

Laura Sofia Ferreira Duarte

HUMAN BEHAVIOUR SPOTTING FROM EVENT

CAMERA DATA: AN APPROACH FOR

COLLABORATIVE MANUFACTURING

Dissertação no âmbito do Mestrado Integrado em Engenharia Mecânica, no ramo

de produção e projeto orientada pelo Professor Doutor Pedro Mariano Simões

Neto e apresentada ao Departamento de Engenharia Mecânica da Universidade de

Coimbra.

October of 2020

Human behaviour spotting from event camera data:

an approach for collaborative manufacturing

Submitted in Partial Fulfilment of the Requirements for the Degree of Master in

Mechanical Engineering in the speciality of Production and Project

Reconhecimento de comportamento humano a

partir de dados de camara de eventos: uma

abordagem de manufatura colaborativa

Author

Laura Sofia Ferreira Duarte

Advisor

Pedro Mariano Simões Neto

Jury

President
Professor Doutor Samuel de Oliveira Moniz

Professor Auxiliar da Universidade de Coimbra

Vowels

Professor Doutor Mohammad Safeea

Professor Convidado da Universidade de Coimbra

Professor Doutor Nuno Alberto Marques Mendes

Professor Auxiliar da Universidade Nova de Lisboa

Advisor
Professor Doutor Pedro Mariano Simões Neto

Professor Auxiliar da Universidade de Coimbra

Coimbra, October of 2020

Any sufficiently advanced technology is indistinguishable from magic.

Arthur C. Clarke, in Profiles of the Future, 1973

 Acknowledgements

 i

ACKNOWLEDGEMENTS

 I want to express my gratitude towards all people who, either directly or indirectly,

helped make this study come to fruition.

I want to thank my advisor, Dr. Pedro Neto, for accepting me, keeping me motivated,

always being reachable and offering great suggestions. Also, I want to acknowledge Dr.

Nuno Mendes for his practical knowledge and recommendations.

I want to express gratitude towards my parents and my brother for always being

present whenever I needed emotional or work-related support. At last but not least, I

also like to thank all my friends who reminded me to unwind and have fun.

Thank you,

Laura Duarte

ii

 Abstract

 iii

ABSTRACT

Continuous and real-time action/gesture recognition is one of the main issues of

collaborative robots and their successful application in different domains, namely in

manufacturing. Nevertheless, the reliable and real-time recognition of actions/gestures

in unstructured environments is still difficult to achieve. When it comes to

manufacturing, the recognition of human actions related to basic manufacturing tasks

(grab, lift, screw, etc.) is still a challenge. This study proposes to model and analyse

events data aiming to recognize human actions related to basic manufacturing tasks.

Noise reduction techniques, namely cropping, will be applied to data captured from an

event camera (EC), eliminating most of the noise originated by shadows and body

motion. The EC data grid is scanned to identify the outlines that define the region of

interest (ROI). The number of captured events per frame is optimized to properly

capture both slow and fast human motion. Linear and non-linear Data Dimensionality

Reduction (DDR) techniques such as Principal Component Analysis (PCA) and kernel PCA

are applied. The classification of tasks is achieved recurring to Long-term Recurrent

Convolutional Networks (LRCNs) which combine the classification of spatial features

using Convolutional Neural Networks (CNNs) and the temporal features using Long

Short-Term Memory networks (LSTMs). Experimental tests were conducted using the

new ECmanufacturing20 dataset composed by EC data representing 10 different classes

of basic assembly manufacturing tasks. The classification models show an accuracy of

46,7% when using the original data, 63,3% using noise reduction, 26,7% when using PCA

and 36,7% applying kernel PCA to data. The application of noise reduction techniques

showed a positive effect on classification accuracy, increasing it by about 17 percentage

points.

Keywords Data Dimensionality Reduction, Deep Neural Networks,

Collaborative Manufacturing, Noise Reduction, Event

Camera.

iv

 Resumo

 v

RESUMO

O reconhecimento de ações/gestos em contínuo e em tempo-real é um dos principais

problemas enfrentados pela robótica colaborativa, afetando o sucesso da sua aplicação

em vários domínios, nomeadamente na indústria de manufatura. O reconhecimento

fiável de ações/gestos num meio não estruturado e em tempo-real continua a ser difícil

de alcançar. Quanto à manufatura, o reconhecimento de ações humanas relacionadas

com tarefas básicas de manufatura (como agarrar, levantar, aparafusar, etc.) continua a

ser um grande desafio. Este estudo propõe modelar e analisar dados de eventos com o

objetivo de reconhecer ações humanas relacionadas com tarefas básicas de manufatura.

Técnicas de redução de ruído, nomeadamente cropping, são aplicadas a dados

capturados por uma câmara de eventos (EC), eliminando a maioria do ruído originado

por sombras e movimento do corpo. A grelha de dados da câmara de eventos é

examinada para identificar os contornos que definem a região de interesse (ROI). O

número de eventos capturados por frame é otimizado para capturar devidamente tanto

os movimentos lentos como os movimentos rápidos dos humanos. Técnicas de redução

de dimensionalidade de dados (DDR) lineares e não lineares como Principal Component

Analysis (PCA) e kernel PCA são utilizadas. A classificação de tarefas é concretizada

aplicando Long-term Recurrent Convolutional Networks (LRCNs) que combinam a

classificação de características espaciais usando Convolutional Neural Networks (CNNs)

e características temporais usando Long Short-Term Memory networks (LSTMs). Testes

experimentais foram realizados usando o novo ECmanufacturing20 dataset constituído

por dados da câmara de eventos que representam 10 classes diferentes de tarefas de

montagem básicas utilizadas em manufatura. Os modelos de classificação demonstram

uma fiabilidade de 46,7% quando se usou os dados originais, 63,3% quando a redução

de ruído foi usada, 26,7% quando se usou PCA e 36,7% quando se aplicou kernel PCA

aos dados. A aplicação de técnicas de redução de ruído teve um efeito positivo na

fiabilidade da classificação, aumentando-a cerca de 17 pontos percentuais.

Palavras-chave Redução de Dimensionalidade de Dados, Redes

Neurais Profundas, Manufatura Colaborativa, Redução

de Ruído, Câmara de Eventos.

vi

 Contents

 vii

Contents

Acknowledgements ... i

Abstract .. iii

Resumo .. v

List of Figures ... ix

List of Tables .. xiii

List of Acronyms/Abbreviations ... xv

1. Introduction .. 1

2. State of the Art ... 3

2.1. Gesture-based HRI .. 3

2.1.1. Main Concepts ... 3

2.1.2. Hand Gestures ... 4

2.1.3. Applications ... 5

2.2. Event Camera .. 6

2.2.1. Working Principles ... 6

2.2.2. Advantages .. 7

2.2.3. Processing EC data ... 9

2.3. Classification ... 10

2.3.1. Image Classification ... 10

2.3.2. Deep Neural Network Architecture ... 11

2.4. Data Dimensionality Reduction .. 14

2.4.1. Core concepts .. 14

2.4.2. Types of DDR.. 15

2.4.3. Comparison and applicability of DDR .. 17

viii

3. Methodology .. 19

3.1. Dataset for Primitive Manufacturing Tasks .. 19

3.1.1. Setup for Capturing EC Data .. 19

3.1.2. Primitive tasks ... 20

3.2. Pre-processing of data .. 22

3.3. Noise Reduction .. 23

 Identification of Noise Sources ... 23

 Preparation and Interpretation of Data .. 24

3.3.3. Creation of the Region of Interest .. 26

3.4. Data Dimensionality Reduction .. 33

3.4.1. DDR with PCA .. 33

3.4.2. DDR with Kernel PCA ... 35

3.5. Construction of the LRCN ... 37

3.5.1. Preparation of the Input Data ... 37

3.5.2. Partition of Training, Validation, and Testing Data 38

3.5.3. Selection of the CNN ... 38

3.5.4. Creation of the LSTM network .. 40

3.5.5. LRCN model ... 44

4. Results and Discussion ... 45

5. Conclusions and Future Work .. 47

6. References .. 49

Appendix A – NR Algorithm Results ... 53

 List of Figures

 ix

LIST OF FIGURES

Figure 1.1: Schematic of the proposed system for gesture classification. 2

Figure 2.1. Gesture-based HRI with context conveyed through the usage of a drill [2]. 3

Figure 2.2. Examples of SGs and DGs. Adapted from [4]. ... 4

Figure 2.3. Structure of a Dynamic Gesture. ... 4

Figure 2.4. Real-life applications of gestures: (a) Command a robot to grab a cereal box

[8]; (b) Recognize the pouring of cereal [10]. ... 5

Figure 2.5. DVS Characteristics: (a) Simplified pixel schematic. Adapted from [13]; (b)

Principle of operation [14]. ... 6

Figure 2.6. Differences between CMOS sensor and EC outputs of a rotating disk [16]: (a)

Slow Rotation; (b) Fast Rotation; (c) No Rotation. .. 7

Figure 2.7. EC features: (a) High Dynamic Range. Adapted from [17]; (b) Low Latency [19].

 ... 8

Figure 2.8. A quadrotor, equipped with a CMOS sensor and a DVS, performing a flip [16]:

(a) CMOS output; (b) DVS Output. .. 9

Figure 2.9. Classification of an image of a cat [22]. ... 10

Figure 2.10. Constitution of a Deep Neural Network [25]. ... 11

Figure 2.11. Common types of neural network layers: (a) Fully connected layer. Adapted

from [26]; (b) Convolutional layer; (c) Recurrent layer [27]. 11

Figure 2.12. Typical structure of a Convolutional Neural Network [29]. 12

Figure 2.13. (a) The vanishing gradient problem for RNNs [32]; (b) LSTM node architecture

[29]. ... 13

Figure 2.14. Dimensionality reduction from high-dimensional data to low-dimensional

data. Adapted from [40]. ... 14

Figure 2.15: PCA transformation: Projection of 3D data onto a 2D component space [42].

 ... 15

Figure 2.16: A Linear principal component (left) and Principal Curve (right). Both minimize

the sum of squared deviations for all data points [44]. .. 16

Figure 2.17: Kernel PCA technique, applied to a 2D input space, using a Polynomial kernel

function [47]. ... 17

Figure 3.1. Recording gesture data with an EC: (a) Physical Setup; (b) Sensor View.......... 19

file:///C:/Users/laura/Desktop/Thesis_v7.docx%23_Toc52895149

x

Figure 3.2. Objects used in the creation of the dataset: (a) A cube; (b) A cylinder; (c) A

cuboid with an inserted screw and the designated screwdriver. 20

Figure 3.3: Representation of all tasks and their respective number used in the

ECmanufacturing20 dataset. ... 21

Figure 3.4. The transition between “Up” and “Left” task in the sequence with 3000

Events/frame. .. 22

Figure 3.5. Noise source types identified within a Lift task: (a) Idle; (b) Shadows; (c) Body

Movement. .. 23

Figure 3.6. Frame obtained from a Lift task: (a) Original frame; (b) Desired cropping result.

 ... 24

Figure 3.7. Grid with the number of event occurrences at each cell coordinate with

magnified section. Obtained from applying Algorithm 1 to the data of Figure

3.6(a). .. 25

Figure 3.8: Selected original frames from the Approach task. ... 26

Figure 3.9: Desired ROI, contained within black outlines, compared to the grid sums.

Obtained from data of Figure 3.8(a). .. 28

Figure 3.10: ROI created by the intersection of the grid sums and their average/median.

Obtained from data of Figure 3.8(a). .. 28

Figure 3.11: ROI created by the intersection of the grid sums and their average/median.

Obtained from data of Figure 3.8(b). .. 29

Figure 3.12: ROI created by the intersection of the grid sums and their average/median.

Obtained from data of Figure 3.8(c). .. 29

Figure 3.13: Results of comparing average and median NR with =50 and =100.

Obtained from data of Figure 3.8(a), Figure 3.8(b), and Figure 3.8(c), respectively.

 ... 31

Figure 3.14: Results of PCA with all parameters normalized within the range of 0-1: (a)

Move left task; (b) Lift task. .. 34

Figure 3.15: Results of PCA with the 𝑥, 𝑦 and timestamp parameters normalized within

the range of 0-1: (a) Move left task; (b) Lift task. ... 34

Figure 3.16: Decision boundaries for different values of γ. .. 35

Figure 3.17: Comparison of Kernel PCA results for different values of 𝛾. 36

Figure 3.18: Structure of the LRCN. Adapted from [39].. 37

Figure 3.19: Division of the datasets into training, validation and testing data [54]. 38

Figure 3.20: LSTM validation accuracy and elapsed time for GoogLeNet and ResNet50. .. 39

file:///C:/Users/laura/Desktop/Thesis_v7.docx%23_Toc52895173
file:///C:/Users/laura/Desktop/Thesis_v7.docx%23_Toc52895173
file:///C:/Users/laura/Desktop/Thesis_v7.docx%23_Toc52895173

 List of Figures

 xi

Figure 3.21: Architecture of the LSTM network. ... 40

Figure 3.22: The two types of LSTM layers [59]: (a) LSTM layer; (b) BiLSTM layer. 40

Figure 3.23: LSTM validation accuracy and elapsed time for different combinations of

learning rates (LR) and number of epochs. ... 41

Figure 3.24: Validation accuracy variance for different values of the number of epochs

with LR = 1e-4. ... 42

Figure 3.25: LSTM validation accuracy and elapsed time for different quantities of hidden

units. .. 43

Figure 3.26: LSTM validation accuracy and elapsed time for different mini-batch size

values. .. 43

Figure 3.27: Complete LRCN schematic. ... 44

Figure 4.1: Results obtained for the different frame types using the LRCN built in section

3.5. ... 45

Figure 4.2: Confusion matrices obtained for each LRCN model. .. 46

file:///C:/Users/laura/Desktop/Thesis_v7.docx%23_Toc52895187

xii

 List of Tables

 xiii

LIST OF TABLES

Table 3.1: DAVIS 240C: DVS’s Specifications ... 19

Table 3.2: Average frames/second values obtained for different events/frame values. ... 22

Table 3.3: Weighted decision matrix to compare performance between Events/Frame

values. .. 23

Table 3.4: Main network properties of the selected CNNs [56]. .. 39

Table 3.5: LSTM training hyperparameters. .. 44

xiv

 List of Acronyms/Abbreviations

 xv

LIST OF ACRONYMS/ABBREVIATIONS

CNN – Convolutional Neural Network

DDR – Data Dimensionality Reduction

DNN – Deep Neural Network

EC – Event Camera

HRI – Human-Robot Interaction

LRCN – Long-term Recurrent Convolutional Network

LSTM – Long-Short Term Memory

NLPCA – Non-Linear Principal Component Analysis

NR – Noise Reduction

PCA – Principal Component Analysis

RNN – Recurrent Neural Network

ROI – Region of Interest

xvi

 Introduction

 1

1. INTRODUCTION

Over the years, robotics has been inspired by biological systems, both at the level of

mechanisms, sensory systems, and reasoning. Visual sense allows humans to capture

information about objects, the space that surrounds them, distances, among other

information. With this in mind, the robotics community has been putting a lot of effort

into developing reliable vision systems through which robots can perceive the real

world. There has been given special attention to improving computer vision sensing,

mainly through the development of different sensors and better object/action

recognition algorithms. Reliable vision sensing is essential as it allows the robot to

recognize humans and objects, providing it with the ability to interact with them.

In robotics, vision sensing has been used in the recognition of objects, human actions,

and behaviours, which are then applied in autonomous robots, for example,

autonomous driving. It is also used for Human-Robot Interaction (HRI) which is

becoming an increasingly relevant application, as seen in collaborative environments.

This will be the focus of this work.

Until recently, robots were only used for predictable and repeatable processes,

working automatically or semi-automatically. Now, the focus shifted to a more flexible

approach, which enhances the interaction between robots and humans through a co-

working partnership. This has the advantage of joining the coordination and adaptability

of humans with the robot’s accuracy and ease of execution of repeatable tasks. Thus,

there is a need to establish a system that allows for natural and intuitive HRIs. Human

actions and gestures are a common type of interface, as they are intuitive to use and

allows for a wide range of commands to interact with humans. To be fully operable, it

needs a way to obtain real-world gesture data and recognize the gestures being made.

The data needed are usually acquired by using one of the most prevalent vision

sensors, frame-based cameras. The two main types are the charge-coupled device (CCD)

and the complementary metal-oxide semiconductor sensor (CMOS sensor), being the

CMOS more commonly used. Although this type of sensor has been proven viable, more

suitable types of sensors are available, like wearables and Event Cameras (ECs).

One of the main difficulties associated with action/gesture-based HRI is the

continuous recognition, requiring real-time recognition of human behaviour. Thus, the

system must be able to recognize the actions/gestures quickly and reliably. Another

challenge is the environment. The gesture may have a busy background space which

leads to capturing mostly unnecessary information and making its class difficult to

identify. Lighting conditions and fast-moving objects also provide additional difficulty in

recognition.

2

Lastly, there is, also, interest in reducing the amount of data that needs to be

processed to recognize a certain action/gesture, to reduce overall system latency. Even

when there is a low data rate, there is still a need to reduce the data as much as possible

to allow for a quick feedback loop between the human and the robot.

ECs are an emerging technology that presents great potential for HRI purposes. The

main advantages of the EC are its great adaptability to lighting conditions and high-

speed movements, its disregard for static backgrounds, and its relative low latency and

high temporal resolution.

A Noise Reduction (NR) algorithm is used to reduce unnecessary noise existent within

the EC data. The use of Data Dimensionality Reduction (DDR) is aimed at providing a

low-dimensional representation of the data generated by an EC, to reduce the time and

resources needed to process a gesture. Both a linear DDR, PCA, and a non-linear DDR,

Kernel PCA, are tested.

For image classification, a Deep Neural Network (DNN) is used. This DNN is comprised

of a CNN, for feature extraction, and an LSTM, to learn temporal sequences. Both the

original, NR, and DDR classification results are compared against each other to verify

which of the methods performs better in classification. A simplified schematic of the

proposed approach is shown in Figure 1.1.

Figure 1.1: Schematic of the proposed system for gesture classification.

 State of the Art

 3

2. STATE OF THE ART

This section presents a brief analysis of the current state of knowledge about the

topics relevant to this work.

2.1. Gesture-based HRI

2.1.1. Main Concepts

A gesture is a form of non-verbal communication in which specific messages are

communicated through the movement of hands, face, or other parts of the body.

Gestures are an integral part of all collaborative assembly processes. While most

frequently used to enhance speech-based communication, they can also be used to

completely replace some spoken commands [1]. A gesture-based HRI system should

operate solely on gestures, without the need for complementary speech recognition.

A gesture-based HRI system grants the user a way to communicate to the robot how

to operate, while also providing additional information on where the action should take

place in the physical world, e.g. by pointing. Additional context can be given by using a

specific tool, as it is the case in Figure 2.1. The robot first detects the tool in the user’s

hand and picks up the associated part, Figure 2.1(a). The robot then identifies the

location of the tool, adapting its position for the user to be in an ergonomic position,

Figure 2.1(b).

(a) (b)

Figure 2.1. Gesture-based HRI with context conveyed through the usage of a drill [2].

Communication through gestures is innate, as it is used in daily human-human

interactions. The user, by knowing intuitively how to interact with the robot, has little

to learn about the HRI interface. This makes the robot accessible to use, which in turn

allows the user to better focus on the task itself [3].

4

2.1.2. Hand Gestures

Hand gestures are at the core of gesture-based HRI. They can condense a lot of

information into a single hand motion or position. Action and location are conveyed

through the hand’s shape, movement and position. There are two main types of

gestures, Static Gestures (SGs) and Dynamic Gestures (DGs). The SGs convey messages

with a specific static hand position while DGs express their messages through the hand’s

movement, as shown in Figure 2.2.

Figure 2.2. Examples of SGs and DGs. Adapted from [4].

Dynamic gestures usually consist of 3 phases, as shown in Figure 2.3: preparation,

stroke, and retraction [5]. Starting at a resting position, the user moves their hand into

position, executes the intended gesture, and finally returns it to resting position. In the

case of a sequence of gestures, the preparation for the next gesture will be made instead

of retraction. It is essential to pause before and after the gesture for it to be more easily

recognized. This is usually done by assuming a resting position.

Figure 2.3. Structure of a Dynamic Gesture.

In the gesture phase, the actual gesture is executed with the intent of conveying a

specific meaning. In the preparation and retraction phases, while hand movement

occurs, no communication is implied. This is called Movement Epenthesis (ME), which

involves a change in hand shape and movement without meaning. There are many ways

of dealing with ME [6] but, in this work, only the gesture phase of the DGs will be studied.

A library of gestures is a collection of predefined gestures, either SGs, DGs, or both.

The gesture library must be selected with caution, as the gestures need to be

distinguishable from one another. Although a lot of different gestures can be made, only

some can be consistently recognized by robots and humans alike [1]. All hand gestures

that constitute a gesture library should be easy to understand and replicate for users

without knowledge of sign language. The most relevant gestures for HRI are of the

referencing type, such as “This one!” and “From here to here!” or terminating gestures

like “Stop” and “No” [1].

 State of the Art

 5

2.1.3. Applications

Gesture-based HRI systems can generally be one of two types: Wearable or Vision-

based. Wearable systems are characterized by relying on wearable equipment, usually

hand-worn, which tracks the hand’s movement. Vision-based systems perceive gestures

using a vision-based sensor.

Wearables can be used for the recognition of both SGs and DGs. They have exhibited

the ability to command, through gestures, diverse types of robots such as a manipulator

arm, a ground robot, and a robotic hand [4][7][8], Figure 2.4(a). Wearable technology

has also been used to perform demonstrations of gestures to teach a humanoid robot

to reproduce such gestures with a smooth and human-like feel to it [9].

(a) (b)

Figure 2.4. Real-life applications of gestures: (a) Command a robot to grab a cereal box [8];

(b) Recognize the pouring of cereal [10].

Typical Vision-based systems use frame-based cameras to identify both SGs and DGs.

They have the advantage of, in addition to the gesture itself, being able to discern the

objects which the user is interacting with. It has been used, for example, on continuous

gesture recognition for aircraft handling [3] and recognition of bimanual action

sequences [10] such as cooking, disassembling a hard drive, and preparing breakfast

cereals, Figure 2.4(b).

Although both gesture recognition approaches share characteristics [11], wearables

are susceptible to slippage issues [4] and need worn equipment, which is an

inconvenience to the operator. Typical frame-based Vision-based systems, meanwhile,

have issues in recognizing gestures from all directions [11], due to possible occlusions,

and in dealing with background noise. Also, the vision-based solutions require large

amounts of data for the recognition of a simple pattern, demanding high-performance

processors. As such, there is a need for a different kind of sensing technology to

empower gesture-based HRI that does not suffer from these drawbacks, like the Event

Camera.

6

2.2. Event Camera

2.2.1. Working Principles

Event-based computation is characterized by its sparse asynchronous events. It is

used by biological systems, like our brain and eyes, to guarantee an efficient real-time

performance [12]. Research into new types of artificial circuits, inspired by these

biological systems, resulted in an event-based sensor named Event Camera (EC).

An EC, such as the Dynamic Vision Sensor (DVS), responds to changes in brightness

(log intensity) of the captured scene through its distinctive pixel architecture, Figure

2.5(a). The log intensity of each pixel is continuously compared to an “ON” and “OFF”

threshold which, when exceeded, generates an asynchronous event, Figure 2.5(b).

(a) (b)

Figure 2.5. DVS Characteristics: (a) Simplified pixel schematic. Adapted from [13];

(b) Principle of operation [14].

This event contains information about the pixel coordinates, 𝑥 and 𝑦, the timestamp

of the event, 𝑡𝑠, and the sign of the occurred brightness change, also known as polarity,

𝑝𝑜𝑙. Each event is usually expressed as a 1x4 array such as in (1), where the index 𝑖

represents the unique number of the event.

𝐸𝑣𝑖 = (𝑥, 𝑦, 𝑝𝑜𝑙, 𝑡𝑠) (1)

To transmit this information, while preserving the low latency of the EC’s

asynchronous output, the Address-Event Representation (AER) protocol is used. It

enables the asynchronous communication of events by relaying the address of the pixel

that sent the event [15].

 State of the Art

 7

2.2.2. Advantages

The EC has many features that make them better sensors, in comparison to frame-

based cameras, to empower numerous robotics and artificial intelligence applications,

Figure 2.6. The most relevant are discussed in the following section.

 (a) (b) (c)

Figure 2.6. Differences between CMOS sensor and EC outputs of a rotating disk [16]:

(a) Slow Rotation; (b) Fast Rotation; (c) No Rotation.

2.2.2.1. Low data rate

Considering the camera is in a fixed position, a frame-based camera captures all the

information contained within a given frame. An EC, only captures the movement present

in the scene, ignoring the background information, as shown in Figure 2.6(a). This is

useful for gesture detection, as it reduces data size and facilitates motion tracking.

The data rate of a sensor, usually expressed in kB/s or MB/s, is the rate at which the

sensor’s data are transmitted per second. Even though the EC has a high acquisition rate,

Figure 2.6(b), each event only accounts for about 2 bytes on average, making the data

rate of ECs typically orders of magnitude lower than that of a frame-based camera

[14],[15]. In a static scene, as there is no change in the environment, ECs will not capture

any data at all, as seen in Figure 2.6(c). This shows that the data rate of ECs scales

dynamically with actual demand [12].

The low data rate of the EC leads to the typical low power consumption of about

30 𝑚𝑊 [14],[17], due to subsequent low data processing. While the amount of power

consumption is not usually a concern in a fixed setup, it is crucial when employed on

mobile devices such as drones. By being battery-powered, these have a limited amount

of energy available, benefiting from low power expenses.

8

2.2.2.2. High Dynamic Range

Dynamic range, in the context of vision sensors, describes the range of brightness

values the sensor can detect. A high dynamic range allows for better performance in

unsupervised environments with inconsistent and/or high contrast lighting conditions,

as in Figure 2.7(a). It also enables indoor and outdoor operation, without the need to

change any parameters [16].

The high dynamic range of an EC is, on average, of about 120 dB. Aside from certain

frame-based cameras that are designed for high dynamic range purposes, like [18], they

usually have a lower dynamic range of about 60 dB. These specialized cameras do not,

however, have the other key advantages associated with ECs.

(a) (b)

Figure 2.7. EC features: (a) High Dynamic Range. Adapted from [17]; (b) Low Latency [19].

2.2.2.3. Low Latency and High temporal resolution

Latency, also known as delay, is the time interval occurring between the sensor’s

detection of scene change and the ensuing response to that change. In ECs this delay is

very small, as seen in Figure 2.7(b), generally lasting less than 100 𝜇𝑠 [14], [17]. This

makes them ideal for real-time applications like the detection of gestures in gesture-

based HRI systems. These systems, to be considered responsive, should manage to give

a reply within 100−200 ms [20]. Low latencies promote high temporal resolutions. By

lowering the delay between the stimuli and the reply, the sensor can record data at a

much faster pace. This enables high data acquisition rates of about 1 million

events/second [14].

In frame-based architectures, frames are outputted at a consistent time interval,

measured in frames/second. ECs, as data rate scales dynamically with its demand, have

small but variable time intervals between retrieved events, as seen in Figure 2.7(b).

When fast movements occur, frame-based cameras tend to present high motion blur in

its output frames which limits the camera’s ability to portray the motion. A DVS,

however, manages to detect fast movements accurately due to its high temporal

resolution. This difference is made evident in Figure 2.8.

 State of the Art

 9

 (a) (b)

Figure 2.8. A quadrotor, equipped with a CMOS sensor and a DVS, performing a flip [16]:

(a) CMOS output; (b) DVS Output.

2.2.3. Processing EC data

The EC is a vision-based movement sensor mostly used for motion tracking purposes.

As the events are asynchronously generated by the EC, practical ways of processing this

kind of data must be developed.

The simplest method is that of accumulating events over a fixed interval of time into

a frame, called an integrated image [16]. Owing to this, already developed frame-based

tracking and recognition algorithms can be used. It does, however, limit some of the EC’s

capabilities, like its low latency and high temporal resolution. Accumulating events is a

solution fit for tracking movements that contain one or multiple complex shapes to be

tracked. It has been successfully applied to the acquisition of traffic data [21].

Another method relies on an integrated image followed by continuously updating the

image as soon as new events arrive. While more complex in its implementation, needing

dedicated techniques like the Hough Transform [13],[16], it enables extremely low

latencies needed to track high-speed movements. This approach is generally used to

track simple shapes. This solution is mostly used in high-speed robotics, like quadrotors,

to be able to track its rotation during a flip [19],[16]. This approach has also been used

to successfully control an actuated table to balance a pencil [13].

Although continuously updating the image would provide low latency, it would be

difficult to use it for gesture tracking. This is in part due to the inconsistency of hand

shape, derived from different users or the angle of the hand while facing the EC. It also

has the big disadvantage of not being suitable for object recognition.

The discretization of the continuous output of ECs into integrated images, although

limiting temporal resolution, makes it easier to comprehend and process the obtained

data. This approach not only allows better tracking of complex movements, but it is also

the most favourable for enabling gesture recognition.

10

2.3. Classification

2.3.1. Image Classification

Classification is the process of categorizing a given set of input data into classes, also

called labels or categories. This is done through algorithms known as classifiers, which

classify the data into the most appropriate category. The classifiers must be trained with

pre-labelled training data to determine which input variables are related to which

output classes. Image classification is the process that classifies an image with a label

according to its visual content. While for humans it is easy to classify Figure 2.9 as a cat,

with computer vision this is more challenging, as this classification has to be made by

processing arrays of numeric values.

Figure 2.9. Classification of an image of a cat [22].

As objects are often in different orientations then those in the training data, no image

will have a 100% resemblance. Image classification predicts the label that most closely

correlates to the input data, Figure 2.9. This way, with enough training data, the

algorithm can reliably label objects in new positions and orientations. A confusion matrix

is often used to visualize the accuracy of predicted classes by comparing them to the

correct class. It is an important verification tool to see if any specific types of classes are

systematically misclassified.

A popular approach to achieving image classification is Deep learning, a machine

learning method based on Deep Neural Networks (DNNs). It allows for a computer

model to learn how to classify images into a specific set of classes. It does so by training

on data from a big database of images already labelled into those categories.

 State of the Art

 11

2.3.2. Deep Neural Network Architecture

A Deep Neural Network (DNN) is an artificial neural network comprised of an input

and output layer with several hidden layers in between, as seen in Figure 2.10. The

presence of many hidden layers improves the ability of the network to act upon its input.

This allows DNNs to outperform single-layer neural networks, especially when assigned

to complex problems [23], like gesture detection and localization [24].

Figure 2.10. Constitution of a Deep Neural Network [25].

Each of these hidden layers contributes as a computational stage which transforms,

often non-linearly, the information received from the previous stage and outputs it into

the next. Depending on the desired DNN’s application, different sequences of layer

types are used, Figure 2.11. In fully connected layers, each node of the current layer is

connected, through weights, to all the nodes of the next layer, Figure 2.11(a). In

Convolutional layers, features are extracted from the current layer through a filter,

Figure 2.11(b). Both of these types of layers are used to create feed-forward networks,

in which no feedback exists to previous layers. In Recurrent layers, however, output data

are reused as an input for the next computation in the same node, Figure 2.11(c). These

layers are the main element used to form recurrent neural networks.

(a) (b) (c)

Figure 2.11. Common types of neural network layers: (a) Fully connected layer. Adapted from [26];

(b) Convolutional layer; (c) Recurrent layer [27].

12

2.3.2.1. Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a feed-forward DNN comprised of a series

of convolutional layers, followed by fully connected layers. The convolutional layers

extract features of the input image, and the fully connected layers then make a

prediction based on those features. CNNs are usually applied to image classification

applications, e.g. multi-class geospatial object detection [28].

Figure 2.12. Typical structure of a Convolutional Neural Network [29].

CNNs usually have an architectural structure like the one in Figure 2.12. Alongside

fully connected and convolutional layers, additional types of layers are used. While

Pooling layers are used for down-sampling, Rectified Linear Unit (ReLU) layers are used

to turn negative values into zero and the Softmax layer turns numeric input values into

probabilities.

Training a CNN from scratch has the potential for the best classification results but

requires a huge amount of training data and high computational time. Otherwise, pre-

trained networks, like ResNet-50 [30], while easy to use, are trained towards a large set

of generic classes. Transfer Learning is the middle ground between these two options.

By modifying some layers of a pre-trained network, Transfer Learning preserves the

network’s aptitude to classify images while allowing the network to classify a more

specific set of classes.

Depending on its architecture, CNNs can be applied to the classification of images,

with a 2D CNN, or videos, with a 3D CNN. As 3D CNNs are computationally expensive

and quite difficult to train, an alternative way of interpreting temporal context is

needed.

2.3.2.2. Recurrent Neural Networks

A Recurrent Neural Network (RNN) is a type of DNN in which all its hidden layers are

recurrent. As introduced before, this type of layer uses the output of previous

computations to do the next. Owing to this, RNNs are used in applications that require

a sequence predictor, such as speech recognition [31].

 State of the Art

 13

A common issue of RNNs is that the influence of older inputs decreases over time,

called “the vanishing gradient problem”. New inputs replace the activations of the

hidden layer, making the network ‘forget’ the old inputs, making it difficult to learn long-

term dependencies. Figure 2.13(a) displays this by representing the loss of information

from the initial input with the increasing fade to white at each timestep.

(a) (b)

Figure 2.13. (a) The vanishing gradient problem for RNNs [32]; (b) LSTM node architecture [29].

A Long Short-Term Memory (LSTM) [33] is a type of RNN architecture created as a

response to this problem. The nodes of an LSTM are very similar to the ones found in

recurrent layers, except they also contain a cell state, Figure 2.13(b). This cell state is

regulated by structures called gates. Through training, these gates learn when to alter

the information of the cell state. This allows the LSTM to preserve information of long

sequences of data. LSTMs are, thus, ideal for learning long-term dependencies,

necessary for applications like the composition of music [34], speech recognition [35],

gesture classification [36], anomaly prediction [37], among others.

2.3.2.3. Long-term Recurrent Convolutional Networks

The structure resulting from the junction of a CNN with an LSTM is called a Long-term

Recurrent Convolutional Network (LRCN). It is used for example to classify videos by first

extracting the visual features of its frames through a CNN and then classifying them,

considering their temporal sequence, with an LSTM.

The CNN used in an LRCN is usually a pre-trained network or one modified with

transfer learning. This way only the LSTM needs to be created from scratch. Generally,

a 2D CNN is used, but in some cases, a 3D CNN is used instead [38]. LRCNs have been

proven successful in recognition of gestures from a video stream in real-time [39] and

gesture interaction with a Smart TV [38], which demonstrates their capability to handle

the classification of gestures.

14

2.4. Data Dimensionality Reduction

2.4.1. Core concepts

Data Dimensionality Reduction (DDR) methods provide a way to represent a high-

dimensional dataset by transforming it into a lower-dimensional state, Figure 2.14. This

downward dimensional shift aims to preserve, as best as possible, the general structure

of the high-dimensional original data.

Figure 2.14. Dimensionality reduction from high-dimensional data to low-dimensional data.

Adapted from [40].

The employment of DDR is necessary as the depiction of high-dimensional data,

especially when it exceeds the 2D space. A DDR method usually reduces the data to a

lower space, many times a 2D space, which depicts variable correlations in a more

comprehensible way.

As ECs output events in a 1x4 array (1), it means that, at most, it is possible to use 4D

data. However, to classify images using a pre-trained network, data typically must be

organized into frames, which display data within a 2D space. Not using a DDR means

only being able to represent, at most, each event’s x coordinate, y coordinate, and its

polarity. The polarity can be represented in a 2D space along with the coordinates by

using two different colours, e.g. green and red, due to it being a binary variable.

Using a DDR would allow for a way to include the information related to the

timestamp of each event into image classification. This additional information, while

previously discarded, could provide more insight into the correlation of data, possibly

improving classification accuracy. Another possible benefit of converting to a lower

dimension is the significant decrease in the amount of data. This is particularly crucial

for high-dimensional datasets that are quickly generated, like those created by dynamic

gestures [8]. This advantage, though, may later be negated, as using a pre-trained CNN

requires the data to be in the specific format requested by the input layer.

 State of the Art

 15

2.4.2. Types of DDR

There are two kinds of DDR methods: linear and non-linear methods. Linear DDR

methods are useful to obtain the global structure of the data, more easily finding the

zones of interest. Non-linear DDR methods tend to preserve, with reasonably good

accuracy, the local neighbourhood structure of each event.

For the scope of this work, 2 distinct DDR methods have been selected: linear PCA

and the non-linear Kernel PCA.

2.4.2.1. Principal Component Analysis

Principal component analysis (PCA) [41] is a mathematical tool that performs an

orthogonal linear transformation of a set of n p-dimensional observations, X ∈ ℝn×p,

into a space defined by Principal Components1 (PCs). As these PCs must have a size less

than or equal to the number of original dimensions, p, PCA is typically used to represent

the original data within a lower-dimensional space.

The first component, PC 1, correlates to the highest variance in the data. Each of the

following PCs is orthogonal to the preceding one and has the highest variance possible

under its orthogonality constraint. Commonly, only the first and second components are

plotted against each other to obtain a two-dimensional space that shows most of the

variance of the original data [42], allowing for easier visualization of the data. The

remaining PCs are correlated to the lowest variance in the data, so they are not used to

build the component space. The process of applying PCA is exemplified in Figure 2.15.

Figure 2.15: PCA transformation: Projection of 3D data onto a 2D component space [42].

PCA can also enable the detection of features through its PCs, as has been shown in

[43] where the eigenvectors resultant from PCA are used to extract features for face

recognition. It greatly reduced the dimensionality of the samples while also improving

classification accuracy.

1 Principal Components are the eigenvectors of the covariance matrix computed from the dataset. They are
sorted according to their corresponding eigenvalue in decreasing order.

16

Using PCA as the DDR method has, though, a major drawback which is related to the

unwanted environmental factors that may have an impact on the variance of the data.

PCA cannot distinguish, only from variance, relevant from nonrelevant contributions

[42]. To solve this, there is a need to use normalization techniques to reduce non-

relevant variance.

2.4.2.2. Non-linear Principal Component Analysis

Time-dependent actions, like DGs, are generally located within a non-linear subspace.

This means they are most likely better explained by a low number of non-linear

components rather than by an equal number of linear components. This prompts the

use of non-linear principal analysis (NLPCA), which is a non-linear generalization of

standard linear PCA. The main difference between PCA and NLPCA is that the latter

involves non-linear mappings between the original and reduced dimension spaces. This

enables NLPCA to identify both linear and non-linear correlations. There are 2 well-

known approaches to NLPCA, the use of Principal Curves and Kernel PCA.

2.4.2.2.1. Principal Curves

In the case of PCA, the principal components are estimated by finding the line that

minimizes the orthogonal deviations. Data tends to follow in a non-linear distribution,

thus the sum of the distances from the data points to that line tends to be very high. To

try to solve this issue, the PCs are generalized to curves, called Principal Curves [44],

instead of straight lines. The curve minimizes the sum of orthogonal deviations just like

a straight line, but the distances of the data points to the now curved line are

significantly lower than its linear counterparts, as shown in Figure 2.16. The NLPCA is

specifically called Circular PCA when the Principal Curve is a closed curve [45].

Figure 2.16: A Linear principal component (left) and Principal Curve (right). Both minimize the sum of

squared deviations for all data points [44].

Though Principal Curves seem conceptually simple, they are demanding for large data

sets, as a lot of computational steps are involved [46]. This method is mainly used to

detect non-linear curves and two-dimensional non-linear planes, due to being limited to

the use of two principal components because of its complexity [42].

 State of the Art

 17

2.4.2.2.2. Kernel Principal Component Analysis (Kernel PCA)

Kernel PCA [47] maps the original set of datapoints 𝑧𝑖 ∈ ℝ𝑁 , 𝑖 = {1, 2, … , 𝐾} from

input space onto a high-dimensional feature space called F, through 𝑧

→ Φ(𝑧), and then

performs PCA on F [46]. This can be visualized in Figure 2.17. As linear PCA is applied to

the feature space, since 𝐹 is non-linearly related to input space through Φ, the contour

lines of the projections of the data points onto the principal eigenvector in F,

represented as dotted lines in Figure 2.17, become non-linear in the 2D input space.

Figure 2.17: Kernel PCA technique, applied to a 2D input space, using a Polynomial kernel function [47].

The transformation is made by a non-linear function Φ, called the kernel function.

The most common kernel functions used are either “Gaussian” or “Polynomial”. This

method has the benefit of not actually “mapping” the information into the feature

space, but instead carrying out all computations through the kernel function in input

space. This allows it to use high-dimensional feature spaces with reasonable

computational cost [47].

2.4.3. Comparison and applicability of DDR

PCA has already been shown to be successful applied in gesture recognition [48]. As

it is a linear method and gesture data have a non-linear behaviour, an attempt for better

results will also be made with a non-linear method.

Both the NLPCA methods presented previously provide different solutions for dealing

with non-linear problems. Kernel PCA is the most versatile, efficient, and reliable of the

two. The usage of Principal Curves is too computationally demanding, especially

considering the significant amount of data that needs to be processed. Kernel PCA will,

thus, be selected to compete against the results obtained with PCA.

Other DDR methods that could have been applied were outside the scope of this

study. Some noteworthy DDR methods that were considered are TriMap [49] and t-SNE

[50]. However, after deliberation, the first was deemed too complex and the latter

unreliable due to random computations.

18

 Methodology

 19

3. METHODOLOGY

3.1. Dataset for Primitive Manufacturing Tasks

In this section, the setup for capturing data for the newly created dataset for primitive

manufacturing tasks (ECmanufacturing20) is detailed. It ensures the quality of the

dataset and covers the most relevant manufacturing tasks, namely the ones related to

assembly tasks.

3.1.1. Setup for Capturing EC Data

The EC used to capture the dataset footage is a DAVIS 240C. It is a 240x180 pixel DVS

camera with simultaneous active pixel frame output. Only its event data will be

captured. The DVS’s characteristics are presented in Table 3.1. The camera lens used has

a manually adjustable Aperture (Iris), Zoom, and Focus.

Table 3.1: DAVIS 240C: DVS’s Specifications

Resolution 240 x 180 pixels

Dynamic Range 120 dB

Minimum latency ~ 12 us @ 1klux with optimized biases

Bandwidth 12 MEvents/ second

Power Consumption 5-14 mW (activity dependent)

To record the data for the dataset, the setup conditions in Figure 3.1 should be

respected.

 (a) (b)

Figure 3.1. Recording gesture data with an EC: (a) Physical Setup; (b) Sensor View.

20

The EC should be positioned in a way to capture as much useful information as

possible. As is common for datasets for gesture recognition, this means the sensor view

will be the front view, capturing the upper body motion, Figure 3.1(a). In this dataset,

the main objective is to be able to detect which primitive tasks the user performs while

interacting with an object. Thus, the object and hands should be within the camera

range of view. To reduce the amount of noise caused by involuntary movements by the

user, like blinking, the user’s head should not be within the range of view.

The more space the hands and object occupy within the sensor’s view, the less

pointless information the camera captures. However, the camera’s view should

accommodate for the user’s range of motion to be able to capture all the performed

actions. The chosen sensor view is depicted in Figure 3.1(b). To achieve this sensor view,

a combination of the camera’s lens “zoom" setting and the distance between the human

and the camera must be defined. To do this, first, the desired camera distance from the

user is chosen and then the “zoom” setting is changed accordingly to fit the user within

camera range of view as illustrated in Figure 3.1(b). For this dataset, a distance of 60 cm

between the camera and user has been selected.

A working stance can either be standing or sitting. Assuming an ergonomic position,

for both cases, the camera views the user’s upper body. Thus, there are no significant

differences between the data of a standing or sitting user. The surrounding environment

and background are not controlled. The only thing to consider is to not have any moving

parts behind the user while recording the dataset.

3.1.2. Primitive tasks

The dataset is comprised of primitive tasks the user makes while performing

manufacturing assembly tasks. When these primitive tasks are combined, they cover the

most common manufacturing tasks. To exemplify these tasks, some interactable objects

had to be selected, Figure 3.2. The chosen objects are three simple 3D shapes, a cube, a

cuboid (with a single screw), and a cylinder, which will be used to demonstrate all tasks.

A screwdriver will also be used as a tool for the “Screw” task.

(a) (b) (c)

Figure 3.2. Objects used in the creation of the dataset: (a) A cube; (b) A cylinder;

(c) A cuboid with an inserted screw and the designated screwdriver.

 Methodology

 21

The primitive tasks chosen for this dataset are as shown in Figure 3.3.

1 – Move Left 2 – Move Right 3 - Lift

4 – Place 5 – Approach 6 - Retreat

7 – Grab 8 – Release 9 - Screw

Figure 3.3: Representation of all tasks and their respective number used in the ECmanufacturing20 dataset.

These include simple translational movements in the 3D space while holding the

object, Tasks 1 through 6, a grab and release gesture, Tasks 7 and 8, and a screwing

gesture, Task 9. In addition to these dynamic primitive tasks, the dataset will also be

trained to recognize the user as being idle, Task 10.

The main dataset with 23 sequences for each task was recorded containing, in total,

230 sequences. About half of the sequences for each task were recorded with the right

hand and the rest with the left hand. When recording the sequences, diversity is

introduced by recording the tasks in different locations on the table, closer or further

away from the EC. More variety is endorsed by alternate use of the objects. An

additional smaller testing dataset with 6 sequences for each task was recorded for DNN

testing, adding up to 60 sequences. For each task, 3 sequences are recorded for each

hand. Each one of these 3 sequences uses a different object. This way, at a later stage,

the LRCN’s performance can be thoroughly tested.

22

3.2. Pre-processing of data

As discussed previously, to process EC data in a visually perceptive way, integrated

images are created. Usually, integrated images construct a frame with all the events

generated in a predefined interval of time, having the advantage of easily identifying the

movement in time. However, for very slow movements a lot of redundant frames will

be captured and in fast movements the framerate is limited.

 An alternative approach is to capture a frame at each predetermined number of

events. This is much more versatile as it adapts the framerate to the speed of the

movement, accounting for both fast and slow movements. For a high number of events

used per frame, the image generated at each frame is more easily recognizable, due to

the increase of data, but has higher motion-related noise and lower framerate.

Meanwhile, for a low number of events per frame, the lower overall noise and higher

framerate come at a cost of less recognizable images.

To decide on which the number of events per frame should be, both a slow and a fast

version of a task sequence (grab-lift-left-right-place-release) is recorded with the

previously defined setup. Then, according to the obtained results, a score from 1 to 5 is

given to each category, 1 being the worst score and 5 the best. The rounded down values

of the obtained Frames/second for each attempt are shown in Table 3.2.

Table 3.2: Average frames/second values obtained for different events/frame values.

Number of Events per Frame

1000 2000 3000 4000

Slow Fast Slow Fast Slow Fast Slow Fast

44 fps 85 fps 21 fps 42 fps 14 fps 28 fps 10 fps 21 fps

A weighted decision matrix is then constructed with the designated scores, Table 3.3.

The number of events per frame that displays the total highest score is 3000

Events/frame, and thus this will be the chosen value. Some of the frames obtained for

3000 Events/frame are shown in Figure 3.4.

Figure 3.4. The transition between “Up” and “Left” task in the sequence with 3000 Events/frame.

 Methodology

 23

Table 3.3: Weighted decision matrix to compare performance between Events/Frame values.

 Number of Events per Frame

Criteria
Weighting /

Importance

1000 2000 3000 4000

Slow Fast Slow Fast Slow Fast Slow Fast

Perceptibility of hands 5 2 3 3 4 4 4 4 4

Absence of random

noise
4 2 2 3 3 4 4 4 4

Absence of movement

related noise
3 4 4 3 4 3 3 2 2

Number of Frames per

Second
2 5 5 4 4 4 4 3 3

 Total 85 96 106 96

3.3. Noise Reduction

Noise is output data which is irrelevant. It occurs along with the relevant data, making

it difficult to differentiate. Noise reduction removes as much irrelevant data as possible.

The frames obtained by creating integrated images with 3000 Events, Figure 3.4, while

being recognizable, still have a lot of noise. To avoid poor classification performance

resulting from too much irrelevant information, a noise reduction algorithm should be

used. After identifying the main noise sources, a noise reduction algorithm is discussed.

 Identification of Noise Sources

To discover which are the existing main noise sources, all output frames from a

certain task are analyzed. From the frames obtained in Task 3, the most relevant sources

of noise can be identified, Figure 3.5, as being idle, shadows, and body movement.

(a) (b) (c)

Figure 3.5. Noise source types identified within a Lift task: (a) Idle; (b) Shadows; (c) Body Movement.

Idle noise is created due to almost no movement occurring in the camera’s range of

view. This causes smaller changes in brightness to be captured, which means a lot of

irrelevant events are generated, as seen in Figure 3.5(a). This specific behavior is very

common when the user is in an idle position.

24

Shadows are an inevitable issue when using a sensor that captures movement

through changes in brightness, Figure 3.5(b). Differences in lighting conditions tend to

produce different kinds of shadows. This inconsistency may lead to inferior classification

performance, and as such, the shadows should preferably be removed. Even when

attempting to only move an arm to lift an object, the whole body tends to move

accordingly, Figure 3.5(c). This is the most difficult type of noise to manage, as it is the

one with the most variable outcome and multiple clusters of events may be formed,

whereas in the shadow case usually only one is generated and in the idle case none.

 Preparation and Interpretation of Data

The main objective of the noise reduction algorithm is for all images to accurately

represent the hand performing a task and the object used, with as little noise as possible.

One approach is to ignore the events outside the region of the image containing the

hands and the object. This type of image manipulation process is called Cropping. It

eliminates the vast majority of noise originated by shadows and body movement, ideally

performing as shown in Figure 3.6.

(a) (b)

Figure 3.6. Frame obtained from a Lift task: (a) Original frame; (b) Desired cropping result.

This action must be accomplished for each frame, without any knowledge of what

kind of task is being performed and of what the proximity of the hand to the EC is. It

should allow for the preservation of all the information of the events contained within

the preserved region: its x coordinate, y coordinate, polarity, and timestamp.

Assuming a single frame with 3000 events, such as Figure 3.6(a), the location of the

hand within the camera’s view is the zone with the highest density of events. It is difficult

to locate this zone directly from the raw EC data, in which each event is represented by

(1). To better display the EC data, each frame is transposed to a grid with dimensions

240 x 180 pixels (width x length), in which each cell corresponds to the coordinates of a

pixel of the EC. The function of each cell is to store the number of times an event occurs

at that specific coordinate, as specified in Algorithm 1. Using Figure 3.6(a) as the original

frame, the produced grid is as shown in Figure 3.7, with darker cells representing many

events.

 Methodology

 25

Algorithm 1 Creation of the Event occurrences Grid

1: Prepare the grid as a 240x180 empty matrix

2:

3: for each Event

4: Find its x and y coordinate

5: Sum 1 to corresponding coordinates in the grid

6: End

By observing the grids obtained for different tasks, some important recurring

behaviors are discovered:

• The cells with the highest count of events are located within the hand and the outer

edge of the object. In tasks that require significant arm movement, the arm’s outline

also exhibits a high event count. Identifying these edges is the most effective way of

finding the hand within the image and, thus, defining the area of the image that

should be preserved;

• The closer the hand holding the object is to the camera, the more difficult it is to

detect its outline, as it is defined by more sporadic events;

• Most of the cells corresponding to previously identified noise sources, mainly

shadows and body movement, have a low count of events.

Figure 3.7. Grid with the number of event occurrences at each cell coordinate with

magnified section. Obtained from applying Algorithm 1 to the data of Figure 3.6(a).

26

Occasional singular cells with an unusually high event count without many nearby

event occurrences can be attributed to a “Stuck Pixel”2. To solve this issue, each cell of

the grid that has an event count greater than 10 should be changed to 2. This must be

done as the pixel may or may not be used depending on the task and, as such, should

not be completely erased. In rare cases, this does target some cells used to represent

either the hand or the object. However, as they have a lot of surrounding high event

count cells, it won’t impact the proficiency of the algorithm.

3.3.3. Creation of the Region of Interest

The main part of the noise reduction algorithm is to identify the hand and the object,

which can be distinguished by their outlines. There is a need to scan the grid to identify

these outlines to define the Region of Interest3 (ROI). Most objects chosen for the

dataset will have some of their outlines aligned vertically. Thus, a grid column

corresponding to the location of said vertical outlines will contain a lot of cells with high

event occurrence values. This means that the sum of all events in each column is a good

indicator to find these object outlines. The same is true for finding outlines aligned

horizontally by using the grid’s rows. To see this in practice, three separate frames from

the Approach task, Tasks 5, were selected, with the hand and object at different

distances from the camera, Figure 3.8.

(a) (b) (c)

Figure 3.8: Selected original frames from the Approach task.

Figure 3.8(a) will be used to test the hypothesis about finding hand and object

outlines through columns and rows with high sums. The result of summing the values of

the cells of each row of the grid obtained for this image are plotted in a line graph shown

side-by-side with the grid, while the same is done for each column, showing the resulting

sums underneath the grid, Figure 3.9. This confirms that the zone with the hand and

object corresponds to the zone with the highest sums.

2 Also known as a “Hot Pixel”, it is a pixel that is always “on” (can be caused by any of its sub-pixels).
3 The portion from the original image where most relevant information is located.

 Methodology

 27

There is a need for a certain limit that, when intersected with the plot of the grid

sums, creates the region of interest. This limit should not be constant, as it needs to be

able to adapt to the different kinds of tasks. Thus, two hypothetical limits are tested

against the data, the median and the average of the grid sums. The ROI will be defined

as the zone starting when at least 3 consecutive sums are higher than the limit and

ending when 3 consecutive sums are lower than it, as described in Algorithm 2. Multiple

zones can be obtained this way, but for now, only the ROI which contains most events

is selected. Figure 3.10, Figure 3.11, and Figure 3.12 show the results obtained for the

frames shown in Figure 3.8(a), Figure 3.8(b), and Figure 3.8(c), respectively. The blue line

represents the median and the orange line portrays the average.

Algorithm 2 Creation of Region of Interest with single zone. Exemplified for the vertical

limits of the ROI. The horizontal limits are obtained similarly.

1: Sum the values of each column of the grid

2: Find the average of the sums 

3:

4: for each column of the grid

5: Build an array with the sum value of the current and previous two columns

6: if all values in the array are greater than  then

7: Save starting column of the cluster

8: elseif all values in the array are less than  then

9: Save ending column of the cluster

10: end

11: end

12:

13: Use the first column and the last column of the biggest cluster to define the ROI

28

Figure 3.9: Desired ROI, contained within black outlines, compared to the grid sums.

Obtained from data of Figure 3.8(a).

Figure 3.10: ROI created by the intersection of the grid sums and their average/median.

Obtained from data of Figure 3.8(a).

 Methodology

 29

Figure 3.11: ROI created by the intersection of the grid sums and their average/median.

Obtained from data of Figure 3.8(b).

Figure 3.12: ROI created by the intersection of the grid sums and their average/median.

Obtained from data of Figure 3.8(c).

30

From Figure 3.10, both hypothesis of using the median and the average of the sums,

seem effective, having the average the advantage of being able to remove the shadows.

In Figure 3.11 both lines have a very similar resulting zone. However, the object’s edge

could not be detected by the average line by following the rules set previously. Figure

3.12 seems to have the same issue, now for both the median and the average. Thus, a

rule of joining multiple zones should be added to correct this.

To avoid having a lot of limits to deal with, due to joining multiple regions of interest,

only the ones that contribute with more than a certain number of events, , should be

joined. This also has the purpose of preventing noise to accidentally create a zone. At

the end of the algorithm, the remaining zones are joined into a single continuous zone,

as detailed in Algorithm 3.

Algorithm 3 Creation of Region of Interest with multiple zones, using a threshold.

Exemplified for the vertical limits of the ROI. The horizontal limits are obtained similarly.

1: Sum the values of each column of the grid

2: Find the average of the sums 

3: Define threshold 

4:

5: for each column of the grid

6: Build an array with the sum value of the current and previous two columns

7: if all values in the array are greater than  then

8: Save starting column of the cluster temporarily

9: elseif all values in the array are less than  then

10: Save ending column of the cluster temporarily

11: if size of cluster is bigger than threshold  then

12: Save both start and end of cluster permanently

13: end

14: end

15: end

16:

17: Use the first column of the earliest cluster and the last column of the last cluster to

define the ROI

 Methodology

 31

The two hypotheses, average and median, are compared again to decide which is the

better limiter, now considering the rule of joining multiple zones, Figure 3.13. The values

of =50 and =100 have been tested as the minimum number of events to entitle as a

zone.

Original

Average

=50

Average

=100

Median

=50

Median

=100

 (a) (b) (c)

Figure 3.13: Results of comparing average and median NR with =50 and =100.

Obtained from data of Figure 3.8(a), Figure 3.8(b), and Figure 3.8(c), respectively.

32

From Figure 3.13 it is possible to conclude that the best combination of parameters

is that of a minimum number of events per zone of =50 using as limit the average. This

is made clear by the fact that, in both cases of using the median, the shadow of the hand

is still clearly visible, Figure 3.13(a). Even though using the median with =50 has the

best result in Figure 3.13(c), its noise output at the other frames is not acceptable. While

using the average with =100 has great performance in its initial frames, like Figure

3.13(b), it loses almost all useful information in Figure 3.13(c). Thus, using the average

as the limit with =50 is the best at preserving useful information, while managing to

remove almost all noise.

All the other tasks have been tested with the limit being average and =50. The

results are shown in Appendix A. The results imply that the noise reduction algorithm

does a good job of removing body movement noise and manages to frequently remove

the shadows. The algorithm seems to have the most trouble with the Screw task,

because the body movement is much more prominent. When idle, two different

behaviours for the NR algorithm have been observed. When the image has no distinct

zone of many events, the algorithm, as it depends on an average, only slightly crops the

image or doesn’t crop the image at all. But when little movement occurs, the algorithm

locates it and crops the image accordingly.

To summarize, the first operation within the noise reduction algorithm is creating a

grid representative of the event count at each coordinate. Within this grid, the algorithm

sums the value of each cell belonging to the same column (corresponding to the x

coordinate). The algorithm then checks for high consecutive sums, compares it against

its average, and outputs the limits in which they are contained. The same procedure is

done to the rows of the grid (correlated to the y coordinates). The last operation is that

of preserving the original data within the limits defined by the algorithm. The core

operations of algorithm are described in Algorithm 3.

 Methodology

 33

3.4. Data Dimensionality Reduction

In another attempt to improve classification results of the original frames, obtained

by creating integrated images with 3000 Events, the previously selected DDR

techniques, PCA and Kernel PCA, are applied to the original frames. This is done, as

explained before, to make full use of the EC’s event 4D data and, as such theoretically

provide better insight into the correlation of data, improving classification accuracy.

The frames that will be altered with the DDR techniques are the frames obtained by

creating integrated images with 3000 Events. In both cases, the high dimensional space

will be 4D, to use the full extent of the data available, and the lower-dimensional space

will be 2D, as the intended result of both DDR techniques is to obtain 2D frames for

classification through the DNN. The PCA and Kernel PCA methodologies will be

separately discussed.

3.4.1. DDR with PCA

As a quick recap, PCA takes a high dimensional space and defines a corresponding

lower-dimensional space by using principal components, which correlate to the highest

variance in the data. As the lower-dimensional space should be 2D, at most 2 Principal

Components will be generated.

When using PCA it is important for all the data to be normalized, for all data

parameters to be considered equally relevant. If the data have different orders of

magnitude, the results of PCA will be biased towards favouring the data with the highest

order of magnitude, due to PCA’s linear nature. The range of 3 of the parameters is

constant and, as such, known. The 𝑥 parameter is ranged between 1-240 and the 𝑦

parameter has values between 1-180, both representative of the EC’s resolution. The

polarity is a binary variable, only including values of either 0 or 1. The timestamp

parameter, 𝑡𝑠, although being always limited between a minimum and maximum time

and being ordered in a roughly continuous manner, does not have a fixed range when

comparing different frames.

The most straightforward way of normalizing the EC’s 4D data is to turn all the

parameters’ ranges into the common range of 0 to 1. This way all the data parameters

are considered equally significant when applying PCA. The polarity doesn’t have to be

normalized as it is already within this range. However, as the polarity is a binary variable,

the data will have a high variance in this direction, resulting in the first Principal

Component to be heavily skewed in the polarity direction. As seen in Figure 3.14, this

makes the frames from different tasks very similar. Thus, to represent polarity, the most

appropriate course of action is to use colours as was done previously with both original

and noise reduced frames.

34

(a) (b)

Figure 3.14: Results of PCA with all parameters normalized within the range of 0-1:

(a) Move left task; (b) Lift task.

Using colour to represent the polarity means that PCA will only be applied to 3 of 4

parameters of the 4D data, the 𝑥 and 𝑦 coordinates, and the timestamp. The results

obtained using this approach, Figure 3.15, are much more visually distinct than in their

counterparts in Figure 3.14. Even though the first principal component is almost

coincident with the timestamp direction, now the tasks are distinguishable between

each other and, thus, appropriate for classification purposes. The images in the top row

of Figure 3.14 show the contribution of each parameter to each principal component,

while the images in the bottom row show the images as will be used for classification.

(a) (b)

Figure 3.15: Results of PCA with the 𝑥, 𝑦 and timestamp parameters normalized

within the range of 0-1: (a) Move left task; (b) Lift task.

 Methodology

 35

3.4.2. DDR with Kernel PCA

Kernel PCA maps the original data points into a high-dimensional space using a kernel

function, typically a Polynomial or Gaussian function, and then performs PCA on the

newly created feature space. All computations are done through the kernel function in

input space. Unlike PCA, a non-linear DDR method such as Kernel PCA works well with

linearly inseparable data, and as such the polarity can be used as a parameter in the

algorithm. It is still convenient to do normalization to work with parameters of similar

orders of magnitude. For Kernel PCA’s case, the EC’s output data will be normalized by

scaling each parameter using its standard deviation, followed by centering its data. This

kind of normalization, when obtaining Kernel PCA frames, reduced the processing time

from 20 seconds/frame, for normalizing to a 0-1 range, to 14 seconds/frame.

The Kernel PCA algorithm follows 4 main steps. First, the kernel function is chosen,

next, the centered kernel matrix is constructed, then the eigenvalue problem is solved

and finally, the data points are represented in the desired dimension. The computational

part will not be elaborated on. Instead, the selection of kernel function type and its

hyperparameter will be discussed, followed by the frames used for classification.

3.4.2.1. Gaussian Kernel Function

Gaussian kernels are some of the most well-known kernel functions. Also known as

Radial Basis Function (RBF) kernel, they have a generalized structure (2) which is used to

calculate the kernel matrix 𝑘(𝑥, 𝑥′) for each pair of samples, 𝑥 and 𝑥′,

𝑘(𝑥, 𝑥′) = exp(−𝛾‖𝑥 − 𝑥′‖2) (2)

Where 𝛾 represents how “wide” the Gaussian function is. This means 𝛾 controls how

the decision boundary4 is affected by the data, represented in Figure 3.16 by a solid line.

The higher the value of 𝛾, the more “wiggling” the boundary will be [51].

Figure 3.16: Decision boundaries for different values of γ.

4 The hypersurface that partitions the vector space within the two different sets, one for each class. Linear
decision surfaces within a high-dimensional feature space correspond to non/linear decision surfaces in the
original feature space [52].

36

Gaussian functions have a single hyperparameter, being easier to readjust for a

specific task in comparison to a polynomial kernel which needs, at least, two

hyperparameters. [52].

3.4.2.2. Hyperparameter Value

The smaller the chosen value of 𝛾, the further away the points can be from the

decision boundary to influence it. This leads to a relatively smooth decision boundary

but may overlook some class outliers. For higher values of 𝛾 only the data points close

to the decision boundary influence it. This promotes an irregular decision boundary but

deals much better with class outliers.

In the case of EC output data, the two different values of polarity are the two classes

considered. From this, it is possible to deduce that a relatively high value of 𝛾 will be

needed to effectively separate these classes, as each class of polarity is not easily

contained within a single zone. To confirm this, the first frames resultant from Kernel

PCA from 3 sequences of different tasks are compared against each other with three

different values of 𝛾. The results are shown in Figure 3.17, where blue dots represent

polarity = 1 and red dots represent polarity = 0.

Task 1

“Move

Left”

Task 4

“Place”

Task 7

“Grab”

 (a) 𝛾 = 1 (b) 𝛾 = 10 (c) 𝛾 = 20

Figure 3.17: Comparison of Kernel PCA results for different values of 𝛾.

 Methodology

 37

As can be seen in Figure 3.17 higher values of 𝛾 do, in fact, perform better in creating

distinctive frames in comparison to lower values. The results obtained for 𝛾 = 10 and

𝛾 = 20 are very similar. In this case, the value of 𝛾 = 10 will be selected as the preferred

option because, by creating a smoother decision boundary, it is expected to behave

more consistently when applying to different types of tasks.

It is noteworthy that the results obtained within similar conditions for PCA, Figure

3.14, were not conclusive, because of the naturally high variance of the polarity, due to

its binary nature, and because PCA is a linear method. Kernel PCA, being a non-linear

method, was capable of separating the two classes of polarity relatively well.

3.5. Construction of the LRCN

A popular approach for image classification is the usage of DNNs. While CNNs are

applicable for image feature extraction, RNNs are used to learn temporal sequences,

Figure 3.18. Joining these two types of DNN creates an LRCN, which is used for video

classification. The LRCN created in this section is optimized for the dataset without any

data modifications, i.e. without NR nor DDR.

Figure 3.18: Structure of the LRCN. Adapted from [39].

 As such, to create the LRCN that will be used to classify the tasks included in the

dataset, both a CNN and an RNN are needed. A CNN trained from scratch would need a

significant amount of training data. Instead, a pre-existing CNN, fine-tuned through

Transfer Learning, will be used. The RNN will be of the LSTM type and will be trained on

this work’s dataset. Both Transfer Learning and the combination of the CNN with the

LSTM to create the LRCN are accomplished using the example shown in [53] as a guide

and will therefore not be further elaborated on.

3.5.1. Preparation of the Input Data

For a DNN to classify anything, all input data must be within a specific format. In this

case, it should be the same type of input as requested by the chosen CNN. They typically

require a square RGB image input with sizes of about 230x230 pixels. CNNs can also use

a video as input, classifying all the frames that constitute it.

38

The ideal case, for the dataset presented in this study, would be to take the raw data

created by the EC and, through the sole use of algorithms, directly create the correctly

formatted video file without the need to create the images associated with the many

frames. However, by attempting this, the CNN did not show differences in activations,

being unable to classify. Thus, from the original EC files, all individual frames are

converted into image files, with their respective frame changes. These image files are

then recombined into video files with the format needed for CNN classification. This was

done for both datasets and for all types of frames previously discussed in this work. This

includes original frames without alterations, frames with noise reduction, frames

obtained through PCA, and frames obtained through Kernel PCA.

3.5.2. Partition of Training, Validation, and Testing Data

The training data are used to train the networks, the validation data is used to

continuously evaluate the network while it is training, and the testing data is used to

verify the final LRCNs’ performance. The data from the main dataset will be divided into

two partitions, training and validation data. This is a simple cross-validation technique,

known as the holdout method. As the main dataset has a limited amount of data, the

training portion should be large compared to the validation, to preserve as much data

for training as possible. As such, an 85% training – 15% testing division seems suitable,

Figure 3.19.

Figure 3.19: Division of the datasets into training, validation and testing data [54].

When separating the data into portions, if the selection of data is done randomly,

there is a high risk of imbalance of the class representation within both training and

validation sets. To counter this problem, 15% of the data from each task is selected,

rounded down to 3 sequences per task. This method also ensures that no tasks are, by

chance, excluded from the validation set. The partition is then reused for each network

training attempt. With this approach, instead of using the more effective approach of

using multiple partitions and taking the average, there is a significant save in

computational time.

3.5.3. Selection of the CNN

For the selection of the CNN, two well-known pre-trained networks will be

considered, GoogLeNet [55] and ResNet50 [30], with basic properties shown in Table

3.4.

 Methodology

 39

Table 3.4: Main network properties of the selected CNNs5 [56].

 Network Depth6 Validation Accuracy
Prediction Time relative

to SqueezeNet

GoogLeNet 22 67 % 2

ResNet50 50 75% 3,5

The objective is to strike the balance between accuracy and computational time.

Simpler architecture is also essential as it assists in reducing overfitting, which happens

when the model recognizes specific images instead of general patterns. Overfitting is

most prevalent when using small datasets, such as the one used in this work. By having

a 50 layers depth, ResNet50 is quite competent in classifying objects with high-level

features [57]. GoogLeNet, by having less network depth and simpler architecture, is

faster and tends to obtain good scores for a small training sample size [57].

The most important factor is, naturally, how well the network classifies the data of

the primitive manufacturing dataset. To test this, a default LSTM was trained using the

activations from either CNN. The LSTM used is identical to the one in [53], only changing

the number of hidden units to 250, as it provided good results. The LSTM is also tested

for different quantities of BiLSTM layers. The average validation score and elapsed time

of the LSTM, for three training runs, is shown in Figure 3.20.

Figure 3.20: LSTM validation accuracy and elapsed time for GoogLeNet and ResNet50.

Although the validation scores can all be considered acceptable, the highest scoring

combination between CNN and LSTM layer depth will be chosen, which is GoogLeNet +

LSTM with 2 BiLSTM layers, achieving 96% validation accuracy.

5 Results obtained for ImageNet database.
6 “The largest number of sequential convolutional or fully connected [56].

40

3.5.4. Creation of the LSTM network

After the selection of the CNN, to finish constructing the DNN, an LSTM has to be

built. To accomplish this, both necessary LSTM layers and the most applicable

hyperparameters must be selected. The general structure of the LSTM is shown in Figure

3.21, taking into account the 2 BiLSTM layers detailed in the previous sub-section 3.5.3.

3.5.4.1. LSTM network layers

First off, to build an LSTM network, a layer is needed to input data to the network

and another to output data from the network. The Input layer should match the number

of features generated by the CNN’s output layer and the Output layer is the layer that

will reveal the classification results.

The most essential part of an LSTM type of RNN network is, naturally, its LSTM-

related layers. Two different kinds of LSTM layers can be used, Figure 3.22, either simple

LSTM layers or their bidirectional variants, BiLSTM layers. Differentiating themselves

from the original simple version, BiLSTM layers, instead of only learning forward-in-time

dependencies between time steps, learn in both temporal directions. This way BiLSTM

layers enable additional training by traversing the input data twice [58].

(a) (b)

Figure 3.22: The two types of LSTM layers [59]: (a) LSTM layer; (b) BiLSTM layer.

The Dropout layer is used to reduce overfitting by dropping out a percentage of units

from its preceding layer. For hidden layers, as is the case for the BiLSTM layer, a usual

value is 50% dropout. The fully connected layer then, through the use of weights and

biases, is used to predict the classes, using the Softmax layer to turn the numeric results

from the fully connected into probabilities to determine the classification results.

Figure 3.21: Architecture of the LSTM network.

In
p

u
t

B
iLSTM

B
iLSTM

D
ro

p
o

u
t

Fu
lly C

o
n

n
ected

So
ftm

ax

O
u

tp
u

t (C
lasses)

 Methodology

 41

3.5.4.2. Learning Rate and Number of Epochs

The two hyperparameters that, together, most influence the LSTM’s training

behaviour are the learning rate and the number of epochs. The learning rate controls

how fast the network “learns”, representing how much the model is allowed to change

at each iteration. For a high learning rate, the LSTM is more sensitive towards new

information, which makes it unstable. For low learning rates, the network may take

much longer to converge, needing more iterations.

The number of epochs is the number of times the network runs through the entire

training dataset. The more epochs used while training, the more likely the network will

attain convergence, especially when using lower learning rates. Using too many epochs

may, however, be adding unnecessary computational time if convergence is already

obtained far earlier than the stipulated number of epochs.

To study the parameters’ simultaneous impact on the LSTM training, the averaged

validation accuracy and elapsed time results of three training runs are evaluated for a

selection of learning rates with different number of epochs, Figure 3.23.

Figure 3.23: LSTM validation accuracy and elapsed time for different combinations of learning rates (LR)

and number of epochs.

From analyzing the outcomes, shown in Figure 3.23, it stands out immediately that

the learning rate that achieves the best results is that of LR = 1e-4. In general, the best

classification results are obtained with 30 and 70 Epochs. However, for the same

learning rate, an unexpected decline in classification accuracy occurs for 50 Epochs. For

this reason, a more detailed analysis of the variance for each epoch’s training results is

made for LR = 1e-4, now using ten classification models. The average classification

accuracy achieved by the models are presented in Figure 3.24. The computational times

obtained were approximately the same as the ones obtained for Figure 3.23.

42

Figure 3.24: Validation accuracy variance for different values of the number of epochs with LR = 1e-4.

This graph gives a lot of insight into the effect of the epochs on the variance of training

results of an LSTM network. The cross represents the average value of classification

accuracy, which is approximately the same for all epoch values, ≈ 92%. A low variance

option is more beneficial because it means the network has a more consistent

behaviour. As a result, 50 epochs should not be chosen. Its variance, with a maximum

value equal to 100% and minimum value of 86,7%, leads to the lower validation accuracy

in Figure 3.23. Similarly, 30 Epochs models should also not be chosen because they

present a higher variance than the 70 Epoch models.

It is worth noting that there is some difference between the average results shown

in Figure 3.23 and Figure 3.24, showing a reduction from ≈ 96% to ≈ 92% classification

accuracy. This means there is some variability regardless of the choice made. Also, due

to few validation data, each failed validation reduces the validation score by about 3,3

percentage points, which causes a lot of discrepancy in the results. As a conclusion, next

optimization attempts will be made averaging ten runs instead of three, to avoid

irregular behaviour such as the one seen in Figure 3.23.

3.5.4.3. Number of Hidden Units

The BiLSTM layers have an important hyperparameter that must be defined, which is

the number of hidden units, also called nodes, present within each one of the layers.

With too few nodes, the layer will struggle to capture complex information. The

presence of too many nodes, however, leads to an increase in computational time and

a tendency to overfit the training data. To simplify this problem, the same quantity of

hidden units will be selected for both BiLSTM layers. The results for different values of

hidden units are compared against each other, Figure 3.25. The objective is to find the

minimum number of hidden units needed to obtain consistently good classification

results, without causing overfitting of the network and high computational times.

 Methodology

 43

Figure 3.25: LSTM validation accuracy and elapsed time for different quantities of hidden units.

From Figure 3.25 it is possible to confirm that a higher number of hidden units tends

to improve validation accuracy at a cost of computational time. Values of 750 or more

hidden units attained good validation accuracies, each having multiple training runs with

100% validation accuracy. The best results were obtained for 1250 hidden units,

although at some computational time cost. No further increase of hidden units is needed

as classification accuracy is unlikely to improve, while run time and the risk of overfitting

the LSTM will inevitably increase.

3.5.4.4. Mini-Batch Size

The last hyperparameter deemed essential to optimize is the mini-batch size. The

mini-batch size is the number of training samples used at each iteration to update the

network. Dividing the training data into multiple subsets has the advantage of being

more computationally efficient than using the entire dataset each iteration, attaining

faster convergence and using fewer data at each iteration. The mini-batch size should

not be too small to avoid inaccurate estimations. Usually, the value of the mini-batch

size is a number that is a power of two, like 16 or 32 [60]. The results of training with

three different mini-batch sizes are shown in Figure 3.26.

Figure 3.26: LSTM validation accuracy and elapsed time for different mini-batch size values.

44

It is quite evident in Figure 3.26 that an increase in mini-batch size significantly

reduces computational time, without reducing the validation accuracy by much. The

more the values approach the training dataset size, which in this case is 200, validation

accuracy drops. For this reason, the value of 32 samples for each mini-batch is chosen.

3.5.5. LRCN model

The following schematic, Figure 3.27, summarizes the final composition of the LRCN

that will be used to obtain the results. The hyperparameters chosen for the LSTM are

compiled in Table 3.5.

Figure 3.27: Complete LRCN schematic.

Table 3.5: LSTM training hyperparameters.

Learning Rate Number of Epochs Mini-batch Size

0,0001 70 32

 Results and Discussion

 45

4. RESULTS AND DISCUSSION

The EC data were retrieved with a Java software package made for Address-Event

Representation called jAER [61]. All data processing was achieved using MATLAB

software. The networks were trained and tested by using resources from the MATLAB

Deep Learning Toolbox [62]. This toolbox also contained the models for the GoogLeNet

network [63] and the ResNet-50 network [64]. The hardware used was a computer with

an Nvidia GeForce RTX 2080 Ti GPU, an AMD Ryzen 9 3900X CPU and 64GB of RAM. Its

GPU was used both for network training and testing.

While, ideally, each type of data alteration should have its optimized LSTM, the same

LSTM that was fitted to the original data will be reused for all LRCNs. The DNN is trained

on its specific data type for all 10 categories and then tested with the testing dataset.

The results are shown in Figure 4.1. Both LSTM training times and LRCN run times were

very similar between model types, averaging around 200 seconds and 16 seconds

respectively.

Figure 4.1: Results obtained for the different frame types using the LRCN built in section 3.5.

The LSTM networks do not provide acceptable performance for both PCA and Kernel

PCA data, achieving 80% and 70% accuracy respectively, as their data are different in

contrast to the original data. Better results should be expected with an LSTM optimized

for each DDR techniques and/or a different CNN. The noise reduced frames have a good

LSTM accuracy, as their general data structure is similar to the original data.

The testing accuracy obtained for all the model types is significantly lower than their

LSTM counterparts. The best performing model type is the model that implemented

noise reduction. Removing non-essential sections of each frame from the original data

improves the network’s accuracy by a significant 17 percentage points.

46

Both the PCA and Kernel PCA networks performed worse than the original network,

losing accuracy of 20 and 10 percentage points respectively. Kernel PCA managed to

perform better than PCA, presumably due to its capability of dealing with non-linear

correlations. For a better understanding of the results of the LRCN testing accuracy, the

resulting confusion matrices of each model type are examined, Figure 4.2.

(a) Original Data (b) Noise reduction

(c) PCA (d) Kernel PCA

Figure 4.2: Confusion matrices obtained for each LRCN model.

Immediately the noise reduction model, Figure 4.2(b), stands out as being the most

consistent by managing to correctly classify all classes multiple times, with Task 7 being

the exception. Wrong guesses of classification are mostly unbiased and distributed

between the classes. The original data model, considering its LSTM validation accuracy

of 100%, should have the capability to recognize all classes. However, as seen in Figure

4.2(a), not a single correct prediction is made for Task 8 and Task 9. Also, a high tendency

to predict with either Tasks 2, 3 or 4 can be observed.

The worst performing model is the PCA model, Figure 4.2(c), which only predicts

within classes 2 to 6, disregarding 50% of the classes. This poor prediction behaviour

may mean that the frames are too similar, which makes the model’s predictions default

to the classes with most events, Tasks 2 to 6, as they have more data. A slightly better

but similar behaviour can be seen in Figure 4.2(d), for Kernel PCA. The predictions still

occur mostly on Tasks 2 to 6, but some predictions start to occur outside this range.

1 1 5

2 6

3 6

4 6

5 3 1 2

6 1 5

7 1 1 1 2 1

8 1 4 1

9 1 5

10 5 1

1 2 3 4 5 6 7 8 9 10

Tr
u

e
C

la
ss

 Predicted Class

1 3 1 2

2 6

3 2 3 1

4 4 2

5 1 4 1

6 6

7 3 1 1 1

8 1 3 2

9 1 5

10 3 3

1 2 3 4 5 6 7 8 9 10
Tr

u
e

C
la

ss

 Predicted Class

1 1 5

2 5 1

3 4 2

4 2 4

5 3 3

6 2 2 2

7 1 5

8 3 3

9 5 1

10 1 4 1

1 2 3 4 5 6 7 8 9 10

 Predicted Class

Tr
u

e
C

la
ss

1 5 1

2 4 1 1

3 4 2

4 5 1

5 2 4

6 1 5

7 3 3

8 5 1

9 4 1 1

10 2 1 3

1 2 3 4 5 6 7 8 9 10

Tr
u

e
C

la
ss

 Predicted Class

 Conclusions and Future Work

 47

5. CONCLUSIONS AND FUTURE WORK

The purpose of this study was to investigate the effects of data manipulation on the

speed and accuracy of EC data classification. The best performing LRCN model has a

testing accuracy of 63,3%, achieved through the use of noise reduction. The noise

reduction algorithm was proven to be effective in removing most noise, as is proved by

the results presented in Appendix A. This improved the network’s accuracy by a

significant 17 percentage points in comparison to the model created for the original

data. This method shows the most potential for future studies. The main suggestion is

to use the trajectory of the centre of each frame’s ROI to predict the gesture class by

purely analytical means. This way a DNN would not be needed and classification could

be faster and more accurate.

Both PCA and Kernel PCA had an adverse effect on classification accuracy, lowering it

20 and 10 percentage points respectively. Most likely, the discrepancy is caused by the

loss of information when transforming the EC data through a DDR method. This change

also alters the data’s nature, which might make it incompatible with an object-

recognition CNN such as GoogLeNet. As such, the results from PCA and from Kernel PCA

should improve by using an LSTM without a CNN. However, Kernel PCA is not

recommended for continuous gesture recognition, as its eigenvalue function takes too

long to process. Another problem might have stemmed from the small number of events

that compose each frame. As the timestamp is relevant for the DDR, having a very

limited time range limits the DDRs applicability.

The most likely cause of the general subpar results is the small training sample size.

Considering the very high number of 10 task classes, the training dataset should have

been much more substantial to provide enough data for each class. For future work the

main suggestion is, therefore, to use a larger and more diverse dataset that includes

more users and many more sequence recordings. To the tasks proposed in this study

should also be added a “non-task” or ME class, which is essential for sequences of tasks

to be tested. These two aspects are fundamental to validate if the proposed system

could be used for continuous real-life gesture recognition.

To test the issues with the LRCN classification accuracies, a simple single-layer

network should be used to evaluate if any of the chosen parameters were skewing the

results. Also, it is recommended to use other approaches for measuring computational

complexity. Rather than measuring computational time through elapsed time, it is

advised to, for example, count floating-point operations per second (FLOPS).

48

 References

 49

6. REFERENCES

[1] T. Ende, S. Haddadin, S. Parusel, T. Wusthoff, M. Hassenzahl, and A. Albu-Schaffer, “A human-
centered approach to robot gesture based communication within collaborative working processes,”
in 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011, pp. 3367–3374,
doi: 10.1109/IROS.2011.6094592.

[2] W. Kim et al., “Adaptable Workstations for Human-Robot Collaboration: A Reconfigurable
Framework for Improving Worker Ergonomics and Productivity,” IEEE Robot. Autom. Mag., vol. 26,
no. 3, pp. 14–26, 2019, doi: 10.1109/MRA.2018.2890460.

[3] Y. Song, D. Demirdjian, and R. Davis, “Continuous body and hand gesture recognition for natural
human-computer interaction,” ACM Trans. Interact. Intell. Syst., vol. 2, no. 1, 2012, doi:
10.1145/2133366.2133371.

[4] M. T. Wolf, C. Assad, M. T. Vernacchia, J. Fromm, and H. L. Jethani, “Gesture-based robot control
with variable autonomy from the JPL BioSleeve,” in 2013 IEEE International Conference on Robotics
and Automation, 2013, pp. 1160–1165, doi: 10.1109/ICRA.2013.6630718.

[5] L. D. Riek, T. C. Rabinowitch, P. Bremner, A. G. Pipe, M. Fraser, and P. Robinson, “Cooperative
gestures: Effective signaling for humanoid robots,” 5th ACM/IEEE Int. Conf. Human-Robot Interact.
HRI 2010, pp. 61–68, 2010, doi: 10.1145/1734454.1734474.

[6] R. Yang, S. Sarkar, and B. Loeding, “Enhanced level building algorithm for the movement epenthesis
problem in sign language recognition,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.,
2007, doi: 10.1109/CVPR.2007.383347.

[7] P. Neto, D. Pereira, J. N. Pires, and A. P. Moreira, “Real-time and continuous hand gesture spotting:
An approach based on artificial neural networks,” Proc. - IEEE Int. Conf. Robot. Autom., pp. 178–183,
2013, doi: 10.1109/ICRA.2013.6630573.

[8] M. Simão, P. Neto, and O. Gibaru, “Using data dimensionality reduction for recognition of
incomplete dynamic gestures,” Pattern Recognit. Lett., vol. 99, pp. 32–38, Nov. 2017, doi:
10.1016/j.patrec.2017.01.003.

[9] S. Calinon and A. Billard, “Incremental learning of gestures by imitation in a humanoid robot,” HRI
2007 - Proc. 2007 ACM/IEEE Conf. Human-Robot Interact. - Robot as Team Memb., pp. 255–262,
2007, doi: 10.1145/1228716.1228751.

[10] C. R. G. Dreher, M. Wächter, and T. Asfour, “Learning Object-Action Relations from Bimanual
Human Demonstration Using Graph Networks,” IEEE Robot. Autom. Lett., vol. 5, no. 1, pp. 187–194,
2020, doi: 10.1109/LRA.2019.2949221.

[11] P. Gustavsson, M. Holm, A. Syberfeldt, and L. Wang, “Human-robot collaboration - Towards new
metrics for selection of communication technologies,” in Procedia CIRP, 2018, vol. 72, pp. 123–128,
doi: 10.1016/j.procir.2018.03.156.

[12] A. Amir et al., “A low power, fully event-based gesture recognition system,” in Proceedings - 30th
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017, vol. 2017-Janua, pp.
7388–7397, doi: 10.1109/CVPR.2017.781.

[13] J. Conradt, M. Cook, R. Berner, P. Lichtsteiner, R. J. Douglas, and T. Delbruck, “A pencil balancing
robot using a pair of AER dynamic vision sensors,” Proc. - IEEE Int. Symp. Circuits Syst., pp. 781–784,
2009, doi: 10.1109/ISCAS.2009.5117867.

50

[14] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128 × 128 120 dB 15 μs latency asynchronous temporal
contrast vision sensor,” IEEE J. Solid-State Circuits, vol. 43, no. 2, pp. 566–576, 2008, doi:
10.1109/JSSC.2007.914337.

[15] C. Brändli, “Event-Based Machine Vision,” ETH Zürich, 2015.

[16] E. Mueggler, B. Huber, and D. Scaramuzza, “Event-based, 6-DOF pose tracking for high-speed
maneuvers,” IEEE Int. Conf. Intell. Robot. Syst., pp. 2761–2768, 2014, doi:
10.1109/IROS.2014.6942940.

[17] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128 x 128 120dB 30mW asynchronous vision sensor
that responds to relative intensity change,” Dig. Tech. Pap. - IEEE Int. Solid-State Circuits Conf., vol.
51, no. 7, pp. 2060–2069, 2006, doi: 10.1109/isscc.2006.1696265.

[18] P. F. Rüedi et al., “A 128 × 128 Pixel 120-dB Dynamic-Range Vision-Sensor Chip for Image Contrast
and Orientation Extraction,” IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2325–2333, 2003, doi:
10.1109/JSSC.2003.819169.

[19] A. Censi, J. Strubel, C. Brandli, T. Delbruck, and D. Scaramuzza, “Low-latency localization by active
LED markers tracking using a dynamic vision sensor,” IEEE Int. Conf. Intell. Robot. Syst., pp. 891–898,
2013, doi: 10.1109/IROS.2013.6696456.

[20] R. B. Miller, “Response time in man-computer conversational transactions. Introductions and major
concepts,” Fall Jt. Comput. Conf., 1968.

[21] M. Litzenberger et al., “Vehicle counting with an embedded traffic data system using an optical
transient sensor,” IEEE Conf. Intell. Transp. Syst. Proceedings, ITSC, pp. 36–40, 2007, doi:
10.1109/ITSC.2007.4357700.

[22] F.-F. Li, J. Johnson, and S. Yeung, “Image Classification Pipeline.” pp. 1–65, 2018.

[23] J. Schmidhuber, “Deep Learning in neural networks: An overview,” Neural Networks, vol. 61, pp. 85–
117, 2015, doi: 10.1016/j.neunet.2014.09.003.

[24] N. Neverova, C. Wolf, G. W. Taylor, and F. Nebout, “Multi-scale deep learning for gesture detection
and localization,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics), vol. 8925, pp. 474–490, 2015, doi: 10.1007/978-3-319-16178-5_33.

[25] F. Vázquez, “Deep Learning Made Easy With Deep Cognition,” 2017.

[26] P. W. Battaglia et al., “Relational inductive biases, deep learning, and graph networks,” pp. 1–40,
2018.

[27] B. K. Gnanamoorthy, “RNNs to write like Shakespeare,” 2019. [Online]. Available:
https://medium.com/@gnabr/rnns-to-write-like-shakespeare-226609863cd1.

[28] N. Mo, L. Yan, R. Zhu, and H. Xie, “Class-specific anchor based and context-guided multi-class object
detection in High Resolution Remote Sensing Imagery with a convolutional neural network,”
Remote Sens., vol. 11, no. 3, 2019, doi: 10.3390/rs11030272.

[29] “MATLAB Deep Learning Onramp,” MATLAB Deep Learning. [Online]. Available:
https://www.mathworks.com/learn/tutorials/deep-learning-onramp.html.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” Proc. IEEE
Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 770–778, 2015, doi:
10.1109/CVPR.2016.90.

 References

 51

[31] A. Graves, A. R. Mohamed, and G. Hinton, “Speech recognition with deep recurrent neural
networks,” ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. - Proc., no. 3, pp. 6645–6649, 2013,
doi: 10.1109/ICASSP.2013.6638947.

[32] A. Graves, “Supervised Sequence Labelling with Recurrent Neural Networks,” 2012.

[33] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput., vol. 9, no. 8, pp.
1735–1780, 1997, doi: 10.1162/neco.1997.9.8.1735.

[34] D. Eck and J. Schmidhuber, “A First Look at Music Composition using LSTM Recurrent Neural
Networks,” Idsia, pp. 1–11, 2002.

[35] M. Liu, Y. Wang, J. Wang, J. Wang, and X. Xie, “Speech Enhancement Method Based On LSTM Neural
Network for Speech Recognition,” 2018 14th IEEE Int. Conf. Signal Process., no. October, pp. 245–
249, 2019, doi: 10.1109/ICSP.2018.8652331.

[36] J. Cifuentes, P. Boulanger, M. T. Pham, F. Prieto, and R. Moreau, “Gesture Classification Using LSTM
Recurrent Neural Networks,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, no. 2, pp. 6864–
6867, 2019, doi: 10.1109/EMBC.2019.8857592.

[37] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, “Long Short Term Memory Networks for Anomaly
Detection in Time Series,” ESANN 2012 proceedings, 20th Eur. Symp. Artif. Neural Networks,
Comput. Intell. Mach. Learn., no. April, pp. 1–650, 2012.

[38] N. L. Hakim, T. K. Shih, S. P. K. Arachchi, W. Aditya, Y. C. Chen, and C. Y. Lin, “Dynamic hand gesture
recognition using 3DCNN and LSTM with FSM context-aware model,” Sensors (Switzerland), vol. 19,
no. 24, 2019, doi: 10.3390/s19245429.

[39] R. Siriak, I. Skarga-Bandurova, and Y. Boltov, “Deep convolutional network with long short-term
memory layers for dynamic gesture recognition,” Proc. 2019 10th IEEE Int. Conf. Intell. Data Acquis.
Adv. Comput. Syst. Technol. Appl. IDAACS 2019, vol. 1, pp. 158–162, 2019, doi:
10.1109/IDAACS.2019.8924381.

[40] H. Tran, “A Survey of Machine Learning and Data Mining Techniques used in Multimedia System,”
no. 113, pp. 13–21, 2019, doi: 10.13140/RG.2.2.20395.49446/1.

[41] I. T. Jolliffe, “Principal components analysis,” Int. Encycl. Educ., p. 518, 2002, doi: 10.1016/B978-0-
08-044894-7.01358-0.

[42] M. Scholz, “Approaches to analyse and interpret biological profile data,” 2006.

[43] F. Song, Z. Guo, and D. Mei, “Feature selection using principal component analysis,” Proc. - 2010 Int.
Conf. Syst. Sci. Eng. Des. Manuf. Informatiz. ICSEM 2010, vol. 1, pp. 27–30, 2010, doi:
10.1109/ICSEM.2010.14.

[44] W. Hastie, Trevor; Stuetzle, “Principal Curves,” J. Am. Stat. Assoc., vol. 84, no. 406, pp. 502–516,
1989.

[45] M. Scholz, “Analysing periodic phenomena by circular PCA,” Lect. Notes Comput. Sci. (including
Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 4414 LNBI, no. 2005, pp. 38–47,
2007, doi: 10.1007/978-3-540-71233-6_4.

[46] U. Kruger, J. Zhang, and L. Xie, “Developments and Applications of Nonlinear Principal Component
Analysis – a Review,” in Principal Manifolds for Data Visualization and Dimension Reduction, no.
August 2015, 2007, pp. 1–43.

[47] B. Schölkopf, A. Smola, and K. R. Müller, “Nonlinear Component Analysis as a Kernel Eigenvalue
Problem,” Neural Comput., vol. 10, no. 5, pp. 1299–1319, Jul. 1998, doi:
10.1162/089976698300017467.

52

[48] S. Kumar, T. Srivastava, and R. S. Singh, “Hand Gesture Recognition Using Principal Component
Analysis,” no. January, 2017.

[49] E. Amid and M. K. Warmuth, “TriMap: Large-scale Dimensionality Reduction Using Triplets,” arXiv
Prepr. arXiv1910.00204, Oct. 2019.

[50] L. Van Der Maaten and G. Hinton, “Visualizing data using t-SNE,” J. Mach. Learn. Res., vol. 9, no.
November 2008, pp. 2579–2625, 2008.

[51] L. Chen, “Support Vector Machine — Simply Explained,” Towards Data Science, 2019. [Online].
Available: https://towardsdatascience.com/support-vector-machine-simply-explained-
fee28eba5496.

[52] T. Briggs and T. Oates, “Discovering domain-specific composite kernels,” Proc. Natl. Conf. Artif.
Intell., vol. 2, no. January, pp. 732–738, 2005.

[53] MathWorks, “Classify Videos Using Deep Learning,” 2020. [Online]. Available:
https://www.mathworks.com/help/deeplearning/ug/classify-videos-using-deep-learning.html.

[54] Shah Tarang, “About Train, Validation and Test Sets in Machine Learning,” Towards Data Science,
2017. [Online]. Available: https://towardsdatascience.com/train-validation-and-test-sets-
72cb40cba9e7.

[55] C. Szegedy et al., “Going deeper with convolutions,” Proc. IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recognit., vol. 07-12-June, pp. 1–9, 2015, doi: 10.1109/CVPR.2015.7298594.

[56] MathWorks, “Pretrained Deep Neural Networks,” 2020. [Online]. Available:
https://www.mathworks.com/help/deeplearning/ug/pretrained-convolutional-neural-
networks.html.

[57] F. Özgenel and A. Gönenç Sorguç, “Performance comparison of pretrained convolutional neural
networks on crack detection in buildings,” ISARC 2018 - 35th Int. Symp. Autom. Robot. Constr. Int.
AEC/FM Hackathon Futur. Build. Things, no. Isarc, 2018, doi: 10.22260/isarc2018/0094.

[58] S. Siami-Namini, N. Tavakoli, and A. S. Namin, “The Performance of LSTM and BiLSTM in Forecasting
Time Series,” Proc. - 2019 IEEE Int. Conf. Big Data, Big Data 2019, pp. 3285–3292, 2019, doi:
10.1109/BigData47090.2019.9005997.

[59] A. T. Mohan and D. V. Gaitonde, “A Deep Learning based Approach to Reduced Order Modeling for
Turbulent Flow Control using LSTM Neural Networks,” no. April, 2018.

[60] J. Brownlee, “A Gentle Introduction to Mini-Batch Gradient Descent and How to Configure Batch
Size,” Mach. Learn. Mastery, pp. 1–17, 2017.

[61] “Java tools for Address-Event Representation (AER) neuromorphic processing.” [Online]. Available:
http://jaerproject.org.

[62] “MATLAB Deep Learning Toolbox.”

[63] “Deep Learning Toolbox Model for GoogLeNet Network.” [Online]. Available:
https://www.mathworks.com/matlabcentral/fileexchange/64456-deep-learning-toolbox-model-for-
googlenet-network?s_tid=srchtitle.

[64] “Deep Learning Toolbox Model for ResNet-50 Network.” [Online]. Available:
https://www.mathworks.com/matlabcentral/fileexchange/64626-deep-learning-toolbox-model-for-
resnet-50-network?s_tid=FX_rc2_behav.

 Appendix A

 53

APPENDIX A – NR ALGORITHM RESULTS

The results from the NR algorithm for each task of the dataset and the idle position

are presented as following. The frames were obtained for 3000 Events/frame, using the

average as the limit and a minimum number of events per zone of =50. The top image

of each task corresponds to the left hand and the bottom image to the right hand.

 Original Frame Noise Reduced Frame

Task 1

Move

Left

Task 2

Move

Right

54

 Original Frame Noise Reduced Frame

Task 3

Lift

Task 4

Place

 Appendix A

 55

 Original Frame Noise Reduced Frame

Task 5

Approach

Task 6

Retreat

56

 Original Frame Noise Reduced Frame

Task 7

Grab

Task 8

Release

 Appendix A

 57

 Original Frame Noise Reduced Frame

Task 9

Screw

Task 10

Idle

