

João André Nunes Agnelo

A ROBUSTNESS TESTING APPROACH FOR
RESTFUL WEB SERVICES

Dissertation in the context of the Master in Informatics Engineering, Specialization in
Software Engineering, advised by Prof. Nuno Laranjeiro and Prof. Jorge Bernardino and

presented to
Faculty of Sciences and Technology / Department of Informatics Engineering.

September 2020

A
 R

O
B

U
ST

N
ES

S
T

ES
TI

N
G

 A
P

P
R

O
A

C
H

 F
O

R
 R

ES
TF

U
L

W
EB

 S
ER

V
IC

ES

Jo

ão
 A

n
d

ré
 N

u
n

es
 A

gn
el

o

Faculty of Sciences and Technology

Department of Informatics Engineering

A robustness testing approach for
RESTful Web Services

João André Nunes Agnelo

Dissertation in the context of the Master in Informatics Engineering, Specialization in Software
Engineering advised by Prof. Nuno Laranjeiro and Prof. Jorge Bernardino and presented to the

Faculty of Sciences and Technology / Department of Informatics Engineering.

September 2020

This page is intentionally left blank.

Abstract

Robustness is the degree to which a certain system or component can operate correctly in
the presence of invalid inputs or stressful environmental conditions. With the increasing
complexity and wide-spread use of software systems, obtaining assurances regarding their
robustness has become of vital importance. This is especially true in mission- or business-
critical systems where a failure may have severe consequences on the business or in human
lives. Web services, in particular, are often exposed to abnormal and malicious input that
could lead to serious issues, such as loss of data and information disclosure.

Most modern web companies, including Google, Instagram, Spotify and Slack, are sup-
ported by REST services (also known as REST APIs), a type of software system that
follows the relatively loose REST architectural style. In this type of scenarios, hetero-
geneity is prevalent and software is sometimes exposed to unexpected conditions that may
activate residual bugs, leading service operations to fail, which may result in financial or
reputation losses (e.g., information disclosure). Robustness is, therefore, a key property in
REST services.

In this dissertation, we present a systematic literature review on software robustness test-
ing, and an approach and tool (named bBOXRT) for performing robustness tests over
REST services. We begin by performing a comprehensive analysis, in the form of a sys-
tematic literature review, of the state of the art on software robustness testing, which we
complement with an overview of the related work on REST API testing. This allows us to
show that multiple techniques and tools for robustness assessment have been thoroughly
studied and applied to a large diversity of domains, but REST services still lack practi-
cal approaches that specialize in robustness evaluation. We fill-in this gap by proposing
bBOXRT, a tool for testing the robustness of REST services solely based on minimal
information present in their interface descriptions.

We used bBOXRT to evaluate an heterogeneous set of 52 REST services that comprise
1351 operations and fit in distinct categories (e.g., public, private, in-house). We were able
to disclose several different types of robustness problems, including issues in services with
strong reliability requirements and also a few security vulnerabilities. The results show
that REST services are being deployed online holding software defects that harm service
integration, and also carrying security vulnerabilities that can be exploited by malicious
users.

Keywords

Software testing, software robustness, robustness evaluation, web services, RESTful web
services, REST API

iii

This page is intentionally left blank.

Resumo

Robustez é o grau com que um certo sistema ou componente pode operar corretamente na
presença de entradas inválidas ou condições de stress. Com o aumento da complexidade e o
uso alargado de sistemas de software, obter garantias quanto à sua robustez tornou-se uma
tarefa essencial. Isto é especialmente verdade nos sistemas críticos (quanto à sua missão
ou ao seu objetivo de negócio) onde uma falha pode ter consequências graves no negócio
ou em vidas humanas. Os serviços web, em particular, são frequentemente expostos a
entradas inesperadas ou maliciosas que podem levar a problemas graves, tais como perda
de dados e divulgação de informação.

A maioria das empresas web modernas, incluindo a Google, o Instagram, o Spotify e o
Slack, são suportadas por serviços REST (também conhecidos como APIs REST), um tipo
de sistema de software que segue o estilo arquitetural REST. Neste tipo de cenários, a
heterogeneidade é dominante e o software é, por vezes, exposto a condições inesperadas
que poderão ativar bugs residuais, levando à falha do serviço, o que poderá resultar em
perdas financeiras ou de reputação (e.g., divulgação de informação). A robustez é, como
tal, uma propriedade essencial em serviços REST.

Nesta tese, apresentamos uma revisão sistemática da literatura sobre testes de robustez
em software, e uma abordagem e uma ferramenta (bBOXRT) para a execução de testes de
robustez em serviços REST. Começamos por realizar uma análise exaustiva, sob a forma de
uma revisão sistemática da literatura, do estado da arte sobre testes de robustez em soft-
ware, que complementamos com uma visão geral do trabalho relacionado sobre testes em
APIs REST. Isto permite-nos mostrar que, embora várias técnicas e ferramentas para avali-
ação de robustez já tenham sido estudadas em detalhe e aplicadas a uma grande variedade
de domínios, os serviços REST ainda necessitam de abordagens práticas especializadas na
avaliação de robustez. Propomos preencher esta lacuna com a bBOXRT, uma ferramenta
para testar a robustez de serviços REST que necessita apenas de uma pequena fração da
informação presente nas suas descrições de interface.

A bBOXRT foi usada para avaliar um conjunto heterogéneo de 52 serviços REST que
englobam 1351 operações e se inserem em diferentes categorias (e.g., públicos, privados,
in-house). Com esta avaliação, conseguimos revelar vários tipos de problemas de robustez,
incluindo problemas em serviços com elevada necessidade de confiabilidade e também al-
gumas vulnerabilidades de segurança. Os resultados mostram que os serviços REST estão
a ser postos em operação online contendo ainda defeitos de software que prejudicam a sua
integração, e também apresentam vulnerabilidades de segurança que podem ser exploradas
por utilizadores maliciosos.

Palavras-Chave

Testes de software, robustez de software, avaliação de robustez, serviços web, serviços web
RESTful, API REST

v

This page is intentionally left blank.

Acknowledgments

This work has been partially supported by the European Union’s Horizon 2020 research
and innovation program under the Marie Sklodowska-Curie grant agreement No. 823788
(project ADVANCE); by the project METRICS, funded by the Portuguese Foundation for
Science and Technology (FCT) – agreement No. POCI-01-0145-FEDER-032504; by the
project MobiWise: From mobile sensing to mobility advising (reference: P2020 SAICT-
PAC/0011/2015), co-financed by COMPETE 2020, Portugal 2020 - Operational Program
for Competitiveness and Internationalization (POCI), European Union’s ERDF (European
Regional Development Fund), and the Portuguese Foundation for Science and Technology
(FCT); and by the TalkConnect project “Voice Architecture over Distributed Network”
(reference: POCI-01-0247-FEDER-039676), co-financed by the European Regional Devel-
opment Fund, through Portugal 2020 (PT2020), and by the Competitiveness and Interna-
tionalization Operational Programme (COMPETE 2020).

Regarding personal acknowledgments, I would like to thank my MSc thesis advisors Prof.
Nuno Laranjeiro and Prof. Jorge Bernardino for their endless patience and wisdom in this
long-lasting endeavor. This work has given me much knowledge regarding how to formally
approach a research proposal, and it has made me grow as an engineer. One particular
takeaway from this work, is that in the future I must apply greater effort to the planning
stage of a large project such as this, as time is the most valuable resource.

vii

This page is intentionally left blank.

Contents

1 Introduction 1

2 Background 5
2.1 REST architecture . 5
2.2 Software testing concepts . 8

3 Related work on software robustness evaluation 13
3.1 Systematic review plan . 13

3.1.1 Analysis of related surveys . 14
3.1.2 Systematic review research questions 15
3.1.3 Identification of studies . 16
3.1.4 Study selection and quality assessment 17
3.1.5 Data extraction and synthesis . 17
3.1.6 Outcome of the study identification and selection 18

3.2 Analysis of studies on software robustness evaluation 19
3.2.1 Operating systems . 19
3.2.2 Communication systems . 27
3.2.3 Embedded systems . 31
3.2.4 Middleware . 38
3.2.5 Software components . 42
3.2.6 Web services . 49
3.2.7 Autonomous and Adaptive systems 55

3.3 Discussion . 58
3.4 Highlights and research challenges . 63

4 Related work on REST service testing 67
4.1 Studies on REST service testing . 67
4.2 Tools for REST service testing . 72
4.3 Discussion . 80

5 Approach and robustness testing tool architecture 85
5.1 Approach overview . 85
5.2 Tool architecture and operation . 86

6 Experimental evaluation 92
6.1 Experiments description . 92
6.2 Experimental results . 94
6.3 Main findings . 101

7 Threats to validity 104

8 Conclusions and future work 107

ix

This page is intentionally left blank.

Acronyms

API Application Programming Interface. 1, 2, 6–8, 22–25, 27, 34, 37, 46, 59–61, 64, 65,
67–72, 74–83, 85, 86, 107, 130, 131

bBOXRT black-BOX tool for Robustness Testing of rest services. 2, 3, 85, 86, 89, 92–94,
107, 131

BPEL Business Process Execution Language. 52, 54, 74, 80

CORBA Common Object Request Broker Architecture. 40, 42

COTS Commercial Off-The-Shelf. 19, 20, 22, 24, 33, 42, 43, 46, 48, 59

DBMS Database Management System. 43

DDS Data Distribution Service. 41, 42

DoS Denial-of-Service. 26, 41

DPI Driver Programming Interface. 24, 25

DSL Domain-Specific Language. 75, 78

FSM Finite State Machines. 29, 31, 37

FTP File Transfer Protocol. 74

GUI Graphical User Interface. 20, 47, 77

HA High Availability. 40, 42

HLA High Level Architecture. 39–42

HTML Hypertext Markup Language. 5, 49, 53, 100

HTTP Hypertext Transfer Protocol. 1, 2, 5–8, 19, 28, 49, 54, 67–80, 82, 85–87, 98

IaaS Infrastructure as a Service. 41

IOLTS Input-Output Labelled Transition System. 29–31, 35

IPC Inter-Process Communication. 25, 26, 33

JMS Java Message Service. 38, 40–42

JSON JavaScript Object Notation. 1, 5–8, 75–79, 82, 85–87, 96, 98, 100

LEAP Localized Encryption and Authentication Protocol. 30, 31

LoC Lines of Code. 93

xi

Acronyms

LTS Labelled Transition System. 35

MACD Move, Add, Change, Delete. 27, 31, 40, 62, 63

NAS Non-Access Stratum. 30, 31

OData Open Data Protocol. 6

ORB Object Request Broker. 40

POSIX Portable Operating System Interface. 22, 23, 25, 27

QoS Quality of Service. 8, 41, 55

RADIUS Remote Authentication Dial-In User Service. 31

RAML RESTful API Modeling Language. 6, 74, 76, 80, 82, 86

REST Representational State Transfer. 1–3, 5–8, 11, 55, 59, 65, 67–72, 74–83, 85, 86, 89,
93, 101, 107, 130–132

RPC Remote Procedure Calls. 26, 40

RSDL RESTful Service Description Language. 6

RTI Run-Time Infrastructure. 39, 40

RTOS Real-Time Operating System. 33, 35–37

SIP Session Initiation Protocol. 19, 30, 31

SMTP Simple Mail Transfer Protocol. 28, 74

SOAP Simple Object Access Protocol. 1, 2, 19, 49–55, 59, 61, 74, 75, 77, 78, 80, 89, 102

SQL Structured Query Language. 2, 87, 93, 94, 98, 101, 102

STS Symbolic Transition System. 53, 54

TA Timed Automata. 31, 35, 37

TIOA Timed Input-Output Automata. 34, 36

TPC Transaction Processing Performance Council. 2, 102

TTCN-3 Testing and Test Control Notation-3. 29–31

UML Unified Modeling Language. 42, 46, 47, 69

URI Uniform Resource Identifier. 1, 2, 5–7, 69, 76, 78, 79, 82, 85–87

URL Uniform Resource Locator. 65, 73, 75–78, 86

V&V Verification and Validation. 1, 105

WADL Web Application Description Language. 69, 70, 74, 80

WAP Wireless Application Protocol. 27, 30, 31

WSDL Web Services Description Language. 1, 49–53, 55, 74, 80, 89

WSN Wireless Sensor Network. 30, 31

WWW World Wide Web. 1, 5

XML eXtensible Markup Language. 5–7, 49, 51, 54, 68, 75, 76, 78

xii

This page is intentionally left blank.

List of Figures

2.1 General architecture of a REST web service. 7
2.2 Example of white-box (a) and black-box (b) testing, inspired by [1]. 9
2.3 The V-Model for software development and testing, adapted from [1, 2]. . . 10

3.1 Ballista project approach for assessing operating system robustness, adapted
from [3]. 22

3.2 TTCN-3 robustness test case generation in [4]. 29
3.3 Robustness evaluation of an embedded system (inspired by the approach in

[5]). 33
3.4 Robustness evaluation of the middleware supporting a distributed system,

inspired by [6]. 40
3.5 Robustness evaluation of a COTS application with emulation of a faulty

Operating System [7]. 43
3.6 Robustness evaluation of a web application, by triggering error handling

code [8]. 49
3.7 Approach for robustness evaluation of SOAP web services based on mutated

WSDL documents [9]. 51
3.8 Evaluating the robustness of a self-adaptive system controller (adapted from

[10]). 57
3.9 Distribution of publications per system type over the years. 58
3.10 Distribution of publications per technique over the years. 59
3.11 Distribution of evaluation techniques per system type. 60
3.12 Distribution of publications per technique target over the years. 60
3.13 Distribution of evaluation targets per system type. 61
3.14 Distribution of publications per fault type over the years. 62
3.15 Distribution of fault types per system type. 62

4.1 Fuzzing approach for testing REST APIs, inspired by [11]. 69
4.2 Browser extension tool for REST API testing, inspired by Postman [12]. . . 74
4.3 Distribution of REST API testing techniques over the years. 81

5.1 Conceptual view of the approach. 86
5.2 bBOXRT architecture. 86

6.1 Distribution of the successful faults over the service sets. 95
6.2 Prevalence of the behavior tags in the tested services. 95

A.1 Gantt chart showing the expected versus the actual work plan. 131

xiv

This page is intentionally left blank.

List of Tables

3.1 Identification and selection process using Google Scholar 18
3.2 Number of studies analyzed in the related surveys 18
3.3 Techniques for evaluating the robustness of operating systems 21
3.4 Techniques for evaluating the robustness of communication systems 28
3.5 Techniques for evaluating the robustness of embedded systems 32
3.6 Techniques for evaluating the robustness of middleware 39
3.7 Techniques for evaluating the robustness of software components 44
3.8 Techniques for evaluating the robustness of web services 50
3.9 Techniques for evaluating the robustness of autonomous and adaptive systems 56
3.10 Classification schemes used in the state of the art 64

4.1 Techniques for testing RESTful web services 68
4.2 Industry tools for testing RESTful web services 73

5.1 Fault model . 88
5.2 Behavior tags . 90

6.1 Results of the experimental evaluation for Sets 1 and 2 97
6.2 Results of the experimental evaluation for Sets 3-5 99

xvi

This page is intentionally left blank.

Chapter 1

Introduction

Software systems are nowadays pervasively being used to support businesses, allowing peo-
ple to use services in multiple domains, such as banking, aerospace, online entertainment,
healthcare, product manufacturing and autonomous vehicles, just to name a few [13]. Soft-
ware is expected to operate in a robust manner when facing unexpected conditions, as a
single failure may strongly affect the users or the software provider. This is especially true
in mission-critical software, where a failure may have disastrous consequences on human
lives [14]. Web services are particularly susceptible, as they are often exposed to issues
arising from abnormal and malicious input which, when left unchecked, may lead to serious
issues such as loss of data and disclosure of private information.

Most modern web systems are supported by Representational State Transfer (REST) ser-
vices [15], a type of software system that follows the REST architectural style, which is
essentially based on the principles that support the World Wide Web (WWW) [16]. In
short, a REST service (also known as a RESTful service, a Web Application Programming
Interface (API), or a REST API) relies on a Uniform Resource Identifier (URI) for the
identification of each of its resources (e.g., a user profile, a purchase order), and on the Hy-
pertext Transfer Protocol (HTTP) for exchanging messages (which are usually JavaScript
Object Notation (JSON) documents). The use of HTTP includes the presence of an HTTP
verb (e.g., GET, PUT, POST, DELETE) that specifies the type of operation that should
be executed over the identified resource [16].

Major companies like Google, Instagram, Spotify, or Slack are now providing access to their
services via REST APIs. In fact, the use of other types of interfaces to expose services
is now residual, at least considering popular sites on the web [15]. REST is a relatively
loose architectural style and some rigid aspects that are present in other similar styles or
technologies (e.g., Simple Object Access Protocol (SOAP) services), like the mandatory
presence of an interface description document (e.g., a Web Services Description Language
(WSDL) document), lost their meaning in REST [16]. At the time of writing, there is
no standard way of describing the interface of a REST service although the OpenAPI
specification [17] is gaining popularity to the point of a quasi-standard [15].

The less rigid access to REST services opens space for unexpected inputs to be sent by client
applications, potentially triggering residual faults that were not caught by Verification and
Validation (V&V) activities performed by developers (e.g., static analysis, code inspections,
unit testing). Although it may be acceptable for a client to make mistakes and invoke a
certain operation with wrong parameters (e.g., out of bounds or in the wrong format), it
is not acceptable that the server crashes or returns some kind of incorrect response. This
is especially true when the service is supporting a business- or mission-critical activity.

1

Chapter 1

The additional software layer and tools required to provide REST services also add com-
plexity to the development, with the developer now having to focus on new tasks like
matching the right HTTP verbs to certain operations, specifying arguments in different
ways (e.g., in REST, many times a certain argument can be found as a path parameter,
i.e., it is part of the URI that identifies a resource [15]), or correctly documenting the
API of a REST service. For instance, a mismatch between the service documentation and
the actual implementation may lead clients to perform wrong invocations by introducing
mistakes in the request payload. Regardless of what is sent by a client, the service must
be prepared to respond in a robust manner.

Robustness is the degree to which a certain system or component can function correctly
in the presence of invalid inputs or stressful environmental conditions [18], and has been
the target of several studies in the last decades. Koopman et al. [3, 19] have most notably
conducted work on the operating systems domain, but, especially due to the valuable out-
comes produced by robustness testing, numerous authors have designed approaches and
tools for other domains. These include communication software [4, 20, 21], embedded sys-
tems [22, 23, 24], middleware [25, 26, 27], self-adaptive systems [10], web applications [28],
and SOAP services [29, 30, 31]. Despite this variety of explored domains, the robustness
of REST services has been largely disregarded by researchers and practitioners.

In this dissertation, we present a systematic literature review on software robustness testing
which highlights a gap in approaches for evaluating the robustness of REST services, and
we aim at filling this gap by proposing an approach and a black-BOX tool for Robustness
Testing of rest services (bBOXRT). We begin by thoroughly analyzing the state of the
art on software robustness testing, in the form of a systematic literature review, and we
also explore the related work on REST API testing. We use the gathered knowledge to
emphasize the absence of academic and industry support for solutions to evaluate the
robustness of REST APIs, a problem which we aim to solve by proposing a novel approach
and tool.

Our approach for testing the robustness of REST APIs starts with a service description
document of a REST service, and generates a set of invalid inputs (e.g., empty and bound-
ary values, strings in special formats, malicious values) that are sent to the service in
combination with valid parameters. We implemented the approach in the form of a tool,
named bBOXRT, which can operate as a client application as well as a fault injection
proxy between another client and the server (i.e., without requiring information regarding
the service interface). Service responses are preliminarily analyzed for suspicious cases of
failure (e.g., the presence of exceptions in the response, response codes referring to internal
server errors), and are stored by the tool for a later detailed analysis by the tool user.

We demonstrate the usefulness of our approach and our tool’s capabilities by performing
tests over a set of 52 services (comprising 1351 operations) that fit in different types: public
services, middleware management services (i.e., Docker), services built in-house (i.e., two
Transaction Processing Performance Council (TPC) benchmarks), and private services. We
performed a total of 399901 tests, in which we disclosed a total of 24373 robustness prob-
lems. In addition to being important information for the service developers and providers,
results mostly show that bBOXRT is able to disclose different kinds of problems in the
tested services (e.g., usage of incorrect data types, missing input validation), which map to
different corrective actions (e.g., correcting a specification or fixing the implementation).
It was also able, despite not being its main focus, to disclose security issues (e.g., in ser-
vices carrying Structured Query Language (SQL) injection security vulnerabilities) as well
as private information (e.g., stack traces disclosing the service code structure, database
queries, database instance names).

2

Introduction

The main contributions of this dissertation are the following:

• A comprehensive analysis, in the form of a systematic review, of the different ap-
proaches proposed in the literature in the past decades for performing robustness
evaluation on software systems;

• The definition of an approach that specializes in evaluating the robustness of REST
services and requires minimal information regarding the interface of the service being
tested;

• A robustness testing tool, named bBOXRT, that implements our approach and is
readily available in [32] to be used by researchers and practitioners;

• The practical application of bBOXRT to an heterogeneous set of 52 REST services,
including business-critical services, in which it was able to show the presence of
several different software defects (including security vulnerabilities) and the presence
of bad programming practices, illustrating the overall usefulness of the approach.

The outcomes of this dissertation comprise the following two paper submissions, both of
which are, at the time of writing, under evaluation:

• A submission to the ACM journal on Computing Surveys (ACM CSUR) reporting
on the systematic literature review on software robustness evaluation;

• A submission to the Journal of Systems and Software (JSS) reporting on the design
of our approach for REST service evaluation, its implementation in the form of
bBOXRT, and the practical evaluation of bBOXRT.

The rest of this work is organized as follows. Chapter 2 provides some background on
concepts regarding the REST architecture and software testing. Chapter 3 presents a
comprehensive analysis, in the form of a systematic literature review, of the state of the
art on software robustness testing, and Chapter 4 provides an overview of the related
work, from both the academic and industry perspectives, on approaches for testing REST
services. Chapter 5 introduces our approach for testing the robustness of REST services,
and describes the architecture of our tool, bBOXRT, and its configuration properties.
Chapter 6 describes an experimental campaign carried out to evaluate our approach and
tool, presents the results of the evaluation, and highlights our main findings. Chapter 7
discusses the threats to the validity of this work. Finally, Chapter 8 concludes this work.
We additionally include Appendix A, where we present an overview of the work plan for
this dissertation and briefly discuss the positive and negative aspects of its execution.

3

This page is intentionally left blank.

Chapter 2

Background

In this chapter, we provide background on fundamental concepts regarding the main topics
of this dissertation, namely, Representational State Transfer (REST) services and software
testing. In Section 2.1 we introduce the REST architectural style, describe its supporting
ideas, and provide a small (but representative) example architecture of a REST service and
its composing elements. In Section 2.2, we detail the main characteristics that comprise
a software testing activity, and we briefly explain where robustness testing, a particular
focus of this work, fits in the context of software testing.

2.1 REST architecture

Introduced by Fielding in the year 2000 [16], REpresentational State Transfer (REST) is
an architectural style for distributed hypermedia systems (i.e., hypermedia is a generaliza-
tion of hypertext for content other than Hypertext Markup Language (HTML), such as
JavaScript Object Notation (JSON) or eXtensible Markup Language (XML) documents,
for example). It employs the client-server paradigm and is essentially based on the prin-
ciples that support the World Wide Web (WWW) [16], by using the Hypertext Transfer
Protocol (HTTP) for exchanging messages. The most common use of the REST architec-
ture is on web services (i.e., REST or RESTful services), and it is based on the following
set of principles [16, 33]:

• Client-Server : The server holds resources with which the client interacts by sending
requests to access and manipulate data. In a REST system, storage and interface
concerns must be properly separated.

• Stateless: No client state should be stored in the server between requests, therefore
each client request must contain all necessary information for the server to properly
interpret it.

• Cacheable responses: Responses must be defined as cacheable or non-cacheable (for
scalability purposes).

• Uniform interface

◦ Resource addressability : Every resource in a REST service should be referenced
by a unique Uniform Resource Identifier (URI).

◦ Manipulation of resources through representations: If a client holds a representa-
tion of a resource and any related metadata, it should hold enough information
to manipulate the resource.

5

Chapter 2

◦ Self-descriptive messages: Requests and responses must be self-descriptive, i.e.,
they should hold enough information to describe how to process them.

◦ Hypermedia As The Engine Of Application State: Also known as HATEOAS,
this principle states that server responses must provide links to related and
available resources, and requesting a new resource places the client in a new
state.

• Layered system: Server layers should be opaque to clients, and they cannot know
whether they are communicating with the end server or an intermediate one.

• Code on demand : If required, the server may send executable code (e.g., in the form
of JavaScript) to run on client-side.

REST systems expose their services through an interface, commonly referred to as a REST
or Web Application Programming Interface (API). A REST API relies on the use of URIs
to uniquely identify resources (i.e., metadata, files, or generally any other type of data),
and each resource must provide one or more actions to perform over it (e.g., modify,
remove). To achieve this, the REST architecture supports the use of the HTTP methods
GET, POST, PUT, and DELETE, where each holds its own semantic value [33, 34]. These
conveniently map to the CRUD operations (Create, Read, Update and Delete) which are
well known in the database context. For instance, the GET method accesses an existing
resource, and the POST method creates a new resource. The PUT method updates an
existing resource and DELETE removes it. Additional HTTP methods such as HEAD,
PATCH, CONNECT or OPTIONS are also considered in some REST services, but usually
more attention is given to GET, POST, PUT and DELETE [15].

In a REST service, each pair composed of a unique resource URI and an HTTP method
is referred to as an operation. An operation may optionally require parameters and a
payload to be provided (e.g., POST operations commonly expect a payload, while GET
may only contain parameters). Operation parameters can be defined in the HTTP headers
or in URI itself. Header parameters include HTTP cookies, and values defined in custom-
named headers. URI parameters include path parameters (i.e., variable parts of the URI,
commonly documented as <variable>, such as in the URI api/resource/<variable>
which could be instantiated as api/resource/child1) and query string parameters (i.e.,
defined after the ? special character at the end of the URI and separated with a &, such
as api/resource?param1=value1¶m2=value2). The operation payload, on the other
hand, is sent in the body section of HTTP requests, and even though most REST services
use JSON objects for representing payloads [15], other formats such as XML, plain text,
or even file formats (e.g., video files) are also widely accepted (mainly depending on the
business logic of the service in question).

The interface (i.e., API) of a REST service must be documented for developers to be
able to build fitting client applications. This documentation is usually written in API
specifications, and there are many known specification formats nowadays, including Open
Data Protocol (OData) [35], RESTful Service Description Language (RSDL) [36], and even
RESTful API Modeling Language (RAML) [37], just to name a few, but the most widely
accepted format is the OpenAPI specification (formerly known as Swagger) [17]. In an
API specification, apart from describing the available resource URIs, their HTTP methods,
and the parameters and payload used (if any), each operation can also detail the expected
responses by HTTP status code. For instance, for the 200 OK (i.e., success) response, one
may specify the HTTP response payload returned by the service, and for an error response
(e.g., 400 Bad Request) a different payload may be returned (e.g., containing a message
describing the error that occurred). This allows developers to verify if both the service

6

Background

implementation and its specification are in agreement regarding the different responses
returned.

Figure 2.1 depicts the general architecture of a REST service and a simplified representation
of how it communicates with a client.

Server

HTTP Connector

REST Framework

Service

Client

HTTP
request

HTTP
response

Figure 2.1: General architecture of a REST web service.

The client application is the one to initiate a communication, which is done by performing
an HTTP request, as we can see in Figure 2.1. As stated earlier, the HTTP request must
at least contain a URI for a valid resource in the server, as well an HTTP method which
the server implements for that resource (e.g., GET, for access). Parameters and payload
are optional and depend on what the targeted API operation requires. The HTTP request
is sent through the Internet as a sequence of bytes, and eventually arrives at the server.
The outermost component in the server, the HTTP Connector, is responsible for receiving
this sequence of bytes and converting it into a more suitable format (e.g., a programming-
level object). Malformed HTTP requests (i.e., those that do not conform to the HTTP
specification [38]) are immediately rejected, and the common course of action by most
REST frameworks is to send back to the client an HTTP response with a generic error
message.

Otherwise, if the received HTTP request is well-formed, it is then passed on to the REST
Framework component. Here, the contents of the request are interpreted in such a way that
the server may identify the API operation the client targets (i.e., through the resource URI
and the HTTP method used). If the specified URI does not match that of any resource
on the server or if, for instance, there are security requirements which the client does not
verify, this component halts the processing of the request and replies back to the client
with a fitting error message. Likewise, if the specified URI is valid, but the HTTP verb
does not match any of those the server implements for that resource (e.g., attempting a
POST on a resource for which the server only implements GET), the server will send a
response to the client with a suitable error message. In case the targeted API operation
requires parameters or a payload, this component will also verify their presence (e.g., in
case they are mandatory, as some inputs may be optional), extract them, and in the case of
media type-formatted payloads (e.g., a JSON object, or an XML document), the contents
of the HTTP request body (where the payload is located) will be tentatively converted
into the correct format. A malformed payload will again trigger the server to send an error
response back to the client.

Upon identifying the required API operation, the respective function of the Service com-

7

Chapter 2

ponent (i.e., that which implements the API operation’s logic) is called, and the inputs
extracted from the HTTP request (if any) are passed to it. Here the service may perform
calls to external systems which are outside of our scope, such as databases. The result from
the execution of the called function is returned back to the calling component, the REST
Framework, which may wrap it in a JSON object, for example. The necessary response
elements are sent back to the HTTP Connector, which encapsulates everything in a fitting
HTTP response object, serializes it into a sequence of bytes, and sends it back to the call-
ing client application through the Internet, thus concluding one successful request-response
communication cycle.

Multi-layered systems such as this, where various components with different responsibilities
interact with each other in a coordinated manner, are prone to their own set of issues (i.e.,
software defects), which may ultimately impact the overall Quality of Service (QoS). It is
thus necessary to apply fitting testing activities to REST services, as a way of disclosing
and correcting potential defects before they ever cause any real problems. In the following
section, we provide background on software testing by briefly explaining some of its essential
concepts.

2.2 Software testing concepts

Software testing is the process of verifying that computer code behaves as designed and
produces predictable results when executed [2, 39]. Contrary to passive verification meth-
ods such as design review, code analysis or formal methods such as inspections, software
testing is an active process because it requires computer code to be executed. The goal
of testing software is to find faults within its code (i.e., the root cause of a problem, also
known as a bug or a defect) whichthrough the , when executed, produce errors the (i.e.,
anusederror is the difference between a computed value and the theoretically correct value
[18]) which would ultimately result in a failure (i.e., the inability of a system or component
to perform a required function according to its specifications [18]). It is important to note
that software testing does not confirm the absence of code defects but, on the contrary,
it is intended to confirm their presence [2]. Software testing methods can be categorized
according to visibility (e.g., white-box) and granularity (e.g., system testing), which we
will discuss in more detail throughout the next paragraphs.

In software testing, visibility refers to the degree to which a testing activity accounts for
the logic and internal structure of the system or component under test. Full visibility of
the entity under test is known as white-box testing, and refers to situations where testers
(i.e., the users who define test cases) hold knowledge regarding its internal structure and
reflect that on the test cases they create [1, 2, 39] (e.g., by defining test cases which exercise
specific code paths of the functions under test). In Figure 2.2a, we show an example of
the control flow white-box testing technique, which essentially constructs the control flow
graph of the unit under test (i.e., a unit of code, such as a function) and evaluates all
possible paths in order to detect an infeasible one (i.e., a path which, based on the data
and decision structures involved, should not be reachable).

On the opposite side, lack of visibility regarding the system or component under test is
known as black-box testing, wherein the internal structure is unknown to the testers. In
this case, test cases are essentially based on available specification and interface definitions,
as well as any additional knowledge of the system on behalf of the tester [1, 39]. We show
in Figure 2.2b an example of the equivalence class partitioning black-box testing technique.
This technique works by dividing (i.e., partitioning) the value ranges of inputs to the system

8

Background

Application under test

Unit 1
Unit 3

Unit 4

Unit 5

Unit 2

(a) Control flow testing.

Testing
module

Application
output

Application
under test

Application
specification

Input
partition N

Input
partition 2

Input
partition 1

Application
input

(b) Equivalence class partitioning.

Figure 2.2: Example of white-box (a) and black-box (b) testing, inspired by [1].

under test into logical classes (e.g., distinguishing negative from positive numbers results
in two classes). Rather than selecting purely random inputs (i.e., which is not ideal for
large value ranges), testers may select at least one value (e.g., also randomly) from each of
the partitioned input classes. The correctness of the output returned by the system under
test is then verified against the specification. Note that an additional intermediate level,
called grey-box testing [40], also exists but is far less commonly used by software testers.

Regarding the granularity factor, it refers to the scale of a given testing activity, and
it is intrinsically related to the development life-cycle of a software system. Figure 2.3
shows the V-Model, adapted from [1, 2], a model which describes the main phases of a
software development process and how each phase relates with a specific testing activity.
In essence, the V-Model shows that while software development begins with coarse-grained
activities (e.g., definition of the requirements and functional goals) and eventually reaches
fine processes with a more focused scope, where smaller-scale elements are produced (e.g.,
code implementation), testing activities start by focusing precisely on those elements (i.e.,
units of code, using unit testing) and gradually increase in scope by integrating those
elements with each other (e.g., integration testing, system testing). Note that, in Figure
2.3, we included acceptance testing for consistency only, and it is not relevant to this work
as it is a user-centered testing activity, rather than focusing on implementation correctness
or specification compliance [1, 2].

During the software development process, the first testing activities begin in parallel with
the implementation phase (Figure 2.3). At this point, unit testing is introduced into
the development process, a fine-grained software testing activity for exercising logic and
data structures in individual units of code (e.g., functions, classes) [1, 2]. Unit testing is
generally carried out using white-box testing techniques (e.g., control flow testing, data flow
testing), as testers are interested in verifying that individual blocks of code are implemented
properly. In this testing activity, units of code are tested in isolation (i.e., there is no
communication with other units), which reduces the overall effort required to diagnose
problems and identify root causes, because fewer dependencies are involved.

Module testing is a larger-scale form of unit testing where individual modules are evaluated
in isolation (i.e., a module is a collection of related units assembled in a file, package, or
class). The goal is to assess whether the composing units of code interact with each other
in an expected manner [1]. The next level of testing during software development is called
integration testing, and it is here that the previously tested modules are integrated with
each other (i.e., their interfaces are connected, and the system under development begins to

9

Chapter 2

Requirements
definition

Objectives
definition

System specification
definition

System structure
design

Module interface
specifications

Implementation

Acceptance testing

System testing

Function testing

Integration testing

Module testing

Unit testing

Start of development End of development

Figure 2.3: The V-Model for software development and testing, adapted from [1, 2].

take shape). The main assumption of integration testing is that the modules that compose
the system work correctly [1], and the focus is primarily on assessing the correctness of
inter-module communication protocols [2].

The first black-box testing activity is function testing, where the (now fully integrated)
system is exercised using only knowledge regarding the interface and specification [1, 2].
Here, only the perspective of the user is considered (i.e., rather than the privileged perspec-
tive of the developer), and thus testing techniques such as equivalence class partitioning
or boundary value analysis are used to guarantee a good coverage of the existing input
value ranges defined in the system interface. The output of the system under test is then
checked against its specification to identify discrepancies (i.e., inconsistencies between the
implementation and the specification [39]).

We then reach system testing, whose main goal is to verify whether a software system
complies with its original objectives (e.g., quality attributes, such as availability or relia-
bility). For this, there must be a quantifiable and measurable way of assessing the level
with which a system complies with its intended objectives [1, 2]. There are many types
of system testing techniques, and the choice depends mainly on the quality attribute (i.e.,
system objective) that must be assessed. These include usability testing (i.e., user-centered
testing technique which assesses how intuitive and user-friendly the interface of a system
is), performance testing (i.e., used to verify that a system is able to complete certain tasks
within well-defined time or volume constraints), stress testing (i.e., assesses whether a sys-
tem is able to handle stress conditions caused by heavy workloads), security testing (i.e.,
evaluates the capability of a system to stop unauthorized users from accessing protected
system resources), and reliability testing (i.e., assesses the stability of a system by measur-
ing the mean time between consecutive failures within a given time-period), just to name
a few [2].

Closely related to reliability testing, and also a form of system testing, robustness testing
is the process of triggering design or programming faults within a given system in an

10

Background

attempt to induce incorrect operation (i.e., a robustness failure) [41]. Robustness testing
relies mostly on feeding limit condition (e.g., out-of-bounds values) or erroneous inputs
to the interface of a system. The measure of robustness of a system is given as the ratio
between the amount of test cases that expose robustness faults and the total number of
executed test cases [41]. A system is thus believed to be robust if it maintains nominal
operating behavior when exposed to external faults [42]. In this work, we are interested in
evaluating the robustness quality attribute (with particular focus on REST web services),
and in the following chapter we explore the existing state of the art on software robustness
testing.

11

This page is intentionally left blank.

Chapter 3

Related work on software robustness
evaluation

In this chapter, we present a systematic literature review on software robustness evaluation.
We start by describing, In Section 3.1, the methodology we propose for conducting this
review, where we analyze related surveys, present the research questions considered for
our review, explain how we identified and selected relevant studies, and how we analyzed
and synthesized the collected papers. In Section 3.2, we group the selected papers by type
of software system, and analyze all the research in each of the groups, placing particular
emphasis in the elements that allow us to answer the research questions. We then present
a discussion, in Section 3.3, where we answer each of the proposed research questions.
Finally, Section 3.4 concludes this chapter by highlighting clear gaps in the current state
of the art and identifying challenges for future research.

3.1 Systematic review plan

In this section, we present the methodology used to perform a systematic literature re-
view on software robustness evaluation, which is based on well-established guidelines for
conducting systematic reviews [43, 44], and is comprised of the following steps:

- Analysis of related surveys: We begin by identifying and analysing secondary
studies (i.e, surveys, other systematic reviews or mapping studies) that, at least
partially, cover the topic of software robustness evaluation. The related surveys are
analyzed so that gaps and limitations are identified and covered in our own discussion
(in Section 3.3).

- Definition of research questions: Based on the gaps identified in the previous
step, we define a set of research questions that form the objectives of our systematic
review.

- Identification of studies: We identify the data sources (e.g., search engines, online
libraries) that are used to identify relevant primary studies, i.e., the individual studies
that contribute to the review. We then identify the query used to perform the search
and the snowballing process [45] used to complement the identification of studies.

- Study selection: This step refers to the application of inclusion and exclusion
criteria on the primary studies found, as well as the quality assessment criteria used.

13

Chapter 3

The goal is to select the ones that agree with the goal and scope of our review.

- Data extraction and synthesis: In this step we extract the relevant data (i.e., ac-
cording to the research questions) from the selected primary studies. The information
is then synthesized to allow answering the research questions.

Each of these steps is described in further detail in the following subsections.

3.1.1 Analysis of related surveys

In the following paragraphs, we present related secondary studies (e.g., surveys, other
reviews) identified using the previously mentioned data sources. We identified the following
secondary studies:

- Zoltán Micskei, Henrique Madeira, Alberto Avritzer, István Majzik, Marco Vieira,
and Nuno Antunes. Robustness testing techniques and tools. In Resilience Assess-
ment and Evaluation of Computing Systems, pages 323–339. Springer, 2012.

- Ali Shahrokni and Robert Feldt. A systematic review of software robustness. Infor-
mation and Software Technology, 55(1):1 – 17, 2013.

- Syed Muhammad Ali Shah, Daniel Sundmark, Birgitta Lindström, and Sten F. An-
dler. Robustness testing of embedded software systems: An industrial interview
study.IEEE Access, 4:1859–1871, 2016.

Micskei et al. [41] survey the state of the art on robustness testing techniques and tools,
and show the evolution of basic testing techniques. The work identified a series of testing
techniques, and mapped them to a timeline ranging from the early 1990’s to the early
2000’s. The identified techniques, in chronological order, are physical fault injection, ran-
dom inputs, invalid inputs, type-specific tests, mutation techniques, and object-oriented
tests. Additionally, a set of commonly targeted system types were also identified, which
comprise state-based systems with a graphical user interface, high availability middleware,
real-time microkernels, online transaction processing systems, database management sys-
tems, and web services.

The authors note that, throughout the years, researchers have shifted from general tech-
niques which do not account for the specificities of the target system (i.e., physical fault
injection), to more modern software-implemented testing techniques (e.g., object-oriented
tests) which target a unique type of system (e.g., web services) with specific characteris-
tics. Also, the state of the art analyzed by the authors emphasizes the need for additional
studies on the identification of the most useful robustness models [41]. The analysis fo-
cuses on testing and does not consider techniques that are not based on testing. Also, it
is limited to the identification of testing techniques and systems, without further insights
being synthesized.

Shahrokni and Feldt [46] present a systematic review on the topic of software robustness,
in which the authors include primary studies whose main goal may not be robustness eval-
uation (e.g., robustness improvement, dependability assessment). The authors identified
a set of 144 works on software robustness, and categorized each according to the phase
of software development targeted by a study (e.g., requirements, evaluation), the type
of systems targeted, the type of research performed (e.g., philosophical paper, evaluation
paper), contribution of the study to the research community (e.g., tool, model), and the

14

Related work on software robustness evaluation

type of evaluation performed by the authors of a study (e.g., large academic evaluation,
no evaluation).

The authors observed that there is a lack of research contributions on software robust-
ness that focus on the requirements engineering phase of software development, and that
almost all studies focus on robustness issues caused by invalid inputs and ignore other
aspects such as stressful conditions. The areas with greater research focus are verification
and validation, design, and architecture solutions for robustness improvement (e.g., build-
ing a wrapper around the software to filter out faulty inputs). The main gap that the
authors highlight, is the fact that only a few studies cover elicitation and specification of
robustness requirements. Also, the authors concluded that there is a need for expanding
robustness research to real-world industry systems, and that many academic solutions are
not evaluated enough to be useful in industry contexts. Although the survey is quite in-
clusive [46], there is little insight regarding the approaches used, as the authors tend to
focus on processual aspects (e.g., type of research, type of contribution).

Shah et al. [47] present a review of the state of the art and practice in robustness testing
of embedded systems, across seven different domains. The authors show that the state
of the practice regarding robustness testing is quite different from the state of the art
described in the scientific literature. For instance, testing methods the authors found often
in the state of the art (e.g., fuzzing), are not used in the industry organizations the authors
studied. Instead, ad-hoc approaches are used, which take specific scenarios into account
(e.g., power failure or overload). Additionally, the authors also found that it is uncommon
for practitioners to categorize behavior of the systems under test.

The analysis of the identified secondary studies lead us to identify significant gaps, which
we believe are sufficient to motivate conducting a systematic literature review on software
robustness evaluation. In summary, the main gaps identified during the analysis of the
related surveys are as follows:

- The review carried out by Micskei et al. [41] is, in what concerns robustness evalua-
tion, mostly limited to the identification of testing techniques and targeted systems.
There is a need to discuss further synthesized knowledge regarding the technical
aspects of robustness testing approaches analyzed and also discussing robustness
evaluation approaches (e.g, model-based approaches that may not rely on testing).

- The systematic review by Shahrokni and Feldt [46] is the one that is closest to ours (in
terms of its goals) and has a strong focus on processual aspects (e.g., type of research,
type of contribution, phase of development targeted, evaluation size), rather than on
the technical aspects (e.g., types of faults used) involving each study.

- Shah et al. [47] focus in robustness testing of embedded systems, across different
domains. Besides the limited scope, other assessment techniques are not accounted
for, which emphasizes the need of a broader review.

The following subsection describes the research questions that serve to guide this systematic
review.

3.1.2 Systematic review research questions

Based on the analysis of existing secondary studies, we defined the following set of five
research questions that form the objectives of this literature review:

15

Chapter 3

• RQ-1: Which types of software systems are the subject of robustness evaluation?

• RQ-2: Which techniques are used to evaluate software robustness?

• RQ-3: Which are the targets used by software robustness evaluation approaches?

• RQ-4: Which types of faults are being used in software robustness evaluation?

• RQ-5: Which are the methods used to characterize robustness?

With the aforementioned research questions of this review, we mainly intend to analyze
the different types of approaches considered by researchers for evaluating the robustness of
software systems, by breaking down each approach into five parts. Specifically, in RQ-1 we
aim at identifying and systematizing the general types of systems that have been studied
by researchers (e.g., operating systems, web services); in RQ-2 we aim at identifying the
main different testing techniques considered (e.g., fault injection, static code analysis);
RQ-3 aims at a particular, but central, aspect of the techniques used, which is the entity
being targeted (e.g., a message, an API call, a model); RQ-4 aims at characterizing the
types of faults used is robustness evaluation (e.g., boundary inputs, timing faults); and
with RQ-5 we aim at understanding which are the methods used to classify behavior (e.g.,
a failure mode severity scale, binary classification).

3.1.3 Identification of studies

We used six well-known online libraries to search for primary studies. These are common
presence in related studies (e.g., [48, 49, 50]) and were selected to allow reducing any
possible search bias [43]. The data sources are the following:

- Google Scholar [51];

- DBLP [52];

- IEEE Xplore [53];

- ACM Digital Library [54];

- Scopus [55];

- Springer Link [56].

Google Scholar was our first selection of data source as it is known to index a quite large
number of works. We then complemented this first search by using the remaining identified
sources in order. To perform the search, we used the following query string, built based
on preliminary observations using the respective search engines of the online libraries:

("software robustness" OR "system robustness") AND ((test OR testing) OR (benchmark
OR benchmarking) OR (assessment OR assessing) OR (evaluation OR evaluating))

We found a need to group robustness with software or with system (i.e., "software robust-
ness", "system robustness") which instructs the search engines to perform a literal match.
This was due to the fact that the word robustness is very frequently used in other domains
(e.g., medical, statistics) and by not grouping these pairs the search would mostly include

16

Related work on software robustness evaluation

results unrelated with our context of interest. Also, our preliminary observations and pre-
vious knowledge indicates that words like assessment, evaluation, testing, or benchmarking
are strongly used in software robustness evaluation research. So, we included variations of
these words in the remainder of the query string, making it is less likely to miss relevant
papers.

It is also worthwhile mentioning that, as a complement to the online search and with
the goal of enriching the set of selected studies, we also used snowballing [45]. Thus, we
analyzed the references of each identified work (to identify further related studies, not
captured by the query string used in the different sources). We also analyzed the research
that cites the identified studies, using the citation information available in Google Scholar.

3.1.4 Study selection and quality assessment

We filtered the identified studies mostly by applying a set of inclusion and exclusion criteria,
which determine whether a particular primary study should be kept or discarded. Being
aware of the error prone and complex process of quality assessment that may result in
erroneously excluding papers from the review [57], we applied a conservative and objective
criteria of including only peer-reviewed publications in our survey. We added this to the
inclusion/exclusion criteria, which, in this sense, already take the quality assessment aspect
into consideration. The inclusion and exclusion criteria we considered for this systematic
review are the following:

• Inclusion Criteria:

– A study whose main focus is set on the evaluation (in lato sensu) of robustness
of software systems.

– The study should be sufficiently complete to allow answering the identified set
of research questions.

• Exclusion Criteria:

– A study whose main focus is set on extraneous robustness aspects (e.g., the def-
inition of techniques for improving robustness), although may have a robustness
evaluation part, should be excluded.

– Non-peer and uncited reviewed research should be excluded from the review.

To apply these criteria, we went through three pruning phases. In a first phase analyzed
the title of a publication, a quite fast method for discarding unsuitable results. Because at
this level we have little information for selecting studies (i.e., only the title), we found it
to be over-inclusive. The second pruning phase was based on reading the abstract of each
identified study and deciding if it should be included. We were conservative and included
the work, even in the cases where the abstract was vague (i.e., because exclusions should be
done with as much information as possible). In a third pruning phase, we read the full text,
with focus on the description of the approach to decide about its inclusion or exclusion.

3.1.5 Data extraction and synthesis

This final step consists of reading each identified primary study and gathering informa-
tion regarding each approach. Reading was performed with the five research questions
in mind, thus we gathered information regarding the type of system being evaluated, the

17

Chapter 3

technique(s) used, the target of each technique, the types of faults used, and the methods
to characterize robustness. As the authors use very diverse terms, this was carried out it-
eratively, starting first with the collection of the specific terms used by the authors, which
were then individually discussed and, whenever applicable, iteratively generalized to more
widely accepted consensual terms. This process involved discussion and agreement by an
Early Stage Researcher and an Experienced Researcher.

3.1.6 Outcome of the study identification and selection

We performed the online search on the 20th of July 2020, from which we obtained over
16300 results from our first data source, Google Scholar. Searching through the remaining
sources allowed us to obtain 125 results from DBLP, 642 from IEEE Xplore, 2136 from
Springer Link, 1612 from Scopus, and 793 from ACM Digital Library. As we later observed
that the results reported by Google Scholar included all works retrieved from the other data
sources, to simplify the presentation, we now report only on the list of works identified by
Google Scholar. Table 3.1 presents the outcome of the study identification and selection.

Table 3.1: Identification and selection process using Google Scholar

Source Total results Title pruning Abstract pruning Content pruning Snowballing Final

Google Scholar 16300 173 144 119 13 132

As we can see in Table 3.1, although we started with a quite large set of works, title
pruning allowed to quickly reduce the set. We must also note that snowballing contributed
to about 10% of the final set of papers selected. Table 3.2 sets the outcome of this process
in perspective with what is analyzed in related surveys. At the left-hand side, the table
identifies the related surveys, the respective periods analyzed in each survey, the total
number of papers analyzed and how many of those relate to robustness evaluation. At the
right-hand side the table shows the number of papers that were not considered for analysis
by the authors of each survey (and are included in our own survey) within each period of
analysis, outside each period of analysis, and a total count.

Table 3.2: Number of studies analyzed in the related surveys

Period Total Robustness # of papers not considered
papers evaluation Inside period Outside period Total

Micskei et al. [41] 1988-2010 32 20 65 47 112
Shahrokni and Feldt [46] 1990-2011 144 42 48 42 90
Shah et al. [47] 1990-2014 22 20 94 18 112
This work 1990-2020 132 132 – – –

As we can see in Table 3.1, the outcome of the identification and selection of studies has
resulted in the fact that our systematic review analyzes a comparatively larger number of
papers, even considering the closest survey to our context by Shahrokni and Feldt [46]. The
differences in the number of works analyzed are still clear even if we limit the comparison
to the periods analyzed by other surveys. This is a natural consequence of the different
process followed in our systematic review, which lead to a more extensive identification of
related work on robustness evaluation.

18

Related work on software robustness evaluation

3.2 Analysis of studies on software robustness evaluation

This section presents the studies selected during our review of the state of the art on
robustness evaluation. The different works are organized throughout the next subsections
according to the distinct types of systems targeted, which we found to concentrate around
the following seven groups:

• Operating systems: General purpose operating systems were the first systems
targeted by robustness evaluation research [3], and are widely regarded as a prominent
case. As such, this type was selected to initiate the analysis.

• Communication systems: A broad category encompassing different types of net-
work systems (e.g., sensor networks) and including communication protocols imple-
mentations (e.g., Session Initiation Protocol (SIP)) [58].

• Embedded systems: Systems generally designed to handle a certain single specific
task (i.e., in contrast with general-purpose systems) and are frequently part of a
larger system. They are often used in mission-critical environments, where quality
attributes like timeliness or safety are usually important [59, 60].

• Middleware: Software that supports the operation of other software and lies be-
tween different layers of a more complex system [61]. In the case of this work, we
consider a broad definition that includes classic middleware (e.g., Message-Oriented
Middleware implementations, middleware management services like OpenStack or
Docker).

• Software components: In this group, we mostly consider Commercial Off-The-
Shelf (COTS) software components and applications, or other types of reusable soft-
ware components (e.g., libraries) [62, 63].

• Web services: Client-server software that mostly relies on the Hypertext Transfer
Protocol (HTTP) protocol for message transport, this includes services that mostly
interact with human users (e.g., via a browser) or services for heterogeneous ap-
plication integration, such as Simple Object Access Protocol (SOAP) web services
[64, 65].

• Autonomous and adaptive systems: Systems that are able to adjust to changes
in the the surrounding dynamic environment, usually using a feedback loop mech-
anism for performing the necessary adaptations that allow the system to reach the
desired goals [66].

The next subsections go through each of the aforementioned types of systems. For each
type of system, we begin by summarizing its main characteristics, and then we go through
main aspects like the technique used by each work (e.g., fault injection), the target of the
technique (e.g., messages, system calls) and the types of faults considered (e.g., round-
off errors, timing faults). We also graphically represent one illustrative case per type of
system, where we try to show the main concepts involving the selected robustness testing
approach.

3.2.1 Operating systems

Operating systems are the software layers upon which applications run in most computer
devices, and these applications use the operating system to interface with the hardware [67].

19

Chapter 3

A failure in an operating system (e.g., caused by an application erroneously calling system
functions) may put at risk all other applications running on top of it, as all of them rely on
its correct operation [19]. Thus, robustness becomes an essential property for guaranteeing
the correct functioning of operating systems [3]. Robustness evaluation techniques have
first been applied in the operating systems domain in the nineties [3, 68, 69], but this
research topic has remained relatively active until recently [70, 71].

In this subsection, we review existing approaches for robustness evaluation of general-
purpose operating systems, including mobile operating systems. More specific cases such as
real-time operating systems are discussed in Section 3.2.3. Table 3.3 holds an introductory
short summary of the main types of systems, techniques, main technique targets (i.e., what
a given technique focuses on), types of faults, and behavior classification schemes used to
evaluate the robustness of operating systems. We also include the number of works found
for each of these items. Note that some works use more than one technique or type of fault
(for example), which means that the sum of the numbers in a given column may not add
up to the total number of works described in this section.

The next paragraphs present the related work targeting this type of systems, by the end
of this subsection we briefly analyze the evolution of the robustness assessment techniques
for operating systems, and a more detailed discussion is left for Section 3.3.

Miller et al. presented, in 1990, the fuzz robustness testing technique, and applied it to a
large set of command line utilities across 7 different UNIX systems [68]. The fuzz technique
works by randomly generating strings composed of printable, control and NULL characters,
and feeding them as input arguments to the command utility under test. Over the years, the
authors explored different environments and applications to test with the fuzz technique,
having also covered graphical applications. These are tested by generating random mouse
and keyboard events (e.g., key up/down, multiple mouse clicks, mouse drags) in order to
simulate the actions of human users. In the following years, the authors applied this testing
method to X-Window Graphical User Interface (GUI) applications [81], and to Win32 GUI
applications [89]. A later study published by the same authors [82] focused on several
command line utilities and GUI applications of the UNIX-based Mac OS X operating
system. Having covered a time span of more than a decade testing different operating
systems and several of their native applications, the authors concluded that operating
system developers have continued to make similar robustness mistakes throughout the
years, and that the same kinds of bugs were observed in the four studies.

Suh et al. present a robustness benchmark suite, composed of four primitive robustness
benchmarks targeting specific operating system functionalities, such as the file management
system, memory access, user application, and C library functions [86]. The authors tested
the file management system using random inputs, the memory access functionality was
tested by reading from and writing to random addresses, and by attempting to write past
the boundaries of a static string, the user application was tested with stuck-at memory
faults (i.e., forcing one or more bits to the value 1), and the C library functions were tested
using random input values. In a very similar paper, the following year, Siewiorek et al
[85] tested these four components from multiple UNIX-like systems (e.g., SunOS, Ultrix,
Mach, AIX, HPUX), and the authors encountered several errors resulting from robustness
problems, which lead the authors to label the tested systems as having a low level of
robustness.

Koopman et al. describes a portable robustness assessment method for evaluating the
dependability of COTS operating systems [3], which has been developed in the context of
project Ballista. The approach is carried out in a distributed manner, with the target com-
puter running the operating system being tested, a Test process (responsible for carrying

20

Related work on software robustness evaluation

Table 3.3: Techniques for evaluating the robustness of operating systems

Systems Android Feng and Shin [72], Maji et al. [73], Sasnauskas and Regehr [74], Ye et al. [75]

UNIX-like Acharya et al. [76], Albinet et al. [77], Cong et al. [70], Kanoun et al. [78],
Koopman and DeVale [19, 79], Koopman et al. [3], Kropp et al. [80], Miller et al.
[68, 81, 82], Montrucchio et al. [83, 84], Shelton et al. [69], Siewiorek et al. [85],
Suh et al. [86], Velasco et al. [71], Xiang et al. [87]

Win32 Durães and Madeira [88], Forrester and Miller [89], Johansson et al. [90], Kanoun
et al. [78], Mendonça and Neves [91], Shelton et al. [69]

WinNT Durães and Madeira [88], Ghosh et al. [92], Schmid et al. [93], Shelton et al. [69]
Techniques Code changes injection Durães and Madeira [88]

Fault injection Albinet et al. [77], Cong et al. [70], Durães and Madeira [88], Ghosh et al. [92],
Johansson et al. [90], Kanoun et al. [78], Koopman and DeVale [19, 79], Koopman
et al. [3], Kropp et al. [80], Mendonça and Neves [91], Montrucchio et al. [83, 84],
Schmid et al. [93], Shelton et al. [69], Siewiorek et al. [85], Suh et al. [86], Velasco
et al. [71], Xiang et al. [87]

Fuzzing Feng and Shin [72], Forrester and Miller [89], Maji et al. [73], Miller et al. [68,
81, 82], Sasnauskas and Regehr [74], Ye et al. [75]

Interception Albinet et al. [77], Cong et al. [70], Johansson et al. [90], Kanoun et al. [78]

Model-based analysis Acharya et al. [76]

Static code analysis Acharya et al. [76], Sasnauskas and Regehr [74]
Targets Application address space Siewiorek et al. [85], Suh et al. [86]

Command arguments Miller et al. [68, 81, 82]

Device driver calls Albinet et al. [77], Johansson et al. [90], Mendonça and Neves [91], Xiang et al.
[87]

Function calls Koopman and DeVale [19], Siewiorek et al. [85], Suh et al. [86]

GUI elements Miller et al. [81, 82], Forrester and Miller [89]

IPC messages Feng and Shin [72], Maji et al. [73], Sasnauskas and Regehr [74], Ye et al. [75]

Kernel address space Montrucchio et al. [83, 84], Velasco et al. [71]

Machine code Durães and Madeira [88], Sasnauskas and Regehr [74]

Specification Acharya et al. [76]

System calls Cong et al. [70], Ghosh et al. [92], Kanoun et al. [78], Koopman and DeVale
[19, 79], Koopman et al. [3], Kropp et al. [80], Schmid et al. [93], Shelton et al.
[69], Siewiorek et al. [85], Suh et al. [86], Xiang et al. [87]

Faults Bit-level faults Johansson et al. [90], Montrucchio et al. [83, 84], Siewiorek et al. [85], *Suh et
al. [86], Velasco et al. [71]

Boundary inputs Albinet et al. [77], *Ghosh et al. [92], Kanoun et al. [78], Schmid et al. [93],
Siewiorek et al. [85], Suh et al. [86], Xiang et al. [87]

Invalid inputs Albinet et al. [77], Cong et al. [70], Ghosh et al. [92], Kanoun et al. [78],
Koopman and DeVale [19, 79], *Koopman et al. [3], Kropp et al. [80], Mendonça
and Neves [91], Schmid et al. [93], Shelton et al. [69], Xiang et al. [87]

Invalid return values *Schmid et al. [93]

Programming errors *Durães and Madeira [88]

Random inputs Albinet et al. [77], Feng and Shin [72], Forrester and Miller [89], Ghosh et al. [92],
Maji et al. [73], *Miller et al. [68, 81, 82], Sasnauskas and Regehr [74], Siewiorek
et al. [85], Suh et al. [86], Ye et al. [75]

Classification 5 categories Kanoun et al. [78], Koopman and DeVale [19, 79], Koopman et al. [3], Kropp et
al. [80]

4 categories Johansson et al. [90], Mendonça and Neves [91]

3 categories Xiang et al. [87]

Binary Acharya et al. [76], Albinet et al. [77], Cong et al. [70], Durães and Madeira
[88], Feng and Shin [72], Forrester and Miller [89], Ghosh et al. [92], Maji et al.
[73], Miller et al. [68, 81, 82], Montrucchio et al. [83, 84], Sasnauskas and Regehr
[74], Schmid et al. [93], Shelton et al. [69], Siewiorek et al. [85], Suh et al. [86],
Velasco et al. [71], Ye et al. [75]

21

Chapter 3

out the tests), and a Starter process that initiates testing and carries out several startup
tasks (e.g., opening sockets). Another computer serves as a watchdog, receiving health
check messages from the Test process. The overall setup used is illustrated in Figure 3.1.

Monitor computerTest computer

Operating System
Under Test

Test Process

Starter Process Watchdog Process

Kernel API
Invalid

+
valid

inputs

network

Figure 3.1: Ballista project approach for assessing operating system robustness, adapted
from [3].

The approach works by first identifying a set of system calls in the operating system
Application Programming Interface (API), and defining a set of valid and invalid inputs
for each data type in the set of call parameters. Invalid inputs represent limit conditions
or values holding special characteristics (e.g., NULL, maximum data type value, 0, 1, -1,
values that are equal to or that exceed the valid domain of a certain argument), which
tend to be the source of robustness problems.

The proposed approach was applied to a set of UNIX-like operating systems by targeting
the kernel functions read, write, open, close, stat and fstat, which mostly take as parameters
memory buffers, flag parameters (constant integer values), buffer lengths and file names,
and present a predefined set of values to use for each of these data types. For instance,
in the case of file handles (internally, integer values), the authors considered the value -1,
NULL and handles to a i) valid but closed file, ii) valid but opened file or iii) to a deleted
file. Clearly, the NULL value represents an invalid file handle, while the a handle to an
open file represents a valid file handle value. The authors consider that these selected valid,
invalid and limit parameter values are more prone to trigger faults.

Finally, the authors propose a scale for qualitative categorization of robustness faults
based on the severity of the failure, named CRASH. The five categories of this scale are:
Catastrophic - operating system crashes or multiple tasks affected; Restart - process hangs
and requires restart; Abort - process aborts; Silent - exception was not signaled but should
have been; and Hindering - incorrect exception signaled.

Kropp et al. introduce the Ballista tool in [80]. Ballista is a testing tool that supports
automatic generation and execution of black-box robustness tests through the interfaces
of COTS software components. This only requires that testers have information regarding
function parameters and data types. The approach is composed of the following steps:
i) establishing an initial system state, ii) executing a single call (with a test case) to the
module under test, iii) assessing any disclosed robustness issue, and iv) restoring system
state. Robustness problems found during testing are categorized according to the CRASH
robustness scale [3]. The Ballista tool was tested on several Portable Operating System
Interface (POSIX) operating systems, and the authors consider the approach to be effec-
tive because most of the setup effort revolves around mapping parameter data types to

22

Related work on software robustness evaluation

applicable faults, and test cases are automatically created.

In [19], Koopman and DeVale present the results of a robustness comparison of a set of
POSIX operating systems, based on a multi-version comparison technique (i.e., multi-
or N-version programming is the concept of using different implementations of a given
specification as a way of increasing dependability). If at least one of N systems in the setup
signals an exception (e.g., by reacting to invalid input), a robustness fault is attributed to
the versions which did not signal it, which the authors call the one-of-N version comparison
strategy. This approach produces a number of false-positives, which the authors mitigated
by automatically excluding all non-exception test cases (i.e., those in which none of the
versions signalled an exception), and also by performing a manual verification of a sample
of test cases. The experimental evaluation relies on the Ballista tool that is used to target
a set of system calls and C library function calls.

The main outcomes of the aforementioned work [19] include the following: i) using multi-
version allowed to detect Silent failures (i.e., failure to report an exceptional case) and
also to filter out non-exceptional cases; ii) conformance issues to POSIX were detected in
POSIX-certified systems; iii) The diversity of the systems used would not allow for perfect
robustness even if the best systems were to be combined; iv) C library calls were less robust
than operating system calls (and also not highly diverse in terms of robustness, despite
their different implementations).

Following their work in operating systems robustness, Koopman et al. have also presented
a more mature Ballista-based approach in [79], which was used to assess the robustness of
fifteen different POSIX implementations.

In [69] Shelton et al. present the results of a robustness evaluation of Linux and several
Win32 operating systems, namely Windows 95, 98, 98 SE, NT, 2000 and CE. The authors
aim at setting a starting point for comparing certain dependability aspects across different
platforms, thus, unlike the Ballista project, the focus is set on similar functionality (even if
with different interfaces) across the different systems under test. To assess the robustness of
these operating systems, the authors rely on an implementation of the Ballista robustness
testing methodology [80].

The authors selected a set of systems calls from the Win32 API and another set of system
calls from the Linux API of similar functionality (to allow for comparison). Certain system
calls (e.g., graphics-oriented) were discarded in order to avoid targeting driver-specific
code. Results showed that the APIs of Linux, Windows 2000 and NT are more resistant
to exceptional inputs, with the remaining Windows family operating systems showing low
robustness and often crashing. The approach revealed that, over time, developers have
become more aware of the need for robust commercial operating systems (i.e., results show
older Windows operating systems containing far more robustness problems), as these are
the base upon which business, utility and even critical applications are executed, where
consequences of robustness faults range from inconvenient to costly.

Ghosh et al. [92] present a black-box approach for assessing the robustness of Windows NT
software using the Random and Intelligent Data Design Library Environment (RIDDLE)
tool. RIDDLE generates random, invalid and boundary (i.e., around the upper and lower
domain boundaries of a data type) inputs from an interface specification of the target
system, with the generated inputs being syntactically valid, despite anomalous. The work
targeted Windows NT system utilities and a port of GNU utilities, with the former showing
fewer failures in presence of anomalous inputs.

Schmid et al. [93] describe two automated approaches for black-box testing the robustness

23

Chapter 3

of Windows NT operating systems. The first is based on using a test data generator to
analyze the robustness of Windows NT Dynamic Link Libraries (i.e., the Windows NT
API). The data generator can create generic data (i.e., not dependent on the component
under test) and intelligent data (i.e., test data targeting the component under test). While
generic data can be used for any function, independently of parameter data types, one
intelligent data generator only targets a specific data type (i.e., there must be as many
intelligent generators as there are data types). These algorithms create valid, invalid and
also boundary test input. The other approach uses the Failure Simulation Tool (FST) to
evaluate the consequences of operating system robustness issues on running applications.
FST sits between the target application and the operating system, and injects faults in
return values of operating system calls performed by the application. Returned values
include exceptions and error codes specific to the corresponding operating system function
that was called.

A paper by Durães and Madeira evaluates the behavior of COTS operating systems in
the presence of faulty device drivers through software fault emulation [88]. The authors
use the Generic Software Fault Injection Technique (G-SWFIT), presented in more detail
in Subsection 3.2.5, which essentially injects faults, in the machine code of the target
system driver, that emulate common programming errors (e.g., missing or wrong variable
initialization, missing function call). G-SWFIT was evaluated on the floppy disk and CD-
ROM drivers of three versions of the Windows operating system (i.e., NT4 SP6, 2000 SP1
and XP).

A work by Albinet et al. [77] assesses the robustness of the Linux kernel to faulty device
drivers, by injecting faults on the parameters of the kernel through the Driver Programming
Interface (DPI). This works by intercepting driver calls to the target kernel functions and
replacing the values of parameters with one of three corrupted values for each data type
(i.e., the midpoint and the boundary values). The authors consider the data types integer,
unsigned integer, unsigned short, and memory pointers. Mutations for memory pointers
are the NULL value, the maximum pointer value or a random value. The testing procedure
takes the following steps: i) uninstalling the driver under test; ii) installing it to ascertain
successful driver registration; iii) performing a series of calls to test the driver; and iv)
uninstalling the driver once more to ascertain successful driver unregistration. The authors
evaluate robustness issues according to both the application and the driver perspectives.

In a work by Kanoun et al. [78] robustness is used as a measure in the definition of a
dependability benchmark for Windows and Linux operating systems. In what concerns
robustness, the evaluation process relies on intercepting system calls, and corrupting call
parameters. Parameter mutation is data type-based, and generated values are either out
of range or incorrect but within range (i.e., boundary and invalid values), although a
set of predefined valid values are also considered. Pointer parameters are mutated to
existing but incorrect values (e.g., a valid address with invalid data). The authors use
a set of five qualitative dimensions to categorize test results, which cover hanging, error
return, exception, panic state (i.e., the operating system is running but not servicing the
application) and no-signal results.

Acharya et al. describe a framework for automatically infer system interface specifications
from source code based on the combination of model checking and static analysis [76]. A
model checker is first used to generate traces related to the interface of the system under
test, and from these traces a set of interface-specific details are inferred, such as return
values, and success or failure conditions. The resulting specifications are used to identify
verifiable robustness properties inherent to the system under test, which is performed
through static analysis. The authors implemented the proposed approach and evaluated

24

Related work on software robustness evaluation

it on a set of 60 POSIX APIs, and in 22 the framework successfully inferred the interface
specifications and was able to detect a total of 28 robustness problems.

Mendonça and Neves evaluate the robustness of Windows XP, 2003 server and Vista,
when faced with erroneous input from faulty device drivers [91]. Unexpected values are
injected in functions of the Windows Device Driver Toolkit (DDK), and the behavior
of the operating system is observed. The types of values injected are meant to simulate
acceptable values, missing initialization of variables, forbidden values (i.e., values explicitly
documented as incorrect), out of bounds values, invalid pointers, null pointers and failure
to call initialization functions which are required. The test results were classified with one
of four failure modes, including no failure, application/system hangs, system reboots and
system reboots and files are corrupted.

Johansson et al. study the sensitivity and accuracy of robustness evaluation results from
injecting faults into calls that operating systems perform on drivers [90]. The approach
works by intercepting calls made by the operating system to the target driver. Each
available parameter of a given call is chosen, and each of its composing bits is flipped
(i.e., all bits of all parameters are eventually flipped once). The call is then finalized the
returned to the operating system, and its behavior is analyzed and classified in one of
four classes: no failure (class NF); deviation from golden run (class 1); specification is
violated (class 2); and operating system is unresponsive due to crash or hang (class 3).
The authors performed an experimental evaluation of the approach on two device drivers
(cerfio_serial.dll and 91C111.dll) on the Windows CE platform, and results show a high
number of robustness problems.

Maji et al. evaluated the robustness of the Inter-Process Communication (IPC) mechanism
in the Android mobile operating system through fuzz testing [73]. The approach is based
on randomly generating Intent objects (used by the Android run-time as a data container
for passing messages between processes) and assessing how robust Android processes are at
handling them. The authors evaluated the approach on more than 800 different application
components across 3 versions of the Android system, which reveals low quality exception
handling code, the existence of environment-dependent errors, and, from a security per-
spective, the presence of privileged components with unbounded access.

Xiang et al. [87] describe a multi-layered approach for testing the robustness of Linux-
based operating systems. The proposed approach injects faults (e.g., bit-flips considering
just one bit, two bits, and 32 bits, minimum integer, illegal file pointer) at three distinct
layers in the software under test, namely the API, the DPI and at the kernel level (i.e.,
system calls). Test results are classified with: restart - when a process restarts after a fault
is injected); abort - when the process throws a fatal exception after a fault is injected);
or pass - when the process does not behave abnormally after a fault is injected. The
authors evaluated the approach on hundreds of functions of Redhat versions 6.0 and 9.0
and Redhat Enterprise Linux version 5.1. About 12% of test cases resulted in system
aborts or restarts, with most issues being related to directory management, semaphores
(i.e., synchronization), time and string handling system functions.

Ye et al. propose a tool, named DroidFuzzer, to test the robustness of applications in
the Android portable operating system [75]. DroidFuzzer parses Activity objects (i.e.,
activities are Android objects that describe executable processes where user interaction
is expected) and extracts input information. This information is used to automatically
generate random inputs to use in robustness test cases. This data is provided as input
to the respective applications and DroidFuzzer monitors them to detect if a crash occurs
(i.e., robustness issues are detected automatically). The authors evaluated DroidFuzzer
on three different Android applications. Results include the disclosure of 14 different bugs

25

Chapter 3

across the tested applications, and the detection of one known vulnerability.

Sasnauskas and Regehr describe Intent Fuzzer, a framework for testing the robustness of
applications in the Android operating system using a combination of static analysis and
randomly generated tests [74]. The approach is based on extracting information regarding
Intent objects from the target application, and performing static analysis on its bytecode to
understand how these objects are accessed for reading their data. The collected information
is then used to randomly generate Intent objects and are sent to the application under test.
During testing, Intent Fuzzer monitors crashes and, if code is available (e.g., open-source
applications), code coverage is monitored as well. The approach was evaluated on 10
well-known applications, triggering crashes and restarts, and operating system reboots.

Cong et al. present in [70] an approach for automatically testing the robustness of operat-
ing system device drivers, which works by running tests on specific drivers and collecting
execution traces. The collected trace information is automatically analyzed to identify
which of the functions called may cause execution to fail. For each identified function,
a fault scenario (i.e., a test case) is generated, containing a set of faults to inject. The
proposed method for fault injection is based on intercepting all calls done to the operating
system kernel, and returning erroneous results to the calling device driver. The approach
implements a feedback technique for increasing test coverage, which is based on actively
attempting to disclose new fault scenarios during testing. The authors evaluated 12 differ-
ent drivers, with focus on three types of functions (memory allocation, memory map and
Direct Memory Access (DMA), and Peripheral Component Interconnect (PCI) interface),
and were able to disclose a total of 28 severe bugs.

Feng and Shin performed robustness testing on the IPC mechanism [72], a subsystem of the
Android mobile operating system for facilitating processes to communicate securely with
each other. This occurs via Remote Procedure Calls (RPC) and assuming a client-server
logic. The authors exploit the fact that this mechanism trusts client processes by default,
and does not properly verify their call parameters. BinderCracker, the tool described
by the authors, is capable of fuzzing transactions (i.e., inject input with random values)
of this mechanism. The authors evaluated their approach on six major versions of the
Android system, covering over 170 services. Results show that BinderCracker disclosed
more than 100 vulnerabilities, including cases of privileged code execution and Denial-of-
Service (DoS).

Kernel-based fault Injection Tool Open-source (KITO) is a fault injection tool for eval-
uating the effects of faults in memory containing data structures from UNIX operating
systems, specifically the structures related to resource synchronization management [71].
KITO is based on the concepts presented in earlier studies by the authors [83, 84]. Es-
sentially, a module must be first inserted into the kernel (i.e., to obtain higher execution
privileges), which activates a timer upon being loaded. When the timer ends, the module
performs a bit-flip at a specific kernel-space memory address. The target memory address
is customizable, and three options exist: a user-defined address; a UNIX kernel symbol
- the module automatically obtains the base address of a UNIX data structure; process
descriptor - a task_struct data structure with relevant process synchronization information
used by the operating system scheduler subsystem. The authors evaluated KITO on four
applications with different I/O, memory and processing requirements. The results show
that the synchronization module of the Linux kernel is sensitive to a large set of soft er-
rors, resulting in severe performance degradation or crashes of the application issuing the
system calls.

In summary, work on operating system robustness assessment has first targeted the kernel,
perhaps most notably with the work carried out within the Ballista project [3, 19, 69,

26

Related work on software robustness evaluation

79, 80]. The usual cross-cutting concept is the presence of a testing tool that exercises
the kernel via a certain API (e.g., POSIX) and uses a combination of valid and invalid
inputs (e.g., boundary value inputs, anomalous, infrequent) to carry out the tests. The
first works on robustness testing shared similar components (even if implicitly, and besides
the experimental procedure), namely the use of a workload (e.g., calls to the system with
valid values to assess its normal behavior), a faultload (e.g., a set of faults to inject on the
parameters of system calls), and a way to classify failures (e.g., the CRASH scale). Some
difficulties started to became obvious, namely the need for having good quality workload
(e.g., with high coverage of functionality or code), or the difficulty in identifying certain
failures (which imply using the right observation point and possessing a high quality oracle).

The evolution of robustness assessment for operating systems took a few next relevant
steps, such as its application to multi-version software, allowing to evaluate the diversity
of implementations of a single standard (in terms of robustness) and also their degree of
conformance to standards [19, 80], a concept which has also remained in use throughout
the years in several studies [78, 87, 91]. This type of assessment procedure was then evolved
with the intention of allowing comparison by considering functional groups [69, 82]. Some
focus started to appear on obtaining better workloads [92, 93] and focus started moving out
of the kernel to target other parts of the operating systems, such as libraries [93], utilities
[81, 82, 89, 92], or drivers [70, 77, 88]. In [82], Miller et al. noted that in over a decade of
research, the same programming mistakes were continuously observed [68, 81, 89], at least
in what concerns the robustness of operating system utilities.

More recently attention has been shifted to mobile operating systems [72, 73, 74]. This
emphasizes the usefulness of robustness evaluation techniques, with each of the presented
works showing the challenges and the needs to define specific evaluation techniques required
to assess the robustness of new systems.

3.2.2 Communication systems

In this subsection, we describe research that focuses on robustness evaluation of commu-
nication systems (e.g., network protocol implementations). Considering that most cur-
rent software systems make use of network communication, including some cases of truly
network-centric devices (e.g., sensor networks), robust communication is an essential asset
in many scenarios, for which research has been carried out throughout the years. Table
3.4 presents a short overview of the research found addressing communication systems,
including the target TCP/IP layer [94], techniques used and their targets, and the types
of faults applied. Some of the fault types relate to moving, adding, changing, or deleting
data (e.g., removing an element from an array), which we identify using the Move, Add,
Change, Delete (MACD) acronym. Note also that some of the works use just part of the
four MACD faults, but for simplicity we refer the whole model.

Kaksonen et al. [20] presented, in 2001, an approach for testing the robustness of Wireless
Application Protocol (WAP) implementations through a fault injection method which tar-
gets messages exchanged between systems. The approach focuses on robustness, however
the authors intend to assess the level of security provided by WAP implementations and
link robustness problems to security concerns. The approach requires a specification of
the protocol modelled as a Backus–Naur Form (BNF) specification, which allows to un-
derstand the available message elements that will be used as fault injection targets. Fault
injection is applied through four mutation operators that can move, add, change, or delete
elements (MACD). These elements refer to message fields as well as to message sequences.
The approach was applied to seven WAP gateways, disclosing severe robustness problems,

27

Chapter 3

Table 3.4: Techniques for evaluating the robustness of communication systems

TCP/IP layer Application Cavalli et al. [95], Fu and Koné [21], Kaksonen et al [20], Naceur et al. [96],
Popovic and Kovacevic [97], Rollet and Salva [98], Vasan and Memon [99], Xiang
et al. [100], Xu et al. [101]

Link Jing et al. [102]

Network Johansson et al. [103]

Transport Saad-Khorchef et al. [4]
Techniques Fault injection Cavalli et al. [95], Jing et al. [102], Kaksonen et al [20], Vasan and Memon [99],

Xiang et al. [100], Xu et al. [101]

Fuzzing Johansson et al. [103]

Interception Cavalli et al. [95]

Model-based analysis Cavalli et al. [95]

Model-based testing Cavalli et al. [95], Fu and Koné [21], Jing et al. [102], Johansson et al. [103],
Kaksonen et al [20], Naceur et al. [96], Popovic and Kovacevic [97], Rollet and
Salva [98], Saad-Khorchef et al. [4], Vasan and Memon [99]

Mutation testing Jing et al. [102], Saad-Khorchef et al. [4], Xu et al. [101]
Targets Message fields Cavalli et al. [95], Jing et al. [102], Kaksonen et al [20], Rollet and Salva [98],

Vasan and Memon [99], Xiang et al. [100], Xu et al. [101]

Messages Cavalli et al. [95], Jing et al. [102], Johansson et al. [103], Kaksonen et al [20],
Vasan and Memon [99], Xiang et al. [100]

Specification Fu and Koné [21], Saad-Khorchef et al. [4]

System model Jing et al. [102], Naceur et al. [96], Popovic and Kovacevic [97], Xu et al. [101]
Faults Boundary inputs Cavalli et al. [95], *Jing et al. [102]

Inopportune inputs Fu and Koné [21], *Saad-Khorchef et al. [4]

Invalid inputs Cavalli et al. [95], Fu and Koné [21], Jing et al. [102], Popovic and Kovacevic [97],
Rollet and Salva [98], *Saad-Khorchef et al. [4], Vasan and Memon [99], Xiang et
al. [100], Xu et al. [101]

Invalid messages *Xiang et al. [100]

Invalid outputs *Saad-Khorchef et al. [4]

MACD Cavalli et al. [95], Jing et al. [102], *Kaksonen et al [20], Vasan and Memon [99],
Xu et al. [101]

Random inputs *Johansson et al. [103]

Timing faults *Cavalli et al. [95], Naceur et al. [96]
Classification Binary Cavalli et al. [95], Fu and Koné [21], Jing et al. [102], Johansson et al. [103],

Kaksonen et al [20], Naceur et al. [96], Popovic and Kovacevic [97], Rollet and
Salva [98], Saad-Khorchef et al. [4], Vasan and Memon [99], Xiang et al. [100],
Xu et al. [101]

including several security issues.

Automated Systematic Protocol Implementation Robustness Evaluation (ASPIRE) is an
automated approach for assessing the robustness of network protocol implementations
[99]. It considers two types of protocol message faults: i) syntactically faulty messages;
and ii) semantically faulty messages (e.g., incorrect message ordering). To generate a
protocol message of the former type, its fields are mutated. To generate semantically faulty
messages, all reordering possibilities are considered. To test stateless network protocols,
ASPIRE uses syntactic faults, and to test stateful network protocols, it uses semantic
faults (i.e., because altering the order of messages is more prone to erroneously influence
protocols that hold state). The authors applied their approach to different HTTP and
Simple Mail Transfer Protocol (SMTP) servers, showing the different level of robustness
of the different implementations.

Saad-Khorchef et al. [4] propose a framework for generating robustness test cases for
communication systems, which is centered around a tool named Robustness Test Cases
Generator (RTCG) and is represented in Figure 3.2.

28

Related work on software robustness evaluation

Input-Output
Labelled
Transition
System

Mutated
specification

Input-Output
Labelled
Transition
System

Nominal system
behavior model

Robustness
TTCN-3 Test
Cases

Test cases
Test case

generation Tool

Robustness
Test Cases
Generator

Fault model

Invalid
messages
+
Inopportune
messages
+
Unexpected
outputs

Figure 3.2: TTCN-3 robustness test case generation in [4].

From a specification of the nominal system behavior (i.e., behavior under normal condi-
tions), written in the Specification and Description Language (SDL) and represented in
the form of an Input-Output Labelled Transition System (IOLTS), a mutated version is
obtained, called the increased specification. This mutated specification contains invalid
and inopportune inputs and unexpected outputs, and is used as a basis for robustness test
case generation. The tool outputs test cases in the Testing and Test Control Notation-3
(TTCN-3) format.

Popovic and Kovacevic [97] present a model-based statistical approach for testing commu-
nication protocols through Finite State Machines (FSM) with hidden states and transitions.
In FSMs, hidden states and transitions are those which are not observable in the model but
can nevertheless occur, and typically represent erroneous behavior. Hidden states repre-
sent invalid states of the modelled system, and hidden transitions are the events (triggered
by invalid input) that may set the model in either a valid or invalid state. The approach
calculates the probability of transiting from a given observable state to a hidden one based
on all the possible transitions (i.e., each source-target state pair). This effectively generates
a set of probabilities for transiting from valid to invalid states. A non-robust system is
thus one whose corresponding FSM model allows such state transitions.

Jing et al. [102] propose a data-driven approach, using invalid inputs, to test the robust-
ness of network protocol specifications and implementations through the Nondeterministic
Parameterized Extended Finite State Machine (NPEFSM) model. This model formally
describes network protocols, including their messages and respective fields as well as pro-
cessing rules, and is used to generate robustness test cases by performing mutations on
these elements. Message fields are made invalid by using boundary values, injecting for-
matting errors, or changing length or checksum parameters, and messages are mutated
through addition, removal or sequence permutation (i.e., changing message order). The
authors consider single and multi-field faults. Finally, test cases are generated in the form
of the Protocol Integrated Testing System version 3 (PITSv3), an extension of the TTCN-3
standardized test specification and implementation language.

Cavalli et al. describe in [95] a model-based, fault injection, passive testing approach for
testing the robustness of communication protocol implementations. The approach is based
on the following steps: i) model the behavior of the system in the form of an FSM from
a specification of the system under test; ii) manually extract invariant properties from the
FSM model (i.e., properties the specification of the system should satisfy); iii) definition of
a fault model, in which the authors consider three types of external faults, namely omission
faults in which incoming messages are intercepted and removed, arbitrary faults based on
parameter corruption of received messages (e.g., parameters are replaced with limit values),
and timing faults, emulated by delaying message delivery; iv) placing instrumentation in
the system under test capable of injecting, at run-time, the faults defined in the previous
step; v) test execution and trace collection (i.e., traces serve as input to Invariant Analysis,

29

Chapter 3

the passive testing method used, which is based on the invariants identified in step ii)); and
vi) traces are analyzed resulting in a pass or fail verdict depending on whether invariant
properties are satisfied, with the possibility of an inconclusive verdict if a trace lacks
information. The approach was tested on an implementation of the WAP protocol, where
a hang of the WAP gateway was observed.

Xu et al. [101] present a TTCN-3-based approach for automatic robustness test case
generation. As mentioned previously, TTCN-3 is a standardized test specification and
implementation language used in communication systems for functional testing, which the
authors convert to robustness testing specifications through predefined mutation rules. A
test model of the system under test is first obtained by parsing TTCN-3 test suites. This
model is then mutated through a set of predefined, data type-specific mutation operators
(e.g., replace integer value, delete or reorder elements in a set). The mutated model
parameters are those which the authors consider to hold higher probability of disclosing
robustness problems, and the operator to use for mutating each parameter is selected from
a i) random, ii) round-robin, or iii) weighted random selection. The authors have used their
approach to evaluate the robustness of different SIP implementations, triggering several
crashes and anomalous behaviors.

Xiang et al. [100] propose a method for testing the robustness of SIP implementations based
on TTCN-3 specifications. The approach is based on automatically generating anomalous
messages, through message parameter mutation, to deliver to the SIP implementation
under test. The types of parameter mutations considered by the authors consist of in-
jecting special characters or invalid bytes, changing numerical values to invalid ones, or
even changing the position of SPACE and CRLF separators (important delimiters in SIP
messages). The authors tested a set of 4 different open-source SIP implementations, and
only a single test case of one of the tested implementations signaled a robustness issue,
revealing the tested software is quite mature and is robust to invalid inputs.

Rollet and Salva present a formal method for assessing the robustness of communication
systems [98]. The proposed approach first models the system under test as an IOLTS,
which is analyzed to find inconsistent states within the target system (e.g., a known input
but which is not expected at a given state, or an unknown input), which should in turn
lead to blocking states (e.g., deadlocks or livelocks). Finally, this generates a set of test
cases which effectively exercise two behaviors: i) applying inputs known to the system but
not expected at particular states; and ii) applying inputs that are unknown to the system.

Johansson et al. [103] introduce T-Fuzz, a model-based framework for testing the ro-
bustness of telecommunication protocols through fuzzing. T-Fuzz extends the TITAN
conformance testing framework [104], which relies on TTCN-3 specifications of telecom-
munication protocol implementations to generate and execute C++ test suites. T-Fuzz
thus adds another layer to this framework containing the following components: the model
extractor extracts a model from the TTCN-3 specifications, which hold information re-
garding the data types and data structures used by the protocol implementation under
test; then the fuzzing engine creates C++ functions for generating instances of the iden-
tified data types as well as complex data structures through fuzzing logic (i.e., generating
random values according to their data types), which are fed back to TITAN for generating
a test suite; finally, the observer component monitors the implementation under test while
TITAN executes the test suite. The approach has been applied to a Non-Access Stratum
(NAS) protocol implementation triggering several cases of unwanted behavior.

Naceur et al. [96] present an approach for generating robustness test cases that target
Wireless Sensor Network (WSN) protocols, specifically the Localized Encryption and Au-
thentication Protocol (LEAP). The authors first model the nominal behavior of the sensor

30

Related work on software robustness evaluation

under test, which uses the LEAP protocol, in the form of a Timed Automata (TA), a
type of FSM that includes timing-related data. Non-robust sensors in WSNs are those
whose respective TA are unprotected against live or deadlocks, which consequently delay
communication between sensors in the network (which is unwanted in real-time systems)
or eventually drain the sensor’s battery, degrading or ultimately breaking the entire sensor
network. Thus, the authors enhance the TA model of the nominal system behavior with
tracing capabilities to detect live and deadlocks.

Fu and Koné evaluate the robustness of network protocols in a model-based approach
presented in [21]. The network protocol implementation under test is modelled as an
IOLTS based on its specification. By default, this specification should cover some input
actions, but the approach extends this set in the obtained IOLTS model to include other
input types, namely acceptable, inopportune (e.g., acceptable inputs sent in the wrong
system state) and invalid inputs. Test cases are automatically extracted from the resulting
IOLTS model, and run against the protocol implementation under test. The authors
evaluated the approach on an implementation of the Remote Authentication Dial-In User
Service (RADIUS) protocol, and found no abnormal behaviors (e.g., blocked execution,
crashes).

In summary, the research discussed in this subsection handles mostly network-centric sys-
tems or protocols, with most cases actually targeting the Application layer of the TCP/IP
reference model. In the application layer, the SIP protocol was found to be a frequent
case of study [97, 100, 101], with several approaches applying faults to both messages
and message fields. Other approaches focus different protocols such as the WAP proto-
col [20, 95] (common in portable devices), the NAS protocol [103] (a functional layer in
wireless telecommunication protocols), or even the RADIUS protocol [21], for which the
robustness and security needs are evident.

The majority of the analyzed studies rely on model-based approaches, where a specification
of the protocol under test is modelled (e.g., as an FSM) [96, 97, 98, 102]. This model can
then be used to generate test cases [4, 20, 95], or be directly evaluated to find undesired
states (e.g., deadlocks) [96]. We found the use of the TTCN-3 specification to be very
frequent (i.e., for the definition test cases).

The approaches that use faults applied to protocol message fields tend to use purely invalid
values (e.g., out-of-bounds values) [95, 99, 100, 101, 102], whereas the approaches that
target messages tend to rely on other types of faults that affect the whole message, namely
by applying some variation of the MACD operations (e.g., reordering or omitting messages)
[20, 99, 102]. We found timing faults [95] or inopportune faults [4] to be less explored in
robustness evaluation research, despite their usefulness in respectively triggering timing
failures or in triggering failures that can only be observed after placing the system in a
certain state.

3.2.3 Embedded systems

In this subsection, we present research that evaluates the robustness of embedded systems,
which are systems that are typically designed to target a specific task (in contrast with a
general purpose computer) and are often part of larger systems that serve a more general
purpose. Usually, their operation has to fulfill timing constraints (e.g., real-time systems)
or deal with safety properties (e.g., in the aerospace domain) [59, 60]. Table 3.5 overviews
the main characteristics of the different approaches for embedded systems found in the
literature.

31

Chapter 3

Table 3.5: Techniques for evaluating the robustness of embedded systems

Systems Aerospace Ait-Ameur et al. [105], Batista et al. [5], Dingman et al. [22], Mattiello-Francisco
et al. [24], Yang et al. [106]

Embedded distributed systems Alnawasreh et al. [107]

Microkernels Arlat et al. [108]

Reactive Rollet and Salva [109]

Real-time systems Fouchal et al. [110, 111], Mattiello-Francisco et al. [112], Rollet and Saad-
Khorchef [113], Tarhini et al. [114], Winter et al. [115]

RTOS Cotroneo et al. [116, 117], Madeira et al. [118], Maia et al. [119], Nicolescu et al.
[120], Rodríguez et al. [121], Ruiz et al. [122], Shahpasand et al. [123, 124], Zhou
et al. [125]

Techniques Code changes injection Winter et al. [115]

Fault injection Alnawasreh et al. [107], Arlat et al. [108], Batista et al. [5], Cotroneo et al.
[116, 117], Dingman et al. [22], Fouchal et al. [110, 111], Madeira et al. [118],
Maia et al. [119], Nicolescu et al. [120], Rodríguez et al. [121], Rollet and
Saad-Khorchef [113], Rollet and Salva [109], Ruiz et al. [122], Shahpasand et al.
[123, 124], Tarhini et al. [114], Winter et al. [115], Yang et al. [106], Zhou et al.
[125]

Interception Ruiz et al. [122]

Model-based analysis Ait-Ameur et al. [105]

Model-based testing Cotroneo et al. [116, 117], Fouchal et al. [110, 111], Mattiello-Francisco et al.
[24, 112], Rollet and Saad-Khorchef [113], Rollet and Salva [109], Shahpasand et
al. [123, 124], Tarhini et al. [114], Yang et al. [106]

Mutation testing Mattiello-Francisco et al. [112]
Targets API calls Ruiz et al. [122], Winter et al. [115]

Kernel segments, CPU registers Arlat et al. [108], Madeira et al. [118], Nicolescu et al. [120], Rodríguez et al.
[121]

Message fields Batista et al. [5]

Messages Alnawasreh et al. [107], Batista et al. [5]

Specification Fouchal et al. [111], Mattiello-Francisco et al. [112], Rollet and Saad-Khorchef
[113], Rollet and Salva [109]

System calls Ait-Ameur et al. [105], Arlat et al. [108], Cotroneo et al. [116, 117], Dingman et
al. [22], Maia et al. [119], Rodríguez et al. [121], Shahpasand et al. [123, 124],
Zhou et al. [125]

System model Fouchal et al. [110], Mattiello-Francisco et al. [24], Tarhini et al. [114], Yang et
al. [106]

Faults Bit-flips Arlat et al. [108], *Madeira et al. [118], Nicolescu et al. [120], Rodríguez et al.
[121], Ruiz et al. [122], Zhou et al. [125]

Boundary inputs *Zhou et al. [125]

Invalid inputs Batista et al. [5], Cotroneo et al. [116, 117], *Dingman et al. [22], Fouchal et
al. [110, 111], Maia et al. [119], Rollet and Saad-Khorchef [113], Rollet and Salva
[109], Ruiz et al. [122], Tarhini et al. [114], Winter et al. [115], Yang et al. [106]

Invalid outputs *Rollet and Salva [109]

Random inputs *Shahpasand et al. [124]

Random messages *Alnawasreh et al. [107]

Round-off errors *Ait-Ameur et al. [105]

Timing faults Alnawasreh et al. [107], Batista et al. [5], *Fouchal et al. [110, 111], Mattiello-
Francisco et al. [24, 112], Rollet and Saad-Khorchef [113], Rollet and Salva [109],
Shahpasand et al. [123, 124], Tarhini et al. [114], Winter et al. [115], Yang et al.
[106]

Classification 8 categories Nicolescu et al. [120]

6 categories Dingman et al. [22]

5 categories Cotroneo et al. [116], Madeira et al. [118], Maia et al. [119], Shahpasand et al.
[124]

4 categories Cotroneo et al. [117], Ruiz et al. [122], Zhou et al. [125]

3 categories, 7 subcategories Arlat et al. [108]

Binary Ait-Ameur et al. [105], Alnawasreh et al. [107], Batista et al. [5], Fouchal et al.
[110, 111], Mattiello-Francisco et al. [24, 112], Rodríguez et al. [121], Rollet and
Saad-Khorchef [113], Rollet and Salva [109], Shahpasand et al. [123], Tarhini et
al. [114], Winter et al. [115], Yang et al. [106]

32

Related work on software robustness evaluation

Figure 3.3 represents a common case of robustness evaluation of an embedded system. The
figure has been adapted from [5], where a real-time aerospace system is evaluated, and has
been modified and extended for clarity.

Subsystem A

Subsystem B Subsystem C

Msg

Msg

Fault Injector

Figure 3.3: Robustness evaluation of an embedded system (inspired by the approach in
[5]).

As we can see, Figure 3.3 shows a system composed of three subsystems named A, B,
and C. Subsystem A serves as an interface to the outside world and partially relies on
subsystem B, which in turn relies on subsystem C. B and C have actuators that interact
with the physical world. A fault injector (part of a testing framework) has been added to
the system with the purpose of intercepting messages and applying faults. Typical cases
of faults are messages holding invalid contents, but in this context, there is special interest
timing faults (e.g., delayed messages) so that it is possible to verify if the system fulfills
the expected real-time properties (in the presence of a timing fault affecting a subsystem).

In 1995, Dingman et al. presented a tool for evaluating the robustness of Advanced Space-
borne Computer Module System (ASCM), a fault tolerant aerospace system, focusing on
file, memory, and IPC subsystems [22]. Each generated test case targets a system call,
and for each call valid values and common erroneous (i.e., invalid) values are passed as
parameters. A test suite contains one test case for each parameter value combination, and
all combinations are tested. The system behavior is classified in terms of severity classes,
with class 0 corresponding to correct return codes, class 1 being an unexpected error code
being returned by the system call, and so on, with class 5, representing cases where the
system must be forcefully restarted. Most robustness problems observed were marked with
class 4 (the second most serious).

Madeira et al. evaluate the impact that transient faults in a COTS application have on
its operating system (i.e., LynxOS, a Unix-like Real-Time Operating System (RTOS)) as
well as on its applications [118]. The authors used Xception [126], a fault injection tool
for emulating physical faults, for injecting bit-flip faults at multiple locations of the target
system (e.g., processor registers, integer unit, internal processor buses, memory, cache).
The authors evaluated the approach on a synthetic workload (i.e., generated specifically
for testing) composed of buffer and matrix manipulations, and on a realistic workload (i.e.,
produced by the execution of real applications) composed of three applications: gravity
(Netwon’s gravity law calculator), PI (computes the value of π) and Matmult (matrix mul-
tiplication program). Results were categorized as: OS crash, application hang, abnormal
application termination, no impact or wrong results.

Arlat et al. present the Microkernel Assessment by Fault injection AnaLysis and Design

33

Chapter 3

Aid (MAFALDA), a tool for assessing the behavior of microkernels in the presence of faults
[108]. This approach tests microkernels from both the external and internal perspectives.
The former is based on injecting faults in the parameters of calls to the microkernel API,
and assessing its robustness at the interface level with respect to external faults. Faults
are injected by randomly selecting and flipping one bit among the set of call parameters.
The internal perspective relies similarly on bit-flips, but rather on the microkernel code
and data segments within its address space, and intends to simulate both physical and
(development-related) software faults in order to assess its coverage of internal error de-
tection mechanisms. A fault injection campaign performed by MAFALDA is composed of:
fault-less workload execution to assess normal operating behavior; this is followed by the
faultload execution where the workload is executed and faults are occasionally injected;
finally, the behavior of the target system is observed for robustness issues, and is catego-
rized in three distinct levels: application level - one of application failures or application
hang; interface level - one of error status or exception; and kernel level - one of kernel
hang or kernel debugger. MAFALDA was evaluated on the Chorus and on the LynxOS
microkernels.

Rodríguez et al. have updated the MAFALDA approach to support real-time systems,
and propose the MAFALDA-RT (MAFALDA Real-Time) tool for dependability assess-
ment of real-time systems [121]. The major difference from this work to the MAFALDA
approach is that of effectively cancelling out the temporal overhead related to fault in-
jection, which does not align well with the temporal constraints of real-time systems. To
this end, MAFALDA-RT surpasses this restriction by temporarily stopping system inter-
rupts and using a virtually unlimited time window for performing fault injection. This is
possible because the state of real-time systems is entirely driven by interrupts from the
hardware clock, which notify the software system of the passing of time. Thus, their ab-
sence is perceived by the system as time having stopped, and its state is effectively frozen.
The approach was evaluated on a mine drainage control application running on a Chorus
microkernel.

Ait-Ameur et al. present a formal approach for understanding the reaction of a flight
control system to inaccurate input values [105]. The authors analyze error propagation
in the system under test through the abstract interpretation technique, a formal program
analysis technique which consists of running, on an abstract domain, a correct and safe
approximation (i.e., abstract program) of the program under test. The goal is to analyze the
amount of cumulative error that successive function calls produce in numeric parameters
(e.g., due to the rounding of values in decimal parameters), and consider the system to be
robust if the difference between inputs and outputs is under a certain threshold.

Maia et al. describe an automated fault injection and robustness testing framework for
mission and business-critical software systems and components in [119], which is based on
Xception, an approach and tool for emulating physical faults in memory and addresses by
performing low-level bit-flips [126]. The framework is able to inject both valid and invalid
inputs into the interface of the system under test. The injected values depend on the data
types of the parameters used by the system. The system behavior observed during testing
is categorized with the CRASH scale. Evaluation was performed against the Real-Time
Executive for Multiprocessor Systems (RTEMS), which is an operating system designed
for embedded systems.

A methodology for assessing the robustness of real-time component-based systems was
presented in 2005, by Fouchal et al. [110], a slightly updated version of the concepts
the authors presented in an earlier paper of the same year [114]. The approach begins
by representing each system component in the form of a Timed Input-Output Automata

34

Related work on software robustness evaluation

(TIOA). Test sequences are generated from these automaton models, and are consequently
mutated through fault injection (e.g., replacing an input by another, change input timings,
removing or modifying transitions), as a way of simulating faulty component behavior. Test
cases assess robustness of each individual component and the correctness of communication
between components in the system.

Nicolescu et al. have studied the behavior of the MicroC kernel, a popular RTOS, in
the presence of faults in its task scheduling and context switching modules [120]. The
proposed approach is based on performing bit-flips in the processor registers at random
instants, while these components are active. The authors also propose a fault syndromes
scale for categorizing faults observed in safety-critical systems: effect-less - no observable
effect; application hang - system stops responding; exception - exception is triggered; mem-
ory access dysfunction - system tries to access invalid memory address; system crash - the
system crashes; incorrect output results - system provides incorrect results; real-time prob-
lem - time constraints specified for the system are not respected; scheduling dysfunction -
incorrect scheduling strategy of tasks by the system. This approach was evaluated on an
in-house real-time multitasking application composed of 36 periodic tasks.

Ruiz et al. present an approach for assessing the robustness of System-on-a-Chip (SoC)
embedded systems to external faults, using on-chip debugging capabilities [122]. The idea
is to emulate external faults by intercepting and corrupting, using fault injection, the data
received by the target system through its public interface. Data corruption is performed by
identifying one of the parameters of the intercepted interface call, and performing either a
bit-flip or replacing the entire value with an invalid, special (e.g., a value representative of a
special case) or custom (i.e., user-defined) value. This approach categorizes test results in a
four-category scale as correct output, wrong result, system hang and exception. The authors
evaluated the approach on a component of a real-time operating system, and identified a
large number of uncaught exceptions, and some wrong results and system hangs.

Rollet and Saad-Khorchef propose an approach for testing the robustness of embedded
systems [113]. The idea is to use two formal specifications of the system under test,
a nominal one which describes the expected behavior under normal conditions, and a
degraded specification for describing how the system functions under critical conditions.
Both specifications are modelled in the form of a Labelled Transition System (LTS) in
case the system under test has no timing constraints, or as a TA otherwise. From these
specifications (i.e., the nominal and the degraded one), test sequences (i.e., sequences of
actions) are extracted, which are then injected with faults. The injected faults are actions
which the system under test will perceive as unexpected, and erronous timing constraints,
if applicable. The mutated test sequences (i.e., those injected injected with faults) are then
executed on the system under test. The authors did not perform experimental evaluation
of the proposed approach.

Rollet and Salva present two approaches for testing the robustness of embedded software
systems in [109]. The first approach uses a system specification modelled as an IOLTS and
a set of unexpected events to generate an increased specification which extends the nominal
specification to include execution paths to exploit possible robustness gaps (e.g., timeouts,
unexpected inputs or outputs). The second approach uses a nominal behavior specification
and a degraded one, which describes the minimal system behavior under critical conditions.
By integrating faults in test sequences, the authors aim at understanding if the minimal
behavior is still respected (even if conformance to the nominal behavior is lost).

Mattiello-Francisco et al. propose a model-based approach for generating and executing
robustness test cases on timed embedded systems [112]. The approach is composed of
three main steps, namely: i) service modeling, wherein the nominal service model (i.e.,

35

Chapter 3

that which describes expected behavior) is extended with timing deviations (i.e., timing
faults) in order to expose timing-related robustness issues in the implementation, and which
is modelled as a TIOA; ii) generation of robustness test cases based on the definition of
a test purpose (i.e., a specific system characteristic that a tester wishes to assess); and
iii) execution of the generated test cases over a real implementation of a timed embedded
system. The proposed approach was not experimentally evaluated, but rather showcased
on a small case study of a subsystem integration of a real-time space X-ray telescope system
on board a scientific astronomy satellite.

Fouchal et al. propose a model-based approach for testing the robustness of a real-time
component-based system [111]. The target system is described as a collection of compo-
nents, each modelled as a TIOA. For each component, a nominal (i.e., describing expected
behavior) and degraded specifications are necessary. The nominal specification is used to
extract test sequences, which are injected with faults in order to simulate hostile envi-
ronments. The faulty test sequences of each component are executed (i.e., on the target
system) in isolation, and results are recorded. Robustness is then checked by verifying if
the recorded results are accepted by the degraded specification of each tested component.
The injected faults are actions which the system under test will perceive as unexpected
and erroneous timing constraints. The authors did not perform experimental evaluation
of the proposed approach.

Cotroneo et al. [116] assess the impact of robustness faults on the system state of a
Linux RTOS for safety-critical systems in the avionics domain. The proposed framework
is composed of a test driver which is responsible for injecting invalid inputs to the interface
of the system under test, and a state setter which is responsible for driving the system into
a certain state (state is previously modelled). Accounting for the state of the file system
helped improve test results and reach corner cases with complex interactions with other
subsystems (e.g., memory management, caching, scheduling).

Mattiello-Francisco et al. describe InRob, a model-based approach for verifying robustness
and interoperability properties of real-time embedded software systems related to timing
constraints [24]. The testing process of InRob is composed of three phases: i) service
modelling - based on the functional requirements, time constraints and service profile of
the system, its nominal behavior is abstracted and modelled as a TIOA. The augmented
model is then obtained by extending the nominal behavior model with timing deviations
(i.e., timing hazards), emulating communication channel failures; ii) test case generation
- in this phase the augmented model is manually written in a formal language accepted
by the test case generator, allowing test cases to be generated automatically; iii) test case
execution - finally, the test cases generated in the previous phase are executed on the target
system. The authors evaluated InRob in a real satellite subsystem.

Yang et al. focus on the robustness of safety-critical avionics-embedded software, by
proposing a model-based robustness testing approach [106]. It is based on the conver-
sion of communication protocols of avionics systems (e.g., interface, data types, timing
constraints) to an abstract testing model. This testing model is used to generate both
normal and boundary testing data, constituting a workload. This workload is then in-
jected with timing, state, data and protocol failures, which simulate abnormal behavior of
the components in the system. The authors implemented this approach in a tool called
Model-based Robustness Testing Environment (MbRTE), and evaluated it on two flight
control and two inertial navigation software systems, all of which are real world avionics
applications.

In [117], Cotroneo et al. introduce the State-Based Robustness Testing of Operating Sys-
tems (SABRINE) approach, which automatically extracts models of operating system

36

Related work on software robustness evaluation

states from execution traces and generates a set of test cases covering multiple system
states. The SABRINE approach consists of the following steps: i) system behavior data
collection through execution of a workload with valid inputs; ii) pattern identification
through grouping of identical event sequences (i.e., sets of interactions that occur during
the execution of individual system calls); iii) clustering of similar patterns (i.e., event se-
quences) identified in the previous step; iv) for each pattern cluster, generate a behavioral
model in the form of an FSM and identify state transitions (i.e., function calls) wherein
faults can be injected; and v) generate test programs from test cases and execute them.
Furthermore, the authors present a four category robustness classification scheme based
on observed results from applying SABRINE to a Linux-based RTOS used in the aviation
domain. Test outcomes were categorized as one of kernel failure, workload failure, file
system corruption or no impact.

Zhou et al. test the robustness and fault tolerance of three popular RTOS through a
Ballista-based approach, which works by injecting faults at the RTOS API. [125]. The
authors focus only on the API functions that relate to four basic components of an RTOS,
namely task management, task synchronization, memory management, and timer manage-
ment. The proposed approach injects one of two fault types in the parameters of these
functions: bit-flips and data type-based parameter corruption. The latter occurs only for
bounded data types (i.e., numerical parameters), and injects boundary values, the original
value plus or minus 1, or the values 1, -1 and 0. Observed faults are categorized with:
detected failure - the RTOS detects an error and stops it from spreading; silent failure -
a fault is triggered but the system does not detect it; hang failure - the task calling that
specific API function hangs while other tasks operate normally; crash failure - the whole
RTOS crashes and requires a restart.

Winter et al. present GeneRic fault INjection tool for DEpendability and Robustness as-
sessments (GRINDER), an open-source fault injection tool for testing the robustness of
software systems [115]. GRINDER uses a probe-based approach, which requires instru-
menting the application under test with communication channels to allow the tool to inject
faults as well as monitor the behavior of the application. Additionally, this can only be
done at compile time, with access to the source code of the target application. Regarding
the fault model, GRINDER does not impose any restrictions, and users of the tool may
employ any fault types and triggers they wish. The approach was evaluated on an AUTo-
motive Open System ARchitecture (AUTOSAR) adaptive cruise control system and the
Android mobile operating system, with the authors reporting on the testing effort required
to use GRINDER.

In 2016, Shahpasand et al. [123] propose the TIMEOUT approach for robustness testing
of RTOS through state-aware fault injection. First, a workload is executed several times
for obtaining behavioral data from the target system, and input-output interactions as
well as specific time-related metrics are logged. Logged calls to the same kernel function
are grouped into clusters, based on the assumption that individual calls may relate to
different event sequences (i.e., for tracing different call sequences). For each cluster, the
logged execution start and end times of the kernel function calls are used to infer a TA,
whose states represent inferred states of the operating system, which are connected by the
observed events labelled with timing data. Test cases are then generated by injecting faulty
transitions into the generated TA. Faulty transitions are those that erroneously influence
execution path by changing system state to an unexpected one (i.e., as a consequence of
delays, for example). In a recent paper, the authors consider additional types of faults
[124], such as value faults (e.g., random values depending on the data type of the target
parameter). Also, the authors identify the critical states of the system under test (i.e.,
states that are important for system dependability) and attempt to quantify its minimum

37

Chapter 3

and maximum level of robustness with the aid of weights attributed to the CRASH scale
[3].

A work by Alnawasreh et al. [107] describes a fault injection approach, named Postmonkey,
for testing the robustness of industrial distributed embedded systems with limited compu-
tational power. The proposed fault types are: i) sending messages with random contents;
and ii) delaying transiting messages. The former fault type is intended to assess the fault
tolerance level of implementations of the message protocol used for communication, by
targeting the message origin and contents. The latter fault type has the goal of testing
how well the overall system handles delays. The authors implemented the Postmonkey
approach in C++, and evaluated it on the embedded distributed system of a Radio Based
Station.

Batista et al. present the Failure Emulator Mechanism (FEM) framework for robustness
testing of interoperable software-intensive subsystems of nanosatellites in [5]. The frame-
work integrates with communication channels of nanosatellite subsystems and tests them
through fault injection using invalid values in messages, delays, and physical faults. For
carrying out robustness testing using this framework, a tester must define a fault model
(i.e., the types of faults to inject) a fault library (i.e., the implementation of the faults) and
a fault script to support the fault injection process. The authors tested two communication
subsystems of the NanoSatC-BR2 nanosatellite, a real world nanosatellite used in scientific
mission programs by the Brazilian National Institute for Space Research.

In summary, existing works on the robustness of embedded systems cover a quite wide
array of different types of systems, including aerospace software [5, 22, 24], autonomous
systems (typically used in robot controllers) [23, 127, 128], real-time software components
[110], and real-time operating systems [117, 118, 120, 124], just to name a few. Aside from
the traditional fault injection approaches [116, 117, 121], many authors gave preference
to model-based techniques for generating test cases [106, 109, 123], and one work used a
particularly uncommon testing technique named abstract interpretation [105].

These techniques were used both at a high abstraction level (e.g., system interfaces) [119,
121, 123, 125] and at a quite low level (e.g., processor registers) [118, 120]. The faults
used also present a wide range of diversity, and encompass the typical interface parameter
mutations (e.g., invalid or boundary values [5, 22, 23, 106]), bit-flips on processor registers
[118, 120], message-level faults (e.g., reordering messages [23, 127]), or even timing-related
faults [24, 107, 109, 110]. The latter fault type, in particular, is quite common in embedded
system robustness testing, which is expected given the large focus on real-time systems.

3.2.4 Middleware

This subsection discusses robustness evaluation of middleware. The term middleware refers
to software that supports the operation of a certain software system and, at the same time,
works on top of other software [61], which is a broad definition in which we include classic
middleware, such as Java Message Service (JMS) implementations, as well as software
systems that provide facilities or resources for supporting higher-level services, e.g., cloud
management systems like OpenStack or Docker. Table 3.6 presents a summary of the
main types of systems, testing techniques and their targets, the types of faults and the
classification schemes used to evaluate the robustness of middleware.

Figure 3.4 represents an example of robustness evaluation of the (message-oriented) mid-
dleware supporting a distributed system, and is inspired in the approach presented in [6].

38

Related work on software robustness evaluation

Table 3.6: Techniques for evaluating the robustness of middleware

Systems Cloud platforms Cardoso and Martins [129], Cardoso et al. [27], Chauvel et al. [130], Cotroneo et
al. [131]

CORBA Pan et al. [132]

HA middleware Azevedo et al. [26], Fernsler and Koopman [133], Kövi and Micskei [134], Micskei
et al. [25, 135]

Message-oriented middleware Laranjeiro et al. [6], Napolitano et al. [136]
Techniques Code changes injection Laranjeiro et al. [6]

Fault injection Azevedo et al. [26], Cardoso et al. [27], Chauvel et al. [130], Cotroneo et al.
[131], Fernsler and Koopman [133], Kövi and Micskei [134], Laranjeiro et al. [6],
Micskei et al. [25, 135], Napolitano et al. [136], Pan et al. [132]

Interception Kövi and Micskei [134], Micskei et al. [135]

Model-based testing Cardoso and Martins [129], Cardoso et al. [27], Cotroneo et al. [131], Micskei et
al. [25]

Targets API calls Azevedo et al. [26], Cardoso and Martins [129], Cotroneo et al. [131], Fernsler
and Koopman [133], Kövi and Micskei [134], Micskei et al. [25, 135], Napolitano
et al. [136], Pan et al. [132]

Cloud network components Chauvel et al. [130]

JMS Message fields Laranjeiro et al. [6]

Messages Cardoso et al. [27]
Faults Boundary inputs Azevedo et al. [26], Cardoso et al. [27], Cotroneo et al. [131], *Fernsler and

Koopman [133], Laranjeiro et al. [6]

Change cloud topology *Chauvel et al. [130]

Inopportune inputs *Cardoso and Martins [129]

Invalid inputs Azevedo et al. [26], Cardoso and Martins [129], Cardoso et al. [27], Cotroneo et
al. [131], *Fernsler and Koopman [133], Laranjeiro et al. [6], Micskei et al. [25],
Napolitano et al. [136], Pan et al. [132]

Invalid return values Kövi and Micskei [134], *Micskei et al. [135]

MACD Kövi and Micskei [134], *Micskei et al. [135]

Shut down components *Chauvel et al. [130]
Classification 7 categories Fernsler and Koopman [133]

6 categories Pan et al. [132]

5 categories Azevedo et al. [26], Cardoso and Martins [129], Laranjeiro et al. [6], Napolitano
et al. [136]

Binary Cardoso et al. [27], Chauvel et al. [130], Cotroneo et al. [131], Kövi and Micskei
[134], Micskei et al. [25, 135]

As we can see in this particular case, the message sender middleware is instrumented so
that faults are injected into messages that are about to be sent to a provider (and fetched
later from the provider, whenever the receiver is online). The idea is that a faulty (or
even malicious) client may send invalid messages and the provider middleware should be
able to handle such cases. If an invalid message arrives, the provider should detect it and
somehow reject the message. Even if the message is silently stored at the provider side,
the receiving peer middleware should be robust to this invalid message.

In 1999, Fernsler and Koopman use the Ballista methodology to test the robustness of the
High Level Architecture (HLA) Run-Time Infrastructure (RTI), a standard distributed
simulation backplane that is expected to provide completely robust exception handling
[133]. The only required setup for adapting Ballista to the target system (i.e., RTI) was to
create object-oriented representations of the data types it uses (e.g., the AttributeHandleSet
data type). Then, for each identified parameter type, a set of valid, limit (i.e., boundary)
and invalid values are defined (e.g., zero or MaxInt for the integer type). Test outcomes
are classified according to an extension of the CRASH scale, comprising of pass, pass with
exception (i.e., RTI throws an exception stating that it has gracefully caught and handled a
fault), RTI internal error, unknown exception (i.e., similar to RTI internal error but with
an unknown exception), and finally abort, restart and catastrophic which are borrowed

39

Chapter 3

Sender

Application

Middleware Instrumented
code

Provider

Middleware

Mutated
Msg

Message store

Receiver

Application

Middleware

Figure 3.4: Robustness evaluation of the middleware supporting a distributed system,
inspired by [6].

directly from the CRASH scale [3]. The authors evaluated the approach on three versions
of HLA RTI, which displayed a failure rate of 6% for one version and 10% for the other
two, including aborts, unknown exceptions and RTI-specific exceptions.

Pan et al. [132] assess the robustness of Common Object Request Broker Architecture
(CORBA) client implementations. CORBA is mostly a way for integrating heterogeneous
systems that is based on the use of RPC. In practice, the authors have adapted the Bal-
lista technique [80] to the CORBA context by using the Object Request Broker (ORB)
interface provided by these systems. The authors analyzed C++ ORB implementations
to disclose several robustness problems. Behavior was categorized in robust (successful
return or CORBA exception raised) and non-robust using the following adaptation of the
CRASH scale: Computer crash (Catastrophic); Robust behaviors Thread hang (Restart);
Thread abort (Abort); Raise unknown exception; False success (Silent); Misleading error
information (Hindering). The authors analyzed three C++ ORB implementations for the
Solaris and Linux operating systems, disclosing significant robustness vulnerabilities.

Micskei et al. analyzed, in 2006, different methods to generate input for testing the ro-
bustness of High Availability (HA) middleware compliant with the Application Interface
Specification (AIS) [25]. These are: generic input testing - a set of 32-bit values (0, -1,
1, random, address of a variable), which can be cast to any primitive data type of the C
programming language; type-specific testing - values are randomly generated depending
on the data type of the parameter; and scenario-based - follows a model-based approach
to consider the state of the target system, and generates values that are out of context
for the current system state. The authors evaluated the three methods on two modules of
OpenAIS, by injecting faults directly on the parameters of calls to the AIS of this mid-
dleware. In a later work [135], the authors extended the previous approach to include two
new testing methods: mutation-based sequential testing - omits, swaps or modifies valid
calls (i.e., Move, Add, Change, Delete (MACD) operators) to the AIS of the middleware
under test; and the operating system call wrapper - intercepts systems calls made by the
middleware and injects exceptional values into the returned objects. The authors tested
this new approach on two real systems that use HA middleware. Kövi and Micskei [134]
further evaluate the previous approach on a system with the open-source OpenSAF middle-
ware. The results showed the effectiveness of the proposed test data generation methods,
and revealed an increase in the robustness of the tested HA middleware throughout its
development.

An experimental approach for assessing the robustness of JMS middleware is proposed
by Laranjeiro et al. [6]. It is based on mutating messages immediately before they are
sent by a producer/publisher. Mutations of JMS message fields are based on boundary and

40

Related work on software robustness evaluation

exceptional values (e.g., null or empty values, maximum or minimum value of a data type),
and are implemented by instrumenting the code (using aspect-oriented programming) of
the Java methods used to send messages. Test execution is composed of three phases:
i) observing normal behavior by sending valid JMS messages; ii) exchanging mutated
messages between client and provider; and iii) sending valid messages again and attempt
to disclose problems caused by the previous phase. Failures are classified with a CRASH
[80] scale adaptation, and compliance with the JMS specification is also checked. A few
cases of robustness problems were disclosed, including severe DoS vulnerabilities.

Napolitano et al. [136] have presented a tool for performing robustness tests on Data Dis-
tribution Service (DDS) middleware, which is an Object Management Group (OMG) stan-
dard for supporting Quality of Service (QoS) properties in publish-subscribe services. The
proposed tool is capable of automatically injecting exceptional or invalid inputs through the
AIS of a given DDS middleware implementation (OpenSplice, in the case of this work). Ro-
bustness issues observed during testing are manually categorized according to the CRASH
scale. Results revealed a number of Restart and Silent failures, the latter also causing
performance issues as a side-effect.

In [26], Azevedo et al. evaluate the robustness and scalability of two open-source HLA
libraries (i.e., poRTIco and CERTI), which are used for simulating satellites. HLA is a
software architecture for building simulators based on computational simulation compo-
nents. Using the Ballista approach [80], invalid and boundary values are injected into the
input parameters of the AIS calls of the libraries. These include null or empty values,
non-printable characters, values that may cause data type overflow, among others. The
authors used the CRASH scale to categorize the results of tests on poRTIco and CERTI,
and observed a large number of robustness problems on both libraries, including Hindering,
Silent and most often Abort failures, with also a few Catastrophic failures having occurred
on CERTI.

Cotroneo et al. propose a method for testing the robustness of software running in In-
frastructure as a Service (IaaS) clouds [131]. Test cases are generated in four steps: i)
decomposition, where the set of testable functionalities is identified; ii) input modelling,
for each input parameter of each functionality, valid, boundary valid and invalid input
values are generated; iii) state modelling, wherein the state of the software under test is
identified and modelled; and iv) application of constraints, for eliminating useless or re-
dundant test cases. The authors applied their approach to the Apache Virtual Computing
Lab (VCL), an open source cloud platform, and compared the results from three different
perspectives: i) considering only inputs, which triggered only a few failures; ii) considering
stressful environmental conditions (e.g., emulating concurrency from many parallel user
requests), which was more successful in exposing failures; and iii) forcing the state of the
system under test, which triggered specific faults which are entirely dependent on system
state (i.e., and would not have been triggered by the other methods).

Chauvel et al. [130] evaluate the robustness of cloud-based systems by resorting to models
used in the field of Biology for quantifying ecosystem robustness. The approach is based on
an analogy between the propagation of extinctions of biological species and the propagation
of failures between components of a software system. The approach extracts three key
indicators from the cloud system under test: i) a robustness indicator (i.e., a value between
0 and 1) reflecting the impact that failures in the system have on other systems; ii) the most
sensitive components in the system, whose failure brings down most of the functionality in
the cloud topology; and iii) the most threatening failure sequences, which describe the most
likely ordering of failures with a strong impact. These are extracted through testing, where
each component of the cloud system under test is injected with faults, whose propagation

41

Chapter 3

is monitored to identify failure sequences. Two fault types are considered: i) shutting down
the components of interest; and ii) changing the configuration of the cloud network so that
calls do not reach their expected endpoints.

Cardoso and Martins [129] evaluate the robustness of cloud platforms (e.g., OpenStack)
using a combination of both search-based and model-based testing. The first step of the
approach is system decomposition, wherein testers analyze the cloud platform under test
by breaking down system functionality into individual testable units. Functionality of
interest is then modelled in the form of Unified Modeling Language (UML) class and state
diagrams. The authors apply both invalid and inopportune input values (i.e., unexpected
but valid in the global context of the system) for evaluating robustness. The approach uses
the Multi-Objective Search-based Testing algorithm for test case generation, which helps
avoiding state explosion and reduces the amount of generated tests. The OpenStack cloud
platform was used for the evaluation of the approach, and results were classified using an
adaptation of the CRASH scale [3]. The experiment failed to disclose new robustness issues
on OpenStack, but helped show that the platform is well protected against inopportune
inputs.

The robustness of OpenStack is evaluated in [27], where the authors combine classic ro-
bustness testing techniques with model-based testing. The main idea is to set the system
in different valid states (that are previously modeled) and apply robustness tests at the
server side (at OpenStack Nova’s Compute component, in this case). Behavior is catego-
rized using information about the system states (e.g., if a faulty request places the system
in an incorrect state) and the reported exceptions. The authors disclosed various cases of
failures that have been reported to the OpenStack community.

In summary, middleware robustness assessment is mostly composed of three main cases
of software being tested. Mainstream middleware like CORBA [132], JMS [6], or even
DDS [136] is one of the targets. The second case concerns less popular middleware like
HA middleware [25, 26, 134, 135] or HLA [26]. The third case concerns software that is
designed to support other systems [129, 130], in particular cloud management platforms
like the Apache VCL [131] or OpenStack [27].

Most of the studies use traditional robustness testing methodologies with adaptations to fit
specific contexts (e.g., the works in [134, 135] apply a less usual fault model that includes
swapping calls), however we do find a few applying model-based approaches where the
behavior or a specification of the system is modelled and then used to generate test cases
[25, 129]. The work by Cardoso and Martins goes one step further and applies a search-
based test case generation technique [129].

A common case is the injection of faults in the parameters of AIS calls [133, 136] (e.g.,
boundary or invalid inputs, inopportune inputs - those used at the wrong system state).
Some approaches ignore the parameters and just target the calls themselves by omitting
or swapping them [134, 135]. A few studies also injected faults in the return values of
AIS calls, replacing them with invalid values [134, 135]. More recently, we find approaches
that explore unusual types of faults (i.e., when compared to the remaining middleware
research), namely in [130] where the authors shut down components of cloud networks or
change the network topology during execution.

3.2.5 Software components

This subsection mostly targets COTS software components and applications and, in gen-
eral, software that is built to be reusable (e.g., software libraries). The increasing use of

42

Related work on software robustness evaluation

COTS in dependable systems makes robustness of special importance, especially in cases
like mission-critical systems. Robustness testing of software components has remained an
active area of research since the early nineties, and existing studies are quite diverse as
summarized in Table 3.7.

Costa and Madeira [156] assessed, in 1999, the behavior of a COTS Database Management
System (DBMS), i.e., Oracle server, in the presence of faults injected using XceptionNT, a
Windows NT/Premium port of the Xception dependability assessment tool [126]. Xception
is a fault injection tool for emulating physical faults by performing low-level bit-flips. The
authors injected faults in the processes and threads related to the DBMS (i.e., Oracle
server) and only targeted processor registers with single bit-flips in randomly chosen bits.
Test results were classified with one of correct, abort or hang, and more 10% of faults
injected produced either an abort or a hang in the DBMS process. Costa et al. [157]
extended this approach to also support higher-level software faults (i.e., rather than just
processor register-level faults, as in [156]). The authors consider four types of software
faults, namely assign (missing/wrong initialization), check (missing variable check, off-by-
one or negation), overlay (repetition of instructions to store strings) and pointer (corruption
of target or source address). Both assign and pointer fault types hold a predetermined value
distribution, with 70% of generated faults relating to boundary values, and the remaining
30% equally distributed among changing the value to zero, to one, or to a random value.
The authors evaluate the approach on a more recent version of the Oracle DBMS, and
maintain the previous 3-level result classification scale.

Ghosh and Schmid [7] present an approach for assessing the robustness of COTS appli-
cations against faults in external components (e.g., faulty operating system functions),
requiring only access to the interface of the application under test. Figure 3.5 shows a
graphical representation of this method.

Test computer

Kernel API

Operating System

Fault Injection Wrapper

COTS Application

Figure 3.5: Robustness evaluation of a COTS application with emulation of a faulty Op-
erating System [7].

The approach works by implementing a wrapper between the application interface and,
for example the operating system (i.e., in case that is the component to test the target
application with), which is then used to emulate faulty behavior (e.g., memory errors, I/O
issues). When the target application performs calls to the external system, the wrapper
either replaces call parameters with invalid values which are known to cause exceptions,
or it directly replaces return values (from the original, valid call) with exceptions or error
codes. The proposed approach has been implemented by the authors in the form of a
Windows NT tool named the Failure Simulation Tool (FST).

43

Chapter 3

Table 3.7: Techniques for evaluating the robustness of software components

Systems COTS applications Ahmad et al. [137], Belli et al. [138], Fetzer and Xiao [139], Ghosh and Schmid
[7], Giuffrida et al. [140], Jin et al. [141], Quing-He et al. [142], Shahrokni and
Feldt [143], Ufuktepe and Tuglular [144], Zamli et al. [145]

COTS components Csallner and Smaragdakis [146], Durães and Madeira [147, 148, 149, 150], Fer-
nandez et al. [151], Lei et al. [152, 153], Moraes et al. [154], Oláh and István
[155]

COTS DBMS Costa and Madeira [156], Costa et al. [157]

GUI applications Bauersfeld and Vos [158]

Stateful components Heckeler et al. [159]
Techniques Code changes injection Ahmad et al. [137], Costa et al. [157], Durães and Madeira [147, 148, 149, 150],

Giuffrida et al. [140], Jin et al. [141], Moraes et al. [154], Oláh and István [155],
Ufuktepe and Tuglular [144]

Fault injection Ahmad et al. [137], Bauersfeld and Vos [158], Costa and Madeira [156], Costa et
al. [157], Csallner and Smaragdakis [146], Durães and Madeira [147, 148, 149, 150],
Fetzer and Xiao [139], Ghosh and Schmid [7], Giuffrida et al. [140], Jin et al. [141],
Lei et al. [152, 153], Moraes et al. [154], Oláh and István [155], Quing-He et al.
[142], Shahrokni and Feldt [143], Zamli et al. [145]

Model-based analysis Ufuktepe and Tuglular [144]

Model-based testing Belli et al. [138], Fernandez et al. [151], Heckeler et al. [159], Lei et al. [152, 153],
Oláh and István [155]

Mutation testing Belli et al. [138], Fernandez et al. [151]

Static code analysis Ufuktepe and Tuglular [144]
Targets API calls Fetzer and Xiao [139], Ghosh and Schmid [7], Lei et al. [152, 153], Moraes et al.

[154], Shahrokni and Feldt [143]

Application address space Quing-He et al. [142]

CPU registers Ahmad et al. [137], Costa and Madeira [156], Costa et al. [157], Quing-He et al.
[142]

Function calls Csallner and Smaragdakis [146], Oláh and István [155], Zamli et al. [145]

GUI elements Bauersfeld and Vos [158]

Machine code Ahmad et al. [137], Costa et al. [157], Durães and Madeira [147, 148, 149, 150],
Jin et al. [141], Moraes et al. [154], Oláh and István [155]

Source code Giuffrida et al. [140], Ufuktepe and Tuglular [144]

Specification Heckeler et al. [159]

System model Belli et al. [138], Fernandez et al. [151]
Faults Bit-level faults Ahmad et al. [137], *Costa and Madeira [156], Costa et al. [157], Quing-He et al.

[142]

Boundary inputs *Costa et al. [157], Moraes et al. [154], Zamli et al. [145]

Communication failures *Fernandez et al. [151]

Invalid inputs Costa et al. [157], Fetzer and Xiao [139], *Ghosh and Schmid [7], Giuffrida et al.
[140], Heckeler et al. [159], Lei et al. [152, 153], Moraes et al. [154], Oláh and
István [155], Ufuktepe and Tuglular [144], Zamli et al. [145]

Invalid outputs *Ghosh and Schmid [7], Oláh and István [155]

MACD Ahmad et al. [137], Belli et al. [138], *Oláh and István [155]

Programming errors *Durães and Madeira [147, 148, 149, 150], Jin et al. [141], Moraes et al. [154]

Random inputs Bauersfeld and Vos [158], *Costa et al. [157], Csallner and Smaragdakis [146]

Timing faults *Shahrokni and Feldt [143]
Classification 9 categories Lei et al. [152, 153]

5 categories Shahrokni and Feldt [143]

4 categories Ahmad et al. [137], Durães and Madeira [147, 148, 149, 150], Moraes et al. [154]

3 categories Costa and Madeira [156], Costa et al. [157]

Binary Bauersfeld and Vos [158], Belli et al. [138], Csallner and Smaragdakis [146],
Fernandez et al. [151], Fetzer and Xiao [139], Ghosh and Schmid [7], Giuffrida et
al. [140], Heckeler et al. [159], Jin et al. [141], Oláh and István [155], Quing-He
et al. [142], Ufuktepe and Tuglular [144], Zamli et al. [145]

44

Related work on software robustness evaluation

In 2002, Durães and Madeira propose Generic Software Fault Injection Technique (G-
SWFIT), a method for emulating software faults [147]. G-SWFIT analyzes the machine
code of the target system, finds specific programming structures, and injects faults which
emulate high-level software issues (e.g., programming errors). The faults considered by the
authors include, for instance, missing or wrong variable initialization, replacing operators
in conditional instructions, or missing function calls. The approach was evaluated on
three benchmark applications (e.g., file compression utility), and the authors characterized
results with one of correct, error, erratic or timeout, depending on the behavior displayed by
the tested applications. G-SWFIT has been extended in [148], where the authors analyzed
the most common types of software defects (i.e., software bugs) introduced by developers
and extended the fault set used by G-SWFIT. In [149] the authors evaluated the suitability
of using the G-SWFIT methodology in dependability benchmarks, focusing on essential
properties such as repeatability, portability, and scalability. Finally, in [150] the authors
formalize the concepts previously presented in [147, 148, 149]. Moraes et al. compare
G-SWFIT to the classical robustness testing method of injecting faults at the component
interface [154]. The authors used Jaca [160] and Xception [126] to inject interface-level
faults, and used boundary values (e.g., maximum integer), and values with well associated
meanings (e.g., NULL; 0, -1). The experiment was carried out on the Ozone object-oriented
Java database, and on a real-time space application implemented in C. Results show quite
different behavior between both fault types, and the authors conclude that interface faults
do not represent well residual faults in component code.

Csallner and Smaragdakis present JCrasher [146], a tool for automatic robustness testing
of code written in Java. JCrasher analyzes Java classes and generates test cases that
exercise their methods by calling them with randomly generated input. Because JCrasher
requires access to source code, it is a white-box approach. Two disadvantages of this tool
are that it is only capable of testing Java code and that it only allows randomly generated
input (e.g., users would benefit from being able to define custom domains for parameters).
The authors evaluated JCrasher on a set of eight Java classes, the majority of which often
crashed during testing.

Fetzer and Xiao [139] introduce HEALERS, a tool for automated black-box robustness
testing of C/C++ component-based systems by detecting programming errors and security
vulnerabilities. The approach is based on detecting potential robustness violations by
computing robust argument types. These restrict the set of possible values in such a way
that no robustness issue may occur in the function. For instance, a C/C++ function taking
a char* (i.e., pointer to a character array) is expected to also take an integer argument
representing its length. The robust argument type of these arguments should reflect that
the first argument is an array of length equal to the value of the second argument. Robust
argument types are determined through fault injection experiments, wherein each target
function is called with both valid and exceptional values. These experiments are performed
in an adaptive manner, in the sense that the range of generated input values is iteratively
adapted to the set of values which allows the function to execute properly (i.e., values not
in the final set are those that trigger robustness issues).

In [151], Fernandez et al. present a model-based framework for robustness testing of
software systems, which is applied to a Controller component of a ticket machine. The ap-
proach requires the existence of a specification of the software component under test, from
which it produces a mutated version. A set of robustness requirements are defined by the
tester, which are used with model-checking against the generated mutated specification.
This process results in what the authors call diagnostic sequences - abstract models from
which test cases can be generated. This approach tests software from a black-box perspec-
tive, but it still requires that implementation specifications with functionality details be

45

Chapter 3

provided, and is often not the case in this type of testing.

Zamli et al. [145] introduce SFIT, an automated software fault injection tool for testing
the robustness of Java COTS systems. The tool relies on the Java Reflection API to obtain
the set of existent functions for each Java class in the system under test, and thus does
not need direct access to source code (only to the compiled Java bytecode). This allows
for automated discovery of method interfaces over any Java class. Test cases are defined in
the form of fault setting files, which contain information regarding fault injection locations,
how faults are to be injected, which faults to inject and how many. Unfortunately, the tool
does require a large amount of manual work in the case of testing complex systems with
many Java classes (which is often the reality), because testers must manually define test
cases in fault setting files.

Jin et al. introduce the PIN-based Dynamic Software Fault Injection System (PDSFIS),
a fault injection method based on the PIN framework provided by Intel [141]. PIN is
a tool that allows users to scan specific Assembly code instructions in an executable file
and inject code at those positions. PDSFIS uses this to scan for specific code patterns
(e.g., mov instructions) and inject faults that represent high-level programming errors
(e.g., missing variable initialization). The authors evaluated PDSFIS experimentally on
the Apache web server, and observed many cases of erroneous behavior including delayed
responses, uncaught exceptions and lack of connection.

Oláh and István present a model-based tool for performing robustness testing, through
fault injection, on software components written in Java [155]. The tool reads the Java
bytecode from the component under test, and presents the tester (through a graphical
interface) with a UML-based model of the internal structure of the component. The tester
then configures the faults to inject (including their locations, time or rate of activation,
and parameters) and the monitoring aspects (e.g., parameter monitoring, return value
monitoring, method call monitoring) of the test suite to carry out. The tool supports
definition of custom faults, but by default the following faults are provided: omit return
statement; omit method call; return NULL; return predefined number (i.e., set by the
tester); return predefined string (i.e., set by the tester); and use predefined call parameters
(i.e., set by the tester). The authors did not carry out any experimental evaluation of the
presented tool.

Lei et al. [153] present a stateful robustness testing approach for reusable software compo-
nents. The approach begins by generating a state machine representation of the component
under test using the refinement of Object and Component Systems (rCOS) model. From
this model robustness test cases are automatically generated, containing randomly gener-
ated valid as well as invalid inputs. The authors classify disclosed robustness faults in one
of nine different categories, based on a set of predefined rules. These depend on the state
before and after test execution and whether or not exceptions were raised during execu-
tion. Taking internal component state into account increases the coverage of the robustness
tests. A drawback of this approach is the requirement of the rCOS model, which is not
exactly a widely used software component description format and may, in this sense, limit
the applicability of this approach. In another paper of the same year [152], the authors
describe the same approach again, with negligible changes.

Belli et al. [138] describe a model-based approach for testing the robustness of software
systems using Event Sequence Graphs and Decision Tables. Event Sequence Graphs are
used to represent system behavior and the interactions between the user and the system
as events, while Decision Tables model user inputs and control flow (e.g., different user
inputs lead to different event flows). Test cases are represented by sequences of events
and are mutated through one of three mutation operators: i) insertion of an element; ii)

46

Related work on software robustness evaluation

omission of an element; and iii) combination of two elements. Mutated event sequences
(i.e., test cases) are meant to represent erroneous or undesirable system behavior. This
approach requires that Event Sequence Graphs be manually designed by testers, which is
a time consuming activity. Experimental evaluation was carried out on Isik‘s System for
Enterprise-Level Web-Centric Tourist Applications (ISELTA), resulting in the detection of
18 robustness faults.

Quing-He et al. [142] describe Memory-Oriented Fault Injector (MOFI), a Windows NT
tool for testing the robustness of applications through the injection of software faults that
emulate the effects of radiation-induced hardware faults. MOFI injects faults into processor
registers and memory locations of a running application, and only requires the PID (i.e.,
process ID) of the target application to begin testing. Upon identifying the target registers
and memory locations (i.e., the tool only considers the memory space allocated to the
application under test), MOFI injects bit-flip faults, which can occur in single as well as
multiple bits.

Shahrokni and Feldt [143] present RobusTest, a Java-implemented framework for testing
the robustness of software systems, with focus on timing issues. The user first manually
identifies testable properties of the target system (i.e., what the system should or should
not do, under defined conditions) as well as its expected behavior (i.e., test oracle), and Ro-
busTest then uses this information to automatically generate test cases. A test is composed
of a set of randomly generated time delays between the calls to the system under test. The
authors integrated the CRASH robustness scale directly into the verdict component of the
RobusTest framework, which essentially automates the process of result classification. The
proposed framework was evaluated on two open source implementations of the Extensible
Messaging and Presence Protocol (XMPP) instant messaging protocol, namely Vysper 0.7
and Ejabbered 2.1.8, where it was able to disclose several robustness problems, including
a few Catastrophic and Restart failures.

In [158], Bauersfeld and Vos describe GUITest, a Java library for automated robustness
testing of GUIs. GUITest detects control elements of a graphical interface, along with their
corresponding properties (e.g., size, position, content or type). GUITest also takes into
account interface element hierarchies, which are structured through widget trees. Testing
works by emulating user actions over GUI elements (e.g., mouse clicks or drags, keystrokes
from the keyboard), which in turn activate control elements (e.g., hyperlinks, sliders) and,
if possible, change their content (e.g., tapping a text field and editing its text). The tool is
capable of generating random input sequences which target the detected interface elements.
Robustness issue detection works by checking if the generated input test sequences make
the application crash or freeze (i.e., halt its execution). The authors tested GUITest on
Microsoft Word for Mac, and a few test cases were able to effectively crash the program.

Heckeler et al. [159] describe an approach to test stateful components written in C++.
It requires a UML Statechart specification of the component under test, which describes
defined and undefined state transitions, respectively representing its normal and abnormal
working conditions. The Z3 constraint solver is used to generate robustness tests from the
UML Statechart (essentially, a state machine model) based on transition coverage criteria.
When a test is finished the component state is driven back to the starting state required
by the next test, rather than the entry state of the component itself. The goal of this is to
reduce the number of states to execute over a test suite, thus discarding irrelevant state
transitions and reducing overall testing time. An evaluation of the approach was carried
out against three C++ components, in which a few faults were detected.

EDFI is a general-purpose fault injection tool, which combines static and dynamic program
instrumentation to perform execution-driven fault injection [140]. The approach is based

47

Chapter 3

on generating multiple heterogeneous faulty and fault-free versions of the target application
at compile time (static instrumentation), and seamlessly interleave them in a controlled
way during execution (dynamic instrumentation). The proposed fault model supports
time-based as well as probability-based fault injection, and the user of EDFI is free to
choose which faults will inject (e.g., bit-flips, data type-based mutations). The authors
evaluated EDFI on an instance of the MySQL database management system and on the
Apache httpd web server and were able to detect a few faults.

Ufuktepe and Tuglular [144] propose a method for estimating the robustness of software
applications in relation to input validation vulnerabilities through Bayesian Networks. The
approach searches the source code of the application under test for input validation code
(e.g., if statements), and checks whether this code is exploitable. The authors focus on a
set of six known input validation vulnerabilities, namely: i) path transversal (CWE-22);
ii) OS command injection (CWE-78); iii) cross site scripting (CWE-79); iv) SQL injection
(CWE-89); v) buffer overflow (CWE-120); and vi) uncontrolled format string (CWE-134).
The probabilities of finding these six vulnerabilities in a software application (based on 15
years of data) are preloaded into a Bayesian Network. To test if these vulnerabilities exist
in the target application, the source code is statically analyzed with a tool that checks, for
each function, if its input parameters are validated before being used. A metric called the
validation ratio (i.e., a number between 0 and 1) is obtained by counting the number of
validated vulnerabilities out of the applicable vulnerabilities. The Bayesian Network then
uses this value to estimate the robustness of the target function.

Ahmad et al. [137] introduce Lightweight Dynamic Software-based Fault Injection (LDSFI),
a technique for injecting faults into the binary code of software applications at runtime.
The approach uses the GNU Debugger to periodically interrupt execution of the target pro-
gram through traps, and inject faults. The fault model consists of bit-flips in the program
counter register, random data registers, random instructions or branch instructions, and
removing branch instructions or replacing them with non-branch instructions. The authors
evaluate the LDSFI method on three benchmark programs (i.e., bubble sort, quicksort and
matrix multiplication), and categorized the results with a four-level scale: operating sys-
tem - the operating system signals a fault through an exception; timeout - the program
consumes more time than expected (e.g., infinite loop); correct result - program behaves
as expected; and silent data corruption - result produced by the program is incorrect.
Experimental results show that LDSFI is a highly portable, non-intrusive technique for
performing instruction-level fault injection without requiring source code.

In summary, research on COTS robustness testing covers a large time period, ranging
from the late nineties [7] to very recent years [137]. The rapid increase in the quantity
and diversity of approaches resulted in the appearance of less usual robustness evaluation
techniques, such as the use of mathematical constructs to model certain system properties
[151, 152], or the use of Bayesian Networks for estimating system robustness [144]. Fault
injection, however, still remained as a quite common technique for assessing robustness in
this context. It has been applied in the values of call parameters [143, 145, 146], in source
code [140] as well as machine code (i.e., compiled) [141, 147], or even in the processor
registers [137, 142, 156, 157].

The types of faults applied are relatively usual, encompassing invalid, random or bound-
ary input values [7, 139, 146, 152], bit-related faults (e.g., bit-flip, bit-masking) [156] and
also invalid return values [7]. Some studies explore solutions which are conceptually dif-
ferent from traditional bit or parameter-based tampering, such as removing machine code
instructions [137] or even injecting machine code that emulates high-level programming
mistakes [141, 147].

48

Related work on software robustness evaluation

3.2.6 Web services

This subsection discusses robustness evaluation of web services (in latu sensu) and mostly
covers: i) web applications (i.e., client-server applications that communicate using the
HTTP protocol, usually for transporting Hypertext Markup Language (HTML) docu-
ments and related objects) [161]; ii) SOAP web services, which have the goal of allowing
interoperable communication between heterogeneous systems [162]; and iii) SOAP web
service compositions, which are built based on the aggregation of individual composing
units [163]. Table 3.8 summarizes the main characteristics of the research identified that
targets web services.

Fu et al. [8] presented, in 2004, an approach for testing the robustness of Java-based
web applications, which takes advantage of Java’s exception handling mechanisms. The
approach, depicted in Figure 3.6, is based on instrumenting the target application bytecode
so that the execution path of a certain request is forced towards specific error handling
code paths (i.e., catch statements in try-catch blocks). This allows developers to evaluate
the error handling mechanisms and overall robustness of their applications. For instance, a
non-robust application would throw an unexpected exception and abort execution, whereas
a robust one should be able to comply with the specification and, for instance, proceed
execution.

HTTP Server
middleware

Application

Instrumented bytecode

error handling code

HTTP
request

HTTP
response

Client
(Browser)

Figure 3.6: Robustness evaluation of a web application, by triggering error handling code
[8].

SOAP web services rely on a set of eXtensible Markup Language (XML)-based specifica-
tions to support their operation [162]. Among these, it is worthwhile mentioning the SOAP
protocol, which allows clients and servers to exchange messages in a platform independent
way; and the Web Services Description Language (WSDL) which allows describing a ser-
vice interface (e.g., operations, operation arguments, data types) in a platform independent
manner [162].

Looker et al. [168] introduced, in 2004, the Web Service Fault Injection Technology (WS-
FIT), further detailed in [169], a method and tool for testing the robustness of SOAP web
services through fault injection. WS-FIT is based on the concepts first devised by Looker
and Xu in [181], in which the authors described a method for assessing the dependability of
SOAP web services through fault injection. WS-FIT requires instrumentation of the code
of the target SOAP service to allow interception of both outgoing and incoming SOAP
messages. Using the WSDL document of the service under test, WS-FIT maps intercepted
SOAP messages to the service operations, their parameters and respective data types,
and generates test cases. The approach considers multiple fault types, such as delay and

49

Chapter 3

Table 3.8: Techniques for evaluating the robustness of web services

Systems BPEL compositions Ilieva et al. [31], Kuk and Kim [29]

SOAP web services Carrozza et al. [164], Hanna and Munro [165], Laranjeiro et al. [166, 167], Looker
et al. [168, 169, 170], Martin et al. [171, 172], Rabhi [173], Rychlý and Žouželka
[174], Salas et al. [175], Salva and Rabhi [30, 176], Siblini and Mansour [9], Vieira
et al. [177, 178]

Web applications Calori et al. [179], Fu et al. [8], Mendes et al. [28], Pattabiraman and Zorn [180]
Techniques Code changes injection Fu et al. [8], Mendes et al. [28]

Fault injection Carrozza et al. [164], Hanna and Munro [165], Ilieva et al. [31], Kuk and Kim
[29], Laranjeiro et al. [166, 167], Looker et al. [168, 169, 170], Martin et al.
[171, 172], Mendes et al. [28], Pattabiraman and Zorn [180], Rychlý and Žouželka
[174], Salas et al. [175], Salva and Rabhi [30, 176], Vieira et al. [177, 178]

Interception Looker et al. [168, 169, 170], Rychlý and Žouželka [174], Salas et al. [175]

Model-based analysis Calori et al. [179]

Model-based testing Rabhi [173], Salva and Rabhi [30]

Mutation testing Rabhi [173], Siblini and Mansour [9]

Service emulation Kuk and Kim [29]
Targets Error handling code Fu et al. [8]

Machine code Mendes et al. [28]

Service calls Pattabiraman and Zorn [180]

SOAP message fields Carrozza et al. [164], Hanna and Munro [165], Ilieva et al. [31], Kuk and Kim
[29], Laranjeiro et al. [166, 167], Martin et al. [171, 172], Salva and Rabhi [176],
Vieira et al. [177, 178]

SOAP messages Looker et al. [168, 169, 170], Rychlý and Žouželka [174], Salas et al. [175], Salva
and Rabhi [176]

Specification Calori et al. [179]

System model Rabhi [173]

WSDL fields Salva and Rabhi [30], Siblini and Mansour [9]

WSDL operations Salva and Rabhi [30]
Faults Boundary inputs Carrozza et al. [164], Laranjeiro et al. [166, 167], *Siblini and Mansour [9], Vieira

et al. [177, 178]

Command injection *Laranjeiro et al. [167], Rychlý and Žouželka [174], Salas et al. [175]

Invalid inputs Calori et al. [179], Carrozza et al. [164], *Fu et al. [8], Hanna and Munro [165],
Ilieva et al. [31], Kuk and Kim [29], Laranjeiro et al. [166, 167], Martin et al.
[171, 172], Pattabiraman and Zorn [180], Rabhi [173], Rychlý and Žouželka [174],
Salva and Rabhi [30, 176], Siblini and Mansour [9], Vieira et al. [177, 178]

Invalid operation name *Salva and Rabhi [30]

MACD *Looker et al. [168, 169, 170], Salva and Rabhi [176], Siblini and Mansour [9]

Programming errors *Mendes et al. [28]

Random inputs Ilieva et al. [31], *Martin et al. [171, 172], Rabhi [173], Salva and Rabhi [176]

Timing faults *Looker et al. [168, 169, 170], Rychlý and Žouželka [174]
Classification 5 categories Carrozza et al. [164], Laranjeiro et al. [166, 167], Mendes et al. [28], Vieira et al.

[177, 178]

3 categories, 5 subcategories Ilieva et al. [31]

Binary Calori et al. [179], Fu et al. [8], Hanna and Munro [165], Kuk and Kim [29],
Looker et al. [168, 169, 170], Martin et al. [171, 172], Pattabiraman and Zorn
[180], Rabhi [173], Rychlý and Žouželka [174], Salas et al. [175], Salva and Rabhi
[30, 176], Siblini and Mansour [9]

reordering of SOAP messages, and duplication, omission and addition of both messages
and message parameters. In [170] the authors compared WS-FIT with code insertion,
a well-established fault injection method, and concluded that WS-FIT holds comparable
performance and fault injection capabilities and is less invasive.

The work by Siblini and Mansour [9] rely precisely on the WSDL documents associated
with SOAP services and generate mutants, with the goal of generating clients that comply
with each mutated specification. However, the approach sends requests to the genuine

50

Related work on software robustness evaluation

service implementation, with the goal of disclosing robustness problems. This concept is
represented in Figure 3.7 and described in further detail in the next paragraphs.

SOAP web service

Service
Implementation

Middleware

WSDL
Mutant 1 WSDL

Mutant 2 WSDL
Mutant N

Client 1

Client 2

Client N

WSDLMutant
Generator

HTTP/SOAP

12

3

4

Figure 3.7: Approach for robustness evaluation of SOAP web services based on mutated
WSDL documents [9].

The approach depicted in Figure 3.7 relies on a set of three WSDL-oriented mutation
operators, which target three different XML elements in the WSDL documents, namely
the types, message and port type elements. The mutation operators are switch, which
replaces elements in pairs, the special operator modifies an element’s value to a boundary
value, the next value in the domain or null (if applicable for the data type), and occurrence
which deletes or adds an occurrence of a given element. The authors evaluated the approach
on an example credit card checker web service, which showcased its usefulness in revealing
interface errors in WSDL documents and logical errors in web services.

In 2007, Vieira et al. proposed an approach for assessing the robustness of SOAP web
services based on the combination of valid and invalid input values [177]. The approach
was adapted in [178], where the authors aim at a method for evaluating and comparing
web services robustness, which was later implemented in wsrbench [166] – a public web
application for testing the robustness of SOAP web services. As a result of these endeavors,
the concepts regarding robustness testing of SOAP services were matured and formalized
in [167], in which a robustness testing approach, based on invalid and malicious inputs,
is described in detail. The inputs used are mostly based on limit conditions, and are
generated by applying a set of predefined rules that are data type-dependent. The authors
propose a set of steps for testing the robustness of SOAP web services, which include
extracting information from the WSDL file describing the service, generating and executing
a workload, i.e., a set of valid calls to the service (for understanding the service normal
behavior), defining and executing a faultload (i.e., a set invalid and malicious inputs that
is integrated into the workload), and classifying the observed behavior. The behavior is
classified using an adaptation of the CRASH scale [3] and a set of behavior tags proposed
by the authors. The authors applied their approach to 250 online services, disclosing
numerous robustness issues, including security vulnerabilities.

Martin et al. [171] define a framework for automated generation and execution of web
service robustness tests based on the information extracted from the service’s WSDL files.
A set of Java classes is first generated based on the service interface, each class targeting a
specific service operation. Afterwards, a test generation tool (e.g., JCrasher [146]) is used
to automatically create robustness tests for the Java classes obtained in the previous step.

51

Chapter 3

Finally, the Java testing tool JUnit is used to execute the robustness tests against the web
service under test. The described framework was later implemented by the authors in the
form of a tool named WebSob [172]. The authors evaluated WebSob on 35 public web
services, and disclosed a considerable number of robustness problems with no knowledge
regarding the service implementations.

Calori et al. [179] propose a framework for conducting robustness analysis of web appli-
cations at early development stages. The approach is comprised of four steps: i) define
a severity-based ranking of failure scenarios (e.g., critical, not critical); ii) use Jacob-
son’s analysis method (a combination of Failure Modes and Effects Analysis (FMEA), and
Bayesian Belief Network (BBN)) to capture system behavior aspects at early development
stages when little information about system structure is known, and to identify interface
objects, entity objects (e.g., databases) and control objects (e.g., application logic); iii)
apply FMEA (a technique used to examine potential failures in processes and identify cor-
responding causes and effects) for each identified control object; iv) represent the system in
the form of a BBN model, with arcs representing the cause-effect relationships identified by
FMEA and nodes representing identified variables. Finally, variables are assigned concrete
states (i.e., values) and the Bayesian Network calculates an estimation of the severity of a
robustness failure in the system, which allows to identify critical components in the system
(which should be focal points for developers).

A fault injection approach for testing SOAP web services is described by Hanna and Munro
in [165]. The proposed method automatically generates robustness test cases, but requires
a previous (manual) analysis of the service’s WSDL document. This is used to identify
possible robustness faults in the service, allowing the tester to build a set of rules for
automatic test case generation. A rule is composed, among other fields, by the target fault,
the testing technique to use (e.g., boundary value analysis, robustness testing, mutation
testing), the target WSDL parameter and the test data (e.g., value to inject in the target
parameter). The authors implemented the approach in a tool named Web Services Testing
Framework (WSTF), which was evaluated against a single-operation in-house web service
running on top of Axis middleware [182] and the Tomcat web server [183], where the results
only revealed a single minor robustness issue.

Kuk and Kim [29] detail a method for assessing the robustness of web service composi-
tions based on Business Process Execution Language (BPEL). BPEL documents contain
information regarding the service composition structure, the set of participating services
and the exception handling characteristics. By analyzing the participant services list, it is
possible to obtain the corresponding WSDL files. The approach does not invoke the ac-
tual services in the target composition, but rather generates virtual services which mimic
the real ones and contain only the necessary logic to conform to the behavior specified
in the respective WSDL files (e.g., return valid or invalid results, return exceptions de-
scribed in the WSDL). Valid and exceptional test cases are thus automatically generated
from this data. This approach depends greatly on the completeness of BPEL and WSDL
specifications, which may often not be the reality. The proposed approach was evaluated
on a pump design engineering application, uncovering a few issues related to uncaught
exceptions being thrown due to parameter mishandling.

A 2009 work by Salva and Rabhi [176] discusses an automated robustness testing method
for web services based on information gathered from their interface descriptions documents.
The automatically generated tests comprise of random calls to the service operations using
random and invalid values as input parameters. The authors also propose a method for
reducing the number of tests by identifying and removing test cases that contain faults
which are likely to be consumed by SOAP processing middleware, as these faults would

52

Related work on software robustness evaluation

never actually affect the web service implementation. The same authors proposed an ex-
tension to this approach in [30], which focuses on stateful SOAP web services and works
by modelling the service state as a Symbolic Transition System (STS). The test case gen-
eration method used relies on the addition, modification and replacement of web service
operation names and values for operation parameters. The state of the service is actively
modelled by an STS, by mapping each service state to an STS state and its transitions
to the service operations. The resulting model should represent the overall web service
behavior and state transitions, including calls to incorrectly named operations and also
state transitions resulting from incorrect service responses. The set of invalid inputs con-
sidered (i.e., invalid operation names and unusual parameter values) is relatively small,
when compared to most other robustness evaluation approaches.

Pattabiraman and Zorn describe an approach for assessing the robustness of Web 2.0
applications which relies on the identification of the invariant elements of the Document
Object Model (DOM) in [180]. DoDOM is a tool that is able to automatically identify
which of the elements in a service’s DOM tree remain constant by recording the outputs
from the service as a user performs a series of inputs (e.g., navigates through the web
application). Upon obtaining a model of the invariant elements in the DOM tree, the
service is tested with invalid inputs, and the resulting DOM trees are compared with the
tree of the original model. Major deviations in structure constitute erroneous behavior,
and thus represent robustness issues. This approach has the advantage of allowing service
consumers (i.e., users) to easily apply it, as access to source code is not necessary. However,
the approach assumes that the many views of a web application hold some similarity in
structure between each other. In cases where this is not true, one can only expect that
the baseline DOM tree contains root HTML elements such as head and body (i.e., because
these would, hypothetically, be the only invariant elements in such a dynamic environment).
Authors evaluated DoDOM on a set of three web applications, with results showing a high
coverage of known faults.

Mendes et al. [28] assess the impact that web application faults have on web servers, by
injecting faults in the server-side applications and monitoring the behavior of the web server
from both server and client sides. The approach has two phases, a first one for establishing
the baseline web server behavior and a second phase where fault injection is used. The
workload (used in the first phase) is comprised of a set of representative operations which
aim to exercise the web server under normal operation. The faultload (used in the second
phase) is composed of faults that emulate typical high-level programming mistakes (e.g.,
missing function call, wrong assignment value, missing if statement), which are injected
using the Generic Software Fault Injection Technique (G-SWFIT), presented in an earlier
paper [150] (and previously described in Subsection 3.2.5). The authors use a qualitative
failure mode scale classification to label each fault injection outcome. The approach was
experimented on a realistic e-commerce web application running on three widely known
web servers, and results show a small number of problems, such as calls returning wrong
results and excessive use of system resources.

Carrozza et al. propose a tool for assessing the robustness of web services in [164], which
is named WSRTesting. The main motivation is to handle wsrbench’s limitations [166]
and create a tool that complies with industry requirements. These requirements include
the capability of recognizing complex data types in WSDL files, taking into account the
semantics of specific operations within different web services (e.g., some operations require
data from others, thus test cases should allow for proper operation sequencing), or even
automatically managing test results. The proposed approach, WSRTesting, aims to fill
in these gaps by presenting testers with interfaces to configure and properly setup the
desired testing environments, which include the input of admissible testing ranges for each

53

Chapter 3

operation parameter (or using the tool’s default values when no ranges are specified), or
even providing the tool with a description of XML-formatted custom parameter types.

A paper by Ilieva et al. [31] presents the TASSA framework for automated generation and
execution of robustness test cases against BPEL web service compositions. The test cases
generated by TASSA are based on fault injection using invalid, unexpected or random
data. In order to test a web service composition, the TASSA framework requires a BPEL
specification document. Robustness faults disclosed during testing are classified into one
of several categories of three fault types, namely physical, interaction and development.
The authors validated the TASSA robustness testing framework on a case study service
composition comprised of three separate SOAP services, and around incorrect behavior
was observed in around 38% of test cases.

Rabhi presents a model-based approach for testing robustness of web service compositions
operations in [173]. First, an STS specification is generated, which models the behavior
of the web service composition. An STS is an extended automaton model that associates
behavior with a specification, and is composed of transitions labelled by actions as well
as internal and external variables of a system. From the composition STS, a symbolic
execution tree is automatically generated per service operation. Symbolic execution trees
describe execution paths of each operation and serve as a per operation sub-specification.
Finally, the set of symbolic execution trees (one per service composition operation) are
mutated to represent incorrect (i.e., unexpected or invalid) behaviors.

Rychlý and Žouželka describe Fault Injector for Web Services (FIWS), a tool for testing the
robustness of SOAP web services through fault injection experiments [174]. FIWS proxies
between a SOAP web service and its client application, and intercepts traffic being sent to
the service. Every intercepted message is dispatched to a fault injector component, which
tests the contents of the message against a set of user-defined rules. A rule is composed of a
set of conditions (e.g., based on message headers or payload), and a set of faults related to
message content (e.g., string replacement, XPath corruption or multiplication, corruption
of headers, removing payload) or the message itself (e.g., delay message transmission).
When an intercepted message meets all the conditions of a rule, each of its faults is injected
into it and each faulty message is then forwarded to the service under test. The authors
evaluated the FIWS tool on a set of sample web service projects included in the Netbeans
Integrated Development Environment (IDE), and on a set of four public web services, with
some fault injections resulting in 400 Bad request and 500 Internal server error status code
responses.

Salas et al. present WSInject, a fault injection tool for assessing the robustness of SOAP
web services that implement the WS-Security extension [175]. WSInject works as a proxy
between the client application and the target web service, and intercepts the SOAP mes-
sages sent from the client to the service. The faults injected into SOAP messages emulate
different injection attacks, including XML code injection, cross-site scripting, and XPath
injection. The existence of security vulnerabilities (strongly related with input-level ro-
bustness) is diagnosed according to eight rules, which rely on verifying the HTTP status
code of the service response (to a faulty request) as well as whether or not private infor-
mation was disclosed by the service. The proposed approach was evaluated on a set of ten
web services, and many XML Injection-related vulnerabilities were disclosed.

In summary, we found research on robustness evaluation of web services targeting pure
web applications [8, 28, 179, 180], individual SOAP services (e.g., [165, 167, 171, 173])
and service compositions (i.e., [29, 31]). The work found on web applications is relatively
scarce, with some works applying less usual methods (e.g., code instrumentation [8] or
Jacobson’s analysis method [179], programming errors being introduced into the system

54

Related work on software robustness evaluation

[28]).

Regarding the SOAP web services, it is worthwhile mentioning that the targets of the
techniques now also aim at a key component of these services, the interface description
[9, 30, 164, 177].

Some approaches rely on parameter-based tampering methods by directly mutating the
input values in calls to service operations [30, 31, 176]. These mutations may be based
on boundary, invalid or purely random values [9, 167, 171], or even values that exclusively
aim to detect security vulnerabilities [175]. Others work by intercepting SOAP messages
and delaying, reordering, removing or duplicating them [168, 174], or instead mutate the
fields of the WSDL specification to replace, add or delete fields [9] or changing names of
service operations [30] to evaluate how the service responds. It is worthwhile mentioning
that we also observed a few cases of research focused on delivering a tool that could be
effectively used by practitioners [31, 164, 166, 170].

As a final comment to the research carried out in SOAP web services, it is interesting to
notice that the last work dates back to 2015, which signals the known decreasing interest
in SOAP services. At the same time, we were not able to find any work targeting Repre-
sentational State Transfer (REST) services, which posses different characteristics, namely
less rigid service invocations, possible absence of interface descriptions, unstructured or
semi-structured service descriptions [15], which may be relevant information for future
research.

3.2.7 Autonomous and Adaptive systems

This subsection discusses research that targets the robustness evaluation of autonomous
and adaptive systems, i.e., software systems that have to operate autonomously and may
have capabilities of autonomous adaptation to changing environments [66]. A plain au-
tonomous system may be a robotics system or the core software system in an autonomous
vehicle, whereas an adaptive system is one whose configuration can be (self-) adjusted
during execution, to maintain a certain level of QoS or to fulfill operational goals. These
systems are usually based on a feedback loop mechanism (e.g., MAPE-K [184]), where the
system constantly receives data regarding the sensed environment and in the end actuates
to adjust itself, in a certain manner, to the changing environment. Table 3.9 summarizes
the research identified in this topic.

In 2004, Bennani and Menascé [186] proposed an approach for assessing the robustness
of self-managing software systems. The approach relies on using workloads with highly
variable time requirements. That is, each workload requires that the system use a certain
amount of computational resources that depends on how large or small its set of requests
is. By using highly variable workloads, the authors intend to stress the underlying self-
adjustment modules of these systems and attempt to disclose robustness problems. This
is a black-box approach, but it requires feedback regarding the behavior of the system
under test, which may be impossible in some situations (e.g., when the system under test
is remote).

A work by Chu et al. [23] describe a fault injection-based approach to test the robustness
of the LAAS architecture, a software architecture for real-time control of mobile robots.
The approach works by injecting faults in the real robot controller software, which is itself
attached to a robot simulation tool. Faults are injected in messages passed between the
functional (i.e., the fault injection target) and decisional layers of the architecture. Three
types of faults are considered: i) unforeseen messages (i.e., message flooding); ii) message

55

Chapter 3

Table 3.9: Techniques for evaluating the robustness of autonomous and adaptive systems

Systems Autonomous Chu et al. [23], Hutchison et al. [128], Katz et al. [185], Powell et al. [127]

Self-adaptive Bennani and Menascé [186], Cámara et al. [10, 187, 188, 189]
Techniques Fault injection Cámara et al. [10, 187, 188, 189], Chu et al. [23], Hutchison et al. [128],

Powell et al. [127]

Interception Hutchison et al. [128]

Mutation testing Katz et al. [185]

Stress testing Bennani and Menascé [186]
Targets API calls Bennani and Menascé [186], Katz et al. [185]

Message fields Chu et al. [23], Cámara et al. [10, 187, 188, 189], Hutchison et al. [128]

Messages Chu et al. [23], Hutchison et al. [128], Powell et al. [127]
Faults Boundary inputs *Cámara et al. [10, 187, 188, 189], Katz et al. [185]

Invalid inputs *Chu et al. [23], Cámara et al. [10, 187, 188, 189], Hutchison et al. [128],
Katz et al. [185]

MACD *Chu et al. [23], Powell et al. [127]

Stressload *Bennani and Menascé [186]

Timing faults *Chu et al. [23]
Classification 5 categories Cámara et al. [10, 187, 188, 189]

4 categories, 12 subcategories Chu et al. [23]

Binary Bennani and Menascé [186], Hutchison et al. [128], Katz et al. [185], Powell
et al. [127]

transmission disruption, which includes removing, delaying or repeating messages, as well
as inverting the order of message sequences; and iii) message parameter corruption similar
to the one carried out in [3]. Each test outcome is classified considering the following
four dimensions: interface (i.e., the types error messages observed); system (i.e., what is
observed from a system point of view, such as an operating system crash); application
safety (i.e., whether safety is violated); and application mission (i.e., whether the mission
accomplished or not).

Powell et al. describe in [127] a method for assessing the timing robustness of real-time
control software of autonomous systems. The approach is based on fault injection, in
which random mutations are applied to valid sequences of requests issued to the functional
layer of such systems. The faults used consisted of deleting, inserting, and re-ordering
requests and proved to be useful in detecting several robustness violations. The approach
was evaluated on an experimental planetary exploration robot, and only a few cases of
incorrect behavior were observed.

Cámara et al. [10] proposed an approach, in 2013, for evaluating the robustness of con-
trollers for self-adaptive software systems, depicted in Figure 3.8. The state of the system
taken into account and is tracked through scenarios. Scenarios are sequences of events, and
each scenario is described by the workload assigned to the system at a given time, its then
operational conditions, and a set of changes to apply to the controller input. A change is
an instance of the changeload model, which is used to describe mutation rules to apply to
the inputs of the controller under test. These mutation rules are essentially the application
of invalid inputs to the data types in messages that reach the controller, similar to the ones
used by Ballista [80]. Disclosed robustness issues are classified according to an adapted
version of the CRASH scale [3]. These concepts have been matured and formalized in [187].
The authors have also tried later to understand to what extent the use of a different target
system, within a self-adaptive architecture, may impact the robustness of the controller
[188]. In [189] the authors propose an approach that is based on the use robustness testing,
with the goal of assessing the resilience of self-adaptive systems. Results show that the
stateful properties of the controller strongly influences the resilience of the target system.

56

Related work on software robustness evaluation

Controller

Effectors

Target System

Probes

Adapt Monitor

Affect Monitor

Environment

Pr
ob

es

Self-Adaptive Software System

FI

FI

Figure 3.8: Evaluating the robustness of a self-adaptive system controller (adapted from
[10]).

Thus, testing the robustness of the controller must be a priority for achieving resilience.

Hutchison et al. present, in [128], the Automated Stress Testing for Autonomy Architec-
tures (ASTAA), a tool for automating robustness testing activities for autonomous systems
(e.g., systems used in robotics or automation). In ASTAA, a tester must first specify how
the target system works, including system interfaces, startup and shutdown sequences
and safety invariants, which are the safety properties the system must respect (e.g., au-
tonomous vehicles should not exceed speed limits). Test cases are then generated from this
system specification, which intercept messages between distributed components and inject
invalid values in fields and messages (multiple injections within the same message are also
used). The authors evaluated the approach on 17 real-world autonomous systems, robots
and robotics-oriented libraries (both commercial and academic), and disclosed numerous
robustness problems, including severe cases where safety could be compromised.

Katz et al. propose a method for detecting execution anomalies in robotics and autonomous
software, through robustness testing, by monitoring low-level execution behavior and per-
forming anomaly detection on the results [185]. The first phase of the approach is based
on running an instrumented version of the target system on nominal inputs and collect-
ing summaries of execution (i.e., execution traces). The affinity propagation algorithm is
then used to automatically cluster the collected execution traces, thus allowing to identify
and categorize nominal system behavior. In the following phase, new execution traces are
collected by running the target system with invalid and boundary inputs likely to induce
safety failures (e.g., MAX_INT, NAN, -1), and these are compared against the previously
obtained clusters of nominal behavior in order to detect anomalies. Large differences be-
tween these traces may be indicative of non-robust system behavior, and thus violation
of safety properties. The authors evaluate the presented technique in a simulation on two
robotics systems, one of which is a real-world industrial system, leading to the detection
of robustness issues representative of unsafe system behavior.

To summarize, some of the approaches found on autonomous and adaptive systems do not
take the state of the system into consideration [23, 127, 186], whereas the works by Cámara
et al. [10, 187, 188, 189] explicitly consider the state of the system. Most of the approaches
use fault injection as a testing technique [23, 127, 189], but one particular work relied on
stress testing [186], an entirely different method which attempts to force the target system
into an erroneous state through, for example, excessive resource consumption.

57

Chapter 3

The fault models used are quite typical (e.g., invalid or boundary inputs [10, 128, 188]),
although in some cases less usual faults are taken into consideration, such as timing-
related faults [23] and inserting, re-ordering or deleting messages [23, 127]. Considering
the increasing use of this kind of systems (e.g., in autonomous vehicles), we find robustness
evaluation approaches to be scarce, especially considering the case of systems where the
lack of robustness may affect other important properties of the system (e.g., safety).

3.3 Discussion

In this section, we discuss the main findings identified during our analysis of the state of
the art. We do so while placing emphasis on answering the research questions presented
earlier, in Section 3.1.2.

We begin by discussing research question RQ-1 Which types of software systems are
the subject of robustness evaluation?, for which we found relatively diverse target
systems being evaluated. However, we were able to fit the different systems into seven
groups that we consider to be widely accepted classes of software. Figure 3.9 depicts
the distribution and count of publications per system type, over the whole period where
research on software robustness was found.

Autonomous and
Adaptive systems (9)

Web services (23)

Software components (24)

Middleware (12)

Embedded systems (24)

Communication systems (12)

Operating systems (28)

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

Publication year

S
ys

te
m

 ty
pe

Count

1

2

3

4

5

Figure 3.9: Distribution of publications per system type over the years.

As we can see in Figure 3.9, there has been a relatively large interest in the robustness
evaluation of operating systems, embedded systems, web services, and software compo-
nents, although, by nature, this latter type of software is a broad group. The evaluation of
operating systems robustness has received some exploratory attention in the early nineties,
but has mostly developed in the late nineties, due to the works on robustness conducted
within the Ballista project [80]. Afterwards, a few works appeared, with authors bene-
fiting from the lessons learned from the work carried out within the Ballista project and
also proposing new approaches for operating system robustness evaluation. Recently, the
attention has shifted to mobile operating systems, which is also a visible trend in Figure
3.9.

Communication systems have seen research being carried out in a few short bursts, span-
ning about a decade and a half. Considering their long existence, they do not seem to be
the typical case of interest in robustness evaluation. Regarding embedded systems, the use
of robustness evaluation techniques has also been traditionally important (e.g., in aerospace
systems). With the increasing use and complexity of software in these systems (e.g., in
modern vehicles) [190], it is not surprising that the area is still active even when consider-
ing the high specificity of this type of systems. Research on middleware has concentrated

58

Related work on software robustness evaluation

mostly around the late 2000’s, although we are also considering middleware management
systems, in which we also observe recent work being carried out, especially in cloud plat-
forms. As mentioned, the Software Components category is a typical target of research,
with particular expression in the popular years of COTS usage [150].

Web services robustness evaluation has seen a peak of research being carried out in the late
2000’s, with some work on Web Applications but with the majority focusing on SOAP web
services. Research interest has clearly stopped and, at the time of writing, we were also not
able to identify robustness evaluation research of more recent web service implementations,
such as REST services. Finally, and more recently, research has targeted adaptive and
autonomous systems, with most of the works being published in the last decade. This
is somewhat expectable, given the recent interest, for instance, in autonomous and self-
driving vehicles [191].

Robustness evaluation techniques have been applied to highly diverse systems
throughout the years, with the heterogeneity and specificities of the target systems
justifying the need for adaptations of existing techniques or the need for the definition of
new techniques. At the same time, the open space for research is visible, with many specific
subtypes of systems not really being evaluated for robustness. This is the case of specific
systems like iOS or Windows mobile operating systems (for which close work on security
evaluation already exists [192, 193, 194]), different types of middleware like streaming
middleware (e.g., Apache Kafka [195] or Amazon Kinesis [196]), or REST services, which
are now pervasive in the industry with major companies providing access to their services
via a REST API (e.g., Twitter, Instagram, Facebook) [15]. More importantly, new types
of systems have not yet been the focus of robustness evaluation. Thus, we were not able
to identify research on topics involving, for instance, Cyber-Physical Systems [197] or
Blockchain systems [198].

The second question RQ-2 Which techniques are used to evaluate software ro-
bustness? led us to focus on the techniques used in the robustness evaluation literature.
Again, we found a large diversity of specific techniques being used which, however, fit into
a few general cases. Figure 3.10 shows the total number and application of the different
techniques over time.

Service emulation (1)
Stress testing (1)

Static code analysis (3)
Model−based analysis (5)

Fuzzing (9)
Mutation testing (9)

Interception (14)
Code changes injection (16)

Model−based testing (34)
Fault injection (103)

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

Publication year

E
va

lu
at

io
n

te
ch

ni
qu

e

Count

1

2

3

4

5

6

7

8

Figure 3.10: Distribution of publications per technique over the years.

Figure 3.10 makes it clear that robustness evaluation research tends to be mostly of ex-
perimental nature, with formal techniques being less frequently used. The distribution
is essentially dominated by two groups of techniques, with most of the works using fault
injection (i.e., about three quarters of the works) and the other major group including
model-based techniques (e.g., model-based testing) and accounting for about one fourth of
the works. Less frequently, some works use formal analysis techniques, such as invariant

59

Chapter 3

analysis and abstract interpretation. The distribution of the most popular techniques is
fairly regular, despite the presence of a few moments where we observe a higher number
of papers being published (e.g., fault injection during the late 2000’s).

Figure 3.11 shows the distribution of the different techniques in perspective with the type
of system being evaluated.

Service emulation (1)

Stress testing (1)

Static code analysis (3)

Model−based analysis (5)

Fuzzing (9)

Mutation testing (9)

Interception (14)

Code changes injection (16)

Model−based testing (34)

Fault injection (103)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Publication count

E
va

lu
at

io
n

te
ch

ni
qu

e

Operating systems

Communication systems

Embedded systems

Middleware

Software components

Web services

Autonomous and Adaptive systems

Figure 3.11: Distribution of evaluation techniques per system type.

Considering both the techniques and the system type, it is clear that fault injection domi-
nates the plot and touches all types of systems. We also observe that model-based testing
tends to have a stronger relative association with communication systems and also em-
bedded systems. Also worthwhile mentioning is the stronger association of code changes
injection with software components, and fuzzing with operating systems. Obviously, there
are also cases of techniques not being applied to certain system types (e.g., code changes
injection in autonomous and adaptive systems), which may be an indicator of a research
opportunity.

Regarding the third question RQ-3 Which are the targets used by software ro-
bustness evaluation approaches?, we analyzed the prevalence of the evaluation targets
(e.g., messages, API calls, function return values) used in the different approaches and
their distribution throughout time. Figure 3.12 shows the outcome of this analysis.

Cloud network components (1)

Interface description (2)

Application address space (3)

Command arguments (3)

Source code (3)

GUI elements (4)

Function calls (6)

Kernel address space (7)

CPU registers (8)

Machine code (12)

API calls (20)

System model (20)

Messages (22)

System calls (25)

Message fields (26)

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

Publication year

Te
ch

ni
qu

e
ta

rg
et

Count

1

2

3

4

5

6

Figure 3.12: Distribution of publications per technique target over the years.

60

Related work on software robustness evaluation

As we can see in Figure 3.12, five different targets (i.e., messages, message fields, system
calls, API calls and system model) account for the vast majority of the represented cases.
Regarding system and API calls, their use is frequent and we can see their application from
early years until recently. The same occurs for messages and message fields, although in this
latter case there are few additional gaps in time. If we consider the target code (i.e., source
code and machine code), we end up with numbers close to the most popular techniques,
although in a lesser extent. Some other technique targets are clearly less frequent (e.g.,
address spaces) and reflect some specialization of a certain technique that is applied to a
specific type of system (e.g., cloud network components).

Figure 3.13 shows the different targets of evaluation, in perspective with the type of system
being evaluated.

Cloud network components (1)

Interface description (2)

Application address space (3)

Command arguments (3)

Source code (3)

GUI elements (4)

Function calls (6)

Kernel address space (7)

CPU registers (8)

Machine code (12)

API calls (20)

System model (20)

Messages (22)

System calls (25)

Message fields (26)

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Publication count

Te
ch

ni
qu

e
ta

rg
et

Operating systems

Communication systems

Embedded systems

Middleware

Software components

Web services

Autonomous and Adaptive systems

Figure 3.13: Distribution of evaluation targets per system type.

There are a few obvious cases of association which are visible in Figure 3.13, such as system
calls or kernel address space being coupled with operating systems or embedded systems.
Message fields appear strongly associated with web services, due to the large number of
works based on fault injection applied to the fields of SOAP messages. The association of
message fields with communication systems and autonomous and adaptive systems is also
quite clear. In the former case, it is an obvious way for evaluating robustness of network-
based systems. In the latter case, message fields carrying faulty inputs have been mostly
directed to a part of the system, as a way of evaluating robustness of the whole system. The
messages target is largely associated with communication systems and also web services,
which is an expected exploration of the decoupling between clients and servers in this type
of systems. A large portion of the target system model is associated with communication
systems and embedded systems, which is related with the frequent need to verify certain
highly critical properties in these systems. Finally, we must mention the case of API
calls, which tend to be used along with middleware and software components, which is not
surprising if we consider that these types of software offer APIs as a main entry point.

The fourth research question RQ-4 Which types of faults are being used in software
robustness evaluation? aims at characterizing the types of faults used in robustness
assessment research. Figure 3.14 shows the prevalence and distribution of the types of
faults identified in the literature throughout the time.

As we can see in Figure 3.14, invalid inputs dominate the distribution, being used in about

61

Chapter 3

Round−off errors (1)

Stressload (1)

Communication failures (2)

Command injection (3)

Inopportune inputs (3)

Invalid outputs (7)

Programming errors (8)

Bit−level faults (16)

MACD (18)

Timing faults (21)

Random inputs (23)

Boundary inputs (29)

Invalid inputs (79)

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

Publication year

Fa
ul

t t
yp

e

Count

1

2

3

4

5

6

7

9

Figure 3.14: Distribution of publications per fault type over the years.

two thirds of the works. At a smaller scale, but still popular, we find boundary inputs,
random inputs, timing faults, MACD operations (i.e., Move, Add, Change, Delete), and
bit-level faults. Regarding the distribution over the years, we can observe a higher number
of works using invalid inputs in the late 2000’s (also MACD operations), with the same
happening with works using timing faults. Boundary and random inputs have been used
regularly throughout the time and also bit-level faults, although at a smaller scale.

Figure 3.15 shows the distribution of types of faults in perspective with the system types
in which they are used.

Round−off errors (1)

Stressload (1)

Communication failures (2)

Command injection (3)

Inopportune inputs (3)

Invalid outputs (7)

Programming errors (8)

Bit−level faults (16)

MACD (18)

Timing faults (21)

Random inputs (23)

Boundary inputs (29)

Invalid inputs (79)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Publication count

Fa
ul

t t
yp

e

Operating systems

Communication systems

Embedded systems

Middleware

Software components

Web services

Autonomous and Adaptive systems

Figure 3.15: Distribution of fault types per system type.

As we can see in Figure 3.15, the two most frequent fault types (i.e., invalid inputs and
boundary inputs) have been used in works that span across all identified system types
(albeit with different prevalence), which is an indicator of their usefulness and applicability
in robustness evaluation. About half of the works using random inputs are evaluating
operating systems, and timing faults are also prevalent when the work evaluates embedded
systems, which is expected given that many of these systems have to fulfill strong timing

62

Related work on software robustness evaluation

requirements. We found MACD faults frequently being used with communication systems
and Bit-level faults being applied only to works involving operating systems, embedded
systems and software components.

Regarding the last research question RQ-5 Which are the methods used to charac-
terize robustness?, we were aiming at understanding the typical ways of characterizing
robustness which is an essential part of the process of robustness evaluation. We observed
that most of the works (i.e., about two thirds) simply distinguish correct behavior from
incorrect (i.e., non-robust). The classification scheme used by the remaining third is es-
sentially a failure mode scale, in different configurations, that allows characterizing the
behavior of the systems under evaluation. Table 3.10 conveys this information, and shows
the ways of characterizing robustness, identified during the analysis of the state of the
art, including the structure of each scale, the terms used to classify observations, and the
references to each work using a certain scale. For layout reasons, we divided Table 3.10
in two parts, separated by double horizontal lines. The top part holds the classification
schemes used by a small number of works, and the bottom part refers to classification
schemes adopted by several works.

As we can see in Table 3.10, we observed the use of many different structures and sets of
classification terms, with most of the works merely resorting to a binary classification (i.e.,
correct or failure). The remaining use more complex structures, with the CRASH scale [3],
and their adaptations like the ones used in [6, 129, 188], dominating the distribution (i.e.,
CRASH variants account for about half of the works that use a non-binary classification).
Some classifications have a more complex or a higher dimensional structure, which allows
for a finer classification, but at the same time may add difficulties to the classification
process itself making it more error-prone.

We can also see that, regardless of the schema used (and with the exception of the cases
using a binary classification) there is a general concern with classifying the severity of the
failure. This is also true if we consider the classification schemes that have categories and
subcategories, although, in general, in these cases, the categories are related with a cer-
tain higher level aspect of the system (i.e., part of the system that was affected, mission
completed or not), and not with the severity of the failure itself. This is in line with the
discussion by Mukherjee and Siewiorek [199] that precisely shows the importance of catego-
rizing test results so that the severity of an identified failure is registered. Also, the use of
an established, adaptable and, ideally, portable classification scheme allows for robustness
benchmarks to take place. As a summary, we observed quite different structures for
classifying robustness, with most concerned with classifying severity of failures
and with CRASH [3] being the prevalent classification scheme used (among the
non-binary schemes).

In the following section, we highlight the gaps observed in our analysis of the state of the
art, and identify open challenges for future research on robustness evaluation.

3.4 Highlights and research challenges

Robustness evaluation is an established area of research that we found applied to numerous
types of systems. The origin can be traced to the work on operating systems by Miller [68]
and, most notably, by the work carried out within the context of the Ballista project [80].
As time passed by, techniques started to move out of the kernel and expand to libraries or
utilities and then to different kinds of systems.

63

Chapter 3

Table 3.10: Classification schemes used in the state of the art

Structure Classification terms Works
4 categories,
12 subcategories

Interface No error message returned, Correct error message, Incorrect error mes-
sage

System Nothing observed, Module crash, BIP engine crash, OS crash
Application (safety) Safety respected, A safety condition is violated
Application (missions) Mission fulfilled, Mission failure

Chu et al. [23]

9 categories Correct, Incorrect, Crashing, Invariant preserving, Invariant breaking, Invalid input resistant,
Invalid input crashing, Broken invariant resistant, Broken invariant crashing

Lei et al. [152, 153]

8 categories Effectless, Incorrect output results, Real-time dysfunction, System crash, Memory access dys-
function, Exception trigger, Application hang

Nicolescu et al. [120]

3 categories,
7 subcategories

Application level Application failure, Application hang
Interface level Error status, Exception, Wrapper
Kernel level Kernel hang, Kernel debugger

Arlat et al. [108]

7 categories Pass, Pass with exception, RTI internal error, Unknown exception, Abort, Restart, Catas-
trophic

Fernsler and Koopman [133]

6 categories Catastrophic failure, Restart failure, Abort failure, Raise unknown exception, Silent failure,
Hindering failure

Pan et al. [132]

System call returns correct status code (0), System call exits with unexpected error code (1),
System call succeeds with invalid parameters (2), RTOS terminates benchmark (3), Test causes
application restart and RTOS reload (4), Test causes cold system restart (5)

Dingman et al. [22]

3 categories,
5 subcategories

Physical Server is down, Network connection to the server is broken
Interaction Timeout exception, Response error
Development Named parameter incompatibility

Ilieva et al. [31]

5 categories Error code returned (SEr), Exception raised (SXp), Panic state (SPc), Hard reboot required
(SHh), No-signaling state (SNS)

Kanoun et al. [78]

Web server crash, Web server unresponsive, Resource use penalty, Wrong results, No impact Mendes et al. [28]
OS Crash, Application hang, Abnormal application termination, No impact, Wrong results Madeira et al. [118]

4 categories Kernel failure, Workload failure, File system corruption, No impact Cotroneo et al. [117]
No problems detected (FM1), System or applications hang (FM2), System crashes and reboots
(FM3), Same as FM3 but there are corrupted files (FM4)

Mendonça and Neves [91]

Detected failure, Silent failure, Hang failure, Crash failure Zhou et al. [125]
Operating System exception, Timeout, Correct result, Silent data corruption Ahmad et al. [137]
No failure (class NF), Deviation from golden run (class 1), Specification is violated (class 2),
OS is unresponsive due to crash or hang (class 3)

Johansson et al., [90]

Correct, Timeout, Error, Erratic Durães and Madeira [147, 148, 149, 150],
Moraes et al., [154]

Correct output, Wrong result, System hang, Exception Ruiz et al., [122]
3 categories Restart, Abort, Pass Xiang et al. [87]

Correct, Abort, Hang Costa and Madeira [156]
Abnormal, Hang, Normal Costa et al. [157]

2 categories Critical, Not critical Calori et al. [179]
5 categories Catastrophic, Restart,

Abort, Silent, Hindering
Azevedo et al. [26], Cardoso and Martins [129], Carrozza et al. [164], Cotroneo et al. [116], Cámara et al.
[10, 187, 188, 189], Koopman and DeVale [19, 79], Koopman et al. [3], Kropp et al. [80], Laranjeiro et al.
[6, 166, 167], Maia et al. [119], Napolitano et al. [136], Shahpasand et al. [124], Shahrokni and Feldt [143],
Vieira et al. [177, 178]

Binary Robustness issue,
No issue

Acharya et al., [76], Ait-Ameur et al. [105], Albinet et al. [77], Alnawasreh et al. [107], Batista et al. [5],
Bauersfeld and Vos [158], Belli et al. [138], Bennani and Menascé [186], Cardoso et al. [27], Cavalli et al.
[95], Chauvel et al. [130], Cong et al. [70], Cotroneo et al. [131], Csallner and Smaragdakis [146], Durães
and Madeira [88], Feng and Shin [72], Fernandez et al. [151], Fetzer and Xiao [139], Forrester and Miller [89],
Fouchal et al. [110, 111], Fu and Koné [21], Fu et al. [8], Ghosh and Schmid [7], Ghosh et al. [92], Giuffrida et
al. [140], Hanna and Munro [165], Heckeler et al. [159], Hutchison et al. [128], Jin et al. [141], Jing et al. [102],
Johansson et al. [103], Kaksonen et al [20], Katz et al. [185], Kuk and Kim [29], Kövi and Micskei [134], Looker
et al. [168, 169, 170], Maji et al. [73], Martin et al. [171, 172], Mattiello-Francisco et al., [24, 112], Micskei
et al. [25, 135], Miller et al. [68, 81, 82], Montrucchio et al. [83, 84], Naceur et al. [96], Oláh and István,
[155], Pattabiraman and Zorn [180], Popovic and Kovacevic [97], Powell et al. [127], Quing-He et al. [142],
Rabhi [173], Rodríguez et al. [121], Rollet and Saad-Khorchef, [113], Rollet and Salva [98, 109], Rychlý and
Žouželka [174], Saad-Khorchef et al. [4], Salas et al. [175], Salva and Rabhi [30, 176], Sasnauskas and Regehr
[74], Schmid et al. [93], Shahpasand et al. [123], Shelton et al. [69], Siblini and Mansour [9], Siewiorek et al.,
[85], Suh et al., [86], Tarhini et al. [114], Ufuktepe and Tuglular [144], Vasan and Memon [99], Velasco et al.
[71], Winter et al. [115], Xiang et al. [100], Xu et al. [101], Yang et al. [106], Ye et al. [75], Zamli et al. [145]

The main techniques used for assessing robustness are fault injection and model-based
testing, which account for about three quarters of the research on robustness evaluation.
Other less frequent techniques include mutation testing, fuzzing and also model-based
analysis. About two thirds of the techniques aim at function calls (API, function, or
system calls) and also messages and their fields. Invalid inputs clearly dominate the types
of faults, followed by boundary, random, timing faults and then faults that operate at the
message level. We also found that most works merely distinguish correct behavior from
incorrect, although works using more complex schemes tend to adopt some variation of the
CRASH scale [3].

There are clear challenges associated with the evaluation of robustness of new types of
systems, among which we identify the selection of the technique (e.g., model-based, ex-
perimental), the target of the evaluation (e.g., an API, a message, message fields) the
selection of the faults (e.g., timing faults, boundary values), and finally how to classify

64

Related work on software robustness evaluation

behavior (i.e., the selection/adaption of a failure mode scale and how to retrieve the nec-
essary information from the system to allow classification). It became clear that, at the
time of writing, there are types of systems for which robustness evaluation tech-
niques are not known. We primarily refer to research on REST services robustness,
for which we did not identify any academic contribution. Due to their less rigid nature
(e.g., there is no official standard service interface description [15]), the way these services
are developed (e.g., inputs can be provided in numerous formats, inputs can be placed in
the request payload or in a Uniform Resource Locator (URL) as part of a certain resource
identifier), and the additional middleware involved, we believe REST services should be
interesting candidates for robustness evaluation and, to the best of our knowledge, there
is no current academic contribution which supports testing REST APIs for
robustness.

We also did not identify work on blockchain systems, which carry several challenges, namely
system complexity, strong integrity concerns, or timing requirements [200]. Another ex-
ample is the case of Cyber-physical systems, characterized by strong interactions between
their physical and computational parts [201]. These interactions will pose specific chal-
lenges (e.g., which fault injection locations to select, where should behavior observation
points be set) related with the uncertainty of the environment and the nature of the overall
system, which is many times a large-scale System-Of-Systems [202].

Some of the works analyzed evaluate systems that operate in safety-critical conditions
(e.g., [5, 22, 105]). However, we found that there is little focus on research that
considers the interplay between robustness and safety. As the world progresses
towards autonomous driving cars [191] and flying drones [203], which hold strong safety
concerns and execute under highly dynamic and uncertain environments, it is expectable
that research advances robustness evaluation techniques to allow characterizing robustness
in perspective with the safety requirements of such systems.

There has been recent advances in autonomous computing and increasing presence of
artificial intelligence in the systems supporting our daily lives. Although we found a few
works on autonomous systems, to the best of our knowledge, there is currently
no research on robustness evaluation of Artificial Intelligence based systems.
These systems may be placed under highly variable, limit, or unpredictable conditions and
present non-deterministic behavior, being a known case of difficult verification [204], for
which new robustness testing techniques may help in providing assurances that the system
is able to resist to invalid or stressful conditions.

We have also observed that authors tend to use either a binary classification of the observed
behavior (e.g., correct, failure) or a variation of the CRASH scale that properly fits the
system under evaluation. Future research on robustness evaluation would benefit
from a standard method for classifying the robustness of systems. It is likely that
a single scale does not fit the whole diversity of existing systems, however, having a small
set of classification schemes that could apply to a large variety of contexts or systems would
simplify one of the researchers tasks, which is the selection (if a good candidate exists) or
the definition of the different ways in which the system can fail. This would involve the
definition of proper guidelines for researchers to make informed decisions. As mentioned,
this would also foster comparability of robustness evaluation results [199].

As previously highlighted, the robustness of REST services has been largely neglected by
researchers. However, other quality attributes (i.e., apart from robustness) have been the
focus of researchers and practitioners in recent years. In the following chapter, we explore
related academic and industry works on REST services testing.

65

This page is intentionally left blank.

Chapter 4

Related work on REST service
testing

In this chapter, we analyze related work in the context of Representational State Transfer
(REST) Application Programming Interface (API) testing. We begin by exploring, in Sec-
tion 4.1, academic research contributions which propose approaches for testing different
quality attributes of REST APIs. Then, in Section 4.2, we present an analysis of a con-
siderable number of industry tools for REST API testing. We conclude this chapter with
Section 4.3, where we discuss our main observations regarding the analyzed material and
highlight a few limitations of the current state of the art and state of practice on REST
API testing.

4.1 Studies on REST service testing

In this section, we analyze related studies on REST API testing, where we cover approaches
which rely on multiple techniques for testing different aspects of these systems. This
includes functional testing, security testing, and a more formal approach such as model-
based testing, just to name a few. The technique targets, test inputs and classification
schemes used on results, are also categorized for each of the identified approaches, which we
have compiled in Table 4.1. We conclude this section with a few paragraphs summarizing
the main patterns we identified among the analyzed approaches.

Figure 4.1 presents an example of approach for testing REST APIs using the fuzzing testing
method (i.e., in essence, generate random or invalid inputs and use them in calls to the
service, an approach that resembles robustness testing), which is inspired by the approach
presented in [11] (and is further detailed later in this section).

As we can see in Figure 4.1, this example approach starts with the testing tool (i.e.,
essentially, a REST client application) parsing the service specification for the target REST
API, from which it generates a set of valid requests (i.e., containing valid input, expected
by the service as per its specification). These are passed to a request fuzzer component,
which replaces the valid values in the requests with random or invalid values (i.e., ideally
those that fall outside the boundaries defined in the specification). The resulting set of
fuzzed requests is delivered to the main component of the testing tool, the tester, which
iteratively sends each fuzzed request (now suitably formatted as an Hypertext Transfer
Protocol (HTTP) request) to the target REST service. The service replies with an HTTP
response, which the tool will receive and store for the user to manually inspect later.

67

Chapter 4

Table 4.1: Techniques for testing RESTful web services

Systems RESTful web services Arcuri [205, 206, 207], Atlidakis et al. [11, 208], Chakrabarti and Kumar
[209], Chakrabarti and Rodriquez [210], Ed-douibi et al. [211], Fertig and
Braun [212], Godefroid et al. [213], Karlsson et al. [214], Liu and Chen [215],
Pinheiro et al. [216], Segura et al. [217], Seijas et al. [218], Zhang et al. [219]

Techniques Connectedness testing Chakrabarti and Rodriquez [210]

Differential regression
testing Godefroid et al. [213]

Functional testing Chakrabarti and Kumar [209], Fertig and Braun [212], Liu and Chen [215]

Fuzzing Atlidakis et al. [11, 208], Godefroid et al. [213]

Integration testing Arcuri [205, 206, 207], Zhang et al. [219]

Metamorphic testing Segura et al. [217]

Model-based testing Ed-douibi et al. [211], Fertig and Braun [212], Pinheiro et al. [216]

Mutation testing Liu and Chen [215]

Property-based testing Karlsson et al. [214], Seijas et al. [218]

Security testing Atlidakis et al. [208], Fertig and Braun [212]
Targets API calls Arcuri [205, 206, 207], Atlidakis et al. [11, 208], Chakrabarti and Kumar

[209], Chakrabarti and Rodriquez [210], Ed-douibi et al. [211], Fertig and
Braun [212], Godefroid et al. [213], Karlsson et al. [214], Liu and Chen [215],
Pinheiro et al. [216], Segura et al. [217], Seijas et al. [218], Zhang et al. [219]

Inputs Invalid inputs Arcuri [205, 206, 207], Atlidakis et al. [11, 208], Ed-douibi et al. [211], Fertig
and Braun [212], Godefroid et al. [213], Karlsson et al. [214], Liu and Chen
[215], Zhang et al. [219]

Random inputs Karlsson et al. [214], Seijas et al. [218]

Valid inputs Arcuri [205, 206, 207], Atlidakis et al. [11, 208], Chakrabarti and Kumar
[209], Chakrabarti and Rodriquez [210], Ed-douibi et al. [211], Fertig and
Braun [212], Godefroid et al. [213], Karlsson et al. [214], Liu and Chen [215],
Pinheiro et al. [216], Segura et al. [217], Zhang et al. [219]

Classification Binary Arcuri [205, 206, 207], Atlidakis et al. [11, 208], Chakrabarti and Kumar
[209], Chakrabarti and Rodriquez [210], Ed-douibi et al. [211], Fertig and
Braun [212], Godefroid et al. [213], Karlsson et al. [214], Liu and Chen [215],
Pinheiro et al. [216], Segura et al. [217], Seijas et al. [218], Zhang et al. [219]

Ideally, the response should contain enough information for the user to discern whether
an issue was triggered in the service as a consequence of the use of invalid input, or if the
service aptly detected the illegal input and stopped it from causing any harm.

Chakrabarti and Kumar proposed Test-the-REST (TTR), an HTTP test suite execution
and management framework designed to test functional attributes of RESTful web services
[209]. TTR operates by first receiving a test case specification, which is provided by a user
and written in an eXtensible Markup Language (XML)-based language, and is used as
input to the test case validation module. Once validated, a test case is executed against
the REST API under test. Once a response is obtained from the target API, it is used
for verifying pass or fail conditions defined in the corresponding test case (e.g., asserting
that the HTTP response holds a specific status code, or that the returned payload is
represented as a specific media type). This process is repeated for all test cases a tester
provides to the tool. TTR does not hold automatic test case generation capabilities and
thus all tests must be generated manually by the user. The authors implemented TTR
in the C# programming language and evaluated it on an in-house RESTful service, with
results showing that TTR was able to disclose a considerable amount of software bugs.

In [210], Chakrabarti and Rodriquez detail a method for testing the connectedness of
RESTful web services, a property that characterizes whether every resource exposed by
the service is reachable from the base resource through consecutive HTTP GET requests.
The proposed approach relies on the specification of a web service resource graph, which

68

Related work on REST service testing

REST service

REST API

Service
implementation

Client
(Testing tool)

Service
specification

Specification
parser

Request fuzzer

Tester

Fuzzed HTTP
request

HTTP
response

RequestsRequestsRequests

RequestsRequestsFuzzed
requests

Figure 4.1: Fuzzing approach for testing REST APIs, inspired by [11].

contains the set of resources exposed by the web service, structured in such a way that
allows to understand the hierarchies involved. This specification is described in WADL++,
an extended version of the Web Application Description Language (WADL), and can only
be provided by the web service developers. Then, a depth-first search is executed on the
observable resources of the web service, with no previous knowledge of its structure. If
the resulting resource graph differs from that in the WADL++ description, then the web
service is not fully connected. The authors evaluated the approach on a REST service used
internally by a company, and were able to disclose multiple functional and connectedness
defects in the implementation. This approach does not, however, take into account security-
related requirements of RESTful web services, such as authorization, without which it is
expected that access to some resources be blocked.

A study by Seijas et al. [218] details a property-based testing tool, implemented in Erlang,
for RESTful web services. It is capable of executing requests with the HTTP verbs that
map to the CRUD operations (i.e., POST, GET, PUT and DELETE), and also provides
an additional operation, list, which uses the GET method to list an entire set of resources.
The actual test execution relies on the QuickCheck tool [220], which executes test cases im-
plemented in Erlang and assesses the returned HTTP responses, using user-chosen criteria
(from a set of predefined options) to output a test verdict. The authors showed an example
application of the approach to the Storage Room and Google Tasks RESTful services.

Pinheiro et al. describe a model-based testing approach for validating the behavior of
RESTful web services [216]. The service under test is modelled as a Unified Modeling
Language (UML) protocol state machine, which emphasizes the transitions between service
states, and is used to generate test cases. Test cases are tuned to maximize coverage of
existing states and state transitions. Essentially, the proposed approach explores the states
of the service under test in order to identify transitions that may lead to inconsistent or
invalid states. The authors implemented the approach in the form of a Java-based tool,
and validated it in a case study of a simple RESTful service with a small set of states.

Fertig and Braun introduce a model-based software development and testing technique for
functional and security testing of RESTful APIs [212]. Based only on an abstract model
of the target RESTful service describing the resources involved (i.e., which directly dictate
the layout of its endpoints), the states of the service, and the respective state transitions,
the technique automatically generates the source code for the API along with a large set of
functional and security test cases. Functional test cases essentially verify the correctness
of the HTTP responses returned by the service under test (e.g., valid HTTP headers, valid
Uniform Resource Identifier (URI)s to other resources in the service), and security test
cases focus on the authorization-related aspects of the service (e.g., access to some service

69

Chapter 4

resources require authorization through username-password combination or an API key).
The authors resorted to the Xtext and Xtend domain-specific languages to construct a test
case templating framework, which may be extended for use with different kinds of testing
types (e.g., performance, behavior). The proposed approach was evaluated on a simple
RESTful API model composed only of four resources, where a total of 20000 different test
cases were successfully generated.

Liu and Chen introduce a technique to automate test data generation for REST APIs
based on a mutation testing approach [215]. Firstly, a WADL specification of the RESTful
web service is required, in order to obtain information regarding parameter data types.
Parameter constraints are then specified for each data type (e.g., maximum and minimum
integer value), which allow to distinguish valid from invalid values, and are used for gen-
erating test data through techniques such as equivalence partitioning and boundary value
analysis. This test data is then mutated through one of a set of seven mutation operators
(e.g., randomly replace values), the best of which are selected by a genetic algorithm. Fi-
nally, the fittest test cases are executed in a Hadoop environment, which the authors claim
increases the performance of the testing process. The approach was evaluated on a simple
RESTful online shopping service system, with no particularly relevant observations in the
results.

Arcuri presented a fully automated, white-box testing method which automatically gen-
erates integration test cases for REST APIs through evolutionary algorithms [205]. The
approach requires full access to the source code of the RESTful service under test, and
thus focuses solely on the developer’s perspective. Using an evolutionary algorithm, the
approach iteratively improves upon randomly generated test cases that aim to maximize
code coverage and the amount of error status code responses from the service under test.
The evolutionary algorithm uses mutation operators to perform small modifications on
each generated HTTP request (e.g., changing the value of a given parameter to another
value of the same data type), and continuously optimize its performance according to
the code coverage and error responses metrics. The author implemented the approach in
the form of a tool called EvoMaster, which has been described more in depth in another
paper [206]. EvoMaster was evaluated on two open-source RESTful services and on a
large industrial service, and a total of 38 real software bugs were successfully disclosed.
In a later paper, Arcuri proposes a few extensions to the EvoMaster approach, including
a larger experimental evaluation where a total of 80 real software bugs were disclosed in
a set of five open-source RESTful services [207]. The most recent version of EvoMaster,
proposed by Zhang et al. [219], improves the test case generation and optimization process
by considering the semantics of HTTP methods used in RESTful services, resulting in a
significant increase (i.e., about 40%) in code coverage and error response finding compared
to previous iterations of the approach.

Ed-douibi et. al [211] propose an approach for automated specification-based test case
generation for REST APIs. It first requires the generation of a meta-model of the OpenAPI
specification of the REST API under test, which contains constraints and rules the API
should comply with. The next step in the approach is using the meta-model of the OpenAPI
specification to generate a TestSuite model. The concept of TestSuite model, introduced
by the authors, is essentially a template for defining test cases. From this template, actual
test cases are created according to a given set of rules. The generated test suites attempt
to validate whether the service under test behaves according to its corresponding OpenAPI
specification, and include both positive and negative test cases, with the latter relying solely
on invalid input values. The approach was evaluated on a set of 91 OpenAPI documents of
different RESTful service APIs, and the generated test cases held an average API coverage
of about 76%.

70

Related work on REST service testing

Segura et. al propose an approach for disclosing faults in REST APIs through metamorphic
testing [217]. Metamorphic testing helps solve the oracle problem in software testing by
exploiting relations (i.e., metamorphic relations) among the outputs of multiple calls to
the system under test. It works by introducing small variations in the testing environment
while maintaining the same inputs to system calls (e.g., search for a given string with
different numbers of results per page), and checking whether the outputs of such calls
verify certain conditions, namely metamorphic relation output patterns (e.g., varying the
paging size for a given query implies that the total result size of successive calls should
hold an equality relation, as this value should not be affected by the amount of results
per page). The authors introduce multiple output relation patterns, which work in the
form of set operations (i.e., as in the mathematical concept of set), namely the equivalence,
equality, subset, disjoint, complete and difference operations. The approach was evaluated
on the Spotify and Youtube REST APIs, and a total of 11 issues were detected in the
services, 10 of which were confirmed by the developers.

Atlidakis et al. present RESTler, a stateful REST API fuzzer [11]. RESTler analyzes the
API specification of the target RESTful web service, and generates sequences of requests
that automatically test the service through its API. The request sequences are generated
in two ways: i) by inferring producer-consumer dependencies among request types declared
in the specification (e.g., inferring that a request B should be executed after request A,
because B takes as input a resource that is produced by A); and ii) by analyzing dynamic
feedback from the responses observed during prior test executions in order to generate new
tests (e.g., learning that a request C, performed after the request sequence A-B, is refused
by the service, and such combination should be avoided in the future). The authors
evaluated both test generation methods on the open-source Git service GitLab, and on
several Microsoft Azure and Office 365 cloud services. A considerable number of bugs were
found in all the tested platforms, which the respective service owners confirmed and fixed.

Atlidakis et al. introduce a method for testing the security of RESTful web services
by exploiting vulnerabilities in their REST APIs [208]. The authors start by defining
four security rule that are desirable in a REST API, namely: i) use-after-free - a deleted
resource must no longer be accessible; ii) resource leak - a resource that was not created
successfully must not be accessible; iii) resource-hierarchy - a child resource must only be
accessible from its respective parent resource, and none other; and iv) resource-namespace
- a resource created in a user namespace must not be accessible through another user
namespace. Violations of such rules might allow an attacker to hijack service resources,
bypass quotas, steal information from other users, or to corrupt the backend service state
so that it no longer operates properly. The authors extended RESTler, a stateful fuzzer for
REST APIs introduced in [11], to support the necessary capabilities to validate these four
properties on a given RESTful web service, and evaluated the approach on a set of Azure
and Office 365 cloud services. Results show that the approach managed to successfully
disclose previously undocumented security bugs in some of the tested services.

Godefroid et al. introduce differential regression testing, a method for performing regres-
sion testing on RESTful APIs by comparing the behavior of different versions of a system
against each other, using the same inputs [213]. The approach considers regressions in the
API specification of the RESTful service, as well as in the actual software components that
make up the service. To find regression bugs in both of these elements of the RESTful
API, the approach is applied to pairs of different versions. In order to generate test cases,
composed of sequences of HTTP requests, the authors use RESTler, a stateful fuzzer for
REST APIs [11]. Based on the HTTP responses obtained during testing, the approach is
able to automatically detect deviations and highlight possible regression bugs. The authors
evaluated the approach across 17 different versions of the Azure networking APIs within a

71

Chapter 4

3-year period, wherein five regression issues were detected in the official API specifications
and nine in the software components of the service.

Karlsson et al. present a method to explore and evaluate the behavior of RESTful APIs
using an automatic property-based testing method [214]. Test cases are generated by
analyzing the OpenAPI documents describing the REST API under test. Inputs sent
to the targeted endpoints are randomly generated, and can either be in line with the
specification of the API under test (i.e., valid) or not (i.e., invalid). Additionally, test
oracles, which are used to provide a verdict on the conformance of response data, are
automatically generated from the target OpenAPI document. The proposed approach has
been evaluated in an industrial case study at a company, and on the open-source software
platform GitLab. Results showed that the approach is able to automatically find faults
and gain insights of the API under test given a well-formed OpenAPI document.

In summary, we have primarily observed a wide diversity of testing techniques in the state
of the art, including functional testing [209], regression testing [213], integration testing
[205, 219] or security testing [208, 212], just to name the most common techniques. Some
approaches resort to less conventional testing techniques such as connectedness testing (i.e.,
verifies whether all resources in the API are connected) [210], metamorphic testing (i.e.,
searches for relationships between outputs of API calls) [217], or property-based testing
(i.e., essentially, asserts that the API under test verifies a given property) [214], just to
name a few. The work by Atlidakis et al. [11], in particular, uses fuzzing as a testing
technique, and the approach greatly resembles robustness testing.

Regarding test targets, the analyzed state of the art focuses solely on API calls, and the in-
puts used are either invalid (i.e., not in line with the API specification) [206, 215], randomly
generated [214, 218] or valid (i.e., expected by the API) [209, 217]. Regarding classification
of results, the analyzed state of the art does not resort to multi-level classification schemes
for distinguishing between different test outcomes, but rather use only binary scales, which
signal the existence of a problem (e.g., a security vulnerability, the violation of an expected
property, failure to properly execute a functionality as per the design of the service), or
the absence of any issue.

4.2 Tools for REST service testing

This section presents an analysis of a considerable number of industry tools for REST
API testing, with only the exception of payware tools, for which we had no access. We
experimented each of the tools described in the following paragraphs, and we provide
here a detailed analysis of our experience in using them, as well as some limitations we
occasionally observed. We categorized all tools according to a few dimensions, namely the
type of tool, the API specifications it supports (if any), the test case generation mode (e.g.,
predefined options, scripting language), and the elements of HTTP responses which can be
verified (i.e., test case assertion targets), which we summarize in Table 4.2. We conclude
this section with a few paragraphs outlining our main observations regarding the analyzed
tools.

Figure 4.2 presents the operation of a browser extension tool for REST API testing, based
on the approach taken by Postman [12] (further detailed later in this section).

As per Figure 4.2, this tool is essentially a small application which operates on the envi-
ronment of a web browser (i.e., a browser extension). The tool accepts as input JavaScript
files describing the steps to take for testing the target REST API, including the target

72

Related work on REST service testing

Table 4.2: Industry tools for testing RESTful web services

Type Application Fiddler [221], HttpMaster [222], Jmeter [223], Katalon Studio [224],
Pyresttest [225], SOAtest [226], SoapUI [227], Tavern [228], WebInject [229],
Zerocode [230]

Browser extension Postman [12], RestBird [231], Restlet Client [232], vREST [233]

Library Airborne [234], Chakram [235], Karate [236], REST Assured [237]

Online platform API Fortress [238], APImetrics [239], Assertible [240], Ping-API [241], Run-
scope [242], vREST [233]

Specifications API Blueprint API Fortress [238]

APIMatic APImetrics [239]

BPEL SOAtest [226]

I/O Docs API Fortress [238]

OpenAPI API Fortress [238], APImetrics [239], Assertible [240], HttpMaster [222], Kat-
alon Studio [224], RestBird [231], Runscope [242], SOAtest [226], SoapUI
[227], vREST [233]

RAML API Fortress [238], SOAtest [226]

WADL SOAtest [226]

WSDL API Fortress [238], SOAtest [226]

None Airborne [234], Chakram [235], Fiddler [221], Jmeter [223], Karate [236],
Ping-API [241], Postman [12], Pyresttest [225], REST Assured [237], Restlet
Client [232], Tavern [228], WebInject [229], Zerocode [230]

Test cases CoffeeScript Ping-API [241]

FiddlerScript Fiddler [221]

Golang RestBird [231]

Groovy Katalon Studio [224], SoapUI [227]

Java REST Assured [237]

JavaScript Chakram [235], Ping-API [241], Postman [12], SoapUI [227]

Karate DSL Karate [236]

Node.js RestBird [231]

Python RestBird [231]

Predefined API Fortress [238], APImetrics [239], Airborne [234], Assertible [240], Fiddler
[221], HttpMaster [222], Jmeter [223], Pyresttest [225], Restlet Client [232],
Runscope [242], SOAtest [226], SoapUI [227], Tavern [228], vREST [233],
WebInject [229], Zerocode [230]

Assertions Status code API Fortress [238], APImetrics [239], Airborne [234], Assertible [240],
Chakram [235], Fiddler [221], HttpMaster [222], Jmeter [223], Karate [236],
Katalon Studio [224], Ping-API [241], Postman [12], Pyresttest [225], REST
Assured [237], RestBird [231], Restlet Client [232], Runscope [242], SOAtest
[226], SoapUI [227], Tavern [228], vREST [233], WebInject [229], Zerocode
[230]

Headers API Fortress [238], APImetrics [239], Airborne [234], Assertible [240],
Chakram [235], Fiddler [221], Jmeter [223], Karate [236], Katalon Studio
[224], Ping-API [241], Postman [12], Pyresttest [225], REST Assured [237],
RestBird [231], Restlet Client [232], Runscope [242], SOAtest [226], SoapUI
[227], Tavern [228], vREST [233], Zerocode [230]

Payload API Fortress [238], APImetrics [239], Airborne [234], Assertible [240],
Chakram [235], Fiddler [221], Jmeter [223], Karate [236], Katalon Studio
[224], Ping-API [241], Postman [12], Pyresttest [225], REST Assured [237],
RestBird [231], Restlet Client [232], Runscope [242], SOAtest [226], SoapUI
[227], Tavern [228], vREST [233], WebInject [229], Zerocode [230]

Uniform Resource Locator (URL) and HTTP method to use, the parameters and payload
(if required), and the set of assertions to verify on the response (i.e., in this case, verify

73

Chapter 4

REST service

REST API

Service
implementation

Browser

HTTP
request

HTTP
response

JavaScript file
(Test case)

Service URL HTTP method

Parameter 1 Parameter 2

Payload

Assert status == 200

Assert header “head1” == Value

HTTP Framework

Testing tool
(Browser extension)

JavaScript parser

Tester

Figure 4.2: Browser extension tool for REST API testing, inspired by Postman [12].

that the response status code is 200, and that the response header named head1 contains
a specific value). The tool’s JavaScript parser handles the test case script provided by the
user, and generates a test case in the form of an HTTP request. For sending the HTTP
request to the target API, the tool takes advantage of the HTTP framework existent in
the browser and asks it to deliver the request. The request reaches the target REST API,
which eventually replies with an HTTP response. The returned response is then caught by
the browser’s HTTP framework, and sent back to the tool, which will validate the response
according to the assertions defined in the test case.

Apache JMeter [223] is a Java tool for testing web services using a wide variety of com-
munication protocols (e.g., File Transfer Protocol (FTP), Simple Object Access Protocol
(SOAP), Simple Mail Transfer Protocol (SMTP)) including HTTP, which means it is suit-
able for testing REST APIs. It is not a dedicated REST API testing tool, however, and
therefore it does not support automatic API specification (e.g., OpenAPI) parsing and test
case generation, and all test cases must be manually added by the user. An alternative path
is for users to resort to a browser input/navigation recorder that is capable of outputting
a JMeter-recognized file format, such as Badboy. Users can specify test case assertions
(i.e., conditions to verify on test outputs) through the user interface of JMeter, i.e., as
opposed to programmatically. Defining an assertion, however, is a multi-step process and
may become time consuming for large REST APIs.

SOAtest [226] is a user interface-based tool for testing SOAP and RESTful web services,
microservices, databases among other types of software systems. SOAtest provides HTTP
request recording capabilities to facilitate test case generation, and to achieve this the
tool resorts to artificial intelligence algorithms. Specifically, SOAtest provides a Smart
Generator which monitors the activity of a user while navigating through a given online
platform. The tool uses the collected information to establish meaningful patterns between
requests and their respective content. This results in a set of randomly generated, but
semantically meaningful, test cases that target the online platform the user chose. SOAtest
is able to parse a large number of API specification types, including OpenAPI, RESTful
API Modeling Language (RAML), WADL, Web Services Description Language (WSDL)
and Business Process Execution Language (BPEL) (the latter two being used only by
SOAP web services). Users may specify test case assertions to perform on HTTP response
elements through the interface of SOAtest, but only by selecting from a predefined set of
options, and no extension capabilities (e.g., through a scripting language) are supported.

Fiddler is .NET application with a graphical user interface for creating and executing
API test cases over RESTful web services [221]. Fiddler allows users to take a client-
side perspective for testing a REST API (i.e., performing HTTP requests and receiving

74

Related work on REST service testing

HTTP responses), as well as a man-in-the middle perspective, whereby the tool is able to
capture network traffic and modify the corresponding data through fault injection, which
allows for a less intrusive testing approach, as long as there is access to the network data
between the API client and the REST service (i.e., encrypted data may be harder to work
with). Assertions on HTTP responses can be defined through a predefined set of test case
validators as well as through custom-made validators written in FiddlerScript, a scripting
language used by Fiddler which is based on JScript.NET, a .NET version of JavaScript.

WebInject [229] is an HTTP testing tool. It presents a very minimalistic graphical interface
for running test cases and monitoring response times, and test cases must be defined ex-
ternally in XML files. When defining test cases, users must specify a unique test identifier,
the target URL for the REST API to test, and the HTTP method to use, of which only
GET and POST are supported. A few optional parameters can also be specified, such as
sleep which waits a number of seconds after the corresponding test case has run before
another one is executed. The options offered by WebInject for HTTP response validation
(i.e., test assertions) are somewhat limited. For instance, verifying that the payload of an
HTTP response contains a particular string S, requires that the test case XML file contain a
verifypositive key with the value S. However, this will output true as long as the string is
in the payload, independently of the positions or amount of times it appears in the payload,
leading to somewhat coarse grained verifications. In order to isolate only a particular oc-
currence of the target string, the user must resort to regular expressions. Additionally, only
a total of eight verifications of this type are possible, namely verifiypositive(2/3/4)
for asserting that an element is present, and verifynegative(2/3/4) for asserting that
an element is absent, which imposes some limitations for detailed test cases where many
elements of HTTP responses are validated.

SoapUI [227], as the name suggests, is a tool that is primarily intended for testing SOAP
web services, but because it supports the HTTP protocol it also provides REST API
testing capabilities. It is a standalone Java application with a graphical user interface,
and it supports OpenAPI descriptions, from which it extracts the necessary information
to generate a set of test cases (i.e., each being a single HTTP request). Users of the tool
may still manually setup test cases, and thus have greater control over some aspects (e.g.,
input data used in the tests). Test case assertions can be chosen in the graphical interface
from a predefined set (e.g., message body contains or not contains an element, invalid
status code), as well as defined programmatically through JavaScript or Groovy scripts,
which provides more flexibility in performing complex verifications on the HTTP response
content.

REST Assured [237] is a well-known Java tool for performing black-box testing over REST
API, which takes advantage of the object-oriented capabilities of Java to provide its own
Domain-Specific Language (DSL). Its verbose syntax is in the form of Given (an initial
context), When (an event occurs), Then (validate outcomes) statements, as used in behavior-
driven development where executable tests are structured in such a way that resembles the
flow of natural language statements [243]. Test case assertions can be made on the elements
of HTTP responses, such as validating response status codes, payload media types, among
other response headers. REST Assured also allows for extensive verification of response
payloads formatted in different media types, including the widely used JavaScript Object
Notation (JSON). This tool does not, however, provide its own testing framework, and
thus must be integrated with existing Java frameworks such as JUnit [244], meaning that
test cases must be manually written in Java code.

HttpMaster is a dedicated HTTP testing tool, which is handled through a graphical inter-
face with little to no code requirements for testing REST APIs [222]. The tool provides

75

Chapter 4

functionality for parsing OpenAPI specifications, which facilitates test preparation by ef-
fectively eliminating the need to manually craft test cases. This is clearly ideal for large
APIs (i.e., those with many operations or parameters). Upon parsing an OpenAPI specifi-
cation, HttpMaster presents on its graphical interface a list of HTTP requests, one per API
operation. Each request contains a URL, an HTTP method and a payload (e.g., JSON,
XML or text data). Each request includes a validation element which allows for users
to specify assertions to perform on the returned HTTP responses. However, the standard
version of HttpMaster only allows users to verify if the response status code is in the range
1xx to 3xx (i.e., generally perceived as a success result), or the range 4xx to 5xx (i.e., which
represent error code ranges). For users of the professional (i.e., payed) version, HttpMaster
only allows to specify a single assertion on the elements of the HTTP response, in the form
of a logical expression.

Runscope is an online platform for testing REST APIs which is operated through a regular
web browser [242]. It provides users with the capability of importing sets of HTTP requests
from multiple sources, including tools such as SoapUI, Fiddler and Postman, or from
OpenAPI specifications. Alternatively, users can also manually create test cases in the
form of HTTP requests using the graphical options provided in the interface. Included in
these options are multiple types of assertions, where users can select the HTTP response
element an assertion should target, and the verification to perform over it in the form
of a condition. All elements in an HTTP response may be validated, such as status
codes, response headers and payload, and users can also verify response size and time for
performance testing.Additionally, Runscope allows to define pre-request (i.e., setup) as well
as post-response (i.e., tear-down) scripts written in JavaScript, as well as passing variables
between test cases which is important for test case sequencing (e.g., create a resource in
the API, modify it, and then delete it, through separate test cases).

Airborne, developed in the Ruby programming language, is a client-side framework for
testing REST APIs [234]. It is a Ruby module rather than a standalone application,
and thus does not provide a user interface. Test cases are written in the RSpec syntax,
which is a Ruby testing framework with a natural language-like programming syntax, thus
making test cases easier to interpret. For instance, API calls in Airborne are performed
by typing the name of the HTTP method to use followed by a space and the respective
URI to target (e.g., post "api.foo.com/bar"). Assertions are defined through a set of
expect_<something> commands, such as expect_json, expect_json_types (for JSON
payloads) or even expect_status (for the response status code), just to name a few. As
the method names imply, this framework only expects HTTP responses to contain JSON
objects in the payload, which is the most widely supported payload format in REST APIs
[15].

API Fortress [238] is a browser-based platform for functional testing of REST APIs. It
is able to automatically generate test suites from numerous types of specification files,
including OpenAPI, Postman collections, RAML, or API Blueprint, just to name a few,
and it can also automatically generate mock APIs by recording user activity within the
browser. The API mocking functionality is particularly useful for testing an API that is
still in development but for which there is a specification. Testing REST APIs with API
Fortress is entirely done through a graphical user interface, which allows for monitoring
traffic and creating codeless tests cases. Test assertions are defined by selecting a condition
and a target, such as specifying the condition assert equals on the target status code.
API Fortress also provides functionality for automated test case generation, which works
by creating validations for all response fields in an API specification. For instance, if a
given operation is expected to output one or more values, API Fortress generates one data
type validation for each, thus asserting that the values returned by the API are indeed of

76

Related work on REST service testing

the specified data type.

Postman [12] is a browser extension with a graphical user interface for HTTP testing, which
is able to test REST APIs. In order to create a test case in Postman, users must specify
the complete target URL, the HTTP method, all required parameters and, if necessary,
the payload (e.g., a JSON object, a file to upload). Each test case may have one JavaScript
file associated, wherein the user can specify a set of assertions to perform on the returned
HTTP response. To help users with little coding knowledge, Postman also provides tem-
plate code snippets for common verifications over HTTP responses (e.g., response contains
an error status code).

Pyresttest [225] is an open-source REST API testing tool implemented in Python, which
uses JSON and YAML files to specify test cases, thus eliminating the requirement for
programming knowledge. Both the JSON and YAML file types use a key-value syntax, and
Pyresttest expects test case files to have predefined keys such as url, method (i.e., referring
to the HTTP method), header and validators, just to name a few. The validators
keyword describes the assertions to perform on the returned HTTP response, and users
can choose from a predefined set of logical operators to apply to a given target in the
response, such as the standard equal, greater than, and less than operators (as well as the
respective combinations of these), and other special operators such as contains (i.e., for
collections), or type (i.e., for validating data types of response elements). Pyresttest does
not provide any form of automated test case generation, and would thus require a lot of
manual effort for testing large APIs.

Katalon Studio is a Graphical User Interface (GUI)-based application, implemented in
Java and Groovy, for testing SOAP and RESTful web services [224]. It supports parsing
OpenAPI specifications, and can automatically generate simple test cases, but users may
still manually craft test cases with higher detail, namely in two ways: i) by writing Groovy
scripts; or ii) through a GUI menu wherein testers can select from a predefined set of logical
operations and control flow structures (e.g., an if statement which checks the content of a
given value in the HTTP response). Using the latter method, Katalon Studio still generates
the corresponding Groovy code in the background, and which can still be modified and
enhanced with additional logic. Additionally, this tool supports recording and playback of
user activity on a web browser, which may sometimes be the preferable alternative method
for generating test cases.

Chakram [235] is a JavaScript framework for testing REST APIs with endpoints described
in JSON files. It takes advantage of object-oriented capabilities of JavaScript to provide
a behavior-driven development-like syntax, resembling natural language statements [243].
For instance, asserting that the payload of a given HTTP response is encoded in Gzip can be
done in Chakram with the statement expect(response).not.to.be.encoded.with.gzip.
This provides a verbose framework for specifying test cases, which greatly increases code
readability. In fact, some connection elements in the syntax, such as to, and, which or
be have no underlying logical effect on the outcome, and are merely used for readability
improvement, as opposed to other elements which affect how an assertion is evaluated (e.g.,
not negates all subsequent assertion elements). The previous statement could effectively be
reduced to the functional keywords, resulting in expect(response).not.encoded.gzip,
which holds the same semantic content while being far less verbose. Chakram has no
graphical interface and is not a standalone application, but rather a dedicated API testing
framework which users can include in their own development code.

Restlet Client is a browser extension for testing REST APIs [232]. Test cases can only
be created manually, by using the provided graphical menus, with no code requirements.
Test case assertions are also specified through menus, which imposes some limitations

77

Chapter 4

on the amount and variety of verifications to perform on HTTP responses. Users can
target essentially all elements in a response, including status codes, response headers, and
payload. Supported payload types include plain-text payloads, XML and JSON objects.

Ping-API is an online platform for testing REST APIs [241]. Although it is a payware
platform, it provides a limited-time free trial. First, a project must be created wherein
the user selects the base URL of the REST API to test. Afterwards, users can manually
create test cases by specifying the HTTP method to use, the URI of the specific resource
to target, and optionally the header and call parameters in the form of key-value pairs,
as well as a payload. With this data, Ping-API automatically generates a JavaScript or
CoffeeScript test case. Users may then freely modify the resulting script to enhance it and
define assertions. The process for generating each test case is rather time-consuming, and
important parameters such as authorization tokens must be specified before each test case
is executed.

Assertible is an online platform for creating and executing tests on REST APIs. It pro-
vides OpenAPI specification parsing capabilities, and can also reuse Postman-generated
test cases [240]. In both cases, Assertible automatically generates one test case per API
operation, and includes a predefined assertion for verifying that the response status code
is 200 (i.e., a success response). Additional assertions must be introduced manually in
the platform, which can be done through predefined options in the menus of the graphical
interface.

Karate is an open-source REST API testing tool which requires minimal programming
knowledge for creating test cases [236]. It provides easy integration with any Java project
and includes its own DSL. Test cases are described in documents called feature files,
which contain multiple scenarios, each of which describing a single test scenario in the
from of Given-When-Then statements, using a syntax which resembles natural language. For
instance, referring to a response status code is done with the statement status <CODE>,
where <CODE> is an HTTP status code (e.g., 200, 404), a specific HTTP method is referred
to with method <METHOD>, where <METHOD> is an HTTP method (e.g., GET, PUT), and
authorization data is referred to with header authorization = <AUTH>, where <AUTH> is
an authentication method (e.g., basic HTTP authentication). For more experienced users,
the Karate DSL also provides the functionality to make direct calls to JavaScript or Java
libraries.

The Zerocode API testing framework [230] is an open-source community project built on
top of JUnit [244], for testing SOAP and REST web services as well as software using other
communication protocols (e.g., Kafka middleware). As its name implies, no programming
effort is required for defining test cases, as indeed Zerocode tests are JSON-based, taking
advantage of the file format’s key-value structure. For example, the url key expects the
URI of the target resource, the operation key expects a specific HTTP method (e.g.,
PUT), and the request key expects either an empty JSON object (i.e., for requests with
no payload or header parameters) or an object describing the header (e.g., for authoriza-
tion tokens) and/or body (i.e., for payload objects) of the HTTP request. Assertions are
described under the assertions keyword, and can target the body of the HTTP response
or the header elements, such as the status code. Zerocode supports the standard logical
comparison operators (e.g., greather than, equal to), to be used in defining assertions for
particular response elements (e.g., header, payload), and also includes some specialized
validation operators, such as for checking if a string contains a given sub-string.

APImetrics is an online testing platform which, like some other payware API testing tools,
also provides users with a free time-limited trial [239]. It provides a wide array of au-
thentication protocols, including basic HTTP authentication and OAuth versions 1 and 2,

78

Related work on REST service testing

which are quite common in public REST APIs. APImetrics allows users to parse OpenAPI
and APIMatic [245] specifications, as well as import HTTP requests from Postman. Test
case assertions are specified through conditions in the form of if-then statements, which
are constructed in the drop-down menus of the graphical user interface through, and thus
only provide users with predefined options. The if part of the statement allows users to
specify three elements: the part of the response to target (e.g., status code), a comparison
operator (e.g., equals, contains, does not exist), and a value to compare to. The then
part of the statement allows users to input a value to a global variable and to assign a
Pass, Warning or Error label on the test case, depending on the result of condition in
the if statement. Users may select one of response status code, response header, payload,
response time and response size when defining an assertion. APImetrics does not allow,
however, users to logically AND or OR multiple conditions together to create more complex
verifications on the HTTP responses.

Tavern is a testing framework which does not require its users to have programming knowl-
edge [228]. Tavern is a lightweight API testing tool built in Python, using the pytest testing
framework as a base. Test cases are defined in YAML files by using predefined structures
(e.g., the request key contains a url key and a method key), and assertions work by defin-
ing, inside the response key, the values to expected in specific HTTP response elements
(e.g., the status_code: 200 key-value pair, tells Tavern to assert that the HTTP re-
sponse for the given test case contains the HTTP status code 200). A downside of the test
case syntax used by Tavern, is that a user is unable to verify the value of a single element
of a JSON object in the response payload, for example, and instead the entire payload
must be exactly matched in the test case definition (i.e., otherwise, the test case will fail).

vREST is an online platform and browser extension for testing REST APIs [233]. It
offers request recording capabilities, allowing to gather data regarding parameter values
used in API operations in order to automatically generate test cases, and thus reduce
the amount of work done by the user. This is particularly useful for testing large REST
APIs. Users may also manually create test cases through the graphical interface, which
offers a range of predefined options including the HTTP method to use (i.e., one of GET,
POST, PUT, PATCH, DELETE or OPTIONS), and the header parameters and the request
payload. Assertions on returned responses are also defined through predefined options in
the interface, and users may target the response status code, response headers, payload,
and timing-related measures. Additionally, vREST provides API mocking capabilities, and
automatic test case generation from analyzing OpenAPI specifications and Postman test
cases.

RestBird is an application that runs on a Docker container, which is accessible to users
through a local network endpoint and can be used from a browser [231]. In RestBird, test
cases are created through a graphical user interface, where users can identify the target
URI of the API under test, the HTTP method to use, the header parameters of the request
(e.g., authentication information) and, optionally, the payload. Pre-request scripts can also
be created for setting up the required testing environment, and can be written in Python,
Node.js or Golang. Validations on the HTTP responses is also defined in scripts, where
testers use a single boolean-returning function for performing their desired assertions on
the content of the response (i.e., returning false from such a function means an assertion
failed, and the test did not pass). Recording and playback capabilities are also provided in
RestBird, which helps reduce some of effort on behalf of the user by automatically creating
test cases based on user activity.

In summary, most of the analyzed tools for REST API testing are built as standalone
applications, spanning multiple programming languages such as Java [224, 227], Python

79

Chapter 4

[225, 228], and C# [221, 222], just to name a few. Most of these have graphical user
interfaces to facilitate user interaction, leading to a simplified process of test case generation
and executing (e.g., by using predefined options in drop-down menus, rather than having
to write code [222, 226]). Others are implemented as smaller modules or libraries which
are meant to be integrated with other frameworks through code [234, 235, 237], and the
focus here is shifted from user interaction through graphical interfaces, to object-oriented
APIs with a syntax resembling that of natural language, leading to test cases with human-
readable code.

A few tools take advantage of the inherent HTTP support provided by web browsers and
are implemented as extensions, where users can organize test cases, using simple graphical
interfaces, which are then executed over the browser’s own HTTP framework [12, 232].
Alternatively, some tools are located on remote online platforms and are handled through
a web browser, relieving the user of any local resource consumption [233, 242].

We have also observed that about half the tools implement support for different REST
API specifications, such as the lesser known API Blueprint [238] or APIMatic [239], as
well as more the common RAML [226] or, in particular, OpenAPI [222, 224, 242], which is
shown here to be widely supported. A few tools even support SOAP-related specifications,
such as BPEL [226], WADL [226] and, in particular, WSDL [226, 238]. The applicability
of these specifications to the RESTful context is not recommended due to the inherent
differences between these types of systems.

Another differing factor among the analyzed tools refers to the amount of options that
are provided to users for creating test cases. The vast majority provide only predefined
options to select from [223, 229, 240], and this only occurs in tools that have a graphical
user interface, where predefined options are presented in drop-down menus, for example,
with no possibility of extension. The remaining tools provide support for programming
languages such as JavaScript [235], Python [231] or Groovy [224] (just to name a few),
where users have more freedom of choice for defining test cases, especially for complex tests
(e.g., large conditions for verifications, setup and tear-down tasks which must interact with
external systems). Also, a very small set of tools impose limits on the diversity of HTTP
response elements that users can validate through assertions, namely HttpMaster [222]
which only supports validation of response status codes, and WebInject [229] which only
supports validation of response status codes and payload. In both of these tools validation
of HTTP response headers is not supported, quite unlike the vast majority of the analyzed
tools, which can target essentially any element of an HTTP response [230, 236, 241].

4.3 Discussion

In this section, we present a discussion regarding our observations of the analyzed ap-
proaches for testing REST services. We first focus on related academic works, and then
highlight a few relevant aspects of the analyzed industry tools.

Regarding studies on REST API testing, we have identified a considerable amount
of works that were published within the last decade. These approaches encompass an
heterogeneous set of testing techniques, while generally holding similar characteristics.
Figure 4.3 depicts the distribution of techniques for testing REST APIs throughout the
years, and in the following paragraphs we discuss a few observations regarding the analyzed
state of the art.

Regarding Figure 4.3, note that the sum of the values between parentheses in the vertical

80

Related work on REST service testing

Connectedness testing (1)
Differential regression testing (1)

Metamorphic testing (1)
Mutation testing (1)

Property−based testing (2)
Security testing (2)

Functional testing (3)
Fuzzing (3)

Model−based testing (3)
Integration testing (4)

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

Publication year

Te
st

in
g

te
ch

ni
qu

e
Count

1

2

Figure 4.3: Distribution of REST API testing techniques over the years.

axis (i.e., 21) is greater than the total amount of studies analyzed (i.e., 16), and this is
a consequence of a few approaches using two or even three testing techniques. Within a
time span of 11 years, many different testing techniques were applied experimentally to
REST APIs, and they generally hold distinct goals. The overall distribution of publications
over the years shows a gradual increase in research interest for exploring novel REST API
testing solutions, which is expected given the wide use of this type of system in modern
online platforms [15].

About half of the analyzed approaches encompass techniques which were used multiple
times over the years, which could hint at the fact that researchers have found a practical
use for them in the context of REST API testing. This includes techniques such as integra-
tion testing (i.e., guarantees that different modules or systems behave as expected when
integrated), model-based testing (i.e., formal approach that models system characteristics,
such as behavior), fuzzing (i.e., fault inject-like approach that generally uses random or
invalid inputs), and functional testing (i.e., validates whether designed functionality is cor-
rectly implemented). The remaining testing techniques, on the other hand, show a pattern
of scarce use, and are mostly related with one-off experimental approaches. This includes
mutation testing (i.e., modifies system specifications or models to generate invalid or un-
expected test data), metamorphic testing (i.e., explores relationships between outputs to
API calls), differential regression testing (i.e., compares the behavior of different system
versions against each other using the same inputs), and connectedness testing (i.e., ensures
that every resource in the API is accessible from every other resource).

We observed little to no diversity regarding the other characteristics that compose the
analyzed approaches, such as technique targets (which focus only on API calls), testing
inputs (which encompass only three classes), and classification schemes (which rely purely
on the binary categorization of the existence or absence of an issue in the system under
test). Testing inputs, in particular, vary only between the use of invalid inputs (i.e., those
outside of what the service expects), random inputs (i.e., entirely stochastic values) or
valid inputs (i.e., using values that the service expects). Note that many studies rely on
the use of valid inputs because, otherwise, unwanted perturbations could be introduced
into the system and interfere with the testing goal of the approach (e.g., triggering input
verification issues at the interface would disrupt metamorphic testing activities). We can
thus conclude that, while there is a wide array of testing techniques that have been
experimentally applied to REST APIs, we have generally observed that existing
approaches hold many similarities regarding the technique targets, the types

81

Chapter 4

of input used for testing, and the classification performed over test results.

Finally, in the context of industry tools on REST API testing, we identified and
experimented with a total of 23 different tools. These, however, do not make up all of the
state of the practice, and some other tools exist but are payware (i.e., a license must be
purchased to use them), and therefore not as easily accessible. The tools generally fit into
two categories: i) standalone tools with a graphical user interface; and ii) tools with no
user interface, built as libraries or modules to be integrated programmatically with larger
frameworks.

Regarding the tools which provide a graphical user interface (i.e., 70%), the focus is gener-
ally placed on increasing usability and interaction with the tool, by simplifying the process
of setting up the desired testing environment and creating test cases for a given REST API.
This is mainly achieved by presenting users with simple graphical elements for defining the
data required to communicate with a REST API, including the URI of the API endpoint
to test, the HTTP method to use (e.g., POST, DELETE), HTTP request headers (e.g.,
for specifying authorization data), and a request payload if necessary (e.g., a JSON object
describing a resource to create using the POST method). Then, the user must also define
the assertions (i.e., validations) to perform on the HTTP response that is to be returned
by the API, and here most tools (i.e., about 48%) provide only a predefined set of options
(e.g., selected through drop-down menus).

In general, the idea is to select an HTTP response element to target (e.g., an HTTP header
with a given name), a boolean condition to test its value with (e.g., greater than or equal
to), and another value to compare to. Users are not able to AND or OR multiple conditions
to create complex assertions, and the set of provided boolean operators cannot be extended
(e.g., to include a contains operator for verifying if a sub-string is present within a larger
string). Alternatively, a few tools (i.e., about 26%) provide support for writing test cases
in scripting languages, where users have much more freedom of choice and flexibility in
their approach (e.g., it is possible to communicate with external systems during testing,
which may be useful for populating the RESTful service with the necessary resources before
running a test, for example).

The other group of tools (i.e., those built as libraries to be integrated in larger frameworks),
represents only 30% of the identified tools, and here no predefined options are given for
building test cases. Instead, users must manually write all the code relative to the test
cases (e.g., access the desired HTTP response element and apply a logical verification to its
value), as well as to import the library itself, and perform setup and tear down tasks, thus
making it more time consuming to construct individual test cases. To facilitate this process,
however, these few tools take advantage of object-oriented capabilities of programming
languages, and provide users with simple APIs that resemble natural language statements,
which in turn also makes code more readable and thus test cases easier to interpret.

In essence, we have generally observed that most tools for REST API testing aim
at providing users with increased usability rather than functionality, compro-
mising overall diversity of possible testing approaches in favor of accelerating
the creation of multiple, often trivial, test scenarios. However, we also note that
some of the tools provide support for programmatic test case creation envi-
ronments, which allow users to manually craft detailed test scenarios, but with
an increased time consumption. Almost half (i.e., about 43%) of the analyzed tools
also provide support for REST API specifications, including RAML and the widely used
OpenAPI, just to name a few. The specifications are automatically parsed and, in a few
cases, one simplified test case per API operation is automatically generated. This shows
that there is a clear effort by industry tool developers for keeping up-to-date

82

Related work on REST service testing

with REST API quasi-standards such as the OpenAPI specification [15], as
well as for providing support to a wide array of alternative specification types.

Throughout the previous decade, researchers as well as practitioners have acknowledged the
need for testing REST services, and many different academic approaches and industry tools
(supporting various quality attributes) have been proposed. Robustness is an important
quality attribute in REST services, especially considering their continuous exposure to the
Internet. To the best of our knowledge, and given the comprehensive analysis of the state
of the art presented in this dissertation, no approaches have been proposed for evaluating
the robustness of REST services. In an attempt to cover this gap, in the following chapter
we present an approach and tool for carrying out robustness tests over REST services.

83

This page is intentionally left blank.

Chapter 5

Approach and robustness testing tool
architecture

In this chapter, we describe our approach for testing the robustness of Representational
State Transfer (REST) services. We begin by introducing, in Section 5.1, the main concepts
that support the approach. Section 5.2 closes this chapter, where we overview the internal
architecture of our black-BOX tool for Robustness Testing of rest services (bBOXRT),
and explain the different roles and responsibilities of its main components and how they
collaborate to support each of the steps of the approach.

5.1 Approach overview

The concept behind our approach is shown in Figure 5.1. In practice, using information
regarding the interface of the service under test (i.e., Application Programming Interface
(API) description document), our approach generates a combination of valid and invalid
requests that attempt to activate faults present in the service. The approach is decomposed
in the following steps:

- Step 1: Interface description analysis. Basic information about the service
under test is collected by reading and analysing its interface description document.
This information is gathered to be used in the next steps, and it includes the Uniform
Resource Identifier (URI) of available resources and the Hypertext Transfer Protocol
(HTTP) methods they implement, input and output datatypes, error codes, and
example requests.

- Step 2: Workload generation and execution. Valid (i.e., correct according
to the specification) requests are generated and sent to the service. This allows to
understand the behavior of the service in the presence of a non-faulty workload.

- Step 3: Faultload generation and execution. Faulty requests are created by
injecting a single fault in each request (e.g., a field is removed from a JavaScript
Object Notation (JSON) document). The faulty requests are sent to the service in
an attempt to trigger erroneous behaviors;

- Step 4: Result storage and analysis. Service responses and test metadata (e.g.,
type of fault injected, resource targeted) is stored for supporting the subsequent
behavior analysis.

85

Chapter 5

REST API
Description

bBOXRT

>_

Robustness
Testing Tool REST service

Faulty
HTTP

Request

HTTP
Response

Figure 5.1: Conceptual view of the approach.

The following section explains these steps in further detail, and maps each of them to the
different software components that compose our tool, bBOXRT.

5.2 Tool architecture and operation

The architecture of the system is shown in Figure 5.2, which depicts bBOXRT as a con-
tainer whose scope is delimited by a rectangle. It is comprised of multiple components
that interact with each other and/or with external entities, as detailed in the following
paragraphs. Note that the interface for bBOXRT works through the command line, and
its source code and documentation are available at [32].

HTTP
Request

REST API
Description

Configuration

Data
store

API specification
parser

Faultload
generator

Result writer

HTTP
Response

Workload
generator

Q3

REST service

Q2

Q1

Executor

Figure 5.2: bBOXRT architecture.

The API Specification Parser is the component that supports Step 1 - Interface de-
scription analysis (identified in the previous section). It reads an OpenAPI document
(formerly known as Swagger [17]), specified in either JSON or YAML format, that de-
scribes the interface of a given REST service. The OpenAPI specification is becoming a
popular option for describing interfaces for this type of services [15] and this is the reason
we chose to support it, by default. However, users may extend the tool to support other
API specification languages (e.g., RESTful API Modeling Language (RAML) [37]).

The main idea behind this first step is to identify and extract relevant information for
testing the service. An API specification defines the Uniform Resource Locator (URL) of
the target server and the set of unique API endpoint URIs (i.e., unique resources at the
server). Each endpoint is associated to one or more HTTP verbs [16], typically POST,
GET, PUT and DELETE (PATCH and HEAD may also be found in some APIs). Each
set {endpoint, verb} is often called an operation. Finally, each operation may have from
none to several input parameters (e.g., headers, payload), as well as a set of different
expected responses, each identified by a unique HTTP status code (e.g., 201 Created or

86

Approach and robustness testing tool architecture

401 Unauthorized).

In Step 2 - Workload execution and generation, we have the Workload Generator
and the Executor components involved. The main idea behind the Workload Generator
is to be able to generate a set of valid HTTP requests. If there is access to an existent
workload, the tool is also able to work as a proxy for a certain client application or simply
read a set of stored requests. Otherwise, this component generates a random workload
that complies with the specification (i.e., in terms of data types, domain of the values
used, and overall parameter structure). The possible locations for the generated values are
the request payload (i.e., typically a JSON object), the HTTP headers, the endpoint URI
itself (i.e., which is named a path parameter) or the HTTP query string. The tool user
can set the number of times each possible parameter of an operation is to be randomly
generated by specifying a configuration value WL_REP. This may have the effect of increasing
the overall diversity of the set of requests.

In practice, the Workload Generator creates a request, dispatches it to the Executor (which
sends the request to the service) and waits for the response on a queue (Q1 in Figure 5.2).
The response is useful for allowing theWorkload Generator to gather feedback (e.g., success
or failure) and having the possibility of adjusting the request generation process (the tool
currently does not perform any specific adjustment of the workload generation process, but
we intend to implement specific adjustment strategies in future work). For cases where the
response represents an unsuccessful case (e.g., status codes 4xx or 5xx), the user may set
the boolean configuration value WL_RETRY to true, which will make theWorkload Generator
keep the failed request in memory to be retried after executing all other workload requests
(e.g., some operations may be dependent on the execution of others). Requests holding a
success status code (e.g., 200 OK) are placed in a queue (Q2 in Figure 5.2) and will be used
in the next step of the approach. The current step ends if the user sets a maximum time
limit (i.e., by specifying the WL_MAX_TIME parameter), otherwise all generated requests are
executed.

The Faultload Generator component is responsible for injecting faults in the workload
requests whose execution was carried out with success (i.e., those available in queue Q2).
The faulty requests will then be delivered to the Executor, thus supporting Step 3 -
Faultload generation and execution. Internally, the Faultload Generator is helped
by the Fault Mapper (not visible in Figure 5.2) that keeps track of the possible injection
locations in a request. This component keeps track of which parameters in a given request
have been covered with faults (and with which faults) and, thus, it guides the fault injection
process by preventing the injection of faults at an already explored location.

Table 5.1 shows the fault model currently used by the Fault Generator. The faults are
organized by data type and format as defined in the OpenAPI specification [17], where
a data type may have multiple formats (e.g., a string may contain a sequence of bytes
or a date, or it may have an unrestricted format - the default format). Each of the 57
faults is described as a mutation rule to apply on a given request parameter. Note that
for the string fault types, printable or non-printable refers to the respective portions of the
ASCII table, and malicious refers to Structured Query Language (SQL) injection strings
(we used a set of 801 SQL injection strings obtained from [246]). Also, regarding the date
and date-time formats, note that the faults of the former are also applicable to the latter.

For each parameter of each request, the set of applicable faults (i.e., those that match
the parameter’s data type) is exhausted in order. Each generated fault is placed at the
location (e.g., path, payload) of the parameter being targeted. This process is repeated
FL_REP times, which allows us to understand if the service shows consistent behavior in the
presence of a certain fault. For certain types of faults, it also allows to achieve a greater

87

Chapter 5

Table 5.1: Fault model

Fault ID Parameter mutation rule
Any_Empty Replace with empty value
Any_Null Replace with null
A_Duplicate Duplicate random elements in the array
A_RemoveOne Remove random element from array
A_RemoveAll Remove all elements in the array
A_RemoveAllButFirst Remove all elements in the array except the first one
B_Negate Negate boolean value
B_Overflow Overflow string representation of boolean value
N_Add1 Add 1 unit
N_Sub1 Subtract 1 unit
N_ReplacePositive Replace with a random positive value
N_ReplaceNegative Replace with a random negative value
N_Replace0 Replace with 0
N_Replace1 Replace with 1
N_Replace-1 Replace with -1
N_ReplaceTypeMax Replace with data type maximum
N_ReplaceTypeMin Replace with data type minimum
N_ReplaceTypeMax+1 Replace with data type maximum + 1
N_ReplaceTypeMin-1 Replace with data type minimum - 1
N_ReplaceDomainMax Replace with parameter domain maximum
N_ReplaceDomainMin Replace with parameter domain minimum
N_ReplaceDomainMax+1 Replace with parameter domain maximum + 1
N_ReplaceDomainMin-1 Replace with parameter domain minimum - 1
S_AppendPrintable Append random printable characters to overflow maximum length
S_ReplacePrintable Replace with random printable character string of equal length
S_ReplaceAlphanumeric Replace with random alphanumeric string of equal length
S_AppendNonPrintable Append random non-printable characters
S_InsertNonPrintable Insert random non-printable characters at random positions
S_ReplaceNonPrintable Replace with random non-printable string of equal length
S_Malicious Append SQL injection attack to original input
Byte_Duplicate Duplicate random elements to overflow maximum length
By_Swap Swap a random number of element pairs in the string
D_Add100Years Add 100 years to the date
D_Sub100Years Subtract 100 years from the date
D_LastDayPreviousMil Replace with last day of the previous millennium
D_FirstDayCurrentMil Replace with first day of the current millennium
D_Replace1985-2-29 Replace with invalid date 1985-2-29
D_Replace1998-4-31 Replace with invalid date 1998-4-31
D_Replace1997-13-1 Replace with invalid date 1997-13-1
D_Replace1994-12-0 Replace with invalid date 1994-12-0
D_Replace1993-8-32 Replace with invalid date 1993-8-32

– (All mutations from Date format apply)
T_Add24Hours Add 24 hours to the time
T_Sub24Hours Subtract 24 hours from the time
T_Replace13:00:61 Replace with invalid time 13:00:61
T_Replace10:73:02 Replace with invalid time 10:73:02
T_Replace25:58:04 Replace with invalid time 25:58:04
T_Replace04:03:60 Replace with invalid time 04:03:60
T_Replace07:60:15 Replace with invalid time 07:60:15
T_Replace24:05:01 Replace with invalid time 24:05:01

OpenAPI data types

All Applicable to all types

–Array

Boolean –

32-bit integer,
64-bit integer,

Single-precision (float),
Double-precision (double)

Number

Date-time

Date

No format specified,
Password

String

Byte,
Binary

diversity of invalid requests for fault types of stochastic nature (e.g., remove a random
element from an array). When the set of faults is exhausted for a given parameter, the
Fault Mapper is set to point to the next unexplored parameter in that request.

After a fault is injected, the corresponding faulty request is dispatched to the Executor,
which then sends it to the service and waits for the response. Once returned, the response
is placed in a queue (Q3 in Figure 5.2) along with the original request, the reference of
the injected fault and the parameter targeted. As in Step 2, the user may specify a config-
uration to limit the duration of this process (i.e., FL_MAX_TIME), otherwise all applicable
faults are injected. Finally, the Result Writer component retrieves all pending information

88

Approach and robustness testing tool architecture

from queue Q3 and saves it to persistent storage for later analysis, thus supporting Step
4 - Result storage and analysis.

bBOXRT does not currently fully automate the analysis of the service behavior, due to
the typical complexity involved in the identification of robustness problems (possibly with
exception of cases where a perfect service specification exists). The main difficulty is related
with the large diversity of responses (i.e., the underlying systems are also heterogeneous)
that can be generated by a web service, which usually requires the presence of an expert to
manually distinguish robust behavior from non-robust. In the future, we intend to explore
the applicability of Machine Learning algorithms to this task, which we plan to integrate
in the tool. Despite this, we propose an analysis that covers two main aspects (described
in the next paragraphs): i) the severity of the observed failure; and ii) the behavior of the
service.

The behavior of the service is analyzed and classified with a failure mode scale, such as
the CRASH scale [3], in which we perform minor adjustments to fit the particular case of
REST services. CRASH distinguishes the following cases of failure:

- Catastrophic: The service supplier (i.e., the underlying middleware) becomes cor-
rupted, or the server or operating system crashes. A restart of the system does not
allow recovering from the failure.

- Restart: The service provider becomes unresponsive and must be terminated by
force. A restart of the system will allow recovering from the failure.

- Abort: Abnormal termination when executing a certain service operation. For
instance, unexpected behavior occurs when an unexpected exception is thrown by
the service implementation.

- Silent: A service operation cannot be concluded, or is concluded in an abnormal
way, and the service implementation does not indicate any error.

- Hindering: The returned error message or code is incorrect and does not correspond
to the actual error.

Some of the above failure modes are not distinguishable, unless we have access to the
service provider (e.g., a client will not be able to distinguish between a catastrophic and
a restart failure). Still, when full access exists, it is important to distinguish between the
different cases of severity.

The service behavior should also be characterized in a more detailed manner. In previous
work [167], and based on the analysis of the results of robustness testing applied to Simple
Object Access Protocol (SOAP) web services, the application of a set of behavior tags was
proposed. The main idea is to characterize behavior using a finer level of granularity (i.e.,
the CRASH scale may be too coarse-grained) and, at the same time, abstract implementa-
tion details that result in different response messages that, in practice, represent the same
behavior (e.g., a null pointer expressed with different messages at the server side).

Table 5.2 presents an adaptation of the set of tags (each with its abbreviation between
parenthesis) used in [167], which we now tuned to fit the context of REST services. We
performed minor adaptations to the tags as some SOAP elements do not exist in REST
(e.g., Web Services Description Language (WSDL) documents). Also, we extended the set
with two extra tags, parsing error and allocation error, after analyzing the experimental
results. A parsing error occurs when it is clear, from the error message, that an exception

89

Chapter 5

was thrown as a consequence of failure to parse input or improper input handling. An
allocation error exists when the error message indicates that an exception was thrown as
a consequence of the allocation of memory addresses (e.g., an out-of-memory exception).
In the following chapter, we describe our practical experiment for evaluating the tool, and
its respective results.

Table 5.2: Behavior tags

Tag ID Behavior tag Description
AE Allocation error An exception is thrown as a consequence of the allocation of memory

addresses (e.g., an out-of-memory exception)
AO Arithmetic operations An indication of an arithmetic error is returned by the service operation

AOB Array out of bounds Occurrence of an array access with an index that exceeds its limits (upper
or lower)

AOF Argument out of format The operation requires a restriction on the format of a parameter, which
is not specified in the interface specification document

CI Conversion issues A conversion problem exists in the service (e.g., data type conversion)
CSD Command or schema disclosure An internal command is completely or partially disclosed (e.g., an SQL

statement), or the data schema is revealed (e.g., the table names in a
relational database)

DAO Data access operations A problem exists related with data access operations
DZ Division by zero The service operation indicates that a division by zero has been

attempted
IFND Internal function name disclosure The name of an internal or system procedure is disclosed (e.g., a

database procedure)
NR Null references A null pointer or reference exception is thrown by the server application
O Other Any other service response that does not fit into any of the previous

categories
Ovf Overflow The operation is unable to properly handle a value that is larger than the

capacity of its container, signalling an overflow error
ParseE Parsing error An exception is thrown as a consequence of failure to parse input or

improper input handling
PersE Persistence error An exception is thrown signalling a persistence problem (e.g., SQL

exception thrown due to improper parameter handling)
SIND System instance name disclosure The name of a system instance is revealed to the client (e.g., a database

instance name)
SRD Server resource disclosure Information about code structure, filesystem or physical resources of the

server is disclosed
SSFM Specific server failure message An exception is thrown and application or development specific

information is revealed. This information is, however, generally too
vague or too context-specific to allow us an association with another tag

SUD System user disclosure A system username or password is exposed to the client (e.g., a database
or operating system username)

SVD System vendor disclosure System vendor information is disclosed (e.g., database or operating
system vendor)

WEI Wrapped error information An error response is wrapped in an expected object. The response
indicates the occurrence of an internal error

WTD Wrong type definition The service operation expects a value whose type is not consistent with
what is defined in the service interface specification file

90

This page is intentionally left blank.

Chapter 6

Experimental evaluation

In this chapter, we describe the experimental campaign carried out to show the practical
usefulness of our black-BOX tool for Robustness Testing of rest services (bBOXRT). In
Section 6.1, we detail the process used to carry out the experiments, and in Section 6.2 we
go through the main results. Finally, in Section 6.3, we conclude with the main findings
observed during the experiments.

6.1 Experiments description

To show the usefulness of the approach, we used bBOXRT to test various types of services,
which we selected according to the following different factors: i) service dimension (e.g.,
number of endpoints); ii) workload needs (e.g., just a few parameters or several); iii)
service observability (e.g., from black-box to full access to code); and iv) context of usage
(e.g., some services serve to manage other services, some services have strict reliability
requirements).

This resulted in the definition of the following five sets of interest, which represent a mix
of the different factors presented and that are described in the next paragraphs. We tested
76% (1351) of the 1775 available operations, because, at the time of writing, the tool does
not yet support generation of certain, less usual, payloads (i.e., media types such files or
MessagePack messages [247]).

• Set 1 – Popular services;

• Set 2 – Public services;

• Set 3 – Middleware management services;

• Set 4 – Private services;

• Set 5 – In-house services.

We began by identifying a set of 6 services, named Set 1 (Popular services), comprising
a total of 395 testable operations (out of 594), provided by popular Web sites. We used the
alexa.com Top 500 popular web sites rank to handpick the services, and we were particularly
interested in services having a seemingly detailed specification. The selected services are
Google Drive, Google Calendar, Spotify, Trello, Slack, and Giphy. These services are
known to be used in business-critical environments (in particular, the former four) and are

92

Experimental evaluation

expected to be developed with strong reliability requirements (in lato sensu), as failures
have direct (and also indirect) impact on the business of the respective companies.

A set of 40 Representational State Transfer (REST) services was selected from the online
database APIs.guru to compose Set 2 (Public services). APIs.guru is a well known
large repository of hundreds of public services and has been used as information source
for REST services in previous works [248, 249, 250]. We performed tests against 823
operations (out of 1012) of the services, which showed to be quite diverse (i.e., considering
the abovementioned criteria), being useful for showing the effectiveness of our approach
when applied to such different cases.

For Set 3 (Middleware management services), we selected a single service from
Docker, a platform used for managing virtualized software containers, to be part of this
group. We performed tests against 70 of the 106 Docker Engine REST service operations
[251]. In the case of the Docker service, observability is set at a higher level, as we also
had the server logs to complement the analysis carried out over the service responses.

Regarding Set 4 (Private services), we performed tests against all the 45 available
operations of Kazoo Crossbar, a business-critical, cloud-based, Voice over IP and telecom-
munications service. This service supports part of the business of a private company valued
at over 1B$ and, thus, strong reliability requirements are involved given that any failure
may have impact on the business. For this service, we had no access to source code, but
had a rather complete interface description and also direct contact and feedback from the
company’s developers.

Finally, for Set 5 (In-house services) we tested 4 services holding 18 operations. The
set of services is composed of two implementations of TPC-App (version Vx0 and version
VxA), which is a performance benchmark for web services that emulates the business
of an online store [252], and two implementations of TPC-C (Vx0 and VxA) which is a
performance benchmark for transaction processing systems that emulates the business of a
wholesale supplier [253]. All implementations were created in-house, and the Vx0 versions
were developed by one Early Stage Researcher and the VxA versions by another one. Vx0
and VxA mostly differ in how the developers built the Structured Query Language (SQL)
queries used by the services. While Vx0 uses PreparedStatements to clean inputs and
avoid SQL code injection, VxA directly concatenates static strings with user input without
performing any validation, thus being prone to being unsecure. Both TPC-App versions
have an average cyclomatic complexity [254] of 4.67 (measured by the Statistic plugin
[255] of IntelliJ IDEA 2019.2.3 [256]), and Vx0 has 558 Lines of Code (LoC) while VxA
has 566. The TPC-C versions have an average cyclomatic complexity of 17.2, Vx0 has
1128 LoC and VxA has 1179 LoC. We also ran a static analysis tool, namely SpotBugs
4.0.2 [257] (with the Find Security Bugs plugin 1.10.1 [258]), which was able to identify
6 SQL injection vulnerabilities in TPC-App VxA and 30 in TPC-C VxA. We manually
inspected the code to confirm the existence of these issues, which were due to user input
being directly concatenated with SQL queries. Spotbugs also identified further issues, but
they were mostly bad coding practices or false-positives.

The experiments carried out against the 1351 operations used the same values for the
configuration parameters of bBOXRT, namely: WL_REP=10 each request parameter is gen-
erated 10 times; WL_RETRY=true each unsuccessful request is retried once; and FL_REP=3
each applicable fault is used 3 times per parameter. Both WL_MAX_TIME and FL_MAX_TIME
were set to 0, meaning that neither the workload nor faultload execution phases were time-
limited. In the case of Set 5 (In-house services) we used the benchmarks’ client emulator
applications and our tool worked only as a fault injection proxy.

93

Chapter 6

As a result of the above setup, the tests produced 399901 responses that needed to be
manually analyzed for the identification of robustness issues. For the analysis, we grouped
the responses by operation and then by status code. In a first round, and considering
the large number of responses to analyze, we performed a fast search to signal responses
showing obvious signs of robustness problems (e.g., a 500 status code response holding an
SQL exception) or strongly suspicious cases (e.g., a stack trace in the response payload).
All other cases were optimistically marked as being correct behavior. This resulted in 68372
responses that we analyzed in detail. For each signalled response, we analyzed its whole
content and the respective service specification. Responses that did not comply with the
service specification were marked as a problem, with the same happening with unspecified
cases that showed obvious signs of unexpected behavior. The whole process resulted in a
total of 68245 individual responses referring to robustness problems (repeated test cases
are included in this number). Some doubts remained in 127 cases (e.g., the service states
some problem occurred, but there is no clear indication that a failure has occurred), thus
we marked them as Dubious and omitted them from the discussion.

6.2 Experimental results

We begin with an overview of the results and then drill down into the detail of the results
for each set of services. In about half of the services tested (i.e., 26 out of 52) we detected
at least one case of robustness problem. At the operation level, bBOXRT detected at least
one robustness problem in 167 of the 1351 service operations tested (i.e., in about 12% of
the operations). Of the 7167 parameters available in these operations, 525 were involved
in at least one robustness problem. The tool actually disclosed 24372 problems, each being
the consequence of injecting one type of fault at a particular parameter of a certain service
operation (i.e., not counting any repetitions of a certain fault). The vast majority (i.e.,
∼97%) of the problems found represent failures of type Abort (i.e, 23764 failures that refer
to unexpected exceptions or error messages), with 608 fitting the Hindering failure mode.

Out of the total 49 faults implemented (shown previously in Table 5.1), 44 were able to trig-
ger some failure. The five faults not involved in failures are: the faults N_ReplaceDomainMax
and N_ReplaceDomainMax+1 for numeric parameters; the fault S_AppendPrintable for
string parameters; and the faults Bi_Duplicate and Bi_Swap for byte and binary param-
eters, respectively. The former two faults were used but not involved in failures, while the
remaining three were not used at all, due to the respective data types not being found in
the tested sets of services.

Figure 6.1 presents the distribution of the 44 types of faults that resulted in the 24372 ro-
bustness problems (problems arising from repetitions of a certain injection are not counted,
as they are essentially a confirmation that the problem exists and its observation is repeat-
able). A longer bar means that a particular type of fault was involved in disclosing a larger
number of robustness problems, thus the x-axis represents the frequency of fault types (i.e.,
the number of times a given fault type triggered a robustness issue, divided by the total
number of robustness problems). The numbers between parenthesis show the total num-
ber of times a given fault type triggered a robustness issue (i.e., considering all parameters
where it was injected and excluding repetitions), and add up to the total of 24372. It is
worth mentioning that we found 146 cases where the random workload actually triggered
a failure. In 81 of these we determined that the workload had emulated one of the faults
and we included these cases in the analysis. The remaining 65 were excluded from the
analysis, as we were unable to determine what was the reason for the failure.

94

Experimental evaluation

Replace with invalid time 24:05:01 (56)
Replace with invalid time 07:60:15 (56)
Replace with invalid time 04:03:60 (56)
Replace with invalid time 25:58:04 (56)
Replace with invalid time 10:73:02 (56)
Replace with invalid time 13:00:61 (56)

Subtract 24 hours from the time (56)
Add 24 hours to the time (56)

Replace with invalid date 1993−8−32 (62)
Replace with invalid date 1994−12−0 (59)
Replace with invalid date 1997−13−1 (56)
Replace with invalid date 1998−4−31 (62)
Replace with invalid date 1985−2−29 (56)

Replace with first day of the current millennium (56)
Replace with last day of the previous millennium (56)

Subtract 100 years from the date (56)
Add 100 years to the date (56)

Append SQL injection attack to original input (2150)
Replace with random non−printable string of equal length (984)

Insert random non−printable characters at random positions (1855)
Append random non−printable characters (1845)

Replace with random alphanumeric string of equal length (1882)
Replace with random printable character string of equal length (2500)

Replace with parameter domain minimum − 1 (210)
Replace with parameter domain minimum (211)

Replace with data type minimum − 1 (291)
Replace with data type maximum + 1 (293)

Replace with data type minimum (286)
Replace with data type maximum (291)

Replace with −1 (286)
Replace with 1 (283)
Replace with 0 (286)

Replace with a random negative value (70)
Replace with a random positive value (66)

Subtract 1 unit (281)
Add 1 unit (284)

Overflow string representation of boolean value (663)
Negate boolean value (661)

Remove all elements in the array except the first one (694)
Remove all elements in the array (693)

Remove random element from array (694)
Duplicate random elements in the array (687)

Replace with null (2437)
Replace with empty value (2522)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5
Frequency (%)

Fa
ul

t t
yp

e
Set

Set 1
Set 2
Set 3
Set 4
Set 5

Figure 6.1: Distribution of the successful faults over the service sets.

AO (1)
AOF (1)

DZ (1)
SVD (1)
CSD (2)

SIND (2)
O (3)

ParsE (3)
AE (4)

AOB (5)
Ovf (5)

CI (6)
NR (7)

SRD (7)
PersE (8)
DAO (11)

SSFM (15)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Prevalence in services (%)

B
eh

av
io

r
ta

g Set

Set 1
Set 2
Set 3
Set 4
Set 5

Figure 6.2: Prevalence of the behavior tags in the tested services.

In Figure 6.2 we can see the prevalence of behavior tags with respect to the services in
which robustness problems were disclosed. Each tag is represented by its abbreviated
name (see Table 5.2 for the complete designation). The numbers between parenthesis in
the vertical axis refer to the overall number of services displaying a given behavior (i.e.,
marked by a certain tag).

Figure 6.2 shows that the top issues across the services include cases that are too vague
to be classified (e.g., general server error responses), meaning that some services are not
really informative to clients, which is an obstacle for reliable service integration. There are
also frequent issues related with storage operations, which show that robustness issues can
be triggered deeper in the service code, namely at the points of contact with subsystems.
Server resource disclosure is also a frequent behavior, with some services disclosing internal
information that should be kept from the outside. Null references and conversion issues
are also still in the top cases of problems found across services, which are known to be
typical sources of robustness problems [167].

Table 6.1 presents the cases where robustness problems were detected in Sets 1 and 2 (the

95

Chapter 6

results regarding Sets 3 through 5 are discussed later in this section). Table 6.1 includes
the name of the service, the number of operations tested (and the total number of oper-
ations available in that service), the status code of the robustness failure, the operations
with error responses, the number of arguments for those particular operations and the
number of vulnerable arguments, the target datatype of the injected faults that resulted
in some failure, a description of the failure using the behavior tags, and the CRASH scale
classification [3]. Each type of injected fault is accompanied by a number between paren-
thesis, which refers to the number of arguments it affected in a particular operation (and
resulted in a robustness failure). We use the word All, along with the number of affected
parameters, when all faults of a given data type triggered a certain problem. In some cases
the list or name of operations is too large to display and we replaced it with the number
of operations affected. We also removed all cases of dubious behavior, as these are not as
relevant as those that represent clear robustness problems.

Starting with Set 1 (Popular services), we found no error responses for the Google
Calendar, Giphy, and Trello services. Regarding Google Drive, we detected one case,
where the service replied with a 500 internal server error status code and a JavaScript
Object Notation (JSON) payload with {error: {code: 500, message: null}}. This
was observed in the operations drive.permissions.list and drive.revisions.list,
as a consequence of injecting the S_ReplaceAlphanumeric fault in the pageToken query
parameter (present in both operations). The goal of the former operation is to list all the
permissions set associated with a certain file, and the goal of the latter is to list all the
revisions (i.e., the change history) that have been performed on a file. This case fits in
Hindering failure mode, as the returned error response is not correct. Note that other
problems in that particular operation were properly handled with 4xx status codes and
responses specifying the problem.

Three of the Spotify service operations (see Table 6.1) produced a response with a 500
status code accompanied by the payload {error: {status: 500, message: Server
error}}. This response was consistently triggered by the empty parameter fault, null
replacement fault, the malicious string fault, and by appending or randomly inserting
non-printable characters. We also observed 502 bad gateway status code responses in
three operations (one of which shared with the previous error response) accompanied by a
message signaling that the server was unable to perform the intended action (i.e., either it
could not follow playlist, could not retrieve followers or could not unfollow playlist). The
documentation of Spotify does not specify the expected behavior for these cases, but still
the status code is anomalous, considering the remaining cases of messages returned by the
service (including cases where the server detects a problem, in which 4xx codes are used).

We observed several different cases of robustness issues in Set 2 (Public services), with
most services displaying more than one type of problem, ranging from pure robustness
issues to potential security problems. The next paragraphs discuss just a few different
examples.

In a single operation of the Api2Pdf service, a response with a 400 Bad Request status
code was accompanied by a full stack trace, revealing the partial structure of the service
source code, which is essentially a problem of information disclosure. An experienced user
could take advantage of this information for identifying entry points in the service, such as
the use of libraries with known vulnerabilities. We tagged this behavior with Data access
operations because the payload message refers to the inability to find a particular file, as
well as Server resource disclosure due to application-specific information being revealed by
the stack trace.

Another case of information disclosure was observed in two operations of the BikeWise ser-

96

Experimental evaluation

Table 6.1: Results of the experimental evaluation for Sets 1 and 2

Total Affected Any Array | Bool | DateTime String

Google Drive 30 (65%) 500 drive.permissions.list,
drive.revisions.list

9 2 S_ReplaceAlphanumeric (2) O H

500 3 operations 9 3
Any_Empty (2)
Any_Null (1)

S_AppendNonPrintable (1)
S_InsertNonPrintable (1)
S_Malicious (1)

SSFM A

502 3 operations 8 4
S_ReplacePrintable (2)
S_ReplaceAlphanumeric (4)
S_Malicious (2)

SSFM A

2 Any_Empty (2) SSFM A
2 All (2) DAO, SIND A

getStats 7 1 All (1) SSFM A
Api2Pdf 9 (100%) 400 mergePost 3 1 S_ReplaceAlphanumeric (1) DAO, SRD A

AppVeyor 45 (88%) 500 14 operations 206 170

All (170) All Array (49)
All Boolean (47)
All Date&Time (4)

N_Add1 (17)
N_Sub1 (17)
N_Replace1 (17)
N_Replace0 (17)
N_Replace-1 (17)
N_ReplaceTypeMax (17)

N_ReplaceTypeMin (17)
N_ReplaceTypeMax+1 (17)
N_ReplaceTypeMin-1 (17)
N_ReplaceDomainMin (15)
N_ReplaceDomainMin-1 (15)

S_ReplaceAlphanumeric (52)
S_ReplacePrintable (52)
S_AppendNonPrintable (52)
S_InsertNonPrintable (52)
S_ReplaceNonPrintable (52)
S_Malicious (52)

SSFM A

400 1 S_ReplaceAlphanumeric (1) A

404 2
Any_Empty (2)

A

Any_Empty (2) CI A
N_ReplaceNegative (2) CSD, PersE, DAO,

SIND, CI, SVD
A

GET-version-incidents-id-
format

1 2
N_ReplaceTypeMax+1 (2)
N_ReplaceTypeMin-1 (2)

CSD, Ovf, CI, SVD,
PersE, DAO, SIND

A

BulkSMS 9 (82%) 500 POST_/messages 5 1 All (1) All (1) SSFM A

Cross Browser
Testing

3 (60%) 500 3 operations 19 3
N_ReplacePositive (3)
N_ReplaceNegative (3)

SSFM A

D7SMS 2 (67%) 500 SendPost, SendbatchPost 8 2 S_ReplaceAlphanumeric (2) O H

6 operations 23 10

S_ReplacePrintable (9)
S_AppendNonPrintable (1)
S_InsertNonPrintable (1)
S_Malicious (9)

SSFM A

searchRecords,
translateQueryUsingGET

21 2
S_AppendNonPrintable (2)
S_ReplaceNonPrintable (2)
S_InsertNonPrintable (2)

PersE, DAO A

Figshare 117 (94%) 500 POST_/account/institution/revi
ew/{curation_id}/comments

2 1

N_Add1 (1)
N_Sub1 (1)
N_Replace0 (1)
N_Replace1 (1)
N_Replace-1 (1)

N_ReplaceTypeMax (1)
N_ReplaceTypeMin (1)
N_ReplaceTypeMin-1 (1)
N_ReplaceDomainMin (1)

SSFM A

Greenwire 6 (100%) 500 GET_/volunteers, GET_/events,
GET_/groups

7 3 S_ReplaceAlphanumeric (3) SSFM A

getLanguages, getSources,
getCampaigns,
getMediaByCampaignId

13 4
S_ReplaceAlphanumeric (4)

PersE, DAO, SRD A

4 1 N_Replace0 (1) AO, DZ A

4 1
N_ReplaceTypeMax+1 (1)
N_ReplaceTypeMin-1 (1)

CI, Ovf, ParsE, NR A

getSources, getLanguages,
getCampaigns,
getMediaByCampaignId,
getFeaturedMedia

16 5

N_ReplacePositive (5)
N_ReplaceNegative (5)
N_Add1 (5)
N_Sub1 (5)
N_Replace0 (5)
N_Replace1 (5)

N_Replace-1 (5)
N_ReplaceTypeMax (5)
N_ReplaceTypeMin (5)
N_ReplaceTypeMax+1 (5)
N_ReplaceTypeMin-1 (5)

CI, Ovf, ParsE A

getMedia 53 1
N_ReplaceTypeMax+1 (1)
N_ReplaceTypeMin-1 (1)

CI, Ovf, ParsE A

searchMedia 3 2 Any_Empty (2) CI A

Highways
England

10 (100%) 500 GET_/v{version}/sites/{site_Ids} 2 1
S_ReplaceAlphanumeric (1)
S_ReplacePrintable (1)

SSFM A

NeoWS 6 (86%) 500

retrieveSentryRiskDataById,
retrieveNearEarthObjectById,
browseNearEarthObjects,
retrieveSentryRiskData

7 6

N_ReplacePositive (4)
N_ReplaceNegative (4)

S_ReplaceNonPrintable (2)

SSFM A

NSIDC 3 (75%) 500 facets, open search, id 20 6

D_Replace1998-4-31 (2)
D_Replace1994-12-0 (1)
D_Replace1993-8-32 (2)

N_ReplacePositive (2)
N_ReplaceNegative (2)

S_ReplacePrintable (1)
S_ReplaceAlphanumeric (1)
S_AppendNonPrintable (1)
S_InsertNonPrintable (1)
S_ReplaceNonPrintable (2)
S_Malicious (1)

SSFM A

Open Skills 12 (92%) 500 GET_/jobs, GET_/skills 4 2 N_ReplaceTypeMax+1 (2) SSFM A

10 operations 9 10

Any_Empty (7) N_ReplacePositive (3)
N_ReplaceNegative (3)
N_Add1 (3)
N_Sub1 (3)
N_Replace0 (3)

N_Replace1 (3)
N_Replace-1 (3)
N_ReplaceTypeMax (3)
N_ReplaceTypeMin (3)

S_ReplacePrintable (6)
S_ReplaceAlphanumeric (6)
S_AppendNonPrintable (6)
S_InsertNonPrintable (6)
S_ReplaceNonPrintable (7)
S_Malicious (6)

SRD A

getChartInfoUsingGET,
getChartInfoUsingGET_1

5 2

Any_Empty (2) S_ReplacePrintable (2)
S_ReplaceAlphanumeric (2)
S_AppendNonPrintable (2)
S_InsertNonPrintable (2)
S_ReplaceNonPrintable (2)
S_Malicious (2)

SRD, AOB A

getTermStatsUsingGET 2 1
Any_Empty (1) S_ReplacePrintable (1)

S_InsertNonPrintable (1)
S_ReplaceNonPrintable (1)

SRD, NR A

24 operations 62 3

S_ReplacePrintable (36)
S_ReplaceAlphanumeric (36)
S_AppendNonPrintable (36)
S_InsertNonPrintable (36)
S_Malicious (36)

SRD, CI A

getAnnotationCountByAccIdAn
dObjectTypeUsingGET

4 1

N_ReplacePositive (1)
N_ReplaceNegative (1)
N_Sub1 (1)
N_Replace0 (1)

N_Replace1 (1)
N_Replace-1 (1)
N_ReplaceTypeMax (1)
N_ReplaceTypeMin (1)

A

getGenesByKeywordUsingGET 2 1 S_Malicious (1) A

Traccar 56 (92%) 400
GET_/devices,
GET_/commands/types,
GET_/events/{id}

8 3

Any_Empty (2) All (1) N_ReplacePositive (1)
N_ReplaceNegative (1)
N_Add1 (1)
N_Sub1 (1)
N_Replace0 (1)
N_Replace1 (1)

N_Replace-1 (1)
N_ReplaceTypeMax (1)
N_ReplaceTypeMin (1)
N_ReplaceTypeMax+1 (1)
N_ReplaceTypeMin-1 (1)

NR A

CRASH

PersE, DAO, SRD,
CSD

16 2

Europeana 13 (100%)

getMediaByTagId

Rat Genome
Database

89 (97%) 500

BikeWise

Ably 20 (91%)

Parameters

GET-version-locations-markers-
format, GET-version-locations-
format4 (100%)

Number

get search

500

Behaviour Tags

SSFM

Operations with error
responses

Injected fault types

3

500
getPresenceOfChannel 6

500

HHS Media
Services

29 (100%)

Auckland
Museum

API
Operations

tested
Status
code

Se
t 1

Se
t 2

Spotify 36 (97%)

400

5 (83%)

97

Chapter 6

vice, with a full SQL query being included in the response payload and also specific infor-
mation about the database management system being used, namely PostgreSQL (identified
by the payload exception PG::InvalidRowCountInLimitClause). This occurred because
the limit query parameter contained a negative number, and the service directly used this
value in the LIMIT clause of a PostgreSQL query without prior validation. In addition, this
operation actually treats this particular input as a string (instead of a number), which we
could verify by replacing the input with a typical SQL injection string that would work in
the LIMIT clause (e.g., 10 UNION SELECT 1, 2, 3, 4, 5 --) which was accepted by the
operation confirming it is vulnerable to SQL injection. This behavior is marked with the
tags Command or schema disclosure, Persistence error and Data access operations (i.e.,
as the problem relates to a database exception), System Vendor Disclosure and System
instance name disclosure (i.e., the service revealed the name of the database vendor and
instance), and conversion issues (i.e., as we detected that the service actually treats this
parameter as the wrong data type).

Another operation of this service also disclosed a query due to mishandling an out of bounds
32-bit integer (e.g., minimum minus one or maximum plus one) in the id path parameter of
the operation URI (/v2/incidents/{id}), and failed to convert its string representation
(i.e., in the Hypertext Transfer Protocol (HTTP) request) to a 32-bit integer space (i.e.,
Conversion issues and Overflow). Similarly to the previous case, the PostgreSQL-specific
exception PG::NumericValueOutOfRange was also included in the error response. We were
also able to confirm the operation is vulnerable to SQL injection by using a particular
malicious string (i.e., 100 UNION SELECT 1, 2, 3 --) that was accepted by the operation.

In several services we observed problems that are obvious cases of missing or incomplete
input validation. For instance, in the Rat Genome Database service, we observed one
case of array out of bounds accompanied with the disclosure of a full stack trace (server
resource disclosure), triggered by the injection of Any_empty fault and a few string faults
in the termString parameter of the vulnerable operations (see Table 6.1). In the Traccar
service, we observed a null reference in three operations after injecting multiple faults (e.g.,
Any_Empty, N_Replace0, B_Overflow) over the deviceId, id and all parameters. The
returned response included a reference to a null pointer exception.

One operation of the HHS Media Services service returned an error after attempting to
divide a number by zero (Arithmetic operations and Division by zero), as a consequence
of the N_Replace0 fault, which replaces a numeric input with the value zero. The same
operation also produced an error response related with the attempt to convert a null
pointer to a 32-bit integer. Further analysis revealed that the null pointer originated
from the failure to parse a string representation of an out of bounds integer (e.g., integer
minimum minus one).

In Set 3 (Middleware management services), all robustness issues observed (during
testing of the Docker Engine API) are associated with the 500 internal server error
status code (refer to Table 6.2). A common issue is the failure to process or parse cer-
tain types of inputs introduced by several different faults like Any_Empty, N_Replace-1
or S_AppendNonPrintable. These cases, marked with the Parsing error tag, resulted in
a message holding could not parse filters: invalid character ’<char>’. Notice
that we found many other cases of invalid inputs resulting in a proper 4xx code being
returned. The fact that a 5xx code is being returned strongly suggests that the usual
validation before parsing is either not being carried out, or is being carried out incorrectly,
resulting in a failed attempt to parse inputs. This inconsistent behavior should be made
uniform. A similar case occurs with the PluginUpgrade and PluginPull operations, which
fail with a 500 code whenever a JSON array in the request payload is replaced with an

98

Experimental evaluation

Table 6.2: Results of the experimental evaluation for Sets 3-5

Total Affected Any Array | Boolean Number String

BuildPrune, VolumePrune, NetworkList,
ImagePrune, NodeList, PluginList,
ConfigList, SecretList, TaskList,
NetworkPrune, ImageSearch, ImageList,
ContainerList

22 13

S_ReplacePrintable (13)
S_ReplaceAlphanumeric (13)
S_ReplaceNonPrintable (13)
S_InsertNonPrintable (13)
S_AppendNonPrintable (13)
S_Malicious (13)

A

PluginUpgrade, PluginPull 8 2 Any_Empty (2) A

ContainerUpdate 35 1
N_ReplacePositive (1)
N_ReplaceNegative (1)

ParsE, CI, Ovf,
AOF

A

ContainerList, NodeList 5 2 S_ReplaceAlphanumeric (2) ParsE, CI A

NodeUpdate 6 1
N_ReplacePositive (1)
N_ReplaceNegative (1)

SSFM A

N_Add1 (3)
N_Sub1 (3)
N_Replace1 (3)
N_Replace0 (3)
N_Replace-1 (3)
N_ReplaceTypeMax (3)
N_ReplaceTypeMin (3)

CI, ParsE, AOF A

N_ReplaceTypeMax+1 (3)
N_ReplaceTypeMin-1 (3)

CI, Ovf, AOF,
ParsE

A

searchAvailableNumbers,
listUsCityNumbers,
fetchAccountByNumber

7 4

Any_Empty (3) N_Replace0 (1)
N_ReplaceTypeMin-1 (1)

S_ReplacePrintable (3)
S_ReplaceAlphanumeric (1)
S_AppendNonPrintable (1)
S_InsertNonPrintable (1)
S_ReplaceNonPrintable (1)
S_Malicious (1)

A

getLocalityOfNumbers 2 1
A_RemoveOne (1)
A_RemoveAllButFirst (1)

A

rebootDevice 2 1 Any_Empty (1) DAO A
23 operations 39 26 S_ReplacePrintable (26) O H

502 changeAccount 185 2 Any_Empty (1) S_ReplaceNonPrintable (1) SSFM H
503 loadUserDevices 2 1 Any_Empty (1) DAO A

newCustomer_Vx0,
changePaymentMethod_Vx0

20 2 All (2) NR A

newCustomer_Vx0 16 16

Any_Empty (13)
Any_Null (16)

N_Add1 (1)
N_Replace0 (1)
N_Replace1 (1)
N_ReplaceTypeMax (1)
N_ReplaceTypeMax+1 (1)
N_ReplaceTypeMin-1 (1)

S_ReplaceAlphanumeric (6)
S_ReplacePrintable (5)
S_ReplaceNonPrintable (8)
S_InsertNonPrintable (11)
S_AppendNonPrintable (14)
S_Malicious (16)

A

newCustomer_Vx0, newProducts_Vx0,
changePaymentMethod_Vx0

23 3 Any_Empty (1) N_ReplaceTypeMax+1 (1) S_ReplaceAlphanumeric (1) A

changePaymentMethod_Vx0 4 1

S_ReplaceAlphanumeric (1)
S_ReplacePrintable (1)
S_AppendNonPrintable (1)
S_ReplaceNonPrintable (1)
S_Malicious (1)

A

N_Replace-1 (1)
N_ReplaceTypeMin (1)
N_ReplaceTypeMax+1 (1)

A

Any_Empty (1) N_ReplaceTypeMin-1 (1) AOB A

500
N_ReplaceTypeMax (1)
N_ReplaceTypeMin-1 (1)

AE, SRD A

Any_Empty (2) N_ReplaceTypeMax (2) AOB A
Any_Empty (2) A

newCustomer_VxA, newProducts_VxA 19 2 S_Malicious (2) A

newCustomer_VxA 16 16

Any_Empty (11)
Any_Null (16)

N_Add1 (1)
N_Replace1 (1)
N_Replace-1 (1)
N_ReplaceTypeMax (1)
N_ReplaceTypeMin (1)

S_ReplaceAlphanumeric (9)
S_ReplacePrintable (8)
S_ReplaceNonPrintable (11)
S_InsertNonPrintable (16)
S_AppendNonPrintable (9)
S_Malicious (16)

A

changePaymentMethod_VxA,
newCustomer_VxA

20 13

S_ReplacePrintable (3)
S_AppendNonPrintable (1)
S_InsertNonPrintable (1)
S_ReplaceNonPrintable (1)
S_Malicious (11)

A

Any_Null (1) NR A
Any_Empty (1) S_ReplacePrintable (1)

S_ReplaceAlphanumeric (1)
S_Malicious (1)

A

N_Replace-1 (1)
N_ReplaceTypeMin (1)
N_ReplaceTypeMax+1 (1)

A

500
N_ReplaceTypeMax (1)
N_ReplaceTypeMin-1 (1)

AE, SRD A

paymentTransaction_Vx0 8 1 B_Overflow (1) CI, ParsE A
deliveryTransaction_Vx0 2 1 S_Malicious (1) PersE, DAO A

2
N_ReplaceTypeMax+1 (2)
N_ReplaceTypeMin-1 (2)

Ovf, CI, ParsE A

5
A_RemoveOne (3)
A_RemoveAll (3)
A_RemoveAllButFirst (3)

N_Add1 (1)
N_Replace-1 (1)
N_ReplaceTypeMin (1)

AOB A

3 All (3) NR A
500 newOrderTransaction_Vx0 8 1 N_ReplaceTypeMax (1) AE, SRD A

paymentTransaction_VxA 8 1 B_Overflow (1) CI A
deliveryTransaction_VxA,
newOrderTransaction_VxA,
orderStatusTransaction_VxA,
paymentTransaction_VxA,
stockLevelTransaction_VxA

26 26

Any_Empty (2)
Any_Null (1)

S_Malicious (26)

A

deliveryTransaction_VxA 2 1 S_Malicious (1) A
orderStatusTransaction_VxA,
paymentTransaction_VxA

13 5 S_Malicious (5) A

2
N_ReplaceTypeMax+1 (2)
N_ReplaceTypeMin-1 (2)

Ovf, CI A

5
A_RemoveOne (3)
A_RemoveAll (3)
A_RemoveAllButFirst (3)

N_Add1 (1)
N_Replace-1 (1)
N_ReplaceTypeMin (1)

AOB A

3 All (3) NR A
500 1 N_ReplaceTypeMax (1) AE, SRD A

SSFM

Parameters Injected fault types
Behavior Tags CRASH

Se
t 3

Docker
Engine

API
70 (66%) 500

ParsE

ImageSearch, ContainerRestart,
PluginEnable

7 3

API
Operations

tested
Status
code

Operations with error responses
Se

t 4 Kazoo
Crossbar

45 (100%)
500

Se
t 5

TPC-App
(Vx0)

4 (100%)
400

TPC-App
(VxA)

4 (100%)
400

TPC-C
(VxA)

5 (100%)
400

4

PersE, DAO

newProducts_Vx0 3 1

2

PersE, DAO

newProducts_VxA, productDetail_VxA

4 1

PersE, DAO

newProducts_VxA 3 1

changePaymentMethod_VxA

PersE, DAO

newOrderTransaction_VxA 8

TPC-C
(Vx0)

5 (100%)
400

8newOrderTransaction_Vx0

99

Chapter 6

empty value (but fail with 4xx codes, when the array is null or carries other types of faults).

In the ContainerUpdate operation, we detected a mismatch between the service specifi-
cation and the service itself. A long integer in field BlkioWeight makes the service fail
with a 500 status code mentioning that it was not able to convert the value into a 16-bit
unsigned integer. Again, this suggests that no validation is performed before attempting
parsing. The problem with this kind of issue is that a client may not be expecting this
type of server failure (as the specification does not state the exact datatype). Similar
conversion issues were found in a few other operations (e.g., NodeUpdate, ImageSearch,
ContainerRestart).

Regarding Set 4 (Private services), there are a few interesting cases to mention. For
instance, calls to the operation rebootDevice using the empty fault on the DEVICE_ID path
parameter resulted in a 500 internal server error status code, with a payload message
containing datastore fault (marked with tag Data access operations). Similarly, this
same fault in the USER_ID path parameter of the loadUserDevices operation resulted in
the status code 503 service unavailable, accompanied by the error message datastore
fatal error, indicating a severe problem has occurred at the datastore level.

In the changeAccount operation the empty value and the random non-printable string
triggered a 502 bad gateway status code, accompanied by an Hypertext Markup Language
(HTML) payload. Note that this service is purely JSON-based (i.e., no HTML responses
should ever be returned to clients) and this type of response typically originates from
middleware that supports these services. In some other cases, responses were vague (e.g.,
init failed) or carried no payload at all (triggered by the S_ReplacePrintable fault).

We contacted the developers, reported the issues and received feedback. The developers
confirmed that all reported cases of responses holding 5xx codes are indeed problems in
the service that must be corrected, which emphasizes the ability of the tool to detect issues
that, in this case, have escaped the verification activities put in place by the experienced
developers in charge of the service.

The tests involving Set 5 (In-house services) resulted in the disclosure of several ro-
bustness problems, from which we present a few highlights. In TPC-App, calls to the New
products operation in both Vx0 and VxA implementations, using negative values or the
maximum plus one on the itemLimit parameter, resulted in an error message stating a
call to setFetchSize (a function that specifies the number of rows to be fectched from the
database) was made using invalid arguments. What is interesting is that this is a function
of the query-parsing middleware, and the Oracle JDBC driver used (version v10.2.0.2.0)
does not validate the input of this function against negative or out of bounds values, a
known bug which has been fixed (identified as bug report CORE-2130 in liquibase.jira.com
[259]). This case highlights the fact that robustness tests can be used to detect bugs not
only in the implementation logic of a certain service, but also at the middleware level.

In the same two previous operations, using the data type maximum and minimum minus
one faults in the itemLimit parameter, resulted in a 500 status code with the message
OutOfMemoryError: Requested array size exceeds VM limit followed by a full stack
trace (Server resource disclosure). The value is used (without validation) to create an array,
which exceeds the amount of available memory and fails unexpectedly (according to the
specification).

We also observed differences between what the specification states and the actual imple-
mentation, namely the use of strings to represent numbers. For instance, in the Vx0 Change
payment method operation, the wrong representation of the poId argument as a string led

100

Experimental evaluation

some faulty requests to trigger a failure where the Oracle driver tried to parse a number
from a database query string. This means that the injected invalid string reached the query
(and could have been gracefully stopped at the entry of the operation).

As mentioned before, the TPC-App VxA version is known to hold six vulnerabilities, which
our tool was also able to detect, despite not being its main target. The large set of malicious
faults used were able to modify the structure of all vulnerable queries. This was evident at
the client side when it received replies such as ORA-00933: SQL command not properly
ended.

Regarding TPC-C , we observed similar issues to the ones presented earlier (e.g., misrep-
resentation of datatypes). For instance, in the Payment operation of both Vx0 and VxA,
a boolean was misrepresented as a string, leading the service to abort the execution of the
operation with an unexpected response (failure to parse a boolean). Typical robustness
issues, such as unhandled exceptions due to array index out of bounds or null pointers were
also observed. All could be easily avoided with proper validation of inputs.

Like in the previous benchmark, we again observed an out of memory error. However, in
this case it was actually a data structure (i.e., an array) placed directly on the service code
(and not an internal JDBC driver data structure). The code tried to instantiate an array
by directly using the user input, allowing for a malicious initialization with a very large
number that led to the unhandled exception.

In the VxA version, which builds queries through concatenation, several Oracle errors were
triggered by the query-parsing middleware, including ORA-00907 which states a parenthesis
is missing, and ORA-01756 where a quoted string is not properly terminated.

In the VxA version of TPC-C, we successfully detected 28 of the 30 known SQL injection
vulnerabilities. Our tool could not reach the two undetected cases (present in the New
Order operation) because, in the New Order operation code, they are preceeded by an
INSERT statement. As the selection of the S_Malicious faults is random, the tool simply
selected cases that always broke the syntax of the INSERT statement, leading the opera-
tion to abort with an unexpected exception and not allowing to reach the two remaining
vulnerable queries.

6.3 Main findings

This section highlights the main findings of our experimental evaluation by going through
key aspects we identified during the course of this work.

• REST services are being made available online carrying residual bugs that affect the
overall robustness of the services.

• Robustness tests proved to be able to disclose bugs that reside at the service imple-
mentation level, but also in the middleware that supports the service.

• Robustness tests were able to detect security issues where malicious inputs served to
trigger problems related with missing validation or wrong input usage, as it is the
case of SQL injection vulnerabilities.

• A common security issue found was related with information disclosure, namely code
structure, SQL commands and database structures or database vendor. A malicious
user may take advantage of the information to explore entry points or exploit known
vulnerabilities in the system.

101

Chapter 6

• The faults that were most frequently involved in the detection of robustness problems,
were the injection of null and empty values and also string-related faults. In this
latter case, faults with malicious strings (i.e., SQL injection) and faults with random
characters revealed to be quite effective.

• Considering the whole set of services tested, we frequently observed services being
affected by problems related to storage operations, null references, and conversion
issues.

• Contrary to what was found in previous work regarding Simple Object Access Pro-
tocol (SOAP) web services [167], the large number of null/empty value faults that
triggered robustness issues did not directly lead to the disclosure of null reference
problems. Either these triggered other kinds of problems (e.g., Data Access Opera-
tions), or issues that were camouflaged by the services and resulted in vague responses
being delivered to the client.

• The experiments revealed only Abort and Hindering failures. Considering the large
amount of executed tests, this means that severe failure modes, such as Catastrophic
[80], seem to be difficult to trigger.

• Mismatches between the interface description and the actual service implementation
were detected during the analysis of the test results, emphasizing the ability of the
tests to flag such cases.

• It became evident that current OpenAPI specifications associated with the services
being tested are being written without attention to basic operation details (e.g.,
missing data type details), and several detected cases turned out to be associated
with robustness problems.

• Most of the OpenAPI specifications analyzed lack complete information regarding
the expected behavior of the service (e.g., when in presence of invalid inputs), which
opens space for doubts when analyzing test results and creates issues for applications
that wish to integrate with these services.

• In almost half of the services tested, we found non-descriptive error messages which,
accompanied by a poor specification, do not allow clients to get much insight regard-
ing the real issues.

• Access to server logs was not sufficient for allowing us to understand the exact root
cause of the problems detected with the Docker Engine service.

• Robustness testing proved to be useful even in services with high reliability require-
ments (i.e., Set 1 and Set 4), being able to detect issues that had escaped the verifi-
cation activities in place.

• Missing validation is the main cause for the detected problems in the four Transaction
Processing Performance Council (TPC) implementations (although some relate to
poor coding practices, like query concatenation with user input). While some cases
should be obvious to avoid by senior programmers (e.g., using prepared statements),
others would be difficult to detect (e.g., the use of a driver holding a bug).

• Robustness testing results seem to be highly repeatable, at least considering the set
of services tested. Each fault was repeated three times per operation parameter and,
on average, in about 2.8 times we observed the same outcome.

102

This page is intentionally left blank.

Chapter 7

Threats to validity

In this brief chapter, we present the main threats to the validity of this work and discuss
mitigation strategies. We do so in two parts, the first covering the threats related to the
identification, analysis and discussion of the systematic review, presented in Chapter 3,
and the second referring to the threats to the validity of the approach design and tool
implementation presented in Chapter 5, and the design, execution and result analysis of
the experimental evaluation carried out in Chapter 6.

We start by covering the threats to the validity of the systematic review, where
the first case to mention refers to the selection of the works to be included in the review
of studies on software robustness testing. In some cases (e.g., a referenced paper) we
had to individually analyze some works and decide about their inclusion in the review.
Although this was mostly carried out by an Early Stage Researcher, all included items
were double-checked by an Experienced Researcher, which mostly lead to the elimination
of a few out-of-scope works (e.g., research focusing on hardware faults). The Experienced
Researcher also verified the steps defined for the review, with particular attention to the
identification of any missing paper. This resulted in the inclusion of a few additional works,
mostly identified in references or citations to included papers.

One of the main difficulties found during the identification of works is related with the
diversity in the definition of robustness across authors. This may have lead us to wrongly
exclude certain papers (e.g., due to a misleading abstract) as well as to include less rele-
vant papers. Again, we resorted to double-checking by an Experienced Researcher, which
allowed us to obtain a better final set of papers. A related aspect is that some works use
different terms to refer to robustness (e.g., reliability as in [68]). This was detected in
the oldest references (i.e., published before the Ballista project [3]) and is very difficult
to identify. To mitigate this threat we opted to keep a reduced number of works that are
referenced by other authors as being robustness evaluation research (e.g., [68] is referenced
by [85]).

As the whole review process relies on the richness of the data present in the online databases
used, the final set of papers may be incomplete (i.e., if the research is not present or properly
indexed by the online databases). To mitigate the effects of this threat, we resorted to a
total of six online databases, which are well known and frequently used in this type of
process [48, 49, 50]. Also, the search string used to search the online databases may be weak
leading to either too many results (including irrelevant ones) or too few, adding difficulties
to the process. To mitigate this issue, we included different words based on common terms
used by authors, which we found in a preliminary analysis of the state of the art.

104

Threats to validity

We must also refer that, due to the complexity of the process, we opted to not assess the
quality of the identified studies and, as such, the results may be biased towards weak re-
search contributions. We mitigated this threat by indicating important references during
the presentation of the research found per type of system. A related aspect is that the
definition of seven groups of systems may lead to works being discussed in an inadequate
section (e.g., because they are at the intersection of two groups). Also, the human inter-
vention required to place a work in a certain group (or to classify a certain aspect of the
work, like the techniques used) may result in errors. We mitigated these threats by having
an Experienced Researcher checking and iteratively identifying inconsistencies and errors,
and afterwards by having a second Experienced Researcher reviewing the classification of
individual items.

Regarding the threats to the validity of the approach design, implementation and
evaluation, we start by mentioning the fact that we manually analyzed 399001 results,
which may have added some error to the process (e.g., cases of undetected failures). We
focused our attention on the obvious or highly suspicious cases of robustness problems.
The identification of robustness issues can be subjective, which is especially true when the
service specification lacks sufficient information. To reduce the likelihood of error, we had
these cases double checked by an Experienced Researcher.

The tests over the public services were carried out without isolation from other concurrent
requests (i.e., from other users). Even so, we repeated the injection of faults three times
to observe that, on average, in 2.8 times the outcomes were the same.

The robustness testing tool may hold residual software defects, which might have affected
some observations (e.g., by not emulating a certain fault as expected). We tried to carry out
typical Verification and Validation (V&V) tasks throughout the development of the tool,
and we placed it in contact with diverse services (i.e., with different number of operations,
parameters and payload requirements) so that any issue would become evident. In the
end, when analyzing the results of the tests we checked the requests that were involved in
each failure to verify if the tool had injected the expected fault.

Finally, the tool configuration used during the tests, which included the number of faults
to generate for a certain parameter (some faults involve random value generation) and the
random workload involved (which may not provide sufficient coverage, or may provide a
biased coverage), may have led us to disclose fewer issues in some services, showing an
image of the overall robustness of services that is not actually representative of reality. We
did try to run a relatively large number of tests (i.e., especially considering the manual
time-consuming steps of the experiments) and we acknowledge that there may be many
other issues that we were not able to disclose. Nevertheless, the diversity and number
of disclosed issues provide us and the developers with useful information for robustness
assessment, which can be used by providers to improve their services.

105

This page is intentionally left blank.

Chapter 8

Conclusions and future work

In the modern world, software systems are present in virtually all types of businesses,
including business-critical domains such as banking, or safety-critical domains such as
aerospace and healthcare, just to name a few. In these particular domains, software is ex-
pected to deliver continuous service in a robust manner when facing unexpected conditions,
as a single failure may strongly affect the users or the software provider. RESTful web
services (i.e., those that implement the Representational State Transfer (REST) architec-
tural style), in particular, are nowadays used extensively to facilitate machine-to-machine
communication in the most varied scenarios. Companies like Google, Instagram, Spotify,
or Slack use RESTful services to support their main business infrastructure. This type of
system is especially exposed to robustness issues (e.g., lack of or weak input verification)
given its design with relaxed constraints and lack of standards.

In this dissertation, we present a systematic literature review on software robustness test-
ing, and propose a novel approach and a tool for carrying out robustness tests on RESTful
web services. We began by thoroughly analyzing the extensive state of the art of software
robustness testing, and identified many gaps in the existing research, such as the absence
of support for some types of systems, including blockchain systems and, with particular
emphasis, REST services. We also explored the state of the art on REST Application Pro-
gramming Interface (API) testing, and experimented with industry tools for REST API
testing, which led us to confirm the overall lack of support for robustness testing of REST
services both from the academic and the industry perspectives.

Based on the analyzed state of the art, we designed an approach for testing the robustness
of RESTful web services, and implemented it in the form of a tool named black-BOX tool
for Robustness Testing of rest services (bBOXRT). We introduced the concepts behind
our approach and described the architecture of bBOXRT, mapping its many components
to the different phases of a typical robustness testing campaign. We then showcased the
capabilities of bBOXRT in the form of a practical experiment by performing thousands of
tests over 52 REST services grouped in 5 different sets. Results showed the ability of the
tool to test different kinds of services and to disclose robustness as well as security issues
across nearly half of the tested services.

As future work, we intend to improve upon the extensibility of bBOXRT, so as to facili-
tate the implementation of new functionality. Additionally, we aim to add support for a
graphical user interface, which would greatly improve the usability of bBOXRT, as well as
simplify the configuration process for new REST APIs to test. Finally, we will also consider
studying the applicability of Machine Learning algorithms to our approach, which would
be quite useful in automating the process of test result classification.

107

This page is intentionally left blank.

References

[1] Paul Ammann and Jeff Offutt. Introduction to Software Testing. Cambridge Univer-
sity Press, USA, 1 edition, 2008.

[2] Glenford J. Myers, Corey Sandler, and Tom Badgett. The Art of Software Testing.
Wiley Publishing, 3rd edition, 2011.

[3] Philip Koopman, John Sung, Christopher P. Dingman, Daniel P. Siewiorek, and Ted
Marz. Comparing Operating Systems Using Robustness Benchmarks. In SRDS,
1997.

[4] Fares Saad-Khorchef, Antoine Rollet, and Richard Castanet. A Framework and a
Tool for Robustness Testing of Communicating Software. In Proceedings of the 2007
ACM Symposium on Applied Computing, SAC, pages 1461–1466, New York, NY,
USA, 2007. ACM.

[5] Carlos Leandro Gomes Batista, Anderson Coelho Weller, Eliane Martins, and Fátima
Mattiello-Francisco. Towards increasing nanosatellite subsystem robustness. Acta
Astronautica, 156:187 – 196, 2019.

[6] Nuno Laranjeiro, Marco Vieira, and Henrique Madeira. Experimental Robustness
Evaluation of JMS Middleware. In IEEE International Conference on Services Com-
puting, volume 1, pages 119–126, July 2008.

[7] Anup K. Ghosh and Matthew Schmid. An approach to testing COTS software for
robustness to operating system exceptions and errors. In Proceedings 10th Inter-
national Symposium on Software Reliability Engineering (Cat. No.PR00443), pages
166–174, Nov 1999.

[8] Chen Fu Ana Milanova, Barbara G. Ryder, and David Wonnacott. Robustness
Testing of Java Server Applications. IEEE Transactions on Software Engineering,
31, 2004.

[9] Reda Siblini and Nashat Mansour. Testing Web services. In Book of Abstracts.
ACS/IEEE International Conference on Computer Systems and Applications, page
135, 02 2005.

[10] Javier Cámara, Rogério de Lemos, Nuno Laranjeiro, Rafael Ventura, and Marco
Vieira. Robustness Evaluation of Controllers in Self-Adaptive Software Systems. In
Sixth Latin-American Symposium on Dependable Computing, pages 1–10, April 2013.

[11] Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk. RESTler: Stateful
REST API Fuzzing. In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), pages 748–758, 2019.

[12] Postdot Technologies. Postman. https://www.getpostman.com/, 2014. Accessed 26
March 2019.

109

https://www.getpostman.com/

Chapter 8

[13] Capers Jones. The Technical and Social History of Software Engineering. Addison-
Wesley, 2013.

[14] Edward E. Ogheneovo. Software Dysfunction: Why Do Software Fail? Journal of
Computational Chemistry, 2014:25–35, 2014.

[15] Andy Neumann, Nuno Laranjeiro, and Jorge Bernardino. An Analysis of Public
REST Web Service APIs. IEEE Transactions on Services Computing, pages 1–1,
2018.

[16] Roy Thomas Fielding. Architectural Styles and the Design of Network-based Software
Architectures. Doctoral dissertation, University of California, Irvine, 2000.

[17] SmartBear Software. OpenAPI Specification Version 3.0.3. https://swagger.io/
specification/, 2020. Accessed 20 February 2020.

[18] IEEE. IEEE Standard Glossary of Software Engineering Terminology. Technical
Report IEEE Std 610.12-1990, IEEE, 1990.

[19] Philip Koopman and John DeVale. Comparing the Robustness of POSIX Operating
Systems. In Proceedings of the Twenty-Ninth Annual International Symposium on
Fault-Tolerant Computing, FTCS, pages 30–, Washington, DC, USA, 1999. IEEE
Computer Society.

[20] Rauli Kaksonen, Marko Laakso, and Ari Takanen. Software Security Assessment
through Specification Mutations and Fault Injection, pages 173–183. Springer US,
Boston, MA, 2001.

[21] Yulong Fu and Ousmane Koné. Security and Robustness by Protocol Testing. IEEE
Systems Journal, 8(3):699–707, Sep. 2014.

[22] Christopher P. Dingman, Joe Marshall, and Daniel P. Siewiorek. Measuring robust-
ness of a fault tolerant aerospace system. In Twenty-Fifth International Symposium
on Fault-Tolerant Computing. Digest of Papers, pages 522–527, June 1995.

[23] Hoang-Nam Chu, Jean Arlat, Marc-Olivier Killijian, Benjamin Lussier, and David
Powell. Robustness Testing of Robot Controller Software. In Hélène Waeselynck,
editor, 12th European Workshop on Dependable Computing, EWDC, page 2 pages,
Toulouse, France, May 2009.

[24] Fátima Mattiello-Francisco, Eliane Martins, Ana Rosa Cavalli, and Edgar Toshiro
Yano. InRob: An approach for testing interoperability and robustness of real-time
embedded software. Journal of Systems and Software, 85:3–15, 01 2012.

[25] Zoltán Micskei, István Majzik, and Francis Tam. Robustness testing techniques for
high availability middleware solutions. In Proceedings of International Workshop on
Engineering of Fault Tolerant Systems (EFTS), 2006.

[26] Denise Azevedo, Ana Ambrosio, and Marco Vieira. HLA Middleware Robustness
and Scalability Evaluation in the Context of Satellite Simulators. In IEEE 19th
Pacific Rim International Symposium on Dependable Computing, pages 312–317.
IEEE, IEEE Press, 12 2013.

[27] Wallace Cardoso, Eliane Martins, Nuno Laranjeiro, and Nuno Antunes. Combining
State and Interface - Based Robustness Testing for OpenStack Components. In 9th
Latin-American Symposium on Dependable Computing (LADC), pages 1–10. IEEE
Press, November 2019.

110

https://swagger.io/specification/
https://swagger.io/specification/

References

[28] Naaliel Mendes, João Durães, and Henrique Madeira. Evaluating and Comparing
the Impact of Software Faults on Web Servers. In European Dependable Computing
Conference, pages 33–42, April 2010.

[29] Seung Hak Kuk and Hyeon Soo Kim. Robustness testing framework for Web services
composition. In IEEE Asia-Pacific Services Computing Conference (APSCC), pages
319–324, Dec 2009.

[30] Sébastien Salva and Issam Rabhi. Stateful Web Service Robustness. In Fifth Inter-
national Conference on Internet and Web Applications and Services, pages 167–173,
May 2010.

[31] Sylvia Ilieva, Denitsa Manova, Ilina Manova, Cesare Bartolini, Antonia Bertolino,
and Francesca Lonetti. An automated approach to robustness testing of BPEL or-
chestrations. In Proceedings of 2011 IEEE 6th International Symposium on Service
Oriented System (SOSE), pages 193–203, Dec 2011.

[32] João Agnelo and Nuno Laranjeiro and Jorge Bernardino. black-BOX tool for Ro-
bustness Testing of rest services (bBOXRT). https://git.dei.uc.pt/jagnelo/bBOXRT,
2019.

[33] Leonard Richardson. RESTful web services. O’Reilly, Farnham, 2007.

[34] Leonard Richardson. RESTful Web APIs. O’Reilly, Sebastopol, Calif, 2013.

[35] OASIS OData Technical Committee. Open Data Protocol specification version 4.01.
https://www.odata.org/documentation/, 2020. Accessed 20 February 2020.

[36] Jonathan Robie, Rob Cavicchio, Rémon Sinnema, and Erik Wilde. RESTful Service
Description Language (RSDL): Describing RESTful Services Without Tight Cou-
pling. In Balisage: The Markup Conference 2013, volume 10, Aug 2013.

[37] RAML Workgroup. RESTful API Modeling Language specification ver-
sion 1.0. https://github.com/raml-org/raml-spec/blob/master/versions/
raml-10/raml-10.md/. Accessed 20 February 2020.

[38] Roy T. Fielding, James Gettys, Jeffrey C. Mogul, Henrik Frystyk Nielsen, Larry Mas-
inter, Paul J. Leach, and Tim Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1.
RFC 2616, RFC Editor, June 1999. http://www.rfc-editor.org/rfc/rfc2616.
txt.

[39] William C. Hetzel. The Complete Guide to Software Testing. QED Inforíation Sci-
ences 1988., 1988.

[40] Shivani Anil Acharya and Vidhi Pandya. Bridge between Black Box and White Box
- Gray Box Testing Technique. In International Journal of Electronics and Computer
Science Engineering, 1956.

[41] Zoltán Micskei, Henrique Madeira, Alberto Avritzer, István Majzik, Marco Vieira,
and Nuno Antunes. Robustness testing techniques and tools. In Resilience Assess-
ment and Evaluation of Computing Systems, pages 323–339. Springer, 2012.

[42] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. Basic
concepts and taxonomy of dependable and secure computing. IEEE Transactions on
Dependable and Secure Computing, 1(1):11–33, 2004.

111

https://www.odata.org/documentation/
https://github.com/raml-org/raml-spec/blob/master/versions/raml-10/raml-10.md/
https://github.com/raml-org/raml-spec/blob/master/versions/raml-10/raml-10.md/
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2616.txt

Chapter 8

[43] Barbara Kitchenham. Procedures for Performing Systematic Reviews. Keele, UK,
Keele Univ., 33, 08 2004.

[44] Pearl Brereton, Barbara A. Kitchenham, David Budgen, Mark Turner, and Mohamed
Khalil. Lessons from applying the systematic literature review process within the
software engineering domain. Journal of Systems and Software, 80(4):571 – 583,
2007. Software Performance.

[45] Claes Wohlin. Guidelines for snowballing in systematic literature studies and a repli-
cation in software engineering. In Proceedings of the 18th International Conference
on Evaluation and Assessment in Software Engineering, EASE, pages 1–10, London,
England, United Kingdom, 2014. Association for Computing Machinery.

[46] Ali Shahrokni and Robert Feldt. A systematic review of software robustness. Infor-
mation and Software Technology, 55(1):1 – 17, 2013.

[47] Syed Muhammad Ali Shah, Daniel Sundmark, Birgitta Lindström, and Sten F. An-
dler. Robustness Testing of Embedded Software Systems: An Industrial Interview
Study. IEEE Access, 4:1859–1871, 2016.

[48] Aurora Ramírez, José Raúl Romero, and Christopher L. Simons. A Systematic
Review of Interaction in Search-Based Software Engineering. IEEE Transactions on
Software Engineering, 45(8):760–781, 2019.

[49] Antonia Bertolino, Guglielmo De Angelis, Micael Gallego, Boni García, Francisco
Gortázar, Francesca Lonetti, and Eda Marchetti. A Systematic Review on Cloud
Testing. ACM Comput. Surv., 52(5), September 2019.

[50] Jennifer Brings, Marian Daun, Kevin Keller, Patricia Aluko Obe, and Thorsten
Weyer. A systematic map on verification and validation of emergent behavior in
software engineering research. Future Generation Computer Systems, 112:1010 –
1037, 2020.

[51] Google. Google Scholar. https://scholar.google.com/, 2020.

[52] DBLP Team. DBLP. https://dblp.uni-trier.de/, 2020.

[53] IEEE. IEEE Xplore. https://ieeexplore.ieee.org/Xplore/home.jsp, 2020.

[54] Association for Computing Machinery. ACM Digital Library. https://dl.acm.org/,
2020.

[55] Elsevier BV. Scopus. https://www.scopus.com/home.uri, 2020.

[56] Springer Nature Switzerland AG. Springer Link. https://link.springer.com/, 2020.

[57] Mathieu Lavallée, Pierre-N. Robillard, and Reza Mirsalari. Performing Systematic
Literature Reviews With Novices: An Iterative Approach. IEEE Transactions on
Education, 57(3):175–181, 2014.

[58] Miroslav Popovic. Communication Protocol Engineering. CRC Press, Inc., USA,
2006.

[59] Michael Barr and Anthony Massa. Programming embedded systems: with C and GNU
development tools. O’Reilly Media, Inc., 2 edition, 2006.

[60] Edward Ashford Lee and Sanjit Arunkumar Seshia. Introduction to Embedded Sys-
tems: A Cyber-Physical Systems Approach. The MIT Press, 2nd edition, 2016.

112

References

[61] Steve Vinoski. Where is middleware. IEEE Internet Computing, 6(2):83–85, 2002.

[62] N Walters. Systems Architecture and COTS Integration. In Procs of the SEI/MCC
Symposium on the Use of COTS in Systems Integration, SEI Special Report
CMU/SEI-95-SR-007, 1995.

[63] Mark Vigder, W Morven Gentleman, and John C Dean. COTS Software Integration:
State of the art, volume 39190. National Research Council Canada, Institute for
Information Technology, 1996.

[64] Aaron E. Walsh. UDDI, SOAP, and WSDL: The Web Services Specification Refer-
ence Book. Prentice Hall Professional Technical Reference, 2002.

[65] Douglas K. Barry. Web Services, Service-Oriented Architectures, and Cloud Com-
puting. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2nd edition,
2013.

[66] Mazeiar Salehie and Ladan Tahvildari. Self-Adaptive Software: Landscape and Re-
search Challenges. ACM Trans. Auton. Adapt. Syst., 4(2), May 2009.

[67] Harvey M. Deitel, Paul J. Deitel, and David R. Choffnes. Operating Systems (3rd
Edition). Prentice-Hall, Inc., USA, 2003.

[68] Barton P. Miller, Louis Fredriksen, and Bryan So. An Empirical Study of the Relia-
bility of UNIX Utilities. Commun. ACM, 33(12):32–44, December 1990.

[69] Charles P. Shelton, Philip Koopman, and Kobey DeVale. Robustness Testing of
the Microsoft Win32 API. In Proceeding International Conference on Dependable
Systems and Networks, pages 261 – 270, 02 2000.

[70] Kai Cong, Li Lei, Zhenkun Yang, and Fei Xie. Automatic Fault Injection for Driver
Robustness Testing. In Proceedings of the 2015 International Symposium on Software
Testing and Analysis, ISSTA, pages 361–372, New York, NY, USA, 2015. ACM.

[71] Alejandro David Velasco, Bartolomeo Montrucchio, and Maurizio Rebaudengo.
KITO tool: A fault injection environment in Linux kernel data structures. Mi-
croelectronics Reliability, 60:153 – 162, 2016.

[72] Huan Feng and Kang G. Shin. Bindercracker: Assessing the robustness of android
system services. Computing Research Repository, abs/1604.06964, 2016.

[73] Amiya K. Maji, Fahad A. Arshad, Saurabh Bagchi, and Jan S. Rellermeyer. An
empirical study of the robustness of Inter-component Communication in Android. In
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN),
pages 1–12, June 2012.

[74] Raimondas Sasnauskas and John Regehr. Intent Fuzzer: Crafting Intents of Death.
In Proceedings of the 2014 Joint International Workshop on Dynamic Analysis
(WODA) and Software and System Performance Testing, Debugging, and Analytics
(PERTEA), WODA+PERTEA, page 1–5, New York, NY, USA, 2014. Association
for Computing Machinery.

[75] Hui Ye, Shaoyin Cheng, Lanbo Zhang, and Fan Jiang. DroidFuzzer: Fuzzing the
Android Apps with Intent-Filter Tag. In Proceedings of International Conference on
Advances in Mobile Computing & Multimedia, MoMM ’13, page 68–74, New York,
NY, USA, 2013. Association for Computing Machinery.

113

Chapter 8

[76] Mithun Acharya, Tao Xie, and Jun Xu. Mining Interface Specifications for Gen-
erating Checkable Robustness Properties. In Proceedings of the 17th International
Symposium on Software Reliability Engineering, ISSRE ’06, page 311–320, USA,
2006. IEEE Computer Society.

[77] Arnaud Albinet, Jean Arlat, and Jean-Charles Fabre. Characterization of the impact
of faulty drivers on the robustness of the Linux kernel. In International Conference on
Dependable Systems and Networks, pages 867–876, United States, June 2004. IEEE
Press.

[78] Karama Kanoun, Yves Crouzet, Ali Kalakech, Ana-Elena Rugina, and Philippe
Rumeau. Benchmarking the dependability of Windows and Linux using Post-
Mark/spl trade/ workloads. In 16th IEEE International Symposium on Software
Reliability Engineering (ISSRE), pages 10 pp.–20, Nov 2005.

[79] Philip Koopman and John DeVale. The exception handling effectiveness of POSIX
operating systems. IEEE Transactions on Software Engineering, 26(9):837–848, Sep.
2000.

[80] Nathan P. Kropp, Philip J. Koopman, and Daniel P. Siewiorek. Automated Ro-
bustness Testing of Off-the-Shelf Software Components. In Proceedings of the
The Twenty-Eighth Annual International Symposium on Fault-Tolerant Computing,
FTCS, pages 230–, Washington, DC, USA, 1998. IEEE Computer Society.

[81] Barton P. Miller, David Koski, Cjin Pheow, Lee Vivekananda Maganty, Ravi Murthy,
Ajitkumar Natarajan, and Jeff Steidl. Fuzz revisited: A re-examination of the re-
liability of UNIX utilities and services. Technical report, University of Wisconsin-
Madison, Department of Computer Sciences, 1995.

[82] Barton P. Miller, Gregory Cooksey, and Fredrick Moore. An Empirical Study of the
Robustness of MacOS Applications Using Random Testing. In Proceedings of the 1st
International Workshop on Random Testing, RT ’06, page 46–54, New York, NY,
USA, 2006. Association for Computing Machinery.

[83] Bartolomeo Montrucchio and Maurizio Rebaudengo and Alejandrand David Velasco.
Software-implemented fault injection in operating system kernel mutex data struc-
ture. In IEEE 5th Latin American Symposium on Circuits and Systems, pages 1–6,
2014.

[84] Bartolomeo Montrucchio and Maurizio Rebaudengo and Alejandrand David Velasco.
Fault injection in the process descriptor of a Unix-based operating system. In IEEE
International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT), pages 281–286, 2014.

[85] Daniel P. Siewiorek, John J. Hudak, Byung-Hoon Suh, and Zary Segall. Develop-
ment of a benchmark to measure system robustness. FTCS-23 The Twenty-Third
International Symposium on Fault-Tolerant Computing, pages 88–97, 1993.

[86] Byung-Hoon Suh, John Hudak, Daniel Siewiorek, and Zary Segall. Development
of a benchmark to measure system robustness: experiences and lessons learned.
In Proceedings Third International Symposium on Software Reliability Engineering,
pages 237–245, 1992.

[87] Lin Xiang, Zhan Zhang, Decheng Zuo, and Xiaozong Yang. Multi-Layered System
Robustness Testing Strategy Based on Abnormal Parameter. Journal of Computers,
8, 2013.

114

References

[88] João Durães and Henrique Madeira. Characterization of operating systems behavior
in the presence of faulty drivers through software fault emulation. In Pacific Rim
International Symposium on Dependable Computing, pages 201–209, Dec 2002.

[89] Justin E. Forrester and Barton P. Miller. An Empirical Study of the Robustness
of Windows NT Applications Using Random Testing. In Proceedings of the 4th
Conference on USENIX Windows Systems Symposium - Volume 4, WSS, pages 6–6,
Berkeley, CA, USA, 2000. USENIX Association.

[90] Andréas Johansson, Neeraj Suri, and Brendan Murphy. On the Impact of Injection
Triggers for OS Robustness Evaluation. In The 18th IEEE International Symposium
on Software Reliability (ISSRE), pages 127–126, 2007.

[91] Manuel Mendonça and Nuno Ferreira Neves. Robustness Testing of the Windows
DDK. 37th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pages 554–564, 2007.

[92] Anup K. Ghosh, Matt Schmid, and Viren Shah. Testing the robustness of Windows
NT software. In Proceedings Ninth International Symposium on Software Reliability
Engineering (Cat. No.98TB100257), pages 231–235, Nov 1998.

[93] Matthew Schmid, Anup K. Ghosh, and Frank Hill. Techniques for evaluating the ro-
bustness of Windows NT software. In Proceedings DARPA Information Survivability
Conference and Exposition. DISCEX, volume 2, pages 347–360 vol.2, Jan 2000.

[94] Theodore John Socolofsky and Claudia Jeanne Kale. TCP/IP tutorial. RFC 1180,
RFC Editor, January 1991. http://www.rfc-editor.org/rfc/rfc1180.txt.

[95] Ana Cavalli, Eliane Martins, and Anderson Morais. Use of invariant properties to
evaluate the results of fault-injection-based robustness testing of protocol implemen-
tations. In IEEE International Conference on Software Testing Verification and
Validation Workshop, pages 21–30. IEEE Press, April 2008.

[96] Maha Naceur, Lilia Sfaxi, and Riadh Robbana. Robustness testing of secure Wireless
Sensor Networks. In Proceedings of the International Conference on Automation,
Control, Engineering and Computer Science, ACECS, 2014.

[97] Miroslav Popovic and Jelena Kovacevic. A Statistical Approach to Model-Based
Robustness Testing. In 14th Annual IEEE International Conference and Workshops
on the Engineering of Computer-Based Systems (ECBS), pages 485–494, March 2007.

[98] Antoine Rollet and Salva. Testing robustness of communicating systems using ioco-
based approach. In IEEE Symposium on Computers and Communications, pages
67–72, July 2009.

[99] Arunchandar Vasan and A.M. Memon. ASPIRE: automated systematic protocol im-
plementation robustness evaluation. In Australian Software Engineering Conference.
Proceedings., pages 241–250, April 2004.

[100] Yang Xiang, Zhiliang Wang, and Xia Yin. SIP Robustness Testing Based on TTCN-3.
In International Conference on Advanced Information Networking and Applications
Workshops, pages 122–128, May 2009.

[101] Luo Xu, Ji Wu, and Chao Liu. TTCN-3 Based Robustness Test Generation and
Automation. In International Conference on Information Technology and Computer
Science, volume 2, pages 120–125, July 2009.

115

http://www.rfc-editor.org/rfc/rfc1180.txt

Chapter 8

[102] Chuanming Jing, Zhiliang Wang, Xia Yin, and Jianping Wu. A Formal Approach
to Robustness Testing of Network Protocol. In Jian Cao, Minglu Li, Min-You Wu,
and Jinjun Chen, editors, Network and Parallel Computing, pages 24–37, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg.

[103] William Johansson, Martin Svensson, Ulf E. Larson, Magnus Almgren, and Vincenzo
Gulisano. T-Fuzz: Model-Based Fuzzing for Robustness Testing of Telecommuni-
cation Protocols. In IEEE Seventh International Conference on Software Testing,
Verification and Validation, pages 323–332, March 2014.

[104] János Zoltán Szabó and Tibor Csöndes. TITAN, TTCN-3 test execution environ-
ment. Infocommunications Journal, 62(1):27–31, 2007.

[105] Yamine Aït-Ameur, Gamze Bel, Frédéric Boniol, S. Pairault, and Virginie Wiels.
Robustness Analysis of Avionics Embedded Systems. SIGPLAN Not., 38(7):123–132,
June 2003.

[106] Shunkun Yang, Bin Liu, Shihai Wang, and Minyan Lu. Model-based robustness
testing for avionics-embedded software. Chinese Journal of Aeronautics, 26(3):730 –
740, 2013.

[107] Khaled Alnawasreh, Patrizio Pelliccione, Zhenxiao Hao, Mårten Rånge, and Antonia
Bertolino. Online Robustness Testing of Distributed Embedded Systems: An In-
dustrial Approach. In IEEE/ACM 39th International Conference on Software Engi-
neering: Software Engineering in Practice Track (ICSE-SEIP), pages 133–142. IEEE
Press, May 2017.

[108] Jean Arlat, Jean-Charles Fabre, Manuel Rodríguez, and Frederic Salles. Depend-
ability of COTS microkernel-based systems. IEEE Transactions on Computers,
51(2):138–163, 2002.

[109] Antoine Rollet and Sebastien Salva. Two complementary approaches to test robust-
ness of reactive systems. In IEEE International Conference on Automation, Quality
and Testing, Robotics, volume 1, pages 47–53, May 2008.

[110] Hacène Fouchal, Antoine Rollet, and Abbas Tarhini. Robustness of Composed Timed
Systems. In Peter Vojtáš, Mária Bieliková, Bernadette Charron-Bost, and Ondrej
Sýkora, editors, SOFSEM 2005: Theory and Practice of Computer Science, pages
157–166, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[111] Hacène Fouchal, Antoine Rollet, and Abbas Tarhini. Robustness Testing of Com-
posed Real-Time Systems. Journal of Computational Methods in Sciences and En-
gineering, 10(1-2S2):135–148, September 2010.

[112] Fatima Mattiello-Francisco, Eliane Martins, Andre Corsetti, Ana Rosa Cavalli, and
Edgar Yano. Extended interoperability models for timed system robustness testing.
In IEEE Latin-American Conference on Communications, pages 1–6, 2009.

[113] Antoine Rollet and Fares Saad-Khorchef. A Formal Approach to Test the Robust-
ness of Embedded Systems using Behaviour Analysis. In 5th ACIS International
Conference on Software Engineering Research, Management Applications (SERA),
pages 667–674, 2007.

[114] Abbas Tarhini, Antoine Rollet, and Hacène Fouchal. A pragmatic approach for
testing robustness on real-time component based systems. In The 3rd ACS/IEEE
International Conference onComputer Systems and Applications, 2005., pages 143–
150, Jan 2005.

116

References

[115] Stefan Winter, Thorsten Piper, Oliver Schwahn, Roberto Natella, Neeraj Suri, and
Domenico Cotroneo. GRINDER: On Reusability of Fault Injection Tools. In
IEEE/ACM 10th International Workshop on Automation of Software Test, pages
75–79, May 2015.

[116] Domenico Cotroneo, Domenico Di Leo, Roberto Natella, and Roberto Pietrantuono.
A Case Study on State-Based Robustness Testing of an Operating System for the
Avionic Domain. In Francesco Flammini, Sandro Bologna, and Valeria Vittorini, ed-
itors, Computer Safety, Reliability, and Security, pages 213–227, Berlin, Heidelberg,
2011. Springer Berlin Heidelberg.

[117] Domenico Cotroneo, Domenico Di Leo, Francesco Fucci, and Roberto Natella.
SABRINE: State-based robustness testing of operating systems. In 28th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pages 125–135.
IEEE, Nov 2013.

[118] Henrique Madeira, Raphael R. Some, Francisco Moreira, Diamantino Costa, and
David A. Rennels. Experimental evaluation of a COTS system for space applications.
In Proceedings International Conference on Dependable Systems and Networks, pages
325–330, 2002.

[119] Ricardo Maia, Luis Henriques, Ricardo Barbosa, Diamantino Costa, and Henrique
Madeira. Xception fault injection and robustness testing framework: a case-study of
testing RTEMS. In VI Test and Fault Tolerance Workshop (jointly organized with
the 23rd Brazilian Symposium on Computer Networks (SBRC)), 2005.

[120] Bogdan Nicolescu, N. Ignat, Yvon Savaria, and Gabriela Nicolescu. Sensitivity of
Real-Time Operating Systems to Transient Faults: A case study for MicroC kernel. In
8th European Conference on Radiation and Its Effects on Components and Systems,
Sep. 2005.

[121] Manuel Rodríguez, Arnaud Albinet, and Jean Arlat. MAFALDA-RT: a tool for de-
pendability assessment of real-time systems. In Proceedings International Conference
on Dependable Systems and Networks, pages 267–272, June 2002.

[122] Juan Carlos Ruiz, José Carlos Campelo, Pedro Gil-Vicente, and Juan Pardo Albi-
ach. On-chip debugging-based fault emulation for robustness evaluation of embedded
software components. In 11th Pacific Rim International Symposium on Dependable
Computing (PRDC), pages 8 pp.–, 2005.

[123] Raheleh Shahpasand, Yasser Sedaghat, and Samad Paydar. Improving the stateful
robustness testing of embedded real-time operating systems. In 6th International
Conference on Computer and Knowledge Engineering (ICCKE), pages 159–164, Oct
2016.

[124] Raheleh Shahpasand, Samad Paydar, Yasser Sedaghat, and Reza Ramezani. A State-
aware Approach for Robustness Testing of Embedded Real-Time Operating Systems.
Journal of Computer and Knowledge Engineering, 2(1), 2019.

[125] Zhengmao Zhou, Yun Zhou, Ming Cai, and Lei Sun. A Workload Model Based
Approach to Evaluate the Robustness of Real-time Operating System. In IEEE
10th International Conference on High Performance Computing and Communica-
tions, pages 2027–2033, Nov 2013.

117

Chapter 8

[126] João Carreira, Henrique Madeira, and João G. Silva. Xception: a technique for the
experimental evaluation of dependability in modern computers. IEEE Transactions
on Software Engineering, 24(2):125–136, Feb 1998.

[127] David Powell, Jean Arlat, Hoang Nam Chu, Felix Ingrand, and Marc-Olivier Killijian.
Testing the Input Timing Robustness of Real-Time Control Software for Autonomous
Systems. In Ninth European Dependable Computing Conference, pages 73–83, May
2012.

[128] Casidhe Hutchison, Milda Zizyte, Patrick E. Lanigan, David Guttendorf, Michael
Wagner, Claire Le Goues, and Philip Koopman. Robustness Testing of Autonomy
Software. In IEEE/ACM 40th International Conference on Software Engineering:
Software Engineering in Practice Track (ICSE-SEIP), pages 276–285, May 2017.

[129] Wallace F. F. Cardoso and Eliane Martins. Using a Search and Model Based Frame-
work to Improve Robustness Tests in Cloud Platforms. In Proceedings of the III
Brazilian Symposium on Systematic and Automated Software Testing, SAST ’18,
page 67–76, New York, NY, USA, 2018. Association for Computing Machinery.

[130] Franck Chauvel, Hui Song, Nicolas Ferry, and Franck Fleurey. Evaluating robustness
of cloud-based systems. Journal of Cloud Computing, 4(1):18, 2015.

[131] Domenico Cotroneo, Flavio Frattini, Roberto Pietrantuono, and Stefano Russo.
State-based robustness testing of IaaS cloud platforms. In CloudDP ’15: Proceedings
of the 5th International Workshop on Cloud Data and Platforms, 2015.

[132] Jiantao Pan, Philip Koopman, Yennun Huang, Robert Gruber, and Mimi Ling Jiang.
Robustness testing and hardening of CORBA ORB implementations. In Interna-
tional Conference on Dependable Systems and Networks, pages 141–150, July 2001.

[133] Kimberly Fernsler and Philip John Koopman. Robustness testing of a distributed
simulation backplane. In Proceedings 10th International Symposium on Software
Reliability Engineering (Cat. No.PR00443), pages 189–198, Nov 1999.

[134] Andras Kövi and Zoltan Micskei. Robustness Testing of Standard Specifications-
Based HA Middleware. In IEEE 30th International Conference on Distributed Com-
puting Systems Workshops, pages 302–306, June 2010.

[135] Zoltán Micskei, István Majzik, and Francis Tam. Comparing Robustness of AIS-
Based Middleware Implementations. In Miroslaw Malek, Manfred Reitenspieß, and
Aad van Moorsel, editors, Service Availability, pages 20–30, Berlin, Heidelberg, 2007.
Springer Berlin Heidelberg.

[136] Aniello Napolitano, Gabriella Carrozza, Antonio Bovenzi, and Christian Esposito.
Automatic Robustness Assessment of DDS-Compliant Middleware. In IEEE 17th
Pacific Rim International Symposium on Dependable Computing, pages 302–307,
Dec 2011.

[137] Hussein Al-haj Ahmad, Yasser Sedaghat, and Mahin Moradiyan. LDSFI: a
Lightweight Dynamic Software-based Fault Injection. In 9th International Con-
ference on Computer and Knowledge Engineering (ICCKE), pages 207–213. IEEE
Press, Oct 2019.

[138] Fevzi Belli, Axel Hollmann, and Weicheneric Wong. Towards Scalable Robustness
Testing. In Fourth International Conference on Secure Software Integration and
Reliability Improvement, pages 208–216. IEEE Press, June 2010.

118

References

[139] Christof Fetzer and Zhen Xiao. Automatic Testing for Robustness Violations. Testing
Commercial-off-the-Shelf Components and Systems, 01 2005.

[140] Cristiano Giuffrida, Anton Kuijsten, and Andrew S. Tanenbaum. EDFI: A Depend-
able Fault Injection Tool for Dependability Benchmarking Experiments. In IEEE
19th Pacific Rim International Symposium on Dependable Computing, pages 31–40,
Dec 2013.

[141] Ang Jin, Jianhui Jiang, Jiawei Hu, and Jungang Lou. A PIN-Based Dynamic Soft-
ware Fault Injection System. In The 9th International Conference for Young Com-
puter Scientists, pages 2160–2167, Nov 2008.

[142] Pan Qing-He, Hong Rong, and Pan Shu. A Software-Implemented Fault Injector on
Windows NT Platform. Information Technology Journal, 9, 03 2010.

[143] Ali Shahrokni and Robert Feldt. RobusTest: A Framework for Automated Testing of
Software Robustness. In 18th Asia-Pacific Software Engineering Conference, pages
171–178, Dec 2011.

[144] Ekincan Ufuktepe and Tugkan Tuglular. Estimating software robustness in relation
to input validation vulnerabilities using Bayesian networks. Software Quality Journal,
26(2):455–489, 2018.

[145] Kamal Z. Zamli, Mohd Daud Alang Hassan, Nor Ashidi Mat Isa, and Siti Norbaya
Azizan. An automated software fault injection tool for robustness assessment of java
COTs. In International Conference on Computing Informatics, pages 1–6, June 2006.

[146] Christoph Csallner and Yannis Smaragdakis. JCrasher: An automatic robustness
tester for Java. Software Practice and Experience, 34:1025–1050, 09 2004.

[147] João Durães and Henrique Madeira. Emulation of software faults by educated muta-
tions at machine-code level. In 13th International Symposium on Software Reliability
Engineering, pages 329–340. IEEE Press, 2002.

[148] João Durães and Henrique Madeira. Definition of software fault emulation operators:
a field data study. In International Conference on Dependable Systems and Networks,
pages 105–114, June 2003.

[149] João Durães and Henrique Madeira. Generic faultloads based on software faults for
dependability benchmarking. In International Conference on Dependable Systems
and Networks, pages 285–294, June 2004.

[150] João Durães and Henrique Madeira. Emulation of Software Faults: A Field Data
Study and a Practical Approach. IEEE Transactions on Software Engineering,
32(11):849–867, Nov 2006.

[151] Jean-Claude Fernandez, Laurent Mounier, and Cyril Pachon. A Model-Based Ap-
proach for Robustness Testing. In Ferhat Khendek and Rachida Dssouli, edi-
tors, Testing of Communicating Systems, pages 333–348, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg.

[152] Bin Lei, Xuandong Li, Zhiming Liu, Charles Morisset, and Volker Stolz. Robustness
testing for software components. Science of Computer Programming, 75(10):879 –
897, 2010.

[153] Bin Lei, Zhiming Liu, Charles Morisset, and Xuandong Li. State Based Robustness
Testing for Components. Electron. Notes Theor. Comput. Sci., 260:173–188, 2010.

119

Chapter 8

[154] Regina Moraes, Ricardo Barbosa, João Durães, Naaliel Mendes, Eliane Martins,
and Henrique Madeira. Injection of faults at component interfaces and inside the
component code: are they equivalent? In Sixth European Dependable Computing
Conference, pages 53–64, 2006.

[155] János Oláh and István Majzik. A Model Based Framework for Specifying and Exe-
cuting Fault Injection Experiments. In Proceedings of the 2009 Fourth International
Conference on Dependability of Computer Systems, DEPCOS-RELCOMEX ’09, page
107–114, USA, 2009. IEEE Computer Society.

[156] Diamantino Costa and Henrique Madeira. Experimental Assessment of COTS DBMS
Robustness under Transient Faults. In Proceedings of the 1999 Pacific Rim Inter-
national Symposium on Dependable Computing, PRDC ’99, page 201, USA, 1999.
IEEE Computer Society.

[157] Diamantino Costa, Tiago Rilho, and Henrique Madeira. Joint Evaluation of Perfor-
mance and Robustness of a COTS DBMS through Fault-Injection. In Proceedings
of the 2000 International Conference on Dependable Systems and Networks (For-
merly FTCS-30 and DCCA-8), DSN ’00, page 251–260, USA, 2000. IEEE Computer
Society.

[158] Sebastian Bauersfeld and Tanja E. J. Vos. GUITest: a Java library for fully auto-
mated GUI robustness testing. In Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, pages 330–333. IEEE Press, Sep.
2012.

[159] Patrick Heckeler, Bastian Schlich, and Thomas Kropf. Accelerated Robustness Test-
ing of State-Based Components Using Reverse Execution. In Proceedings of the 28th
Annual ACM Symposium on Applied Computing, SAC ’13, page 1188–1195, New
York, NY, USA, 2013. Association for Computing Machinery.

[160] Eliane Martins, Cecília M. F. Rubira, and Nelson G. M. Leme. Jaca: a reflective
fault injection tool based on patterns. In Proceedings International Conference on
Dependable Systems and Networks, pages 483–487, 2002.

[161] Leon Shklar and Rich Rosen. Web Application Architecture: Principles, Protocols
and Practices. Wiley, Chichester, UK, 2 edition, 2009.

[162] Erik Christensen, Francisco Curbera, Greg Meredith, Sanjiva Weerawarana, et al.
Web services description language (WSDL) 1.1, 2001.

[163] Diane Jordan, John Evdemon, Alexandre Alves, Assaf Arkin, Sid Askary, Charlton
Barreto, Ben Bloch, Francisco Curbera, Mark Ford, Yaron Goland, et al. Web
services business process execution language version 2.0. OASIS standard, 11(120):5,
2007.

[164] Gabriella Carrozza, Aniello Napolitano, Nuno Laranjeiro, and Marco Vieira. WS-
RTesting: Hands-On Solution to Improve Web Services Robustness Testing. Depend-
able Computing Workshops, Latin-American Symposium on, 0:41–46, 04 2011.

[165] Samer Hanna and Malcolm Munro. An Approach for WSDL-Based Automated Ro-
bustness Testing of Web Services, pages 1093–1104. Springer US, Boston, MA, 2009.

[166] Nuno Laranjeiro, Salvador Canelas, and Marco Vieira. Wsrbench: An On-Line Tool
for Robustness Benchmarking. In Proceedings of the 2008 IEEE International Con-
ference on Services Computing - Volume 2, SCC ’08, page 187–194, USA, 2008. IEEE
Computer Society.

120

References

[167] Nuno Laranjeiro, Marco Vieira, and Henrique Madeira. A robustness testing ap-
proach for SOAP Web services. Journal of Internet Services and Applications,
3(2):215–232, Sep 2012.

[168] Nicholas Looker, Malcolm Munro, and Jiudong xu. Simulating errors in web services.
J. of SIMULATION, 5:1473–8031, 12 2004.

[169] Nik Looker, Malcolm Munro, and Jie Xu. WS-FIT: a tool for dependability analysis
of Web services. In Proceedings of the 28th Annual International Computer Software
and Applications Conference (COMPSAC), volume 2, pages 120–123 vol.2, 2004.

[170] Nik Looker, Malcolm Munro, and Jie Xu. A comparison of network level fault
injection with code insertion. In 29th Annual International Computer Software and
Applications Conference (COMPSAC), volume 1, pages 479–484 Vol. 2, July 2005.

[171] Evan Martin, Suranjana Basu, and Tao Xie. Automated Testing and Response Anal-
ysis of Web Services. In IEEE International Conference on Web Services (ICWS),
pages 647–654, July 2007.

[172] Evan Martin, Suranjana Basu, and Tao Xie. WebSob: A Tool for Robustness Testing
of Web Services. In Companion to the Proceedings of the 29th International Confer-
ence on Software Engineering, ICSE COMPANION, pages 65–66, Washington, DC,
USA, 2007. IEEE Computer Society.

[173] Issam Rabhi. Robustness Testing of Web Services Composition. In IEEE 14th In-
ternational Conference on High Performance Computing and Communication, pages
631–638, June 2012.

[174] Marek Rychlý and Martin Žouželka. Fault Injection for Web-services. In Proceedings
of the 14th International Conference on Enterprise Information Systems - Volume 2:
NTMIST, (ICEIS), pages 377–383. INSTICC, SciTePress, 2012.

[175] Marcelo Invert Palma Salas, Paulo Lício De Geus, and Eliane Martins. Security Test-
ing Methodology for Evaluation of Web Services Robustness - Case: XML Injection.
In IEEE World Congress on Services, pages 303–310, June 2015.

[176] Sébastien Salva and Issam Rabhi. Automatic web service robustness testing
from WSDL descriptions. In 12th European Workshop on Dependable Computing,
Toulouse, France, 05 2009.

[177] Marco Vieira, Nuno Laranjeiro, and Henrique Madeira. Assessing Robustness of
Web-Services Infrastructures. In 37th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pages 131–136, June 2007.

[178] Marco Vieira, Nuno Laranjeiro, and Henrique Madeira. Benchmarking the Robust-
ness of Web Services. In 13th Pacific Rim International Symposium on Dependable
Computing (PRDC), pages 322–329, 2007.

[179] Ilaria Canova Calori, Tor Stålhane, and Sven Ziemer. Robustness analysis using fmea
and bbn: Case study for a web-based application. Webist 2007 - 3rd International
Conference on Web Information Systems and Technologies, Proceedings, 01 2007.

[180] Karthik Pattabiraman and Benjamin Zorn. DoDOM: Leveraging DOM Invariants
for Web 2.0 Application Robustness Testing. In IEEE 21st International Symposium
on Software Reliability Engineering, pages 191 – 200, 12 2010.

121

Chapter 8

[181] Jie Xu Nik Looker. Assessing the Dependability of SOAP RPC-Based Web Services
by Fault Injection. In The Ninth IEEE International Workshop on Object-Oriented
Real-Time Dependable Systems, pages 163–163, Oct 2003.

[182] Apache Software Foundation. Apache Axis. https://axis.apache.org/, 2002. Accessed
28 June 2020.

[183] Apache Software Foundation. Apache Tomcat. https://tomcat.apache.org/, 1999.
Accessed 28 June 2020.

[184] IBM. An Architectural Blueprint for Autonomic Computing. Technical report, IBM,
June 2005.

[185] Deborah S. Katz, Casidhe Hutchison, Milda Zizyte, and Claire Le Goues. Detecting
Execution Anomalies As an Oracle for Autonomy Software Robustness. International
Conference on Robotics and Automation (ICRA 2020), page to appear, 2020.

[186] Mohamed N. Bennani and Daniel A. Menascé. Assessing the robustness of self-
managing computer systems under highly variable workloads. In International Con-
ference on Autonomic Computing, 2004. Proceedings., pages 62–69. IEEE Press, May
2004.

[187] Javier Cámara, Rogério de Lemos, Nuno Laranjeiro, Rafael Ventura, and Marco
Vieira. Testing the robustness of controllers for self-adaptive systems. Journal of the
Brazilian Computer Society, 20, 12 2014.

[188] Javier Cámara, Rogério de Lemos, Nuno Laranjeiro, Rafael Ventura, and Marco
Vieira. Robustness Evaluation of the Rainbow Framework for Self-Adaptation. In
Proceedings of the 29th Annual ACM Symposium on Applied Computing, SAC ’14,
page 376–383, New York, NY, USA, 2014. Association for Computing Machinery.

[189] Javier Cámara, Rogério de Lemos, Nuno Laranjeiro, Rafael Ventura, and Marco
Vieira. Robustness-Driven Resilience Evaluation of Self-Adaptive Software Systems.
IEEE Transactions on Dependable and Secure Computing, 14(1):50–64, 2017.

[190] Manfred Broy, Ingolf H. Kruger, Alexander Pretschner, and Christian Salzmann.
Engineering Automotive Software. Proceedings of the IEEE, 95(2):356–373, 2007.

[191] Keshav Bimbraw. Autonomous Cars: Past, Present and Future - A Review of the
Developments in the Last Century, the Present Scenario and the Expected Future of
Autonomous Vehicle Technology. ICINCO 2015 - 12th International Conference on
Informatics in Control, Automation and Robotics, Proceedings, 1:191–198, 01 2015.

[192] Fattoh Alqershi, Muhammad AL-Qurishi, Sk Md Mizanur Rahman, and Atif Alamri.
Android vs. iOS: The security battle. In World Congress on Computer Applications
and Information Systems (WCCAIS), pages 1–8, 2014.

[193] Ahmet Hayran, Muratcan Igdeli, Atif Yilmaz, and Cemal Gemci. Security Evaluation
of IOS and Android. International Journal of Applied Mathematics, Electronics and
Computers, pages 258–261, 2016.

[194] Sijun Chu and Hao Wu. Research on offense and defense technology for iOS kernel
security mechanism. AIP Conference Proceedings, 1955(1):040132, 2018.

[195] Apache Software Foundation. Apache Kafka. https://kafka.apache.org/, 2011. Ac-
cessed 16 July 2020.

122

References

[196] Amazon Web Services. Amazon Kinesis. https://aws.amazon.com/pt/kinesis/, 2013.
Accessed 16 July 2020.

[197] Edward A. Lee. Cyber Physical Systems: Design Challenges. In 11th IEEE In-
ternational Symposium on Object and Component-Oriented Real-Time Distributed
Computing (ISORC), pages 363–369, 2008.

[198] Yang Lu. The blockchain: State-of-the-art and research challenges. Journal of In-
dustrial Information Integration, 15:80 – 90, 2019.

[199] Arup Mukherjee and Daniel P. Siewiorek. Measuring Software Dependability by
Robustness Benchmarking. IEEE Transactions on Software Engineering, 23(6):366–
378, June 1997.

[200] Karl Wüst and Arthur Gervais. Do you Need a Blockchain? In Crypto Valley
Conference on Blockchain Technology (CVCBT), pages 45–54, 2018.

[201] Nuno Laranjeiro, Camilo Gomez, Enrico Schiavone, Leonardo Montecchi, Manoel
J. M. Carvalho, Paolo Lollini, and Zoltán Micskei. Addressing Verification and
Validation Challenges in Future Cyber-Physical Systems. In 9th Latin-American
Symposium on Dependable Computing (LADC), pages 1–2, 2019.

[202] Charles Keating, Ralph Rogers, Resit Unal, David Dryer, Andres Sousa-Poza, Robert
Safford, William Peterson, and Ghaith Rabadi. System of Systems Engineering.
Engineering Management Journal, 15(3):36–45, 2003.

[203] Bruno Areias, Nuno Humberto, Lucas Guardalben, JosÃ c© Maria Fernandes, and
Susana Sargento. Towards an Automated Flying Drones Platform. In Proceedings
of the 4th International Conference on Vehicle Technology and Intelligent Transport
Systems - Volume 1: VEHITS,, pages 529–536. INSTICC, SciTePress, 2018.

[204] Tim Menzies and Charles Pecheur. Verification and Validation and Artificial Intel-
ligence. Advances in Computers, 65:153–201, 12 2005.

[205] Andrea Arcuri. RESTful API Automated Test Case Generation. In 2017 IEEE
International Conference on Software Quality, Reliability and Security (QRS), pages
9–20, 2017.

[206] Andrea Arcuri. EvoMaster: Evolutionary Multi-context Automated System Test
Generation. In IEEE 11th International Conference on Software Testing, Verification
and Validation (ICST), pages 394–397, 04 2018.

[207] Andrea Arcuri. RESTful API Automated Test Case Generation with EvoMaster.
ACM Trans. Softw. Eng. Methodol., 28(1):3:1–3:37, January 2019.

[208] Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk. Checking Security
Properties of Cloud Service REST APIs. In 2020 IEEE 13th International Conference
on Software Testing, Validation and Verification (ICST), pages 387–397, 2020.

[209] Sujit Kumar Chakrabarti and Prashant Kumar. Test-the-REST: An Approach to
Testing RESTful Web-Services. 2009 Computation World: Future Computing, Ser-
vice Computation, Cognitive, Adaptive, Content, Patterns, pages 302–308, 2009.

[210] Sujit Kumar Chakrabarti and Reswin Rodriquez. Connectedness Testing of RESTful
Web-services. In Proceedings of the 3rd India Software Engineering Conference, ISEC,
pages 143–152, New York, NY, USA, 2010. ACM.

123

Chapter 8

[211] Hamza Ed-douibi, Javier Canovas Izquierdo, and Jordi Cabot. Automatic Generation
of Test Cases for REST APIs: A Specification-Based Approach. In IEEE 22nd
International Enterprise Distributed Object Computing Conference (EDOC), pages
181–190, 10 2018.

[212] Tobias Fertig and Peter Braun. Model-Driven Testing of RESTful APIs. In Pro-
ceedings of the 24th International Conference on World Wide Web, WWW ’15 Com-
panion, page 1497–1502, New York, NY, USA, 2015. Association for Computing
Machinery.

[213] Patrice Godefroid, Daniel Lehmann, and Marina Polishchuk. Differential Regression
Testing for REST APIs. In Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2020, page 312–323, New York,
NY, USA, 2020. Association for Computing Machinery.

[214] Stefan Karlsson, A. Causevic, and Daniel Sundmark. QuickREST: Property-based
Test Generation of OpenAPI-Described RESTful APIs. 2020 IEEE 13th Interna-
tional Conference on Software Testing, Validation and Verification (ICST), pages
131–141, 2020.

[215] Jing Liu and Wenjie Chen. Optimized Test Data Generation for RESTful Web
Service. In 24th Asia-Pacific Software Engineering Conference (APSEC), pages 683–
688, Dec 2017.

[216] Pedro Victor Pontes Pinheiro, Andre Takeshi Endo, and Adenilso Simao. Model-
based testing of RESTful web services using UML protocol state machines. In Brazil-
ian Workshop on Systematic and Automated Software Testing, pages 1–10. Citeseer,
2013.

[217] Sergio Segura, José A. Parejo, Javier Troya, and Antonio Ruiz-Cortés. Metamorphic
Testing of RESTful Web APIs. In Proceedings of the 40th International Conference
on Software Engineering, ICSE, pages 882–882, New York, NY, USA, 2018. ACM.

[218] Pablo Lamela Seijas, Huiqing Li, and Simon Thompson. Towards Property-Based
Testing of RESTful Web Services. In Proceedings of the Twelfth ACM SIGPLAN
Workshop on Erlang, Erlang ’13, page 77–78, New York, NY, USA, 2013. Association
for Computing Machinery.

[219] Man Zhang, Bogdan Marculescu, and Andrea Arcuri. Resource-Based Test Case
Generation for RESTful Web Services. In Proceedings of the Genetic and Evolution-
ary Computation Conference, GECCO ’19, page 1426–1434, New York, NY, USA,
2019. Association for Computing Machinery.

[220] John Hughes. QuickCheck Testing for Fun and Profit. In Proceedings of the 9th In-
ternational Conference on Practical Aspects of Declarative Languages, PADL, pages
1–32, Berlin, Heidelberg, 2007. Springer-Verlag.

[221] Progress Software Corporation. Fiddler. https://www.telerik.com/fiddler, 2003.
Accessed 26 March 2019.

[222] Borvid. HttpMaster. https://www.httpmaster.net/, 2013. Accessed 26 March
2019.

[223] Apache Software Foundation. Apache JMeter. https://jmeter.apache.org/, 1998.
Accessed 26 March 2019.

124

https://www.telerik.com/fiddler
https://www.httpmaster.net/
https://jmeter.apache.org/

References

[224] Katalon LLC. Katalon Studio. https://www.katalon.com/, 2015. Accessed 26
March 2019.

[225] Sam Van Oort. PyRestTest. https://github.com/svanoort/pyresttest, 2014.
Accessed 26 March 2019.

[226] Parasoft Corporation. SOAtest. https://www.parasoft.com/products/soatest,
2002. Accessed 26 March 2019.

[227] SmartBear Software. SoapUI. https://www.soapui.org/, 2006. Accessed 26 March
2019.

[228] taverntesting. Tavern. https://taverntesting.github.io/, 2017. Accessed 26
March 2019.

[229] Corey Goldberg. WebInject. http://www.webinject.org/, 2004. Accessed 26 March
2019.

[230] authorjapps. Zerocode. https://authorjapps.github.io/zerocode/, 2016. Ac-
cessed 26 March 2019.

[231] RestBird. RestBird. https://restbird.org/, 2018. Accessed 26 March 2019.

[232] Restlet. Restlet Client. https://restlet.com/modules/client/, 2015. Accessed
26 March 2019.

[233] Optimizory Technologies. vREST. https://vrest.io/, 2015. Accessed 26 March
2019.

[234] Alex Friedman. Airborne. https://github.com/brooklynDev/airborne, 2014. Ac-
cessed 26 March 2019.

[235] Daniel Reid. Chakram. http://dareid.github.io/chakram/, 2015. Accessed 26
March 2019.

[236] Intuit. Karate. https://github.com/intuit/karate, 2016. Accessed 26 March
2019.

[237] Haleby Johan. REST Assured. http://rest-assured.io/, 2010. Accessed 26 March
2019.

[238] Patrick Poulin. API Fortress. https://apifortress.com/, 2014. Accessed 26 March
2019.

[239] APImetrics. APImetrics. https://apimetrics.io/, 2016. Accessed 26 March 2019.

[240] Assertible. Assertible. https://assertible.com/, 2016. Accessed 26 March 2019.

[241] Ping-API. Ping-API. https://ping-api.com/, 2016. Accessed 26 March 2019.

[242] Runscope. Runscope. https://www.runscope.com/, 2013. Accessed 26 March 2019.

[243] John Ferguson Smart. BDD in Action: Behavior-driven development for the whole
software lifecycle. Manning Publications, 2014.

[244] JUnit Team. JUnit 5. https://junit.org/junit5/, 2020. Accessed 20 February
2020.

125

https://www.katalon.com/
https://github.com/svanoort/pyresttest
https://www.parasoft.com/products/soatest
https://www.soapui.org/
https://taverntesting.github.io/
http://www.webinject.org/
https://authorjapps.github.io/zerocode/
https://restbird.org/
https://restlet.com/modules/client/
https://vrest.io/
https://github.com/brooklynDev/airborne
http://dareid.github.io/chakram/
https://github.com/intuit/karate
http://rest-assured.io/
https://apifortress.com/
https://apimetrics.io/
https://assertible.com/
https://ping-api.com/
https://www.runscope.com/
https://junit.org/junit5/

Chapter 8

[245] APIMATIC. APIMatic specification. https://docs.apimatic.io/, 2020. Accessed
20 February 2020.

[246] İsmail Taşdelen. SQL Injection Payload List. https://github.com/payloadbox/
sql-injection-payload-list, October 2019.

[247] Sadayuki Furuhashi. MessagePack. https://msgpack.org/, 2008.

[248] Erik Wittern, Annie T.T. Ying, Yunhui Zheng, Jim A. Laredo, Julian Dolby, Christo-
pher C. Young, and Aleksander A. Slominski. Opportunities in Software Engineering
Research for Web API Consumption. In 2017 IEEE/ACM 1st International Work-
shop on API Usage and Evolution (WAPI), pages 7–10, 2017.

[249] Beatriz A. Sanchez, Konstantinos Barmpis, Patrick Neubauer, Richard F. Paige, and
Dimitrios S. Kolovos. RestMule: Enabling Resilient Clients for Remote APIs. In 2018
IEEE/ACM 15th International Conference on Mining Software Repositories (MSR),
pages 537–541, 2018.

[250] Yun Wan Kim, Mariano P. Consens, and Olaf Hartig. An Empirical Analysis of
GraphQL API Schemas in Open Code Repositories and Package Registries. In AMW,
2019.

[251] Docker Inc. Docker Engine API Reference Version 1.40. https://docs.docker.
com/engine/api/v1.40/, 2019.

[252] Transaction Processing Performance Council (TPC). TPC BENCHMARKTM

App Specification Version 1.3. http://www.tpc.org/tpc_documents_current_
versions/pdf/tpc-app_v1.3.0.pdf, February 2008.

[253] Transaction Processing Performance Council (TPC). TPC BENCHMARKTM

C Specification Version 5.11. http://www.tpc.org/tpc_documents_current_
versions/pdf/tpc-c_v5.11.0.pdf, February 2010.

[254] Thomas J. McCabe. A Complexity Measure. IEEE Trans. Softw. Eng., 2(4):308–320,
July 1976.

[255] Tomas Topinka. Statistic plugin. https://plugins.jetbrains.com/plugin/
4509-statistic, April 2020.

[256] JetBrains. IntelliJ IDEA. https://www.jetbrains.com/idea/, September 2019.

[257] Kengo Toda. SpotBugs. https://spotbugs.github.io/, April 2020.

[258] Philippe Arteau. Find Security Bugs plugin. https://find-sec-bugs.github.io/,
October 2019.

[259] Thomas Becker. Oracle JDBC Driver bug report CORE-2130. https://liquibase.
jira.com/browse/CORE-2130, November 2014.

126

https://docs.apimatic.io/
https://github.com/payloadbox/sql-injection-payload-list
https://github.com/payloadbox/sql-injection-payload-list
https://msgpack.org/
https://docs.docker.com/engine/api/v1.40/
https://docs.docker.com/engine/api/v1.40/
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-app_v1.3.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-app_v1.3.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
https://plugins.jetbrains.com/plugin/4509-statistic
https://plugins.jetbrains.com/plugin/4509-statistic
https://www.jetbrains.com/idea/
https://spotbugs.github.io/
https://find-sec-bugs.github.io/
https://liquibase.jira.com/browse/CORE-2130
https://liquibase.jira.com/browse/CORE-2130

This page is intentionally left blank.

Appendices

128

This page is intentionally left blank.

Appendix A

This chapter details the work plan which was initially laid out for this dissertation, in
Section 8, where we list the set of expected tasks and highlight their current completion
status. We also detail the outcomes derived from some of the tasks. In Section 8, we
present a brief discussion on the actual performance of the execution of this dissertation.

Dissertation work plan and outcomes

This dissertation began in February 2019 and was expected to terminate in January 2020.
The work plan initially laid out was divided into the two semesters that compose one
academic year, and it encompassed the following tasks:

1. First semester (2nd semester of 2018/2019)

1.1 Gather and analyze the state of the art on software robustness testing in the
form of a systematic review.

1.2 Gather and analyze a comprehensive set of studies on Representational State
Transfer (REST) Application Programming Interface (API) testing.

1.3 Gather and analyze a comprehensive set of industry tools for REST API testing.

1.4 Define an approach for testing the robustness of REST APIs.

1.5 Define the main quality attributes for the architecture of a tool for REST API
robustness testing.

1.6 Design the architecture of a tool for REST API robustness testing, based on
the approach defined in task 1.4 and on the quality attributes defined in task
1.5.

2. Second semester (1st semester of 2019/2020)

2.1 Integrate the comments provided by the jury during the intermediate defense.

2.2 Implement a tool for REST API robustness testing based on the architecture
designed in task 1.6.

2.3 Evaluate the tool for REST API robustness testing implemented in task 2.2 on
a small set of REST APIs.

2.4 Use the tool for REST API robustness testing implemented in task 2.2 to per-
form a large-scale evaluation on online public REST APIs.

2.5 Study the applicability of Machine Learning algorithms for the automated cat-
egorization of test results from the tool for REST API robustness testing im-
plemented in task 2.2.

Figure A.1 shows a Gantt chart which summarizes, for each task in the work plan, the
expected start and end dates, the actual end date, and the activity and inactivity periods.
We also show important dates such as the intermediate defense, the expected final defense,
and the actual final defense.

As we can see in Figure A.1, by the intermediate defense, in July 2019, the completion
status of the work plan (i.e., tasks 1.1 through 1.6) was the following: task 1.1 was only
partially completed, because the discussion of the systematic review was left unfinished;
tasks 1.2 through 1.4 were completed, albeit with a one to two week delay; and the last

130

Legend

ID Task name

1.1 Analyze robustness testing studies

1.2 Analyze REST API testing studies

1.3 Analyze REST API testing tools

1.4 Define REST API robustness testing approach

1.5 Define quality attributes for tool

1.6 Design tool architecture

2.1 Integrate intermediate defense comments

2.2 Implement tool

2.3 Small-scale tool evaluation

2.4 Large-scale tool evaluation

2.5 Machine Learning result categorization

Feb Mar Apr May Jun Jul Sep Oct Nov Dec Feb Mar Apr May Jun Jul SepJan

2019 2020

Aug Aug

1st semester 2nd semester HolidaysExpected task
start

Expected task
end

Actual task
end

Task active Task inactive Intermediate
defense

Expected final
defense

Actual final
defense

Figure A.1: Gantt chart showing the expected versus the actual work plan.

two tasks of the work plan (i.e., tasks 1.5 and 1.6) had not been carried out, and their
completion was thus postponed to the start of the following semester, in September 2019.

At this time we carried out and finished the delayed tasks 1.5 and 1.6, and in parallel
we proceeded to accomplish task 2.1, where we integrated the comments provided by the
jury in the intermediate defense. Given that task 2.2 depended on the completion of the
delayed tasks 1.5 and 1.6, the former was started with an accumulated delay of a few
weeks, which itself resulted in both tasks 2.3 and 2.4 also being delayed, as the small-
scale and large-scale (respectively) evaluations could only be performed once the tool (i.e.,
implemented in task 2.2) reached a stable development state.

Because both tool evaluation tasks were delayed, around December 2019 the pending com-
pletion of task 1.1 had to be rushed, as the expected final defense (i.e., end of January
2020) was approaching. However, it soon became clear that this would greatly decrease
the overall quality of the work, and it was instead decided to postpone the final defense to
September 2020. This allowed us to invest far more time in the survey (task 1.1) and in
the large-scale evaluation (task 2.4), by expanding both works and increasing their quality.

By the end of April 2020, we had expanded the large-scale evaluation from a testing
campaign that covered 25 REST APIs, to a larger one covering a total of 52 REST APIs,
and we thus concluded task 2.4. The outcome of this task was a novel tool, named black-
BOX tool for Robustness Testing of rest services (bBOXRT), for testing the robustness of
REST APIs, and the paper A Black Box Tool for Robustness Testing of REST Services
which we submitted to the Journal of Systems and Software (JSS). We then focused on
completing task 1.1, which had seen intermittent activity periods throughout the previous
year. By July 2020, we had immensely expanded and improved upon the survey on software
robustness testing, having more than doubled the initial set of 61 studies to a total of 132,
as well as having included an extensive and thorough discussion with important highlights
and challenges for future researchers. This allowed us to finally conclude task 1.1, and its
outcome was the paper A Systematic Review on Software Robustness Assessment which
we submitted to the ACM journal on Computing Surveys (ACM CSUR).

At this point, not enough time was left to put effort into the remaining task 2.5, and it
was thus not carried out entirely. Curiously, we should note that during the intermediate

131

Chapter 8

defense the jury did warn us about being overly ambitious in the inclusion of this task, and
that even without it, this work plan already appeared challenging enough. In the following
section, we present a brief discussion where we provide some insight on the positive and
negative aspects regarding the work plan and the performance of the student.

Performance assessment

The execution of this dissertation suffered a 9-month delay compared to what was initially
planned, resulting in the expected terminus of January 2020 being postponed to September
2020. We attribute this to a few factors. First, this is clearly the result of mismanagement,
by the student, of the available time budget, especially during the first semester of this
dissertation. As we observed in the previous section, the delay introduced during the
execution of the first task (i.e., the survey on software robustness testing), itself resulted
in a delay in a few other tasks. Given the dependency between some tasks (e.g., the
tool architecture may only be designed when the quality attributes are selected and the
approach defined), these small delays started accumulating into bigger delays, and this
process repeated itself in a domino-like effect. This resulted in two tasks from the first
semester of the work plan being left untouched, which in turn forced all planned tasks for
the second semester to be postponed by a few weeks. The risks of this issue had already
been pointed out by the jury during the intermediate defense, and here the student is
responsible for a large part of the delays introduced into this work.

As a second factor, the student wishes to point out the large effort required to carry out
the first task (i.e., the survey on software robustness testing), which was initially estimated
to last three months but proved to be far more demanding. In particular, we conducted
this survey in the form of a systematic literature review, a formal and highly methodical
process which led us to manually analyze, summarize and classify more than 130 research
contributions spanning three decades. The total accumulated time spent on this task was
almost eight months, nearly three times the initially estimated amount.

Finally, the student acknowledges that there was a lack of risk management effort put
into this work, and had the student initially accounted for the possibility of delays being
introduced into this work, some mitigation strategies could have been defined. In hindsight,
the tasks in the work plan could have been numerically prioritized, so as to distinguish the
essential tasks from the minor ones and, given a large enough delay in the work (e.g., half
a month), the lowest ranking minor task(s) would be excluded.

Still, despite the recurring delays, the student believes this work was successful in regards
to the outcomes it produced. Specifically, we produced two high quality papers which have
been submitted to international journals and are currently under review, and we developed
a tool for testing the robustness of REST services (available at [32]) which, to the best of
our knowledge and given the extensive analysis carried out over the state of the art, is the
only one in existence at the time of writing.

132

	Introduction
	Background
	REST architecture
	Software testing concepts

	Related work on software robustness evaluation
	Systematic review plan
	Analysis of related surveys
	Systematic review research questions
	Identification of studies
	Study selection and quality assessment
	Data extraction and synthesis
	Outcome of the study identification and selection

	Analysis of studies on software robustness evaluation
	Operating systems
	Communication systems
	Embedded systems
	Middleware
	Software components
	Web services
	Autonomous and Adaptive systems

	Discussion
	Highlights and research challenges

	Related work on REST service testing
	Studies on REST service testing
	Tools for REST service testing
	Discussion

	Approach and robustness testing tool architecture
	Approach overview
	Tool architecture and operation

	Experimental evaluation
	Experiments description
	Experimental results
	Main findings

	Threats to validity
	Conclusions and future work

