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Abstract: This work relies on a probabilistic framework to search for suitable grasping regions on
objects. In this approach, the object model is acquired based on occupancy grid representation that deals
with the sensor uncertainty allowing later the decomposition of the object global shape into components.
Through mixture distribution-based representation we achieve the object segmentation where the outputs
are the point cloud clustering. Each object component is matched to a geometrical primitive. The
advantage of representing object components into geometrical primitives is due to the simplification
and approximation of the shape that facilitates the search for suitable object region for grasping given a
context. Human demonstrations of predefined grasp are recorded and then overlaid on the object surface
given by the probabilistic volumetric map to find the contact points of stable grasps. By observing the
human choice during the object grasping, we perform the learning phase. Bayesian theory is used to
identify a potential object region for grasping in a specific context when the artificial system faces a new

object that is taken as a familiar object due to the primitives approximation into known components.
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1. INTRODUCTION

The ability of handling different objects dexterously is one of
the most well succeeded human skills. Artificial perception
systems are used in robotics to enable these human actions.
Some grasping strategies for robotic systems base on analysing
the object geometric properties to fit suitable grasps, others on
learning from human demonstrations using specific objects. In
this work, we use the object as an object-centric probabilistic
volumetric model as in Faria et al. (2010), which is useful
here to represent the contact location and forces associated
to the grid cell location on the object surface representing
successful grasps during the human demonstrations. It will
facilitate future matching for an artificial system observing
objects and searching for cues on how to grasp an object in
a specific context.

Humans usually identify object parts in order to choose a suit-
able region to grasp. The Recognition By Components the-
ory (RBC) Biederman (1987) reveals that humans are able to
identify objects by segmenting them into geometric primitives
(geons). Based on that, we use information of daily objects
such as global shape and its segmented components to acquire
the probability distribution of a graspable part given by human
demonstration. The segmentation of the object into components
and their approximation using superquadrics decreases the huge
amount of potential grasps for that specific object part. This
knowledge can be extended for “unknown” objects to estimate
the object location and the candidate grasp given the infor-
mation previously acquired from similar objects. Since an un-
known or new object is segmented and approximate to a known
geometrical primitive, the system can consider this object simi-
lar to other already observed. Fig. 1 shows the flowchart of our
proposed system.
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Fig. 1. Flowchart of our proposed framework.

2. RELATED WORK

Researches on human motion and grasping have been carried
out for automatic generation of grasping strategy such as Asada
and Asari (1988), Kang and Ikeuchi (1995), Kawasaki et al.
(2009). Usually many approaches try to find successful grasp
given a 3D object model. Some of them associate the object
model in specific geometrical primitives, Miller et al. (2003)
or fit to superquadrics model, Goldfeder et al. (2007). Thus,
it is possible to limit the number of candidate grasps for each
primitive. In Hubner and Kragic (2008) for instance, potential
grasps are searched through cues provided by the primitives that
were associated to a specific object.

Richtsfeld and Vincze (2008) compute grasp points based on
the center of mass of the object’s top surfaces. The object mod-
els are acquired based on range images. Tests with a real robotic
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hand were not accomplished, but simulations were carried out
to find a proper pose of the end-effector for those contact points.
Saxena et al. (2007) proposed a system that infers where to
grasp an object using visual information. They apply machine
learning techniques to train a grasping point model on labelled
synthetic object images. Bohg and Kragic. (2010) shows the
analysis of grasping as combination of a descriptor based on
visual shape context with a non-linear classification algorithm
that leads to a detection of stable grasping points for a variety
of objects.

The approach developed by Li and Pollard (2005) depend on
the availability of a 3D object model to find a suitable grasp
as a shape matching problem between the hand and the object.
They use a database of human grasp examples and the object
shape features are used to match against the hand postures.

In this work we estimate the regions of the object that are
going to be grasped. In our work, a probabilistic framework
is used for the representation of 3D objects, which is then
segmented in components using Gaussian mixture models as
the segmentation demonstrated in Jr. et al. (2010) applied
in mobile robotics. Later we approximate each segment in a
superquadric model as proposed by El-Khoury and Sahbani
(2010). In our representation, we associate data on object
graspable parts such as contact points and tactile force obtained
from demonstrations of successful stable grasps.

3. OBJECT SHAPE REPRESENTATION

In order to estimate the object region as graspable given a
specific context, the combination of human demonstrations of
stable grasps and object intrinsic information play an important
role for the decision. Since we have the 3D representation of
the object in a volumetric map (more details can be seen in
previous work Faria et al. (2010)), we can overlay the relevant
data through human demonstrations of contact points of stable
grasps on the object surface represented in the grid cells of the
object map. It also allows the identification of the grasp type by
analysing the contact points location and the shape formed by
these points.

In this work we are restricting the application for domestic daily
objects to test our approach. These objects are used by humans
in everyday tasks and can be extended for artificial systems to
deal with them by taking decision on which is the proper region
to grasp.

3.1 3D Object Global Shape Representation

Since we are extending our previous work Faria et al. (2010)
regarding object representation to combine with human demon-
stration, a fast review is given in this subsection regarding
probabilistic representation of the object global shape.

Using magnetic tracker sensors (Polhemus Liberty) in each
fingertip of the right hand, the shape of the object can be
achieved by performing a contour following procedure on the
object surface. These sensors have 6DoF {x, y, z, yaw, pitch,
roll}. The strategy of this previous work Faria et al. (2010)
was to use hand to extract the object geometrical information.
Adopting the occupancy grid methodology, the probabilistic
volumetric map is computed.

The motivations behind the implementation of this probabilistic
map is the intuitive way of static object representation and
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the way of dealing with the uncertainty of the sensors. During
the finger displacement on the object surface, it is possible to
identify in which cell that measurement is inserted (given by
the sensors positions). Due to the size of each cell relatively to
the standard deviation of the sensors measurements (magnetic
tracking system), inside each cell is defined a 3D isotropic
Gaussian distribution, P(Z,4s,|O.), centred at the cell central
point with standard deviation of 3mm and mean value equal
to coordinates of the cell central point. The occupancy of each
individual voxel is assumed to be independent from the other
voxels and P(Zgqsp|Oc) is the distribution corresponding to
the set of measurement Zg,,q, that influences the cell in the
map derived from the in-hand exploration data. The probability
distribution on the occupation’s probability P(Oc¢|Zgasp) for
each voxel is computed through Bayesian techniques to updated
the cell in the map. More details can be found in Faria et al.
(2010).

Fig. 2 shows an example of object representation achieved by
using the probabilistic volumetric map derived from in-hand
exploration. The cells of the volumetric map (see the middle
image) is darker due to that region was more explored than
other regions. Due to the way the object was explored (vertical
movements: top-down) we can see some pattern represented
by the darker cells (vertical cells). Note that in parallel to the
darker lines, from one side of the mug to the another side, we
have the same pattern of darker cells, it is easily explained due
to the thumb and index finger were always in a parallel position
during the exploration moving in similar way.

Fig. 2. Object representation using the probabilistic volumet-
ric map: the first image is the object, followed by the
probabilistic volumetric map. The last image is the map
showing clear cells just those ones occupied (probability
higher than the specified threshold 0.7).

3.2 Segmentation of Object Global Shape into Components

Applying the clustering process on the output of the object map
to find the object components, we achieve outlier removal and
we can keep some object information such as size and position.
Using mixture distribution, Gaussian Mixture Models (GMM),
we can find the most suitable clustering that will represent an
object component.

Gaussian Mixture Models is an efficient methodology for points
clustering where each cluster represents a Gaussian function.
The density function of the mixture g is defined as follows:

K
j=1
Y= (W]...WK,el...QK), (2)
and
K
w;i>0 and Y wi=1, 3)

J=1
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where x € R? containing the contact points, K denotes the num-
ber of Gaussian densities and c; is one of the possible density
functions describing a component of the object global shape.
Each element of the mixture is weighted by w;. In this work, ¥
represents the K dimensional vector containing all parameters
of the Gaussian mixture and 6; = (u;,X;) represents a vector
containing all the contact points coordinates of the means (;
and all the entries of the covariance matrix X;. The conditions
presented in (3) guarantee that g is indeed a density function.

The estimation of the parameters of each individual density
function and the weight variables is accomplished by means of
the well known Expectation Maximization (EM) algorithm. In
this work, the size of the K is selected using the MDL penalty
function Rissanen (1978), where K, = 3 (three components
are enough to describe different graspable regions on daily
objects).

Figure 3 shows an example of daily object (sponge) segmenta-
tion using GMM.

After some tests with different daily objects, empirically we
know that three segments is enough to represent their shapes.
In this work, the K, parameter in the GMM process is set to 3
which can generates since 1 to 3 components depending on the
data distribution.

RY. o ) s

Fig. 3. Object Segmentation using the GMM process. Left
image: sponge point cloud; Right: Gaussian density func-
tions.

Fig. 4 shows examples of object segmentation by GMM clus-
tering. The clustering is based on the distribution of the points.
The number of points of the object model may influence the
segmentation. The same object acquired by the same sensor
modality has similar segmentation. The coloured region in each
object represents the points belonging to the same cluster. in
this example to test the efficiency ogf the segmentation process
we have used point cloud from different sensor modalities such
as: laser scanner, in-hand exploration (magnetic tracker) and
Kinect device.

3.3 Shape Approximation using Superquadrics

The human studies show that segmenting the object shape and
associating them to geometrical primitives (geons), we are al-
lowed to identify easily the object components and estimating
candidate regions to grasp (for instance, object handle), reduc-
ing the possible number of grasp configurations.

For extraction of primitives, in this work we are adopting the
known technique namely superquadrics. The advantage of this
technique is the higher variety of shape options and also due to
the facility of computing the parameters that enclose important
cues such as scale and orientation. Superquadrics has been
used for 3D object modelling Barr (1981) and for segmentation
of point cloud Chevalier et al. (2003), in robotics (novelty
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Fig. 4. Daily objects (wii-mote, mug, sponge, bottle, ladle
and Nintendo nunchuck) segmentation using GMM. These
objects were acquired by different sensor modalities to test
the segmentation. Top row: laser scanner; bottom row: in-
hand exploration (bottle and sponge); Kinect device (ladle
and mug).

detection) Jr. et al. (2010) and successfully in other works for
grasping purposes.

After the segmentation process, the points of each Gaussian
density function will represent a shape primitive. For that, to
estimate the parameters of the superquadric model, the gradi-
ent least-square minimization based on Levenberg-Marquardt
method Chevalier et al. (2003) is used. More details can be
found in Jaklic¢ et al. (2000).

Figures 5 and 6 show examples of superquadrics models
achieved using daily objects such as sponge and wii-mote.

Fig. 5. Object (sponge) shape approximation using su-
perquadrics model. The superquadrics was generated for
each component of the object: prim1 and prim2 = rounded
boxes.
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Fig. 6. Object (wii-mote) shape approximation using su-
perquadrics. The superquadrics was generated for each
component of the object: priml=box; prim2=box;
prim3=plane

The main contribution of this work is not focused on the object
modelling, but it is an important step used to reach the final
goal of estimating the suitable region as graspable using also
the knowledge acquired from human demonstration.

4. LEARNING OBJECT GRASPABLE REGION FROM
HUMAN DEMONSTRATION

Through human demonstrations and object properties informa-
tion, we can identify types of grasping, contact points locations
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of stable grasps as well as the human choice for object gras-
pable region.

In our experimental setup, the data acquisition system records
human hand and fingers 6D pose using a magnetic tracking
system (Polhemus Liberty), tactile (Tekscan Grip) forces dis-
tributed on the inside of the hand. Thus, with the volumetric
information of the object we can overlay the contact points
given by human demonstrations on the object surface. The
forces distribution for each contact point is also kept in each
of the respective cell of the object map where the contact point
is. This can be used in the future to reproduce stables grasps in
a robotic platform. Since we have the volumetric map with the
contact points overlaid on the surface of the object, we know
the chosen region of the object for grasping.

4.1 Candidate Contact Points on the Object Surface

We keep the contact points location through the 3D positions
of the fingers (acquired by the magnetic tracker sensors) when
a subject touch the object (i.e. the tactile sensors are active).
The contact points location are overlaid on the object surface
(cells location in the object map) easily since we are working in
the same frame of reference. Our framework also allows multi-
modal perception, for that, it is needed a calibration process to
work in the same frame of reference, e.g. the calibration shown
in Faria et al. (2009).

Fig.7 shows examples of contact points overlaid on the object
surface. The figure presents some objects grabbed by a human
subject with a successful stable grasp during a manipulation
task.
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contact points
. during a stable grasp

' object's center of mass

Fig. 7. Examples of contact points of stable grasps from hu-
man demonstration on the object surface. The objects are:
sponge, mug, wooden cat, bottle.

Other relevant information we have extracted from human
demonstrations is the grasp type associated to the disposition
of the contact points on the object surface. Given the 3D
coordinates of the contact points, we compute the Euclidean
distances between the fingertips, i.e. distance between thumb
and index, index and middle, and so on. The distances measure
of each contact point to the object centroid are also computed,
then an average between the contact points distances to the
centroid is computed. Adopting the squared mean distance we
can define some classes of possible grasp type by analysing a
threshold to distinguish each class, e.g. top grasp, side grasp,
grasp by handle, etc. The mentioned threshold to associate to
a grasp type is found after many observations of the same
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grasp type (average). The steps to extract a grasp type given
the contact points on the object surface are:

1y,
D;==-Y & 4
f N; 4

where d = \/(px—qx)*>+ (py — qy)*> + (p: — g:)* (Euclidean
distance between two fingers).

The same step of (4) is computed for D., the distance between
a contact point and the object centroid.

Given a new observation of stable grasp, after computed the
contact points distances, we can associate it to a pre-defined

grasp by:

1, (Tf,min <Dy< Tf,max) and
grasp = (Tc,min < Dc < Tc,max) (5)
0, otherwise
where grasp € {top-grasp, side-grasp, grasp-by-handle}; Ty
and T, are thresholds found by using the standard deviation
computed from all contact points representing a grasp type.

In this work we are assuming just three possible candidate
grasps for the daily objects to extract relevant information
from human demonstration as well as to evaluate the men-
tioned approach. Given the contact points acquired from the
human demonstration, we are associating them into the follow-
ing classes: top-grasp, side-grasp and grasp-by-handle without
paying attention in a detailed grasp taxonomy, e.g. if the grasps
are power or precision grip or even in the hand shape to verify
if is a cylindrical grasp or any other type. This detailed infor-
mation is not needed in this work because our main focus is on
the decision when the system faces an object to find the most
suitable region for grasping. Here we show the possibility of
taking advantage of the human demonstration to assist in this
approach.

After some trials of human demonstration on how to grasp an
object given the objects models and the contexts, we could build
a probability table to distinguish what kind of grasping is more
probable to happen in each specific situation and also the object
region that was chosen for the grasping. Usually the grasp type
can be strongly associated to the region of the object, e.g. side
grasp happens in the body (middle part) of the object, grasp-by-
handle in the designed part of the object to grasp (the handle of
a mug, umbrella or bucket), and top grasp happens in the top
region of an object. An example is shown in Fig. 8 where we
can see the possible grasps during three different tasks: pick-
up and place, pick-up and pour and pick-up and lift. In these
trials a mug was used. The object orientation for all trials was
the handle of the object turned to the right side to the subjects
view. The orientation of the object can influence the choice of

grasping.
4.2 Learning Object Graspable Region in Task-oriented Grasps

Given a set of observations to represent a specific task .7,
with 7 € {pick-up and place; pick-up and lift; pick-up and
pour/tilt}, we have the probability of each type of grasp rep-
resented as P(G|Z). The probability distribution for each type
of grasp g € G is computed as follows:
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Fig. 8. Chosen Grasps in different contexts: Grasps types were
detected as well as the object region that was chosen for
the initial grasp. Probability tables were built observing
the occurrences of grasp types and the object region that
was chosen given the context.

P(gi) = %- (6)
where g; is the number of occurrences of a specific grasp type
and G is the total number of possible grasps.

To identify the object graspable region we verify the locations
of the contact points on the object surface and then we know
that position is associate to a specific superquadric model that
represents a component of an object. Given a set of observa-
tions to represent a task 7, we have the probability of each
object component (geometrical primitive represented by a su-
perquadric model) C € {prim,, primy, prims} being the gras-
pable region P(C|.7"). It is computed in a similar way as shown
in (6) where each component of the object has a probability
associated to be the graspable region given the context by com-
puting the occurrences based on humans’ choices for the object
region defined as graspable.

Fig.9 shows some learned tables of the chosen object graspable
part after the human demonstration. The three objects shown
(mug, bottle and wii-mote) have three components; the chosen
primitive is the object component with higher probability after
multiples observation.

Based on the learning phase, some analysis can be carried out,
for instance, observing the human choice given a combination
of superquadrics models. Instead of keeping just the probability
table achieved during the learning associated to an specific
component of object such as mug, bottle, etc., we can store the
priorities given the combination of primitives based on those
probabilities. When a mug is used during the human demonstra-
tion, we can use the combination of primitives such as cylinder-
cylinder-bend cylinder, storing the human choice for this com-
bination. Other example is the bottle, it can be represented as
a combination of three cylinders, each one with an associated
probability. This way, in the future, since we cannot recognize
the object, for example, given a unknown object, after the
mixture distribution-based process and the superqadrics models
representation, we can achieve a combination of known primi-
tives, and through this information we can search for the exact
stored combination achieved during the demonstration/learning
or at least for a similar one, that is, some combination that
encloses at least one similar primitive to be possible to use the
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Fig. 9. Learned table of object graspable part. Three different
tasks performed many times by 5 different individuals.
By analysing the probability distribution of the chosen
primitives to perform the grasp we can estimate the object
graspable part given the task context. For the mug the three
primitives represents a cylinder, the same for the bottle.
The wii-mote is composed of 2 boxes primitives and a
primitive representing a plane.

probability of the graspable component to take a decision on
which component of the object to grasp.

5. OBJECT GRASPABLE REGION IDENTIFICATION

The object graspable region can be identified applying the
Bayes theorem. Given a task context .7, to identify the object
graspable region C, first is needed to detect the object geometri-
cal primitives c. The probability distributions are obtained from
the occurrence statistics acquired with the datasets of the given
task.

Given a context .7, we can estimate the object graspable part C
as follows:

P(y|C:C,‘)P(C:C,’)
YP(T|C=cj)P(C=c))

P(C=c|7)= %

where the posterior information P(C = ¢;|.7 C) is computed
for each primitive C of the object in a specific task .7; the
likelihood P(.7 C|C = ¢;) is the learned probability for each
primitive of the object given a task context as explained in the
previous sub-section. The normalisation factor is the sum of the
probability of each object primitive being the graspable region.

A basic example of this application is given during the grasping
planning, when a robot needs to execute a task. After detecting
the object and its geometrical primitives, using the learned
information from human demonstrations, the robot can identify
the object graspable region for possible suitable grasps.

After learning a set of objects and task context, when the object
is observed again in the same context, the system is able to
detect the graspable part as shown in figure 10. The graspable
component is chosen according to the maximum a posteriori
(MAP) estimate.

In case of unknown objects, we have adopted a generalisation
process, reusing the prior knowledge for other contexts, for
instance, if a unknown object has one primitive in common
with a known object, a similar grasp can be attempted. The
unknown object falls to a familiar object, i.e. after the object
segmentation process (applying the superquadrics model), this
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Task: Pick-up and pour

& Object | Graspable | Graspable
= Component | Probability

sponge a1 0.99

Task: Pick-up and place

Object | Graspable | Graspable
A Component | Probability
W\ 8 c1

sponge 0.99

Fig. 10. Identification of object graspable parts for the sponge,
wii-mote and mug. Each component has a probability
of being graspable, the maximum a posteriori estimate
indicates the graspable component in each context.

object will have known geometrical primitives. Given a task,
a Bayesian classification as shown in (7) is computed for each
object primitive to infer the most probable object primitive for
that task.

The feasibility and the quality of the work is somehow depen-
dently on how a given object is represented after the segmenta-
tion and how its components are matched to a specific model.
This way, the system can generate the hypotheses of regions on
objects being graspable.

6. CONCLUSION AND FUTURE WORK

The outputs of this work can be used as a strategy in robotic
applications for grasping purposes. A volumetric map of the
object was used to overlay the partially observed volume of the
object with data about human hand-object contact points and
tactile forces which helps to identify the chosen region of the
object for grasping. Preliminary results suggest the suitability
to find a graspable region given an object model and the context
since we acquire relevant observed information on how to grasp
an object. The segmentation of the object into components
will facilitate future matching for an artificial system observing
objects and searching for data on how to perform successful
grasps inside a specific context. The segmentation step shows
to be promising, but it is strongly dependent of the point cloud
distribution. The Bayesian theory shows to be a good option
to estimate the object region for grasping. In future work we
intend to extend this framework to deal also with contact points
and their generalization for unknown objects and test the object
grasping with a real robot hand using a quality measure.

ACKNOWLEDGEMENTS

This work is partially supported by the HANDLE project,
which has received funding from the European Communi-
tity’s 7th Framework Programme under grant agreement ICT
231640; Khalifa University, Abu Dhabi, UAE and by the Por-
tuguese Foundation for Science and Technology with scholar-
ships for D.R. Faria and R. Martins. We are thankful to Paulo
Drews for providing the script to plot the superquadrics results.

REFERENCES

Asada, H. and Asari, Y. (1988). The direct teaching of tool ma-
nipulation skills via the impedance identification of human
motion. In /IEEE ICRA.

252

Barr, A.H. (1981). Superquadrics and angle preserving trans-
formations. In IEEE Computer Graphics and Applications,
1(1):1123.

Biederman, I. (1987). Recognition-by-components: A theory
of human image understanding. Psychological Review, 94,
115-147.

Bohg, J. and Kragic., D. (2010). Learning grasping points with
shape context. Robotics and Autonomous Systems, 58(4),
362-377.

Chevalier, L., Jaillet, F., and Baskurt, A. (2003). Segmentation
and superquadric modeling of 3d objects. WSCG, 11, 232—
239.

El-Khoury, S. and Sahbani, A. (2010). A new strategy com-
bining empirical and analytical approaches for grasping un-
known 3d objects. robotics and Autonomous Systems, 58(5),
497-507.

Faria, D.R., Martins, R., Lobo, J., and Dias, J. (2010). Prob-
abilistic representation of 3d object shape by in-hand ex-
ploration. In IEEE/RSJ Int. Conf. Intelligent Robots and
Systems.

Faria, D.R., Aliakbarpour, H., and Dias, J. (2009). Grasping
movements recognition in 3d space using a bayesian ap-
proach. In The 14th Int. Conf. on Advanced Robotics.

Goldfeder, C., Allen, P.K., Lackner, C., and Pelossof, R. (2007).
Grasp planning via decomposition trees. In /IEEE Int. Conf.
on Robotics and Automation.

Hubner, K. and Kragic, D. (2008). Selection of robot pre-grasps
using box-based shape approximation. In /EEE Int. Conf. on
Intelligent Robots and Systems.

Jakli¢, A., Leonardis, A., and Solina, F. (2000). Segmentation
and Recovery of Superquadrics, volume 20. Kluwer.

Jr., PD., Nunez, P., Rocha, R., Campos, M., and Dias., J.
(2010). Novelty detection and 3d shape retrieval using su-
perquadrics and multi-scale sampling for autonomous mo-
bile robots. In IEEE ICRA’10. ISBN 978-1-4244-5040-4/10.

Kang, S.B. and Ikeuchi, K. (1995). Toward automatic robot
instruction from perception-temporal segmentation of tasks
from human hand motion. IEEE Trans. on Robotics and
Automation, 11, 670-681.

Kawasaki, H., Furukawa, T., Ueki, S., and Mouri, T. (2009).
Robot teaching based on motion analysis and hand manipu-
lability for multi-fingered robot. Journal of Advanced Me-
chanical Design, Systems, and Manufacturing, 3, 1-12.

Li, Y. and Pollard, N. (2005). A shape matching algorithm for
synthesizing humanlike enveloping grasps. In 5th IEEE-RAS
Int.Conf. on Humanoid Robots, 442—449.

Miller, A.T., Knoop, S., Christensen, H.I., and Allen, P.K.
(2003). Automatic grasp planning using shape primitives.
In IEEE Int. Conf. on Robotics and Automation.

Richtsfeld, M. and Vincze, M. (2008). Grasping of unknown
objects from a table top. In ECCV Workshop on Vision in
Action: Efficient strategies for cognitive agents in complex
environments.

Rissanen, G. (1978). Modeling the shortest data description.
Automatica, 14, 465-471.

Saxena, A., Driemeyer, J., Kearns, J., and Ng, A.Y. (2007).
Robotic grasping of novel objects. Neural Information
Processing Systems, 19, 12091216.



	247

