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Abstract

The demand for qualified people capable of extracting value from the ever-increasing vol-
ume of data is growing. More data scientists need to be trained, but training can be a
time-consuming task due to the diversity of disciplines it involves. A more gradual learn-
ing curve can be achieved by abstracting programming languages from the scientists’ path.
The ultimate goal of the Data Science for Non-Programmers project (DataScience4NP) is
to implement data science practices rightfully without requiring programming skills, thus
enabling non-programmers to be part of the data science workforce.

The DataScience4NP is a platform focused on machine learning (ML) workflows and is
available through a Web User Interface. It follows a microservices architecture with mul-
tiple Docker containerized services running ML algorithms orchestrated in a Kubernetes
cluster. These technologies provide great flexibility in deploying and managing applications,
either on-premises or on the cloud. Nevertheless, we still need an orchestration solution to
manage the execution of workflows (a technology to orchestrate the ML tasks fed to the
ML microservices). Netflix Conductor was the technology initially adopted for this pur-
pose, but, because it cannot support workflows with hundreds of tasks (such as workflows
involving cross-validation with repetitions), Conductor turned out to be an unsuitable
solution.

In this dissertation, we adopt a new approach to orchestrating ML workflows using Amazon
Web Services (AWS) Step Functions with the final intention of executing more complex
workflows.
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Resumo

Está a crescer a procura por pessoas qualificadas que sejam capazes de extrair valor do
grande volume de dados gerados atualmente. Existe a necessidade de treinar novos cien-
tistas de dados, no entanto este pode ser um processo lento e dispendioso devido às várias
áreas interdisciplinares que a Ciência de Dados envolve. O tempo de aprendizagem pode ser
reduzido se abstrairmos os cientistas das linguagens de programação. O objetivo do projeto
Data Science for Non-Programmers (DataScience4NP) é implementar práticas usadas em
Data Science de forma correta, sem serem necessários conhecimentos de programação.

A aplicação foca-se em workflows de Machine Learning e está disponível através de uma
interface web. Segue uma arquitetura de microsserviços conteinerizados com Docker e
orquestrados num cluster de Kubernetes. Estas tecnologias providenciam uma alto nível
de flexibilidade na gestão e no deployment de aplicações na Cloud. No entanto, era ainda
necessária uma solução para gerenciar a execução dos workflows de Machine Learning e
assim orquestrar as tarefas de ML nos microsserviços. O Netflix Conductor foi a tecnologia
inicialmente adoptada para esse fim mas que acabou por se revelar numa solução inade-
quada devido às suas limitações para executar workflows com centenas de tarefas, como
por exemplo workflows que envolvam validação cruzada com repetições.

Nesta dissertação, é adoptada uma nova abordagem para a orquestração dos workflows de
ML usando Amazon Web Services (AWS) Step Functions para que seja possível executar
workflows mais complexos.

Palavras-Chave

Orquestração, Microsserviços, Computação na Nuvem, Amazon Web Services, Aprendiza-
gem Computacional
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Chapter 1

Introduction

This dissertation is a further work of the project Data Science for Non-Programmers (Data-
Science4NP) previously carried by Bruno Leonel André Lopes and Artur Jorge de Carvalho
Pedroso, two former MSc students at the Department of Informatics from the University of
Coimbra. The present chapter presents the motivation and scope for the project, followed
by the essential objectives and chosen approaches.

1.1 Motivation and Scope

Data science is an interdisciplinary field that addresses the on-going needs and challenges
emerging with the Big Data era. These challenges demand qualified people capable of ex-
tracting value and creating useful insights from the ever-increasing volume of data. Data
can be generated in the most various ways. Examples of it are ad clicks, on social me-
dia, streaming content, and data pouring out of any of our connected devices such as
smartphones, smartwatches, or smart TVs. According to Data Never Sleeps 7.0 [1], an in-
fographic annually released by Domo, on each minute of every day 188 000 000 emails are
sent, Google conducts 4 497 420 searches and Netflix users stream 694 444 hours of video.
Education in the Data Science field is essential to expand the data science workforce suc-
cessfully. However, training new data scientists can be a slow process due to the diversity
of disciplines it involves.

The Data Science for Non-Programmers (DataScience4NP) project has emerged from the
need to provide new data scientists with a better, easier, and less time-consuming approach
to learn Data Science methods and processes. The platform is only focused on Machine
Learning workflows, and it tackles the steep learning curve problem by abstracting pro-
gramming languages from the scientists’ path.

The application of Machine Learning (ML) entails the execution of different steps that
comprise various tasks. These steps include data preprocessing, where operations such as
normalization or feature selection are applied to make data more amenable to be used
in the next phase, where a model is trained. After training a model, it may be tested
to evaluate its predictive capacities (the model performance). In the end, tasks might be
changed to attempt the achievement of better results [2].

DataScience4NP is intended for people that have a basic understanding of Machine Learn-
ing concepts/algorithms but who have no programming experience, and as already men-
tioned, removes the barrier between users’ interest in ML and their lack of programming
skills. The platform allows users to build machine learning workflows using a graphical

1



1.2. Objectives and Approach Chapter 1. Introduction

interface. Workflows are sequences of tasks from the different stages in ML model training,
namely preprocessing, learning, and evaluation phases. The graphical interface enables the
execution of ML workflows in a sequential fashion way. This approach reduces the effort
imposed on users during the creation of workflows and guides them during the ML process.
Users are presented with an established sequence of options and can build their models by
choosing the most suitable tasks for their purpose. The sequential ML workflows composed
of different ML tasks are then translated to an orchestrated representation enforcing good
ML practices.

The system was built as a cloud platform which enables the remote execution of compute-
intensive ML experiments in cloud provided infrastructures, without imposing efforts in the
users’ machines. DataScience4NP follows a microservices architecture where each ML task
has a microservice responsible for its execution. This architecture allows great flexibility
both in the insertion and scaling of ML functionalities to be used in ML workflows. The
logical workflows that users can create in the graphical interface are intended to abstract
them from the complexity of the ML process. After the creation of logical workflows, there
is a need to translate them into system workflows to be understood by the orchestrator.
The orchestrator is responsible for the orchestration of ML tasks to be processed in ML
microservices.

To manage the execution of the workflows, Netflix Conductor was adopted as an orches-
tration technology. Despite being initially evaluated as fit technology, Conductor presented
some drawbacks in the execution of more complex workflows, in particular, workflows that
included nested cross-validation with repetitions that can easily reach thousands of tasks.
This limitation imposed by Netflix Conductor motivated its replacement for a new orches-
tration technology. Netflix Conductor is explored in more detail in section 2.3.1.

The primary objective of this dissertation is to solve the orchestration problem and enable
the DataScience4NP platform to be more efficient in the execution of workflows. For this
purpose, the AWS Step Functions will be the orchestration solution adopted.

1.2 Objectives and Approach

DataSicence4NP follows a microservices architecture, with multiple Docker containerized
services running the ML algorithms orchestrated in a Kubernetes cluster. This approach
will remain the same as these technologies provide great flexibility in deploying and man-
aging applications, either on-premises or on the cloud.

Nevertheless, we need a new orchestration solution to manage the execution of workflows
adequately. Upon this necessity, and after considering several alternatives for the orches-
tration, we believe that porting our solution to AWS and replace Conductor by AWS Step
Functions is our best option. Besides, AWS can simplify platform management. It also has
several services that can potentially be explored and introduced in our system.

This shift to AWS Step Functions has the ultimate goal of providing users the ability to
execute complex workflows by placing their potentially long experiments to run in the
cloud. To do so, we need to build a better orchestration solution capable of dealing with
sizable workflows.

Every computational resource has a price. AWS is no exception: the computational re-
sources, services, and products provided by it have a price. We need to support the costs of
exploring the platform by billing the users for what they spend. Thus, we need to create a
billing system capable of account the resources used by each user and to charge accordingly.

2



Chapter 1. Introduction 1.3. Challenges

The outcome of the project will be a prototype of an online platform available through
a Web User Interface that precludes the need for any programming skills, enforces good
machine learning practices, and can deal with sizable workflows.

1.3 Challenges

Taking over an existing software project has its challenges, and it can quickly become a
cumbersome task. Even more, if the project involves a lot of different technologies (mi-
croservices architecture, Kubernetes), and being new to those technologies, the challenge
was more significant.

The first goal was to step up a development environment with a running version of the
project, which was not possible until the mid-time of this thesis: the free tiers offered by
cloud providers such as AWS and GCP do not provide enough resources to deploy the
DataScience4NP, and DEI Cloud was not functioning correctly.

Alongside the various attempts to deploy the platform, a study of the code was being
conducted. The documentation (previous theses) helped to understand the big picture and
how the platform works.

Besides the deployment of the platform, the greatest difficulty was to comprehend the logic
behind the Workflows Service (orchestrator, responsible for the translation of workflows).
Furthermore, all the other services that contact with AWS were also modified.

After having the platform deployed in INCD, the development started. Working with AWS
Step Functions was tricky because some of the limitations imposed by the AWS were not
expected.

1.4 Contributions

This thesis is a continuation of the project Data Science for Non-Programmers (Data-
Science4NP) previously developed by Artur Pedroso e Bruno Lopes. The contributions to
this project are the following:

• An orchestrator compatible with AWS capable of dividing significant complex work-
flows into smaller ones.

• Improvements in ML services and consequently in the performance of Machine Learn-
ing tasks (workers). It improved the capacity of the system in such a way that it is
now possible to handle multiple users who can also be multiple various workflows at
the same time with reasonable response times.

• A simple billing service as a proof of concept to bill users for their computational
usage.

Furthermore, some improvement made in the code documentation was made, and even
though it is not one of the perceptible contributions, it can result in a more gentle learning
curve for future developers.

3



1.5. Document Organization Chapter 1. Introduction

1.5 Document Organization

The remainder of this document is organized as follows:

Chapter 2 elucidates the reader about some fundamental concepts in this dissertation,
it overviews systems similar to DataScience4NP, and it reviews current solutions for
orchestration.

The design of the system is addressed in Chapter 3, which states the requirements
for the DataScience4NP system and its quality attributes.

Chapter 4 presents the original architecture of the prototype and the current archi-
tecture.

Chapter 5 details how the service that acts as the orchestrator performs its work and
how Step Functions are used.

Testing phase and all of its results are documented in Chapter 6.

Chapter 7 explains the strategy used in the development of this dissertation, presents
a risk assessment and the work plan for both the first and second semesters.

Finally, it can be found in Chapter 8 a reflection over the work performed during the
completion of this thesis and its outcome.
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Chapter 2

State of the Art

The present chapter intends to expose and review existing systems that provide machine
learning functionalities similar to the ones that the DS4NP platform is seeking to deliver.
Existing orchestration engines and cloud solutions are also examined and presented, given
our interest in improving the DS4NP orchestrator as well as its overall performance.

2.1 Concepts

The following subsections clarify some basic concepts of this thesis.

2.1.1 Cloud Computing

Cloud computing consists of different resources and services provided through the Internet.
The main goals of cloud computing are to solve large-scale computation problems and to
make better use of the distributed resources [3].

Web-based applications are not the same as cloud applications. Some providers wrongly
claim to offer cloud services. To be considered a cloud implementation, an application must
exhibit some characteristics [4].

There are five key cloud characteristics:

• On-Demand Self-Service: automated provision of cloud resources/services on-
demand, without support from administrators or support staff.

• Broad Network Access: provision of cloud resources through network connections
(usually some type of Internet connection) requiring only lightweight clients or no
client at all. It should be possible to access resources from various devices (laptops,
desktops, smartphones, tablets, and other options).

• Resource Pooling: it assumes that costumers do not always need all resources to be
available for them. Resource polling makes those resources not to sit idle and place
them available to be used by other costumers. It allows flexibility on the provider side,
enables more costumers to be served, and is usually achieved using virtualization.

• Rapid Elasticity: the ability of cloud environments to quickly grow to meet user
demand. Even if cloud providers already have computer resources to expand their
capacity, they are only used until needed.

7
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• Measured Service: the ability to measure usage based on some metrics, for example,
time used and type of resources used. Measured service is what enables the “pay as
you go” feature.

It is possible to divide services provided by cloud computing into three categories:

• Infrastructure as a Service (IaaS): the lowest level of cloud offerings that delivers
computer resources such as the capacity of storage, processing, and network. IaaS is
an advantageous option due to the pay per use basis, its security, and reliability.

• Platform as a Service (PaaS): it offers scalable runtime environments on-demand
capable of hosting the execution of applications.

• Software as a Service (SaaS): the highest level of cloud offerings that provides
services directly consumable by end-users. It replaces applications running on a PC,
and it works based on a pay as you go policy.

The environments for deploying and access cloud computing can also be categorized into
three types:

• Public cloud: environments where cloud resources and all the IT infrastructure
(hardware, software, and other supporting infrastructures) are owned and operated
by a third-party service provider and are delivered to the end-user over the Internet.
Public providers use bare-metal IT infrastructure that can be abstracted and sold as
IaaS, or developed into a platform sold as a PaaS. Public cloud has some advantages
such as low costs (users do not need to purchase software and hardware and only pay
for services they use) and maintenance being provided by service providers.

• Private cloud: environments exclusively dedicated to a single end-user/business or
organization where infrastructure and facilities are maintained on a private network.
This environment is commonly used by government agencies, financial institutions,
and other organizations with business-critical operations since it provides high secu-
rity (resources are not shared with others), privacy, and regulatory concerns.

• Hybrid cloud: environments that combine on-premises infrastructure, or private
clouds, with public clouds. Its main advantage is flexibility: hybrid cloud takes ad-
vantage of the privacy in private clouds and from additional resources in the public
cloud when needed.

Cloud computing, big data, and data science can be seen as concepts that are somehow
related. Data Science is a field focused on analyzing and manipulating data with the
ultimate goal of extracting value from it and gain useful insights. We have observed in
the past years a massive increase in the amount of data generated, mainly due to tech-
nological advances. To this tremendous volume of generated data, we call Big Data.
According to Gartner, “Big data is high-volume, high-velocity and/or high-variety infor-
mation assets that demand cost-effective, innovative forms of information processing that
enable enhanced insight, decision making, and process automation” [5]. One innovative
way of dealing with big data is by adopting cloud-based technologies. Cloud computing
has changed the way computer infrastructure is abstracted and used, and is continuously
becoming a robust architecture to perform large-scale and complex computing [6].

Undoubtedly, cloud computing can be beneficial in the context of the DataScience4NP.
Our platform was envisioned to be deployed using an IaaS solution, and according to
Magic Quadrant for Cloud Infrastructure as a Service, the Leaders in cloud IaaS are AWS,
Microsoft, and Google [7].

8
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2.1.2 Microservices

The DS4NP Platform follows a microservices architecture. Microservices are small, au-
tonomous services that work together [8]. This architectural style emerged as a specific
approach for Service-Oriented Architecture (SOA), and it holds many and varied benefits:

• Technology Heterogeneity: microservices systems are composed of small and decou-
pled services that permit the use of different technologies on each one.

• Resilience: when failures happen, it is possible to isolate the problem as they occur
in isolated services, but this does not mean that other services will never be affected.
However, the system may carry on working as the opposite of a monolithic service,
where everything stops working if a service fails.

• Scaling: it is possible to scale only services that need scaling, instead of scaling a
monolithic system.

• Ease of Deployment: microservices allow us to make individual changes to services
and deploy them independently of the rest of the system.

• Optimizing for Replaceability: replacing services by an improved version of it is easier
to manage, of it requires less effort and is less risky.

Another concept tightly associated with cloud environments and microservices is con-
tainerization. A set of techniques for integrating the software development process with
the deployment and operations called DevOps can be the key to the overall success of
cloud-based software solutions [9].

A container is a stand-alone unit of software that packages up code and all its depen-
dencies. Code portability is a useful feature of containers: packing software along with
its dependencies into a single image provides the freedom of “develop once, deploy every-
where”. Containers are also helpful by providing isolation and guaranteeing the modularity
of microservices. The technologies adopted for containerization in the DS4NP platform
were Docker and Kubernetes.

2.2 Similar Systems

The primary goal of the DS4NP is to provide an easy way of constructing machine learning
workflows without requiring any programming skills. Doing so while enforcing the best
practices used in Data Science is also a significant concern that we try to address. The
need for writing code and the ease of constructing an ML pipeline are some of the aspects
we tried to observe in the systems presented in this section.

2.2.1 H2O

H2O.ai1 is an open-source software company that provides various products and solutions
being one a machine learning platform called H2O. This platform offers algorithms for
supervised and unsupervised learning, it allows the use of some programming languages
like R and Python to build models, and it supports massive datasets using in-memory

1https://www.h2o.ai/
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processing with fast serialization between nodes and clusters [10]. It has a new key func-
tionality named AutoML, whose purpose is to automate the machine learning workflow
by minimizing the amount of human effort. AutoML allows the performance of a large
number of modeling-related tasks in a simple wrapper function. H2O also provides a user
interface called H2O Flow, without requiring any programming experience to run it since
it combines command-line computing with a point-and-click type of graphical interface.

In Figure 2.1 we can see an example of one of the interfaces, in this case, the outline to
build a model where it is possible to select an algorithm from the drop-down menu.

Whenever someone starts a new project, an Assistance outline with possible outlines is
prompted. H2O has an Admin tab where it is possible to choose the option to consult a few
features such as cluster status and perform network tests. H2O has good documentation2

on how to use the graphical interface.

Figure 2.1 – H2O Flow: Build a Model.
Source: Using Flow - H2O’s Web UI.

Gartner, the world’s leading research and advisory company, creates annually “Magic Quad-
rant” reports for diverse kinds of IT products. In January of 2019, they published the Magic

Quadrant for Data Science and Machine Learning Platforms, and H2O is present in the
Visionary quadrant meaning that H2O is a recent vendor who has a strong vision and a
reliable supporting roadmap with the potential to shape the market. Even though H2O.ai
established a premier position in the automated ML domain, it still lacks some product
capabilities. A shortage of features for data access and preparation is one example of it.
H2O components are highly optimized and parallelized for CPU multicore and multin-
ode configurations, but AutoML does not benefit from it since this solution seems far less
powerful [11]. Another disadvantage of H2O is that the platform does not support high
availability (HA) [12].

2http://docs.h2o.ai/h2o/latest-stable/h2o-docs/flow.html
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Besides allowing users to train/test models in H2O Flow without requiring programming
skills, there is no option to perform feature selection or data preprocessing before model
creation.

H2O can integrate with Hadoop tools, thus supporting big data. It is also supported in dif-
ferent cloud environments, including Amazon AWS, Google Cloud Platform, and Microsoft
Azure. In AWSMarketplace3, for example, it is possible to consult the pricing, usage, and
reviews for each H2O solution. AutoML is only in version 0.2.

2.2.2 RapidMiner

RapidMiner4 is a code-optional platform for data science that offers a GUI with drag
and drop functionalities and optional integration with various programming languages
like R and Python. This platform also appears in the Magic Quadrant for Data Science

and Machine Learning Platforms, as H2O, but in the Leaders quadrant meaning that
RapidMiner has a strong presence in the data science and ML market and it provides
outstanding service and support. To use RapidMiner, one has to install it locally but,
through the GUI workflows can execute in a cluster. A free version is available but with
several limitations: it is restricted to 10000 data rows and one logical processor. Just like
H2O, RapidMiner has good documentation. It provides sample datasets and templates.
The model of one of these samples can be seen in Figure 2.2. RapidMiner may not be a
feasible solution to non-experts, but it remains a Leader among experienced data scientists
by striking the right balance between ease of use and data science sophistication [11].
Some favorable aspects worth mentioning about RapidMiner are their attention on how
to properly validate machine learning models5, and the optional setup to ensure high
availability.

Figure 2.2 – RapidMiner Sample - SignificanceTest
Source: RapidMiner Samples

3https://aws.amazon.com/marketplace/seller-profile?id=55552124-d41b-4bad-90db-72d427682225
4https://rapidminer.com
5https://rapidminer.com/resource/correct-model-validation/
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2.2.3 Azure Machine Learning Studio

Azure Machine Learning6 is one of the Azure AI products from Microsoft. It can be used
through a web studio where users can build, train, and deploy models with prebuilt building
blocks that can be customized and connected in a drag and drop manner. Users can also
upload data locally, using sample datasets or using the Reader Module, which allows the
import of data from different data sources (for example, from Azure Table or Web URL
via HTTP). It is possible to convert data formats and to visualize the chosen dataset at
any time. Diverse ML tasks, such as preprocessing, feature selection, model creation, and
model evaluation, can be selected to construct workflows, but there is also the possibility
to introduce and execute R and Python scripts. The created models can be deployed as a
web service and become accessible for future use with few clicks [13].

Azure AI has a Gallery where its community can share its analytics solutions, including
solution templates, machine learning models, and predictive analytic experiments. In Fig-
ure 2.3, it is possible to observe a sample that demonstrates how to use Cross Validate
Model with regression models.

Figure 2.3 – Azure Experiment: Cross Validation for Regression.
Source: Sample 4: Cross Validation for Regression.

Azure Machine Learning applies the preprocessing and feature selection phases to the entire
dataset before training/testing the final model with cross-validation, which is an incorrect
practice and can provide overly-optimistic error estimates for the produced models. Besides
not employing cross-validation correctly, this platform also does not support nested cross-
validation, and the solution is proprietary.

2.2.4 Amazon SageMaker

SageMaker7 is a service launched in 2017 by Amazon that covers an entire machine learning
workflow by providing the capacity to build, train, and deploy ML models in the cloud.
They answer to the lack of existing built-in tools for an entire machine learning workflow by
providing all the necessary components in one tool to reduce effort and time. The platform
offers a broad range of built-in ML algorithms, and it gives the possibility for developers

6https://studio.azureml.net
7https://aws.amazon.com/sagemaker/

12

https://studio.azureml.net/
https://gallery.azure.ai/Experiment/333e0a99ceac457d8992ef83bfbd98b6


Chapter 2. State of the Art 2.2. Similar Systems

to create their algorithms from scratch. SageMaker does not have a GUI where users could
visually create their workflows, but it includes an integrated development environment
(IDE) called Amazon SageMaker Studio, where users can perform all ML development steps
by coding them. This platform is equipped with more features such as Amazon SageMaker
Notebooks and Amazon SageMaker Experiments but is only suitable for experienced data
scientists. Figure 2.4 represent the different components that compose this single toolset.

Figure 2.4 – SageMaker and AWS components.
Source: AWS SageMaker page.

2.2.5 ClowdFlows

ClowdFlows8 is a cloud-based web-application with a graphical user interface that supports
the construction and execution of data mining workflows [14]. It is possible to manage the
workflows by editing, deleting, exporting, or making them public. Public workflows are
available in the “Explore” page and can be accessed by everyone. The graphical interface
works in a drag and drop manner, where workflow components (widgets) can be added and
connected. In Figure 2.5, we can observe a workflow to build, display, and cross-validate a
J48 tree. This workflow was provided by another user and accessed through the “Explore”
page. The output for the execution of this workflow with the default input file is presented
in Figure 2.6.

Very well-known ML libraries are integrated into ClowdFlows such as Weka, Orange, and
scikit-learn. The processing is performed in a cloud of computing nodes. The platform
can quickly scale horizontally and execute worker nodes in parallel on multiple machines
[14]. The platform is also extensible since the widgets can be added in two ways: they can
either be implemented as a python function and included in a ClowdFlows package or be
imported as a web service in the GUI.

2.2.6 DataScience4NP

Before comparing the systems presented in this chapter, it makes sense to introduce the
DataScience4NP.

DataScience4NP can be described as a cloud application accessible by its users on the
Internet. Its architecture is based on microservices and can run on a Kubernetes cluster that
has a minimum of 16GB of RAM. DataScience4NP is a platform that offers the execution

8http://clowdflows.org
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Figure 2.5 – Build and display a J48 tree and cross validate it.

Figure 2.6 – Output of a J48 tree and its cross validation.

of ML services through a graphical interface. Contrary to most systems previously stated in
this chapter (that have visual ways of building workflows like drag and drop), this platform
allows users to construct workflows sequentially by choosing from a set of options that are
presented to the user as they are building it. This form of creating workflows gives the user
a sense of guidance during the process.

Our platform offers tasks that allow data insertion, preprocessing, feature selection, and
feature projection, model creation, and model evaluation. It addresses cross-validation
and nested cross-validation while ensuring that a proper model assessment and selection
practices are being enforced.

In Figure 2.7, it is presented the DataSience4NP interface, where we can see a cross-
validation task (a validation procedure task) and the tasks that users can choose after.
The various options to create a ML workflow are presented to users in a sequence of steps.
In each step, users are prompted with possible next steps that can be followed by the
current one. DataScience4NP assures usability by providing multiple tasks in a sequence
manner without scarifying flexibility since users have the freedom to choose from various
options to build their workflows.

2.2.7 Comparison of Systems

To properly do an assessment and comparison of similar systems, we took into consideration
several attributes, namely:
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Figure 2.7 – DataScience4NP Interface.

• Open Source: indication if the solution is open source;

• GUI: indication if the solution has a Graphical User Interface;

• Big Data: indication if the solution has support and capability to handle large
datasets;

• Cloud: indication if the solution is hosted in the cloud or if it has any functionalities
being computed in the cloud;

• Data Access: indication if the solution supports different types of data and/or data
sources;

• ML practices: indication if the solution implements good practices of Machine
Learning especially when it comes to train/test models using cross-validation and
nested cross-validation when preprocessing tasks are also included in the process;

• Flexibility: indication if the solution has a broad array of different tasks that the
user can choose to implement or if it is a straightforward solution (on a scale from 1
to 5, where 1 is the minimum flexibility and 5 the maximum flexibility);

• Usability: GUI attractiveness, intuitiveness and complexity (on a scale from 1 to
5);

• Pricing: indication of tabulated values to use the solution.

These attributes will be somehow compared in the following of this section and can be
found in Table 2.1 where all the systems aforementioned are present as well as the system
to be.

The attributes unable to be determined were labelled with a question mark (“?”). The
attributes that are not applicable to a solution were labelled with “N/A”.

H2O is open-source, has a graphical interface, supports Big Data, and can be used in dif-
ferent cloud environments. It supports different file types (CSV, ORC, SVMLight, ARFF,
XLS, XLSX, Avro, Parquet), and it can ingest data from various data sources (Local File
System, Remote File, S3, HDFS, JDBC, Hive). However, there is no option to perform
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features selection or data preprocessing before the model creation. Furthermore, H2O does
not provide High-Availability.

RapidMiner reads data from different file types, databases, and even cloud storage. This
platform ensures good practices of Machine Learning, but its free version is limited, and
the annual plans vary from $5,500 to $39000 per user, per year.

Only expert data scientists can use SageMaker to leverage from the many services provided
by Amazon because there is no graphical interface.

Platforms such as RapidMiner and ClowdFlows provide great flexibility by presenting
users with a huge variety of tasks that can be used. However, this implies a decrease in its
usability because connecting the different components to form a proper ML experiment can
be quite hard. There is no such trade-off in DataScience4NP, which is one of our advantages
over the other platforms.

Besides the ability to easily create ML workflows with a reasonable degree of flexibil-
ity, DataScience4NP has another significant advantage: the correct application of cross-
validation processes, including preprocessing and feature selection tasks before train/test
a model. DataScience4NP also addresses nested cross-validation.

2.3 Orchestration

Microservices cooperate in providing more complex and elaborated functionalities, which
is the case of the DataScience4NP platform. In our solution, a machine learning workflow
is composed of several tasks that have input/output dependencies. We call workflow to the
specification of the tasks, their behavior, and coordination. Generally, each microservice
performs a single task, and therefore it is crucial to assure communication and coordination
between services. Orchestration and choreography are two approaches to establish this
cooperation.

Choreography assumes no centralization and uses events and publish/subscribe mech-
anisms to establish collaboration. Orchestration, on the other hand, requires a central
service to send requests to other services and monitor the process by receiving responses.
[15]. While orchestration provides a centralized way to coordinate a workflow when there
is synchronous processing, choreography imposes logic to be built into each service instead
of having a conductor that controls the logic of each step that has to be performed in a
workflow [16].

The way services collaborate, and the nature of communications (synchronous or asyn-
chronous) are aspects to have in consideration when choosing between choreography or
orchestration. There are two styles of collaboration: request/response or event-based. In
request/response, a client initiates a request and waits for a reply. Synchronous commu-
nication, which is more associated with orchestration, is usually aligned with this type
of collaboration (but can also be used asynchronously). Event-driven communications are
asynchronous by nature, without blocking, and are associated with choreography.

Some defend that orchestration leads to service coupling and favors the adoption of chore-
ography as it could be more flexible, amenable to change, and provide a higher degree of
independence [15] [8]. However, there are good reasons to use orchestration rather than
choreography.

In the DS4NP platform, machine learning workflows are created following synchronous
patterns, which is why orchestration is a more suitable solution for us. Users can build
their workflows by choosing from multiple options that comprise data insertion, prepro-
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cessing, feature selection, model creation, and model evaluation. Among the many possible
combinations to construct a workflow, there are situations in which a second task must
always follow a first and only run if and when the first succeeds because of input/output
dependencies. It also exists situations where multiple tasks need to be executed in parallel,
and the combined result must be fed to another subsequent task. A centralized way of coor-
dinating the services allows us to maintain fine-grained microservices since it would require
a great deal of code to be written to choreograph the interaction of the microservices.

With orchestration, a conductor is responsible for the execution of workflows, while mi-
croservices are only concerned with their tasks. It allows greater reuse of existing microser-
vices providing a more natural path for integrating new microservices.

Another significant reason for choosing orchestration over choreography is the visibility
and traceability into the state of workflows. Even though choreography makes it easy to
build decoupled systems (there is no central service that can fail and compromise the entire
workflow execution as it happens with a conductor when we use orchestration), there is a
significant risk in losing sight of larger-scale workflows. Thus visibility and traceability are
key aspects we want to ensure in our platform. The high-level understanding of what is
happening in the system also provides better monitoring and error handling strategies.

A disadvantage of choosing orchestration is that the conductor can be a single point of
failure. If the conductor becomes unavailable, tasks will not be delegated, and the workflow
will not execute.

2.3.1 Netflix Conductor

Conductor9 is an orchestration engine developed by Netflix, open-sourced in 2016, written
in Java, and designed to orchestrate microservices-based process flows at Netflix.

When considering the growing business needs and complexities of the company, developers
became aware that it would be hard to scale with peer to peer task choreography. The pub-
lish/subscribe model proved to be problematic with complex flows for several reasons. Peer
to peer choreography implies the insertion of process flows into applications’ code, which
makes it hard to adapt to changing needs due to the tight coupling around input/output,
and it does not provide a systematic approach to track the status of a process [17].

Conductor allows the creation of workflows by connecting different types of tasks. These
workflows are defined using JSON. Tasks are either System Tasks (such as fork, join, deci-
sion, sub-workflow), which are executed by the orchestration server or Worker Tasks that
are implemented by microservices (workers) and run in a separate environment from Con-
ductor. Just as workflows have a blueprint that defines the execution flow, tasks must also
have a template to specify their behavior. These templates are known as Task Definition
and allow us to attribute a unique name, to define timeouts, retry policies, inputs/outputs,
etc.

Netflix Conductor offers a user interface to visualize, monitor, and troubleshoot workflow
executions. Figure 2.8 shows a sample workflow with one fork, two worker tasks, and one
join.

The API and storage layers are pluggable, enabling developers to use different queue and
storage engines. Netflix is currently using Dynomite for storage, but it is possible to switch
to another solution. Workers communicate with Conductor via the API layer to poll tasks
for execution and to update their status. Figure 2.9 demonstrates a high level view of
Conductor’s architecture. At the core of the engine is the “Decider Service”, a state machine

9https://netflix.github.io/conductor/
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Figure 2.8 – A simple Conductor workflow.

service responsible for maintaining the workflow, i.e., it determines the state of the workflow
centrally by comparing the progress of each worker against the workflow blueprint, making
it possible to assess the state of the application for any moment in time. The Decider
Service uses the Dyno Queues, a queue solution that runs on top of Dynomite, to manage
scheduled tasks.

Some tests were performed to identify the bottleneck in Netflix Conductor that precludes
the execution of complex workflows. We execute different workflows and observed the
behavior of the Conductor server. At the same time, code inspections to the source code
were made to understand how exactly does Conductor work. These tests are detailed in
Appendix A.

2.3.2 Zeebe

Zeebe10 is a free and source-available workflow engine for microservices orchestration. It
is built to run on Kubernetes, and it is language, hardware, and cloud provider-agnostic.
Zeebe provides visibility into the state of end-to-end workflows, workflow orchestration
based on the current state of a workflow, and monitoring for timeouts or other process
errors [18].

In workflows orchestrated by Zeebe, each task is usually carried out by a different microser-
vices just as in DataScience4NP platform. It is an engine designed to solve the microservices
orchestration problem on a considerable scale.

Zeebe uses a client/server model. The server, also called “broker” is the distributed workflow
engine that runs on a JVM, and it orchestrates the workflow. The broker is responsible for

10https://zeebe.io
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Figure 2.9 – Conductor’s High Level Architecture.
Source: Conductor Documentation.

keeping the state of active workflow instances and for exposing workflow event streams to
Zeebe clients through pub/sub. Clients (job workers) are libraries embed in applications
(e.g., a microservice that executes your business logic) to connect to a Zeebe cluster.
Workers poll for work from the worker and execute it. [19]

Zeebe captures all the changes to a workflow’s state as events and stores it in an append-
only log called “topic” that is written in the filesystem on the server where Zeebe is running.
This is performed by the Zeebe broker.

Partitioning Brokers provides horizontal scalability, and replicating them ensures fault
tolerance. It does not exist a single point of failure because, in a peer-to-peer network
formed by brokers, brokers perform the same kind of tasks, and if one becomes unavailable,
its responsibilities can be transparently reassigned in the network.

Zeebe implements orchestration as a state machine while maintaining the principles of
loose coupling and independent deployability.

Even though it offers appropriated functionalities for our platform and it also provides
horizontal scalability and fault tolerance, Zeebe is not be a better alternative to Netflix
Conductor because it is still in “developer preview”, i.e., it is not yet ready for production
and is under substantial development.

2.3.3 Uber Cadence

Just like Netflix, Uber’s platform consists of many microservices to support all the features
that compose global services. Cadence11, from Uber, has some use cases and can be seen as
an orchestration engine to execute asynchronous long-running business logic in a scalable

11https://cadenceworkflow.io
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and resilient way. It was open-sourced in 2017, it is written in GO, and it has Java and GO
client libraries. It consists of a programming framework (or client library) and a managed
service (or backend) [20].

Cadence has a Web UI12, just like Netflix Conductor, to view workflows see scheduled,
running, and completed activities (tasks), and explore and debug workflow executions.
These two solutions have a few similarities regarding implementation details but a very
different way to define a workflow. While Conductor defines workflows through JSON,
Cadence defines workflows as code. A CLI that supports most of the API features is also
available.

The deployment topology consists of a Cadence service that exposes its functionalities
through a Thrift API, workflow and client workers, and external clients. Workflow Workers
are external processes, implemented in any workflow definition language, that execute
workflow code.

Cadence also uses Elasticsearch to list workflows like Conductor, and it has a persistent
store. Apache Cassandra and MySQL are currently supported for storing purposes.

Scalability, durability, and high-availability are assured in Cadence.

2.3.4 AWS Step Functions

Step Functions13 was first introduced in 2016 as one of the products offered by Amazon Web
Services (AWS). It is an orchestration solution that allows the design and implementation
of complex workflows. Similar to every AWS solution, Step Functions follows a pay-as-you-
go approach: users only pay for what they execute.

The implementation of the orchestration logic is done by defining a JSON object using
JSON-based Amazon States Language.

Tasks and State Machine are the two underlying concepts of Step Functions. A State
Machine is the same as a workflow blueprint, it specifies the communication between states
and how data is transmitted from state to state using the JSON. States can either be a
Task, a Choice, a Fail, Succeed, Pass, Wait, or Parallel state. Each move from one state
to the next one is called a state transition. Tasks perform the work declared in the state
machine, which can be done by using an activity14 (when a task is performed by a worker
hosted on Amazon EC2 or Amazon ECS), an AWS Lambda function, or passing parameters
through an API to other services.

An event log of data is stored and passed between application components. If some error
occurs, such as a network failure or bugs in components, the workflow can be pick up at
the last task completed instead of executing the whole workflow once again.

Step Functions frees microservices from excess code, so the application is easier to maintain.
It allows the graphical visualization of our workflows. The graphical console also delivers
real-time diagnostics and dashboards. The charging for this AWS service is based on the
number of state transitions required to execute a workflow, including retries.

Scalability is one primary concern if we want to manage complex tasks and workflows.
Step functions have a limit on child workflows (1000 per workflows), but it supports nested
workflows. We can create as many nested workflows as we want, and we can start its
execution directly from task states. Reusable workflows are quite useful as well as the

12https://github.com/uber/cadence-web
13https://aws.amazon.com/pt/step-functions/
14https://docs.aws.amazon.com/step-functions/latest/dg/concepts-activities.html
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modularity provides by Step Functions.

Even though recent, Step Functions are quite mature. This solution provides all the nec-
essary features to execute our machine learning workflows in a scalable and reliable way.
The only downside for users is that they have to pay for the service. However, it will be
possible to execute complex workflows without spending too much. Amazon Step Func-
tions is charged per state transition and offers a Free Tier with 4,000 state transitions per
month. After that, it costs $0.025 per 1,000 state transitions. These charges are applicable
for Standard Step Functions, which are the default workflow type.

AWS also offers the option to choose Express Step Functions to run high-volume, event
processing workloads. Standard Workflows respond to our need by allowing the execution
of long-running, durable, and auditable workflows.

Step Functions support Nested Workflows15 and dynamic parallellism16.

The adoption of Step Functions gives us the possibility to the advantage of other AWS
services, for example, Lambda Functions and Amazon Simple Storage Service (Amazon
S3).

2.3.5 Full Development

An alternative option could be to develop our orchestration solution from the ground up.
The DataScience4NP platform is very modular, and no significant architectural modifica-
tions are required to change the orchestration solution.

However, reformulating the orchestrator can be a time-consuming task, regardless of the
technologies or approaches that can be chosen. DataSicence4NP is designed to provide
sequential workflows to its users, but sequential workflows do not have a direct corre-
spondence with system workflows, and there will always be the need to translate logical
workflows to system workflows.

Users are presented with logical workflows that are then sent from the GUI to a service
called “Workflows Service”, one of the microservices in our architecture. This service is
responsible for the translation of logical workflows to system workflows in order to be
understood by the technology being as an orchestrator and then executed. When a workflow
ends, system workflows are translated back to logical workflows to retrieve the results to
the users.

Figure 2.10 shows the most straightforward translation that can occur: when the validation
procedure is chosen is “useEntireData”, meaning that all tasks will use the entire dataset
given as input. Nevertheless, the translation of workflows can be more complicated, just
as Figure 2.11 demonstrates.

Currently, the Workflows Service is designed to generate system workflows understood by
Netflix Conductor. The adoption of a new orchestrator implies the reformulation of the
some of its components.

Besides having to do this reformulation to integrate the GUI with a conductor, implement
our engine would also require all the conductor development, which can be an even hard
and time-consuming task.

15https://aws.amazon.com/about-aws/whats-new/2019/08/aws-step-function-adds-support-for-nested-
workflows/

16https://aws.amazon.com/about-aws/whats-new/2019/09/aws-step-functions-adds-support-for-
dynamic-parallelism-in-workflows/
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Figure 2.10 – Translation of a workflow where tasks are applied to all input data.
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Figure 2.11 – Translation of a workflow where tasks are applied to according to a train-
validation-test procedure.
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2.3.6 Comparison of the solutions

Table 2.2 – Comparison of workflow orchestration solutions

Condutor Zeebe Cadence Step Functions

Owner Netflix Zeebe Uber Amazon

History 2.5 years 1 year 2 years 2.5 years

Visual Workflow Display Yes No Yes Yes

Flow Definition JSON BPMN GO/Java JSON

Support for HA Yes Yes ? Yes

Rest API Trigger Yes No No Yes

Scalability Yes Yes Yes Yes

Netflix Conductor handles the execution of many workflows, but not when hundreds of
tasks compose workflows. By scaling the Dynomite cluster along with dyno-queues it is
possible to handle scale and availability needs.

Zeebe is still in “developer preview”. It is classified as a technology that allows scalabil-
ity, but this is not true for complex use cases since workflows are written using visual
programming.

Cadence allows workers to be implemented as entirely stateless services, which allows for
unlimited horizontal scaling. It provides a web interface17 to explore workflows, see the
ones running, and debug its executions. However, Cadence defines workflows in GO or
Java.

Neither Zeebe or Cadence allows the initiation of workflow executions using REST API
calls.

Step Functions define workflows using JSON and can coordinate any application that
can make an HTTPS connection[21]. These are two of the advantages of Step Functions
over Zeebe and Cadence. The integration between AWS services allows Step Functions
workflows to call those other AWS services. It scales automatically in response to changing
workloads, and it has excellent documentation and support.

17https://github.com/uber/cadence-web
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Chapter 3

Requirements

The specification of requirements is essential to software development. But, before diving
into the specification of our requirements, we should first have a clear idea of what a
requirement is.

IEEE Std 1233 1998 [22], defines a requirement as:

“(A) A condition or capability needed by a user to solve a problem or achieve an objective.

(B) A condition or capability that must be met or possessed by a system or system com-
ponent to satisfy a contract, standard, specification, or other formally imposed document.

(B) A documented representation of a condition or capability as in definition (A) or (B).”

The DataScience4NP is an existing prototype that provides workflows for the correct ap-
plication of machine learning. The functionalities to build machine learning tasks and
workflows and also the features for the user interface were already outlined and put in
action in the initial prototype. To understand what has been done, to successfully capture
the behavior of the system, and to specify the requirements for the new solution, we outline
a use case diagram for the DataScience4NP presented in Figure 3.1. This diagram only
shows a high-level view of the system and its use cases, which can be decomposed in several
requirements. For example, the use case “Insert a task in the workflow” unfolds for each
specific task (e.g., Insert a model creation task, Insert the train-validation-test procedure).
The same is true for the use case “Visualize the output”.

Essentially, we are only concerned with five of the use cases (red use cases): the ones related
to the translation and orchestration of workflows and the billing component. However, these
use cases are extremely generic. In Section 3.1 we define the requirements that compose
these high-level use cases. We also state the requirements for the execution of workflows,
and the insertion and visualization of tasks (use cases in grey) since they are implicit in
the translation of workflows and will allow us to verify it.

Priority

Even though there are several aspects to be improved in DataScience4NP, this dissertation
focus only on the orchestration of Machine Learning workflows. For this reason, and also
due to our tight schedule, it is necessary to use a prioritization technique to establish
the importance of each requirement and decide which ones should be developed first. The
MoSCoW prioritization technique was chosen for this purpose.
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Figure 3.1 – Use Cases - Context Diagram.
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According to the MoSCoW technique, requirements can be classified using the following
convections:

• Must Have (M) - requirements critical to the delivery of the system, and that must
be satisfied in the solution. The project will fail without them.

• Should Have (S) - requirements that represent high-priority features but that are
not critical.

• Could Have (C) - requirements that portray desirable but not necessary features.
These are included if time and resources allow it.

• Won’t Have (W) - requirements that will not be implemented in the current release
but may be included in the future.

Convention

To ensure consistency across the presentation of all requirements, we defined the following
convention:

ID Requirement Priority

#id #use-case name and description #use-case priority

Table 3.1 – Requirement presentation.

The requirement identifier (ID) also follows a logical convention for a better organization:
Context_RequirementNumber

where the Context corresponds to a group of requirements within the same scope. The
contexts are:

• TKS: ML Tasks requirements;

• BS: requirements concerning the billing system;

• REQ: other requirements.

3.1 Functional Requirements

Requirements were defined following the conventions stated before and are presented in Ta-
ble 3.1. Requirements related to ML tasks (TSK_01 to TKS_41) were previously defined
by the two former MCs students Artur Pedroso e Bruno Lopes. These requirements fun-
damentally outline the whole DataScience4NP platform and are necessary to validate the
Workflows Service implemented with AWS Step Functions. Everything related to the trans-
lation of workflows is, in fact, implementation decisions to guarantee these requirements.
Besides requirements related to ML tasks, simple requirements for the Billing Service were
added.
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Table 3.2 – System Functional requirements.

ID Requirement Priority

TKS_01 Insert a data preprocessing task on the workflow -
The user shall be able to choose one of the multiple data
preprocessing tasks. The system shall insert the task in the
chosen position.

M

TKS_02 Insert a (data preprocessing) min-max scaling task -
The user shall be able to insert a min-max scaling task on the
workflow to scale the data used in the workflow and to insert
the min and max values to apply the scaling on the dataset.

M

TKS_03 Visualise the output of a (data preprocessing) min-
max scaling task - The user shall be able to visualize the
output of a min-max scaling task (the scaled datasets, the
scaled attributes, and an object to apply the scaling operation
to new data) after it has been executed in a workflow.

M

TKS_04 Insert a (data preprocessing) z-score normalization
task - The user shall be able to insert a z-score normaliza-
tion task on the workflow to normalise the data used in the
workflow.

M

TKS_05 Visualise the output of a (data preprocessing) z-score
normalization task - The user shall be able to visualize
the output of a z-score normalization task (the normalized
datasets, the normalized attributes and the object to apply
normalization to new data) after it has been executed in a
workflow.

M

TKS_06 Insert a (data preprocessing) one-hot encoding task -
The user shall be able to insert a one-hot encoding task on
the workflow to convert discrete data to a numerical format
to use in the workflow

M

TKS_07 Visualise the output of a (data preprocessing) one-hot
encoding task - The user shall be able to visualize the output
of a one-hot encoding task (encoded datasets and the labels
included in the encoded datasets) after it has been executed
in a workflow.

M

TKS_08 Insert a (data preprocessing) discretization task - The
user shall be able to insert a discretization task on the work-
flow to have only discrete data to use in the workflow

S

TKS_09 Visualise the output of a (data preprocessing) dis-
cretization task - The user shall be able to visualize the
output of a discretization task (datasets where the operation
was applied) after it has been executed in a workflow

S
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ID Requirement Priority

TKS_10 Insert a feature selection task on the workflow - The
user shall be able to choose one of the multiple feature se-
lection tasks. The system shall insert the task in the chosen
position.

M

TKS_11 Insert a (feature selection) Relieff algorithm - The user
shall be able to insert the Relieff algorithm in the workflow
to visualize the relevance of the features of a dataset being
processed on the workflow and to select the most relevant
features. The user shall be able to specifiy a threshold and a
number of best features to be selected according to the ranking
produced by the algorithm.

M

TKS_12 Visualise the output of a (feature selection) Relieff
task - The user shall be able to visualize the output from the
application of a feature selection task that uses the Relieff al-
gorithm (ranking and scores produced by Relieff, the number
of selected features and the threshold used) after it has been
executed in a workflow.

M

TKS_13 Insert (feature selection) Info Gain algorithm - The
user shall be able to insert the Info Gain algorithm in the
workflow to visualize the relevance of the features of a dataset
being processed on the workflow and to select the most rel-
evant features. The user shall be able to specify a threshold
(used by the system to remove features from the dataset with
information gain below the threshold), and a number of best
features to be selected according to the ranking produced by
the algorithm.

M

TKS_14 Visualise the output of a (feature selection) Info Gain
task - The user shall be able to visualize the output from the
application of a feature selection task that uses the Info Gain
algorithm (the ranking and the computed information gain,
the number of selected features and the threshold used) after
it has been executed in a workflow.

M

TKS_15 Insert a dimensionality reduction task on the work-
flow - The user shall be able to insert a dimensionality re-
duction task in the workflow to reduce the dimensionality of
the dataset used in the workflow. The system shall insert the
task in the chosen position.

M

TKS_16 Insert (dimensionality reduction) principal compo-
nent analysis (PCA) task - The user shall be able to insert
a PCA task in the workflow to reduce the dimensionality of
the dataset used in the workflow. The user shall be able to
insert values to be used by the PCA algorithm.

S
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ID Requirement Priority

TKS_17 Insert a model creation task on the workflow - The user
shall be able to insert a model creation task in the workflow
to create a classification model trained with the dataset used
in the workflow. The system shall provide multiple tasks to
create a classification model using functional, tree, rule, lazy,
or Bayesian algorithms for the user to choose, and the user
shall select one of the available algorithms.

S

TKS_18 Insert a task to create a classification model using
a functional SVM algorithm - The user shall be able to
insert a model creation task in the workflow to create a classi-
fication model trained with the dataset used in the workflow.
The user shall be able to add the parameters to be used by the
SVM algorithm (C, kernel and the parameters of the kernel)

M

TKS_19 Visualise the output of a model creation task where
the SVM algorithm was used - The user shall be able to
visualize the output of a model creation task where the SVM
algorithm was used after it has been executed in a workflow.
The system shall output the created model for download, the
parameters used to create the model, and the predicted and
expected results produced after testing the model.

M

TKS_20 Insert a task to create a classifier of the type tree using
the CART algorithm (M) - The user shall be able to insert
a model creation task in the workflow to create a classification
model trained with the dataset used in the workflow.

M

TKS_21 Visualise the output of a model creation task where
the CART algorithm was used - The user shall be able to
visualize the output of a model creation task where the CART
algorithm was used after it has been executed in a workflow.
The system shall output the created model for download, a
tree with the representation of the model, the parameters used
to create the model, and the predicted and expected results
produced after testing the model.

M

TKS_22 Insert a task to create a classifier of the type lazy using
the K nearest neighbors algorithm - The user shall be
able to insert a model creation task in the workflow to create
a classification model trained with the dataset used in the
workflow. The user shall be able to insert the parameter K to
be used by the K nearest neighbors algorithm.

M
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ID Requirement Priority

TKS_23 Visualise the output of a model creation task where
the K nearest neighbors algorithm was used - The user
shall be able to visualize the output of a model creation task
where the K nearest neighbors algorithm was used after it
has been executed in a workflow. The system shall output the
created model for download, the parameters used to create
the model, and the predicted and expected results produced
after testing the model.

M

TKS_24 Insert a task to create a classifier of the type bayesian
using the Gaussian Naïve Bayes algorithm - The user
shall be able to insert a model creation task in the workflow
to create a classification model trained with the dataset used
in the workflow.

M

TKS_25 Visualise the output of a model creation task where
the Gaussian Naïve Bayes algorithm was used - The
user shall be able to visualize the output of a model creation
task where the Gaussian Naïve Bayes algorithm was used after
it has been executed in a workflow. The system shall output
the created model for download, the parameters used to create
the model, and the predicted and expected results produced
after testing the model.

M

TKS_26 Insert a task to create a classifier of the type bayesian
using the Multinomial Naïve Bayes algorithm - The
user shall be able to insert a model creation task in the work-
flow to create a classification model trained with the dataset
used in the workflow.

M

TKS_27 Visualise the output of a model creation task where
the Multinomial Naïve Bayes algorithm was used - The
user shall be able to visualize the output of a model creation
task where the Multinomial Naïve Bayes algorithm was used
after it has been executed in a workflow. The system shall
output the created model for download, the parameters used
to create the model, and the predicted and expected results
produced after testing the model.

M

TKS_28 Insert a task to validate the model being constructed
using different procedures - The user shall be able to insert
a validation procedure task in the workflow to specify the
procedure that must be used while executing the tasks that
compose the workflow.

M
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ID Requirement Priority

TKS_29 Insert the cross-validation procedure to validate the
model constructed in the workflow - The user shall be
able to insert a validation procedure task in the workflow to
specify the procedure that must be used while executing the
tasks that compose the workflow. The user shall be able to
specify the number of folds to be used, the number of repeti-
tions to perform the cross-validation. The user shall be able
to select nested or normal cross-validation, and if the data in
the cross-validation folds must be stratified. The user shall be
able to specify if the data must be shuffled before the creation
of the folds. The user shall be able to select an integer number
to be used as a seed while shuffling and stratifying the data.

M

TKS_30 Visualise the datasets used in a cross-validation pro-
cedure - The user shall be able to visualize the datasets used
in the different folds of an executed workflow.

M

TKS_31 Insert the hold-out procedure to validate the model
constructed in the workflow - The user shall be able to
insert a validation procedure task in the workflow to specify
the procedure that must be used while executing the tasks
that compose the workflow. The user shall be able to insert the
proportion of data to use in the training and test partitions, if
the data in the partitions must be stratified, and if data must
be shuffled before the creation of the partitions. The user shall
be able to select an integer number to be used as a seed while
shuffling and stratifying the data.

M

TKS_32 Visualise the datasets used in a hold-out procedure -
The user shall be able to visualize the datasets used as training
and test sets in an executed workflow.

M

TKS_33 Insert the train-validation-test procedure to validate
the model constructed in the workflow - The user shall
be able to insert a validation procedure task in the workflow
to specify the procedure that must be used while executing
the tasks that compose the workflow. The user shall be able
to insert the proportion of data to use in the training, vali-
dation and test partitions if the data in the partitions must
be stratified if the data must be shuffled before the creation
of the partitions. The user shall be able to select an integer
number to be used as a seed while shuffling and stratifying
the data.

M

TKS_34 Visualise the datasets used in a train-validation-test
procedure - The user shall be able to visualize the datasets
used as training, validation and test sets in an executed work-
flow.

M
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ID Requirement Priority

TKS_35 Insert the “use all data” procedure to construct tasks
and validate the model constructed in the workflow
using all data - The user shall be able to insert a valida-
tion procedure task in the workflow to specify the procedure
that must be used while executing the tasks that compose the
workflow.

M

TKS_36 Select classification performance metrics - The user
shall be able to select a classification performance metric
(metrics accuracy, precision, recall and f-measure) to verify
the classification performance of the classifier created in the
workflow.

M

TKS_37 Visualise the classification performance of a produced
model - The user shall be able to visualize the classification
performance according to certain metrics after the execution
of a workflow. The system shall output the classification per-
formance according to the metrics previously selected and also
a confusion matrix.

M

TKS_38 Insert a feature selection task to build models using
different numbers of features - The user shall be able to
insert a feature selection task to build models with different
features in order to obtain the model with the best features ac-
cording to a classification performance metric. The user shall
be able to specify more than one value as the number of at-
tributes to select inside the feature selection task, and the
preferred classification performance metric to be used as the
decider for the best model configuration.

M

TKS_39 Visualise the configuration of features that produced
the best model - The user shall be able to visualize the con-
figuration of features that produced the best model after the
execution of a workflow. The system shall output the ranking
of the features and the number of best-selected features.

M

TKS_40 Insert a model creation task to build models using dif-
ferent parameters - The user shall be able to insert a model
creation task to build models with different parameters in or-
der to obtain the model with the best parameters according
to a classification performance metric. The user shall be able
to specify more than one value in the parameters of the model
creation task, and a preferred classification performance met-
ric to be used as the decider for the best model configuration.

M

TKS_41 Visualise the configuration of parameters that pro-
duced the best model - The user shall be able to visualize
the configuration parameters that produced the best model
after the execution of a workflow.

M
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ID Requirement Priority

BS_01 Contabilize resources - The system shall determine the
amount of resources used by a user.

M

BS_02 Determine expenses - The system shall account for the
total to be paid by a user according to the resources used.

M

BS_03 Consult expenses - The user shall be able to see the total
of his expenses at any time.

M

BS_04 Client billing account details - The user shall be able to
provide their bank account details.

S

BS_05 Billing Notification - The user shall be able to receive a
notification after its bill being fetched.

S

BS_06 Charge expenses - The user shall be periodically charged
for its expenses.

S

REQ_01 Add sample datasets - The user shall be able to access
sample datasets and use them in his workflows.

C

REQ_02 Add sample workflows - The user shall be able to access
sample workflows and use them.

C

REQ_03 Add trigger alarms - The user shall be able to choose mon-
itoring options and to be alerted accordingly

C

REQ_04 Recover password - The user shall be able to recover its
password.

C

REQ_05 Create an Help Page - The user shall be able to consult a
page with indications on how to use the interface and build
workflows.

C
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3.2 Quality Attributes

Another architectural driver that shapes the architecture of a system, besides functional
requirements, are quality attributes. Quality attributes, also called “ Non-Functional Re-
quirements ”, are properties that add value to the system and consequently to its users.
These properties are not directly related to the functionality of a system neither visible to
users, yet condition far more the architecture of a system than functional requirements.

Quality attributes are difficult to identify and describe. However, to prove how well the
system satisfies its quality attributes, they must be testable and, therefore, well stated.
An efficient way to describe quality attributes is through scenarios of quality attributes,
that is, circumstances in which a quality attribute can be verified and measured. A quality
attribute scenario is composed of six elements:

• Source of Stimulus: Internal or external entity that generates the stimulus.

• Stimulus: Condition that requires a response when it arrives at a system.

• Environment: The state of the system when the stimulus occurs (e.g., under heavy
traffic).

• Artifact: The component or group of components being stimulated.

• Response: The specific activity that results from the arrival of the stimulus (under-
taken by the artifact).

• Response Measure: When the response occurs, it must be measured in some way
so that the attribute can be tested.

Utility trees allow the representation of the overall usefulness of a system through the defi-
nition and prioritization of quality attributes and their respective scenarios. The utility tree
for the DataScience4NP platform is presented in Table 3.3, where the first level symbolizes
the key quality attributes, the second corresponds to the attributes’ characterization, and
the last one has the quality attributes scenarios (leaves).

Quality attributes priorities were established using a relative raking:(H) High, (M) Mid
and (L) Low.

Two dimensions were considered for prioritizing the attributes:

• the importance of each quality to the success of the system

• the degree of perceived risk posed by the achievement of such quality

For example, a quality attribute with ranking (H, M) means that it has high importance
to the success of the system and medium risk to achieve. Thus the quality attributes to be
addressed first on the platform were the ones with priority (H, H).

Just like most of the functional requirements, the key attributes of the system are inherited
from the previous work (outlined by the two former MCs students) and remained the same.
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Table 3.3 – Utility Tree.

QA QA Characteristics QA Scenario

Modularity Separation of each ser-
vice in clear and well de-
fined modules

QAS_01: A developer introduces a new
service to the system during system devel-
opment. The new service is deployed as an
independent and interchangeable module
and has everything required to execute its
well-defined functionality. (L, H)

Maintainability
Capacity to adapt to
new functionalities

QAS_02: A developer introduces a new
ML service in the system during system
development. The new service is deployed
in the system and becomes available to
other system components after registra-
tion without involving changes in more
than three other services. (M, M)

Capacity to make iso-
lated changes in a service

QAS_03: A developer changes the func-
tionalities of one service while the system
is under development. The modified ser-
vice is deployed without requiring any ad-
justment in the remaining system. (M,
M)

Interoperability Capacity of communi-
cation between different
services

QAS_04: A developer creates a mi-
croservice while the system is under devel-
opment. The new microservice becomes
available in the system and can com-
municate with other services through
technology-agnostic communication pro-
tocols (e.g., HTTP). (M, H)

Scalability
Ability to maintain the
performance indepen-
dently of the number of
requests

QAS_05: A user places two times more
requests than what is expected by the sys-
tem during normal operation. The system
processes this load without loss of perfor-
mance. (H, H)
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Table 3.4 – Utility Tree (continuation).

QA QA Characteristics QA Scenario

Usability

Responsiveness QAS_06: An authenticated user or ex-
ternal system requests the execution of a
ML workflow, while the system is in nor-
mal operation. The system starts the ex-
ecution of the workflow and keeps the in-
formation about the status of every task
that composes the workflow, to inform the
user about the progress of execution of a
workflow. (H, L)

Learnability QAS_07: An authenticated user exe-
cutes an operation in the system, while
the system is in normal operation. The
user will not have difficulties learning how
to use the interface or finding the required
functionalities. (H, M)

Efficiency
QAS_08: An authenticated user or ex-
ternal system adds a task to the workflow,
while the system is in normal operation.
The system inserts the task on the work-
flow with default values on every param-
eter if no parameters were provided. (H,
L)

QAS_09: An authenticated user creates
a workflow to produce models with dif-
ferent features and parameters to have
access to the best model configuration,
while the system is in normal operation.
The system executes the workflow, creat-
ing models with different features and pa-
rameters and returns the best model to
the user, without requiring the user to cre-
ate multiple workflows with the different
features and parameters to produce the
best model configuration. (H,M)

Effectiveness QAS_10: An authenticated user has a
specific goal that is achieved through
the execution of an ML workflow. The
user creates the workflow and executes it,
while the system is in normal operation.
The workflow is properly configured at
least 80% of the times, and the expected
results are displayed by the system. (H,
L)
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Table 3.5 – Utility Tree (continuation).

QA QA Characteristics QA Scenario

Availability System uptime QAS_11: A service crashes, while the
system is in normal operation. The sys-
tem detects the crash and heals the ser-
vice maintaining the functionalities of ev-
ery service available 99.9% of the time.
(M, H)

Performance Execution speed of ML
tasks

QAS_12: A ML task arrives at the sys-
tem to be processed, while the system is
in normal operation. The task is executed
by the system with a performance compa-
rable to running the same task on an av-
erage computer (8GB of Random Access
Memory (RAM), 4 cores (3GHz each)).
(H, M)

Elasticity
Ability to use resources
efficiently

QAS_13: The system verifies that some
modules/services are consuming memory
or CPU below the average, while the sys-
tem is in normal operation. The system
gradually removes the modules/services
that are consuming memory or CPU be-
low the average. (M, H)

QAS_14: The system verifies that some
modules/services are consuming memory
or CPU above the average, while the sys-
tem is in normal operation. The system
gradually increases the number of mod-
ules/services that are consuming memory
or CPU above the average. (M, H)

Security Confidentiality
QAS_15: An authenticated user inserts
a dataset in the system, while the system
is in normal operation. The system re-
ceives the dataset and makes the dataset
accessible only by authorized users. (H,
M)

QAS_16: An unauthorized user inserts a
wrong username or password to enter the
system, while the system is in normal op-
eration. The system denies the entrance
to the user without exposing any data as-
sociated with the inserted username. (H,
M)
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Chapter 4

Architecture

This chapter details the architecture of the DataScience4NP platform. Since this disserta-
tion is based on an existing prototype, we first present the original architecture outlined
for the platform, and only then we reveal the architectural changes we are proposing.

4.1 Initial Architecture

The architecture is modeled following the C4 model1. The C4 model employs different level
to abstract static structures of software systems using containers (a context or boundary
where code is executed or data is stored) and components (a grouping of related function-
ality encapsulated behind a well-defined interface).

Level 1: Context Diagram

The context diagram is represented in Figure 4.1 where it is possible to observe the in-
teractions of the DataScience4NP with external systems and users. Users can use the
DataScience4NP platform through a graphical interface that allows them to send HTTP
requests to the system. The same HTTP requests can be sent by other external systems
to access the same exposed functionalities.

Figure 4.1 – System Context Diagram.

Level 2: Container Diagram

The container diagram intends to zoom-in into the software system to expose the system
containers, which are separable runnable/deployable units such as microservices, databases,
file systems, serverless functions, server-side and client-side applications.

Several containers compose DataScience4NP as we can observe from the container diagram
presented in Figure 4.2. It follows a brief outline of each container.

1https://c4model.com
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The API Gateway is the entry point to the system, and it is responsible for routing every
request to the appropriate microservice. Based on the path in the request, the API request
redirects the request to the corresponding service. For example, “index.html” redirects to
GUI service, “/datasets” redirects to Dataset service, and so on.

The GUI Service delivers the graphical interface to users.

The User Service enables the registration and authentication of users. All users have
access to the GUI service, but only authenticated ones can access other services accessible
from the API gateway.

The Logs Service is currently outdated, but it was initially developed to receive logs from
actions taken by users on the GUI and provide developers with behavior data, thus helping
them improve the interface.

The Tasks Service describes data science tasks that can be used by users or external
systems in the GUI to build a machine learning workflow.

The Dataset Service is responsible for storing datasets uploaded by users and its meta-
data in the system. In the initial prototype, the uploaded datasets are stored in a Dis-
tributed File System.

The Templates Service is currently outdated. It was developed with the intention of
delivering predefined workflows to users.

The Workflows Service is responsible for the translation of the logical workflows to
system workflows. Logical workflows are the sequential data science workflows created by
users using the graphical interface. These workflows are translated to what we call “system
workflows” that are in a lower-level format to be understood by the orchestration service.
Each logical workflow is associated with its low-level representation and is stored in a
database so that it can be retrieved later to verify its execution status.

The Orchestration Service manages the execution of low-level workflows translated in
the Workflows Service. This service is performed using Netflix Conductor. The Orchestra-
tion Service receives workflows to be started, and it puts the tasks that form it in queues
where the Machine Learning can pull them for execution. This service holds the execution
status of the workflows and the outputs of each processed task on the workflow.

The Machine Learning (ML) Services are the different microservices (written in Java
and Python) responsible for the execution of the specific tasks that compose system work-
flows. These services query the Orchestration Service for tasks and, upon receiving them,
they proceed to its execution and return the results to the orchestration service.

A Distributed File System (DFS) is used to store datasets. For simplicity purposes, the
initial prototype uses a normal file system that is accessed by the Datasets Service to save
the datasets uploaded by users and to retrieve them when asked, and for the Workflows
Service not only to read the datasets but also to store its outputs and access the output
of other services (for example, models and predictions).

4.2 Current Architecture

The choice of the AWS Step Functions for the orchestrator of the DataScience4NP initially
motivated a solution 100% built on top of Amazon Web Services. An application to get
AWS Cloud Credits for Research2 was submitted on December 31th of 2019, and a new
architecture to build the DataScience4NP with AWS services was designed. However, we

2https://aws.amazon.com/pt/research-credits/
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did not get any response from AWS. A negative (or lack of) response to the application
was a predicted risk (Section 7.2), thus the AWS architecture was set aside (Appendix B).

The integration of AWS Step Functions in the Workflows Service and on the ML Services
was conducted using the AWS Free Tier3, and the platform was deployed in an already
configured Kubernetes cluster (ten machines - one master and nine workers - each one with
4vCPUs/8GbRAM/750HDD) running in INCD4.

The new architecture can be found in Figure 4.3. The current architecture is similar to the
former one, as the existing services continue to have the same responsibilities. Previously,
the Orchestration Service (Netflix Conductor) was running in the same environment as
the rest of the system. In the new architecture, we no longer have a component for the
Orchestration Service. Instead, we have Step Functions. With Step Functions, everything
related to the orchestration of workflows is running on the AWS side. Workflows Service
create state machines and send them to Step Functions and ML Services interact with Step
Functions to poll tasks and to send their result.

Step Functions coordinates workflows that are made up of a collection of steps/tasks
where an ML service executes each task and where the output of one step acting as input
into the next. Step Functions receives state machines from Workflows Service and auto-
matically triggers and tracks each step, so our ML workflows can be executed orderly and
as expected. When a task is reached, it is in condition to be executed by the respective
ML service. Step Functions waits for the result of the task performed by the ML service
and, according to it, it continues to manage the workflow (either by stoping the workflow
if the task failed or by wiring the output result to the rest of the workflow).

The Machine Learning (ML) Services are continually polling for tasks but now from
Step Functions. When a task is received, the ML service performed its work and then sends
the result to Step Functions.

Billing Service is a new component in the system. It has the responsibility of, according
to the time of computation used in users’ workflows, determining the monthly amount to
be charged. This component should interact with a payment provider to charge users their
monthly bills. Easypay was one solution that was briefly explored but not implemented
due to time constraints. Easypay “is a Payment Institution supervised by the Portuguese
regulator Banco de Portugal and is authorized to provide its services in any SEPA country”.
It has a well-documented API, and through frequent payments with SEPA Direct Debit
would be possible to monthly charge users.

3AWS Free Tier
4INCD - Infraestrutura Nacional de Computação Distríbuida
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Chapter 5

Implementation

This chapter focuses primarily on the internal operation of the Workflows Service, the one
responsible for the translation of the logical workflows to a state machine - a workflow
understood by AWS Step Functions. It intends to explain how the translation is processed,
how Step Functions work, its role in our implementation. It also exposes the limitations
imposed by AWS and the attempts made to overcome them.

5.1 Conventions

Several terms used in this document can cause some misunderstandings. To avoid such
situations, it follows a brief explanation of some terms:

• Logical Workflow: a sequential description of a workflow composed by users in the
graphical interface (format: JSON).

• Logical Task: task presented to users in the graphical interface and that are added
to logical workflows (format: JSON).

• System Workflow: a workflow that results from the translation process. It is a work-
flow understood by the orchestrator (previously system workflows were defined using
JSON based DSL to be understood by Netflix Conductor and now are defined in
Amazon States Language to be understood by Step Functions)

• System Task: task that composed the sytem workflow.

• State Machine: AWS term for system workflow (format: JSON-based Amazon States
Language).

• State: AWS term for system task (format: JSON-based Amazon States Language).

5.2 Translation Process

From a higher perspective, what the Workflows Service does is receive a logical workflow
and, given the specified tasks and its details, translated it to a system workflow and then
sent it to AWS Step Functions. However, there is a great extent of steps performed (and a lot
of components involved in) between the moment the Workflows Service receives the logical
workflow and the moment it sends the correspondent state machine to Step Functions.

47



5.2. Translation Process Chapter 5. Implementation

Essentially, each logical task in the logical workflows received turns into an object under-
stood by the Translator (SystemTask), and, according to it, a corresponding strategy is
used to create the AWS States correctly.

A brief explanation of the process will follow. Figure 5.1 presents the UML diagram of
the core components (in the Workflows Service) used in the translation process. The three
main components are the Translator, SystemTasksCreator, and TranslatorState. The Sys-
temTask and its inherent classes also have a fundamental role in the translation but are
not represented in Figure 5.1. Bear in mind that there are plenty more components, but
to explain how translation is conducted, the ones mentioned are sufficient.

The Translator class holds several variables needed during the translation, for instance, the
list of sequential tasks (received in the logical workflow) and queues where worker tasks
and the generated tasks, objects descendent from SystemTask, are placed. Its context
is shared with the SystemTasksCreator and TranslatorState classes, and its state might
change during the translation.

The SystemTasksCreator and its inherent classes specify the strategies to create worker
tasks. Each type of logical task has a specific strategy to be translated. During translation,
worker tasks (tasks that will compose the system workflow) are created and encapsulated
in objects descendent from SystemTask so the translator state can read them. The Trans-
latorState defines how the encapsulated tasks placed in the translator queue are inserted
in the final workflow (according to the tactics implemented by the state).

The translation starts by setting the state of the Translator as "StartState," and then it
begins creating tasks (using a strategy according to the logical task being processed) and
puts them in the translator queue (system_tasks_queue) (responsibility of the System-
TaskCreator). The worker tasks are encapsulated in instances inherit from SystemTask
class and placed with such format in the translator queue (system_tasks_queue).

Then, based on the tactic implemented on the current state of the Translator, the tasks
in the translator queue are placed into another queue named wf_holding_tasks as worker
tasks. At the end of the translation, the wf_holding_tasks is used to generate the final
workflow.

The process of inserting tasks in the workflow continues as long as there are no tasks in the
translator queue. The translator state might change according to the tasks in queue, con-
sequentially changing the tactic implemented to insert the tasks in the wf_holding_tasks
queue.

In reality, the translation process does not end after the created state machine being
sent to Step Functions. Upon workflow completion (successfully or unsuccessfully), we
need to return the results to the user. To achieve this, the Workflows Service needs to
receive outputs from Step Functions and translate them back to a logical workflow to
present the results in the graphical interface. Moreover, the graphical interface informs
the user about the status progression of each task during workflows’ execution. Thus,
it is needed to know which system tasks have and haven’t been completed and to each
logical task do they correspond. The way of getting the outputs and how the states’ status
is determined is explained in Section 5.3.4. After having the states’ output, and after
all of them being completed, outputs are formated using a somehow reversed logic with
the LogicTaskOutputGenerator class, which generates the output for each logical task
according to a specific strategy and using the output of the associated worker tasks.
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5.3 Step Functions

"Step Functions is based on the concepts of tasks and state machines."[23] Simply put, a
state machine (AWS term for workflow) is a collection of states and is defined using the
JSON-based Amazon States Language1. There are a few types of States, and each one
performs a different functionality [24]:

• Choice state: chooses between branches of execution.

• Fail or Succeed state: stops execution with failure or success.

• Pass state: passes its input to its output or inject some fixed data.

• Wait state: provides a delay for a certain amount of time or until a specified time/-
date.

• Task state: does some work in our state machine.

• Parallel state: begins parallel branches of execution.

• Map state: dynamically iterates steps.

Task and Parallel states are the two primary states types to build state machines for the
DataScience4NP platform.

As the name suggests, Parallel states are used to create parallel branches of execution. We
use this type of state whenever we need to parallelize tasks. For example, parallelization
is present when the chosen validation procedure is cross-validation: there will be branches
for each fold. If the cross-validation procedure also includes repetitions, a branch for each
repetition is created using different seeds. Parallelization is also present whenever two
or more parameters are specified in the model creation tasks (a branch for each model is
created, and there will be as many models as there are distinct configurations of parameters
and features).

A Task state "represents a single unit of work performed by a state machine"[23] and it
can be an Activity, a Lambda Function, or a supported AWS service. Activities allow us to
have a task where a worker performs the work, i.e., we can associate a running code (hosted
anywhere) with specific tasks in a state machine through Activities. Each Activity has an
Amazon Resource Name (ARN). ARNs are used by workers to poll tasks to perform their
work. In the DataScience4NP platform, the Machine Learning services are the workers.

An Activity for each worker was created. Activities have a name, and the ARN mentioned
above. When the Translator is initiated, the list of Activities is obtained from Step Func-
tions, and a dictionary with Activities names and ARNs is created so we can associate the
ARN to the correct Tasks during translation. Workers also get the list of Activities when
they are initiated to find the corresponding ARN to its worker name tasks. When the ARN
is obtained, workers begin to poll for tasks using a “GetActivityTask” call, which returns
a response whenever a Task with its ARN starts. This response includes the input and a
taskToken, a unique identifier for the task polled. The taskToken is then used to report the
success or failure of work using either “SendTaskSuccess” or “SendTaskFailure” call (these
calls also include the result of the work: either the output of the work or the reason of
failure).

Listing 1 demonstrates an example of a state machine [25]. A state machine must have
two top-levels fields: and object “States” and a string “StartAt”. The value of “StartAt”

1https://states-language.net/spec.htML
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must be one of the names of the “States” fields so the interpreter know where to start
running the machine. States (such as Tasks and Parallel States) are expressed as fields of
the “States” object. In the example of Listing 1, a state of type “Task” that executes a
Lambda function is presented. All states must have a type and depending on the type it
may have some required fields. For example, States of type “Task” have a field “Resource”
which it is required. “Resource” is an ARN that uniquely identifies the specific task to
execute. The definition of the state machine’s control flow is achieved through transitions:
all non-terminal states must have a “Next” field to specify its subsequent state and the
terminal ones should specifiy { "End": true }.

Listing 1 – State machine structure.

1 {
2 "Comment": "A simple minimal example of the States language",
3 "StartAt": "Hello World",
4 "States": {
5 "Hello World": {
6 "Type": "Task",
7 "Resource": "arn:AWS:lambda:us-east-1:123456789012:function:HelloWorld",
8 "End": true
9 }

10 }
11 }

Besides Task states, we also use Parallel states to create state machines for the Data-
Science4NP. Its type is “Parallel” and the field “Branches”, which is an array whose ele-
ments must be objects (each one must contain the fields “States” and “StartAt”) is required.
Listing 2 presents a Parallel state with two branches, where each branch has only one Task
state, and Figure 5.2 shows the corresponding state in an AWS graphic.

Listing 2 – Parallel State structure.

1 "ParallelState": {
2 "Type": "Parallel",
3 "Branches": [
4 {
5 "StartAt": "OneBranch",
6 "States": {
7 "OneBranch": {
8 "Type": "Task",
9 "Resource":

10 "arn:AWS:lambda:us-east-1:123456789012:function:AddressFinder",
11 "End": true
12 }
13 }
14 },
15 {
16 "StartAt": "AnotherBranch",
17 "States": {
18 "AnotherBranch": {
19 "Type": "Task",
20 "Resource":
21 "arn:AWS:lambda:us-east-1:123456789012:function:PhoneFinder",
22 "End": true
23 }
24 }
25 }
26 ],
27 "Next": "NextState"
28 }
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Figure 5.2 – Simple example of a Parallel State.

5.3.1 Step Functions in the code

As shortly explained before, worker tasks are created during the translation process. Pre-
viously, the creation of worker tasks and the workflow were done using Condu2. Condu is
a python client created by Bruno Lopes, one of the students previously in charge of the
DataScience4NP platform. Netflix Conductor has a Python client3 that provides workflow
management APIs (start, terminate, get workflow status, etc.) and a worker execution
framework. Nevertheless, it does not offers functionalities to define tasks and workflows,
and hence the need to extend the official client emerged.

AWS provides SDKs for some programming languages. One of them is Boto, the Amazon
Web Services (AWS) SDK for Python. Boto4, as the others SDKs, allows the creation,
configuration, and management of AWS services, including AWS Step Functions. However,
and just like Netflix Conductor, it does not enables the creating of single tasks neither
the construction of states machines. We wanted to keep using the translation process
aforementioned but with Step Functions.

In Step Functions, a worker task is, in fact, a State. To be capable of creating States during
translation and of having a state machine defined in JSON-based Amazon States Language
at the end of the process, new classes were created to abstract the AWS objects. Figure
5.3 presents these classes.

Figure 5.3 – UML diagram of the Step Functions objects.

The Translator class is initiated with a StateMachine object as a variable. During the
translation, instances of the State class (or its inherent classes - Task and Parallel) are
created. These are the so-called worker tasks that are added to the wf_holding_task
queue. At the end of the translation process, the wf_holding_task queue turns to be the
list “states” of the StateMachine class.

2https://github.com/bioslikk/condu
3https://github.com/Netflix/conductor/tree/master/client/python
4https://boto3.amazonAWS.com/v1/documentation/api/latest/index.htML
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Methods “create_state” (example in Listing 3) transform the class to States in JSON-
based Amazon States Language, ready to be added to the top-level field “States” of the
state machine definition. While the states are being created, methods are called at specific
times to set the “Next” or “End” fields.

Listing 3 – Method create_state from Task class.

1 def create_state(self):
2 task = {}
3 task['Type'] = self.state_type
4 task['Resource'] = self.resource
5 task['Parameters'] = self.parameters
6 task['ResultPath'] = '$.'+ self.id
7 task['Retry'] = []
8 task['Retry'].append(Retry())
9 if hasattr(self, 'next'):

10 task['Next'] = self.next if self.next is not None else None
11 if hasattr(self, 'end'):
12 task['End'] = self.end if self.end is True else False
13 return task

Once the translation ends, the method create_state_machine is called (Listing 4), the
states are generated as described before and sent to Step Functions.

Listing 4 – Method create_state_machine from StateMachine class.

1 def create_state_machine(self):
2 '''
3 Creates a new State Machine using Boto3 (the \gls{AWS} SDK for Python).
4
5 Returns
6 -------
7 response : dict
8 stateMachineArn : str
9 The Amazon Resource Name (ARN) that identifies the created state machine.

10 creationDate : datetime
11 The date the state machine is created.
12 '''
13 client = boto3.client('stepfunctions')
14 self.bulk_add_states(self.states)
15 self.definition['StartAt'] = self.startAt
16 self.set_last_state()
17 response = client.create_state_machine(
18 name = self.name,
19 type = self.type,
20 definition = json.dumps(self.definition),
21 roleArn = self.roleArn)
22 return response

5.3.2 Input/Output processing

How are input and output passed from state to state? Step Functions receive JSON texts
as input, which is given to the first state in the workflow. Individual states receive JSON
as input and also pass JSON as output to the next state. The flow of JSON from state to
state is filtered and controlled by four fields [26]:

• InputPath: selects which parts of the JSON input is passed to the task.

• OutputPath: can filter the JSON output to further limit the information that’s passed
to the output.
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• ResultPath: selects what combination of the state input and the task result to pass
to the output.

• Parameters: enables the passage of collections of key-value pairs.

The usage of paths allows the selection of JSON portions from the input or the result. “A
path is a string, beginning with $, that identifies nodes within JSON text. Step Functions
paths use JsonPath5 syntax.”[26]

For instance, if there is a task “ABC” that has as an output a parameter “abc” and another
subsequent task “WYZ”, the task “WYZ” can access the parameter of the previous one
(and save it in a new parameter called “wyz”) as wyz.$ = $.ABC.abc.

In our workflows, it may not be sufficient for a task to receive as input only the output of the
previous task. Therefore, it is not in our interest to limit the information passed, and so the
“InputPath” and“OutputPath” fields are not adequate. Instead, we define, for each state,
the field “Parameters” and “ResultPath”. State names must be unique within the scope of
the whole state machine. Thus, during the translation, worker tasks are created with a
unique identifier. The field “ResultPath” of each task is set with its unique identifier. This
means that if a task is called “task_name” with the field {“ResultPath”: $.task_name}

then other tasks can access its output through $.task_name.OUTPUT_NAME.

By using “Parameters” and by defining “ResultPath” as described above, we are adding the
result of each state to a global input. Thereby, states have access to the output of every
precedent states and not only of the one immediately before.

5.3.3 Workers and Step Functions

ML services are individual services, and each one performs a type of task. For example,
there is a service responsible for tasks related to SVM model: a task to train, a task to
test, and a task for model creation. For each task, a worker exists.

ML services need to communicate with the orchestration service to retrieve tasks, inputs,
and to send outputs. As the orchestration service changed, the way ML Services commu-
nicate with it is slightly different. ML services are implemented in Python and Java. Still,
services can be developed in any language as far as the language provides a way for the
service to communicate via HTTP, and there is an AWS SDK available to use for that
language.

We are able to have tasks in our state machines where the work is executed by a worker.
This is possible employing Activities, an AWS Step Functions feature. Activities have a
name and an Amazon Resource Name (ARN) (Figure 5.4). In the state machine, the
“Resource” field for each task must be specified, and its value must be the ARN that
uniquely identifies the specific task to execute. Then, the worker responsible for that task
must be polling with the same ARN.

For instance, if there is an Activity named “relieff” with a respective ARN “arn:AWS:states:e
u-west-2:281404888786:activity:relieff”, the worker responsible for this task must poll tasks
with the same ARN, as exemplified in Listing 5. When a Task in the state machine must
be performed by the relieff worker, its resource must also use the same ARN (example in
Listing 6).

Listing 5 – Worker polling for a task (example in Python).

5https://github.com/json-path/JsonPath
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Figure 5.4 – Partial list of activities in the AWS console.

1 response = client.get_activity_task(
2 activityArn='arn:\gls{AWS}:states:eu-west-2:281404888786:activity:relieff',
3 workerName='relieff_worker'
4 )

Listing 6 – Task with a specific ARN.

1 "ExampleState": {
2 "Type": "Task",
3 "Resource": "arn:\gls{AWS}:states:eu-west-2:281404888786:activity:relieff",
4 "Next": "NextState"
5 }

ARNs are not directly defined in ML services so that whenever the DataScience4NP needs
to be set up, and if a new AWS account is used, it will not be necessary to change workers.
The reason for this is that when the ML services are created, they obtain the list of activities
and search for the corresponding ARN by name.

With ARNs set, workers can start polling. Workers were implemented in such a way that
a fixed number of threads (workers) per task are initiated when the service starts. After
obtaining the correct ARN, a Poller is initiated for each worker task (Listing 7), and the
specified number of “pollers” continuously poll for activities and executes its work whenever
it receives one.

All workers have an environment variable to set the number of workers that must be polling.
Currently, there are twenty pollers per task. Workers poll for tasks with the “GetActivity-
Task” call, which returns a taskToken (a unique identifier for the scheduled task) and the
tasks’ input whenever a task is scheduled. The worker then uses the taskToken to report
the successfulness of failure of the task (“SendTaskSuccess” or “SendTaskFailure”) and to
send the corresponding output. This process is illustrated in Figure 5.5.

The number of pollers can be increased up to 1000, the maximum activity pollers per
Amazon Resource Name (ARN) imposed by AWS, as long as the resources allocated for
the modified service are adjusted accordingly.
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Listing 7 – Poller interface.

1 class Poller():
2 def __init__(self, client, activity_arn):
3 self.activity_arn = activity_arn
4 self.client = client
5 self.threads = list()
6
7 def start_pollers(self, pollers_count, exec_function, worker_name):
8 for i in range(pollers_count):
9 worker = worker_name + str(i)

10 process = mp.Process(target=self.poll, args=(exec_function, worker,))
11 process.start()
12
13 def poll(self, exec_function, worker_name):
14 while(True):
15 get_activity_task = self.client.get_activity_task(
16 activityArn=self.activity_arn,
17 workerName=worker_name
18 )
19
20 if 'taskToken' in get_activity_task:
21 activity_response = ActivityTaskResponse
22 (self.client, get_activity_task, worker_name)
23 exec_function(activity_response)

Figure 5.5 – Interaction between Step Functions and ML services.

5.3.4 Step Functions Limitations

AWS Step Functions sets quotas on several state machine parameters [27], two of them
having a direct impact on our implementation. The following subsections explain these
limitations, the extent of their impact on our implementation, and how they are addressed.

Maximum input or result data size for a task, state, or execution

There is a limit on the number of characters in the input/output passed between states
in state machines (32,768 characters). This limitation proved out to be a bottleneck in
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our state machines because each state receives input and adds their output to it, passing
through the state machine bigger and bigger JSON texts.

This problem is especially observable in parallel states. A Parallel state passes to each
branch a copy of its own input data, and the generated output is an array with one
element for each branch (containing the output from that branch). Some of the output of
these branches have duplicated data. To reduce the number of characters in the JSON text
that is passed after a parallel state, two new States were introduced to our implementation:
a Lambda function that receives the output of the parallel state and performs a merge of
the branches and a Pass state that receives the result of the Lambda Function and passes
it to the following state.

The Lambda Functions is called “Manipulator,” and the Pass state is called “Pass”. During
translation, these states are immediately added after every parallel state.

Figures 5.6 and 5.7 demonstrates states machines with and without Lambda and Pass states
and Listings 5.1 and 5.2 present the input passed to the state multiple_model_evals11 (the
result of either of the parallel state or the pass state, correspondingly). This is a simple
example with only one basic parallel state, but in workflows with more states and after
some levels, the difference is substantial between using the Lambda function or not is
significant.

Figure 5.6 – State machine without a
Lambda function and Pass state.

Figure 5.7 – State machine with a
Lambda function and Pass state.

The Lambda function to merge the output was implemented in Python 3.8 and must be
created if a new AWS account for the DataScience4NP platform is created. Its ARN must
also be set directly in the Workflows Service.

This approach proved itself not to be sufficient. Hence, we proceeded to reduce the out-
put resultant from parallel states that include multiple_model_evals tasks by setting the
ResultPath of these tasks to “$”, which means that multiple_model_evals states only out-
put its result instead of adding that output to the JSON that flows between states. The
Lambda function was modified to consider these states. Some other minor adjustments in
the Workflows Service were also required.

This was the major issue proponent by AWS Step Functions, and the aforementioned
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approach did not handle it. It was considered an unfit approach latter in the development
and left no more time to considerer another one.

Paths defined for each state are defined during translation, and, as one state may need the
output of another state some level above in the workflow, the ideal would be to have the
JSON text with all output flowing through states, which was the reason for insisting on
this approach.

The best example is the cv_folds_definition and split_dataset tasks. The first generates
different training/test indices to be used while training models on different cross-validation
partitions and the later breaks the instances in a dataset in training, test, and optionally
validation sets. Other tasks later need these parameters. For example, model tasks need
the URI to datasets with train and test sets to perform their work.

Listing 5.1 – Input of the state multiplemod-
elevals11 without the new states

[
{

" cv_fo ld s_de f in i t i on1 " : {
" dataset_ur i " : "/ds4np�f s /tmpuc3yht27 . csv " ,
" train_idx_uri " : "/ds4np�f s / tmpih_fgn9i . csv " ,
" test_idx_uri " : "/ds4np�f s / tmp95jcip2x . csv "

} ,
" sp l i t_data s e t2 " : {

" t ra in_ur i " : "/ds4np�f s / tmpa4dscc08 . csv " ,
" va l i da t i on_ur i " : nu l l ,
" t e s t_ur i " : "/ds4np�f s /tmpn97bo28v . csv "

} ,
" svm_model_train_test5 " : {

"model_uri " : "/ds4np�f s /tmp7ccgnd50 " ,
" r e su l t s_ur i " : "/ds4np�f s / tmpgp6zdgs6 . csv "

} ,
" c l a s s i f i e r_mode l_eva l6 " : {

" confusion_matrix_uri " :
"/ds4np�f s /tmpd4q38up7 . csv " ,

"model_performance " : {
" accuracy " : 1 ,
" p r e c i s i o n " : 1 ,
" r e c a l l " : 1 ,
" f�measure " : 1 ,
" s p e c i f i c i t y " : 1

}
}

} ,
{

" cv_fo ld s_de f in i t i on1 " : {
" dataset_ur i " : "/ds4np�f s /tmpuc3yht27 . csv " ,
" train_idx_uri " : "/ds4np�f s / tmpih_fgn9i . csv " ,
" test_idx_uri " : "/ds4np�f s / tmp95jcip2x . csv "

} ,
" sp l i t_data s e t3 " : {

" t ra in_ur i " : "/ds4np�f s /tmpxsmvyc8v . csv " ,
" va l i da t i on_ur i " : nu l l ,
" t e s t_ur i " : "/ds4np�f s / tmpdo3cskyl . csv "

} ,
" svm_model_train_test7 " : {

"model_uri " : "/ds4np�f s /tmp0_6uy7hq" ,
" r e su l t s_ur i " : "/ds4np�f s /tmpypk9wd7x . csv "

} ,
" c l a s s i f i e r_mode l_eva l8 " : {

" confusion_matrix_uri " :
"/ds4np�f s /tmp3oouhnn6 . csv " ,

"model_performance " : {
" accuracy " : 1 ,
" p r e c i s i o n " : 1 ,
" r e c a l l " : 1 ,
" f�measure " : 1 ,
" s p e c i f i c i t y " : 1

}
}

}
]

Listing 5.2 – Input of the state
multiplemodelevals11 with the new
staten
{

" sp l i t_data s e t2 " : {
" t ra in_ur i " : "/ds4np�f s /tmp99avsbpg . csv " ,
" va l i da t i on_ur i " : nu l l ,
" t e s t_ur i " : "/ds4np�f s / tmpizv_fsvn . csv "

} ,
" svm_model_train_test5 " : {

"model_uri " : "/ds4np�f s / tmp44897rj j " ,
" r e su l t s_ur i " : "/ds4np�f s / tmpyb44hljx . csv "

} ,
" c l a s s i f i e r_mode l_eva l6 " : {

" confusion_matrix_uri " :
"/ds4np�f s / tmp2z j f a r6 l . csv " ,

"model_performance " : {
" accuracy " : 1 ,
" p r e c i s i o n " : 1 ,
" r e c a l l " : 1 ,
" f�measure " : 1 ,
" s p e c i f i c i t y " : 1

}
} ,
" sp l i t_data s e t3 " : {

" t ra in_ur i " : "/ds4np�f s / tmp9x77tnjs . csv " ,
" va l i da t i on_ur i " : nu l l ,
" t e s t_ur i " : "/ds4np�f s /tmp0_7ddbcm . csv "

} ,
" svm_model_train_test7 " : {

"model_uri " : "/ds4np�f s /tmp0ola0hwx " ,
" r e su l t s_ur i " : "/ds4np�f s /tmptum8pxjs . csv "

} ,
" c l a s s i f i e r_mode l_eva l8 " : {

" confusion_matrix_uri " :
"/ds4np�f s /tmpb6ntpbhz . csv " ,

"model_performance " : {
" accuracy " : 1 ,
" p r e c i s i o n " : 1 ,
" r e c a l l " : 1 ,
" f�measure " : 1 ,
" s p e c i f i c i t y " : 1

}
}

}
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Maximum execution history size

“A state machine execution occurs when an AWS Step Functions state machine runs and
performs its tasks.” Each execution is described by its history. Figure 5.8 shows the exe-
cution history of an execution from the state machine presented in Figure 5.7.

Figure 5.8 – Example of an execution history in the AWS console.

Step Functions limit the number of entries in the execution history up to 25,000 events. If
we examine a state of type “Task” completed with success, we can easily recognize that Task
states will have at most five entries: TaskStateEntered, ActivityScheduled, ActivityStarted,
ActivitySucceeded, and TaskStateExited.

Assuming that, in the worst case, each state has five entries, we can only have state
machines with 5000 states. However, this limit does not cover extensive workflows that
employ nested cross-validation with repetitions. The solution to this limitation is to divide
state machines.

If we were running simpler workflows, maybe it would be possible to draw a strategy to
split them at runtime, in a similar manner as the one suggested by AWS in the tutorial
“Continuing as a New Execution” 6, but instead, workflows are divided before they are sent
to AWS.

The complexity of workflows created by the DataScience4NP makes it extremely hard to

6https://docs.aws.amazon.com/step-functions/latest/dg/tutorial-continue-new.html
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outline an efficient and advantageous way to split workflows as there are many dependencies
and a lot of parallel states involved. A simple strategy based on a limit of states per workflow
and that considers the size of parallel states was developed.

Before sending the workflow to AWS, its size is verified. A global count keeps the number
of states in the workflow. If the global count exceeds the limit at a parallel state, then the
workflow is divided, and each branch results in a new workflow. This is possible because
Step Functions integrates with its own API as a service integration. Here is the strategy
used to divide a workflow at a parallel state:

• For each branch of the parallel state that is to divide, a new state machine is created.
The definition of the new state machine matches the definition of the branch.

• A new state that replaces the branch in the original workflow is generated. This state
launches an instance of the state machine created. (Listing 8).

• The branches of the original parallel state are replaced by the newly generated tasks
that launch the execution of the new state machines.

Listing 8 – Service Integration with AWS Step Functions (start of a new execution).

1 "Start an execution of another SM":{
2 "Type":"Task",
3 "Resource":"arn:aws:states:::states:startExecution.sync",
4 "Parameters": {
5 "stateMachineArn": "arn:aws:states:eu-west-2:281404888786:stateMachine:
6 5ef891f06d3067c27da42a24",
7 "Input": input,
8 "AWS_STEP_FUNCTIONS_STARTED_BY_EXECUTION_ID.$": "$$.Execution.Id"},
9

10 "Next":"NEXT_STATE"
11 }

The size of each new state machine is verified and is also divided if needed.

Listing 8 presents a state used to associate a nested workflow execution with the parent
state machine. The resource must be “arn:aws:states:::states:startExecution.sync” in order
to specify that the state starts an execution (of another state machine) and waits for it to
complete.

Workflows are divided considering a limit of 2000 states per workflow. Even though the
theoretical value is 5000, there are also other limits, such as on the HTTP content length
when sending requests to AWS (1049600 bytes), and therefore, the limit of states was
adjusted.

Figures E.19 and E.20 from one of the integration tests demonstrates how divided workflows
look like.

Access to states status

It is required to let users be aware of the progress of the workflow execution, which is
only possible if the status of individual AWS states is known. AWS Step Functions only
provides a method to get the status of a state machine execution as a whole, i.e., it is only
possible to tell if the state machine execution status is one of the following: “RUNNING”,
“SUCCEEDED”, “FAILED”, “TIMED_OUT” or “ABORTED”. However, there is a method
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to obtain the details of an execution history (mentioned in Section 5.3.4) from which we
can take advantage.

The execution history has useful pieces of information. The getExecutionHistory method
returns the history of a particular execution as a list of events. Each event has an id (events
are numbered sequentially, starting at one), a previousEventId, a type, and additional
information according to the type.

If a user is consulting a workflow that is running (on the graphical interface), a global
updatet_tasks function is continuously called. This function updates logical tasks in the
logical workflow accordingly to the status of states running in Step Functions. It also
updates the outputs of the logical tasks if all states completed successfully or the errors, if
any.

It follows the strategy used to get the execution history and to determine the states’ status.

• The list of events is obtained in reversed order using the execution ARN and the
method “get_execution_history”.

• The list of events is parsed: “terminating” events are looked up (ActivityFailed,
TaskStateExited, TaskStateAborted), and its precedent events are found using “pre-
viousEventId” and then attached to the correspondent terminating event.

• The details of each “terminating” event are parsed: for example, “TaskStateEntered”
have the name of the state executed, “ActivityStarted” has the timestamp of the
initiation of the state execution and “ActivitySucceeded” and “ActivityFailed” have
either the state output or the error that cause the task to fail.

• At the end of the process, a dictionary with all “terminating” events, its status,
output, and timestamp are returned. For example:
{’split_dataset1’: {’status’: ’COMPLETED’, ’output’: ’output example’,

timestamp: 0.91}}

The obtained dictionary is then used when updating tasks to deliver their status to the
user.

5.4 Billing Service

Independently of the cloud computing provider, there will always be computational re-
sources that will be used and charged. Thus, we need to determine the expenses for each
user and charge them without prejudice on our part.

The giants of cloud computing offer a “pay as you go” approach where users only pay for
what they execute. In the DataScience4NP, all workflows created by users run in instances
of our account. It is required to determine which resource is used by each user and for how
long.

In Step Functions, charges are based on the number of state transitions—each step in a
workflow corresponds to a state transition. On the date of 26 June 2020, the tabulated
price for 1000 state transitions is $0.025 7.

Whenever a user starts a workflow, the corresponding state machine ARN is added to
a database. Each entry has a username, the executionArn, a startDate and some other
parameters to manage the database.

7https://aws.amazon.com/step-functions/pricing/
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State machines are not immediately deleted from Step Functions whenever a user tries to
delete a workflow. Instead, the state machine is flagged as deleted in the database, and it
is intended to delete flagged states machines only after they were charged to the user.

The Workflows Service runs a scheduled job every day to update finished state machines.
It also obtains the necessary information from the execution history (this is why we get the
timestamps of the events while parsing their details). Still, the output is discarded because
it does not matter for billing purposes.

Briefly explained, each user has every state machine that was ever run by him/her. With
the execution history, it is possible to obtain the time used by the ML services to execute
the users’ workflow.

To inform users of the current bill or to charge users the monthly, a sum of all executions
performed in the current month is made, obtaining in this way the total amount of seconds
of computational resources used. Then, to compute a user’s expenses, the amount of seconds
is multiplied by our tabulated value.

DataSience4NP is currently running in a Kubernetes cluster created in INCD. The cluster
is composed of ten nodes (one master and nine workers) each one with the following
specifications:

• cpu: 4

• memory: 8174692Ki (8.370884608 GB)

• os-image: Ubuntu 16.04.6 LTS

• kernel-version: 4.4.0-157-generic

Figure 5.9 shows the table prices for the type of instances in AWS and Google Cloud that
are more similar to the ones INCD offers.

Figure 5.9 – Tabulated prices for AWS and Google Cloud instances (June 2020).

Typically, prices range between 0.17 and 0.20 dollars per hour. As a proof of concept, our
price established for an hour of computation is 0.40. This is a hypothetical price at this
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phase. We are interested in stipulating a value sufficient enough to cover all the resources
used. Besides covering the computational time used to execute workflows, this value allows
us to cover Step Functions and Lambda Functions expenses and maybe even storage.

After having the total seconds used by a user, the Billing Service calculates the total billing
having our stipulated value into account.

The Billing Service also runs a scheduled job every day 2 of each month to calculate
users’ expenses, and it should trigger a payment request with a debit card, but due to time
restrictions, there was no opportunity to implement integrations with a payment provider.
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Chapter 6

Testing

This chapter describes the tests performed, its results, and the analysis. First, the usability
tests already carried out by the two previous students in charge of the DataSciene4NP
platform are exposed.

6.1 Integration testing

Integration testing is the most relevant type of test in the context of this thesis. It is essen-
tial to verify if the different services, especially ML services and the Workflows service, are
working collectively and rightly to deliver the expected results. We can consider the Work-
flows Service and, consequently, AWS Step Functions, the heart of the DataScience4NP.
Without it, a user can’t run workflows properly.

There are 41 requirements regarding the construction of workflows, each one either states
the insertion of a task or the visualization of its output. Knowing that we have many
tasks and that each task may be specified with different parameters, the total number of
combinations of workflows that could be created with the DataScience4NP platform grows
to a point where it is no longer feasible to test all of the possibilities. We cannot thoroughly
check every path in the construction of a workflow, but we can create broad integration
tests to test workflows that go through all services at least once. This strategy is, somehow,
the same as used in equivalence partitioning [28]. In the equivalence partitioning technique,
a set of test conditions are divided into groups that can be considered the same, and it
assumes that all the conditions in one partition are handled in the same way. Thus it is
only needed to test one condition from each partition.

Integration tests were firstly stated: each test has an identifier, a description of the workflow
used, and the use cases addressed. Then, the workflows of each test were created and started
in the graphical interface. AWS has a console where it is possible to see state machines
running and the inputs/outputs of the individual states. It is also possible to know the
cause of error if a state fails. The results of the performed tests were observable in the
AWS Step Functions console.

Tests conditions: DataScience4NP deployed with one replica per service. There are 10
pollers per each worker task.

Tests results: The result of a test can either be “PASSED”, meaning that the workflow was
correctly created, completed with success, and the output was presented in the graphical
interface or “FAILED” meaning that its execution was not completed or the output was
not presented.
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The details of each test present the time it took for the workflow to complete, a reference
image to the visual representation of the workflow, or other information about the test
such as the reason of failure.

Test Identifier IT_01

Workflow
dataset_input (weather.csv)
use_entire_data
one_hot_attribute_encoding (ignored 2 attr)

Use cases addressed TKS_01, TKS_06, TKS_07, TKS_35

Result PASSED

Details 1 second (Figure E.1)

Test Identifier IT_02

Workflow

dataset_input (breast-cancer.csv)
use_entire_data
one_hot_attribute_encoding (1 attr encoded)
info_gain (attr to select: 2)

Use cases addressed TKS_01, TKS_06, TKS_07, TKS_13, TKS_14, TKS_35

Result PASSED

Details 2 seconds (Figure E.2)

Test Identifier IT_03

Workflow

dataset_input (breast-cancer.csv)
use_entire_data
one_hot_attribute_encoding (1 attr encoded)
info_gain (threshold=0)
z-score normalization ( feature_standardization)

Use cases addressed TKS_01, TKS_06, TKS_07, TKS_08, TKS_09, TKS_13,
TKS_14, TKS_35

Result PASSED

Details 3 seconds (Figure E.4)
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Test Identifier IT_04

Workflow

dataset_input (breast-cancer.csv)
use_entire_data
one_hot_attribute_encoding (1 attr ignored)
info_gain (threshold=0)
z-score normalization ( feature_standardization)
decision_tree (CART)
classifier_model_eval

Use cases addressed TKS_01, TKS_06, TKS_07, TKS_08, TKS_09, TKS_13,
TKS_14, TKS_20, TKS_21, TKS_31, TKS_32, TKS_35,
TKS_36, TKS_37

Result PASSED

Details 8 seconds (Figure E.5)

Test Identifier IT_05

Workflow

dataset_input (iris.csv)
train_test
svm (rbf)
classifier_model_eval

Use cases addressed TKS_18, TKS_19, TKS_31, TKS_32, TKS_36, TKS_37

Result PASSED

Details 2 seconds (Figure E.6)

Test Identifier IT_06

Workflow

dataset_input (iris.csv)
train_test
feature_scaling (min-max scaling)
svm (poly)
classifier_model_eval

Use cases addressed TKS_02, TKS_03, TKS_18, TKS_19, TKS_31, TKS_32,
TKS_36, TKS_37

Result PASSED

Details 2 seconds (Figure E.7)
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Test Identifier IT_07

Workflow

dataset_input (iris.csv)
train_test
feature_scaling (min-max scaling)
svm (sigmoid; C=1,2)
classifier_model_eval

Use cases addressed TKS_02, TKS_03, TKS_18, TKS_19, TKS_31, TKS_32,
TKS_36, TKS_37, TKS_38, TKS_39

Result PASSED

Details 3 seconds (Figure E.8)

Test Identifier IT_08

Workflow

dataset_input (iris.csv)
train_test
relieff
feature_scaling (min-max scaling)
svm (linear; C=1,2)
classifier_model_eval

Use cases addressed TKS_02, TKS_03, TKS_11, TKS_12, TKS_18, TKS_19,
TKS_31, TKS_32, TKS_36, TKS_37, TKS_38, TKS_39,
TKS_40, TKS_41

Result PASSED

Details 4 seconds (Figure E.9)

Test Identifier IT_09

Workflow

dataset_input (iris.csv)
train_test
relieff (attr to select: 2,4)
feature_scaling (min-max scaling)
svm (linear; C=1,2)
classifier_model_eval

Use cases addressed TKS_02, TKS_03, TKS_11, TKS_12, TKS_18, TKS_19,
TKS_31, TKS_32, TKS_36, TKS_37, TKS_38, TKS_39,
TKS_40, TKS_41

Result PASSED (Figure E.10)

Details 21 seconds
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Test Identifier IT_10

Workflow

dataset_input (iris.csv)
train_validation_test
z-score normalization ( feature_standardization)
svm (rbf, poly, sigmoid)
classifier_model_eval

Use cases addressed TKS_04, TKS_05, TKS_18, TKS_19, TKS_33, TKS_34,
TKS_36, TKS_37, TKS_38, TKS_39, TKS_40, TKS_41

Result PASSED (Figure E.11)

Details 5 seconds

Test Identifier IT_11

Workflow

dataset_input (iris.csv)
train_validation_test
z-score normalization ( feature_standardization)
info_gain (attr to select: 1,2,3,4)
svm (rbf, poly, sigmoid)
classifier_model_eval

Use cases addressed TKS_04, TKS_05, TKS_13, TKS_14, TKS_18, TKS_19,
TKS_33, TKS_34, TKS_36, TKS_37, TKS_38, TKS_39,
TKS_40, TKS_41

Result PASSED (Figure E.12)

Details 12 seconds (Figure E.12)

Test Identifier IT_12

Workflow

dataset_input (iris.csv)
train_validation_test
z-score normalization ( feature_standardization)
relieff (attr to select: 1,2,3,4)
nearest_neighbors
classifier_model_eval

Use cases addressed TKS_04, TKS_05, TKS_11, TKS_12, TKS_21, TKS_22,
TKS_33, TKS_34, TKS_36, TKS_37, TKS_38, TKS_39,
TKS_40, TKS_41

Result PASSED(Figure E.13)

Details 7 seconds
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Test Identifier IT_13

Workflow

dataset_input (iris.csv)
train_validation_test
z-score normalization ( feature_standardization)
relieff (attr to select: 1,2)
nearest_neighbors (K=1,2,3,4,5)
classifier_model_eval

Use cases addressed TKS_04, TKS_05, TKS_11, TKS_12, TKS_21, TKS_22,
TKS_33, TKS_34, TKS_36, TKS_37, TKS_38, TKS_39,
TKS_40, TKS_41

Result PASSED

Details 11 seconds (Figure E.14)

Test Identifier IT_14

Workflow

dataset_input (iris.csv)
k_fold_cross_validation
feature_scaling(min-max scaling)
relieff (attr to select: 2)
nearest_neighbors
classifier_model_eval

Use cases addressed TKS_02, TKS_03, TKS_11, TKS_12, TKS_22, TKS_23,
TKS_29, TKS_30, TKS_38, TKS_39, TKS_40, TKS_41

Result PASSED

Details 7 seconds (Figure E.15)

Test Identifier IT_15

Workflow

dataset_input (iris.csv)
k_fold_cross_validation (K=10)
feature_scaling(min-max scaling)
relieff (attr to select: 2)
gaussian_naive_bayes
classifier_model_eval

Use cases addressed TKS_02, TKS_03, TKS_11, TKS_12, TKS_22, TKS_23,
TKS_29, TKS_30, TKS_38, TKS_39, TKS_40, TKS_41

Result PASSED

Details 14 seconds (Figure E.16)
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Test Identifier IT_16

Workflow

dataset_input (iris.csv)
k_fold_cross_validation (K=2, repeat=2)
feature_scaling(min-max scaling)
relieff (attr to select: 2)
gaussian_naive_bayes
classifier_model_eval

Use cases addressed TKS_02, TKS_03, TKS_11, TKS_12, TKS_24, TKS_25,
TKS_29, TKS_30, TKS_38, TKS_39, TKS_40, TKS_41

Result PASSED

Details 8 seconds (Figure E.17)

Test Identifier IT_17

Workflow

dataset_input (iris.csv)
k_fold_cross_validation (K=2, repeat=2)
feature_scaling(min-max scaling)
relieff (attr to select: 2,4)
multinomial_naive_bayes
classifier_model_eval

Use cases addressed TKS_02, TKS_03, TKS_11, TKS_12, TKS_26, TKS_27,
TKS_29, TKS_30, TKS_38, TKS_39, TKS_40, TKS_41

Result PASSED

Details 12 seconds (Figure E.18)

Test Identifier IT_18

Workflow

dataset_input (iris.csv)
k_fold_cross_validation (K=2, repeat=2, nested = True)
feature_scaling(min-max scaling)
relieff (attr to select: 2,4)
svm (poly=1,2)
classifier_model_eval

Use cases addressed TKS_02, TKS_03, TKS_11, TKS_12, TKS_18, TKS_19,
TKS_38, TKS_39, TKS_40, TKS_41

Result FAILED

Details Returned a result with a size exceeding the maximum num-
ber of characters service limit.
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Test Identifier IT_19

Workflow

dataset_input (iris.csv)
k_fold_cross_validation (K=10, repeat=2)
feature_scaling(min-max scaling)
relieff (attr to select: 2,4)
svm (poly=1,2)
classifier_model_eval

Use cases addressed TKS_02, TKS_03, TKS_11, TKS_12, TKS_18, TKS_19,
TKS_38, TKS_39, TKS_40, TKS_41

Result FAILED

Details Returned a result with a size exceeding the maximum num-
ber of characters service limit.

Test Identifier IT_20

Workflow

dataset_input (iris.csv)
k_fold_cross_validation (K=10, repeat=10, nested=True)
feature_scaling(min-max scaling)
svm (C=1,2)
classifier_model_eval

Use cases addressed TKS_11, TKS_12, TKS_18, TKS_19, TKS_38, TKS_39,
TKS_40, TKS_41

Result FAILED

Details Returned a result with a size exceeding the maximum num-
ber of characters service limit. The division of the workflow is
correctly performed as we can confirm in Figure E.19. This
figure shows the main workflow that unfolds to ten others
(one for each repetition). Figure E.20 is one of the work-
flows within the main one and it also unfolds into another
10 workflows (one for each fold).
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6.2 Quality Testing

Quality attributes were presented in Section 3.2 as quality attribute scenarios, which allow
us to assess if the quality attributes are being fulfilled. The following tables present the
tests performed. Tests are identified by QT_<number>, and the corresponding scenario is
specified.

Quality attributes regarding usability (QAS_06 to QAS_10) were not performed.

Test Identifier QT_01

Quality Attribute Scenario QAS_01

Details All system services must have well-defined respon-
sibilities. The architecture of the platform proves
that each service is responsible and has every-
thing needed to perform well-defined tasks. Services
can also contact other services through technology-
agnostic protocols if needed. The insertion of the
Billing Service serves as a test. The Billing Ser-
vice was developed, registered, and inserted inde-
pendently in the platform during development. The
normal operation of the system was not compro-
mised.

Result Verified

Test Identifier QT_02

Quality Attribute Scenario QAS_02

Details No more than three services can be changed to in-
tegrate a new ML Service into the system. This test
was not performed in practice, but the insertion of
a new ML service implies the creation of the corre-
sponding AWS Activity/AWS Activities. It may be
necessary to add a strategy in the Workflows Ser-
vice. The new task(s) must also be inserted as a
logical task (Tasks Service) to be available in the
GUI and consequently used in logical workflows. It
may be necessary to insert new fields in the GUI
if the ones of the new service are not expected. At
most, three services are changed to add a new ML
Service.

Result Verified
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Test Identifier QT_03

Quality Attribute Scenario QAS_03

Details The functionalities of one service change while the
system is under development, but it does not re-
quire adjustments in the remaining system. This
was tested during development, for example, when
the Workflows Service was being modified.

Result Verified

Test Identifier QT_04

Quality Attribute Scenario QAS_04

Details New services may be able to communicate with
other existing services through technology-agnostic
communication protocols. All services expose a
REST API that enables them to perform requests
using the HTTP protocol. Services must be reg-
istered (in Traefik). This behavior can be verified
whenever the system is in normal operation.

Result Verified.

Test Identifier QT_05

Quality Attribute Scenario QAS_09

Details

Duration:
0:00:16.656000
0:00:24.817000
0:00:26.757000
0:00:25.357000
0:00:32.006000
0:00:35.709000
0:00:39.081000
0:00:37.297000
0:00:35.704000
0:00:37.195000

Result Users must be able to do two times more requests
than what is expected by the system during normal
operation. Test IT_16 was executed in 10 simulta-
neous times. The duration of the last workflows is
higher, which is expected since we only have ten
pollers for each worker task (to serve all users).
However, the number of pollers can increase, and
the architecture allows each service to scale inde-
pendently to process more requests without losing
performance.
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Test Identifier QT_06

Quality Attribute Scenario QAS_13, QAS_14

Details This test concerns the ability to use system re-
sources efficiently: when the system services are
consuming memory or CPU below the average, they
must release resources, and when system services
are consuming memory or CPU above the average,
they must be scaled.

Result This test was not performed in practice, and the
system does not provide an automated way to scale
in/out. However, during development, it was possi-
ble to do so without affecting the regular operation
of the system. This is possible because of the tech-
nology used: Kubernetes.

Test Identifier QT_07

Quality Attribute Scenario QAS_15, QAS_16

Details Datasets must only be accessed by the user who
inserts them, and access to the platform must only
be given to registered users and with the correct
credentials.

Result The security of the system was confirmed during
development.
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6.3 Usability Testing

Usability tests intend to verify how usable an interface is for its users. Usability concerns
the ease and intuitiveness of performing any tasks in the interface.The usability of the
DataScience4NP platform is an important aspect since the sequential way of building
workflows is an advantage over other similar systems.

Bruno Lopes created the graphical interface, and usability tests were conducted at the time
by him. Since the graphical interface did not change, it is unnecessary to repeat usability
tests. Therefore, it follows a sum up of the performed tests and their results.

These usability tests were conducted on two types of users: users with no experience with
ML systems and no knowledge in ML or programming languages (type A, 7 users), and
users with experience in ML systems (mainly Orange), expertise users in ML but without
programming skills (type B, 11 users).

Figure 6.1 presents the questionnaire results. In general, the results acquired from type A
users were lower than the ones from type B, which shows that users with no experience in
ML (type A) had more difficulty using the interface.

Figure 6.1 – Usability tests (performed by Bruno Lopes) results: average and standard
deviation of the participants’ responses.

The results were satisfactory with positive feedback and without critiques related to what
was aimed to achieve.
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Chapter 7

Project Management

Project management is the process concerned with the successful conclusion of a project.
Success in the context of project management means that a project is completed within
its time and cost constraints while meeting all the previously outlined requirements.

The present chapter uncovers all the details related to project management applied to
the dissertation “Development of an Orchestration Engine for the DS4NP Platform”, more
specifically the methodology employed, a risk assessment, and the work plan.

7.1 Methodology

Some projects do not have clearly defined goals and/or requirements at the begging. For-
tunately, there are strategies to address these types of projects.

Even though we have the specific objective of improving the orchestration solution to allow
the execution of complex workflows, the decision on how to do it is almost exploratory.

Managing change is part of project work, and given the nature of this dissertation and the
cutting edge technologies to be employed, requirements can change quite fast.

We need to adopt an adequate lifecycle that will allow constant monitoring due to the un-
certainty associated with requirements, the unclear know-how to adopt some technologies,
and the unfamiliarity related to them.

Agility will be the key to our project. “Agility is the ability to create and respond to
change” [29]. Thus, we choose Scrum and will adapt it to our case. Scrum is described
as a framework that allows iterative and incremental development by dividing the project
into diverse time-boxes called Sprints. In Scrum, there is a prioritized list of features to be
developed, called Product backlog. At the begging of each Sprint (usually two weeks), a
Sprint Meeting Planning takes place to select high priority items from the backlog which
the developers are committed to deliver by the end of that Sprint. This list of items for
the Sprint is called Sprint backlog.

This is somehow the methodology used in the first semester. Every two weeks, an informal
meeting was held with my two advisors, professor Dr. Filipe Araújo and professor Dr. Rui
Pedro Paiva, where we decided that tasks be executed until the next meeting. Multiple
setbacks forced us to change, in the middle of the first semester, the meetings that took
place every two weeks to weekly meetings.

In the second semester, we will continue with this approach and considering requirements
as the initial Product backlog and trying to fit Sprints into the envisioned plan (Figure
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7.3). Scrum will enable us to accommodate change by arranging requirements and tasks
according to our needs at the beginning of each Sprint.

7.2 Risk Assessment

During the development of software projects, inevitable setbacks may arise. Early identi-
fication of possible risks allows us to draft a mitigation plan and thus guarantee that even
with potential setbacks, the project moves in the right direction.

Risks are classified in different ways:

• Impact
(1) marginal
(2) critical
(3) catastrophic

• Likehood
(1) low
(2) medium
(3) high

It follows a brief description of the identified risks and how they can occur during the
project. Table 7.1 presents the correspondent mitigation strategy for each risk, its impact,
and its likelihood of happening.

R_01: Lack of understanding of the initial prototype
It is required some knowledge about the core concepts underlying the DataScience4NP,
such as microservices, containerization, and cloud environments, to understand how the
initial prototype works. For this reason, and also due to the complexity of the solution
(code structure and extensiveness), the learning curve can be steep.

R_02: Unfamiliarity with the necessary tools
To develop the DataScience4NP it is necessary to know, for example, how Docker containers
works, and how deploy a Kubernetes cluster in the cloud. The initial familiarization with
these technologies can be time consuming.

R_03: Overly generous time estimates
The uncertainty about the time effort of each task can lead to over-optimistic estimations
regarding the time needed to perform them.

R_04: Unavailable resources
There is a minimum of 16GB of RAM needed to run the DataScience4NP platform. With
the virtualization platform from the Department of Informatics Engineering1 being dep-
recated, it can be hard to find a good and possible alternative to deploy and run the
platform.

R_05: Application for AWS Cloud Credits for Research denied
In order to develop a AWS-enabled version of the DataScience4NP, we applied for AWS
Cloud Credits for Research2. However, AWS can deny our proposal leaving us with no
resources to develop our cloud platform.

1https://cloud.dei.uc.pt
2https://aws.amazon.com/pt/research-credits/
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ID Mitigation Strategy Impact Likehood

R_01 Perform code reviews; Begin by focusing on small,
localized sections of the code; Build a mind map
of the components; Build code dependency graph;
Contact the former MSc student Artur Pedroso in
case of any doubt.

2 2

R_02 Enroll in online courses; Follow tutorials; Acquire
help from people who are already familiar with the
technologies.

1 2

R_03 Manage expectations by updating time estimates/-
work plan at the beginning of each Sprint.

2 2

R_04 Use free credits offered by cloud providers. 2 1

R_05 Design and build the solution restraining to the lim-
its of AWS Free Tier3; Develop and test AWS Step
Functions Workflows locally4.

2 1

Table 7.1 – Mitigation Strategy.

7.3 Work Plan

Figure 7.1 outlines the initial plan for the first semester and Figure 7.2 show how the first
semester actually was proceeded. These plans are much different mainly because of some
misfortunes that happened during the semester.

There is a high complexity associated with the take over of an existing software project
and it is crucial to have comprehensive documentation to understand the structure of the
project and how it is implemented.

Access to the source code repository and some documentation were provided, as this dis-
sertation is a further work of the project DataSience4NP. One essential step to be executed
at the begging of the project was the deployment of the system. Given the recent under-
standing of the system and the lack of familiarity with the technologies used, it would
be a challenge to deploy the whole system solely based on the provided setup guidelines.
Therefore, after an initial analysis of how the system works, the former MCs student Artur
Pedroso did a walkthrough on how to set up access to the DEI cloud, how to create new
instances, and install a Kubernetes cluster. Even with the know-how, deploy the system
was a hindrance task because the DEI cloud is becoming obsolete, and it will be discon-
tinued. We then try to deploy the system in GKE and to use only the Netflix Conductor
to perform some tests.

Figure 7.3 shows the envisioned plan for the second semester. The plan started with the
reformulation of the Translator (Workflows Service), so Step Functions can understand the
translated workflows (workflows in JSON using the declarative Amazon States Language).
Then, the implementation of Step Functions would follow. After both Workflows and Step
Functions were up to use, the translation of workflows would be verified to ensure it was
correctly performed and if Step Functions were correctly invoked. It would follow the
migration to AWS, and the billing system. The end of the semester was reserved for testing
and writing both the dissertation and the scientific article.
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The real work plan was quite different (Figure 7.4). Through the first weeks of February,
the Workflows Service was set up locally in order to familiarize with the code with code
inspections and by debugging the service. The first changes to modify the service were
made, namely the creation of the Step Functions objects to be used during translation. By
the end of March was when the access to the INCD was provided and when the deployment
of the platform started. The deployment was a problematic task as there were a lot of
errors raised during the process. Only by the end of April, the platform was fully deployed.
Once the platform was available, the workers were changed. Adjustments to the Workflows
Service and Step Functions implementations were continuously made throughout the whole
time, as there was always a new limitation or things to correct.
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Chapter 8

Conclusion

This thesis was executed as a continuous work in the DataScience4NP project, previously
started two former students of the Department of Informatics Engineering. The result of
their theses was a platform designed in a microservices architecture to be deployed in a
Kubernetes cluster. The platform allows the creation of sequential ML workflows composed
of several tasks from the preprocessing, learning, and evaluation phases, where various
microservices execute portions of a workflow.

However, the resulting platform had a bottleneck in its most critical component: the service
responsible for the orchestration of the Machine Learning workflows. The orchestration
service, Workflows Service, was initially developed using Netflix Conductor, which turn out
to be an unfit solution. With Netflix Conductor, it was not possible to execute extensive
workflows, in particular, the ones involving nested cross-validation with repetitions. This
inability was proved by the tests performed during the first phase of this thesis. It was
also not permissible to have two simultaneous users using the platform. Microservices that
execute ML tasks were also not prepared to handle thousands of tasks with acceptable
performance.

Thus, it was settled that the orchestration service would change from Netflix Conductor
to AWS Step Functions. The introduction of AWS Step Functions in the DataScience4NP
enabled that multiple users use the platform at the same time and allows the execution of
various simultaneous workflows, which was not possible before.

A strategy to divide workflows before they are sent to AWS Step Functions was imple-
mented. By verifying the size of state machines and dividing then into other state machines
that correctly compose the intended workflow allows the creation of extensive workflows.

ML services were changed to start communicating with AWS Step Functions, and a poller
mechanism was implemented, which grants a good performance in the execution of work-
flows as workers are continuously polling for tasks.

The Billing Service is a new service in the system, and it is still in an early phase. It is a
service capable of determining and reporting to users their monthly bill. A users’ expense
is based on the time ML services spent to execute their workflows.

In this thesis, we aimed at the execution of complex workflows, which was partially
achieved. The impact of the AWS limitation on the maximum input or result data size
for a task was discovered, and a workaround was developed. Only when performing inte-
gration tests, when there was no more time left for development, it was realized that the
workaround was far from being enough. However, ML services efficiently work with AWS
and provide a satisfactory execution of workflows with good performance.
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Moreover, the division of complex workflows is done correctly, and once the AWS limitation
is overcome, everything points to the correct execution of those complex workflows. An
alternative to avoid large payloads being passed as input/output would be to save data to
another AWS service such as S3 Buckets or Amazon DynamoDB.
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Appendix A

Netflix Conductor Tests

The orchestration solution initially implemented in the DataScience4NP platform has
proved to be unsuitable for the execution of complex workflows, namely the ones involving
nested cross-validation with different features and parameters.

The present dissertation aims to propose a better and more seemly solution for the commu-
nication and cooperation of microservices in the DS4NP platform. The first step to finding
the bottleneck of the Netflix Conductor was to try to reproduce previously failed tests.

Tests were performed under different conditions, and for a better understanding of the
results, we are going to label tests with the following terminologies:

• Local: the test was performed with the latest version o Conductor in a local server.

In-Memory server running in a Macbook Pro 2016 with the following specifica-
tions:

2.0GHz dual-core Intel Core i5;
4MB shared L3 cache;
256GB SSD;
8GB of 1866MHz LPDDR3 onboard memory.

• GKE: the test was performed with an 11 month-old version in the Google Kubernetes
Engine (Kubernetes Cluster with a total of 8 vCPUs)

• Tasks: specifies the number of tasks present in the workflow

• N Types: specifies the number of different types of tasks present in the workflow

• N Threads: specifies the number of threads pulling from each queue

In the first round of tests, we wanted to observe the mode of operation of the orchestrator
given multiple numbers of parallel tasks. The simpler way to construct this scenario was to
create workflows with a single Fork and Join and n tasks. Figure A.1 exemplifies a workflow
with 10 tasks.

The next steps summarize the actions taken to execute a workflow, from a high-level
perspective:

1. Register tasks (tasks must be registered before being used in a workflow);

2. Define of workflow using a JSON based DSL;
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Figure A.1 – Netflix Conductor workflow with simple fork/join.

3. Start the workflow;

4. Tasks are put in the correspondent queue;

5. Workers begin the continuous polling for scheduled tasks at regular interval;

6. Workers execute its function for a task;

7. Workers update tasks’ status.

Task Queues are used to schedule tasks for workers, and Netflix Conductor uses dyno-
queues internally to achieve that goal.

A worker is an instance that executes the work for a task. In our case, a worker is one of the
microservices. We can have multiple instances of workers polling for tasks by specifying the
number of threads. For testing purposes, the only thing a worker does is to update a task
status to “Completed”. None of the tasks have input or output keys. All of the parameters
specified for the execution of the workflows are stated below:

• retryCount: 3

• timeoutSeconds: 3600 (s)

• inputKeys: [ ]

• outputKeys: [ ]

• timeoutPolicy: TIME_OUT_WF

• retryLogic: FIXED

• retryDelaySeconds: 600 (s)

• responseTimeoutSeconds: 1200 (s)

• concurrentExecLimit: 100

• rateLimitFrequencyInSeconds: 60 (s)

• rateLimitPerFrequency: 50
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Test# GKE Local Tasks N Types N Threads Time (ms)

1 x 10 1 1 1329

2 x 10 1 2 388

3 x 100 1 1 13240

4 x 100 2 1 12019

5 x 500 1 1 88182

6 x 1000 1 1 277671

7 x 1000 2 1 166602

8 x 1000 2 2 90027

9 x 2000 2 2

10 x 5000 1 1 *

11 x 5000 2 1 *

12 x 5000 100 1 *

13 x 5000 100 100 *

14 x 10 10 1 221609

15 x 100 1 1 2240177

16 x 1000 1 1 22318256

17 x 1000 100 100 *

Table A.1 – Initial tests results.

Tasks marked with * were not completed.

Each type of task has its queue: the Conductor creates a queue for system tasks (default
queues are HTTP, KAFKA_PUBLISH, and deciderQueue) and for each type of task reg-
istered. Once a workflow is initiated, workers can start the continuous polling of the driver
server with a specified interval.

In the workflow of test 10, tasks began to exceed the established timeout. Approximately
after two hours of initiate the workflow, the Decider Service started issuing warnings about
tasks that were in a pending state for longer than 3600000 ms. When checking the task
queues, we noticed that, at that point, not even half of the tasks were executed since 2986
of a total of 5000 tasks were still in the queue. Eventually, the local server ran low on
memory, and Conductor stopped.

The workflow from test 11 was also not completed: changing the number of type of different
tasks from 1 to 2 did not prevent any memory problems. After 22 minutes, each task type
had only execute 243 tasks. After 26 more minutes 228 more tasks were completed.

Trying to have a more uniform distribution of tasks per queue by increasing the number of
different types of tasks (test 12) did not work, and resulted in a memory problem as well.

Test number 13 attempt to have a diverse workflow with many workers polling from the
tasks queues. However, after the first worker pulled the first task, requests started to
exceeded the maximum number retries for various url. The same happened in test 17 that
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ran in GKE (workflow with 1000 tasks - 50 tasks of each type).

The execution of workflows was much slower when tests were performed in the cloud, as
stated in the results presented in Table A.1. Increasing the number of threads from 1 to 2
improved the execution time in some cases (tests 2 and 9), but having many threads (N
Types * N Threads) executing resulted in memory errors.

In Conductor, if we start two workflows WF2 after WF1 with the same tasks, WF2 has to
be on hold until the tasks in the first workflow are polled. Even though this is a problem
in scenarios that multiple users could be running the same workflow with the same tasks,
this is not the source of the bottleneck. The workflow evaluation is the central problem
in Netflix Conductor: “every time a task is updated, the workflow will be evaluated. And,
every time a workflow is evaluated, all of it’s tasks are loaded. And with 1000’s of tasks
being updated in parallel, without locking, workflows are evaluated thousands of times,
which could introduce a huge load on Conductor server” [30].
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Appendix B

AWS Architecture

We were committed to outlining an AWS-enabled version for the DataScience4NP. As such,
the architecture presented in this appendix was designed using AWS components. Amazon
Web Services provide a range of services and products that give us some options to design
and build our platform.

We were already using containerized services that can run and could be managed using
Amazon Elastic Container Service (Amazon ECS). We could instead use Amazon Elastic
Kubernetes Service (Amazon EKS) since we already have containers running on Kuber-
netes, but this option has a pricing-service fee per cluster. Using Amazon ECS instead
of Amazon EKS provides an additional thickened layer of security because Amazon ECS
supports IAM roles. Both solutions run in Amazon Elastic Compute Cloud (Amazon EC2).

In an extreme point of view, we could discard our microservices architecture by replacing
our microservices with Amazon Lambda Functions. Still, Lambda Functions can come in
handy for this solution if we ever need this serverless computing service to run simple tasks
that may be added to the system.

The main AWS service being used is Step Functions, which would be able to orchestrate
our machine learning workflows.

To better understand how we would pour our solution in AWS, we represented the archi-
tectural transition in two different diagrams (Figures B.1 and B.2). Figure B.1 presents
the same general system container diagram as Figure 4.2 but with the introduction of Step
Functions. Workflows Service will remain with the responsibility to translate workflows
and to send them to the orchestration solution, which is now Step Functions. Step Func-
tions will coordinate the execution of ML tasks according to the state machine (workflow)
received from Workflows Service, by assigning each one to the correspondent microservice
(ML Services).

In Figure B.2, we go a step further, and we make the correspondence of each container
in the initial prototype to AWS components. Our services (microservices) will run in the
Amazon Elastic Compute Cloud (Amazon EC2) instances, and for the database, we will
be using the Amazon Relational Database Service (Amazon RDS). The AWS equivalent
to the API Gateway is the Amazon Elastic Load Balancing (Amazon ELB).

Finally, in Figure B.3, we present the real structure of our solution in Amazon Web Services.
We designed two scaling groups to divide the services that perform machine learning tasks
(ML Services) from other services. In this way, we will be able only to scale the services
that will probably have a heavy computational load.

Amazon Elastic Load Balancing (Amazon ELB) would be responsible for redirecting traffic
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to Amazon EC2 instances, the same responsibility as the API Gateway in the initial pro-
totype. It is connected only to one scaling group, the one that has the GUI, Users, Tasks,
Datasets, and Workflows Services. In this way, users could access the graphical interface
and build their workflows, which are then sent to Step Functions. Machine Learning tasks
would be performed by the ML Services in the second scaling group.

The databases would run in the Amazon Relational Database Service (Amazon RDS). Step
Functions would be the orchestration engine, and Lambda Functions could be eventually
used for several purposes. We also added Amazon Simple Storage (Amazon S3), which
would allow us to collect, store, and analyze data securely and at a massive scale and can
maybe improve the storage and access to datasets.
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Figure B.3 – DataScience4NP Architecture.
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Appendix C

Logical Workflows

Logical workflows can be defined according to a grammar depicted in EBNF notation of
Listing C. This grammar is used to verify the logical workflows received by the Workflows
Service. If the logical tasks preserve the rules of the grammar, Workflows Service continues
with the translation process.

1 Start = “datasetInput” ValidationProcedure
2 ValidationProcedure = ((Procedure1 [(Preprocessing1 | FeatureSelection1)] ModelCreation)
3 | (Procedure2 (Preprocessing2 | FeatureSelection2 | ModelCreation)))
4 Preprocessing1 = “aPreprocessingTask” [ContinueProcedure1]
5 FeatureSelection1 = “aFeatureSelectionTask” [ContinueProcedure1]
6 Preprocessing2 = “aPreprocessingTask” [ContinueProcedure2]
7 FeatureSelection2 = “aFeatureSelectionTask” [ContinueProcedure2]
8 ModelCreation = “aMachineLearningTask” “anEvalMetricTask”
9 Procedure1 = (“crossValidation” | “holdOut” | “tVT”)

10 Procedure2 = “useEntireData”
11 ContinueProcedure1 = (Preprocessing1 | FeatureSelection1)
12 ContinueProcedure2 = (Preprocessing2 | FeatureSelection2 | ModelCreation

Double-quotes represent the terminals (specific ML tasks that can be defined by the user
in the workflow). Symbols between square brackets are optional, and symbols between
parentheses and separated by a | represent different choices.

All workflows must start with the definition of the dataset to be used. Then, a validation
procedure must be chosen. There are two different paths according to the validation pro-
cedure. If the procedure is essential for model assessment and selection (either (nested)
cross-validation, hold-out, or train-validation-test), all remaining tasks will always include
final tasks to create a model and assess its classification performance. If the procedure
dictates that the remaining tasks to be included must use all the data (use entire data),
the remaining tasks might or might not include final tasks to create a model and to assess
its classification performance (always using the same data to train and to test the model).
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Logical workflows are sent from the GUI to the Workflows Service in JSON. The basic
structure outlined for the logical workflows can be consulted in Listing 9. Tasks are se-
quentially inserted in the “tasks” list as JSON objects.

Each task is identified by its logical id and its type (Table C.1).

Listing 9 – Logical workflow structure.

1 {
2 "id": "workflowId",
3 "name": "workflowName",
4 "tasks": [
5 {
6 "description":"Description of the logical task",
7 "id":"logicalTaskId",
8 "inputParameters":[{...}, {...}., ...],
9 "label":"",

10 "metadata":{
11 "errors":[],
12 "isCompleted": False|True,
13 "isRunning": False|True,
14 "output":"None",
15 "numTasks": 1,
16 "completedTasks": 0,
17 "systemTasks": {...}
18 },
19 "type": {
20 "description":"",
21 "id":"taskType",
22 "label":"",
23 "subsequent":[
24 "name of the subsequent task",
25 "...",
26 ...
27 ]
28 }
29 }, ... ],
30 "user_id": "user_email",
31 "errors": [],
32 "isCompleted": False|True,
33 "isRunning": False|True,
34 "metadata": {},
35 "workflowId":"arn:aws:states:eu-west-2:ABC"
36 "executionArn":"arn:aws:states:eu-west-2:ABC:XYZ"
37 }
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Table C.1 – Logical Tasks

Task Type Task Id

dataset_input: defines the
data source to be used in the
workflow.

dataset_input: lets the user define the URI of the
dataset to be used in the workflow, allows the elimina-
tion of attributes from the dataset and the specifica-
tion of the attribute that represents the class. Output:
the path to the dataset.

use_entire_data: defines that the tasks in the work-
flow should use all data. Output: none.

train_test: defines that the tasks in the workflow will
be part of a hold-out procedure. Lets the user specify
the proportions to be used in the train and test sets,
if the data must be stratified or randomized and what
seed should be used as the random number genera-
tor for this operation. Output: the train and test sets
produced in the workflow.

train_validation_test: defines that the tasks in the
workflow will be part of a train-validation-test proce-
dure. Lets the user specify the proportions to be used
in the train, validation and test sets, if the data must
be stratified or randomized and what seed should be
used as the random number generator for this opera-
tion. Output: the train, validation, and test sets pro-
duced in the workflow.

validation_procedure:
specifies the process to be
used when constructing
the subsequent tasks that
compose the workflow. k_fold_cross_validation: defines that the tasks in

the workflow will be part of a cross-validation or nested
cross-validation procedure. Lets the user specify the
number of folds to be used, the number of repetitions,
and if it should be used the nested or the normal
method. It is also possible to specify if the data must
be stratified or randomized and what seed should be
used as the random number generator for this opera-
tion. Output: the train and test sets produced in the
workflow for each fold.
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Table C.2 – Logical Tasks (continuation)

Task Type Task Id

feature_scaling: lets users scale the dataset to min-
max values specified by the user. The operations are
only applied to the numerical attributes present in the
dataset and never to the class. Output: the datasets
produced in the workflow during train and test, the
attributes used in the operation and an object to ap-
ply the scaling operation to new data (these outputs
are related to the construction of the best model: in
the cross-validation case, the output is presented to
the folds that produce the best model; in the nested
cross-validation case, only the outputs for the opera-
tions applied while building the final best model are
presented).

feature_standardization: lets the user apply z-
score normalization in the dataset being used. It ap-
plies z-score normalization to all numerical attributes,
except for the class attribute. Output: the datasets
produced in the workflow to train and test the best
model, the attributes used in the operation and an
object to apply the normalization operation to new
data (the outputs for the different procedures follow
the same rules presented in the previous task).

preprocessing: applies
transformations to attribute
values in the dataset that
being used in the workflow. one_hot_attribute_encoding: lets the user con-

vert feature values present in the dataset to a binary
representation. Each attribute to encode will give ori-
gin to a new binary attribute that will be 1 in the rows
where the value was previously present and 0 in the
other rows. The user can specify the attributes to be
included or excluded from the operation. Output: the
names of the attributes included in the transformed
dataset and the transformed datasets used to train and
test the best model (the outputs for cross-validation
and nested cross-validation procedures follow the same
logic of the previous two tasks).
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Table C.3 – Logical Tasks (continuation)

Task Type Task Id

feature_selection: applies
feature selection operations to
a dataset being processed in
the workflow.

relieff : lets the user assess the most relevant features
in the dataset being processed. The Relieff algorithm
is used with inputs useful for it, which are defined by
the user. The user can also specify if s/he wants a
threshold to be applied after running the algorithm to
discard the attributes that score below such thresh-
old. Besides these inputs, it is also possible to spec-
ify several numbers of attributes to select separated
by commas (when this parameter is set with several
numbers of attributes, the model being built in the
workflow will be created with the different numbers of
best features according to Relieff to detect what is the
best combination of features that must be included in
the final model). Output: the ranking produced with
the algorithm using the training dataset, and the num-
ber of best features selected in the best model. In the
cross-validation, the average and standard deviation of
the scores produced in the different folds used to as-
sess the best model are displayed. In the nested cross-
validation, the ranking is presented only after applying
Relieff using all data, and the best number of features
detected before to build the best model is presented.

info_gain: has the same utility as relieff, but instead
of receiving inputs useful for the application of the
Relieff algorithm, it receives inputs useful to calculate
the Information Gain of the features included in the
dataset being processed. Outputs: uses the same logic
presented for the previous task, however, in this case,
the scores will be the Information Gain calculated for
each attribute.

model_creation: creates
ML models using different
algorithms.

svm: trains and tests an SVM model using the train-
ing and test data being processed in the workflow. It
receives inputs useful to apply the SVM algorithm,
such as the regularisation parameter C and the ker-
nel configurations. It enables the user to set different
regularisation parameters and various kernel configu-
rations to produce different models from the different
configurations, from which the best model is presented
to the user. Output: an object with the created model,
the parameters used to build the best model, and the
predicted and expected values produced after testing
the model using the test data.
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Table C.4 – Logical Tasks (continuation)

Task Type Task Id

model_creation: creates
ML models using different
algorithms.

gaussian_naive_bayes: trains and tests a Gaussian
Naive Bayes model using the training and test data
being processed in the workflow. It does not receive
any input parameters. Output: an object with the pro-
duced model and the predicted and expected values
produced after testing the model using the test data.

multinomial_naive_bayes: trains and tests a
Multinomial Naive Bayes model using the training and
test data being processed in the workflow. It does not
receive any input parameters. Output: object with the
produced model and the predicted and expected values
produced after testing the model using the test data.

nearest_neighbors: trains and tests a k nearest
neighbors model using the training and test data. It
receives the parameter k that specifies the number of
nearest neighbors to be used to train the model, which
can have more than one value, in which case will be
returned the model with the parameter k that pro-
duces the best classification performance. Output: ob-
ject with the produced model, the parameters used to
build the best model, and the predicted and expected
values produced after testing the model using the test
data.

decision_tree:trains and tests a decision tree model
that uses the CART algorithm, and the training and
test data being processed in the workflow. It does not
receive any input parameters. Output: object with the
produced model and the predicted and expected values
produced after testing the model using the test data
(also outputs an SVG image with the tree representa-
tion).

model_evaluation: defines
the metrics that must be used
to evaluate the classification
performance of a model built
on the workflow.

classifier_model_eval: specifies the classification
performance metrics to be presented according to the
best model produced in the workflow. It let the user de-
fine what metric should be used as the decider of the
best model configuration. Output: classification per-
formance metrics associated with the best-produced
model and also the confusion matrix associated with
the tests conducted with the model.
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Amazon Web Services Setup

The usage of AWS Step Functions implies the existence of an AWS account where the users’
state machines will be executed. The account needs to have the proper IAM configurations1.

To create and run state machines that use Lambda Functions and that launches other
states machines23, it is required to have a Role with Full Access policies for Step Functions
and Lambda (Figure D.1).

Figure D.1 – AWS Console -Identity and Access Management (IAM) (Role used during
development).

Both Workflows Service and the ML Services need access to Step Functions. By setting
up authentication credentials, all services are able to use SDK clients. To found these
credentials, one must access the IAM Console4 of the account to be used.

Listing 10 – AWS Authentication Credentials

1 AWS_ACCESS_KEY_ID='access_id' \

2 AWS_SECRET_ACCESS_KEY='access_key' \

3 AWS_DEFAULT_REGION='region'

1https://docs.aws.amazon.com/step-functions/latest/dg/procedure-create-iam-role.html
2https://docs.aws.amazon.com/step-functions/latest/dg/connect-stepfunctions.html
3https://docs.aws.amazon.com/step-functions/latest/dg/sample-start-workflow.html
4https://console.aws.amazon.com/iam/
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AWS works based on Regions. The developer guide states that “A state machine or activity
exists only within the Region where it was created. Any state machines and activities that
you create in one Region don’t share any data or attributes with those created in another
Region”5. For this reason, we must create the necessary activities in the same Region where
state machines will be created.

5https://docs.aws.amazon.com/step-functions/latest/dg/development-options.html
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Integration Tests

Figure E.1 – IT_01.

Figure E.2 – IT_02.
Figure E.3 – IT_03.
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Figure E.4 – IT_03.

Figure E.5 – IT_04.
Figure E.6 – IT_05.

Figure E.7 – IT_06.

Figure E.8 – IT_07.
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Figure E.9 – IT_08.
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Figure E.10 – IT_09.
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Figure E.11 – IT_10.

119



Chapter E. Integration Tests

Figure
E

.12
–

IT
_

11.

120



Chapter E. Integration Tests

Figure E.13 – IT_12.

121



Chapter E. Integration Tests

Figure
E

.14
–

IT
_

13.

122



Chapter E. Integration Tests

Figure E.15 – IT_14.
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Figure E.17 – IT_16.
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