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ABSTRACT 

Continuous and real-time action/gesture recognition is one of the main issues of 

collaborative robots and their successful application in different domains, namely in 

manufacturing. Nevertheless, the reliable and real-time recognition of actions/gestures 

in unstructured environments is still difficult to achieve. When it comes to 

manufacturing, the recognition of human actions related to basic manufacturing tasks 

(grab, lift, screw, etc.) is still a challenge. This study proposes to model and analyse 

events data aiming to recognize human actions related to basic manufacturing tasks. 

Noise reduction techniques, namely cropping, will be applied to data captured from an 

event camera (EC), eliminating most of the noise originated by shadows and body 

motion. The EC data grid is scanned to identify the outlines that define the region of 

interest (ROI). The number of captured events per frame is optimized to properly 

capture both slow and fast human motion. Linear and non-linear Data Dimensionality 

Reduction (DDR) techniques such as Principal Component Analysis (PCA) and kernel PCA 

are applied. The classification of tasks is achieved recurring to Long-term Recurrent 

Convolutional Networks (LRCNs) which combine the classification of spatial features 

using Convolutional Neural Networks (CNNs) and the temporal features using Long 

Short-Term Memory networks (LSTMs). Experimental tests were conducted using the 

new ECmanufacturing20 dataset composed by EC data representing 10 different classes 

of basic assembly manufacturing tasks. The classification models show an accuracy of 

46,7% when using the original data, 63,3% using noise reduction, 26,7% when using PCA 

and 36,7% applying kernel PCA to data. The application of noise reduction techniques 

showed a positive effect on classification accuracy, increasing it by about 17 percentage 

points.  

 

Keywords Data Dimensionality Reduction, Deep Neural Networks, 

Collaborative Manufacturing, Noise Reduction, Event 

Camera. 
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RESUMO 

O reconhecimento de ações/gestos em contínuo e em tempo-real é um dos principais 

problemas enfrentados pela robótica colaborativa, afetando o sucesso da sua aplicação 

em vários domínios, nomeadamente na indústria de manufatura. O reconhecimento 

fiável de ações/gestos num meio não estruturado e em tempo-real continua a ser difícil 

de alcançar. Quanto à manufatura, o reconhecimento de ações humanas relacionadas 

com tarefas básicas de manufatura (como agarrar, levantar, aparafusar, etc.) continua a 

ser um grande desafio. Este estudo propõe modelar e analisar dados de eventos com o 

objetivo de reconhecer ações humanas relacionadas com tarefas básicas de manufatura. 

Técnicas de redução de ruído, nomeadamente cropping, são aplicadas a dados 

capturados por uma câmara de eventos (EC), eliminando a maioria do ruído originado 

por sombras e movimento do corpo. A grelha de dados da câmara de eventos é 

examinada para identificar os contornos que definem a região de interesse (ROI). O 

número de eventos capturados por frame é otimizado para capturar devidamente tanto 

os movimentos lentos como os movimentos rápidos dos humanos. Técnicas de redução 

de dimensionalidade de dados (DDR) lineares e não lineares como Principal Component 

Analysis (PCA) e kernel PCA são utilizadas. A classificação de tarefas é concretizada 

aplicando Long-term Recurrent Convolutional Networks (LRCNs) que combinam a 

classificação de características espaciais usando Convolutional Neural Networks (CNNs) 

e características temporais usando Long Short-Term Memory networks (LSTMs). Testes 

experimentais foram realizados usando o novo ECmanufacturing20 dataset constituído 

por dados da câmara de eventos que representam 10 classes diferentes de tarefas de 

montagem básicas utilizadas em manufatura. Os modelos de classificação demonstram 

uma fiabilidade de 46,7% quando se usou os dados originais, 63,3% quando a redução 

de ruído foi usada, 26,7% quando se usou PCA e 36,7% quando se aplicou kernel PCA 

aos dados. A aplicação de técnicas de redução de ruído teve um efeito positivo na 

fiabilidade da classificação, aumentando-a cerca de 17 pontos percentuais. 

 

Palavras-chave Redução de Dimensionalidade de Dados, Redes 

Neurais Profundas, Manufatura Colaborativa, Redução 

de Ruído, Câmara de Eventos. 
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1. INTRODUCTION 

Over the years, robotics has been inspired by biological systems, both at the level of 

mechanisms, sensory systems, and reasoning. Visual sense allows humans to capture 

information about objects, the space that surrounds them, distances, among other 

information. With this in mind, the robotics community has been putting a lot of effort 

into developing reliable vision systems through which robots can perceive the real 

world. There has been given special attention to improving computer vision sensing, 

mainly through the development of different sensors and better object/action 

recognition algorithms. Reliable vision sensing is essential as it allows the robot to 

recognize humans and objects, providing it with the ability to interact with them. 

In robotics, vision sensing has been used in the recognition of objects, human actions, 

and behaviours, which are then applied in autonomous robots, for example, 

autonomous driving. It is also used for Human-Robot Interaction (HRI) which is 

becoming an increasingly relevant application, as seen in collaborative environments. 

This will be the focus of this work. 

Until recently, robots were only used for predictable and repeatable processes, 

working automatically or semi-automatically. Now, the focus shifted to a more flexible 

approach, which enhances the interaction between robots and humans through a co-

working partnership. This has the advantage of joining the coordination and adaptability 

of humans with the robot’s accuracy and ease of execution of repeatable tasks. Thus, 

there is a need to establish a system that allows for natural and intuitive HRIs. Human 

actions and gestures are a common type of interface, as they are intuitive to use and 

allows for a wide range of commands to interact with humans. To be fully operable, it 

needs a way to obtain real-world gesture data and recognize the gestures being made.  

The data needed are usually acquired by using one of the most prevalent vision 

sensors, frame-based cameras. The two main types are the charge-coupled device (CCD) 

and the complementary metal-oxide semiconductor sensor (CMOS sensor), being the 

CMOS more commonly used. Although this type of sensor has been proven viable, more 

suitable types of sensors are available, like wearables and Event Cameras (ECs).  

One of the main difficulties associated with action/gesture-based HRI is the 

continuous recognition, requiring real-time recognition of human behaviour. Thus, the 

system must be able to recognize the actions/gestures quickly and reliably. Another 

challenge is the environment. The gesture may have a busy background space which 

leads to capturing mostly unnecessary information and making its class difficult to 

identify. Lighting conditions and fast-moving objects also provide additional difficulty in 

recognition.  
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Lastly, there is, also, interest in reducing the amount of data that needs to be 

processed to recognize a certain action/gesture, to reduce overall system latency. Even 

when there is a low data rate, there is still a need to reduce the data as much as possible 

to allow for a quick feedback loop between the human and the robot. 

ECs are an emerging technology that presents great potential for HRI purposes. The 

main advantages of the EC are its great adaptability to lighting conditions and high-

speed movements, its disregard for static backgrounds, and its relative low latency and 

high temporal resolution. 

A Noise Reduction (NR) algorithm is used to reduce unnecessary noise existent within 

the EC data. The use of Data Dimensionality Reduction (DDR) is aimed at providing a 

low-dimensional representation of the data generated by an EC, to reduce the time and 

resources needed to process a gesture. Both a linear DDR, PCA, and a non-linear DDR, 

Kernel PCA, are tested. 

For image classification, a Deep Neural Network (DNN) is used. This DNN is comprised 

of a CNN, for feature extraction, and an LSTM, to learn temporal sequences. Both the 

original, NR, and DDR classification results are compared against each other to verify 

which of the methods performs better in classification. A simplified schematic of the 

proposed approach is shown in Figure 1.1. 

Figure 1.1: Schematic of the proposed system for gesture classification. 
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2. STATE OF THE ART 

This section presents a brief analysis of the current state of knowledge about the 

topics relevant to this work.  

2.1. Gesture-based HRI 

2.1.1. Main Concepts 

A gesture is a form of non-verbal communication in which specific messages are 

communicated through the movement of hands, face, or other parts of the body. 

Gestures are an integral part of all collaborative assembly processes. While most 

frequently used to enhance speech-based communication, they can also be used to 

completely replace some spoken commands [1]. A gesture-based HRI system should 

operate solely on gestures, without the need for complementary speech recognition.  

A gesture-based HRI system grants the user a way to communicate to the robot how 

to operate, while also providing additional information on where the action should take 

place in the physical world, e.g. by pointing. Additional context can be given by using a 

specific tool, as it is the case in Figure 2.1. The robot first detects the tool in the user’s 

hand and picks up the associated part, Figure 2.1(a). The robot then identifies the 

location of the tool, adapting its position for the user to be in an ergonomic position, 

Figure 2.1(b).  

  

(a) (b) 

Figure 2.1. Gesture-based HRI with context conveyed through the usage of a drill [2]. 

Communication through gestures is innate, as it is used in daily human-human 

interactions. The user, by knowing intuitively how to interact with the robot, has little 

to learn about the HRI interface. This makes the robot accessible to use, which in turn 

allows the user to better focus on the task itself [3]. 
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2.1.2. Hand Gestures 

Hand gestures are at the core of gesture-based HRI. They can condense a lot of 

information into a single hand motion or position. Action and location are conveyed 

through the hand’s shape, movement and position. There are two main types of 

gestures, Static Gestures (SGs) and Dynamic Gestures (DGs). The SGs convey messages 

with a specific static hand position while DGs express their messages through the hand’s 

movement, as shown in Figure 2.2. 

 

Figure 2.2. Examples of SGs and DGs. Adapted from [4]. 

Dynamic gestures usually consist of 3 phases, as shown in Figure 2.3: preparation, 

stroke, and retraction [5]. Starting at a resting position, the user moves their hand into 

position, executes the intended gesture, and finally returns it to resting position. In the 

case of a sequence of gestures, the preparation for the next gesture will be made instead 

of retraction. It is essential to pause before and after the gesture for it to be more easily 

recognized. This is usually done by assuming a resting position. 

 

Figure 2.3. Structure of a Dynamic Gesture.  

In the gesture phase, the actual gesture is executed with the intent of conveying a 

specific meaning. In the preparation and retraction phases, while hand movement 

occurs, no communication is implied. This is called Movement Epenthesis (ME), which 

involves a change in hand shape and movement without meaning. There are many ways 

of dealing with ME [6] but, in this work, only the gesture phase of the DGs will be studied. 

A library of gestures is a collection of predefined gestures, either SGs, DGs, or both. 

The gesture library must be selected with caution, as the gestures need to be 

distinguishable from one another. Although a lot of different gestures can be made, only 

some can be consistently recognized by robots and humans alike [1]. All hand gestures 

that constitute a gesture library should be easy to understand and replicate for users 

without knowledge of sign language. The most relevant gestures for HRI are of the 

referencing type, such as “This one!” and “From here to here!” or terminating gestures 

like “Stop” and “No” [1]. 
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2.1.3. Applications 

Gesture-based HRI systems can generally be one of two types: Wearable or Vision-

based. Wearable systems are characterized by relying on wearable equipment, usually 

hand-worn, which tracks the hand’s movement. Vision-based systems perceive gestures 

using a vision-based sensor. 

Wearables can be used for the recognition of both SGs and DGs. They have exhibited 

the ability to command, through gestures, diverse types of robots such as a manipulator 

arm, a ground robot, and a robotic hand [4][7][8], Figure 2.4(a). Wearable technology 

has also been used to perform demonstrations of gestures to teach a humanoid robot 

to reproduce such gestures with a smooth and human-like feel to it [9]. 

  

(a) (b) 

Figure 2.4. Real-life applications of gestures: (a) Command a robot to grab a cereal box [8]; 

(b) Recognize the pouring of cereal [10]. 

Typical Vision-based systems use frame-based cameras to identify both SGs and DGs. 

They have the advantage of, in addition to the gesture itself, being able to discern the 

objects which the user is interacting with. It has been used, for example, on continuous 

gesture recognition for aircraft handling [3] and recognition of bimanual action 

sequences [10] such as cooking, disassembling a hard drive, and preparing breakfast 

cereals, Figure 2.4(b).  

Although both gesture recognition approaches share characteristics [11], wearables 

are susceptible to slippage issues [4] and need worn equipment, which is an 

inconvenience to the operator. Typical frame-based Vision-based systems, meanwhile, 

have issues in recognizing gestures from all directions [11], due to possible occlusions, 

and in dealing with background noise. Also, the vision-based solutions require large 

amounts of data for the recognition of a simple pattern, demanding high-performance 

processors. As such, there is a need for a different kind of sensing technology to 

empower gesture-based HRI that does not suffer from these drawbacks, like the Event 

Camera. 
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2.2. Event Camera 

2.2.1. Working Principles 

Event-based computation is characterized by its sparse asynchronous events. It is 

used by biological systems, like our brain and eyes, to guarantee an efficient real-time 

performance [12]. Research into new types of artificial circuits, inspired by these 

biological systems, resulted in an event-based sensor named Event Camera (EC). 

An EC, such as the Dynamic Vision Sensor (DVS), responds to changes in brightness 

(log intensity) of the captured scene through its distinctive pixel architecture, Figure 

2.5(a). The log intensity of each pixel is continuously compared to an “ON” and “OFF” 

threshold which, when exceeded, generates an asynchronous event, Figure 2.5(b).  

 

 

(a) (b) 

Figure 2.5. DVS Characteristics: (a) Simplified pixel schematic. Adapted from [13]; 

(b) Principle of operation [14].  

This event contains information about the pixel coordinates, 𝑥 and 𝑦, the timestamp 

of the event, 𝑡𝑠, and the sign of the occurred brightness change, also known as polarity, 

𝑝𝑜𝑙. Each event is usually expressed as a 1x4 array such as in (1), where the index 𝑖 

represents the unique number of the event. 

𝐸𝑣𝑖 = (𝑥, 𝑦, 𝑝𝑜𝑙, 𝑡𝑠) (1) 

To transmit this information, while preserving the low latency of the EC’s 

asynchronous output, the Address-Event Representation (AER) protocol is used. It 

enables the asynchronous communication of events by relaying the address of the pixel 

that sent the event [15]. 
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2.2.2. Advantages 

The EC has many features that make them better sensors, in comparison to frame-

based cameras, to empower numerous robotics and artificial intelligence applications, 

Figure 2.6. The most relevant are discussed in the following section. 

 

 (a) (b) (c) 

Figure 2.6. Differences between CMOS sensor and EC outputs of a rotating disk [16]: 

(a) Slow Rotation; (b) Fast Rotation; (c) No Rotation. 

2.2.2.1. Low data rate 

Considering the camera is in a fixed position, a frame-based camera captures all the 

information contained within a given frame. An EC, only captures the movement present 

in the scene, ignoring the background information, as shown in Figure 2.6(a). This is 

useful for gesture detection, as it reduces data size and facilitates motion tracking.  

The data rate of a sensor, usually expressed in kB/s or MB/s, is the rate at which the 

sensor’s data are transmitted per second. Even though the EC has a high acquisition rate, 

Figure 2.6(b), each event only accounts for about 2 bytes on average, making the data 

rate of ECs typically orders of magnitude lower than that of a frame-based camera 

[14],[15]. In a static scene, as there is no change in the environment, ECs will not capture 

any data at all, as seen in Figure 2.6(c). This shows that the data rate of ECs scales 

dynamically with actual demand [12].  

The low data rate of the EC leads to the typical low power consumption of about 

30 𝑚𝑊 [14],[17], due to subsequent low data processing. While the amount of power 

consumption is not usually a concern in a fixed setup, it is crucial when employed on 

mobile devices such as drones. By being battery-powered, these have a limited amount 

of energy available, benefiting from low power expenses. 
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2.2.2.2. High Dynamic Range 

Dynamic range, in the context of vision sensors, describes the range of brightness 

values the sensor can detect. A high dynamic range allows for better performance in 

unsupervised environments with inconsistent and/or high contrast lighting conditions, 

as in Figure 2.7(a). It also enables indoor and outdoor operation, without the need to 

change any parameters [16]. 

The high dynamic range of an EC is, on average, of about 120 dB. Aside from certain 

frame-based cameras that are designed for high dynamic range purposes, like [18], they 

usually have a lower dynamic range of about 60 dB. These specialized cameras do not, 

however, have the other key advantages associated with ECs. 

 

 

(a) (b) 

Figure 2.7. EC features: (a) High Dynamic Range. Adapted from [17]; (b) Low Latency [19].  

2.2.2.3. Low Latency and High temporal resolution 

Latency, also known as delay, is the time interval occurring between the sensor’s 

detection of scene change and the ensuing response to that change. In ECs this delay is 

very small, as seen in Figure 2.7(b), generally lasting less than 100 𝜇𝑠 [14], [17]. This 

makes them ideal for real-time applications like the detection of gestures in gesture-

based HRI systems. These systems, to be considered responsive, should manage to give 

a reply within 100−200 ms [20]. Low latencies promote high temporal resolutions. By 

lowering the delay between the stimuli and the reply, the sensor can record data at a 

much faster pace. This enables high data acquisition rates of about 1 million 

events/second [14].  

In frame-based architectures, frames are outputted at a consistent time interval, 

measured in frames/second. ECs, as data rate scales dynamically with its demand, have 

small but variable time intervals between retrieved events, as seen in Figure 2.7(b). 

When fast movements occur, frame-based cameras tend to present high motion blur in 

its output frames which limits the camera’s ability to portray the motion. A DVS, 

however, manages to detect fast movements accurately due to its high temporal 

resolution. This difference is made evident in Figure 2.8.  
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 (a) (b) 

Figure 2.8. A quadrotor, equipped with a CMOS sensor and a DVS, performing a flip [16]: 

(a) CMOS output; (b) DVS Output.  

2.2.3. Processing EC data 

The EC is a vision-based movement sensor mostly used for motion tracking purposes. 

As the events are asynchronously generated by the EC, practical ways of processing this 

kind of data must be developed. 

The simplest method is that of accumulating events over a fixed interval of time into 

a frame, called an integrated image [16]. Owing to this, already developed frame-based 

tracking and recognition algorithms can be used. It does, however, limit some of the EC’s 

capabilities, like its low latency and high temporal resolution. Accumulating events is a 

solution fit for tracking movements that contain one or multiple complex shapes to be 

tracked. It has been successfully applied to the acquisition of traffic data [21]. 

Another method relies on an integrated image followed by continuously updating the 

image as soon as new events arrive. While more complex in its implementation, needing 

dedicated techniques like the Hough Transform [13],[16], it enables extremely low 

latencies needed to track high-speed movements. This approach is generally used to 

track simple shapes. This solution is mostly used in high-speed robotics, like quadrotors, 

to be able to track its rotation during a flip [19],[16]. This approach has also been used 

to successfully control an actuated table to balance a pencil [13]. 

Although continuously updating the image would provide low latency, it would be 

difficult to use it for gesture tracking. This is in part due to the inconsistency of hand 

shape, derived from different users or the angle of the hand while facing the EC. It also 

has the big disadvantage of not being suitable for object recognition. 

The discretization of the continuous output of ECs into integrated images, although 

limiting temporal resolution, makes it easier to comprehend and process the obtained 

data. This approach not only allows better tracking of complex movements, but it is also 

the most favourable for enabling gesture recognition. 
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2.3. Classification 

2.3.1. Image Classification 

Classification is the process of categorizing a given set of input data into classes, also 

called labels or categories. This is done through algorithms known as classifiers, which 

classify the data into the most appropriate category. The classifiers must be trained with 

pre-labelled training data to determine which input variables are related to which 

output classes. Image classification is the process that classifies an image with a label 

according to its visual content. While for humans it is easy to classify Figure 2.9 as a cat, 

with computer vision this is more challenging, as this classification has to be made by 

processing arrays of numeric values.  

 

Figure 2.9. Classification of an image of a cat [22]. 

As objects are often in different orientations then those in the training data, no image 

will have a 100% resemblance. Image classification predicts the label that most closely 

correlates to the input data, Figure 2.9. This way, with enough training data, the 

algorithm can reliably label objects in new positions and orientations. A confusion matrix 

is often used to visualize the accuracy of predicted classes by comparing them to the 

correct class. It is an important verification tool to see if any specific types of classes are 

systematically misclassified. 

A popular approach to achieving image classification is Deep learning, a machine 

learning method based on Deep Neural Networks (DNNs). It allows for a computer 

model to learn how to classify images into a specific set of classes. It does so by training 

on data from a big database of images already labelled into those categories.  



 

 

  State of the Art 

 

 

  11 

 

2.3.2. Deep Neural Network Architecture 

A Deep Neural Network (DNN) is an artificial neural network comprised of an input 

and output layer with several hidden layers in between, as seen in Figure 2.10. The 

presence of many hidden layers improves the ability of the network to act upon its input. 

This allows DNNs to outperform single-layer neural networks, especially when assigned 

to complex problems [23], like gesture detection and localization [24]. 

 

Figure 2.10. Constitution of a Deep Neural Network [25]. 

Each of these hidden layers contributes as a computational stage which transforms, 

often non-linearly, the information received from the previous stage and outputs it into 

the next. Depending on the desired DNN’s application, different sequences of layer 

types are used, Figure 2.11. In fully connected layers, each node of the current layer is 

connected, through weights, to all the nodes of the next layer, Figure 2.11(a). In 

Convolutional layers, features are extracted from the current layer through a filter, 

Figure 2.11(b). Both of these types of layers are used to create feed-forward networks, 

in which no feedback exists to previous layers. In Recurrent layers, however, output data 

are reused as an input for the next computation in the same node, Figure 2.11(c). These 

layers are the main element used to form recurrent neural networks.  

   

(a) (b) (c) 

Figure 2.11. Common types of neural network layers: (a) Fully connected layer. Adapted from [26]; 

(b) Convolutional layer; (c) Recurrent layer [27]. 
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2.3.2.1. Convolutional Neural Networks 

A Convolutional Neural Network (CNN) is a feed-forward DNN comprised of a series 

of convolutional layers, followed by fully connected layers. The convolutional layers 

extract features of the input image, and the fully connected layers then make a 

prediction based on those features. CNNs are usually applied to image classification 

applications, e.g. multi-class geospatial object detection [28]. 

 

Figure 2.12. Typical structure of a Convolutional Neural Network [29].  

CNNs usually have an architectural structure like the one in Figure 2.12. Alongside 

fully connected and convolutional layers, additional types of layers are used. While 

Pooling layers are used for down-sampling, Rectified Linear Unit (ReLU) layers are used 

to turn negative values into zero and the Softmax layer turns numeric input values into 

probabilities. 

Training a CNN from scratch has the potential for the best classification results but 

requires a huge amount of training data and high computational time. Otherwise, pre-

trained networks, like ResNet-50 [30], while easy to use, are trained towards a large set 

of generic classes. Transfer Learning is the middle ground between these two options. 

By modifying some layers of a pre-trained network, Transfer Learning preserves the 

network’s aptitude to classify images while allowing the network to classify a more 

specific set of classes. 

Depending on its architecture, CNNs can be applied to the classification of images, 

with a 2D CNN, or videos, with a 3D CNN. As 3D CNNs are computationally expensive 

and quite difficult to train, an alternative way of interpreting temporal context is 

needed. 

2.3.2.2. Recurrent Neural Networks 

A Recurrent Neural Network (RNN) is a type of DNN in which all its hidden layers are 

recurrent. As introduced before, this type of layer uses the output of previous 

computations to do the next. Owing to this, RNNs are used in applications that require 

a sequence predictor, such as speech recognition [31]. 



 

 

  State of the Art 

 

 

  13 

 

 

A common issue of RNNs is that the influence of older inputs decreases over time, 

called “the vanishing gradient problem”. New inputs replace the activations of the 

hidden layer, making the network ‘forget’ the old inputs, making it difficult to learn long-

term dependencies. Figure 2.13(a) displays this by representing the loss of information 

from the initial input with the increasing fade to white at each timestep. 

  

(a) (b) 

Figure 2.13. (a) The vanishing gradient problem for RNNs [32]; (b) LSTM node architecture [29]. 

A Long Short-Term Memory (LSTM) [33] is a type of RNN architecture created as a 

response to this problem. The nodes of an LSTM are very similar to the ones found in 

recurrent layers, except they also contain a cell state, Figure 2.13(b). This cell state is 

regulated by structures called gates. Through training, these gates learn when to alter 

the information of the cell state. This allows the LSTM to preserve information of long 

sequences of data. LSTMs are, thus, ideal for learning long-term dependencies, 

necessary for applications like the composition of music [34], speech recognition [35], 

gesture classification [36], anomaly prediction [37], among others. 

2.3.2.3. Long-term Recurrent Convolutional Networks 

The structure resulting from the junction of a CNN with an LSTM is called a Long-term 

Recurrent Convolutional Network (LRCN). It is used for example to classify videos by first 

extracting the visual features of its frames through a CNN and then classifying them, 

considering their temporal sequence, with an LSTM.  

The CNN used in an LRCN is usually a pre-trained network or one modified with 

transfer learning. This way only the LSTM needs to be created from scratch. Generally, 

a 2D CNN is used, but in some cases, a 3D CNN is used instead [38]. LRCNs have been 

proven successful in recognition of gestures from a video stream in real-time [39] and 

gesture interaction with a Smart TV [38], which demonstrates their capability to handle 

the classification of gestures. 
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2.4. Data Dimensionality Reduction 

2.4.1. Core concepts 

Data Dimensionality Reduction (DDR) methods provide a way to represent a high-

dimensional dataset by transforming it into a lower-dimensional state, Figure 2.14. This 

downward dimensional shift aims to preserve, as best as possible, the general structure 

of the high-dimensional original data. 

 

Figure 2.14. Dimensionality reduction from high-dimensional data to low-dimensional data. 

Adapted from [40]. 

The employment of DDR is necessary as the depiction of high-dimensional data, 

especially when it exceeds the 2D space. A DDR method usually reduces the data to a 

lower space, many times a 2D space, which depicts variable correlations in a more 

comprehensible way. 

As ECs output events in a 1x4 array (1), it means that, at most, it is possible to use 4D 

data. However, to classify images using a pre-trained network, data typically must be 

organized into frames, which display data within a 2D space. Not using a DDR means 

only being able to represent, at most, each event’s x coordinate, y coordinate, and its 

polarity. The polarity can be represented in a 2D space along with the coordinates by 

using two different colours, e.g. green and red, due to it being a binary variable. 

Using a DDR would allow for a way to include the information related to the 

timestamp of each event into image classification. This additional information, while 

previously discarded, could provide more insight into the correlation of data, possibly 

improving classification accuracy. Another possible benefit of converting to a lower 

dimension is the significant decrease in the amount of data. This is particularly crucial 

for high-dimensional datasets that are quickly generated, like those created by dynamic 

gestures [8]. This advantage, though, may later be negated, as using a pre-trained CNN 

requires the data to be in the specific format requested by the input layer.  
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2.4.2. Types of DDR 

There are two kinds of DDR methods: linear and non-linear methods. Linear DDR 

methods are useful to obtain the global structure of the data, more easily finding the 

zones of interest. Non-linear DDR methods tend to preserve, with reasonably good 

accuracy, the local neighbourhood structure of each event.  

For the scope of this work, 2 distinct DDR methods have been selected: linear PCA 

and the non-linear Kernel PCA. 

2.4.2.1. Principal Component Analysis 

Principal component analysis (PCA) [41] is a mathematical tool that performs an 

orthogonal linear transformation of a set of n p-dimensional observations, X ∈ ℝn×p, 

into a space defined by Principal Components1 (PCs). As these PCs must have a size less 

than or equal to the number of original dimensions, p, PCA is typically used to represent 

the original data within a lower-dimensional space.  

The first component, PC 1, correlates to the highest variance in the data. Each of the 

following PCs is orthogonal to the preceding one and has the highest variance possible 

under its orthogonality constraint. Commonly, only the first and second components are 

plotted against each other to obtain a two-dimensional space that shows most of the 

variance of the original data [42], allowing for easier visualization of the data. The 

remaining PCs are correlated to the lowest variance in the data, so they are not used to 

build the component space. The process of applying PCA is exemplified in Figure 2.15. 

 
Figure 2.15: PCA transformation: Projection of 3D data onto a 2D component space [42]. 

PCA can also enable the detection of features through its PCs, as has been shown in 

[43] where the eigenvectors resultant from PCA are used to extract features for face 

recognition. It greatly reduced the dimensionality of the samples while also improving 

classification accuracy.  

 

1 Principal Components are the eigenvectors of the covariance matrix computed from the dataset. They are 
sorted according to their corresponding eigenvalue in decreasing order. 
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Using PCA as the DDR method has, though, a major drawback which is related to the 

unwanted environmental factors that may have an impact on the variance of the data. 

PCA cannot distinguish, only from variance, relevant from nonrelevant contributions 

[42]. To solve this, there is a need to use normalization techniques to reduce non-

relevant variance. 

2.4.2.2. Non-linear Principal Component Analysis 

Time-dependent actions, like DGs, are generally located within a non-linear subspace. 

This means they are most likely better explained by a low number of non-linear 

components rather than by an equal number of linear components. This prompts the 

use of non-linear principal analysis (NLPCA), which is a non-linear generalization of 

standard linear PCA. The main difference between PCA and NLPCA is that the latter 

involves non-linear mappings between the original and reduced dimension spaces. This 

enables NLPCA to identify both linear and non-linear correlations. There are 2 well-

known approaches to NLPCA, the use of Principal Curves and Kernel PCA.  

2.4.2.2.1. Principal Curves 

In the case of PCA, the principal components are estimated by finding the line that 

minimizes the orthogonal deviations. Data tends to follow in a non-linear distribution, 

thus the sum of the distances from the data points to that line tends to be very high. To 

try to solve this issue, the PCs are generalized to curves, called Principal Curves [44], 

instead of straight lines. The curve minimizes the sum of orthogonal deviations just like 

a straight line, but the distances of the data points to the now curved line are 

significantly lower than its linear counterparts, as shown in Figure 2.16. The NLPCA is 

specifically called Circular PCA when the Principal Curve is a closed curve [45]. 

 

Figure 2.16: A Linear principal component (left) and Principal Curve (right). Both minimize the sum of 

squared deviations for all data points [44]. 

Though Principal Curves seem conceptually simple, they are demanding for large data 

sets, as a lot of computational steps are involved [46]. This method is mainly used to 

detect non-linear curves and two-dimensional non-linear planes, due to being limited to 

the use of two principal components because of its complexity [42]. 
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2.4.2.2.2. Kernel Principal Component Analysis (Kernel PCA) 

Kernel PCA [47] maps the original set of datapoints 𝑧𝑖 ∈ ℝ𝑁 , 𝑖 = {1, 2, … , 𝐾} from 

input space onto a high-dimensional feature space called F, through 𝑧 
 

→ Φ(𝑧), and then 

performs PCA on F [46]. This can be visualized in Figure 2.17. As linear PCA is applied to 

the feature space, since 𝐹 is non-linearly related to input space through Φ, the contour 

lines of the projections of the data points onto the principal eigenvector in F, 

represented as dotted lines in Figure 2.17, become non-linear in the 2D input space. 

 

Figure 2.17: Kernel PCA technique, applied to a 2D input space, using a Polynomial kernel function [47]. 

The transformation is made by a non-linear function Φ, called the kernel function. 

The most common kernel functions used are either “Gaussian” or “Polynomial”. This 

method has the benefit of not actually “mapping” the information into the feature 

space, but instead carrying out all computations through the kernel function in input 

space. This allows it to use high-dimensional feature spaces with reasonable 

computational cost [47]. 

2.4.3. Comparison and applicability of DDR 

PCA has already been shown to be successful applied in gesture recognition [48]. As 

it is a linear method and gesture data have a non-linear behaviour, an attempt for better 

results will also be made with a non-linear method. 

Both the NLPCA methods presented previously provide different solutions for dealing 

with non-linear problems. Kernel PCA is the most versatile, efficient, and reliable of the 

two. The usage of Principal Curves is too computationally demanding, especially 

considering the significant amount of data that needs to be processed. Kernel PCA will, 

thus, be selected to compete against the results obtained with PCA. 

Other DDR methods that could have been applied were outside the scope of this 

study. Some noteworthy DDR methods that were considered are TriMap [49] and t-SNE 

[50]. However, after deliberation, the first was deemed too complex and the latter 

unreliable due to random computations.  
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3. METHODOLOGY 

3.1. Dataset for Primitive Manufacturing Tasks 

In this section, the setup for capturing data for the newly created dataset for primitive 

manufacturing tasks (ECmanufacturing20) is detailed. It ensures the quality of the 

dataset and covers the most relevant manufacturing tasks, namely the ones related to 

assembly tasks. 

3.1.1. Setup for Capturing EC Data 

The EC used to capture the dataset footage is a DAVIS 240C. It is a 240x180 pixel DVS 

camera with simultaneous active pixel frame output. Only its event data will be 

captured. The DVS’s characteristics are presented in Table 3.1. The camera lens used has 

a manually adjustable Aperture (Iris), Zoom, and Focus. 

Table 3.1: DAVIS 240C: DVS’s Specifications 

Resolution 240 x 180 pixels 

Dynamic Range 120 dB 

Minimum latency ~ 12 us @ 1klux with optimized biases 

Bandwidth 12 MEvents/ second 

Power Consumption 5-14 mW (activity dependent) 

 

To record the data for the dataset, the setup conditions in Figure 3.1 should be 

respected.  

 

                   (a)             (b) 

Figure 3.1. Recording gesture data with an EC: (a) Physical Setup; (b) Sensor View. 
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The EC should be positioned in a way to capture as much useful information as 

possible. As is common for datasets for gesture recognition, this means the sensor view 

will be the front view, capturing the upper body motion, Figure 3.1(a). In this dataset, 

the main objective is to be able to detect which primitive tasks the user performs while 

interacting with an object. Thus, the object and hands should be within the camera 

range of view. To reduce the amount of noise caused by involuntary movements by the 

user, like blinking, the user’s head should not be within the range of view.  

The more space the hands and object occupy within the sensor’s view, the less 

pointless information the camera captures. However, the camera’s view should 

accommodate for the user’s range of motion to be able to capture all the performed 

actions. The chosen sensor view is depicted in Figure 3.1(b). To achieve this sensor view, 

a combination of the camera’s lens “zoom" setting and the distance between the human 

and the camera must be defined. To do this, first, the desired camera distance from the 

user is chosen and then the “zoom” setting is changed accordingly to fit the user within 

camera range of view as illustrated in Figure 3.1(b). For this dataset, a distance of 60 cm 

between the camera and user has been selected. 

A working stance can either be standing or sitting. Assuming an ergonomic position, 

for both cases, the camera views the user’s upper body. Thus, there are no significant 

differences between the data of a standing or sitting user. The surrounding environment 

and background are not controlled. The only thing to consider is to not have any moving 

parts behind the user while recording the dataset. 

3.1.2. Primitive tasks 

The dataset is comprised of primitive tasks the user makes while performing 

manufacturing assembly tasks. When these primitive tasks are combined, they cover the 

most common manufacturing tasks. To exemplify these tasks, some interactable objects 

had to be selected, Figure 3.2. The chosen objects are three simple 3D shapes, a cube, a 

cuboid (with a single screw), and a cylinder, which will be used to demonstrate all tasks. 

A screwdriver will also be used as a tool for the “Screw” task. 

   
(a) (b) (c) 

Figure 3.2. Objects used in the creation of the dataset: (a) A cube; (b) A cylinder; 

(c) A cuboid with an inserted screw and the designated screwdriver. 
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The primitive tasks chosen for this dataset are as shown in Figure 3.3. 

  

 

1 – Move Left 2 – Move Right 3 - Lift 

 

  

4 – Place 5 – Approach 6 - Retreat 

  

 

7 – Grab 8 – Release 9 - Screw 

Figure 3.3: Representation of all tasks and their respective number used in the ECmanufacturing20 dataset. 

These include simple translational movements in the 3D space while holding the 

object, Tasks 1 through 6, a grab and release gesture, Tasks 7 and 8, and a screwing 

gesture, Task 9. In addition to these dynamic primitive tasks, the dataset will also be 

trained to recognize the user as being idle, Task 10. 

The main dataset with 23 sequences for each task was recorded containing, in total, 

230 sequences. About half of the sequences for each task were recorded with the right 

hand and the rest with the left hand. When recording the sequences, diversity is 

introduced by recording the tasks in different locations on the table, closer or further 

away from the EC. More variety is endorsed by alternate use of the objects. An 

additional smaller testing dataset with 6 sequences for each task was recorded for DNN 

testing, adding up to 60 sequences. For each task, 3 sequences are recorded for each 

hand. Each one of these 3 sequences uses a different object. This way, at a later stage, 

the LRCN’s performance can be thoroughly tested. 
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3.2. Pre-processing of data 

As discussed previously, to process EC data in a visually perceptive way, integrated 

images are created. Usually, integrated images construct a frame with all the events 

generated in a predefined interval of time, having the advantage of easily identifying the 

movement in time. However, for very slow movements a lot of redundant frames will 

be captured and in fast movements the framerate is limited. 

 An alternative approach is to capture a frame at each predetermined number of 

events. This is much more versatile as it adapts the framerate to the speed of the 

movement, accounting for both fast and slow movements. For a high number of events 

used per frame, the image generated at each frame is more easily recognizable, due to 

the increase of data, but has higher motion-related noise and lower framerate. 

Meanwhile, for a low number of events per frame, the lower overall noise and higher 

framerate come at a cost of less recognizable images. 

To decide on which the number of events per frame should be, both a slow and a fast 

version of a task sequence (grab-lift-left-right-place-release) is recorded with the 

previously defined setup. Then, according to the obtained results, a score from 1 to 5 is 

given to each category, 1 being the worst score and 5 the best. The rounded down values 

of the obtained Frames/second for each attempt are shown in Table 3.2. 

Table 3.2: Average frames/second values obtained for different events/frame values. 

Number of Events per Frame 

1000 2000 3000 4000 

Slow Fast Slow Fast Slow Fast Slow Fast 

44 fps 85 fps 21 fps 42 fps 14 fps 28 fps 10 fps 21 fps 

A weighted decision matrix is then constructed with the designated scores, Table 3.3. 

The number of events per frame that displays the total highest score is 3000 

Events/frame, and thus this will be the chosen value. Some of the frames obtained for 

3000 Events/frame are shown in Figure 3.4. 

   
Figure 3.4. The transition between “Up” and “Left” task in the sequence with 3000 Events/frame. 
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Table 3.3: Weighted decision matrix to compare performance between Events/Frame values. 

  Number of Events per Frame 

Criteria 
Weighting / 

Importance 

1000 2000 3000 4000 

Slow Fast Slow Fast Slow Fast Slow Fast 

Perceptibility of hands 5 2 3 3 4 4 4 4 4 

Absence of random 

noise 
4 2 2 3 3 4 4 4 4 

Absence of movement 

related noise 
3 4 4 3 4 3 3 2 2 

Number of Frames per 

Second 
2 5 5 4 4 4 4 3 3 

 Total 85 96 106 96 

3.3. Noise Reduction 

Noise is output data which is irrelevant. It occurs along with the relevant data, making 

it difficult to differentiate. Noise reduction removes as much irrelevant data as possible. 

The frames obtained by creating integrated images with 3000 Events, Figure 3.4, while 

being recognizable, still have a lot of noise. To avoid poor classification performance 

resulting from too much irrelevant information, a noise reduction algorithm should be 

used. After identifying the main noise sources, a noise reduction algorithm is discussed. 

 Identification of Noise Sources 

To discover which are the existing main noise sources, all output frames from a 

certain task are analyzed. From the frames obtained in Task 3, the most relevant sources 

of noise can be identified, Figure 3.5, as being idle, shadows, and body movement. 

   
(a) (b) (c) 

Figure 3.5. Noise source types identified within a Lift task: (a) Idle; (b) Shadows; (c) Body Movement. 

Idle noise is created due to almost no movement occurring in the camera’s range of 

view. This causes smaller changes in brightness to be captured, which means a lot of 

irrelevant events are generated, as seen in Figure 3.5(a). This specific behavior is very 

common when the user is in an idle position. 
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Shadows are an inevitable issue when using a sensor that captures movement 

through changes in brightness, Figure 3.5(b). Differences in lighting conditions tend to 

produce different kinds of shadows. This inconsistency may lead to inferior classification 

performance, and as such, the shadows should preferably be removed. Even when 

attempting to only move an arm to lift an object, the whole body tends to move 

accordingly, Figure 3.5(c). This is the most difficult type of noise to manage, as it is the 

one with the most variable outcome and multiple clusters of events may be formed, 

whereas in the shadow case usually only one is generated and in the idle case none. 

 Preparation and Interpretation of Data 

The main objective of the noise reduction algorithm is for all images to accurately 

represent the hand performing a task and the object used, with as little noise as possible. 

One approach is to ignore the events outside the region of the image containing the 

hands and the object. This type of image manipulation process is called Cropping. It 

eliminates the vast majority of noise originated by shadows and body movement, ideally 

performing as shown in Figure 3.6.  

  
(a) (b) 

Figure 3.6. Frame obtained from a Lift task: (a) Original frame; (b) Desired cropping result. 

This action must be accomplished for each frame, without any knowledge of what 

kind of task is being performed and of what the proximity of the hand to the EC is. It 

should allow for the preservation of all the information of the events contained within 

the preserved region: its x coordinate, y coordinate, polarity, and timestamp. 

Assuming a single frame with 3000 events, such as Figure 3.6(a), the location of the 

hand within the camera’s view is the zone with the highest density of events. It is difficult 

to locate this zone directly from the raw EC data, in which each event is represented by 

(1). To better display the EC data, each frame is transposed to a grid with dimensions 

240 x 180 pixels (width x length), in which each cell corresponds to the coordinates of a 

pixel of the EC. The function of each cell is to store the number of times an event occurs 

at that specific coordinate, as specified in Algorithm 1. Using Figure 3.6(a) as the original 

frame, the produced grid is as shown in Figure 3.7, with darker cells representing many 

events. 
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Algorithm 1 Creation of the Event occurrences Grid 

 

1: Prepare the grid as a 240x180 empty matrix 

2:  

3: for each Event 

4: Find its x and y coordinate 

5: Sum 1 to corresponding coordinates in the grid 

6: End 

  

By observing the grids obtained for different tasks, some important recurring 

behaviors are discovered: 

• The cells with the highest count of events are located within the hand and the outer 

edge of the object. In tasks that require significant arm movement, the arm’s outline 

also exhibits a high event count. Identifying these edges is the most effective way of 

finding the hand within the image and, thus, defining the area of the image that 

should be preserved; 

• The closer the hand holding the object is to the camera, the more difficult it is to 

detect its outline, as it is defined by more sporadic events; 

• Most of the cells corresponding to previously identified noise sources, mainly 

shadows and body movement, have a low count of events. 

Figure 3.7. Grid with the number of event occurrences at each cell coordinate with 

magnified section. Obtained from applying Algorithm 1 to the data of Figure 3.6(a). 



 

 

   

 

 

26   

 

Occasional singular cells with an unusually high event count without many nearby 

event occurrences can be attributed to a “Stuck Pixel”2. To solve this issue, each cell of 

the grid that has an event count greater than 10 should be changed to 2. This must be 

done as the pixel may or may not be used depending on the task and, as such, should 

not be completely erased. In rare cases, this does target some cells used to represent 

either the hand or the object. However, as they have a lot of surrounding high event 

count cells, it won’t impact the proficiency of the algorithm. 

3.3.3. Creation of the Region of Interest 

The main part of the noise reduction algorithm is to identify the hand and the object, 

which can be distinguished by their outlines. There is a need to scan the grid to identify 

these outlines to define the Region of Interest3 (ROI). Most objects chosen for the 

dataset will have some of their outlines aligned vertically. Thus, a grid column 

corresponding to the location of said vertical outlines will contain a lot of cells with high 

event occurrence values. This means that the sum of all events in each column is a good 

indicator to find these object outlines. The same is true for finding outlines aligned 

horizontally by using the grid’s rows. To see this in practice, three separate frames from 

the Approach task, Tasks 5, were selected, with the hand and object at different 

distances from the camera, Figure 3.8. 

   
(a) (b) (c) 

Figure 3.8: Selected original frames from the Approach task. 

Figure 3.8(a) will be used to test the hypothesis about finding hand and object 

outlines through columns and rows with high sums. The result of summing the values of 

the cells of each row of the grid obtained for this image are plotted in a line graph shown 

side-by-side with the grid, while the same is done for each column, showing the resulting 

sums underneath the grid, Figure 3.9. This confirms that the zone with the hand and 

object corresponds to the zone with the highest sums.  

 

2 Also known as a “Hot Pixel”, it is a pixel that is always “on” (can be caused by any of its sub-pixels).  
3 The portion from the original image where most relevant information is located.  
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There is a need for a certain limit that, when intersected with the plot of the grid 

sums, creates the region of interest. This limit should not be constant, as it needs to be 

able to adapt to the different kinds of tasks. Thus, two hypothetical limits are tested 

against the data, the median and the average of the grid sums. The ROI will be defined 

as the zone starting when at least 3 consecutive sums are higher than the limit and 

ending when 3 consecutive sums are lower than it, as described in Algorithm 2. Multiple 

zones can be obtained this way, but for now, only the ROI which contains most events 

is selected. Figure 3.10, Figure 3.11, and Figure 3.12 show the results obtained for the 

frames shown in Figure 3.8(a), Figure 3.8(b), and Figure 3.8(c), respectively. The blue line 

represents the median and the orange line portrays the average. 

 

Algorithm 2 Creation of Region of Interest with single zone. Exemplified for the vertical 

limits of the ROI. The horizontal limits are obtained similarly. 

 

1: Sum the values of each column of the grid 

2: Find the average of the sums  

3:  

4: for each column of the grid 

5: Build an array with the sum value of the current and previous two columns 

6: if all values in the array are greater than  then 

7: Save starting column of the cluster 

8: elseif all values in the array are less than  then 

9: Save ending column of the cluster 

10: end 

11: end 

12:  

13: Use the first column and the last column of the biggest cluster to define the ROI 
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Figure 3.9: Desired ROI, contained within black outlines, compared to the grid sums. 

Obtained from data of Figure 3.8(a). 

 

Figure 3.10: ROI created by the intersection of the grid sums and their average/median. 

Obtained from data of Figure 3.8(a). 
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Figure 3.11: ROI created by the intersection of the grid sums and their average/median. 

Obtained from data of Figure 3.8(b). 

 

Figure 3.12: ROI created by the intersection of the grid sums and their average/median. 

Obtained from data of Figure 3.8(c). 
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From Figure 3.10, both hypothesis of using the median and the average of the sums, 

seem effective, having the average the advantage of being able to remove the shadows. 

In Figure 3.11 both lines have a very similar resulting zone. However, the object’s edge 

could not be detected by the average line by following the rules set previously. Figure 

3.12 seems to have the same issue, now for both the median and the average. Thus, a 

rule of joining multiple zones should be added to correct this. 

To avoid having a lot of limits to deal with, due to joining multiple regions of interest, 

only the ones that contribute with more than a certain number of events, , should be 

joined. This also has the purpose of preventing noise to accidentally create a zone. At 

the end of the algorithm, the remaining zones are joined into a single continuous zone, 

as detailed in Algorithm 3.  

 

Algorithm 3 Creation of Region of Interest with multiple zones, using a threshold. 

Exemplified for the vertical limits of the ROI. The horizontal limits are obtained similarly. 

 

1: Sum the values of each column of the grid 

2: Find the average of the sums  

3: Define threshold  

4:  

5: for each column of the grid 

6: Build an array with the sum value of the current and previous two columns 

7: if all values in the array are greater than  then 

8: Save starting column of the cluster temporarily 

9: elseif all values in the array are less than  then 

10: Save ending column of the cluster temporarily 

11: if size of cluster is bigger than threshold  then 

12: Save both start and end of cluster permanently 

13: end 

14: end 

15: end 

16:  

17: Use the first column of the earliest cluster and the last column of the last cluster to 

define the ROI 
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The two hypotheses, average and median, are compared again to decide which is the 

better limiter, now considering the rule of joining multiple zones, Figure 3.13. The values 

of =50 and =100 have been tested as the minimum number of events to entitle as a 

zone. 

Original 

   

Average 

=50 

   

Average 

=100 

   

Median 

=50 

   

Median 

=100 

   
 (a) (b) (c) 

Figure 3.13: Results of comparing average and median NR with =50 and =100. 

Obtained from data of Figure 3.8(a), Figure 3.8(b), and Figure 3.8(c), respectively. 
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From Figure 3.13 it is possible to conclude that the best combination of parameters 

is that of a minimum number of events per zone of =50 using as limit the average. This 

is made clear by the fact that, in both cases of using the median, the shadow of the hand 

is still clearly visible, Figure 3.13(a). Even though using the median with =50 has the 

best result in Figure 3.13(c), its noise output at the other frames is not acceptable. While 

using the average with =100 has great performance in its initial frames, like Figure 

3.13(b), it loses almost all useful information in Figure 3.13(c). Thus, using the average 

as the limit with =50 is the best at preserving useful information, while managing to 

remove almost all noise. 

All the other tasks have been tested with the limit being average and =50. The 

results are shown in Appendix A. The results imply that the noise reduction algorithm 

does a good job of removing body movement noise and manages to frequently remove 

the shadows. The algorithm seems to have the most trouble with the Screw task, 

because the body movement is much more prominent. When idle, two different 

behaviours for the NR algorithm have been observed. When the image has no distinct 

zone of many events, the algorithm, as it depends on an average, only slightly crops the 

image or doesn’t crop the image at all. But when little movement occurs, the algorithm 

locates it and crops the image accordingly. 

To summarize, the first operation within the noise reduction algorithm is creating a 

grid representative of the event count at each coordinate. Within this grid, the algorithm 

sums the value of each cell belonging to the same column (corresponding to the x 

coordinate). The algorithm then checks for high consecutive sums, compares it against 

its average, and outputs the limits in which they are contained. The same procedure is 

done to the rows of the grid (correlated to the y coordinates). The last operation is that 

of preserving the original data within the limits defined by the algorithm. The core 

operations of algorithm are described in Algorithm 3. 
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3.4. Data Dimensionality Reduction 

In another attempt to improve classification results of the original frames, obtained 

by creating integrated images with 3000 Events, the previously selected DDR 

techniques, PCA and Kernel PCA, are applied to the original frames. This is done, as 

explained before, to make full use of the EC’s event 4D data and, as such theoretically 

provide better insight into the correlation of data, improving classification accuracy. 

The frames that will be altered with the DDR techniques are the frames obtained by 

creating integrated images with 3000 Events. In both cases, the high dimensional space 

will be 4D, to use the full extent of the data available, and the lower-dimensional space 

will be 2D, as the intended result of both DDR techniques is to obtain 2D frames for 

classification through the DNN. The PCA and Kernel PCA methodologies will be 

separately discussed. 

3.4.1. DDR with PCA 

As a quick recap, PCA takes a high dimensional space and defines a corresponding 

lower-dimensional space by using principal components, which correlate to the highest 

variance in the data. As the lower-dimensional space should be 2D, at most 2 Principal 

Components will be generated. 

When using PCA it is important for all the data to be normalized, for all data 

parameters to be considered equally relevant. If the data have different orders of 

magnitude, the results of PCA will be biased towards favouring the data with the highest 

order of magnitude, due to PCA’s linear nature. The range of 3 of the parameters is 

constant and, as such, known. The 𝑥 parameter is ranged between 1-240 and the 𝑦 

parameter has values between 1-180, both representative of the EC’s resolution. The 

polarity is a binary variable, only including values of either 0 or 1. The timestamp 

parameter, 𝑡𝑠, although being always limited between a minimum and maximum time 

and being ordered in a roughly continuous manner, does not have a fixed range when 

comparing different frames. 

The most straightforward way of normalizing the EC’s 4D data is to turn all the 

parameters’ ranges into the common range of 0 to 1. This way all the data parameters 

are considered equally significant when applying PCA. The polarity doesn’t have to be 

normalized as it is already within this range. However, as the polarity is a binary variable, 

the data will have a high variance in this direction, resulting in the first Principal 

Component to be heavily skewed in the polarity direction. As seen in Figure 3.14, this 

makes the frames from different tasks very similar. Thus, to represent polarity, the most 

appropriate course of action is to use colours as was done previously with both original 

and noise reduced frames. 
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(a) (b) 

Figure 3.14: Results of PCA with all parameters normalized within the range of 0-1: 

(a) Move left task; (b) Lift task. 

Using colour to represent the polarity means that PCA will only be applied to 3 of 4 

parameters of the 4D data, the 𝑥 and 𝑦 coordinates, and the timestamp. The results 

obtained using this approach, Figure 3.15, are much more visually distinct than in their 

counterparts in Figure 3.14. Even though the first principal component is almost 

coincident with the timestamp direction, now the tasks are distinguishable between 

each other and, thus, appropriate for classification purposes. The images in the top row 

of Figure 3.14 show the contribution of each parameter to each principal component, 

while the images in the bottom row show the images as will be used for classification. 

  

  
(a) (b) 

Figure 3.15: Results of PCA with the 𝑥, 𝑦 and timestamp parameters normalized 

within the range of 0-1: (a) Move left task; (b) Lift task. 
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3.4.2. DDR with Kernel PCA 

Kernel PCA maps the original data points into a high-dimensional space using a kernel 

function, typically a Polynomial or Gaussian function, and then performs PCA on the 

newly created feature space. All computations are done through the kernel function in 

input space. Unlike PCA, a non-linear DDR method such as Kernel PCA works well with 

linearly inseparable data, and as such the polarity can be used as a parameter in the 

algorithm. It is still convenient to do normalization to work with parameters of similar 

orders of magnitude. For Kernel PCA’s case, the EC’s output data will be normalized by 

scaling each parameter using its standard deviation, followed by centering its data. This 

kind of normalization, when obtaining Kernel PCA frames, reduced the processing time 

from 20 seconds/frame, for normalizing to a 0-1 range, to 14 seconds/frame. 

The Kernel PCA algorithm follows 4 main steps. First, the kernel function is chosen, 

next, the centered kernel matrix is constructed, then the eigenvalue problem is solved 

and finally, the data points are represented in the desired dimension. The computational 

part will not be elaborated on. Instead, the selection of kernel function type and its 

hyperparameter will be discussed, followed by the frames used for classification. 

3.4.2.1. Gaussian Kernel Function 

Gaussian kernels are some of the most well-known kernel functions. Also known as 

Radial Basis Function (RBF) kernel, they have a generalized structure (2) which is used to 

calculate the kernel matrix 𝑘(𝑥, 𝑥′) for each pair of samples, 𝑥 and 𝑥′, 

𝑘(𝑥, 𝑥′) = exp(−𝛾‖𝑥 − 𝑥′‖2) (2) 

Where 𝛾 represents how “wide” the Gaussian function is. This means 𝛾 controls how 

the decision boundary4 is affected by the data, represented in Figure 3.16 by a solid line. 

The higher the value of 𝛾, the more “wiggling” the boundary will be [51].  

 

Figure 3.16: Decision boundaries for different values of γ. 

 

4 The hypersurface that partitions the vector space within the two different sets, one for each class. Linear 
decision surfaces within a high-dimensional feature space correspond to non/linear decision surfaces in the 
original feature space [52]. 
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Gaussian functions have a single hyperparameter, being easier to readjust for a 

specific task in comparison to a polynomial kernel which needs, at least, two 

hyperparameters. [52]. 

3.4.2.2. Hyperparameter Value 

The smaller the chosen value of 𝛾, the further away the points can be from the 

decision boundary to influence it. This leads to a relatively smooth decision boundary 

but may overlook some class outliers. For higher values of 𝛾 only the data points close 

to the decision boundary influence it. This promotes an irregular decision boundary but 

deals much better with class outliers. 

In the case of EC output data, the two different values of polarity are the two classes 

considered. From this, it is possible to deduce that a relatively high value of 𝛾 will be 

needed to effectively separate these classes, as each class of polarity is not easily 

contained within a single zone. To confirm this, the first frames resultant from Kernel 

PCA from 3 sequences of different tasks are compared against each other with three 

different values of 𝛾. The results are shown in Figure 3.17, where blue dots represent 

polarity = 1 and red dots represent polarity = 0. 

Task 1 

“Move 

Left” 

   

Task 4 

“Place” 

   

Task 7 

“Grab” 

   

 (a) 𝛾 = 1 (b) 𝛾 = 10 (c) 𝛾 = 20 

Figure 3.17: Comparison of Kernel PCA results for different values of 𝛾.  
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As can be seen in Figure 3.17 higher values of 𝛾 do, in fact, perform better in creating 

distinctive frames in comparison to lower values. The results obtained for 𝛾 = 10 and 

𝛾 = 20 are very similar. In this case, the value of 𝛾 = 10 will be selected as the preferred 

option because, by creating a smoother decision boundary, it is expected to behave 

more consistently when applying to different types of tasks. 

It is noteworthy that the results obtained within similar conditions for PCA, Figure 

3.14, were not conclusive, because of the naturally high variance of the polarity, due to 

its binary nature, and because PCA is a linear method. Kernel PCA, being a non-linear 

method, was capable of separating the two classes of polarity relatively well. 

3.5. Construction of the LRCN 

A popular approach for image classification is the usage of DNNs. While CNNs are 

applicable for image feature extraction, RNNs are used to learn temporal sequences, 

Figure 3.18. Joining these two types of DNN creates an LRCN, which is used for video 

classification. The LRCN created in this section is optimized for the dataset without any 

data modifications, i.e. without NR nor DDR. 

 
Figure 3.18: Structure of the LRCN. Adapted from [39]. 

 As such, to create the LRCN that will be used to classify the tasks included in the 

dataset, both a CNN and an RNN are needed. A CNN trained from scratch would need a 

significant amount of training data. Instead, a pre-existing CNN, fine-tuned through 

Transfer Learning, will be used. The RNN will be of the LSTM type and will be trained on 

this work’s dataset. Both Transfer Learning and the combination of the CNN with the 

LSTM to create the LRCN are accomplished using the example shown in [53] as a guide 

and will therefore not be further elaborated on. 

3.5.1. Preparation of the Input Data 

For a DNN to classify anything, all input data must be within a specific format. In this 

case, it should be the same type of input as requested by the chosen CNN. They typically 

require a square RGB image input with sizes of about 230x230 pixels. CNNs can also use 

a video as input, classifying all the frames that constitute it. 
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The ideal case, for the dataset presented in this study, would be to take the raw data 

created by the EC and, through the sole use of algorithms, directly create the correctly 

formatted video file without the need to create the images associated with the many 

frames. However, by attempting this, the CNN did not show differences in activations, 

being unable to classify. Thus, from the original EC files, all individual frames are 

converted into image files, with their respective frame changes. These image files are 

then recombined into video files with the format needed for CNN classification. This was 

done for both datasets and for all types of frames previously discussed in this work. This 

includes original frames without alterations, frames with noise reduction, frames 

obtained through PCA, and frames obtained through Kernel PCA.  

3.5.2. Partition of Training, Validation, and Testing Data 

The training data are used to train the networks, the validation data is used to 

continuously evaluate the network while it is training, and the testing data is used to 

verify the final LRCNs’ performance. The data from the main dataset will be divided into 

two partitions, training and validation data. This is a simple cross-validation technique, 

known as the holdout method. As the main dataset has a limited amount of data, the 

training portion should be large compared to the validation, to preserve as much data 

for training as possible. As such, an 85% training – 15% testing division seems suitable, 

Figure 3.19. 

 
Figure 3.19: Division of the datasets into training, validation and testing data [54]. 

When separating the data into portions, if the selection of data is done randomly, 

there is a high risk of imbalance of the class representation within both training and 

validation sets. To counter this problem, 15% of the data from each task is selected, 

rounded down to 3 sequences per task. This method also ensures that no tasks are, by 

chance, excluded from the validation set. The partition is then reused for each network 

training attempt. With this approach, instead of using the more effective approach of 

using multiple partitions and taking the average, there is a significant save in 

computational time. 

3.5.3. Selection of the CNN 

For the selection of the CNN, two well-known pre-trained networks will be 

considered, GoogLeNet [55] and ResNet50 [30], with basic properties shown in Table 

3.4.  
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Table 3.4: Main network properties of the selected CNNs5 [56]. 

 Network Depth6 Validation Accuracy 
Prediction Time relative 

to SqueezeNet 

GoogLeNet 22 67 % 2 

ResNet50 50 75% 3,5 

The objective is to strike the balance between accuracy and computational time. 

Simpler architecture is also essential as it assists in reducing overfitting, which happens 

when the model recognizes specific images instead of general patterns. Overfitting is 

most prevalent when using small datasets, such as the one used in this work. By having 

a 50 layers depth, ResNet50 is quite competent in classifying objects with high-level 

features [57]. GoogLeNet, by having less network depth and simpler architecture, is 

faster and tends to obtain good scores for a small training sample size [57].  

The most important factor is, naturally, how well the network classifies the data of 

the primitive manufacturing dataset. To test this, a default LSTM was trained using the 

activations from either CNN. The LSTM used is identical to the one in [53], only changing 

the number of hidden units to 250, as it provided good results. The LSTM is also tested 

for different quantities of BiLSTM layers. The average validation score and elapsed time 

of the LSTM, for three training runs, is shown in Figure 3.20. 

 
Figure 3.20: LSTM validation accuracy and elapsed time for GoogLeNet and ResNet50. 

Although the validation scores can all be considered acceptable, the highest scoring 

combination between CNN and LSTM layer depth will be chosen, which is GoogLeNet + 

LSTM with 2 BiLSTM layers, achieving 96% validation accuracy. 

 

5 Results obtained for ImageNet database. 
6 “The largest number of sequential convolutional or fully connected [56]. 
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3.5.4. Creation of the LSTM network 

After the selection of the CNN, to finish constructing the DNN, an LSTM has to be 

built. To accomplish this, both necessary LSTM layers and the most applicable 

hyperparameters must be selected. The general structure of the LSTM is shown in Figure 

3.21, taking into account the 2 BiLSTM layers detailed in the previous sub-section 3.5.3. 

 

 

3.5.4.1. LSTM network layers 

First off, to build an LSTM network, a layer is needed to input data to the network 

and another to output data from the network. The Input layer should match the number 

of features generated by the CNN’s output layer and the Output layer is the layer that 

will reveal the classification results. 

The most essential part of an LSTM type of RNN network is, naturally, its LSTM-

related layers. Two different kinds of LSTM layers can be used, Figure 3.22, either simple 

LSTM layers or their bidirectional variants, BiLSTM layers. Differentiating themselves 

from the original simple version, BiLSTM layers, instead of only learning forward-in-time 

dependencies between time steps, learn in both temporal directions. This way BiLSTM 

layers enable additional training by traversing the input data twice [58].  

 
(a) (b) 

Figure 3.22: The two types of LSTM layers [59]: (a) LSTM layer; (b) BiLSTM layer. 

The Dropout layer is used to reduce overfitting by dropping out a percentage of units 

from its preceding layer. For hidden layers, as is the case for the BiLSTM layer, a usual 

value is 50% dropout. The fully connected layer then, through the use of weights and 

biases, is used to predict the classes, using the Softmax layer to turn the numeric results 

from the fully connected into probabilities to determine the classification results. 

Figure 3.21: Architecture of the LSTM network. 
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3.5.4.2. Learning Rate and Number of Epochs 

The two hyperparameters that, together, most influence the LSTM’s training 

behaviour are the learning rate and the number of epochs. The learning rate controls 

how fast the network “learns”, representing how much the model is allowed to change 

at each iteration. For a high learning rate, the LSTM is more sensitive towards new 

information, which makes it unstable. For low learning rates, the network may take 

much longer to converge, needing more iterations.  

The number of epochs is the number of times the network runs through the entire 

training dataset. The more epochs used while training, the more likely the network will 

attain convergence, especially when using lower learning rates. Using too many epochs 

may, however, be adding unnecessary computational time if convergence is already 

obtained far earlier than the stipulated number of epochs. 

To study the parameters’ simultaneous impact on the LSTM training, the averaged 

validation accuracy and elapsed time results of three training runs are evaluated for a 

selection of learning rates with different number of epochs, Figure 3.23. 

 
Figure 3.23: LSTM validation accuracy and elapsed time for different combinations of learning rates (LR) 

and number of epochs. 

From analyzing the outcomes, shown in Figure 3.23, it stands out immediately that 

the learning rate that achieves the best results is that of LR = 1e-4. In general, the best 

classification results are obtained with 30 and 70 Epochs. However, for the same 

learning rate, an unexpected decline in classification accuracy occurs for 50 Epochs. For 

this reason, a more detailed analysis of the variance for each epoch’s training results is 

made for LR = 1e-4, now using ten classification models. The average classification 

accuracy achieved by the models are presented in Figure 3.24. The computational times 

obtained were approximately the same as the ones obtained for Figure 3.23. 
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Figure 3.24: Validation accuracy variance for different values of the number of epochs with LR = 1e-4. 

This graph gives a lot of insight into the effect of the epochs on the variance of training 

results of an LSTM network. The cross represents the average value of classification 

accuracy, which is approximately the same for all epoch values, ≈ 92%. A low variance 

option is more beneficial because it means the network has a more consistent 

behaviour. As a result, 50 epochs should not be chosen. Its variance, with a maximum 

value equal to 100% and minimum value of 86,7%, leads to the lower validation accuracy 

in Figure 3.23. Similarly, 30 Epochs models should also not be chosen because they 

present a higher variance than the 70 Epoch models. 

It is worth noting that there is some difference between the average results shown 

in Figure 3.23 and Figure 3.24, showing a reduction from ≈ 96% to ≈ 92% classification 

accuracy. This means there is some variability regardless of the choice made. Also, due 

to few validation data, each failed validation reduces the validation score by about 3,3 

percentage points, which causes a lot of discrepancy in the results. As a conclusion, next 

optimization attempts will be made averaging ten runs instead of three, to avoid 

irregular behaviour such as the one seen in Figure 3.23. 

3.5.4.3. Number of Hidden Units 

The BiLSTM layers have an important hyperparameter that must be defined, which is 

the number of hidden units, also called nodes, present within each one of the layers. 

With too few nodes, the layer will struggle to capture complex information. The 

presence of too many nodes, however, leads to an increase in computational time and 

a tendency to overfit the training data. To simplify this problem, the same quantity of 

hidden units will be selected for both BiLSTM layers. The results for different values of 

hidden units are compared against each other, Figure 3.25. The objective is to find the 

minimum number of hidden units needed to obtain consistently good classification 

results, without causing overfitting of the network and high computational times. 
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Figure 3.25: LSTM validation accuracy and elapsed time for different quantities of hidden units. 

From Figure 3.25 it is possible to confirm that a higher number of hidden units tends 

to improve validation accuracy at a cost of computational time. Values of 750 or more 

hidden units attained good validation accuracies, each having multiple training runs with 

100% validation accuracy. The best results were obtained for 1250 hidden units, 

although at some computational time cost. No further increase of hidden units is needed 

as classification accuracy is unlikely to improve, while run time and the risk of overfitting 

the LSTM will inevitably increase. 

3.5.4.4. Mini-Batch Size 

The last hyperparameter deemed essential to optimize is the mini-batch size. The 

mini-batch size is the number of training samples used at each iteration to update the 

network. Dividing the training data into multiple subsets has the advantage of being 

more computationally efficient than using the entire dataset each iteration, attaining 

faster convergence and using fewer data at each iteration. The mini-batch size should 

not be too small to avoid inaccurate estimations. Usually, the value of the mini-batch 

size is a number that is a power of two, like 16 or 32 [60]. The results of training with 

three different mini-batch sizes are shown in Figure 3.26. 

 
Figure 3.26: LSTM validation accuracy and elapsed time for different mini-batch size values. 
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It is quite evident in Figure 3.26 that an increase in mini-batch size significantly 

reduces computational time, without reducing the validation accuracy by much. The 

more the values approach the training dataset size, which in this case is 200, validation 

accuracy drops. For this reason, the value of 32 samples for each mini-batch is chosen. 

3.5.5. LRCN model 

The following schematic, Figure 3.27, summarizes the final composition of the LRCN 

that will be used to obtain the results. The hyperparameters chosen for the LSTM are 

compiled in Table 3.5. 

 

Figure 3.27: Complete LRCN schematic. 

Table 3.5: LSTM training hyperparameters. 

Learning Rate Number of Epochs Mini-batch Size 

0,0001 70 32 
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4. RESULTS AND DISCUSSION 

The EC data were retrieved with a Java software package made for Address-Event 

Representation called jAER [61]. All data processing was achieved using MATLAB 

software. The networks were trained and tested by using resources from the MATLAB 

Deep Learning Toolbox [62]. This toolbox also contained the models for the GoogLeNet 

network [63] and the ResNet-50 network [64]. The hardware used was a computer with 

an Nvidia GeForce RTX 2080 Ti GPU, an AMD Ryzen 9 3900X CPU and 64GB of RAM. Its 

GPU was used both for network training and testing.  

While, ideally, each type of data alteration should have its optimized LSTM, the same 

LSTM that was fitted to the original data will be reused for all LRCNs. The DNN is trained 

on its specific data type for all 10 categories and then tested with the testing dataset. 

The results are shown in Figure 4.1. Both LSTM training times and LRCN run times were 

very similar between model types, averaging around 200 seconds and 16 seconds 

respectively.  

 
Figure 4.1: Results obtained for the different frame types using the LRCN built in section 3.5. 

The LSTM networks do not provide acceptable performance for both PCA and Kernel 

PCA data, achieving 80% and 70% accuracy respectively, as their data are different in 

contrast to the original data. Better results should be expected with an LSTM optimized 

for each DDR techniques and/or a different CNN. The noise reduced frames have a good 

LSTM accuracy, as their general data structure is similar to the original data.  

The testing accuracy obtained for all the model types is significantly lower than their 

LSTM counterparts. The best performing model type is the model that implemented 

noise reduction. Removing non-essential sections of each frame from the original data 

improves the network’s accuracy by a significant 17 percentage points.  
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Both the PCA and Kernel PCA networks performed worse than the original network, 

losing accuracy of 20 and 10 percentage points respectively. Kernel PCA managed to 

perform better than PCA, presumably due to its capability of dealing with non-linear 

correlations. For a better understanding of the results of the LRCN testing accuracy, the 

resulting confusion matrices of each model type are examined, Figure 4.2. 

  
(a) Original Data (b) Noise reduction 

  
(c) PCA (d) Kernel PCA 

Figure 4.2: Confusion matrices obtained for each LRCN model. 

Immediately the noise reduction model, Figure 4.2(b), stands out as being the most 

consistent by managing to correctly classify all classes multiple times, with Task 7 being 

the exception. Wrong guesses of classification are mostly unbiased and distributed 

between the classes. The original data model, considering its LSTM validation accuracy 

of 100%, should have the capability to recognize all classes. However, as seen in Figure 

4.2(a), not a single correct prediction is made for Task 8 and Task 9. Also, a high tendency 

to predict with either Tasks 2, 3 or 4 can be observed. 

The worst performing model is the PCA model, Figure 4.2(c), which only predicts 

within classes 2 to 6, disregarding 50% of the classes. This poor prediction behaviour 

may mean that the frames are too similar, which makes the model’s predictions default 

to the classes with most events, Tasks 2 to 6, as they have more data. A slightly better 

but similar behaviour can be seen in Figure 4.2(d), for Kernel PCA. The predictions still 

occur mostly on Tasks 2 to 6, but some predictions start to occur outside this range. 
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5. CONCLUSIONS AND FUTURE WORK 

The purpose of this study was to investigate the effects of data manipulation on the 

speed and accuracy of EC data classification. The best performing LRCN model has a 

testing accuracy of 63,3%, achieved through the use of noise reduction. The noise 

reduction algorithm was proven to be effective in removing most noise, as is proved by 

the results presented in Appendix A. This improved the network’s accuracy by a 

significant 17 percentage points in comparison to the model created for the original 

data. This method shows the most potential for future studies. The main suggestion is 

to use the trajectory of the centre of each frame’s ROI to predict the gesture class by 

purely analytical means. This way a DNN would not be needed and classification could 

be faster and more accurate.  

Both PCA and Kernel PCA had an adverse effect on classification accuracy, lowering it 

20 and 10 percentage points respectively. Most likely, the discrepancy is caused by the 

loss of information when transforming the EC data through a DDR method. This change 

also alters the data’s nature, which might make it incompatible with an object-

recognition CNN such as GoogLeNet. As such, the results from PCA and from Kernel PCA 

should improve by using an LSTM without a CNN. However, Kernel PCA is not 

recommended for continuous gesture recognition, as its eigenvalue function takes too 

long to process. Another problem might have stemmed from the small number of events 

that compose each frame. As the timestamp is relevant for the DDR, having a very 

limited time range limits the DDRs applicability.  

The most likely cause of the general subpar results is the small training sample size. 

Considering the very high number of 10 task classes, the training dataset should have 

been much more substantial to provide enough data for each class. For future work the 

main suggestion is, therefore, to use a larger and more diverse dataset that includes 

more users and many more sequence recordings. To the tasks proposed in this study 

should also be added a “non-task” or ME class, which is essential for sequences of tasks 

to be tested. These two aspects are fundamental to validate if the proposed system 

could be used for continuous real-life gesture recognition. 

To test the issues with the LRCN classification accuracies, a simple single-layer 

network should be used to evaluate if any of the chosen parameters were skewing the 

results. Also, it is recommended to use other approaches for measuring computational 

complexity. Rather than measuring computational time through elapsed time, it is 

advised to, for example, count floating-point operations per second (FLOPS). 
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APPENDIX A – NR ALGORITHM RESULTS 

The results from the NR algorithm for each task of the dataset and the idle position 

are presented as following. The frames were obtained for 3000 Events/frame, using the 

average as the limit and a minimum number of events per zone of =50. The top image 

of each task corresponds to the left hand and the bottom image to the right hand. 

 Original Frame Noise Reduced Frame 

Task 1 

Move 

Left 

  

  

Task 2 

Move 

Right 

  

  
 



 

 

   

 

 

54   

 

 

 

 

 Original Frame Noise Reduced Frame 

Task 3 

Lift 

  

  

Task 4 

Place 
  

  
 

 

 



 

 

  Appendix A 

 

 

  55 

 

 

 

 

 Original Frame Noise Reduced Frame 

Task 5 

Approach 
  

  

Task 6 

Retreat 
  

  
 

 

 



 

 

   

 

 

56   

 

 

 

 

 Original Frame Noise Reduced Frame 

Task 7 

Grab 

  

  

Task 8 

Release 
  

  
 

 

 



 

 

  Appendix A 

 

 

  57 

 

 

 

 

 Original Frame Noise Reduced Frame 

Task 9 

Screw 

  

  

Task 10 

Idle 
  

  
 


