single dialog of a given moment, instead of a
standard feature between several dialogs. Extracting these facts includes analyzing the triples representing
the utterances contained in the clusters and, based on patterns, defining those that stand out before others
and constitute non-redundant information. The question that arose here was how to extract essential facts
based on the structure of the triple? The answer relied on the type of triple present. Exist two types
which are:

• Association Triples with a component(s) already extracted from the previous entity extraction
step associated with some feature(s). Given the triple:

Subject: HOTEL_NAME ; Predicate: have; Object: parking

The facts extracted in this example will be the subject (HOTEL_NAME), representing a piece of
information already replaced by a defined tag and the object ("parking").

• Attribute Triples with a particular attribute characterized or designated and with no component(s)
replaced with a defined tag. For instance:

Subject: Price; Predicate: is; Object: cheap
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In this case, the facts extracted will be the subject ("price") and the object ("cheap") as well.

Triple components are considered relevant, depending on their corresponding part-of-speech tag. If either
the subject or the object, have a "NOUN", an "ADJ", or a "PROPN", and in turn, the object has a
"AUX", a "VERB", or a "NOUN", which are the cases displayed previously, there are facts to be selected
and extracted.

Additionally, we need to deal with some special cases. When an object component has a sequence composed
of an adjective and a noun, e.g., "free parking", we maintain only the word associated with the noun tag
— "parking". Another situation is the presence of adjacent noun substrings such as "phone number",
where we have to extract both of them as a unique fact.

Figure 5.7: Facts associated with a cluster.

Once obtained all the facts associated with the utterances composing a cluster, as represented in figure 5.7,
the following stage was to define and distinguish which of those are factoids and which will be candidates
to enter in the final moment template. An approach with four steps is performed to achieve this:

1. Singularize plural facts. If a particular fact has the tag "NNS" or "NNPS," it will be transformed
into his base form. For instance, the possible fact "Bedrooms" will be converted to "Bedroom".

2. Averiguate if there are synonyms in the list of facts. This substep is implemented with NLTK
WordNet. WordNet stores synonyms in the form of synsets, where each word in the synset shares
the same meaning. However, linguistic data is very contextual, and therefore, it is required to do
word sense disambiguation. One hypothesis was using the Lesk algorithm to estimate the word’s
sense in the given context sentence [45], but in this situation, we only have access to the fact itself.
The second and chosen approach was to use the first sense of the word synsets.

3. Search for facts that are substrings of others. For instance, consider we have two facts — "phone
number" and "phone." The second one is a substring of the first, so these two facts must be considered
the same.
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4. The final action for determining if a fact is or is not a factoid was counting the fact occurrences
on each utterance of the cluster list. With the three previous steps completed, we just needed to
compare fact by fact and reach an occurrence percentage. We imposed that if that percentage is
above or equal to 50%, the fact in analyzing is indeed relevant and represents the cluster. Considering
the example displayed in figure 5.7, both fact F1, with a 100% occurrence percentage, and fact F3,
with 66.7%, are the final cluster facts. In the opposite, facts F2 and F4 are assigned as factoids.

The output of this algorithm resembles what exhibit in figure 5.8 with the relevant and patterned facts
associated with each cluster.

Figure 5.8: Candidate facts to enter the moment template.

5.6 Template Generation

To determine which of these facts enter the template, we defined three features:

• The number of cluster occurrences and relative percentages.

• The combined size length of the clusters that the fact appears and corresponding relative proportions.

• The portion of template dialogs that include the fact. Considering the 59 dialogs that compose the
Hotel Booking moment, with each having a manually set template, we match the fact with those
templates and extract the number of appearances.

Besides all of these features, the next step was to compute and assign a weight to each of them. This
weight measures feature importance. This task was implemented using the Sklearn library, and the logistic
regression model, usually used when the dependent variable(target) is categorical. In this case, the target
will be one, meaning the fact is included in the final template and zero, if otherwise. After receiving the
values of the features and the target, the optimization function returned the following weights, presented
in table 5.4, for the established features:
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Feature Feature Weight
% Cluster Occurrences 14.78%
% Size Cluster 23.81%
% Appearances in Dialogs 61.42%

Table 5.4: Feature Importance.

Ultimately, as shown in table 5.5, with the feature values and feature weights combined and computed, it
is possible to obtain the decisive target that imposes which facts will be appended in the moment template.
This target is associated with a threshold carefully dictated, based on which value the framework grants
the most reliable performance, set to 30%. Regarding this table, it is an authentic example tested with
our framework, and it represents the domain type Hotel Booking.

Fact Cluster Occurrences Size Clusters Appearance Dialogs Final Value
Hotel Name 8.82% 2.15% 96% 60.73%
Wifi 2.94% 2.38% 56% 35.41%
Parking 2.94% 3.34% 58% 36.84%
Rating 5.88% 5.49% 65% 42.11%
Price 2.94% 7.64% 81% 52%
Date 8.82% 12.65% 62% 42.40%
Number Nights 2.94% 9.55% 65% 42.61%
Booking Status 5.88% 6.21% 44% 29.38%
Postcode 2.94% 0.72% 13% 8.59%
Region Name 5.88% 2.86% 15% 10.79%
Reference ID 5.88% 7.16% 67% 43.74%
Address 5.88% 3.82% 31% 20.82%
Phone Number 2.94% 2.15% 12% 8.31%

Table 5.5: Template generation process.

By analyzing this table, we can conclude that the template for this domain type will include the facts:
hotel name, wifi, parking, rating, price, date, number of nights stayed, and reference ID. On the opposite
side, booking status, postcode, location, address, and phone number are considered factoids regarding this
domain.
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Validation and Results

Process Validation represents a significant component of the project pipeline. It evaluates and establishes
evidence whether the developed framework meets all the requirements and obeys all the constraints im-
posed throughout the planning phase. Succinctly, it stages the final step towards the fulfillment of this
project.

This chapter at the outset describes the test environment, introduces the validation datasets handled, laid
out the validation plan, and posterior the results will be critically analyzed and discussed.

6.1 Test Environment

Both development and test environment are related to the local environment in which the implementation
was carried out, more specifically, the intern’s machine. Table 6.1 showcases its specification:

Specification Test and Validation Machine
Operating System macOS Mojave Version 10.14.6
CPU 1.4 GHz Intel Core i5 64-bit
Memory 8 GB 2133 MHz LPDDR3

Table 6.1: Test Machine Specification.

6.2 Validation Dataset

Before reaching this stage, we were using for implementation support the MultiWOZ dataset divided
by only three-moment types. Therefore we needed to encounter and incorporate another dataset to
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obtain a reliable validation and simultaneously respect the prerequisites imposed on the MultiWOZ, which
were dataset size and the dataset domain. Furthermore, we decided that the dataset applied through
implementation would be involved during the validation phase.

After a research component analyzing different public datasets, the choice fell on the recent Schema-
Guided Dialogue (SGD) dataset [68], consisting of task-oriented conversations amongst a user and a
virtual assistant. Compared to the implementation dataset, SGD achieves greater diversity and covers a
wider variety of tasks expected of automated dialogue agents, as presented on the following table 6.2.

Moment Dataset Number of Utterances Number of Dialogs
Flight Booking 391 40
Car Rental 420 40
Bus Booking 444 40
Medical Services 445 40
Weather Forecast 291 40
Property Visit 450 40

Table 6.2: Summary of the validation dataset.

This dataset to be included in the approach pipeline also required to undergo a pre-processing phase, as
mentioned in section 5.1. With this process concluded and the datasets defined, only the approach to
validate our approach was lacking.

6.3 Validation Approach

It is relevant to refer that at this stage, the requirements, functional and non-functional, assessment strate-
gies should be already carefully defined. Although the approach components are independent and capable
of being reused, testing them separately was not possible for reasons of time consumption and training
resources, i.e., building datasets for each component of the pipeline was impracticable and unachievable
to us. Therefore the closing decision was to opt to test only the final result, the full pipeline combined.

With this stated, to test and confirm the success of our approach, we conducted 32 user-testing sessions.
As a quality assurance measure and requirements assessment, these participants and their results would
be essential for this project. Regarding the selection of the participants, no strict rule was held.

Two pipeline validation hypotheses were examined. In the first case, the participants would receive previ-
ously defined templates from the various dialogue moments, and their job was reporting if those templates
were, or not, accurate. However, and with the likelihood, when displaying the templates, that the users
will be directly influenced, we discarded this hypothesis and elected the other. Concerning the chosen
case, the participants had to assume that they worked as agents in a call center. Their associated respon-
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sibility was to answer incoming calls from possible clients and fill structural call-summaries after the end
of the respective calls. We tried to simulate this situation by presenting to the participants a collection of
different transcripted dialogues, divided by domain types. Their goal was to perceive which information
is considered relevant and, finally, elaborate a template, for each domain type, with the features to be
included in a call-summary. Figure 6.1 demonstrates an example of these transcripted dialogues 1.

Figure 6.1: Example of a transcripted dialogue from the Weather domain type.

To apply variance and randomization to the validation data, we divided the participants into three groups.
Each group would receive for each type of domain, a collection of different dialogues. This way, we would
conceivably obtain a wider spectrum of responses that would benefit this validation.

In turn, the intern had to evaluate each participant’s response. As stated, for each dialogues collection
of the same domain type, the users would annotate a list of features manually. Those lists would then
be compared with the lists that the approach automatically identified. This way, we evaluate the system
based on its ability to replicate the templates that humans have created. For performing this comparison,
we manually matched the list of features selected by the users and the list of features defined by the system
and extracted specific metrics. To understand the computation of these metrics, we assume for our project
scope:

True Positive: number of features correctly classified as included in the template of a domain type

False Positive: number of features incorrectly classified as included in the template of a domain type

True Negative: number of features correctly classified as not included in the template of a domain type

False Negative: number of features incorrectly classified as not included in the template of a domain type

1The attachments section of this report shows the supporting and filing documents that participants were entitled to.
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Accordingly, the following metrics are applied:

• Accuracy: the ratio of observations correctly predicted with the total number of observations.

Accuracy =
TruePositive+ TrueNegative

TruePositive+ TrueNegative+ FalsePositive+ FalseNegative
(6.1)

• Precision: the ratio of positive observations correctly predicted with the total predicted positive
observations.

Precision =
TruePositive

TruePositive+ FalsePositive
(6.2)

• Recall: the ratio of positive observations correctly predicted with the total observations in the
actual class.

Recall =
TruePositive

TruePositive+ FalseNegative
(6.3)

• F-Measure: explained in equation 2.6.

The next section describes the tests performed to validate the approach pipeline and the results obtained
from them.

6.4 Test Results

When validating a project, the first step is to calculate the concordance between participants to compre-
hend if the task imposed was well defined and refined. If the output value is low, it may indicate that they
did not understand well what was asked or that the task revealed to be complex to perform. This value is
computed by pairing up all the participants and then perform an average of all the result samples. This
value is computed by pairing up all the participants and then perform an average of all the result samples.
For the different domain types, we obtained a value interval between 65 and 90%.

Concordance =
Concordances

Concordances+Disagreements
⇤ 100 (6.4)

Concluding that the task required on the participants was adequately established, the subsequent step
was to compare the templates defined by the users with the templates obtained by the approach. In this
scenario, we experimented different variants of the results:

• Considering the average when compared to each annotator. For the same domain type, we calculate
the accuracy, precision, recall, and f-measure for the template of the annotator and then average the
metrics among all of them.
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Table 6.3 shows the obtained results for the model, considering the average between participants. It
exhibits the values of the precision, accuracy, recall, and f-measure of the model.

Moment Dataset Precision Accuracy Recall F-Measure
Hotel Booking 75.25% 64.50% 82.06% 76.97%
Train Booking 84.71% 72.70% 83.24% 82.54%
Restaurant Booking 86.02% 66.18% 74.16% 77.56%
Flight Booking 75.92% 65.09% 84% 77.85%
Car Rental 91% 71.83% 77.96% 82.33%
Bus Booking 78.06% 67.42% 82.79% 79.26%
Medical Services 83.78% 55.18% 60.83% 68.88%
Weather Forecast 93% 81.89% 88.83% 89.50%
Property Visit 63.73% 53.07% 77% 67.93%
Average 81.27% 66.43% 78.99% 78.09%

Table 6.3: Results of the first validation approach.

Having into account the non-functional performance requirement, the obtained measures consolidate
the success of the approach.

• Considering, for each set of dialogues of the same type, a single set with all the features suggested
by the participants at least two times (n=2).

Moment Dataset Precision Accuracy Recall F-Measure
Hotel Booking 50% 65% 100% 66.67%
Train Booking 58.30% 73.68% 100% 73.65%
Restaurant Booking 61.51% 72.22% 100% 76.19%
Flight Booking 46.15% 61.11% 100% 63.15%
Car Rental 80% 87% 100% 88.89%
Bus Booking 54.54% 72.22% 100% 70.58%
Medical Services 72.72% 83.33% 100% 84.21%
Weather Forecast 85.71% 90.91% 100% 92.35%
Property Visit 38.46% 68% 100% 55.55%
Average 60.82% 74.83% 100% 74.58%

Table 6.4: Results of the second validation approach with n=2.

• Same as the previous one, but only with the features suggested by the participants at least three
times (n=3).
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Moment Dataset Precision Accuracy Recall F-Measure
Hotel Booking 88.90% 95% 100% 94.12%
Train Booking 63.63% 80.95% 100% 77.77%
Restaurant Booking 72.72% 83.33% 100% 84.21%
Flight Booking 75% 89% 100% 85.71%
Car Rental 88.90% 93.33% 100% 94.12%
Bus Booking 60% 76% 100% 75%
Medical Services 88.90% 94.73% 100% 94.12%
Weather Forecast 100% 100% 100% 100%
Property Visit 45.45% 75% 100% 62.50%
Average 75.94% 87.48% 100% 85.28%

Table 6.5: Results of the third validation approach with n=3.

• Same as the previous one, but only with the features suggested by the participants at least five times
(n=5).

Moment Dataset Precision Accuracy Recall F-Measure
Hotel Booking 100% 100% 100% 100%
Train Booking 77.80% 89.47% 100% 87.51%
Restaurant Booking 80% 89% 100% 88.89%
Flight Booking 85.71% 94.44% 100% 92.31%
Car Rental 100% 100% 100% 100%
Bus Booking 75% 88.23% 100% 85.71%
Medical Services 100% 100% 100% 100%
Weather Forecast 100% 100% 100% 100%
Property Visit 45.45% 75% 100% 62.50%
Average 84.88% 92.90% 100% 90.77%

Table 6.6: Results of the fourth validation approach with n=5.

6.5 Results Analysis

Since the planning phase of this internship, one of the risks associated with this approach was the high
degree of novelty that we faced. Consequently, the lack of ideal results or validation strategies confronted
configured a tremendous challenge in terms of complexity and planning, and both implementation and
validation phases were directly influenced. Additionally and as previously stated, due to reasons of time
and resources, the incapability of testing the performance of each separately component of the approach
pipeline affected our task even more. Despite these hurdles, a validation strategy focused on the comparison
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of templates automatically created by the developed framework with templates manually annotated by
participants was applied. Four variants constituted this strategy, with the aggregate results enabling us
to infer some conclusions and judgments why we reached certain values.

Taking into account that we throughout the requirement assessments imposed an ambitious objective
that was implementing a pipeline with plenty of identified risks and simultaneously inflicted a minimum
performance value set as 70%, validating our approach and obtaining for each variation an f-measure
superior translated in a successful approach by our part. A successful approach means that it is in
accordance with the functional and non-functional requirements in terms of quality.

However, there are still some details to discuss. As it is possible to see, for the last three variants, as the
n target increases, the results exponentially improve. This improvement was due to the high concordance
value between participants. Participants do not tend to vary their response much, so the most common
features tend to have many occurrences. They end up being focused on what is most obvious, which is
what the model gets best, and therefore the high results are justified. Since the number of occurrences is
almost homogeneous, and without significant discrepancies, the calculation of False Negatives tends to be
zero. Consequently, the recall metric tends to the maximum percentage.

Moreover, the first validation approach based on the average results between annotators, despite having
obtained an f-measure value of 78%, was hampered by some components of the pipeline. For instance,
mainly problems in the extraction of triples when utterances hold poorly grammatical forms or spurious
words considerably affect the results.
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Conclusion

In this chapter, the main contributions produced during the internship will be stated as well as recapping
the approach implemented and the obtained results from it. We will also mention the challenges faced and
how we managed to surpass them. Ultimately, we will address, in the context of dialogue-conversations,
future, and potential work, that deserves further investigation.

The main objective of this internship was the development of a framework proficient of automatically
generating structural summaries, or as we refer templates, from dialogue transcripts between a call center
agent and a potential customer. With the capability to optimize the experience of customers and improve
the assistance process by reducing after call-work, we went into this experience with great ambition and
enthusiasm. From my point of view, this objective was accomplished to the extent that we indeed obtained
templates capable of reaching a level of concordance acceptable between users and different domain types.

Moreover, this internship had a strong investigative component that revealed it to be essential to overcome
risks associated and steep paths ahead. Was addressed the challenges when dealing with the amount of
information generated in the form of unstructured information, especially in dialogues. The lack of context,
the ambiguity, misspellings, and phenomena cases are just a few characteristics that express the struggle
and complexity when trying to processing automatically natural language and extract relevant information
of a text. It required an in-depth research investment to acquire background knowledge about the existent
techniques in NLP and Information Extraction (IE) areas that try to solve these challenges.

At an early stage of our work on the State of the Art, we familiarized and discussed the approach of works
that extract content from dialogues, works that summarize dialogues, and even works that summarize
based on information in the form of entities and relations. This exploratory work set an indispensable step
to understanding which are the principal vulnerabilities, challenges, and strengths related to the purpose
of this internship. This knowledge was vital for choosing a promising and appropriate implementation.

Another common significant challenge when dealing with innovative projects is to gather ground-truth
data to use as input as well as a way of validating the results obtained, and the meantime without high
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costs. After relentless searching and analyzing, we finally get consent on which dataset met the goals of
this project.

Other complex challenges already stated during this thesis consisted of developing a framework that uses
the minimum supervision or needs for specific configurations, the intern’s experience with frameworks and
libraries, the lack of validation options, among others. In short, there were some complex problems, but
in general, the most part was mitigated.

7.1 Contributions

The main contributions resulting from this work were:

• The Background Knowledge and State of the Art in the field of NLP and Automatic Summarization.

• The creation of different datasets ranging from several domain types and with different types of
approaches regarding triple extraction.

• The development of modules for tasks related to Anaphora Resolution, Clustering, Named Entity
Recognition, Utterance, and Triple Relevance, Fact Extraction, and Feature Importance.

• The development of the Template Generation framework, which obtained interesting results and
simulated adequately what we were trying to test.

7.2 Future Work

The results obtained with the developed framework are promising and reveal that a future product capable
of generating automated templates from dialogues is possible. However, implement a full and generic
system that guarantees exceptional results is still associated with some difficulties. For instance, assuming
that the sentences are grammatically well-formed and well written, which never happens in a context of
dialogue, translates into a huge performance discrepancy. It is necessary to deal with a set of complex
linguistic phenomena that correlate great complexity. Ellipses, anaphoras, associate a question with a
response are just some examples.

In the case of opting for a solution with triple extraction, this also needs some improvements, especially
when dealing with utterances lacking grammatical forms. ClausIE exposed some challenges with these
utterance types.
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Appendix A

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vestibulum sed efficitur magna, et laoreet elit.
Praesent sed nulla est. Cras in sem nec sem posuere hendrerit eget eu ligula. Duis tincidunt, lacus quis
sollicitudin porttitor, nibh lorem tempor elit, nec tempus nunc ante id felis.
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Appendix B

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vestibulum sed efficitur magna, et laoreet elit.
Praesent sed nulla est. Cras in sem nec sem posuere hendrerit eget eu ligula. Duis tincidunt, lacus quis
sollicitudin porttitor, nibh lorem tempor elit, nec tempus nunc ante id felis.
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