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Summary
The work in this thesis bridges two separate lines of previous work: on one hand, it stems from
the work of the QUANTIC group, of the University of Barcelona1, who actively research on
quantum computing, and with whom part of the work developed in the context of this thesis was
done, under an Erasmus internship. The recent work of the group includes Quantum Variational
Algorithms (QVAs) and applications of QVAs and generally quantum computing to different
problems. On the other hand, the 2008 publication by Bravyi, DiVincenzo, Loss and Terhal was
a starting point for the development of this thesis’s work; the methodology therein presented is
fundamental in achieving the goal for this thesis: to develop a new, quantum device oriented,
method for obtaining the geometric parameters of a molecule (or otherwise physical parameters)
that result in the lowest possible energy, and that has low quantum computational requirements
(in qubit quality and number).

In the context of this goal, a significant part of the thesis’s work effort was dedicated to
building a quantum circuit simulator from scratch, to explore theoretical and technical bottlenecks
in a “full-stack” approach to simulating Quantum Variational Algorithms.

In section 1 we present material which constitutes the background of the thesis’s work, namely
the Born-Oppenheimer approximation and second-quantization of a molecular Hamiltonian
(section 1.1), and how we may then translate such a second-quantized Hamiltonian into a form
that can be evaluated using a quantum computer (section 1.2); Quantum Variational Algorithms
and their advantages in a Noisy Intermediate-Scale Quantum (NISQ) regime (section 1.3), and
finally the Schrieffer-Wolff transformation (section 1.4).

Sections 3 and 4 form the core of this thesis’s work, corresponding to the development
“from scratch” of a C/Python library to simulate quantum circuits and quantum variational
algorithms (named QOP; section 3) and the elaboration of an original method for molecular
geometric parameter calculation, or generally minimal energy parameter determination for some
parameterized Hamiltonian (section 4). In section 5, the issue of imposing constraints when only
addressing parts of a larger system is discussed, in the context of the quantum variational aspect
of the technique proposed in section 4, showing that ignoring electron count constrains on ground
state candidates establishes a lower bound energy to the ground state energy.

Finally, we apply the developed work to a few selected systems (H2, HLi, O2), presenting
and discussing the obtained results in, respectively, sections 6 and 7, where we show that the
technique proposed to calculate energy minimizing bond lengths is successful in some test cases,
but may fail due to either the way in which the locality of the Hamiltonian is reduced or due to
the quantum variational process. Despite these shortcomings, we obtain, using the technique,
bond lengths comparable to those obtained using a Hartree-Fock approach.

1http://quantic.bsc.es
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Sumário
O trabalho apresentado nesta tese surge como uma extensão de duas linhas separadas de trabalho:
por um lado, advém do trabalho prévio do grupo QUANTIC, da Universidade de Barcelona1,
onde parte do trabalho de tese aqui apresentado foi desenvolvido, sob um estágio Erasmus. O
grupo QUANTIC tem como área principal de investigação a computação quântica; dos seus
trabalhos recentes constam aplicações de Algoritmos Quânticos Variacionais (Quantum Variational
Algorithms, QVAs) e geralmente computação quântica a diferentes problemas. Por outro lado,
a publicação de 2008 por Bravyi, DiVincenzo, Loss e Terhal foi instrumental na elaboração do
trabalho aqui apresentado, permitindo concretizar o objectivo proposto: construir um método
para o cálculo de geometria molecular que minimize a energia, com requerimentos quânticos
computacionais mı́nimos, tanto em termos da qualidade dos qubits utilizados, como em termos do
número de qubits necessários.

No contexto desse objectivo, uma parte substancial do trabalho desenvolvido nesta tese foi
dedicado à construção de um simulador de circuitos quânticos, a fim de explorar as dificuldades
teóricas e técnicas inerentes ao desenvolvimento de uma simulação total de um algoritmo quântico
variacional.

Na secção 1 é apresentado o material teórico de base ao trabalho desenvolvido nesta tese,
nomeadamente: a aproximação de Born-Oppenheimer e a segunda quantização de um Hamilto-
niano molecular (secção 1.1), a transformação deste Hamiltoniano para uma forma favorável à
utilização de um computador quântico (secção 1.2), Algoritmos Quânticos Variacionais e as suas
vantagens no regime atual de computação quântica (Noisy Intermediate-Scale Quantum, NISQ;
secção 1.3), e finalmente a transformada de Schrieffer-Wolff (secção 1.4).

As secções 3 e 4 formam o trabalho nuclear desta tese: na secção 3 apresenta-se o desenvolvi-
mento “de ráız” de uma biblioteca em C/Python de simulação de circuitos quânticos e algoritmos
quânticos variacionais. A biblioteca foi denominada QOP, como acrónimo de Quantum OPtimizer.
Na secção 4 apresenta-se um método original para o cálculo de geometria molecular que minimiza
a energia (ou, mais genericamente, dos parâmetros que minimizam a energia de um Hamiltoniano
parametrizado). Na secção 5 são discutidas as implicações de constrangimentos no número de
electrões impostos sobre o estado electrónico total, aquando de um tratamento apenas parcial
do estado electrónico. Verifica-se que ignorar estes constrangimentos poderá produzir estados
candidatos ao estado fundamental não-f́ısicos, mas que a energia a eles associada estabelece um
mı́nimo para a “verdadeira” energia de estado fundamental.

Finalmente, o trabalho desenvolvido é aplicado a sistemas moleculares de teste, nomeada-
mente H2, HLi e O2, sendo os resultados obtidos para estes sistemas apresentados e discutidos,
respetivamente, nas secções 6 e 7. Observa-se que a técnica proposta na seccção 4 é bem sucedida
para alguns dos sistemas considerados. Verifica-se também que não é por vezes posśıvel obter um
comprimento de ligação molecular, podendo-se isso relacionar com o processo quântico variacional,
mas também com o processo pelo qual se reduz a localidade dos Hamiltonianos considerados.
Ainda assim, obtêm-se, pelo processo original proposto, comprimentos de ligação comparáveis aos
obtidos com um tratamento Hartree-Fock para vários sistemas.

1http://quantic.bsc.es
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“I refuse to answer that question on the grounds
that I don’t know the answer.”

— Douglas Adams

“In science, they notice that if you observe
molecules, they act different. . . ”

— Naiomi “Nai Palm” Saalfield

1 Introduction
John Preskill, a leading figure in the field of Quantum Computing, coined both the terms
“Quantum Supremacy” [28] and “Noisy Intermediate-Scale Quantum” [41]. These two terms
succinctly represent two of the main aspects of present-day quantum computing: on the one
hand, the promise of quantum speedups and efficient representation of an exponentially large
Hilbert space motivate efforts towards building practical implementations of quantum computers.
It is to the milestone of building a quantum computer beyond classical simulation2 that the
name ‘quantum supremacy’ was given. On the other hand, this supremacy is not to be achieved
easily, as quantum computers effectively operate on delicate physical phenomena, in particular
entanglement. A careful balance between isolation and control of the system must be maintained,
as external perturbations may collapse the quantum state — which is undesirable — but the state
must be ‘readable’, so that we should be able to collapse it when intended. By virtue of these
technical difficulties, the number and quality of qubits in current physical realizations of quantum
computers is still a concern, and must be taken into account; but there is a sufficient number of
qubits to perform quantum computation beyond a simple proof-of-concept. It is because of this
that Preskill suggests we are in the ‘Noisy Intermediate-Scale’ era of quantum computing. In
this thesis, we propose and test a novel method of quantum computing applied to computational
physics that seeks to take into account both of these aspects of current-era quantum computing:
to exploit the natural applications of quantum computers to the treatment of quantum systems,
while maintaining quantum computational requirements at an extreme minimum — not only in
terms of the quality requirements of the qubits, but also in the number of qubits.

1.1 Molecular Hamiltonian: Second Quantization
In order to determine, for a molecular system, the geometric parameters for which the system’s
energy is minimal (which we shall refer to, henceforth, as the “at-rest” parameters), we must
first describe the interactions of the system. Considering ~ri the positions of the electrons
(i = 1, 2, . . . , ne) and ~Rj the positions of the nuclei (j = 1, 2, . . . , nR), then such a Hamiltonian

2‘Beyond simulation’ is arguably loosely defined. However, the exponential growth of the space encoded by
quantum computers of polynomially more qubits allows us to draw a line in terms of memory: once parameterizing
the state space requires more classical values than atoms in the universe, we may be confident that the memory
requirements are physically intractable.

1



H = −
∑
i

∇2
Ri

2Mi
−
∑
i

∇2
ri

2 −
∑
ij

Zi
|Ri − r̂j |

+
∑
i,j>i

ZiZj
|Ri −Rj |

+
∑
i,j>i

1
|r̂i − r̂j |

accounts for the kinetic energy of the electrons and the nuclei, and the Coulomb interactions
between each other (in natural units). An analytical solution for the ground state (energy) of
such a Hamiltonian is rarely available [4], and so we seek to tackle the problem with various
approximations and/or numerical schemes. In particular, consider first the Born-Oppenheimer
approximation [8]: we consider that, because the nuclei are much more massive than the electrons,
the latter will rapidly “relax” to the lowest energy configuration for a given set of nucleic positions
{~Ri}, and so we may separate the nuclear-only related terms from the rest of the Hamiltonian. . .

H = HNuclear(~Rj) +HElectronic(~ri, ~Rj)

. . . with the nuclear positions now appearing in the remainingHElectronic operator as parameters,
and likewise factor the wavefunction. . .

Ψ = ψNuclearψElectronic

. . . such that within a small first order correction, we may obtain Ψ by solving

HElectronic(~Rj)ψElectronic = Ee(~Rj)ψElectronic

(HNuclear(~Rj) + Ee(~Rj))ψNuclear = EψNuclear

Once Ee(~Rj) is known for any {~Rj}, an energy surface of dimensions 3× nR is well defined,
with which the motion of the nuclei may be approximated [3]. We will disregard nuclear dynamics,
and focus on the electronic energy Ee({~Rj}) (with the associated nucleus-nucleus Coulomb
interaction included); the minimizing {~Rj} are regarded as the at-rest parameters within this
approximation. As such, H henceforth denotes the Hamiltonian except for the nuclear kinetic
energy term.

If we are now to treat this Hamiltonian numerically, we must choose a basis. Consider a
complete set of orthonormal spin-orbitals {|χi〉} and single-electron spin-orbital coordinates
σ = ~r ⊗ s, with 〈σ|χi〉 = χi(σ) known. Then,

H =
∑
pqrs

∫
dσ1 dσ2 dσ3 dσ4 |χpχq〉hpqrs(σ1...4) 〈χrχs|

hpqrs(σ1...4) = χ∗p(σ4)χ∗q(σ2) 〈σ4σ2|H |σ1σ3〉χr(σ1)χs(σ3)

which, when taking into account the orthogonality of {χi}, {σ}, and separating one- and
two-body terms3, becomes

3For example, for the electron-nucleus term ĥij = Zi
|Ri−r̂j | :

ĥij =
∑
pqrs

|χp〉 |χq〉 〈χqχp| ĥij |χrχs〉 〈χs| 〈χr| =

∑
pqrs

∫
dσ1 dσ2 |χp〉 |χq〉〈χq | 〈χp|σ1〉 〈σ1| ĥij |σ2〉 〈σ2|χr〉 |χs〉〈χs| 〈χr| =

∑
pr

∫
dσ1 dσ2 |χp〉 〈χp|σ1〉 〈σ1|σ2〉

Zi

|Ri − r|
〈σ2|χr〉 〈χr|

2



H = He.static +
∑
pq

|χp〉hpq 〈χq|+
1
2
∑
pqrs

|χp〉 |χq〉hpqrs 〈χr| 〈χs| (1)

hpq =
∫

dσ χ∗p(σ)

−1
2∇

2
r −

∑
j

Zj
|r −Rj |

χq(σ) (2)

hpqrs =
∫

dσ1 dσ2 χ
∗
p(σ1)χ∗q(σ2) 1

|r1 − r2|
χr(σ1)χs(σ2) (3)

with He.static the nuclei Coulomb repulsion terms, that can be calculated directly from the
nuclei position parameters (and so act as a scalar term).

We seek to construct the many-electron wavefunction, but we cannot simply construct any
ne-body wavefunction from the χ orbitals, as this would not satisfy the fermionic nature of
electrons, by which the total wavefunction must be antisymmetric. Rather, we may employ
Slater determinants and superpositions thereof to represent different electronic configurations
and construct a valid wavefunction:

|Ψ〉 =
∑
i

in configs.

ci
∣∣χi1 · · ·χine 〉 , ci ∈ C (4)

ψi(σ1 · · ·σne) =
〈
σ1 · · ·σne

∣∣χi1 · · ·χine 〉 =

∣∣∣∣∣∣∣∣∣
χi1(σ1) χi2(σ1) · · · χine (σ1)
χi1(σ2) χi2(σ2) · · · χine (σ2)

...
...

...
χi1(σne) χi2(σne) · · · χine (σne)

∣∣∣∣∣∣∣∣∣
If we consider every possible configuration (obeying the Exclusion Principle), we refer to “Full

Configuration Interaction” (FCI). If we consider only the Slater determinant of lowest energy
orbitals, we refer to “Hartree-Fock” (HF).

Calculating the expected value (i.e., the energy) of such a state “undoes” the projection of H
over the orbitals, such that we must calculate the integral (for a general Configuration Interaction
state)

E =
∑
ij

∫∫∫
Dσ Dσ′ cic∗jψi(σ1, σ2, . . .)ψ∗j (σ1, σ2, . . .)H(σ1, σ

′
1)

(Dσ = dσ1 dσ2 · · · dσne )

Note, however, the form of eq. (1). There is a projection along a set or orbitals, resulting in
a component along a new set of orbitals. This intuitively motivates a rephrasing in terms of a
second quantized language:

H =
∑
pq

hpqa
†
paq + 1

2
∑
pqrs

hpqrsa
†
pa
†
qaras (5)

(Note that r̂j is evaluated as in the space component of σ)

ĥij =
∑
pq

|χp〉 h̃pq 〈χq | ; h̃pq =
∫

dσ χ∗p(σ)
Zi

|Ri − r|
χr(σ)

3



where integrals eqs. (2) and (3) are unchanged. We introduced the fermionic creation/annihilation
operators for each orbital. . .

{ai, aj} =
{
a†k, a

†
l

}
= 0{

ai, a
†
j

}
= δij

. . . and define a vacuum |〉 = |00 · · ·〉 in a Fock Space that describes the occupation of each
orbital |[nα]〉 = |n1n2 · · ·〉

aα |· · ·nα · · ·〉 =
{

0 if nα = 0
|· · · 0 · · ·〉 if nα = 1

a†α |· · ·nα · · ·〉 =
{
|· · · 1 · · ·〉 if nα = 0
0 if nα = 1

1.2 Evaluating a Hamiltonian in a Quantum Computer
Any second quantized Hamiltonian can be systematically mapped to a Pauli operator based form,
using a Jordan-Wigner transformation [6]:

a†j 7−→
j−1∏
k=1

(−σzk)
(
σxj + iσyj

)
/2

aj 7−→
j−1∏
k=1

(−σzk)
(
σxj − iσ

y
j

)
/2

(6)

The new space of spins very directly relates to the original Fock space, as can be seen from
the (spin) ladder operators’ inverse mapping. . .

σ+
j = e

(
−iπ
∑j−1

k=1
a†
k
ak
)
a†j

σ−j = e

(
+iπ
∑j−1

k=1
a†
k
ak
)
aj

. . . such that if we employ the computational basis, i.e., take the eigenvectors of the Pauli Z
operator as the reference basis with {|↓〉 , |↑〉}  {|0〉 , |1〉}, the collective spin state may once
again be regarded as a Fock space of orbital occupations.

On the other hand, Pauli operators are “natural” operations on qubits, such that a Hamiltonian
composed of Pauli operators can be efficiently evaluated with respect to the expectation value over
a previously encoded state. Consider, as an example, the following example of a 1st-neighbour-
interacting XXZ Heisenberg system of N bodies:

H =
N−1∑
j=0

{
σxj σ

x
(j+1)%N + σyj σ

y
(j+1)%N + 1

2σ
z
jσ

z
(j+1)%N

}
(where i%j denotes i modulus j.)

4



Provided there is an oracle Uφ that prepares |φ〉, whose energy we are interested in calculating:

|0〉⊗N /N Uφ |φ〉

we evaluate the terms in H, by performing measurements in the following circuits until the
expectation value of each term is known within error ε. 4

X

X

.

.

.


|φ〉

X

X

.

.

.


|φ〉 · · ·

Y

Y

.

.

.


|φ〉

Y

Y

.

.

.


|φ〉 · · ·

Z

Z

.

.

.


|φ〉

Z

Z

.

.

.


|φ〉 · · ·

Once 〈φ|σuj σu(j+1)%N |φ〉 is known, 〈φ|H|φ〉 may be calculated by taking

N−1∑
j=0

{
〈φ|σxj σx(j+1)%N |φ〉+ 〈φ|σyj σ

y
(j+1)%N |φ〉+ 1

2 〈φ|σ
z
jσ

z
(j+1)%N |φ〉

}
Multiple circuits and shots (i.e. reruns of a circuit) are needed to determine the expected value

of the Hamiltonian. In order to quantify this overhead, consider a single circuit to be repeatedly
ran. For each run of the circuit, N z-basis measurements are performed simultaneously; we are
interested in the product of all measurements, which has a probability distribution we denote by
Z.

Z has support SZ = {−1,+1}. A remapping of SZ into {0, 1} yields the Bernoulli distribution
Y ,

Y = (Z + 1)/2 ∼ B(p)

with p the odds of observing Z = +1. Because Y is a Bernoulli distribution, p is also the
expected value of the Hamiltonian under the encoded state.

Under n shots, we can also define the stochastic variable W describing how many times (+1)
was observed:

W =
n∑
i

Yi

This is a binomial distribution with support SW = {0, 1, . . . , n},

W ∼ B(n, p)
P (W = w) =

(
n
k

)
pw(1− p)w−1

and as such, the mean of W is np and its variance is np(1− p) [21, pp. 48-53]. From here
we may extract p within some confidence interval, and although more sophisticated approaches

4A better choice of circuits to measure can be made, namely by considering commuting terms in the Hamiltonian
and otherwise employing techniques that “condense” the number of circuits.

5



exist5, we will assume that n is large enough to take the Central Limit Theorem, approximating
the distribution of errors with a normal distribution. In this case, the estimator of p is

p̂ = x/n

(x the number of (+1) measurements)

the confidence interval (p ∈ [p̂− δ, p̂+ δ]) is given by [48]

δ = z

n
√
n

√
x(n− x)

where z is given by 1− α/2, α being the error rate.
We wish to perform enough shots so that δ is bounded by some ε, so

δ < ε⇒ ε2 >
z2

n3x(n− x)

and the right-hand term of the inequation is maximized by x = n/2. Thus, in the worst-case
scenario, we are looking for n such that

ε2 >
z2

n3
n

2

(
n− n

2

)
= z2

4
Therefore, with n = d z2

4ε2 e+ 1 we ensure that δ < ε.
The main takeaway from this is that with a polynomial (on the error bound) number of runs

we may obtain a result which is “precise” (δ < ε). On the other hand we will at most want to
evaluate the expected value for k circuits, with k being the number of terms in the Hamiltonian,
and this corresponds to a fixed factor on the number of runs. So, provided each circuit is “efficient”
at constructing |φ〉, we see that the overhead of evaluating 〈φ|H|φ〉 is still polynomial and does
not increase the algorithm’s complexity.

One should also note that, in practical terms, this overhead does not necessarily imply loss of
quantum advantage, as “native” quantum operations, i.e. the applications of quantum gates in
quantum circuits, are extremely fast (in the order of tens of picoseconds), even in the current
realizations of quantum computers. See, for a concrete example of this, reference [44].

1.3 Quantum Variational Algorithms
We are, thus, guaranteed to be able to evaluate the expectation value of H over a state previously
encoded into the quantum computer. However, the circuit must be run many times, and so the
state must be repeatedly encoded into it. If we are to perform the energy evaluation efficiently,
then this repeated encoding must also be efficient. Moreover, this repeated encoding is necessary
to evaluate the energy of a single state, but we are interested in determining the ground state.

If one had access to arbitrary quantum resources, one could employ the Phase Estimation
Algorithm (PEA); the PEA routine evaluates the eigenvalues of an operator, and thus permits
bypassing energy evaluation of different states and rather directly arriving at the eigenvalues of
the relevant Hamiltonian. A visual summary of this algorithm is presented in fig. 1, and a more
complete discussion of the algorithm is presented in appendix A.

However, the current Noisy Intermediate-Scale Quantum (NISQ) regime of quantum com-
putation typically forbids the use of QPE due to limited relaxation and coherence times (see,
e.g., [34]). Thus, we may turn to Quantum Variational Algorithms (QVAs) [40], by which we

5By taking into account unobserved measurements using a Bayesian approach.[31]
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|0〉 /t H⊗t • FT †

|u〉 / U j |u〉

Figure 1: Circuit schematic reflecting the Quantum Phase Estimation algorithm for an operator
U . The first register is a bundle of t wires, and the bottom register has as many wires as dictated
by U . H denotes the Hadamard gate. U j denotes 2j applications of U controlled by the (t− j)th

wire in the first register (as indexed top-to-bottom), with an implicit run of j = 0 . . . t− 1. FT †
denotes the inverse Quantum Fourier Transform. |u〉 is generally taken to be an eigenvector of U
but need not be, the consequences of which are discussed in appendix A.

define some oracle to prepare a candidate ground state, and then (classically) evolve the oracle’s
parameters based on the energy evaluation of the candidate.

This requires a definition for such an oracle, referred to as an Ansatz , as the oracle effectively
“proposes” states for the ground state (fig. 2).

|0〉⊗N /N Q(θ1, θ2, . . . , θp) |φ〉 = ∑2N
i=1 ci(θ1, . . . , θp) |i〉

Figure 2: Quantum circuit diagram of an Ansatz , to be used in a Quantum Variational Algorithm
scheme. The gate depends on p classical parameters, and produces an N -qubit quantum state.

Note that per the Jordan-Wigner transformation, the state of each qubit as expressed in the
computational basis {|0〉 , |1〉} can be straightforwardly related to the Fock space; recall that

a†j 7−→
j−1∏
k=1

(−σzk)
(
σxj + iσyj

)
/2

aj 7−→
j−1∏
k=1

(−σzk)
(
σxj − iσ

y
j

)
/2

As we are considering a system of fermions, any state of N qubits maps to a valid state of the
Fock space of N orbitals. Furthermore, the Hilbert space of N qubits fully spans the possible
Jordan-Wigner mappings of any state in the Fock state of N orbitals, as the occupation of each
orbital can only be 0 or 1 for each orbital. Further physical restrictions may be imposed, so that
not all of the Fock states are valid: this is for now ignored, but discussed in section 5.

We may then consider examples of Ansätze for a generic spin system.
A good Ansatz will, of course, cover the ground state, i.e., have at least a set of parameters

that produces the ground state. If the Ansatz does not cover the ground state, by minimizing the
expected value of the Hamiltonian for the given Ansatz

〈H〉~θ = 〈0|⊗N Q†(~θ)HQ(~θ) |0〉⊗N
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we obtain the state the maximally overlaps the ground state of H, within the span of the
Ansatz. To see this, consider the spectral decomposition of H

H =
∑
λi

λi |λi〉〈λi|

H |λi〉 = λi |λi〉

λ1 ≤ λ2 ≤ · · ·

and the Variational Principle, which tells us that any state |µ〉 that is not the ground state of
H must be such that

〈µ|H|µ〉 = λ̃ > λ1

(or it would otherwise be the ground state of H.)
H is also self-adjoint (for the reason that it is a Hamiltonian), so by the Spectral Theorem its

eigenvectors span the space;

|µ〉 =
∑
λi

ci |λi〉

〈µ|H|µ〉 =
∑
λiλj

〈λi| c∗iHcj |λj〉 =
∑
λi

|ci|2λi = aλ1 + (1− a)λ̄ = λ̃

a = |c1|2 ∈ [0, x], λ̄ =
∑
λi>λ1

|ci|2

1− aλi > λ1

with x < 1 some cutoff that is imposed by the Ansatz not spanning the ground state. The
expectation value 〈µ|H|µ〉 is minimized by maximizing a, thus producing the maximum overlap
with |λ1〉 possible (aside from a phase).

All of the above discussion can be summarized by the schematic in fig. 3.
As the ground state is a priori unknown, we can maximize the chances that it is covered by

considering an Ansatz that spans as most of the N -qubit Hilbert space as possible (again, not
considering constraints in the state space). For example, [9, 38, 27] employ a generic structure of
Euler rotations and entangling (controlled Pauli Z) gates, presented in fig. 4.

Once an Ansatz is chosen, some method of minimization must be employed to minimize the
energy with respect to the parameters of the Ansatz. This is a generic problem of objective
function minimization, which is a rich area of investigation in its own right6, and so we will simply
describe a few relevant optimization algorithms: ADAM, ADADELTA and L-BFGS. ADAM and
ADADELTA are machine learning (ML) algorithms and so should be able to optimize under a
very large space of parameters. L-BFGS cannot scale as greatly. However, L-BGFS generally
converges much faster to the correct extreme value (see section 6 for a practical comparison), but
requires complete knowledge of the gradient. ADAM and ADADELTA are designed to be robust
to stochastic evaluation of the gradient. There is, therefore, a tradeoff between scaling-capability
and performance. It is relevant to consider ML optimization algorithms, as we can expect that
sufficiently complex Ansätze can depend on a number of parameters comparable to that in a neural
network, and so we should characterize how optimization would occur under such circumstances.

6See, for example, reference [2] for an example of a collection of optimization methods.
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Figure 3: Representation of the search of the ground state of an electronic Hamiltonian using a
quantum computer. There are several unspecified details, such as the form of the Ansatz, how
much of the possible Hilbert space does it span and how the optimization itself, i.e., the trajectory
in Hilbert space, is done.

Final Rotations︷ ︸︸ ︷
R(~θ1,1) • R(~θ1,k+1) • · · · R(~θl+1,1)

R(~θ1,2) • R(~θ1,k+2) • · · · R(~θl+1,2)

R(~θ1,3) • R(~θ1,k+3) • · · · R(~θl+1,3)

...
...

...
...

...
...

R(~θ1,k−1) • R(~θ1,2k−1) • · · · R(~θl+1,k−1)

R(~θ1,k) • R(~θ1,2k) • · · · R(~θl+1,k)︸ ︷︷ ︸
“Layer”

Figure 4: An Ansatz that seeks to parameterize as much of the Hilbert space of the corre-
sponding number of qubits as possible. This is done by performing generic Euler rotations
on each of the qubits, and then entangling them via controlled Pauli Z operations. The
R(~θ) gate may be written in terms of Pauli operations as R(~θ) = Rx(θ(1))Ry(θ(2))Rz(θ(3)) =
exp
{
−i θ

(1)

2 σx
}

exp
{
−i θ

(2)

2 σy
}

exp
{
−i θ

(3)

2 σz
}

. See [27] for further discussion.
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1.3.1 ADAM

ADAM is a “first-order gradient-based [algorithm for] optimization of stochastic objective functions,
based on adaptative estimates of lower-order moments” [29]. It is built to incorporate the
advantages of ADAGRAD [39] and RMSProp [1], i.e., to function with sparse gradients and a
moving objective and/or varying parameters. The ADAM algorithm, as presented in [29], is
presented in algorithm 1.

Algorithm 1 Computing an ADAM optimization routine.
Require: ε . Very small increment (e.g., 10−8)
Require: α . Stepsize (e.g., 0.001)
Require: β1, β2 ∈ [0, 1) . Exponential decay rates for the moment estimates (e.g., 0.9, 0.999,

respectively)
Require: f(θ) . Stochastic objective function with parameters θ
Require: θ0 . Initial parameter vector
m0 ← 0 . Initialize 1st moment vector
v0 ← 0 . Initialize 2nd moment vector
t← 0 . Initialize timestep
while θt not converged do

t← t+ 1
gt ← ∇θft(θt−1) . Get gradients with respect to stochastic objective at timestep t
mt ← β1 ·mt−1 + (1− β1) · gt . Update biased first moment estimate
vt ← β2 · vt−1 + (1− β2) · g2

t . Update biased second raw moment estimate
m̂t ← mt/(1− βt1) . Compute bias-corrected first moment estimate
v̂t ← vt/(1− βt2) . Compute bias-corrected second raw moment estimate
θt ← θt−1 − α · m̂t/(

√
v̂t + ε) . Update parameters

end while
return θt . Resulting parameters

1.3.2 ADADELTA

Presented in 2012, ADADELTA [51] is a dynamically adapting gradient-based optimization
method that builds upon other adaptive methods, like ADAGRAD7 and ADAM [29]. Its main
features are robustness over meta-parameters and to noisy gradients, and minimal memory
overhead. The ADADELTA algorithm, as presented in [51], is presented in algorithm 2.

1.3.3 L-BFGS

The L-BFGS (Low-memory—Broyden–Fletcher–Goldfarb–Shanno, sometimes typeset as LM-
BFGS) algorithm [11] is a quasi-Newtonian optimization algorithm based on a low-memory
representation of an estimate of the inverse Hessian matrix. It requires a “backlog” of m iterations
of the parameter-space position and associated gradients. The L-BFGS algorithm, ignoring the
variant where sufficiently low curvature information is discarded to prevent over-estimation of
the optimization step, is presented in algorithm 3. Modifying the algorithm to check whether
local curvature is above a certain threshold before updating the memory queues is trivial. This
curvature-checking variant of L-BFGS was implemented in the QOP optimization tooling as a
proof-of-concept. To obtain practical results (lower bound calculations in the proposed geometry

7which, like ADADELTA, is also unpublished; notes on the ADAGRAD method can be found at [39].
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Algorithm 2 Computing an ADADELTA optimization routine.
Require: ρ . Decay rate
Require: ε . Very small increment
Require: Θ1 . Initial parameters

RMS[xt]
def=
√
E[x2]t + ε

E[g2]0 = 0, E[∆Θ2]0 = 0 . Initialize accumulation variables
loop

gt = ∇ΘC . Compute gradient
E[g2]t = ρE[g2]t−1 + (1− ρ)g2

t . Accumulate gradient
∆Θt = −RMS[∆Θ]t−1

RMS[g]t gt . Compute update
E[∆Θ2]t = ρE[∆Θ2]t−1 + (1− ρ)∆Θ2

t . Accumulate update
Θt+1 = Θt + ∆Θt . Apply update
if termination condition is verified then

break out of loop
end if

end loop

calculation technique) we used the Scipy [47] implementation of L-BFGS(-B), which enjoys a
much greater level of optimization.

1.4 Schrieffer-Wolff Transform
The locality of a qubit Hamiltonian is defined as the greatest number of qubits affected by a
single term of the operator. Generally, a Hamiltonian acting on N qubits will be N -local, as it
will involve (0 . . . N)-local terms:

H = 〈scalar〉+
∑

i∈{1,...,N}
s∈{x,y,z}

ai,sσ
s
i (1-local)

+
∑
i 6=j

(i,j)∈{1,...,N}2

si,sj∈{x,y,z}2

bi,j,si,sjσ
si
i
⊗σ

sj
j (2-local)

+ · · ·

+
∑

s1,...,sN∈{x,y,z}N
cs σ

s1
1 ⊗σs2

2 ⊗ · · · ⊗σsNk (N -local)

(7)

Bravyi et al. [10] propose a transform that does not exactly lower the locality of a given
Hamiltonian, but rather produces a different Hamiltonian, of lower locality and greater qubit count,
whose ground state matches that of the original Hamiltonian. They have termed this mapping a
Schrieffer-Wolff (SW) transformation, which operates on the principle that by introducing an
ancillary qubit we may either map a k-local Hamiltonian to a (dk/2e+ 1)-local Hamiltonian, or
a 3-local Hamiltonian to a 2-local Hamiltonian. These “sub-mappings” are termed gadgets. By
recursively applying the gadgets, we may map any k-Hamiltonian to a 2-local Hamiltonian. The
proof that these gadgets correctly reproduce the ground state energy of the original Hamiltonian
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Algorithm 3 Computing a L-BFGS optimization routine.
Require: m . Number of “memorized” previous states
Require: S . Double ended queue capable of containing m parameter steps

. (index 1 corresponds to most recent, index m corresponds to oldest)
Require: Y . Double ended queue capable of containing m gradient differentials

. (indexed like S)
Require: ~x0 . Initial parameters
Require: f(~x) . Cost function
~x← ~x0
gk−1 ← ~0
while halting condition is not satisfied do

gk ← ∇~xf(~x)
q ← gk
for i in 1 . . . size(S, Y ) do

ρi ← 1/(Y Ti Si)
αi ← ρiS

T
i q

q ← q − αiYi
end for
γk ← (ST1 Yi)/(Y Ti Yi)
H0
k ← γkI

z ← H0
kq

for i in size(S, Y ) . . . 1 do
βi ← ρiY

T
i z

z ← z + Si(αi − βi)
end for
z ← −z
~x← ~x+ z
push gk − gk−1 into Y
push z into S
gk−1 ← gk

end while
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is non-trivial and can be found in [10], along with the formal requirements for the transform to
be applicable. Therefore, we will not reproduce the proof here, but will note that the operating
principle of the proof is decoupling the high- and low-energy subspaces of the gadget Hamiltonians
and showing that a projection onto the low-energy subspace matches the target (i.e., original)
Hamiltonian, up to a bounded error.

1.4.1 Subdivision Gadget (k 7−→ dk/2e+ 1)

Let the original Hamiltonian H be written as

H = J A ⊗B

with J > 0 the coupling of the Hamiltonian, and A and B operators acting on disjoint
subspaces of the subspace in which H acts. An ancillary qubit u is introduced to produce the
following mapping

H = J A ⊗B 7−→ H ′ = H0 + Vpert. + Vcorr. (8)

H0 = ∆ · IA ⊗ IB ⊗ |1〉〈1|u

Vpert. =
√

∆J
2 (−A ⊗ IB + IA ⊗B) ⊗Xu

Vcorr. = J

2
(
A2 ⊗ IB + IA ⊗B

2) ⊗ Iu
(where I denotes the identity operator,KA,KB denote the operator K over the subspace of operators A,B, Ku
denotes the operator K acting on the ancillary qubit u, ∆ a free constant associated to the mapping, X the Pauli

σx operator)

It is proven in [10] that, for a given ∆,

GSE [H ′] = GSE [H] +O(J3/2∆(−1/2))
(GSE [H] denoting the ground state energy of Hamiltonian H)

Therefore, by choosing arbitrarily small ε and letting

∆ = Jε−2 (9)

the error is made O(Jε).

1.4.2 3-to-2-local Gadget

Let the Hamiltonian be of the form

H = J A ⊗B ⊗C

with J > 0 the coupling, A,B,C single qubit operators acting on disjoint spaces. Introducing
ancillary qubit u, the lower locality Hamiltonian is produced using the following mapping:

H = J A ⊗B ⊗C 7−→ H ′ = H0 + V
(1)
pert. + V

(2)
pert. + V (1)

corr. + V (2)
corr. (10)

V
(1)
pert. = −∆2/3J1/3 |1〉〈1|u ⊗ IA ⊗ IB ⊗C
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V
(2)
pert. = ∆2/3J1/3

√
2

Xu ⊗(−A ⊗ IB + IA ⊗B) ⊗ IC

V (1)
corr. = ∆1/3J2/3

2 Iu ⊗ (−A ⊗ IB + IA ⊗B)2
⊗ IC

V (2)
corr. = J

2 Iu
⊗
(
A2 ⊗ IB + IA ⊗B

2) ⊗C
(where I is the identity operator, and KW denotes the action of operator K over the qubit associated with

operator W , ∆ a free constant associated to the mapping, X the Pauli σx operator)

Again, it is proven in [10] that

GSE [H ′] = GSE [H] +O(J4/3∆−1/3)

So that, again for some ε,

∆ = Jε−3 ⇒ GSE [H ′] = GSE [H] +O(εJ) (11)

1.4.3 Cross-Gadget Contributions

It is also proven in [10] that successively employing gadgets introduces a bounded error: if n
gadgets are used on a Hamiltonian whose coupling is J , then the “cross-gadget error” introduced
is bounded by O(εnJ).

2 Objectives
The goal of this thesis is to develop and test a new, quantum device oriented, method for obtaining
the geometric parameters of a molecule (or otherwise physical parameters) that result in the
lowest possible energy, within the space of these parameters. In a diatomic molecular system, for
example, this would correspond to the bond length. The method utilizes a quantum variational
algorithm (QVA) approach, and is designed to make use of the strengths of quantum computers,
in particular the fact that the expectation value of an operator composed of Pauli operators can
be efficiently evaluated over a previously encoded state. On the other hand, it is designed to
be applicable in extreme cases of the current framework of quantum computation, the Noisy
Intermediate-Scale Quantum (NISQ) regime, namely when the number of available qubits is too
small to encode a trial state. We explore the bottlenecks of such a simulation task with high
control by implementing a quantum circuit simulator down to a low-level of implementation. We
apply it on testing the method in simple molecular systems.

3 Development of a Quantum Simulator: ‘QOP’
In order to maintain full control over the simulation and investigate possible bottlenecks, as
well as implement the discussed ideas straightforwardly while preserving speed of simulation, an
important part of the thesis work was devoted to the construction of our own quantum simulator
in C99 [25]. It was named QOP, standing for Quantum Optimizer. C, as a low level language,
provides high control over the computation, but on the other hand interfaces natively with Python
[18], and so we had the possibility of exposing a high level, flexible API.

The quantum simulator was scoped so that the C subset could operate independently of
the Python interface layer; we refer to this pure C subset as C-QOP. The C subset itself was
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Figure 5: Different scopes of the developed quantum simulator, organized in terms of their
interdependence. Items at the bottom are self-contained, and each element above depends on
the ones below. Note that at the “Human Interface” level, all items are interdependent in
implementation. The simulator was named QOP (as in Quantum Optimizer), and C-QOP is used
to describe the stack from “Quantum Circuit optimization” down, as that subset of the simulator
is self-contained and can be used with C.

constructed with a “bottom-up” approach, with each layer of implementation depending strictly
on the layers below. The top-most layer is responsible for the Python interface, and relies also on
the NumPy API [36]. The different scopes and dependencies of the whole simulator are presented
in fig. 5.

The bottom-most layer (“Astract Tooling”; cf. fig. 5) provides only a few common programming
abstractions; C’s standard library is reduced when compared to, for example, C++’s standard
library. An example is arrays of variable size, typically called “lists” or “vectors”. Other constructs
included in this layer are “options”, as an idiomatic way of expressing the possibility that a
variable’s value is not defined, and “iterators” as a fail-safe way of accessing collections of elements
in memory.

All of these constructs relate not with the task of simulating a quantum circuit or simulating
QVAs, but rather with ways of idiomatically expressing programming ideas inside the paradigm
of C. As such, they will not be discussed in detail. Nonetheless, the very atomic nature of
every element in the abstract tooling layer, along with an effort to thoroughly document their
implementation should make it easy to understand their internals and use.

While it is unavoidable that we must store all of the 2q amplitudes of a generic q-qubit
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quantum state if we wish to describe it8, the same is not true of a quantum gate — that is, we
may store different computational representations of a quantum gate. As an example of this,
consider a 4 qubit circuit, with a single NOT (Pauli X) gate acting on the third qubit. This
operation may be described by the matrix

/2

X = X(3,4) = I
⊗ 2 ⊗X ⊗ I =



0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0


such that the state’s amplitudes after the action of the gate are simply given by ~ψ′ = X(3,4) ~ψ

(with ~ψ the column vector of amplitudes). On the other hand we can consider the action of the
gate to be represented by a tensor χνµ such that, if the 4-qubit state is given by∑

αβγδ

Qαβγδ |αβγδ〉 where α, β, γ, δ ∈ {0, 1}

then the state after the action of the gate is given by∑
αβγδ

Q̃αβγδ |αβγδ〉 where Q̃αβγδ =
∑
µ

χγµQ
αβµδ ( χνµ ) =

(
0 1
1 0

)
(12)

Thus we see that the choice of gate representation will impact computation time and memory
requirements, but will also be related to the computational representation of the state.

With QOP, we adopted a metadata approach, where each gate is stored by its “local” (non-
controlled) matrix representation, along with information regarding whether and by which qubit
it is controlled, and to what qubit the gate is applied. Because this representation is less memory
intensive and more flexible and human oriented (compare, for example, the metadata description
of X(3,4) with the matrix representation above), but less convenient for the actual computation,
we designated this representation a soft gate. Once a matrix is computed from this metadata
representation, we refer to a “hardened” form, where the properties of the gate (such as the
controlling qubit or target qubit) cannot be easily changed without recomputing the matrix.

We thus make the following distinctions, extending the above discussion and separation of
concept/representation to other objects of quantum computation:

(i) A gate object is an internal representation of a quantum gate, uncoupled from its action in
a quantum circuit; it typically consists of a single-qubit matrix representation and possibly

8It would be odd if it were not so, as that would mean amplitudes were correlated in an arbitrary state.

16



Figure 6: Example of the hardening process in the first iteration of the quantum simulator. Gates
that are parameterized are marked with a “Y”, while non-parameterized gates are marked with a
“N”. Notice that “empty” spots in the circuit are equivalent to the identity gate, so that they are
also considered.

parameters. It has the ability of mutating its matrix representation in place when given
new parameters.

(ii) A soft gate, as discussed above, is a metadata-based internal representation of the action of
a gate in a circuit. It is composed of a gate object and metadata, such as the qubit the
gate acts on, the position of the gate in the circuit, and if and what qubit controls the gate.
It is made a distinct entity from a gate object because it contains information regarding
not only the quantum gate but the gate’s relationship with the circuit.

(iii) A circuit object is an internal representation of a quantum circuit. It is essentially a set of
soft gates.

(iv) A quantum circuit slice is a set of gates acting in parallel and in disjoint subspaces in a
quantum circuit.

(v) A compacted quantum circuit is one in which no gate can be moved to an earlier slice
without commuting with some other gate.

(vi) A hardened quantum circuit object is one whose internal representation is optimized towards
computing the effect of the circuit on a state, but does not allow the modification of the
circuit without recalculation of the representation.

The first, more näıve, approach to circuit action computation was to compact the circuit as
much as possible, then compute the matrix corresponding to each slice, avoiding recomputation
when possible upon reparameterization. The action of the circuit would then be given by the
successive matrix products.

When “hardening” the circuit, vertical sequences of non-parameterized gates would be identi-
fied, and for these the full matrix representation would be immediately calculated. Then, when
actually performing a simulation with some parameters, the matrix form for the parameterized
gates would be determined, and aggregated with the other gates of the slice to form the final
matric form of the slice. A visual representation of this hardening process is given in fig. 6.

One issue that arises is determining the matric form of any arbitrary controlled gate. For this,
the technique presented by Gidney in [23] was used. Considering a scalar value with a special
algebra, µ, that obeys

17



µ ⊗U = µ · In
U ⊗µ = In · µ

where U is an n× n matrix, and In is the n× n identity matrix, a “control matrix” can be
defined as

C =
(
µ 0
0 1

)
With this, the matrix corresponding to a controlled operation can be obtained by taking

adequate kronecker products; for example:

•
≡
(
µ 0
0 1

)
⊗

(
0 1
1 0

)
=


µ 0 0 0
0 µ 0 0
0 0 0 1
0 0 1 0

→


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


where the µ values are cast back to 1 in the final matrix. Another more complex example

illustrating the asymmetry of the algebra of µ is9

U

•

≡
(
u11 u12
u21 u22

)
⊗

(
1 0
0 1

)
⊗

(
µ 0
0 1

)
=

=


u11 0 u12 0
0 u11 0 u12
u21 0 u22 0
0 u21 0 u22

 ⊗(µ 0
0 1

)
=



µ 0 0 0 0 0 0 0
0 u11 0 0 0 u12 0 0
0 0 µ 0 0 0 0 0
0 0 0 u11 0 0 0 u12
0 0 0 0 µ 0 0 0
0 u21 0 0 0 u21 0 0
0 0 0 0 0 0 µ 0
0 0 0 u22 0 0 0 u22



→



1 0 0 0 0 0 0 0
0 u11 0 0 0 u12 0 0
0 0 1 0 0 0 0 0
0 0 0 u11 0 0 0 u12
0 0 0 0 1 0 0 0
0 u21 0 0 0 u21 0 0
0 0 0 0 0 0 1 0
0 0 0 u22 0 0 0 u22


This construct is useful because it allows to algorithmically construct the matrix of any

controlled operation. See appendix B for further discussion of the validity of µ (“tainted
numbers”).

9Notice that if the µ appears on the right-hand side of the tensor product, it is the index of the element on the
left-hand side that determines whether the product is equal to µ or 0; if the element a on the left has indexes
(i, j), the result of a · µ = δijµ.
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The reason this approach was unsuccessful is that it amplified the inefficiency of representing
quantum operations as a full-size matrix. Namely, each slice of a circuit ultimately corresponds
to a 2q × 2q sized matrix, where q is the number of qubits of the circuit. Simultaneously holding
a matrix representation of each slice in memory accelerates the problem; then, a q-qubit circuit
of horizontal depth s requires 22q log s values in memory!

Finally, regardless of memory concerns, the usefulness of precomputing vertical sequences of
non-parameterized gates is questionable, as it presupposes a circuit structure of a few parameterized
gates amidst many parameterized gates in a circuit of small horizontal depth. This is not observed
in

• fully non-parameterized circuits,
• circuits where every gate is (or most gates are) parameterized,
• the Quantum Fourier Transform (QFT) circuit, or
• the Quantum Phase Estimation (QPE) circuit,

with the latter two being reference circuits.
For all of these reasons, this approach was abandoned in favor of a second approach: to

sidestep working with full-size matrix products by working strictly within the subspace affected
by each specific gate (akin to eq. (12)). In this language, a controlled unitary operation would be
denoted

i • j
α / β

k U l

∼ δj
q(i) δ

1
q(i)U

l
q(k) + δj

q(i) δ
0
q(i) δ

l
q(k) = |1〉〈1|i ⊗Uk + |0〉〈0|i ⊗ Ik

There is, however, an optimization to be made in a tensor-like approach: to efficiently iterate
over the tensor indices so as to take advantage of swap-symmetric indices, rather than perform
the same set of operations more than once (in the analogy of the drawing above, to “copy” the
result of the operation to all possible values of α,β). For this, the relevant index “bit mask” is
precomputed, so that iterations over the tensor indices are split into two parts: iterations over
the bits of the indices under the mask, which imply a new computation, and iterations over the
bits not covered by the mask, for which a previously calculated value can be reused. Iteration of
binary numbers under a bit mask was done based on Chase’s “twiddle” algorithm [12].

With this in mind, the simulation algorithm presented in algorithm 4 was constructed.
This approach avoids calculating matrix products entirely by breaking down what would be a

2N × 2N matrix product into the non-redundant product of scalars in the appropriate single-qubit
subspaces. Notice that only the 2 · 2N values of ~i and ~o need to be held in memory during the
whole routine (excluding the gate matrices — these require ]s · 22 values to be in memory for each
slice, ]s being the number of gates in slice s). By utilizing the gate object’s matrix directly, we
also avoid the need for a “hardening” stage in the same sense as in the first approach. Instead, this
stage is used to cache information about the circuit that does not change with parameterization.

On the other hand, this approach assumes that every gate on the circuit acts on a single qubit,
possibly controlled by another qubit. However, this is reasonable; the set of all single qubit gates
plus the cnot gate provide a universal basis set, i.e., “all unitary operations on arbitrarily many
qubits. . . can be expressed as compositions of these gates” [15, 5]. Since the three x, y, z rotation
gates are available, and any unitary operation on a single qubit (SU(2)) is realizable with three
rotation gates [46], any single qubit operation is realizable.

The fact that gates can be controlled also satisfies the cnot requirement, as a cRx(π) ≡ cnot
(up to a global phase). Finally, many of the currently available physical realizations of quantum
computers also similarly only support a universal set of one qubit operations plus the cnot
operation [30].
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Algorithm 4 Algorithm employed in QOP for the simulation of a N -qubit quantum circuit.
function AND(x,y)

Bitwise logical And
end function
function OR(x,y)

Bitwise logical Or
end function
function GateBitstring(slice)

return Binary string with a 1 at indices where the slice’s matching index wires
have a gate, and a 0 otherwise.

end function
function CGateBitstring(slice)

return Binary string with a 1 at indices where the slice’s matching index wires
have a gate or a control, and a 0 otherwise.

end function
Require: List of slices l
Require: List of gates in each slice g
Require: Input state amplitudes ~i← 〈i1, i2, . . . , i2N 〉
Begin:

for slice s in l do
cgb← CGateBitstring(s)
~o← 〈0, 0, 0, . . .〉
for x in

(
2N AND cgb

)
do

for y in
(
2N AND GateBitstring(s)

)
do

coef← 1.
for gate g in slice s do

k ←Wire(g)
U ←Matrix(g)
u← Uyk,xk
if g is controlled by index p and xp = 0 then

u← δxk,yk
end if
coef← coef · u

end for
for z in (2N AND Not(cgb)) do

out← (z OR x) AND y
oout ← oout · coef

end for
end for

end for
~i← ~o

end for
Done: ~i now contains the output of the circuit.
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4 Method for Calculating Geometric Parameters
Quantum Variational Algorithms address part of the limitations of a Noisy Intermediate-Scale
Quantum regime, namely the reduced relaxation and coherence times. However, in a NISQ regime
there is another limitation: the reduced number of qubits available. In particular, the previously
presented tools (Born-Oppenheimer approximation, Jordan-Wigner Transformation, Quantum
Variational Algorithms) allow one to search for the ground state (energy) of some Hamiltonian
provided if and only if some trial state can be encoded; we should not hope to determine the
ground state of an N -qubit Hamiltonian (using a quantum computer) if we cannot produce any
candidate state at all. We propose, then, a different approach, by noting that when treating a
physical system we might not be interested in determining the ground state energy itself, but
rather the physical parameters of the system corresponding to the ground state configuration —
the “true” parameters of the system at rest:

|φ〉 : min
|φ〉
〈φ|H(Ri)|φ〉 −→ 〈R1, . . .〉 : min

〈R1,...〉
〈GS[H(Ri)]|H(Ri)|GS[H(Ri)]〉

(where GS[H] denotes the ground state of Hamiltonian H, and {Ri} are the nucleic positions; cf. section 1.1)

The right-hand side is still not computable, as it still requires knowledge of the ground state.
We may recall, however, that if some Hamiltonian H can be written as a sum of terms,

H = h(1) + h(2) + · · ·+ h(u)

then we are guaranteed that

GSE [H] ≥ GSE
[
h(1)

]
+ · · ·+ GSE

[
h(u)

]
(13)

(GSE [x] denoting the ground state energy of x)

This is straightforward to derive; H is self-adjoint and so has real eigenvectors. This implies
h(1) . . . h(u) must also be self-adjoint, and so by the Spectral Theorem10,

〈φ|H|φ〉 , 〈φ|h(1)|φ〉 , . . . , 〈φ|h(u)|φ〉 ∈ R ∀ |φ〉

We have thus that GSE [H] is a function onto the real numbers given by a sum of functions
onto the real numbers, and trivially

f(x) =
∑
i

fi(x)

min
x
f(x) = f(a) min

x
fi(x) = fi(ai)

fi(a) ≥ fi(ai)⇒ min
x
f(x) = f(a) =

∑
i

fi(a) ≥
∑
i

fi(ai) =
∑
i

min
x
fi(x)

10Regardless of complex factors in the decomposition of |φ〉 in the eigenvectors of H:

|φ〉 =
∑
k

ck |λk〉 , ck ∈ C

〈φ|H|φ〉 =
∑
k

|ck|2 〈λk|H|λk〉 , |ck|2 ∈ R
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We may proceed to exploit this if the post–Jordan-Wigner–transformation Hamiltonian H in
study can be separated into terms that involve different qubits:

H = H123 +H45 −→ GSE [H] ≥ GSE [H123] + GSE [H45]
The ground state energies of H123, H45 separately can be calculated with a three qubit quantum

computer, rather than requiring five qubits, as does calculating the ground state energy of H.
However, generically and as discussed under section 1.4, an n-qubit Hamiltonian will be

n-local, so that even if we are looking to calculate a lower bound to the ground state energy,
rather than the ground state energy itself, the n-body term will always require a n-qubit quantum
computer. To be able to calculate a lower energy bound per eq. (13) we require as many qubits
as the locality of the Hamiltonian.

On the other hand, provided we could calculate a lower bound, what information regarding
the system’s at-rest parameters could we obtain? Defining

LB [H({Ri})]
def=
∑
i

GSE
[
h(i)({Ri})

]
; H =

∑
i

h(i)

(Where, again, {Ri} denotes the nucleic positions — see section 1.1)

there is, in fact, no guarantee that

min
{Ri}

GSE [H({Ri})] = min
{Ri}

LB [H({Ri})]

nor that

min
{Ri}

GSE [H({Ri})] ≈ min
{Ri}

LB [H({Ri})]

nor even that min{Ri} LB [H({Ri})] exists. It is an objective of this thesis to study the
relationship between the left- and right-hand terms of the above, and if and in what conditions we
can extract information about the system’s at-rest parameters from the lower bound minimum. If
the equations above hold, we will refer to this as the structure of the original ground state energy
curve holding under the chosen lower bound.

We then sketch the full proposed procedure for calculating a lower bound energy curve for a
molecule, using a quantum computer that cannot support the full Hamiltonian, making use of
the various tools previously introduced:

1. Write the 1st-quantized Born-Oppenheimer Hamiltonian for the molecule in study,

2. Choosing an orbital function basis set, convert it into a 2nd-quantized form,

3. Using a Jordan-Wigner transform, obtain a Pauli-operator–based description, and

4. Apply Schrieffer-Wolff transforms as needed to reduce the locality of the Hamiltonian to ≤
the number of qubits available,

5. Calculate a lower bound by finding the ground state of separate terms of the Hamiltonian
(using the available quantum computer/a Quantum Variational Algorithm approach).

The first three points are covered by sections 1.1 to 1.4. We will now refine the latter two
points.
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4.1 Decomposition “Styles”
Schrieffer-Wolff transformations are defined exclusively for Hamiltonians that are of either the form
J A ⊗B or J A ⊗B ⊗C (cf. section 1.4); this is not necessarily the case for a general Hamiltonian.
A Hamiltonian acting in space A ⊗B will generally be of the form

H =
∑
Ai Bj

cijAi ⊗Bj

with {Ai} all the Pauli-operator–based operators possible to define on A, and {Bj} the
analogous for B. We may seek to determine {ai}, {bj} such that the system could be exactly
written as a single decomposable term,

H
?=
(∑

i

aiAi

)
⊗

∑
j

bjBj


(Implying the system of i · j equations {aibj = cij} for i+ j unknowns; the system is either under- or

over-constrained.)

The previous equation may be written in matrical form as
a1
a2
a3
...

(b1 b2 b3 · · ·
)

=


c11 c12 c13 · · ·
c21 c22
c31 c33
... . . .

 =

=


a1 0 0 · · ·
a2 0 0 · · ·
a3 0 0 · · ·
...

...
...




1 0 0 · · ·
0 0 0 · · ·
0 0 0 · · ·
...

...
...



b1 b2 b3 · · ·
0 0 0 · · ·
0 0 0 · · ·
...

...
...

 =


c11 c12 c13 · · ·
c21 c22
c31 c33
... . . .

 (14)

such that the above is in the form of a Singular Value Decomposition11 of the matrix (cij),
and indicates that (cij) has only one Singular Value. However, all cij are arbitrary, so in general
may have more than one singular value. As such {ai}, {bj} will not exist.

We propose, then, different applications of the Schrieffer-Wolff transformation to reduce the
locality of a given Hamiltonian:

4.1.1 Direct Decomposition

The first approach is simply to apply locality reducing gadgets to every term of the Hamiltonian
that has a locality above the intended, separately. This is always possible, since any term can
be partitioned into one of the two ‘decomposable’ forms (up to a minus sign in the coupling,
which can be absorbed into the operators). The main benefit to this approach is that little to no
preprocessing of the Hamiltonian must be done; a single pass over each term of the Hamiltonian
is enough to identify and reduce the locality of each as needed. The down side to this approach,
however, is the introduction of many ancillary qubits, possibly unnecessarily.

11The Singular Value Decomposition (SVD) is a generalization of the eigenvalue decomposition of a matrix.
It consists of the decomposition of a matrix A into a product UΣV †, where U and V are unitary matrices, and
Σ is a non-negative diagonal matrix. Being unitary, the columns of U and V define the (respectively) left- and
right-singular vectors. The diagonal values of Σ are termed the singular values of A. See [45] for a discussion of
the history and definition of the Singular Value Decomposition.
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4.1.2 Singular Value Decomposition (SVD) Based Decomposition

We may attempt to introduce less ancillary qubits by noting that we can obtain a “minimal
decomposable form” of the Hamiltonian by employing a Singular Value Decomposition. We start
by choosing subspaces A,B such that any term of the Hamiltonian can be written as∑

ij

cijAi ⊗Bj where Ai ∈ A , Bj ∈ B

with Ai, Bj being a tensor product of elements from {I, σx, σy, σz} (cf. eq. (7)), to which we
may assign an arbitrary lexicographic order12. We then construct the matrix (cij) based on the
lexicographic order of Ai, Bj and perform a singular value decomposition on it. This yields left-
and right- singular vectors, (a(α)

i ) and (b(α)
j ) respectively, corresponding to the singular values

s(α), such that  cij

 =
S∑
α

s(α)

a(α)
i

( b
(α)
j

)
The above may be reinterpreted in the context of the chosen operator basis as

H =
S∑
α

s(α)

(∑
i

a
(α)
i Ai

)
⊗

∑
j

b
(α)
j Bj

 =
S∑
α

s(α)h(α)

so that for each of the h(α) terms that has locality above ideal, we may employ the appropriate
locality-reduction gadget, with the guarantee that we have chosen a new operator basis that
minimizes the number of terms.

This technique cannot be blindly applied recursively; if, given a Hamiltonian that involves w
systems, we consider the “low space” operators {Λ} to be the operators acting on the first bw/2c
systems, and the “high space” operators {Ξ} to be the operators acting on systems of index
(bw/2c+1) . . . w, then we have, after applying once the SVD-based Schrieffer-Wolff transformation,

H =
S∑
α

J (α)Λ(α) ⊗Ξ(α)

Λ(α) ∝
∑
i

a
(α)
i Ai Ξ(α) ∝

∑
j

b
(α)
j Bj J > 0

H 7−→ H ′ =
∑
α

∆(α) |1〉〈1|(α)
u +

√
∆(α)J (α)

2

(
−Λ(α) + Ξ(α)

)
⊗X(α)

u + J (α)

2

(
Λ(α)2 + Ξ(α)2)

which is indeed of locality (dw/2e + 1), as we are “mixing” Λ (and Ξ) with the ancillary
qubit’s space separately. However, if we now blindly apply the same procedure again, because H ′
involves all of the original systems plus an ancillary one, the low and high spaces are redefined;

{Λ′} generally operators of systems 1 . . . bdw/2e+ 1
2 c

{Ξ′} generally operators of systems
(
bdw/2e+ 1

2 c+ 1
)
. . . (dw/2e+ 1)

12For example, (I ⊗ I ⊗ · · ·⊗ I), (I ⊗ · · ·⊗ I ⊗σx), (I ⊗ · · ·⊗ I ⊗σy), (I ⊗ · · ·⊗ I ⊗σz), (I ⊗ · · ·⊗σx ⊗ I),
(I ⊗ · · ·⊗σx ⊗σx), etc.
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With the coupling of these new operators with a new ancillary qubit, we may actually obtain
a Hamiltonian of locality higher than H ′. As an example, consider a Hamiltonian involving 6
systems, generically denoted as

H ∼ h123456

After one pass of the above presented technique, we obtain

H ′ ∼ h1237 + h4567

where a 7th ancillary system was introduced. However, H ′ is now a 7-qubit Hamiltonian, and
so a SVD of the corresponding (cij) matrix (as above defined) will generally yield operators that
simultaneously involve systems 1 2 3 and 4 5 6 7, separately. Therefore, after another pass, and in
the same notation

H ′′ ∼ h1238 + h45678

and locality has actually increased from H ′ to H ′′.
As a solution to this, we recursively apply the technique to each of the subspaces produced.

In the context of the example above, this would mean that after the first pass, h1237 and h4567
are separately considered, yielding

H ′′ ∼ h128 + h378 + h459 + h679

The tradeoff to this approach is that more than one ancillary body may now be introduced in
each pass.

Regardless, the upshot of the SVD-based decomposition scheme is that a minimal number of
ancillary qubits are introduced (as opposed to Direct Decomposition). This comes as a direct
consequence of performing a Singular Value Decomposition; we effectively choose the basis of
operators that produces the minimum number of terms to be decomposed.

Finally, we may define the

4.1.3 k-Singular Value Decomposition (k-SVD) Based Decomposition

Singular Value Decomposition can be used for matrix compression (see, e.g., [50] for applications
to image compression). This is done by considering only the first k largest (magnitude-wise)
singular values and corresponding singular vectors, which results in a lower rank matrix. This
lower rank matrix is guaranteed to be the best possible approximation of the original matrix for
its rank13 [16]. Likewise, we may consider only the k largest contributing terms in the Singular
Value Decomposition of the Hamiltonian at each pass of the SVD Decomposition scheme (see
above). We refer to this as a k-SVD Based Decomposition 14. This approach further reduces the
number of ancillary qubits to a maximum of k in each pass, but at the cost of only approximating
(with a variable degree of precision) the Hamiltonian to be mapped.

The success of this technique will, therefore, vary with the original Hamiltonian, and how well
it can be approximated with the k-major components. On the other hand, the usefulness of this
technique is clearer in practice; see section 6.

13“Best possible approximation” for a lower rank matrix is defined in terms of the Frobenius norm ‖A‖F =√∑
ij
|Aij |2, such that the best approximating matrix B of rank lower than A is minB ‖A−B‖F .

14Note also that we may now refer to the technique presented in section 4.1.2 as ∞-SVD Decomposition, to
highlight that there is no cutoff imposed (as opposed to in k-SVD Decompositions).
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4.2 Partition “Styles”
We have, thus, specifically addressed how to employ the Schrieffer-Wolff transform to reduce the
locality of H. However, we still need to perform a partition of the reduced-locality Hamiltonian,
which is to say, choose groups of terms of the Hamiltonian that involve ≤ the number of qubits
available for computation. For example, if the post-decomposition Hamiltonian is of the form
(reusing previous notation)

H ′ = h123 + h345 + h45 + h56

and there are three qubits available for computation, then we may calculate a lower bound to
H ′ by any of the following

(i) LB [H ′] = LB [h123] + LB [h345] + LB [h45] + LB [h56]
(ii) LB [H ′] = LB [h123] + LB [h345 + h45] + LB [h56]

(iii) LB [H ′] = LB [h123] + LB [h345] + LB [h45 + h56]

(LB [H] denoting a lower bound to the ground state energy of Hamiltonian H)

We could, for example, calculate all of the above lower bounds, and choose the highest energy
(as the best approximation in value to the original ground state). However, the number of possible
combinations grows quickly; for n k-local terms there are S(n, k) =

∑k
i=1
(
n
i

)
possible groupings

of those terms such that each group involves at most k systems. The sum of binomial coefficients
has no known closed form [24, p. 165], but lower, upper and tight bounds have been proposed
(e.g. [49]). An asymptotic tight bound may be obtained (so as to give a concrete idea of the
growth) by approximating the sum to a geometric series15:

k∑
i=1

(
n

i

)
= Θ

((
1− 2k

n

)−1(
n

k

))
On the other hand, finding the partition that maximizes the lower bound to the energy

corresponds to optimally partitioning a hypergraph, where each hyperedge corresponds to a
term of the Hamiltonian, and each vertex corresponds to a body. Finding graph partitions is
generally an NP-hard problem [17, 7, 20]. Therefore, we take a heuristic position: that minimizing
the number of “cuts” (i.e., number of separate terms to determine the ground state energy of)
maximizes the lower bound energy, and conversely that maximizing the number of cuts minimizes
the ground state energy lower bound. The latter case is trivially given by finding the ground
state of each of the terms of the Hamiltonian, individually; we will refer to this partition scheme

15Following the discussion in [26]; it is relatively easy to prove that
(
1− 2k

n

)−1(n
k

)
− 1 is an upper bound to

S(n, k): (
n
k

)(
n
k−1

) =
k

n− k + 1
def= x >

k − i
n− k − i+ 1

=

(
n
k−i

)(
n
k

) x ≤
2k
n

⇒
k∑
i=0

(n
i

)
≤
(n
k

) k∑
j=0

xj ≤
(n
k

) 1
1− x

≤
(n
k

)(
1−

2k
n

)−1

That it is an asymptotic lower bound as well will not be proven.
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as Direct Partitioning. On the other hand, a method to determine a partition with a minimal
amount of cuts (Minimal Partition) is here proposed. Consider the following example:

A Hamiltonian H is 3-local and involves 4 subsystems, such that, in line with previous
notation:

H = h1 + h2 + h4 + h12 + h14 + h24 + h134

We notice that if one is searching for the 3-sized partition (i.e., the sets of at-most-3 systems
to consider together) with the least number of groupings, it is unnecessary to consider groupings
with less than the maximum allowed number of elements; in this case, we need only consider the
partition

{{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 5, 6}}

. . . or a subset thereof. Any other partition will contain a grouping of a single subsystem,
which we may always ignore in favour of a larger grouping that can include the term (e.g., {1} can
be ignored in favour of {1, 2, 3}, {3, 4} in favour of {1, 3, 4}, etc.). It becomes then a matter of
finding which of the groupings in the relevant partition contain no terms (and so are suppressed);
we do this by considering the larger-locality terms of H first and taking a ‘score’ approach, so
that we suppress groupings where possible.

We start by sorting the terms of H in descending order of number of involved subsystems. . .

h134, h24, h14, h12, h1, h2, h4

. . . and distribute the terms among the available groupings, taking care to always choose the
least empty groupings:

So that, in this case, the considered partitioning is:

{1, 2, 4} ← h24
3 + h14

2 + h12 + h1 + h2 + h4

{1, 3, 4} ← h134 + h14
2 , {2, 3, 4} ← h24

3 , {2, 4, 5} ← h24
3

which indicates a lower bound to the ground state energy of H is to be calculated as
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LB [H] = GSE
[
h24
3 + h14

2 + h12 + h1 + h2 + h4
]

+ GSE
[
h134 + h14

2
]

+ GSE
[
h24
3
]

+ GSE
[
h24
3
]

(Again using LB [x] to denote a lower bound to the ground state energy of x, and GSE [y] to denote the ground
state energy of y)

The method, as applied to a general N -system Hamiltonian to be partitioned in k-system
partitions, can be summarized as follows:

1. Sort the terms of the N -system Hamiltonian in descending order of number of systems
involved in each term,

2. For each possible k-sized partition, assign it a score of 0,

3. Let the next term of the Hamiltonian (in descending order of number of systems involved)
be hα, where α denotes the subsystems affected by the term,

4. Sort the partitions in descending score,

5. Assign h to all partitions of maximum score that can “fit” hα; when more than one parti-
tion of maximum score can contain the term, consider a term of 1

〈# of possible partitions〉 ·hα
for each partition (i.e., “distribute” hα between the different possible partitions),

6. For each partition that was assigned a term, increase its score by 1,

7. If more terms remain, go to 3.

We should also at this point mention that even though we estimate that a smaller number
of cuts will lead to a higher valued lower bound of the ground state energy, we again have no
guarantees regarding how/if the structure (in the previously discussed sense) of the ground state
energy curve is preserved under the different partitions. It may be that a partition that produces
a “worse” (i.e., algebraically lower valued) lower bound preserves the structure better than a
“better” (i.e., algebraically higher valued) lower bound; eq. (13) gives no guarantees in this regard.
Therefore, this is to be investigated in practice.

5 On the Number of Electrons in Ansatz-Proposed States
One of the first steps of this work is taking the Born-Oppenheimer Hamiltonian and converting it
to a second-quantized language. This sidesteps the issue of (anti-)symmetrization, and prepares
the operator to be converted to a quantum-computer–friendly form via a Jordan-Wigner transform.
The Hamiltonian, in this 2nd-quantized form, preserves the number of electrons:

H =
∑
pq

hpqa
†
paq +

∑
pqrs

hpqrsa
†
pa
†
qaras n̂i = a†iai

(Second quantized Hamiltonian) (Number operator for orbital i)

{ai, aj} =
{
a†i , a

†
j

}
= 0

{
ai, a

†
j

}
= δij

(Cannonical commutation relations for the creation/annihilation operators)
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For the hpqa†paq terms of the Hamiltonian. . .

[
n̂i,
∑
pq

a†paq

]
=
∑
pq

a†iaia
†
paq −

∑
pq

a†paqa
†
iai

=
∑
pq

a†i (δip − a†pai)aq −
∑
pq

a†paqa
†
iai

=
∑
q

a†iaq −
∑
pq

a†ia
†
paiaq −

∑
pq

a†p(δiq − a
†
iaq)ai

=
∑
q

a†iaq −
∑
p

a†pai −
∑
pq

a†ia
†
paiaq +

∑
pq

a†pa
†
iaqai

=
∑
q

(a†iaq − a†qai)[∑
i

n̂i,
∑
pq

a†paq

]
= (i becomes a dummy index) = 0

Note how the number of electrons for a particular orbital is not necessarily unchanged. Likewise
for the

∑
pqrs hpqrsa

†
pa
†
qaras terms, the commutator with the total number operator becomes,

when brought to normal ordering,

[∑
i

n̂i,
∑
pqrs

a†pa
†
qaras

]
=
∑
ipqrs

a†iaia
†
pa
†
qaras −

∑
ipqrs

a†pa
†
qarasa

†
ia
†
iai =

=
∑
iqrs

(a†ia†qaras)−
∑
iprs

(a†ia†paras) +
∑
ipqrs

(a†ia†pa†qaiaras)−

−
∑
ipqrs

(a†pa†qarai) +
∑
ipqs

(a†pa†qasai)−
∑
ipqrs

(a†pa†qa
†
iarasai) =

(Renaming dummy indexes)
= 0

Such that H and
∑
i n̂i commute. This is physically expected; we expect the number

of electrons to remain unchanged. However, the number of electrons being preserved does
not guarantee all physical constraints; we are interested in the lowest-energy state of a given
Hamiltonian given a fixed number of electrons, i.e., for a specific ion. If we accept any state of
the Fock space as a candidate to the molecule’s ground state, we may find the most stable ion
of the molecule to be the most stable configuration in the Fock space, or even superpositions of
states belonging to various ions!

We are, thus, interested in searching in a constrained Fock space of N electrons. This is best
discussed, in the context of this work, for two situations of Q and N , where Q denotes the number
of available qubits and N the number of electrons to consider.

5.1 Q ≥ N

If Q ≡ N then, per the variational technique previously described, there is no search to be made.
We can only encode a simple Hartree-Fock state into the quantum computer, and evaluate the
corresponding energy:
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|11 · · · 1〉 preparation︷ ︸︸ ︷ Observe value︷ ︸︸ ︷
X

H
X

· · ·

X ︸ ︷︷ ︸
Act with Hamiltonian

If Q > N , then the variational approach proposed does apply, as the “excess” qubits become
available to represent excitations. In other words, there is a physically valid subspace of the Fock
space to explore, which are all the states{

|Φ〉 ∈ FQ
∣∣∣ (

∑
i

n̂i) |Φ〉 = N |Φ〉
}

What is non-trivial is to parameterize this subspace, i.e., to find an Ansatz that correctly
produces only such constraint-observing states. Gard et al. [19] propose precisely such an Ansatz .
In algorithm 5 we present an algorithm to construct a general Q-qubit, N -electron Ansatz , per [19]
(see, in particular, fig. 5 of the reference). The reasoning behind the algorithm is straightforward:
we distribute the excitation gates (Pauli X) as evenly as possible in the circuit, and then connect
the excited qubits with the remaining wires via A gates. This connection pattern is stored (as an
ordered list of wires to place A gates on), such that it may be repeated as many times as specified
by a “layers” parameter (L).

A(θ, φ) =
•

• R(θ, φ)† R(θ, φ) •

Figure 7: Definiton of the A quantum gate, per [19]. Note that the gate can be decomposed into
(controlled) one-qubit gates, such that it may be simulated using QOP, but that care must be
taken when parameterizing these gates, as there are only two free parameters.

With this Ansatz established, we may search the space of excitations for the ground state of a
particular ion using the previously described quantum variational algorithm approach.

5.2 Q < N

For the case where a trial state of the full Hamiltonian cannot be encoded into the quantum
computer, the situation is not so clear. As previously discussed, and per the technique proposed
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Algorithm 5 Producing a Q-qubit, N -electron Ansatz . See fig. 7 for the definition of the A gate.
function Add(gate, qubit) . Adds a gate to (the lowest affected index) qubit

Require: Q . Number of qubits
Require: N . Number of electrons
Require: L . Number of layers

Start
x← []
for i← (take N from 0, bQN c, 2b

Q
N c, · · · ) do

Add(X, i)
x← [. . . x, i]

end for
a← []
for i ∈ x do

if i 6= q − 1 and i+ 1 /∈ x then
a← [. . . a, i]

end if
end for
k ← a
while k 6= [] do

k′ ← []
for i ∈ k do

if i > 0 and i− 1 /∈ x and i− 1 /∈ a then
a← [. . . a, i− 1]
k′ ← [. . . k′, i− 1]

end if
end for
for i ∈ k do

if i < q − 2 and i+ 2 /∈ x and i+ 1 /∈ a then
a← [. . . a, i+ 1]
k′ ← [. . . k′, i+ 1]

end if
end for
k ← k′

end while
for l← 1, · · · , L do

for i ∈ a do
Add(A, i)

end for
end for
End
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and tested in this work, we may give up on calculating the ground state energy, and rather observe
the relationship between the geometric (or otherwise physical) parameters of the Hamiltonian and
a lower bound to the associated ground state energy. Within certain locality conditions we may
obtain such a lower bound by considering the ground state energy of terms of the Hamiltonian,
separately. Already at this point it is not obvious what constraints to impose on the ground
states of the separate sub-Hamiltonians; consider, as an example, a 2-local Hamiltonian involving
4 qubits, which we represent as (in line with previously used notation):

H = h12 + h34

If we are searching for the 3-electron ground state of H, then the candidate states are

|1110〉 , |1101〉 , |1011〉 , |0111〉

or superpositions thereof. Note that in the subspace of h12, this means that |10〉, |01〉, and
|11〉 are all valid states of the first half of the system, i.e., may be part of a full-system state that
satisfies the electron count constraint. However, they do not satisfy the constraint by themselves.
Furthermore, superpositions of the 4-qubit states result in entanglement, so that no superposition
may be considered in the 1, 2 subspace without violating the number constraint. In summary,
these limitations relate to the loss of cross-term relationships when considering terms separately.

The situation is even less clear once a Schrieffer-Wolff transform is applied to H: as discussed,
this transform (via the successive application of “gadgets”) does not map H to a matching-
spectrum Hamiltonian, but rather to some different system’s Hamiltonian H ′ that matches the
energy spectrum of H only in the low energy subspace of the spectrum. At its limit, we may
observe that only the ground state energy of H ′ matches the ground state energy of H (within
bounded error). Now, it is not even clear what constraints to impose on the new system; the S.W.
transform concerns itself with ground state energies, not with ground states. An auxiliary body
is introduced (which cannot be directly identified with an orbital) and the other qubits of the
system may no longer be regarded as straightforwardly related to orbital occupations. Regardless,
once sub-terms of H ′ are taken separately, imposing any constraint presents the same difficulties
as discussed for H.

We approach these difficulties by disregarding electron count constraints completely, which in
terms of the Ansatz used in the QVA approach, translates into spanning as much of the Hilbert
space as possible (see fig. 4). The reasoning behind this approach is that, by the variational
principle, disregarding electron count constraints may only result in a lower-bound to the correct
ground state energies. As we are disregarding a constraint to what would already be a lower-bound
(when considering the terms of the Hamiltonian separately), we are effectively taking the lower
bound of a lower bound. This decision is thus in line with the rest of the work; we seek to
investigate whether, in practice, calculating such a lower bound may yield information on the
geometry parameters, when to calculate the actual energy (or, in this case, enforce the electron
number constraints) is not possible. We do expect, however, the technique to be insensitive to
ionization, as the number of electrons stops being encoded anywhere.

6 Results
The produced C/Python library is publicly accessible, and can be found in the public ‘QOP’
GitHub repository16.

16https://github.com/mikeevmm/QOP
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We chose as testbeds for the method proposed in section 4 molecules of H2, HLi and O2, for
the following reasons:

• All molecules are diatomic, thus having a single, well-defined, geometric parameter: bond-
length;

• H2 is a very simple and symmetric molecule, and thus requires few qubits to exactly
express the Hartree-Fock Hamiltonian. This means that both the Jordan-Wigner and the
Schrieffer-Wolff Hamiltonians can be exactly diagonalized, enabling a comparison between
the H.F. energy and the S.W. energy, and between the S.W. energy and its lower bound;

• HLi is still a small molecule, but is asymmetric, so may highlight the effect of asymmetry;

• O2 is a larger molecule.

For the production of the (qubit) Hamiltonian, we employed OpenFermion [32] and Psi4 [37]
(using the OpenFermion-Psi4 package to interface the two [14]). The use of these packages resulted
in a Hamiltonian, which was then treated with custom-made code. The code’s logical flowchart
is presented in fig. 8. The full code is available online at https://github.com/mikeevmm/
TeseMestrado/blob/master/lowerbound.py.

As previously discussed, there are different possible approaches to locality-lowering of a
Hamiltonian (“decomposition” techniques) and to lower bound calculation of the corresponding
ground state energy (“partition” techniques). Ideally, the effect of each of these approaches would
be separately studied: for each decomposition scheme used, the ground state energy of the full
resulting Hamiltonian operator would be calculated by, for example, calculating the associated
matrix representation, and then finding its lowest eigenvalue with a numerical linear algebra
approach. Then, the compound effect of applying different partition schemes would be studied by
applying each partition scheme to the result of each decomposition, and comparing the resulting
lower bound energy to the ground state energy of the post-decomposition Hamiltonian.

However, this is not possible in practice, in particular due to the number of ancillary qubits
introduced by the different decomposition schemes. Even when using a (k-)Singular Value
Decomposition based scheme, the number of introduced ancillary bodies is significant, but the
issue is particularly pronounced for the direct decomposition scheme. Introducing many auxiliary
bodies is reasonable, and expected, as we are ultimately interested in reducing the locality of the
original Hamiltonian, but representing the resulting Hamiltonian (as a whole) in matrix form
becomes exponentially harder with each extra qubit introduced: the number of elements in the
matrix of a q-qubit system is 22q. This meant that in general, it was not possible to separately
study the results of decomposition/partition. However, in figs. 9 and 10 we present a comparison
between the ground state energy of post-decomposition Hamiltonians and the energy obtained
using a typical Hartree-Fock approach, for systems where the calculation of the ground state
energy of the post–Schrieffer-Wolff Hamiltonian was possible. This serves as an illustration of
the formal results presented by Bravyi et al. in reference [10], as well as an illustration of how
the truncation of singular values (cf. section 4.1.3) can still produce a good approximation to
the original Hamiltonian. In fig. 9 we merely present both curves overlapped; in fig. 10 a finer
comparison of the two energies was done by using a “loss” function, defined as

Loss(EHartree-Fock, ESchrieffer-Wolff) = 10 log10

(∣∣∣∣EHartree-Fock − ESchrieffer-Wolff

EHartree-Fock

∣∣∣∣) (dB) (15)
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(a) Logical flowchart (part I, see fig. 8b)
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(b) Logical flowchart (part II, see fig. 8a)

Figure 8: Logical flowchart of the developed code implementing the technique described in
section 4. The flowchart is split into figs. 8a and 8b due to its size; the circle indicates a
continuation from the other subfigure. The respective code can be found online at https:
//github.com/mikeevmm/TeseMestrado/blob/master/lowerbound.py (Python). It is taken as
convention that diamonds represent decisions, lozenges represent data, and rectangles represent
actions (rounded rectangles are used for sequence-terminating actions).
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For each decomposition process, the compound result of different partition schemes are
presented. Finally, because calculating the lowest eigenvalue of a given Hamiltonian using a
variational approach may induce some error or even silently fail (by either not converging or
converging to the wrong value), we first present results that use Numpy [36] to obtain the ground
state energy. This is done by converting the relevant term to a matrix form and computing the
lowest eigenvalue (in either a dense or sparse scheme). Then, we present a comparison between
these results and the results obtained by simulating a quantum variational approach to obtain
ground state energies.

Before presenting the results of the given original technique, we first illustrate the relevance of
the high-locality terms for the different considered systems, in terms of the ‘at-rest’ parameters.
This is done by calculating the ground state energy of a new Hamiltonian, calculated for each
system by discarding terms of the original Hamiltonian above the intended locality. This avoids
any need for decomposition and/or partition. For systems where the high-locality terms are
determinant, ignoring these terms should result in different minimizing geometric parameters,
whereas for systems for which high-locality terms are of little relevance, ignoring them should
still produce a reasonable approximation to the minimizing parameters. The obtained results are
presented in fig. 11.

6.1 Ground State Energy From Matrix
In fig. 12, we present the obtained results for a direct decomposition scheme (cf. section 4.1.1)
combined with both direct and minimal partitioning schemes (cf. section 4.2). We present results
for all systems in study, i.e., H2, HLi and O2.

Likewise, in fig. 13 we present the obtained results for an∞-SVD based decomposition scheme
(cf. section 4.1.2) but coupled with both direct and minimal partitioning only for the H2 and
HLi systems. For the O2 system, the post–Schrieffer-Wolff transformation Hamiltonian (using an
∞-SVD based decomposition scheme) involves ∼ 300 qubits, which requires more memory than
available for the calculation of the minimal partition (using our technical implementation); as
such, for this system, only the direct partition result is presented.

In fig. 14 we present the obtained results for a k-SVD based decomposition scheme. Now,
the previous limitation for the O2 system does not apply, such that for every system, we present
a k-SVD based decomposition coupled with both direct and minimal partitioning. For O2 we
present results for both 1-SVD and 3-SVD decompositions. Note how the resulting ‘lower bound’
is no long necessarily an actual lower bound to the original Hartree-Fock energy; as we have
approximated the Hamiltonian at each step, it should be a lower bound to the approximated
Hamiltonian’s ground state energy.

6.2 Ground State Energy From Simulated Quantum Variational Algo-
rithm

We first present a practical comparison of the different optimization algorithms considered in
section 1.3; we present the evolution of an optimization over a pathological surface as guided by,
respectively, ADAM and ADADELTA and L-BFGS (cf. section 1.3). The considered optimization
function was a Rosenbrock surface [43], which is designed to have a minimum in the middle of a
long and narrow valley, such that it may be relatively easy to converge towards the valley, but
hard to converge along the valley towards the true global minimum. The Rosenbrock surface is
presented in figure fig. 15, and is given by

R(x, y) = (1− x)2 + 100 · (y − x2)2 (16)
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Figure 9: Comparison of the Hartree-Fock ground state energies with the ground state energies
associated with the (full) post–Schrieffer-Wolff (SW) transformation Hamiltonian, for different
bond lengths, systems and decomposition schemes (as discussed on section 4). Various ε values
were considered for the Schrieffer-Wolff transformation; see eqs. (9) and (11) for the relationship
between ε and the asymptotic error between the S.W. Hamiltonian’s ground state energy and the
original Hamiltonian’s ground state energy. Only a few cases are considered, as the requirements
for calculating the post-SW Hamiltonian’s ground state energy quickly become intractable; see
discussion in section 6.
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in eq. (15). This mode of comparison is a finer measure of how well the ground state of each
post–Schrieffer-Wolff Hamiltonian approximates the Hartree-Fock energy. The ε parameters
asymptotically relate to the error between the post–Schrieffer-Wolff Hamiltonian’s ground state
energy and the original Hamiltonian’s ground state energy; see section 1.4, eqs. (9) and (11).
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Figure 11: Hartree-Fock energies and ground state energies of the Hamiltonian with high-locality
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number of qubits in the Hamiltonian varies according to the bond length, but an approximate
average is given in the key, in parenthesis. The vertical scales for the Hartree-Fock energies and the
energies resulting from discarding high-locality terms are considered separately (H.F./discarding
to the right/left respectively), as we are mainly interested in the minimizing bond length.
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so that the global minimum is located at 〈1, 1〉.
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Figure 15: Rosenbrock function with global
minimum at 〈1, 1〉. Note that the function
is very steep away from the minimum, but
very ‘flat’ in the valley that contains the
minimum.

The optimization results are presented in fig. 16; because the L-BFGS algorithm converges to
the minimum in much less iterations, its results are presented separately. Like previously done
for error measurement, the convergence is measured in terms of a loss function, defined as

Loss(z) = 10 · log10 (1 + z) (17)
where z is the value that the cost function (i.e., the Rosenbrock function) takes at each

iteration point.
Optimization is considered converged once the cost function remains constant over 15 iterations,

and was otherwise stopped after 10 000 iterations.
In fig. 17 we present a comparison between some selected results presented in section 6.1

and the corresponding results obtained using a quantum variational approach, as described in
section 1.3, to obtain the lowest eigenvalues for the Hamiltonians at each bond length. For
the direct decomposition scheme, the results for different numbers of layers in the Ansatz (cf.
section 1.3) are presented, to highlight the impact of a greater number of degrees of freedom
in the resulting eigenvalue. For results that were not at comparable energy scales (between the
variational and non-variational curves), a second graph is presented with separate energy scales
for the variational and non-variational curves, so as to highlight potential structure similarities
(in the previously defined sense), despite the different scales. Note that, in obtaining these results,
the parameters for the Ansatz were initially randomized, for each system. Afterwards, for each
system, the eigenvalues for each bond length were calculated in ascending bond length order, using
the converged Ansatz parameters of the last bond length calculated as the starting parameters
for the new bond length calculation. The reasoning behind this was to induce an “annealing”
effect, assuming that the ground state for a certain bond length should not differ greatly from
the ground state of a similar bond length.

7 Discussion
We first note from fig. 11, broadly comparing with figs. 12 to 14, that simply discarding the
terms of high locality apparently yields more accurate minimizing geometric parameters than the
proposed original approach: all of the systems preserve the energy curve structure reasonably
well when discarding higher-locality terms, with O2 the system most ‘sensible’ to this process.
However, one should note that OpenFermion calculates the Hartree-Fock orbitals (via Psi4)
as a side-effect of calculating the Hartree-Fock energy, and uses these orbitals as the reference
orbital set. Furthermore, a “frozen core” of doubly paired electrons in the lower energy orbitals
is considered, so that only electrons outside that frozen core are accounted for. It is therefore
expected that, up to a point and with this basis, the higher-locality terms are not absolutely
determinant in the energy curve structure of the molecule (but rather produce finer corrections);
recalling that in the post–Jordan-Wigner Hamiltonian the qubit state can be informally regarded
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(a) Progress of loss function (eq. (17)) over the itera-
tions of ADAM and ADADELTA optimizations along
a Rosenbrock function (eq. (16)). Notice that the hori-
zontal scale is logarithmic, and iterations are counted
in thousands.
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(b) Progress of loss function (eq. (17)) over
the iterations of an L-BFGS optimization
along a Rosenbrock function (eq. (16)).
Notice that the horizontal scale is logarith-
mic.

Figure 16: Comparison of the performance of the different optimization algorithms chosen for
implementation in the QVA simulation (cf. section 3). All algorithms were given 〈−2.5, 80.0〉 as
the starting point, and used for optimization over the function defined by eq. (16). The closeness
to the global minimum is measured using the ‘loss’ function defined in eq. (17). For ADAM
and ADADELTA, the implementations available in the Keras [13] library were used, whereas
for L-BFGS, the implementation available in Scipy [47] was used. Note the severe difference in
horizontal scale between fig. 16a and fig. 16b; like discussed in section 1.3, there is a tradeoff
between scalability and performance. Note also that ADADELTA seems to almost converge to
the global minimum, but fails to do so.
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Figure 17: Comparison between the results obtained with a quantum variational approach to the
calculation of the lowest eigenvalues of the Hamiltonians (cf. section 1.3) with the corresponding
non-variational results presented in section 6.1. Whenever the variational and non-variational
results differ greatly in the energy scale, we present also a graph with separate energy scales for
the variational and non-variational results, with the scale to the left of the graph corresponding
to the variational results, and the scale to the right of the graph (colored) corresponding to the
non-variational results.
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as the Fock space (cf. eq. (6)), and recalling also the one- and two-electron integrals (eqs. (2)
and (3)), we see that these high locality terms will (in informal terms) account for interactions
between multiple orbitals for the ‘unfrozen’ electrons.

However, such an approach implies the ability to classically perform a Hartree-Fock calculation,
which would render the proposed technique moot. For sufficiently complex systems, a Hartree-Fock
(H.F.) approach will not be feasible, and in general the basis with which the electron integrals
(2), (3) are calculated will be arbitrary. In such a case, there would be no reason to assume that
high-locality terms should relate to small corrections of the minimizing geometric parameters. The
original technique here proposed does not rely on a previous H.F. calculation, as it is applicable
to any qubit Hamiltonian. As such, the results presented in fig. 11 should be taken into account
when analysing the results produced with the original technique, but do not necessarily reflect
the general case.

Figures 9 and 10 are in line with the theoretical results of reference [10], and indicate also
that a k-SVD decomposition approach (cf. section 4.1.3) is reasonable in producing a post–
Schrieffer-Wolff Hamiltonian that approximates the original Hamiltonian. Note how the degree
of approximation can vary with the bond length when taking a k-SVD decomposition approach
(fig. 10). Note also how for all decomposition styles the structure is reasonably preserved. This is
useful, as we may choose a higher value of ε (i.e., a greater asymptotic error on the Schrieffer-Wolff
transform; cf. section 1.4, eqs. (9) and (11)) without, in principle, radically altering the minimizing
parameters17.

This explains the results obtained in fig. 12, in particular for HLi with a minimal partitioning
approach: note how the values for the “lower bound” curve are actually higher than the Hartree-
Fock energies. This is because the lower bound values are a lower bound to the post–Schrieffer-Wolff
Hamiltonian, which can be seen to be of higher energy than the Hartree-Fock counterpart (fig. 9).
However, we obtain a minimizing geometric parameter of 1.72(4)Å, which reasonably approaches
the minimizing bond length obtained with a Hartree-Fock treatment (1.52(4)Å; a (13 ± 3)%
relative error). Also for HLi, the direct partitioning scheme yields a minimizing parameter of
1.27(4)Å, again not too distant from the Hartree-Fock derived value, with a (17± 3)% deviation
from the H.F. value. The same does not occur for H2, where taking a lower bound (with both
a minimal and direct partitioning scheme) “destroys” the structure of the energy curve, and a
minimizing bond length no longer exists18.

A similar consideration could be made for O2 — at first sight it seems that taking a lower
bound simply destroyed the curve structure — but we should note the energy scales involved:
the Hartree-Fock energies are in the order of −102(Eh), whereas the energy lower bounds are
of the order of +107(Eh). This seems to indicate numerical error, rather than a consequence
of taking a lower bound to the energies. We relate this to the process by which the used
gadgets (cf. section 1.4) operate: as can be seen from eqs. (8) and (10), the subdivision gadgets
broadly consist of a two-level gapped system (with gap ∆), with ground state |0〉u ⊗ |ψ〉 and first
excited state |1〉u ⊗ |ψ〉 (u denotes the ancillary qubit, and |ψ〉 describes an arbitrary state of
the rest of the system). The intended ground state energy is then achieved by introducing a
perturbation potential, such that in second/third perturbation order (for the subdivision/3-to-
2-local gadgets, respectively; see the corresponding sections in reference [10]) the ground state
energies match. ∆ also relates to the bounded error in the post–Schrieffer-Wolff ground state

17The reason why we should not choose ε as arbitrarily small is discussed in the context of the results obtained
for O2.

18Strictly speaking, the upper limit of the bond length is the minimizing geometric parameter, but this does not
convey physical information (as the limits of the bond length are arbitrarily set by us). Therefore, “no minimizing
bond length” will be taken to mean no

{
x ∈ (l, h)

∣∣minx LB [H(x)]
}

exists, with x ∈ [l, h], and LB [H] a lower
bound to the ground state energy of H.
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energy; in particular, the error is made to asymptotically scale proportionally to ε by taking
∆ ∝ ε−2, for the subdivision gadget (cf. section 1.4.1), and ∆ ∝ ε−3, for the 3-to-2 subdivision
gadget (cf. section 1.4.2). As such, a choice of small ε will lead to extremely large gaps after
several Schrieffer-Wolff transformations. Furthermore, the gap scales also proportionally to the
largest coupling of the Hamiltonian to be transformed, so that the gap may become extremely
large after several Schrieffer-Wolff transformations, even for a relatively large value of ε. Once
such a situation is achieved, the perturbation terms (which are critical in determining the “true”
ground state energy) become numerically irrelevant in comparison to the gap term, so that the
resulting ground state energy “lower bound” becomes invalid.

We may observe a similar effect in the k-SVD based decomposition approach to O2 (fig. 14).
Interestingly, however, the energy curve associated to a 1-SVD/minimal partitioning scheme for
O2 seems to still convey information about the ‘correct’ geometric parameters: note how the
lower bound curve has a maximum at less than 0.05Å from the at-rest bond length given by the
Hartree-Fock curve. It is unclear why this should be: we posit that it may relate to the value
energy of the ‘frozen core’ (cf. above), or that it may be a consequence of the entanglement
structure of O2 for the ground state energy minimizing geometric parameters, so that by only
selecting the 1st major component of the Schmidt decomposition of the Hamiltonian at each step
of decomposition (cf. section 4.1.3), the correct bond length is differentiated.

For H2 and HLi, applying a k-SVD based decomposition together with a minimal partition
scheme apparently yields good results, producing an energy-minimizing bond length for both
systems: for H2 the obtained bond is of 0.70(4)Å (exactly matching the Hartree-Fock–based
result), and for HLi the lower bound curve indicates a bond length of 1.64(4)Å, which corresponds
to an (8± 3)% deviation over the Hartree-Fock–based bond length of 1.52(4)Å.

Direct partitioning schemes, on the other hand, yield worse results. When combining them
with k-SVD decomposition schemes, no ‘at-rest’ bond lengths are obtained for H2. For HLi, we
obtain a bond length of 1.72(4)Å, which stands at a (13± 4)% deviation from the H.F. based
bond length. This seems to confirm the intuitive idea that minimizing the number of “cuts” in a
partitioning scheme better preserves the structure of the energy curve.

Finally, we see that the∞-SVD decomposition scheme is simply not effective at preserving the
energy curve structure (fig. 13). This may be related to the (∞-SVD related) results presented in
fig. 10: as previously discussed, the entanglement structure of the Hamiltonian may vary with
bond length, and so the number of corresponding singular values also varies with bond length.
This results in a ‘broken’ energy lower bound curve, where each point effectively relates to a
separate energy scale. This prevents identifying useful minima in the curve.

The results obtained by simulating a quantum variational method (cf. section 1.3) show that
the quantum variational approach can be very effective, with a relatively small number of layers
in the Ansatz : for H2, direct decomposition, and O2, direct decomposition, the variational results
correctly produce the non-variational ones. For O2, the 5-layer Ansatz already produces results
comparable to the 10-layer Ansatz, and even the 2-layer Ansatz reproduces the non-variational
curve structure reasonably well.

On the other hand, the variational results do not match the non-variational results for the
HLi system; but observing the variational/non-variational results at the respective energy scale,
one may see that, interestingly, the variational results not only yield a minimizing parameter,
1.64(4)Å, but this minimizing parameter is closer to the Hartree-Fock–based result of 1.52(4)Å
(at a (8 ± 5)% deviation) than the non-variational yielded energy-minimizing bond length of
1.72(4)Å ((13± 3)% deviation from the H.F.–based value).

The same does not happen for the SVD decomposition based results: apart from H2, for
which the variational and non-variational results match exactly, the variational results do not
match the non-variational curves, nor do they present any relevant structure, when normalized to
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their energy scale. This may be related to the considerations made in section 5, but it is unclear
whether it is related to the convergence of the Ansatz parameters, or whether a greater number
of layers in the Ansatz could produce results closer to the non-variational results.

Finally, notice that, again for O2, even though there is no distinguishable curve structure
to the lower bound produced, the variational approach produces an absolute minimum at
1.23(3)Å, exactly matching the ‘at-rest’ bond length obtained from the Hartree-Fock curve —
this strengthens the idea that the entanglement structure of the Hamiltonian at the ‘at-rest’ bond
length for O2 or the frozen core energy at that bond length separate it from other possible bond
lengths.
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8 Conclusion
In this work we have presented an original technique for calculating the lowest energy geometric
parameters of molecular systems, or, more generally, the parameters of some parameterized
Hamiltonian that result in minimal energy. This technique seeks to exploit the natural applications
of quantum computers to the treatment of quantum systems, while maintaining minimum quantum
computational requirements, in terms of number and quality requirement of the available qubits.
We have also presented a completely original implementation in C of a quantum circuit simulator,
and a quantum variational algorithm simulator (which relies on the quantum circuit simulator).
We have applied the technique to a few test systems, as a proof of concept: H2, HLi and O2.
We have found that for some approaches to the H2 and HLi systems, the technique successfully
produces ‘at-rest’ bond lengths comparable to those obtained using a Hartree-Fock treatment,
when assuming ideal convergence of the quantum variational algorithm. We have identified
possible numerical errors that intrinsically arise from the application of the work of Bravyi
et al., which are particularly noticeable for the O2 system. Finally, we have shown that the
quantum variational approach can be comparable to classical numerical determination of the
lowest eigenvalue of an operator, but that the inability to encode particle number constraints can
produce eigenvalues lower than those obtained using a non-variational approach. However, these
lower values sometimes still produce ‘at-rest’ bond lengths, comparable to those obtained with a
Hartree-Fock approach.

The results presented in this thesis should be viewed as a first step of a long term project
aiming at using a quantum computer to obtain geometric parameters of molecules which cannot
be simulated in a classic computer.
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Appendix A: Quantum Phase Estimation
Consider some unitary operation U , with eigenvectors {|u〉}, and corresponding eigenvalues {λu}.
The quantum circuit for the Phase Estimation Algorithm (PEA) allows one to estimate the
eigenvalues {λu}, by estimating ϕu such that λu = e2πiϕu . The PEA circuit, as applied to an
operator U , is given in fig. 1 (reproduced below).

|0〉 /t H⊗t • FT †

|u〉 / U j |u〉

Figure 1: Circuit schematic reflecting the Quantum Phase Estimation algorithm for an operator
U . The first register is a bundle of t wires, and the bottom register has as many wires as dictated
by U . H denotes the Hadamard gate. U j denotes 2j applications of U controlled by the (t− j)th

wire in the first register (as indexed top-to-bottom), with an implicit run of j = 0 . . . t− 1. FT †
denotes the inverse Quantum Fourier Transform. |u〉 is generally taken to be an eigenvector of U
but need not be.

The discussion of the effects of this circuit is best split into three progressively general
conditions on |u〉.

A.1 |u〉 as an Eigenvector With a t-bit ϕu
If |u〉 is an eigenvector of U and the corresponding eigenvalue is λu = e2πiϕu such that ϕu can be
expressed exactly in t bits, then the circuit

|0〉 /t •

|u〉 / U j

produces the state

t⊗
j=1

(
1√
2

(|0〉+ e2πi2t−jϕu |1〉)
)
⊗ |u〉

and considering that the Quantum Fourier Transform (QFT) state mapping is of the form

|p〉 7→ 1√
2n

n⊗
k=1

(
|0〉+ e2πip/2k |1〉

)
such that the inverse operation would result in a mapping of

1√
2t

t⊗
k=1

(
|0〉+ e2πip2t−k |1〉

)
7→ |p〉
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then the inverse Quantum Fourier Transform (IQFT) in the first t wires subspace recovers the
bits of ϕu exactly19, in the form of the final state |ϕu〉 |u〉.

A.2 |u〉 as any Eigenvector
In general the eigenvalue λu won’t be exactly expressible in t bits, in which case the last statement
about the effect of the IQFT does not hold, and rather we have20

t⊗
j=1

(
1√
2

(|0〉+ e2πi2t−jϕu |1〉)
)
⊗ |u〉 =

= 1√
2t

2t−1∑
j=0

e2πiϕuj |j〉 |u〉 QFT†7−−−−−→ 1
2t

2t−1∑
k,l=0

e−2πikl/2te2πiϕuk |l〉

With this knowledge of the amplitudes, and noticing that a t-qubit circuit will be able to
provide at best an approximation to the tth binary digit of ϕ, we can21 calculate a bound for the
probability of obtaining a measurement that deviates from the smallest t-bit approximation by at
least e:

p(“deviation”) ≤ 1
2(e− 1)

and so conversely a bound for the probability of observing a measurement of the smallest
t-bit approximation within some deviation e. We then demand that this deviation is at most in
the nth bit, i.e., give margin for error “up to” that bit. This is done by setting e = 2t−n − 1.
Plugging this value into the “no deviation” probability, we obtain

p(“no deviation”) ≤ 1− 1
2(2p − 2) where p

def= t− n

So a probability of no deviation greater or equal to 1− ε requires

2p ≥ 1
2ε + 2

satisfied by

p =
⌈

log2

(
1
2ε + 2

)⌉
meaning a total number of qubits

t = n+
⌈

log2

(
1
2ε + 2

)⌉
Inverting the logical relationship, we have that a circuit with this many qubits in its state

register will result in a readout of an n-bit approximation of ϕ with probability of at least 1− ε.
19with reversed bit ordering; notice that if p = p020+· · ·+pn2n−1 then e2π2−kp = e2π(p02−k+···+pk−12−1)×e2πn,

resulting in e2π0.p0...pk−1
QFT†7−−−−→ p′ = pk−120 + · · ·+ p02k−1

20To obtain the IQFT mapping observe that (QFT)uv is a unitary matrix, and as such QFT†uw =
QFT†uw = (QFT)∗wu. Making use of a completeness relation, QFT† |u〉 =

∑2n−1
w=0 |w〉 〈w|QFT† |u〉 =

1√
2n
∑2n−1

w=0 e−2πiuw/2n |w〉
21See [35, pp. 223, 224] for a more complete picture.
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A.3 |u〉 as a Random State
Consider now that the second register is instead initialized as some vector |ψ〉. We can expand
this state in the U operator’s eigenvectors;

|ψ〉 =
∑
ϕ

cϕ |ϕ〉

from where the previous discussion can be carried for each of the terms, as weighed by cϕ:

|0〉 /t H⊗ t • QFT† 1√
2t
∑
ϕ cϕ

∑2t−1
k,l=0 e

−2πikl/2te2πiϕl |l〉

|ψ〉 / U j |ψ〉

Therefore, like in appendix A.2, performing a measurement of the first register yields a t-bit
approximation of the eigenvalue, except the measured value is approximately ϕi with probability
|cϕi |

2 for some eigenvalue ϕi ∈ {ϕ1, . . . , ϕn}.

A.4 Efficiency and Considerations
QPA is not a full quantum algorithm, but rather a quantum subroutine. This is because it makes
use of a quantum oracle, namely the “black box” implementation of the U j gate, and presupposes
the encoding of the candidate state into the circuit. However, a few considerations about the
efficiency of this routine (as opposed to the classical counterpart) can be made.

First, notice that an n-qubit (quantum) computer supports operators with a matrix rep-
resentation of size 2n. This in itself provides an exponential advantage, which is intrinsic to
quantum computing. On the other hand, the QFT has a bound of Θ(n2) in the number of
operations required, and relaxing the requirements to polynomial precision we can obtain a
polynomial bound for a polynomial accuracy [35, pp. 220, 221]. Therefore, if the oracle operation
U j can be implemented in Poly(n), the whole routine is polynomially efficient, while providing
an exponential advantage in memory over the classical counterpart. Likewise, efficient encoding
of the input state does not affect the efficiency of the QPE routine.

However, in practice, such an algorithm requires both full coherence of the qubits throughout
the protocol, and possibly a large number of qubits (especially in light of the discussion of
appendix A.2). The existence of errors is also not considered, for which error correction schemes
would be necessary, further increasing the qubit count requirement. These requirements are
currently intractable [42, 33] in the Noise Intermediate Scale Quantum (NISQ) era, in which a
moderate amount of qubits, though noisy, are available.
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Appendix B: “Tainted Numbers”
Presented by Gidney in [23], “tainted numbers” are a way to algorithmically derive the matrix
associated to a controlled operation, when the matrix form of the operation is known. For this,
the number µ is introduced, such that (⊗ denotes the Kronecker product operation)

µ ⊗U = µ · In
U ⊗µ = In · µ

It is from the “absorbing” nature of µ that the name ‘tainted’ is given. In [23], no formalization
of µ’s algebra is given, with an analysis of practical consequences of its use (and comparison with
expected results) done instead.

An attempt to formalize µ into an algebra with arbitrary-size matrices quickly shows that a
group algebra is not possible:

G = {µ−1, µ} ∪ Cm

µ−1 · µ = 1
for any m×m matrix A,

µ−1 · µ ·A =
{(
µ−1 · µ

)
·A = 1 ·A

µ−1 · (µ ·A) = µ−1 · Im

As such µ should be treated with some caution; Gidney himself reports some cases where the
use of µ produces the wrong matrix [22]. We thus avoid this characterization and simply show
that for an “unobstructed” controlled gate (i.e., no other gates acting on the qubits between the
gate and the control), an informal use of µ produces the expected result.

Consider a controlled single-qubit gate Q with corresponding tensor form Qαβ . It may be
controlled by the qubit m + 1 positions above or below it. In an unobstructed case then, the
controlled operation Q̃ is respectively given by either

Q̃ = |0〉〈0| ⊗ I⊗m ⊗ I + |1〉〈1| ⊗ I⊗m ⊗Q
or

Q̃ = I ⊗ I
⊗m ⊗ |0〉〈0|+Q ⊗ I

⊗m ⊗ |1〉〈1|

(where I denotes the identity operation)

If we consider then the ‘control matrix’ C with tensor representation Cχν = δ0
νµ+ δ1

ν ,

•
/m

U

=
C

/m

U

= Cµν δ
α
βδ

γ
λ · · ·U

ε
π = (δ0

νµ+ δ1
ν )δαβδ

γ
λ · · ·U

ε
π

= δ0
νµδ

α
βδ

γ
λ · · ·U

ε
π + δ1

ν δ
α
βδ

γ
λ · · ·U

ε
π

δαβ = I and from µ ⊗A = µ ⊗ I it is intuitive that µδαβ = δαβµ, so that

δ0
ν δ
α
βδ

γ
λ · · ·µU

ε
π + δ1

ν δ
α
βδ

γ
λ · · ·U

ε
π = δ0

ν δ
α
βδ

γ
λ · · · δ

ε
π + δ1

ν δ
α
βδ

γ
λ · · ·U

ε
π
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= |0〉〈0| ⊗ Im ⊗µ · I + |1〉〈1| ⊗ Im ⊗U

which matches the expected expression for a controlled gate, up to a factor of µ (which
disappears when the matrix is “cleaned”). The procedure for a control m wires below the gate is
completely analogous.
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[26] E. Jeřábek. Lower bound for sum
of binomial coefficients? MathOver-
flow. https://mathoverflow.net/q/
55617 (version: 2011-02-16).

[27] A. Kandala, A. Mezzacapo, K. Temme,
M. Takita, M. Brink, J. M. Chow, and
J. M. Gambetta. Hardware-efficient vari-
ational quantum eigensolver for small
molecules and quantum magnets. Nature,
549(7671):242–246, Sept. 2017.

[28] A. Katwala. Inside big tech’s high-
stakes race for quantum supremacy.
https://www.wired.co.uk/article/
quantum-supremacy-google-microsoft-ibm,
2020. Retrieved 2020-06-28.

[29] D. P. Kingma and J. Ba. Adam: A method
for stochastic optimization, 2014.

[30] N. M. Linke, D. Maslov, M. Roetteler,
S. Debnath, C. Figgatt, K. A. Landsman,
K. Wright, and C. Monroe. Experimen-
tal comparison of two quantum computing
architectures. Proceedings of the National
Academy of Sciences, 114(13):3305–3310,
Mar. 2017.

[31] J. R. McClean, J. Romero, R. Babbush,
and A. Aspuru-Guzik. The theory of varia-
tional hybrid quantum-classical algorithms.
New Journal of Physics, 18(2):023023, Feb.
2016.

[32] J. R. McClean, K. J. Sung, I. D. Kivlichan,
Y. Cao, C. Dai, E. S. Fried, C. Gid-
ney, B. Gimby, P. Gokhale, T. Häner,
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