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Resumo 

A manufatura evoluiu e com a sua evolução surgem novos desafios que se 

pretendem superar. A produção em massa foi substituída pela customização em massa, o que 

obrigou as empresas a reformular as linhas de montagem. O crescimento da procura por 

produtos customizados obrigaria a custos avultados na construção de uma linha para cada 

variante dos produtos. Assim, surgiram as linhas de montagem de modelos mistos, e o 

tradicional layout reto foi substituído pelo formato em U para obter maior flexibilidade. Com 

estas apareceram também novos problemas relacionados com a equilibragem das linhas e o 

seu sequenciamento. Este trabalho centra-se no sequenciamento destas novas linhas de 

montagem, mas para tal é necessário garantir que existe uma equilibragem teoricamente 

perfeita da linha. Para uma linha que monta cilindros pneumáticos e com uma possibilidade 

de gerar mais de 200 combinações distintas, a sua equilibragem e o seu sequenciamento são 

tarefas árduas e complexas. Através da simulação e da análise dos dados fornecidos pela 

simulação, espera-se obter as informações necessárias. As informações sobre as listas de 

combinações dos produtos que devem ser evitadas no sequenciamento são recolhidas para 

que não ocorram paragens não planeadas pela equilibragem. Ao serem eliminadas estas listas 

de maior percentagem de bloqueamento espera-se alcançar o sequenciamento ideal. Este 

método foi facilmente testado e verificado para uma linha perfeitamente equilibrada de três 

estações e dois produtos. Ao aumentar a complexidade de forma a aproximar-se da linha 

real, o número de sequências que causam o bloqueio da linha aumentam de forma 

exponencial. Minimizar o tempo bloqueado será cada vez mais crucial para a empresa, mas 

outras regras podem ser violadas. Definir claramente o peso da transgressão das regras 

estipuladas permitirá entender o impacto de desconsiderar as quantidades de produção para 

minimizar o tempo ocioso. 

 

 

 

Palavras-chave: Linhas de montagem de modelos mistos, Problemas de 
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sequenciamento. 
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Abstract 

Manufacturing has evolved, and with its evolution, new challenges arise that are 

intended to be overcome. Mass production was replaced by mass customization, which 

forced companies to reformulate the assembly lines. The growth of demand for customized 

products meant high costs in the construction of a line for each product variant. Thus, the 

mixed-model assembly lines emerged, and the traditional straight layout was replaced for 

the U-shaped form to obtain greater flexibility. New problems related to the balance of the 

lines and their sequencing have arisen. This work focuses on the sequencing of these new 

assembly lines, but for this, it is necessary to ensure that there is a theoretically perfect 

balance of the line. For an assembly line that assembles pneumatic cylinders and with the 

possibility of generating more than 200 different combinations, its balance and sequencing 

are arduous and complex tasks. Through the simulation and analysis of the data provided by 

the simulation, it is expected to obtain necessary information. Information about lists of 

product combinations that should be avoided in the sequencing is collected so as not to occur 

unplanned stops in the balancing. When the lists of products with the highest blocking 

percentage are eliminated, the ideal sequencing is expected to be achieved. This method was 

easily tested and verified for a perfectly balanced line of three stations and two products. 

When increasing the complexity to approach to the real line, the number of lists that cause 

the line to block increases exponentially. To minimize the blocked time will be increasingly 

crucial for the company, but other rules can be broken. Clearly defining the weight of 

breaking the rules will allow understanding the impact of disregarding production quantities 

to minimize idle time.  

 

 

 

Keywords Mixed-model Assembly lines, Assembly Line Balancing 

Problems, Sequencing Simulation. 
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SYMBOLOGY AND ABBREVIATIONS 

Symbology   
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𝑘 = 1, … , 𝑚 – workstation 

t(WSk)i – Task time in k and for i. 
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t(Sk,k+1)i – Time in stock between k and k+1 for i. 
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1. INTRODUCTION 

Manufacturing is the art of working. Manufacturing was present throughout 

humankind history; after all, “Man is a tool-using Animal”. Nevertheless, manufacturing, as 

we know it nowadays, has its origins in the 18th century, driven by the invention of the steam 

engine. The steam engine brought unprecedented power to almost any location as opposed 

to previous forms of obtaining power, like power mills, that necessitates being near a water 

supply. Therefore, the steam engine changed manufacturing dramatically, leading to the so-

called Industrial Revolution. The steam engine and mechanization have allowed to produce 

large quantities of products in less time. Furthermore, the steam engine allowed the 

development of trains and railways facilitating the distribution of products to larger markets. 

The combination of these two advances were the foundations for mass production and the 

industry has we know it today. 

By the end of the 19th century, the beginning of the 20th century, a leapfrog in 

industry was given with the advent of electrical energy and the emergence of the assembly 

line (AL). While there is no consensus about who is responsible for the invention of the 

assembly line. There is no doubt that it had its major contribution from Henry Ford with the 

development of the assembly line for his famous Model T. Ultimately, it can be said that 

assembly lines allowed for mass production of complex products. 

With the assembly line for the Model T, Henry Ford was able to achieve 

unprecedented productivity improvements. The Model T front axle production time was 

reduced from 150 to 26,5 minutes. The transmission assembly was cut from 18 to 9 minutes 

and the engine from 594 to 226 minutes. But most impressive was the final assembly line, 

where the time needed for one car was reduced from 12,5 hours to 93 minutes, which 

represent an increase in productivity of 800%. At a given point, a Model T left the plant 

every 40 seconds (Roser, 2016). These numbers show the enormous impact of the assembly 

line manufacturing system on productivity. This impact on productivity had reflects on sales. 

In fact, in 1909, ford sold 17 000 vehicles, while in 1924, he sold 1,7 million of vehicles 

which represented two thirds market share in the US (Hoop & Spearman, 2008) 

Nevertheless, the assembly line for Model T had a significant drawback: The 

lack of flexibility. In fact, the lack of flexibility of Henry Ford assembly line lead Model T 

to remain almost unchanged until 1925 and in 1923 the sale began to decrease. Costumers 
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were not willing to keep buying an outdated car, forcing Ford to launch the Model A, the 

successor of Model T. Nevertheless, this change of models took 6 months to be achieved, 

resulting in high losses for Ford Motor Company. 

Meanwhile, General Motors took another path in the automotive industry. The 

company decided to offer a wide range of models and frequent technical and cosmetic 

redesign. This strategy leads GM to take the place of Ford as the main auto manufacturer of 

the US. GM also used assembly lines, but they were more flexible, with less dedicated 

machines and more flexible operators. They were able to move from a model to a different 

one in 20 days, while Ford required six months to do so. 

The previous text is a short summary of the history of the rise and fall of Ford 

Motor Company and the interested reader can find details of this history in (Roser, 2016). 

The important lesson from this history is that a given production system only will be 

successful if it responds to the costumers needs. Ford assembly line was a success at the 

beginning of the 20th century because costumers wanted cheap vehicles. But it was 

outperformed by the more flexible approach of GM by the end of the 1920’s when costumer 

was interested in more customized products. 

The needs of the market drive evolution in the industry. Throughout the years, 

several changes occur in assembly lines to improve, not only their efficiency but also their 

flexibility. First, the need for flexibility was solved by adjusting human resources based on 

demand variation. Later, it was necessary to improve the flexibility to cope with a broader 

product mix.  

In the 1960’s the Toyota Production System arose, bringing significant impacts 

to the assembly lines. Through the elimination of waste and the use of visual but effective 

tools to design and balance assembly lines, this kind of manufacturing system improved, 

even more, its efficiency. The Toyota Production System became one of the most popular 

methods to answer balancing and flexibility issues of assembly lines. 

Nowadays, in addition to all these characteristics, the market wants what can be 

called mass customization, which leads to high variability in the assembly lines. The mass 

customization of goods or services allows to respond to the specific needs of each customer. 

However, costs expected from the customer are similar to non-customized products. To 

achieve those concepts, arose mixed or multi-model assembly lines. 

This factor implied more decision variables, which makes it difficult to solve the 

assembly problems analytically. To facilitate the resolution, companies started to use more 
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visual tools and different resolution techniques that allow reducing the complexity of the 

issues (Papakostas et al., 2014).  

1.1. Objectives 

This project aims to find the best solutions for a mixed-model assembly line, 

from balancing, and sequencing to obtain the highest operational ratio (OPR), efficiency, 

and better smoothness index. The solutions and strategies adopted seek to increase the 

productivity of the line, reducing idle time, and to discover the impact of removing, from the 

production sequence, a list of products that cause the blockage in the line. All objectives are 

interconnected, and the simul8 was an indispensable tool for the development of the 

simulation model. Only then, all the values were tested, and the hypotheses were easily 

analysed. 

In this way, it is intended to achieve, as a secondary objective, an improvement 

of operational efficiency, through the better use of available resources, which allow the 

maximization of the company's profit. This problem arises with the evolution of the industry 

and the demand, it is also important offer mass customization, without increasing the final 

product price and to deliver it in a short time.  

1.2. Structure  

This dissertation is divided into seven essential stages, distributed in the 

following order: 

1. The Introduction presents a picture of the project's theme, objectives and 

adopted structure. 

2. The Theorical framework consists in bibliographic research that focuses on 

the evolution of assembly lines, their problems until today, the flexibility, and the production 

sequencing, as well as the chosen simulation tool. 

3. The Methodology describes the thinking adopted for the resolution. It is 

possible to visualize through a scheme for the development of the project and the increase 

of complexity. 

4. The Description of the case study presents the product and presents the 

production process. 
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5. The Methodological Approach exposes the initial steps developed for the 

validation of the simulation models, as well as the indicators to compare the different results. 

6. Resolution and Discussion, the results of all analyses performed are presented 

and commented, in this section. 

7. In the Conclusion the results are presented, and a proposal is made for future 

work on questions that have not yet been answered. 
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2. THEORICAL FRAMEWORK  

This work aims to discuss a significant problem that exists in the context of 

industrial manufacturing - the difficulties associated to the management of mixed model 

assembly lines. 

It is important to note that, although there is an extensive literature on the 

problems of the assembly line, the type of solutions and their application in the industry, 

these are mainly aimed at simplified versions in which mass production is considered. The 

solutions that have been published have some obstacles. The obstacles are related to their 

implementation due to their complexity and the challenges of understanding. 

From the need to understand the industrial environment and the solutions found 

so far, it is essential to explore, in a first phase, crucial aspects for understanding the 

assembly lines and all the factors that may be related to them. These include the types of 

products that can be produced on the line, the way of assigning tasks to workstations (WS) 

to guarantee a balanced line, and not least how to respond to the flexibility required by the 

market. It will also be critical to review the forms of sequencing as well as the tool that was 

used to simulate the solutions developed. 

2.1. Assembly Line 

The evolution of manufacturing has gone through several phases in human 

history. And it was interconnected as an increase in the ability to create tools to achieve a 

more enjoyable lifestyle. Primitives formed a pure society that lived off the natural resources 

it found around them. For the collection of goods, they produced their hand tools. It can be 

said that they started the assembling. 

The following phase of manufacture was the development of skilled artisan 

workers. From change in the way of life to an increase in consumerism, led to a rise in 

available capital. This drove the emergence of the manufacturing system, at the end of the 

18th century. At the end of the 19th century, it represented the beginning of mass production. 

The mass production was a consequence of the economic and technological development of 

society. Commerce was faced with the need to offer a wide variety of products and react fast 

to market trends (Rekiek & Delchambre, 2006). 
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Given the above, assembly work is not recent, since ancient people knew how to 

create useful products composed of various elements. However, the product complexity has 

developed exponentially. The product is any item that is designed, manufactured, and 

delivered to generate profit for the generator, meeting the expectations of customer interest. 

Most products consist of several elements. The association of different components forms a 

final production unit. The assembly, therefore, can be described as the component 

aggregation operation, manually or automatically. In the assembly process, the unfinished 

product circulating on the assembly line is called a workpiece (Törenli, 2009). 

In today's industry, the assembly can occur in a line or in a bench, what differs 

in these two methods is the type of layout. A line assembly follows a product layout since 

the workpieces move in a sequence adapted to the development of the product. On the other 

hand, when assembling on a bench, the workpiece is fixed, and the necessary resources move 

around it, presenting the same characteristics as a fixed-position layout.  

The automobile industry is an example of the result of the combination of 

technologies developed over time. Henry Ford is considered the inventor of the assembly 

line, which revolutionized the way of producing cars, and their price. Employees assembled 

cars one by one piece, instead of one car at a time. This principle allowed workers only to 

need to perform one task instead of being responsible for a series of tasks (Rekiek & 

Delchambre, 2006). 

The assembly line is a flow-oriented production system, in which the units that 

carry out the operations are called workstations. At each station, the activities are performed 

repeatedly. A workstation can, at best, contain, at a time, a single product to assemble and a 

worker to perform one or more operations. Operations may be subject to precedence 

constraints. 

The total amount of work required to assemble a workpiece is divided into a set 

of tasks. The time of a task may vary depending on the worker or equipment. The total 

workload required to assemble a workpiece is measured by the sum of the task times 

(Kriengkorakot & Pianthong, 2007a) 

The jobs are launched consecutively on the line and moved from station to 

station. The workpieces are carried by a conveyor that joins the workstations. The transition 

through the workstations occurs as they are transported successively along the assembly line 

(Becker & Scholl, 2006). The finished product at the last station leaves the line. 
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2.1.1. Assembly Line Models 

Since Henry Ford, production systems have been built around a takt time. The 

takt time represents the production rate desired by the company to respond to market 

requirements. In this way, the number of product units to be assembled in each period 

follows an appropriate production plan. The line can be a single-model assembly line, multi-

model assembly line, or mixed-model assembly line. 

The single-model assembly line is used to produce a single product. If a 

deterministic time for tasks is considered, the workload is expected to remain constant over 

time. This model is the most advantageous when the demand is stable, and the delivery needs 

to be as fast as possible. Either when the product has unusual characteristics, and the cost of 

quality is high, or the assembly of the product requires massive resources. 

The multi-model assembly line is practised in the case of products from the same 

family that show significant variations. The creation of a single-model line for each product 

typology requires costs that the company can, eventually, not support. This type of model 

has advantages for products with a stable demand, and the setup time for the product change 

is short. In this kind of system products enter the line in batches, thus, the associated 

problems occur in terms of scheduling and batch sizing.  

The mixed-model assembly line is used for a differentiated set of products, but 

whose primary functions are similar. These types of products are usually modular-based 

products. A typical example is a family of cars, where the car base model can have several 

variants. These lines are advantageous when the products are quite similar, which leads to 

the same resources for assembling all the products. The setup time is zero or very short, and 

one line for each product is not executable. 

2.1.2. Assembly Line Configurations 

The layout is the physical organization of the elements of a system, considering 

the physical restrictions, resource requirements and the expected result of the system. The 

physical configuration of an assembly line can affect its efficiency as well as costs. A large 

part of the total manufacturing costs is related to the transfer of materials. The performance 

of a line can be improved by reducing distances between workstations or approaching the 

necessary resources. A critical point in deciding the layout is the preliminary analysis of the 

product (Becker & Scholl, 2006).  
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The straight assembly line was initially designed for mass production. Mass 

customization has become challenging for this organizational form. The reorganization of 

the system was developed to maintain the advantages of traditional assembly lines while 

being able to produce customized products at low cost (Otto & Li, 2020). 

New arrangements for assembly lines were developed like the U-shape, C-shape, 

circular, parallel, and two-sided, for example. Each assembly line type was proposed to 

answer to new market characteristics based on the type of product produced.  

Because of the introduction of the just in time production principle, the U-shaped 

line brought various advantages over the traditional configuration. The U-shape line allows 

having fewer workers than workstations due to the proximity between them. 

When the longest task time exceeds the specified cycle time, comes up the 

parallel stations. A standard solution is to create stations with parallel or serial stations, 

where two or more workers perform the same task. This concept reduces the average task 

time duration. 

It is common to duplicate the entire assembly line when demand is high enough 

to justify it. Parallel lines have the advantage of shortening the response time but may require 

resources. These systems are coordinated separately. 

For complex products, the assembly system is most often broken down into 

subsystems. These subsystems are called work centres that are more accessible to manage 

than the entire system. 

2.2. Flexibility 

According to the literature, flexibility is a complex, multidimensional and 

challenging concept. The concern with flexibility is not new, and it is believed that it has 

been around for more than 80 years. However, over the years, flexibility has gained higher 

weight in the strategic dimension for companies. Hart, in 1940, recognizes that flexibility 

would be the fundamental means to face the uncertainties of the future. 

By the 1950s, the traditional thinking that the machine was designed for the 

product, changed. The operation replaced the product. The machine started to be designed 

in terms of the functions that it will perform. In 1987, Jaikumar said that flexible 

management was poorly understood in manufacturing systems in the United States, with few 

exceptions. Mainly, compared to the Japanese, who had higher levels of flexibility. A new 

way of work replaced a conventional way, but it got worse results. Technology itself was 
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not the problem, as what would make the difference would be more effective resource 

management. 

A system’s flexibility is the ability to adapt to the environments it confronts. A 

flexible system can control the reaction to uncertain environments through an increase in 

variety, speed, and quantity. 

Manufacturing flexibility means being able to adapt resources to produce 

different products efficiently and with the necessary quality. Flexibility is a property of the 

elements of the manufacturing system that are interconnected to provide the adaptation of 

resources to different production tasks, (Sethi & Sethi, 1990).  

The manufacturing flexibility can provide organisations with the ability to 

change levels of production rapidly, to develop new products more quickly and more 

frequently, and to respond more quickly to competitive threats (Oke, 2005). Manufacturing 

flexibility is the broad universe, and it is crucial to think about everything. The adaptability 

is associated with the machine, the material handling system, the operation, the process, the 

product, the routing, production volume, among others. The essential flexibilities can be 

considered the flexibility of the product, production, and market. 

Product flexibility is the facility with which new components can be added or 

replaced in the existing ones. In other words, product flexibility is the ease with which the 

elements that are being used for production can be changed quickly and without extra costs. 

The flexibility of the product is dependent on the flexibility of the process as changing the 

components can imply changes in assembly time and costs. 

The flexibility of production allows the manufacture of products with 

considerable variations without a significant capital investment. Production flexibility 

defines within the product set, represented by the product’s flexibility, its form of processing 

without changing the system configuration. 

Market flexibility is the expertise with which the manufacturing system can 

respond to the changing market circumstances. This concept highlights the importance of 

market orientation, mostly since market changes occurs at high speed. When considering the 

market, the flexibility of response is related to the flexibility of the product, and the 

flexibility of production, it is a long-term response flexibility. 
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2.2.1. Product Flexibility  

The increased demand for products with greater variety and shorter life cycles 

forces companies to develop flexible manufacturing systems. To meet this need, companies 

have implemented assembly lines for mixed models (MMAL) and multi models (MuMAL). 

The creation of a variety of products on the assembly lines helps to absorb volume 

fluctuations. Both offer product flexibility, which creates the ability to handle changes in the 

product mix, (Mönch et al., 2020).  

Modularity is a powerful strategy that has proved useful in a large number of 

fields dealing with complex systems and is used for different functional purposes, for 

example, product design, production and use. Modular product design is a product design 

activity made up of modules. Based on a cross view of all the different product families and 

the main general modules existing in them, a general assembly sequence is developed (Asadi 

et al., 2019). 

Considering the previous concept, the mixed-model assembly lines have 

modular products as their final product. An MMAL consists of creation of distinct product 

units on the same line without the constitution of production batches. These products have 

numerous variations with a small complexity. The Multi-model allows the assembly of 

products with entirely different characteristics in the same production line. In the production 

of multi models’ batches of the desired size are created to be able to meet the market. 

Currently, customer-centric manufacturing systems adopt mixed assembly lines. 

These models allow the assembly of different work content without long setup times. When 

inserting several models on the same line, companies face two associated problems: the line 

balancing and the sequencing problem. They are closely related to the issue of distributing 

the total workload across the stations in the most uniform and compact way possible, 

considering a set of precedence restrictions, (Otto & Li, 2020) 

2.2.2. Production Flexibility - U-shaped Assembly lines 

The balancing of the MMAL becomes hard with a traditional line configuration. 

In that way, the U-shaped line was an excellent key to bring betters solutions for a proper 

balancing of the flexible assembly line. 

In addition to flexibility, it is essential to take into account the agility and 

reconfigurability of the assembly lines. The development of new products and the 

establishment of the necessary capacity to respond to new markets are linked to the system's 
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agility. Reconfigurability is the ability to adjust the production and functionality of resources 

to different circumstances through structural rearrangement or changes in system 

configuration, (Asadi et al., 2019).  

One of the notable developments resulting from the implementation of just in 

time (JIT) production was the replacement of traditional straight lines with U-shaped 

production lines which brings several advantages. The main benefits of the U line compared 

to a straight line include: 

• greater operator flexibility 

• greater volume flexibility 

• the number of workstations never exceeds what is necessary for a straight 

line, and may even be less 

• greater flexibility in moving workpieces 

• Compact size allows reduced movement of operators and stock 

• Greater visibility and communication between the team 

• Ease of reworking a product with quality problems, since the end of the line 

is parallel to the beginning, (Sethi & Sethi, 1990). 

The most significant gain in using U-shaped lines is in terms of productivity. 

Productivity can be improved by about 40% when there is an adequate balance of resources 

on the assembly line, (Cheng et al., 2000) 

2.2.3. Production Flexibility - Seru Assembly lines 

The word seru means cell in Japanese. Seru is following two guidelines kanketsu 

and majime. At kanketsu, the cells can perform all the required tasks and have the necessary 

tools to produce a product or a module. Majime means that all the resources are located 

compactly, (Liu et al., 2014). In that way, the space between workers, parts, workers, and 

parts are reduced as much as possible, (Sun et al., 2019). 

The seru production was usually applied in assembly, testing, and packing. This 

production system can be split into three different types divisional seru, rotating seru, and 

yatai. Design of seru depends on the selection of processing and transfer rules, production 

balancing and planning, (Liu et al., 2014).  

In a divisional seru, each operator is responsible for one operation, and have an 

area to work. An operator travels back and forth at his workstation. The divisional seru is 
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efficient for low-skilled workers in cross-training, complex products with several 

components and to products requiring precision operations.  

In rotating seru, the operator performs one by one order per time. The operators 

perform all the assembly tasks for the product. This type of seru has a high performance in 

environments with a large variety in production volumes and with an intermediate level of 

complexity. 

Yatai is the seru production with one worker in one workstation. It is the best 

solution for high precision products, small volumes, and frequent variation in the output. 

The Yatai should only be implemented after the evolution of the two other types of seru in 

the organisation. Thus, becoming the main objective of the organisation, (Liu et al., 2014). 

2.3. Balancing Problems 

One of the purposes of the assembly line is to produce high quality and low-cost 

products. However, its installation is a decision that requires significant capital investments. 

Thus, this system must be designed and balanced to perform in a suitably way, (Asadi et al., 

2019). In addition to restoring a new system, a functioning system must be rebalanced 

periodically or after modifications in the production process. 

There are numerous problems in the assembly line, wherein one of the most 

relevant, and studied, is the issue in the assembly line balancing (ALBP), (Becker & Scholl, 

2006). ALBP was first introduced by Salveson (1955).  

The task process time is a fundamental parameter in ALB. Simple tasks can have 

a small variation in process time, while complex and unreliable tasks can have highly 

variable execution times. Ghosh and Gagnom, in 1989, considered that the type of time 

admitted should be included in the ALBP classification. 

In the case of human workers, some factors have a significant influence across 

AL. Operators sometimes take longer to operate than after they become familiar with it. The 

dynamic time associated with the human factor may have associated systematic reductions 

possible due to the learning effects or successive improvements in the production process, 

(Rekiek & Delchambre, 2006).  

In this way, they consider that ALBP can be classified as deterministic or 

stochastic. For the deterministic version of the problems, the task times have a fixed time, 

and the variability is not relevant. The category of stochastic problems introduces the 

concept of task time variability. This consideration makes ALBP more realistic for manual 
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assembly lines. In manual assembly, workers' operating times are rarely constant. With the 

introduction of stochastic task times, it is essential for a resolution as close as possible to the 

reality of AL. 

The balancing problems have the objective of optimizing a proper goal where 

the purpose will depend on the association of tasks with jobs, as well as respect for 

precedence. (Kriengkorakot & Pianthong, 2007a), described the ALBP, through which 

problem-solving offers the assignment of assembly tasks to workstations to optimize 

performance measures while executing technological, operational, and organizational 

constraints on the assembly line. 

Currently, companies have as main objective to maximize the use of the line. 

Line utilization is measured by line efficiency as the productive fraction of the total line 

operating time. This productive efficiency depends directly on the cycle time and the number 

of stations, (Kriengkorakot & Pianthong, 2007b).  

ALBP has been studied for several decades, and since it is a significant problem 

in the literature, several classifications have been added. As it is a complex problem, the 

designations differ from a simplified version of the problems to a generalized version. This 

classification considers several different restrictions and objectives. 

2.3.1. The simple assembly line balancing problems (SALBP)  

This type of problem considers a few requirements that the line needs to obey to 

transform the complex subject in a simple issue. In SALBP, only the central part is deemed 

to be relevant about the number of stations, the tasks assigned and their cycle time. The 

assumptions to the SALBP can be split in the premises of the production line and the jobs.  

The assembly line produces a single model, and the takt time is fixed and known. The 

assembly task has a known processing time, and it does not depend on the workstation. Also, 

a job can be performed in any workstation, but it cannot be divided by various workstations. 

• Type 1 (SALBP-1) has as main objective to minimize the number of stations 

for a given fixed cycle time. 

• Type 2 (SALBP-2) aims to minimize the cycle time for a certain number of 

fixed stations. 

• Type 3, 4 and 5 has the same main objective the maximization of the 

workload smoothness index, 
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 𝑆𝑚𝑜𝑜𝑡ℎ𝑒𝑛𝑒𝑠𝑠 𝐼𝑛𝑑𝑒𝑥 = √∑ (𝑆𝑚𝑎𝑥  −  𝑆𝑘)2
𝑚

𝑘=1
 ( 2.1 ) 

, 𝑤ℎ𝑒𝑟𝑒 𝑆𝑚𝑎𝑥 =  𝐶𝑦𝑐𝑙𝑒 𝑇𝑖𝑚𝑒, 𝑎𝑛𝑑 𝑆𝑘 =  𝑊𝑜𝑟𝑘𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑊𝑆 𝑘. 

The SALBP-3 consider the maximization of the workload smoothness index and 

the workload ratio. SALBP-4 contemplate the maximization of the workload smoothness 

index and more one different objective like balancing delay, for example. The SALBP-5 

only obtain a maximization of the workload smoothness index. 

• Type E (SALBP-E) is the version of the most general problem, intended to 

maximize the efficiency of the line. Thus, minimize cycle time and the number of stations. 

• Type F (SALBP-F) is a viability problem that does guarantee the existence 

of balance for a line, given a combination of cycle times. 

2.3.2. The general assembly line problems (GALBP) 

In the literature, all kinds of problems that remove some assumptions from 

SALBP are called generalized assembly line balancing problems (GALBP). This class of 

problems becomes very extensive. This type of problems contemplates the more relevant 

issues in practice since it encompasses problems with different configuration lines and mixed 

products. 

Figure 1 is the schematic representation of the ALBP classification suggested by 

(Becker & Scholl, 2006).  

 

Figure 1 - ALBP classification, (Becker & Scholl, 2006) 

In GALBP class, the most studied problems have been the U-shaped Assembly 

line balancing problems (UABLP) and the mixed-model Assembly line balancing problems 

(MMALBP).  
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The balancing problem of the mixed-model assembly line (MMALBP), intends 

to assign tasks to stations considering the different task times for different models. So, the 

objective is to find the number of stations and a cycle time. As well as a line balance for 

which your capacity or cost target is optimized, (Scholl et al., 1998). In opposite to the single-

model case, the cycle time is no longer the maximum time available in each station to 

perform the tasks on a workpiece, but the average time defined based on the desired 

production rate. 

The problem is more complicated than in the case of a single model because the 

task times of the different models must be smoothed for each workstation, characterized by 

horizontal balance, (Merengo et al., 1999). In the absence of typical cycle time, that is, all 

stations operate at a single speed, workpieces may have to wait before entering the next 

station, and stations may be idle when they need to wait for the next piece of work. This idle 

time is partially solved through balancing and sequencing. The better this horizontal 

balancing works, the better solutions will be possible in the problem of sequencing mixed 

models.  

The U line balancing problem (UALBP) considers the case of U-shaped 

assembly lines, and a single product, where the stations are arranged inside the U. 

Consequently, workers can work on both sides of the U. That is, it allows for a smaller 

number of workers for the same amount of stations. Therefore, the worker who performs the 

first task at the first workstation can also perform the finishing job at the last workstation. 

Accordingly, precedence constraints are modified compared to a traditional configuration 

line. 

The general problems contain practical problems that include processing 

alternatives and allocation restrictions. It is believed that there is no feasible method for 

resolving it, since most of studies have no or very limited industrial case applications and, it 

only, offer numerical experiments to validate their proposed approaches, (Mönch et al., 

2020). Conventional resolution methods, such as enumerative methods, evolutionary, 

heuristic approaches, are time-consuming for more complex problems. Through the read 

literature, it can be concluded, the GALBP is not so investigated, which means that the 

resolutions for it are few. Due to its complexity, the methodologies require a vast knowledge 

of the companies. 
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2.4. Sequencing 

If several models are assembled on the same line, the ALBP is connected to a 

sequencing problem that must decide the assembly order of the model units. The sequence 

is essential concerning the efficiency of a line, as task times can differ considerably between 

products. It is crucial to consider that a mixed model line produces the units of different 

models in an arbitrarily mixed sequence, (Bukchin & Tzur, 2000). 

The planning of mixed models (MMP) has received increasing attention over the 

past decade. MMAL is more susceptible to inefficiencies, such as work overload, line 

stoppage, and offline repair. The sequencing of mixed models aims to find a placement of 

all model units to be produced so that inefficiencies are minimized. In other words, its main 

objective is a smooth balance of various products sequenced on the same assembly line, 

(Kreiter & Pferschy, 2020). 

Recent publications focus on short-term re-sequencing decisions, (Taube & 

Minner, 2018), and constraints such as machine lead time, (Abdul Nazar & Madhusudanan 

Pillai, 2018).  

2.4.1. Heijunka 

The lean production method that preserves the production from variability in the 

sequence of tasks to be processed is Heijunka. It means smoothing in Japanese. The purpose 

of the Heijunka is to avoid irregularities on the production schedule that can eliminate waste, 

such as starved or blocked time, (Grimaud et al., 2014). 

This lean method, when balancing the production, reduces variation in the 

production process, as well as the bullwhip effect, and minimises lead time. Minimising 

these factors allows greater use of production capacity, (Korytkowski et al., 2013). 

The smoothing can be done, considering the production volume or the product 

type. In the case of levelling by a type of product, it permits to prepare the production based 

on the average demand for each product in the catalogue, (Bohnen et al., 2011). Therefore, 

fluctuations in customer orders are not transferred directly to the manufacturing system, 

allowing for smoother production and better utilisation of production capacity, 

(Korytkowski et al., 2013). 

Heijunka distributes the tasks that take the longest time in the entire production 

schedule, to provide greater average use, assuming that the cycle time is kept constant over 
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time. The smoothing of production becomes a cyclical plan of a levelling pattern, (Grimaud 

et al., 2014). This creates regularity on output, simplicity, and coordination. The pattern is 

determined and kept constant for a defined period, (Rewers et al., 2017). Whenever 

significant changes occurred in the product mix or consumer request, the levelling pattern 

needed to be adapted. 

A Heijunka box is a scheduling tool used to view work items that need to be 

performed, (Grimaud et al., 2014). A typical Heijunka box has horizontal lines for each 

member of a product family, and vertical columns that symbolise equal time intervals. 

Control is done using the conventional Kanban method. Each Kanban is placed in the slots 

created in proportion to the number of items to be produced.  

It is a system that enables to view the orders for each product, and according to 

demand, a production sequence is established to achieve an optimal flow. 

2.5. Simulation 

The desire for knowledge of the future motivates the human being to use 

techniques such as simulation to try to predict and understand the world around him.  

Before the 17th century, the search for predictive power was limited to deductive 

methods of philosophers such as Platão and Aristoteles. In 1620, Francis Bacon recognized 

the limitations of speculative philosophy as a methodology for predicting the future. 

According to him, reason alone has no ability to predict, and it achieves it only with the help 

of observation. Deductive and inductive logic must go together in search of the knowledge. 

Francis Bacon is considered the creator of operational research, which consequently 

originated the simulation, (Naylor, 1971). 

The impossibility of testing techniques and hypotheses for resolution directly in 

the real system motivated the human being to methods such as simulation. Simulation is a 

word that has recently appeared in scientific documentation to describe the ancient art of 

model building. 

Simulation is a method used to study the performance of a system through the 

formulation of a mathematical model, which must reproduce, in the most accurate way, the 

characteristics of the original system, (ECKER & KUPFERSCHMID, 1988). Several factors 

affected the performance of the system, such as the manipulation of the model and the 

analysis of the results. 
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Simulating is building models of real systems, experimenting with them, and 

learning from them. The models are a description of the systems. They are built according 

to the problem to be solved following an organized structure. The simulation language 

intends to represent any specific case, through the insertion of specific values for the 

parameters. Simulation languages have the benefit of reducing the time required to 

implement a model. 

Simulation has become a study approach increasingly used in the most varied 

areas of knowledge. The increasing complexity of the problems and the more availability of 

computational resources were two significant drivers of the development of the simulation. 

Simulation has the following characteristics: 

• More realistic models through greater freedom in the construction of the 

simulation model. Compared to linear programming, the simulation does not require framing 

a problem in a given standard model to obtain a solution. 

• Evolutionary modelling process: start with a relatively simple model and 

increase its complexity little by little, identifying more clearly the peculiarities of the 

problem. 

• The "what if" analysis; the goal is to clarify the possible consequences of a 

set of decisions. 

• Application in problems of which we do not have in-depth knowledge, many 

real-life problems refer to situations in which we only have partial knowledge about the 

variables or relations. Simulation is one of the few tools for studying this type of problem. 

• Ease of understanding concerning a set of mathematical equations. 

• Quick solutions when the variables change quickly and commit resources for 

the execution of tests. 

• It can be applied to the most varied problems and contexts. 

• Once a valid simulation model has been developed, new policies, operating 

procedures, physical arrangements, or methods can be explored without disturbing the real 

system. 

• The simulation provides a better understanding of the interactions between 

the variables of complex systems. Thus, allowing the diagnosis of problems, the 

development of perception, and a systemic view of the overall performance of the problem. 
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• Preventive preparation of changes and investment analysis, since the 

transformation of a system, can incur high costs, the simulation is a low-cost investment that 

allows an analysis of consequences. 

Simulation as another tool has disadvantages: 

• Model building is not accessible and requires training. The technique is 

learned and perfected over time and through experience. 

• The results of the simulation can be difficult to interpret, as the outputs of the 

simulation are usually random variables to implement in real life. 

• Model development and simulation analysis can be costly in terms of 

financial resources and time. 

• Low precision of the results makes the simulation inaccurate. It is usually a 

consequence of using the sample, and of a poorly formulated model. 

2.5.1. Simulation of an assembly line 

The simulation is applied to facilitate precession, and to evaluate the 

performance. Examining alterations into the line costs money, people, and time are required 

to do the test and estimate each change. Currently, the complexity of an assembly line is 

high. This complexity can vary depending on in terms of product, resources, and the 

allocation of resources to workstations. 

A significant disadvantage arises with the increase in the number of products to 

be produced in an assembly line, the complexity rises. In this point, the simulation is more 

profitable than the analytical methods. Nevertheless, the simulation must be designed so that 

the degree of complexity gradually increases. Only in this way, the probability of errors 

occurring is less than in the other methods.  

A simulation model of an assembly line requires developing a model with the 

same characteristics of the shop floor. These characteristics may already exist or to be the 

features that are expected to be built in the factory. This technique becomes the most 

advantageous to be able to test and to compare all the modifications. 

The simulation is beneficial when it is possible to utilize optimization tools to 

find a better solution for the case study developed with simulation. This alliance does not 

require any knowledge of the analytical methods and the performance time is smaller with 

the simulation. 
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The formulation of the problem from which it is intended to be optimized must 

be made as close to reality as possible. Likewise, the simulation must also be carefully 

formulated. Bearing the above, the data obtained from the simulation should allow 

understanding the principal conclusions for the real problem. Otherwise, the simulation will 

not be advantageous and will not help to draw any outcomes. 

2.5.2. Simul8 

Simul8 was the simulation software chosen for this work. This software allows 

to build any model from just five principal building objects: Arrival, Queue, Activities, 

Resources and Exit. It is a simple to understand and visual software which creates intuitive 

learning. Although its dialogue boxes avoid the need to program long lines of code, the 

software also has an internal language: Visual Logic. 

A simulation wizard, based on an artificial intelligence technique, automatically 

informs you of the problems that may arise from a given model. This is especially interesting 

for beginners in simulation, who need more help when building a model. 

Simul8 has the Simul8 Viewer version that allows running simulation models on 

computers without Simul8 installed. This version can be obtained free. Simul8 Viewer even 

enables the user to change input data and generate new output data. 

Simul8 has the possibility to associate simulation with other specific 

functionalities, programs, and software. Simul8 incorporates specific functionalities or 

packages such as Optquest (optimization), Stat: Fit (input data analysis), Transport 

(modelling of transport systems, such as AGV and forklift trucks), Virtual Reality (virtual 

reality module), and Process (continuous simulation). Simul8 allows the exchange of 

information with several other software, such as Word, Excel, AutoCAD, and databases in 

SQL standard, for example. The import and export tools allow the conversion of models 

to/from Automod, and Witness simulation software. It is also possible to import and simulate 

models from software to create process flowcharts, such as Visio, Flowcharter, Igrafx, Mega, 

and Salamander. Simul8 also incorporates a library and icon editor that reads graphic files 

in the BMP, JPEG, and GIF standard.
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3. METHODOLOGY 

The initial diagnosis of the assembly line was carried out in partnership with a 

group of students. The students had already performed data collection on the variables 

involved in the production times. In addition to the task times, to understand the problem, it 

was essential to understand the product, the process, and the assembly line. 

After an initial diagnosis, the work methodology can be characterized by a four-

step cycle, Figure 2. The steps can be described by the development of the simulation, 

collection of the simulation results, and the respective analysis and evaluation. These steps 

allowed us to verify if the changes have the better performance in each model developed. 

Otherwise, a new cycle was performed. 

 

Figure 2  - Cycle with the analysis steps of each simulation model developed 

The simulation performs the actions of the evaluation made previously and 

return the data for processing. The implementation of corrections in the simulation allows 

the reflection of their positive and negative impacts. 

After implementing the improvement actions, it is necessary to collect and 

process the simulation data. The simulation does not return the results to perform the direct 

analysis. Results are measured by performance indicators considered adequate to estimate 

the impact of changes made to the system. The processing of the data serves to place them 

in the format necessary for the analysis. 

The analysis of the data obtained for each cycle supports extracting conclusions 

and detecting possible problems. The detection of failures is only possible through the 

review of finished products and the analyses already performed. 
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The final cycle phase is the evaluation of the analysis results. This phase serves 

to define the changes to be performed in the next simulation, considering the continuous 

improvement of the model.  

The work sequence defined for the execution of the data collection can be 

analysed through Figure 3. It is also possible to obtain information regarding decision-

making that may be necessary during the analysis of the data. These are used to identify a 

simulation with invalid data. The occurrence of non-valid data requires the reformulation of 

the simulation and subsequent repetition of the data collection and analysis steps. 

 

 

Figure 3 - Work Sequence Chart 
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Following the characterization of the line, it is crucial to building complexity in 

the simulation gradually. The gradual construction of complexity aims to validate and verify 

the simulation model. In terms of complexity, the problem was divided into three, Figure 4. 

The first phase was assumed to be the base phase and less complex. This phase consists of 

only three workstations and two products. The following steps are intended to characterize 

the real assembly line in relation to the number of workstations, and with a gradual evolution 

of the number of products. 

 

 
Figure 4 - Complexity levels of the models 
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4. DESCRIPTION OF THE CASE STUDY 

The project presented in this document was performed in a laboratory assembly 

line, present at LISPEN in ENSAM Lille. This assembly line can be used for teaching and 

for research. In terms of research, the projects aim to develop novel approaches for line 

balancing and sequencing, seeking the development of more flexible assembly lines. This 

objective can be attained through the introduction of new technologies, like collaborative 

robots or digital twins’ solutions for decision making, or through the development of new 

approaches for line balancing and sequencing. 

The assembly line of the laboratory is a U-Shaped line composed by 5 stations. 

Figure 5 show the assembly line used throughout the project. In the following subsections, 

a description of the products to be assembled in this line is presented. 

 

 
Figure 5 - Assembly line at LISPEN in ENSAM Lille 

4.1. The product and the assembly process 

The product used in this work is a pneumatic cylinder, and it belongs to a 

module-based product family. It means that the product variants are generated by selecting 
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combinations of alternative components that could be assembled on a base product, (Wang 

et al., 2011). 

The base consists of a pneumatic cylinder. It has six distinct components, that 

must respect the task’s precedence in their assembly, Figure 6. The components of the base 

product must be assembled by screwing the back with the body of the cylinder. 

Subsequently, the piston stem is placed into the hole in the front part, and the final step will 

be to insert the piston into the body of the cylinder and screw the front section of the cylinder 

with the first parts assembled. Figure 7 presents the precedence diagram to the pneumatic 

base assembly process.   

  
Figure 6 - Pneumatic Cylinder  

 

 
Figure 7 - Precedence Diagram to the pneumatic cylinder base 

 

Several components can be added to the base product, the pneumatic cylinder. 

These components can be divided in five groups according to their function: connectors, 

stems, rotative joints, fixing flanges and sensors. Figure 8 presents the set of components 

that can be assembled to the cylinder. The maximum number of components that can be 

added to the cylinder are:  two connectors, two stems, one rotative joint, three fixing flange 

and one sensor. 
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Figure 8 - Base and the Components 

The assembly tasks of the additional components do not have priorities between 

them. However, when the product requires the proximity sensor (Figure 8), the physical 

characteristics of the sensor constrain this assembly task to be the last one. The precedence 

diagram for the assembly of the pneumatic cylinder in is most complex form (with all the 

available components) is presented in Figure 9.  

The subcomponents of the pneumatic cylinder are the body of the cylinder 

components (10,21,22,30), the hex nuts (100) and the screws (110). 
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Figure 9 - Precedence Diagram of the Pneumatic cylinder 

The products family can be divided into scale-based and module-base. A 

modular base family consists of different products but with the same product base. On the 

other hand, a scale-based family consists of several products but on the same scale of 

dimensions. In our case, it is a family with a modular base. The products are generated 

through the combination of alternative components that can be installed in the base product. 

Depending on the types of elements, the time that each one needs to be assembled differs. 

Depending on the type of parts associated with a product, it can be categorized 

into four different configurations. The feasible categorization is A, B, C, and D 

configuration. This creation of categories is artificial, established to mix similar kinds of 

components and obtain different work contents. The D configuration is the group of the base 

product, so this group only contains one product and is the base module for the others. Figure 

10 represents the variants that may exist in the production. 
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Figure 10 - A, B and C Configurations 

The C configuration is the most complex product family. Thus, the following 

precedence diagram concerns a product of the C configuration, Figure 11. 

 

 
Figure 11 - Precedence diagram for one product of the C configuration 
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4.2. Problem Description 

Different models throughout the production sequence characterize the 

production of mixed models,(Papakostas et al., 2014). When considering the problems of 

balancing assembly lines for mixed models, the objective consists in  determining how tasks 

will be allocated on the line, i.e., which tasks will be performed in each workstation and 

defining the sequence by which the different products will be produced, (Sparling & 

Miltenburg, 1998). 

In mixed-model production, there are more difficulties in line balancing 

compared to single model production. A production of mixed-model products consists of the 

creation of distinct product units on the same line without the constitution of production 

batches. The first adjustment that directly influences the system is to remodel the physical 

arrangement of the production line from a typical straight shape to a U shape, (Miltenburg, 

2001).  

U-shape lines are widely adopted for this type of production. According to 

several authors, the U-shaped lines have several positive factors compared to the more 

traditional ones. The elements are greater volume flexibility, the flexibility of operations, 

reduced number of stations, convenient transport of material, and visibility and teamwork, 

(Cheng et al., 2000).    

The problem in question reflects a U-shape line with mixed-model production.  

Since we suggest a solution to solve a problem declared as a mixed model assembly line that 

breaks the weight of a single product in line with the SALBP premise, our problem is 

considered a GALBP. 

The purpose of this work is to maximize the operational ratio (OPR) of the line. 

The OPR shows the difference between actual production and expected production. This 

indicator means that the maximum performance of the line is expected to be the most 

beneficial one, already contemplating the necessary stops.  

The cost of producing several products on the same line should not be directly 

related to the number of different products, just as the number of different products on the 

assembly line should not depend on the number of quality problems in the final product. 

Accordingly, this operational goal will make it possible to understand how much 

the line diverged from the projected objective. Just as accounting for the line output does not 
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require any new measurement on the line. It is only necessary to collect this data at the end 

of the working day, or within a specified time interval. 
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5. METHODOLOGICAL APPROACH 

In this chapter, the approaches taken during the development of this work will 

be presented. To starting was essential to understand how the tasks were assigned to the 

workstations. Through three key indicators, it was verified if the line was balanced, and then 

the simulation model was developed. For the development of the simulation model, the 

complexity was gradually increased, and the simple model was validated and verified 

through a manual resolution. After the model is built, it is crucial to format the values 

collected from the simulation. The implementation of the results on the line will be the final 

stage of the entire development of this work. 

5.1. Understanding Product Assembly 

The simulation can be difficult to develop when it is proposing to describe 

complex circumstances. Also, our purpose was to familiarise with the tool and allow yourself 

to check the model — a simple model for which the exact solution can be found manually.  

In this way, the case study will be simplified at an initial stage.  

Accordingly, the simulation will not have errors if all versions are validated. 

Even the simplest ones require to be correct, only then it is possible to improve the scenario 

of the simulation without mistakes. 

The assembly line consists of one worker per station and a stock unit between 

stations. These are some of the characteristics of a SALBP problem. What makes this 

problem a GALBP is that the line will have more than one product. 

The case study starts considering one straight assembly line with three 

workstations and two different products. These two products were created to allow a perfect 

theoretical line balance. The time required to execute the assembly tasks for each product in 

each workstation are presented in Figure 12. Product 1, with configuration A, will take 18s 

in WS1, 45s in WS2 and 28s in WS3. It can also be observed that in this simplest problem 

it is intended to produce 50% of each product. 
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Figure 12 - Three WS and two products 

Subsequently, the real case study will consider one U-shape assembly line with 

five workstations and three different products, Figure 13. 

 

Figure 13 - Five WS and three products 

The product families were created in such a way that the most extended tasks are 

split into different product families. Therefore, the activities with the lengthiest duration of 

which product will be attributed to different workstations. 

5.2. Balancing 

It is essential to understand what shows us that the line is balanced or has the 

desired characteristics for the analysis. For this, we will calculate the weighted average cycle 

time, the smoothness index, and the balancing delay.  

The weighted average cycle time (WACT), of the assembly line, describes an 

indispensable factor since it provides a representational average cycle time for a mixed 

model context, (Rabbani et al., 2014).  

Different products may have distinct task times at the same workstation, and in 

that way, the cycle time for each product will change. In this case, the WACT was related to 

the workstations, assuming that there is no change in the task time with the different 

operators. An objective that is intended to be achieved is that the WACT becomes equal to 

the takt time.  

However, as this is the average representative of the cycle time, a variation in 

the product mix or the production proportions leads to changes. The variations that can occur 

in the line, lead to the need for a new balancing optimisation. 

The WACT depends on the quantities produced per product. For this phase, the 

volumes produced will be 50% of each configuration. The product with the task with the 

longest duration belongs to configuration A, Figure 14. 



 

  METHODOLOGICAL APPROACH 

 

 

Ana Sofia Jesus Gonçalves  35 

 

 

 

Figure 14 – Weighted average cycle time calculation 

In this case the WACT of the line will be 30s. For example, for WS1 we have 

18s x 50% + 42s x 50%, Figure 15. 

 

Figure 15 - Graphic representation of the WACT 

WACT can help to understand where the assembly line is unbalanced and 

support to detect the most advantageous changes when adjusting activity allocations. 

However, it should not be used exclusively because the WACT is calculated with a 

proportion. When products are shipped into line, the balance is not necessarily verified, 

Figure 16. 

 

Figure 16 - Weighted average cycle time recalculation 

To ensure that the line is balanced, other agents are essential in addition to a 

good WACT. Other factors can be, for example, proper planning and not having a big 

difference between the time of activity in each station. The indicators that complement the 

analysis of the line will be the smoothness index and the balance delay. 
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Smoothness index (SI) is an indicator that is associated with the balance 

provided to the assembly line. An index closer to zero indicates a perfect smoothness.   

Balance delay (BD) is the quantity of idle time on the assembly lines caused by 

the uneven division of activities between stations and operators. 

 𝐵𝐷 = ⌈{(𝑚) ∗ (𝑇𝑎𝑘𝑡𝑇̅̅ ̅̅ ̅̅ ̅̅ ) − (∑ 𝑊𝐴𝐶𝑇𝑘

𝑚

𝑘=1

)} (𝑚) ∗)𝑇𝑎𝑘𝑡𝑇̅̅ ̅̅ ̅̅ ̅̅ )⁄ ⌉ ∗  100% ( 5.2 ) 

 

The formulas (5.1) and (5.2) are an adaptation from the Smoothness index and 

Balancing delay, of (Kumar & Mahto, 2013). The alterations aim a more advantageous 

adjustment to this case study. 

5.3. Construction of Gradual Complexity Simulation 

The simulation is a tool that allows to analyse the performance of a model. The 

model must reproduce the real characteristics of the system as faithfully as possible. Only in 

this way will the model allow conclusions to be drawn that are valid and applicable. 

The gradual construction of the simulation serves to allow a better perception of 

a more complex model, as well as the validations, become more natural. Progressive 

development will also permit a definition of the complexity of the model to be achieved. 

In an initial phase, the model is simple enough to be able to be developed 

analytically. The initial results serve to focus on the results of the problem. In this way, the 

most complicated issues will not become abstract. Only then will the modelling of a problem 

become concrete, and its analysis more accessible. 

Accordingly, several models were used for data analysis. The first model built 

represents, in a simplified way, the assembly line. With only three stations and two products, 

it will allow a straightforward analysis of the data obtained as well as the validation of the 

results, Figure 17.  

 𝑆𝐼 = √∑ (𝑊𝐴𝐶𝑇𝑚𝑎𝑥  −  𝑊𝐴𝐶𝑇𝑘)2
𝑚

𝑘=1
 ( 5.1 ) 
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Figure 17 - Simulation model with three WS and two products 

The second model will represent the real line. However, it does not represent the 

actual quantity of products produced in this line, Figure 18. Later, after understanding it, it 

will be easier to increase the degree of complexity, Figure 19, to represent the actual quantity 

of products. 

 
Figure 18 - Simulation model of the real line with fewer products 

 
Figure 19 - Simulation model of the real line 
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5.4. Simulation Validation/Verification 

The validity of the model data and the identification of possible associated 

failures is vital to guarantee the credibility of the data obtained. 

To validate the model two experiments were generated. These experiments were 

very simple to allow the realization of a manual simulation. With the results of this 

experiments it was possible to verify if the simulation model developed represented 

conveniently the real scenario and if it would be easy to collect the necessary indicators. 

Two hypothetical products were created in which only one time of a task is 

different from the time of the other tasks. This task has a lower value than the others and it 

can occur in workstations 2 and 3, distinctly for each experiment. The tasks time for each 

hypothetical product are presented in Figure 20 and Figure 21.  

 

 

Figure 20 - Task Times for experience 1: validation the Blocked time 

 

Figure 21 - Task Times for experience 2: validation the Starved Time 

 

A simulation model was built for each experiment, see Figure 22, and Figure 23. 

In the simulation, the different duration of tasks is represented by the division of labour into 

product A and B for the WS2 and WS3, respectively. 

 

Figure 22 - Model for the simulation of the experience 1 
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Figure 23 - Model for the simulation of the experience 2 

 

Figure 24 represents the production sequence in which the yellow cube 

represents a type 1_A product and the blue cube represents a type 2_B product. 

 

 

Figure 24 - Sequencing for the validations 

 

Figure 25 - Assembly line of the experience 1 

 

Figure 26 - Assembly line of the experience 2 

 

The layout of the assembly line, for experience 1 and 2, composed by 3 WS are 

represented in Figure 25, and Figure 26. The WS represented in orange and yellow indicates 

the stations that are expected to be blocked or starved in each experience.  In experience 1, 

WS2 will be blocked each time it produce a product 2_B, since it processing time in this 

station is lower, meaning that it will be completed before station 3 becomes available to 

receive it. In the experience 2, WS3 will be starved each time a product 1_A will be produced 

because  to perform the second task to the product 2_B take more time, than the third task 

of the product 1_A. 

Figure 27 represent the manual simulation conducted for each of the previously 

defined experiments. 
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Figure 27 - Simulation time Experience 1 and Simulation time Experience 2 

The Figure 27, show the simulation time count in seconds. The remaining 

columns refer to blocked, starved, and lead time. The green colour represents a finished 

product. Through the analysis of these, it is noticeable that when blocking occurs the lead 

time tends to remain equal to the longest. The experience 2 presents 45s of starved time but 

has a higher production for the same time interval compared to experience 1. 

 

Figure 28 - Simulation Results of the experience 1 

 

Figure 29 - Simulation Results of the experience 2 

The simulation allowed to verify that calculated data were easily visualised in 

the simulation. With special labels in simul8, the lead time is easily identified. These values 

will reflect the blocked and starved time, Figure 28, and Figure 29.  
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Figure 28, it appears that the product 2_B despite having a total time of 165 

seconds in the beginning and after has a lead time of 180. This lead time is represented by 

the automatic label Work time. The addition of 15 seconds means that the workpiece is 

blocked for 15 seconds. 

5.5. Simulation Data Collection 

The simulation concedes data collection directly and indirectly. At the end of the 

simulation, it is possible to collect data that enable the analysis of performance indicators of 

the line.  

It is directly possible to collect the entry, exit, and processing times for each 

production unit, as well as the time of use of the resources available for each workstation. 

Thus, lead time and exit time are obtained directly from the simulation. 

Indirectly and through the list of values collected in excel, the remaining 

indicators are extracted. Such as idle time, takt time, cycle time, smoothness index, balance 

delay and operational ratio. The data analysis was conducted with workstations k = 1, ..., m, 

and products i = 1, ..., p. 

Lead time is the time the product spends in the system. This includes the 

effective assembly time and the time the product spends in queues.  

 Lead time = Waiting Time + Production time ( 5.3 ) 

In the simulation, the lead time is the time that the product takes between the 

entrance of workstation one and the exit of station m. This is easily obtained from simul8 

through the detailed Transaction Log by Area. It allows to collect a large volume of exact 

timing and Label value data. 

Exit time is the time when the product is finished on the assembly line. Then it 

passes to the quality control and packaging station. While this study does not become a 

relevant circumstance, only product assembly stations are contemplated. In the simulation, 

it is the time in the simulation clock that a product enters the end point.  

Idle time is the time specified as a period when the system is not in use but is 

fully functional within the desired parameters. In a simulation, when a workstation is not 

performing, it is called blocked or starved.  

 Idle time = Blocked time + Starved Time ( 5.4 ) 
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The station is blocked when a task finished, and the product still in there. This 

scenario does not permit the entry of the next reference.  Starved time refers to the time the 

worker is waiting for the following reference. At that moment on the worktable, he does not 

have any products; it is empty.  

 Waiting Time = Blocked time + Queue time 

 

( 5.5 ) 

 Blocked Time = Time at the station - Time needed to perform a task 

 

( 5.6 ) 

Idle time is equal to the time that resources are available. Since in this case, each 

station has a worker, and when the worker is available, the system is idle. 

Takt time is the measure/rhythm of the line. It is the rate at which a product 

reaches the end of the line. It is an essential tool in ensuring that goods flow through each 

station in an efficient mode. In the simulation, it is the difference in time/label, that is, the 

exit time, between two consecutive products. 

The cycle time is the maximum time spent at each station. The average cycle 

time is the average time spent at the station by product. More prolonged cycle times than the 

tasks times for the workstation intend waste and inefficiency. 

Operational ratio measures the ability to reach the requested quantities within 

the programmed time. Ideally, the OPR is between 95 and 98%. It is not the efficiency of 

the line since the quantity of finished product defined as target already considers the planned 

stops. The OPR returns the ratio between actual production and expected production with 

the scheduled breaks. It becomes relevant to understand what the unscheduled losses are, 

when they occur and their weight in manufacturing. 

In the simulation, the OPR can be determined by dividing the quantity produced 

by the amount expected. 

 𝑇𝑎𝑟𝑔𝑒𝑡𝑠 = 1 +
(𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 − 𝑊𝑎𝑟𝑚_𝑢𝑝 𝑝𝑒𝑟𝑖𝑜𝑑)

𝑇𝑎𝑟𝑔𝑒𝑡 𝑇𝑎𝑘𝑡 𝑡𝑖𝑚𝑒
 ( 5.7 ) 

 𝑂𝑃𝑅 =
𝐴𝑐𝑡𝑢𝑎𝑙 

𝑇𝑎𝑟𝑔𝑒𝑡𝑠
∗ 100%. 

( 5.8 ) 

5.6. Implementation and Collection of Line Data 

Due to the pandemic situation lived during this project it was not possible, as it 

was intended, to make experiments in the real line. Nevertheless, a brief introduction of what 
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was intended to do is presented next. Experiments in the real line will be made during the 

next academic year.  

Some of the indicators serve to perceive the balance of the assembly line, and if 

the adjustments presented will not affect the balancing. As part of another project developed 

in the laboratory, an optimization tool to balance the line is being developed. Thus, when 

experimenting in the real line it will be possible to assume that it is optimally balanced. 

Consequently, the implementation on the line will be executed in such a way that it is only 

necessary to check the total production in a period. When collecting this value, it is possible 

to know if it corresponds to the simulated result and if there occurred unexpected stops on 

the line. 

At the same time, it is intended to develop an automated monitoring system on 

the line. With this system it will be possible to understand when, where and how long the 

stops occur. Collecting data on the assembly will also allow the use of time variation in the 

simulation. These will turn the simulation into a stochastic analysis, which will allow an 

excellent approximation of simulation and reality. 
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6. RESOLUTION AND DISCUSSION 

As a first step it was decided to consider a simple problem, considering only two 

products and a straight line with 3 WS. This option was taken to gain even more confidence 

in the model developed and to facilitate the interpretation of the results. The two considered 

products will be denoted 1_A and 2_B and their tasks time in each WS is given in Figure 30 

and Figure 31. In each WS there is a single operator and an intermediate stock of one unit is 

allowed between two WS. 

The time each product will take to be processed in each WS were chosen to 

assure a perfect line balancing. As it was referred previously, in a line, idle times can occur 

due to unbalanced WS or, in the case of mixed-model lines also due to sequencing decisions. 

Thus, the time chosen will allow to concentrate the attention in the sequencing impact on 

assembly lines idle time. 

 

 
Figure 30 - Activity times and percentage of production 

 

 
Figure 31 - WACT 

The simulation model developed for this problem is presented in Figure 32. The 

indicators intended to be collected by the simulator are: 

• Operational Ratio (OPR) ( 5.8 ) 

• Lead time ( 5.3 ) 

0

20

40

60

80

WS1 WS2 WS3

WACT

A B WACT



 

An assessment of the mixed-model assembly line balancing and sequencing problem  

 

 

46  2020 

 

• Blocked time ( 5.6 ) 

• Idle time ( 5.4 ) 

• Starved time = Idle time – Blocked time 

• Usage of resources: Since there is a single worker per workstation, when a 

resource becomes available that means that the workstation is starved or blocked.  

 
Figure 32 - Simulation model three WS  

Four experiments were conducted with the developed simulation model: A, B, 

C and D. In experiments A, B and C the production sequence were randomly generated, 

while in experiment D the production sequence was defined as [(2_B)-(1_A)-(2_B)-(1_A)-

…]. The results obtained for each experiment are presented in Figure 33. The collection 

period corresponds to a working day, as the task time is given in seconds, a working day 

have 28800 seconds. The simulation was only run once for each experiment as the times 

considered are deterministic and its repetition does not change the results. 

It can be observed that for the imposed sequence [(2_B)-(1_A)-(2_B)-(1_A)-

…], experiment D, the maximum OPR (99,79%) was obtained. In fact, a production of 956 

products were achieved for an expected production of 958. This OPR is obtained because 

the line is perfectly balanced and there is no idle time, meaning that it is never blocked, or 

starved. The idle time that appears in the results for this experiment is due to the warmup 

period. 

On the other hand, for experiments A, B and C, with a randomly generated 

production sequence, the OPR is around 85%, 15% lesser than the one obtained for 

experiment D. This lower OPR can be easily explained by the presence of Idle time, resulting 

from the fact that in some period the line will be blocked due to the combination of products 

present in the line. 

Since the line is perfectly balanced in all experiments, it can be concluded, as 

expected, that the OPR of a mixed-model assembly line, depends not only on the balancing 

decision, but also on the sequencing decision. In sum, it can be said that the idle time has a 

component that concerns balancing and another that is related to sequencing. It is also 
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important to understand that a bad sequencing decision can result in important losses of 

productivity in the assembly line, in this case up to 15%. 

 
Figure 33 - Characteristics of four distinct analyses 

Considering the OPR, and the blocked and starved time. The longest blocking 

time is usually located before the bottleneck of the line and the longest starved time after. 

The blocked time is the one that is most easily extracted from the line, as it is related to the 

time that the product spends in a specific station and exceeds the task time. For this reason, 

the most crucial factor for the analyse is the blocked time. The decrease of the OPR can be 

related to the blocked time when the blocking time decreases, the OPR value increases. The 

same correlation cannot be made with starved time. 

The described experiments were also important to validate the model. In fact, it 

was possible to observe that the first WS never stays starved, because the product integrates 

the line whenever the line needs it and that the last station never remains blocked because 

there are no subsequent stations.  

The blocking time depends on several factors which makes it difficult to 

calculate for multiple products. The blocked relies not only on the uptime of the product in 

question but also on the uptime of precedent products. 

To understand and anticipate line blockages the concept of phenomenon will be 

introduced. The term phenomena are utilized by (Tiacci, 2017)in a paper about the mixed-

model U-shaped assembly lines. We will consider a list of size n as a subset of the main 

production sequence. This concept is illustrated in Figure 34.  In a sequence of 5 jobs, we 

can obtain 3 lists of size 3. In the proposed example the list is [2,1,1], [1,1,2] and [1,2,1]. 

A phenomenon can be analysed to verify if it will cause a blocked time in the 

line. If it is the case, this list will be referred to as a phenomenon. In a Phenomena the blocked 

time will always be associated to the product i+(n-1) in the list.  

Consider for example the list [2,1,1] in the example of Figure 34. The first 

product to enter in the assembly line is 2, that is, the production flows from left to right in 

the list. If we consider that the list [2,1,1] is a Phenomena, this means that whenever 
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producing [2,1,1], the last job of the list will get blocked at a given workstation. This blocked 

time depends on the last product tasks time in each WS and on the tasks time of its 

predecessors. 

 
Figure 34 - Example of a sequence of products 

Thus, it is crucial to understand how we can collect the values of the simulation 

and understand where the problem is occurring and what factors are associated with it. 

For a manual resolution of the problem, the following decision variables were 

used: 

t(WSk)i – Task time in the workstation k and for the product i. 

CS(WSk)i – Clock when the product i starts at the workstation k. 

CF(WSk)i – Clock when the product i finishes the task at the workstation k. 

CS(Sk,k+1)i – Clock when the product i enter in the stock between the stations k 

and k+1. 

CF(Sk,k+1)i – Clock when the product i leaves the task at the stock between the 

stations k and k+1. 

t(Sk,k+1)i – Time in stock between the stations k and k+1 for the product i. 

The indexes are: 

i = products 1 < i < p, 

k = workstations 1< k < m. 

Initially, when the intermediate stock of stations is empty, the product don’t need 

to stay in the stock if t(WSk)i+1 ≥ t(WSk+1)i and the CF(WSk)i+1 = CS(WSk+1)i+1 . 

The product i+1 go to the stock when t(WSk)i+1 < t(WSk+1)i  . 

The product goes to the stock when t(Sk,k+1) i+1 = CF(Sk,k+1)i - CS(Sk,k+1)i+1 and the 

product are blocked when the t(WSk+1)i > t(Sk,k+1)i+1 . 

During the analysis of the results, three aspects are essential to contemplate. The 

impact of to remove a phenomenon of the line. The effect on the line's operability when we 

exclude a phenomenon. After that, it is vital to be aware of the difficulty/benefit. This 

proportion can help to choose the desired level of complexity. 
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6.1. The analytical results of the first experiments 

The combination of three products is short and straightforward to solve 

analytically. What we want to answer is which specific product sequences block the line.  

When considering a combination of four equal products of type A, it turns out 

that there is a blocked time in the third type A product between the WS 1 and 2. This 

circumstance means that this product combination tends to accumulate stock between the 

WS 1 and 2. Also, the last WS is always starved, Figure 35. On the other hand, when we 

analyse a combination of three type B products, as the first task is the longest one, we only 

observe starved times in the remaining stations, Figure 35. 

 
Figure 35 - Sketch of the behaviour of the lists [A-A-A-A], and [B-B-B]  on the line 

Taking the [A-A-A] sequence because it is the worst and trying to avoid 

blocking. We change the last A to B, getting the combination [A-A-B]. After that change, 

the only products that will not cause the blockage is the B-A successively. The sequence [A-

A-B-B-A] is obtained. The sixth product that enters the line will always stop up regardless 

of the type of product. 

 
Figure 36 – Sketch of the behaviour of the list [A-A-B-B-A-B] on the line 
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The block will appear between WS 2 and WS 3 for two seconds, Figure 36. 

6.1.1. The results of the first experiments in the simulation  

To the previous experiments A, B, C, a new random experiment was added. 

These started to be called experience 1, 2, 3, and 4, respectively. 

The line has a uniform WACT of 30 for all stations when production is precisely 

50%. With a slight variation, the bottleneck at workstation 2 appears, Figure 37. This 

workstation is the one causing the blocked time in the WS 1, and the starved to the WS3. As 

station 1 has the longest blocked time, Figure 38. The focus will be to reduce this, analysing 

the phenomena. 

 

 

Figure 37 - Variation of the percentage of production and respective change of WACT 

 

Figure 38 - Idle, blocked, and starved time for each workstation 

 

Figure 37 shows that the bottleneck will be WS 2. Thus, WS2 will not be 

considered for this analysis of the blocked and only the combinations that cause the block in 

WS 1 will be studied. Considering two distinct products grouped in combination of 3 

products we can obtain 23 = 8 possible combinations. Analysing the impact of these eight 

combinations it was verified that 4 of them never caused blockage in WS1. Figure 39 

presents the number of times each of the 4 combination that cause blockage occur during the 

simulation and the number of times they cause blockage. 

WS1 WS2 WS3

A 1 50,3% 18 45 28

B 2 49,7% 42 15 32

29,9 30,1 30,0

Product_ID

WACT

WS1 WS2 WS3 TOTAL

3826 3709 3844 11379

3826 139 0 3965

0 3570 3844 7414

idle time
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Figure 39 - Block and Occurrence relation for four random experiments combination of three 

 

The number of occurrences, of each combination in each experiment, is 

represented in grey. The colours represent the number of times the combination leads WS1 

to be blocked in the respective experiment. Observing the grey column with the adjacent 

coloured column, we get the relationship of occurrence with the blocked. We can conclude 

that the combinations of 3 products are inconclusive. No combination blocks the line 

whenever it occurs.  

For the combination of 4 products, in the total, we have 24 = 16 distinct 

combinations to analyse. In Figure 40, it is possible to observe the five combinations that 

caused the blockage of the line. The combination of 4 products enables to visualise two 

phenomena. The combinations 1111 and 1112 always cause blocked time.  

In the combinations of five products, there are already known phenomena. The 

known phenomena are 11111, 11121, 11112, 11122, 21111, 21112. These are a result of the 

allocation of one product to the phenomena obtained previously. They need to be a 

phenomenon in the results for the combinations of five products. 

The other three combinations need to evaluate for a combination of five 

products. However, to reduce the complexity and the resolution time, only a different 

product will be added to the three combinations at the beginning. This reduction is possible 

because the factors that imply to obtain a phenomenon are related to the production 

sequence. That is, with the previous products and not with the subsequent ones.  
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Figure 40 - Block and Occurrence relation for four random experiments combination of four 

 

What had been predicted following the phenomena of the combination of 4 can 

be seen in Figure 41. It shows the occurrence of the blocks of the 25 = 32 combinations of 5. 

Furthermore, a new phenomenon occurs from the previous inconclusive combinations, and 

remain three inconclusive combinations. 

 

Figure 41 - Block and Occurrence relation for four random experiments combination of five 

 

In most experiments, combinations of 9 products were the maximum number of 

combinations needed to find all the phenomena. Figure 42 shows the conclusions of the four 

experiments. In this figure it is possible to observe, for each experiment and each identified 

phenomenon the resulting percentage of blocked time in the line. There are phenomena 

common to all experiences and other phenomena that occur only in some. This situation 

occurs because the values were generated randomly, there are combinations that do not 
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happen in all experiments. This factor can create the appearance of small changes in the 

phenomena found. 

 

 

Figure 42 - Summary table of the phenomena in the four experiences 

 

 

Figure 43 - Percentage of time blocked in each combination 

 

Figure 43 compares the percentage of total block with the percentage of blocked 

time for each type of combinations. The last step is to remove the phenomena from the 

production sequence. Figure 44 summarises the results obtained. 
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Figure 44 - Results of the elimination of phenomena in the production sequence 

 

With the elimination of a phenomenon, the improved percentage was more 

significant than the portion of blockage caused by it. This reduction occurs because there are 

associated phenomena. 

The elimination of [1,1,1,1] the blocked time in global reduced more than the % 

of the blocked time that this caused. Another combination that causes every time block is 

[1,1,1,2]. After the sequence [1,1,1,1] can appear the product 2, and with this will generate 

the combination [1,1,1,2]. When the combination [1,1,1,1] is removed from the planning, 

the percentage of occurrences of [1,1,1,2] combination will be reduced too.  

Another factor that is observed by the analysis of figure 33 is that the 

phenomenon [1,1,2,1], which occurs only in experiment number 3 (Figure 42), is due to the 

absence of the combination [1,2,1,1,2,1].When the combination [1,2,1,1,2,1] is removed, the 

phenomenon [1,1,2,1] appears, and its elimination solves the balance of the line.  

After the elimination of 4 phenomena, the line is out of blocking time and at 

maximum production. In other words, with an OPR of 99.9%. The relationship between OPR 

and the blocked time is not direct. The value of the blocked time has always reduced, but the 

number of finished products does not increase linearly. 
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6.2. Three products and five WS 

In the previous section an analysis of a simplified version of the considered 

assembly line was performed. In this section we will consider the real-life assembly line, 

Figure 45. This line is composed by 5 WS and can produce a large set of different final 

products, depending on the components assembled to the base product (the pneumatic 

cylinder). From this large set of final products, 5 different products were chosen to be 

produced. Note that in this new experiment the task times are no longer defined to obtain a 

perfectly balanced line, they are the real time necessary to perform the operations and they 

were collected in the real line. 

 
Figure 45 - Simulation model five WS 

 

It is inherent to realize that products considered as more uncomplicated, that is, 

that require fewer components in their configuration, are not necessarily the products that 

have less total assembly time, Figure 46. 

The choice of the three products 

Configurations A, B and C, group numerous different products. However, in the 

simulation, the products are only different when they have different assembly times. Thus, 

the 5 selected products can be grouped in just 3 different configurations. 
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Figure 46 - Tasks and Total production time for each product 

The product 1_A belongs to the A configuration, 2_B and 3_B to the B 

configuration and the other two belongs to the C configuration. 

 

The components that will be assembled in each WS for each product and the 

respective WS, and activity time are presented in Figure 47. Figure 47 represents the task 

allocation established by the group of students. The group of students developed their 

balance manually, obtained this solution for the balance of the line.The sub-components 110 

and 100 are the screws, and the cylinder body have four screws. The assembly of them are 

divided between WS1 and WS2, it means that two screws will be screwed in the WS1 and 

the other two in WS2. The sub-components are described in Figure 8. 

 

 

Figure 47 - Regrouping of products for simulation 
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As can be seen from Figure 46, the line is not balanced. In this way, what will 

result will be a very high idle time, which in turn will represent a reduced line efficiency. 

To analyse the impact of an unbalanced line versus a balanced line, the 

simulation results for both balances were collected and analysed. A product of each 

configuration was considered, being product 1, 2 and 4, respectively. The probabilities of 

originating each product were 30, 40, 30, respectively. 

The tasks were initially evenly distributed, even when precedence was not 

required. For example, the assembly of sub-component 21 would always be performed at 

WS 2 regardless of the configuration, and the remaining assembly times. In Figure 48 and 

Figure 49, it is possible to observe the changes made in terms of task allocation. 

 

 

Figure 48 - Allocation of tasks without balance 

  

Figure 49 - Allocation of tasks with balance 

 

The lines have a different task allocation and the same percentage of production, 

thus their WACT changes. For unbalanced WACT ranges between 20 and 40, Figure 50. In 

a balanced line, WACT varies between 26 and 29, Figure 51. 

 

WS1 WS2 WS3 WS4 WS5

A 1 30% 25 20 26 51 37

B 2 40% 25 20 26 20 37

C 4 30% 25 20 26 20 46

WS1 WS2 WS3 WS4 WS5

A 1 30% 25 35 26 51 22

B 2 40% 25 20 26 20 37

C 4 30% 35 34 26 20 22
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Figure 50 - WACT without balance 

 

Figure 51 - WACT with balance 

 

The unbalanced line has a more significant variation in its WACT. However, its 

OPR had a good value. This happen because the OPR is calculated considering a takt time. 

This ideal takt time comes from the higher WACT value. When the line is unbalanced, the 

higher value of the WACT makes the target takt time higher and thus the expected production 

smaller. When the production target becomes smaller it will be more easily achieved, but the 

line will be working with low efficiency. The variable such as idle time and smoothness 

index will also be higher. 

Considering the efficiency of the stations it can be concluded that the line has an 

average efficiency of 70%, where station two is using only 50% of its capacity. In the 

balanced assembly line, the average line efficiency is around 87%. The efficiency of each 

station reaching a minimum of 81% and a maximum of 90%. The OPR of the unbalanced 
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line is higher than 9%. However, the production in the balanced line is more elevated 169 

units per day, Figure 52 and Figure 53. 

Regarding the smoothness index and the balancing delay, there can be a very 

strong reduction. The SI is now closer to zero, which is it an excellent value, and the BD has 

reduced by more than half, Figure 52 and Figure 53.  

 

 

Figure 52 - Assembly line results without balancing 
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Figure 53 - Assembly line results with balancing 

 

Notwithstanding being the balanced line that presents a more favourable result, 

an initial analysis of the phenomena present in the unbalanced line was made. Following the 

same line of thought adopted for the simplified line, all combinations of 3 products for the 

three products were analysed, thus obtaining 33 = 27 combinations. Note that the degree of 

complexity has increased, Figure 54 shows the increase in the number of combinations 

considering the increase in products in the line. 

 

 

Figure 54 - Increase in the number of possible combinations 
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6.2.1. Analysis of phenomena’s 

Due to the increased complexity, the simulation models were run for a work 

week, 144 000 seconds. This measure was due to the increase in the number of possible 

combinations compared to the combinations with only two products. 

With a more significant number of products, the number of combinations 

increases exponentially. Thus, it becomes essential to increase the spectrum of data 

collection. For a simulation with only 28800 seconds, it was found that most combinations 

did not occur, which means that not all factors were analysed to find the phenomena.  

Figure 55, and Figure 57 show that the results are different. The blocking 

percentages are expected to be different as the values are generated randomly. However, 

what happens is that not all combinations that are considered phenomena when the spectrum 

of results is widened. For example, in the list of combinations of 3 products, with the increase 

in the data analysed, it stopped showing phenomena. 

Figure 56, and Figure 58 allow us to observe that there are similar phenomena 

for WS 3 and 4. In WS 1 and 2 we observe the similarities in the phenomena, however they 

are all different. 

 

 
Figure 55 - Blocking data and phenomena for the spectrum of a 28 800 seconds 
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Figure 56 - Percentage of occurrence and phenomena associated with each workstation, spectrum of 28 800 

seconds 

 
Figure 57 - Blocking data and phenomena for the spectrum of 144 000 seconds 

 
Figure 58 - Percentage of occurrence and phenomena associated with each workstation, spectrum of 144 000 

seconds 

Returning to the previous analysis of the phenomena for a balanced and an 

unbalanced assembly line. In the unbalanced line, after analysing, the combination lists of 3 

products, it can be concluded that removing the phenomena of this would be a complicated 

task. Through the analysis of the stations, Figure 52, it can be concluded that the last station 

would be the bottleneck of the line furthermore the station that would have more idle time 

would be station 2. A relevant factor is that stations 1 and 2 present high percentages of 

blocking, being 99.8% and 99.9% respectively, Figure 59. 
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Figure 59 - Percentage of blockage occurrence for an unbalanced line 

 

When analysing the 27 lists of possible combinations, it appears that of these 22 

are considered phenomena for station 1 and 25 for station 2. Moreover, the two lists that are 

not considered phenomena have a high blocked ratio, Figure 60. This Blocked ratio is the 

ratio between the number of times the list blocks the station and its number of occurrences. 

When the ratio is equal to 1, excel is configurated to the word phenomena appear. 

 

 
Figure 60 - Phenomena in the unbalanced line and in the combinations of 3 products for WS1, and WS2 

The line balanced, in terms of the blocking percentage of each workstation, has 

a significant improvement. When comparing the blocking percentage with the total blocking 

time, it is observed that the highest percentage is associated with WS1, Figure 61 and the 

highest blocking time with WS3, Figure 53. This difference is because the blocking 

percentage is associated with the number of phenomena and not the weight that each 

phenomenon has. A workstation may have fewer phenomena, but these phenomena have a 

greater weight. For example, the phenomenon [1,1,1,1,1] of WS 3 occurs 13 times during 
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the working week and the phenomenon [1,1,4,1,1] of WS 1 occurs 19 times. As the list 

[1,1,4,1,1] occurs more often, it will have a higher percentage of blocking, but this only 

causes a stop of 2s. The list [1,1,1,1,1] causes a stop of 20 seconds at station 3. In the end 

the list [1,1,1,1,1] will cause a block of 13 * 20s = 260 seconds compared to the 19 * 2s = 

38 seconds caused by the list [1,1,4,1,1]. 

 

 

Figure 61 - Percentage of blockage occurrence for a balanced line 

 

Given the previous results, the increase of 1 product, increased the average of 

necessary combinations, to discover all the phenomena. Previously with combinations of 9 

products, all phenomena are known, on average, Figure 42.  For this case, combinations of 

up to 15 products were required, Figure 62. 

 
Figure 62 - Summary of the combinations that generate blocking time 

In the initial analysis the elimination of the phenomena was considered a task of 

low complexity since there were only two products, Figure 44. Figure 63 shows that the 

number of combinations that block the line has increased considerably. WS 3 which is our 
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problem station as it is the station adjacent to the bottleneck of the line. This WS has a total 

of 485 phenomena.  

 
Figure 63 - Number of phenomena for each workstation 

Considering the lists of less complex combinations for the WS3 how cause every 

time blockage, Figure 64, these have been removed from the production sequence. 

 
Figure 64 - First phenomena for the WS3 

The improvements are significant. Production increased by 53 products and idle 

time decreased by 20% per workday. Only the production quantity of one type of product 

was respected but the deviations are not very high, Figure 65, and Figure 66. 

 
Figure 65 - Results for a simulation day without removing the phenomena 
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Figure 66 - Results for a simulation day removing the list of phenomena in the combination of four products 

When analysing the last sequence, it is verified the existence of a phenomenon 

with a high weight, the list [1,4,4]. When trying to remove this, the phenomena that had been 

eliminated in the previous step always appeared. Due to this difficulty it was decided to 

apply Heijunka. 

6.2.2. Applying Heijunka 

To facilitate the process of removing the phenomena, the Heijunka was applied. 

To define a pattern that would be repeated, reverse thinking was used. The excel developed 

to find the phenomena was adapted to find the list of combinations that did not block the 

line. 

The first criterion for choosing the lists was considered the number of 

occurrences favourable to a high number of stations, if possible, in the four stations under 

study, without causing a blockage. For the list of combinations of 5 products, each 

combination occurred several times. However, the combinations were not favourable for all 

WS; at most they were favourable for three WS. 

The higher the number of products in the combinations, the lower as the 

probability that this will have occurred during the simulation of a working week. Figure 67 

shows that in combinations of 8 products, the average occurrence is 0.6, with an average 

deviation of 0.73, which means that most combinations did not occur. To respect the 

production percentages, the standard chosen will be the combination of a minimum of two 

lists.  
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Figure 67 - Average occurrence of the combinations 

 

It was proceeding to the analysis of the combination of 6 products. There is a 

total of 50 combinations that are favourable for the four WS and occur at least once. When 

choosing lists, problems may arise with the combinations that arise from the connection. For 

example, the lists [2,2,1,2,1,4] and [1,4,4,2,2,1], occur 10 and 9 times respectively, and never 

block any workstation. However, the union of these two lists generates ten new combinations 

of 6 that arise from the repetition of these two lists, Figure 68. Of these ten lists, only one is 

favourable to all stations, which is [1,2,1,4,1,4], in addition to the two chosen. And the list 

[4,2,2,1,2,2] blocks all stations. 

 

 
Figure 68 - Merger of the lists [2,2,1,2,1,4] and [1,4,4,2,2,1] 
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One of the problems with using a fixed pattern is that the phenomena are repeated 

as many times as the pattern. If 1000 units are launched per day for production, the pattern, 

with two lists of six products, is repeated 83 times, which means that the phenomena that 

exist are also repeated 83 times. Another factor to keep in mind is that when changing one 

phenomenon, another one may be generated. 

Thus, the choice of lists to incorporate the pattern becomes a complex task. To 

decrease the complexity, a pattern will be created based on the lists that do not block all 

stations and only station 3. The choice of station 3 is because it is the station with the most 

time blocked, and the first step is to reduce the blockage of this to achieve the production 

objective. 

As it would be essential to understand which pattern of combinations respected 

the percentage of production, three analysis matrices were built—one matrix for each 

product. From the analysis of these, it was found that no pattern built with the favourable 

lists would respect the percentages of production. The production percentages for products 

1_A, 2_B and 4_C would have to be 33, 42 and 25, respectively. 

Even not respecting the percentages of production the lists analysed. All patterns 

that are generated always have lists of combinations that will generate blocking. Overall, 

they have lists between 4 to 5 lists that block station 3, and 3 to 4 lists at least once are 

favourable to all stations. 

With a focus on WS 3, the lists of 10 products that do not cause blockage in any 

of their occurrences were analysed. A total of 9 lists are obtained, which in their occurrence 

never block the line and respect the production percentages. For a first attempt, the list 

[4,1,1,2,2,1,2,4,4,2] was placed as standard in the simulation. 

Another analysis that can be done is that of all the simulations carried out when 

trying to adapt a sequence that will not respond to demand. There is always variation in 

production. Are these variations advantageous? Comparing the best OPR solution with and 

without the restriction of strictly fulfilling the necessary production, becomes a relevant 

factor. 

Of all the patterns used in the simulation, the pattern where it was possible to 

obtain better results was a combination of three lists of combinations of 5 products, 

[4,1,2,4,2], [4,1,2,4,1], and [2,1,2,4,2]. When trying to extract from the standard of 15 

products lists of combinations of 10, 9 or 8 products, what happened was that none of them 

happened during a week of simulation. Why choose these three combinations? These 
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combinations came about to eliminate the phenomena that occurred more often and 

therefore, were associated with a higher percentage of blockage. On the other hand, this 

solution does not respond to production needs. 

The number of patterns that formed the production sequences represents a small 

part of the existing possibilities. However, of all the sequences tested for the production of 

these three products, the two most beneficial ones are summarized in Figure 69, and Figure 

70.  

In the sequence how did not respect the production percentage, the idle time is 

the smallest, Figure 69. However, an attempt to improve this solution may not be easy. The 

list [2,4,2] is a phenomenon, a phenomenon that occurs 131 times a day of production. That 

is, the total time that the line spends blocked, which is 12.5% which is equivalent to 3606 

seconds, which corresponds to approximately one hour of work. 

 

 
Figure 69 - Summary of results without complying with the production percentage 
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Figure 70 - Summary of results with the expected production percentage 

Comparing Figure 53 with Figure 69, it can be concluded that the change in 

sequence could implies benefits for the total of the units produced, OPR, line efficiency, SI, 

and BD. 
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7. CONCLUSION 

The main objective of companies is to generate profits, and no company wants 

to lose out. Maximising profits can be done in several ways, such as increasing quality, 

increasing production rates, reducing idle time, among many others. Idle time is a critical 

aspect as it is associated with wasting available resources. With the increase in customisation 

required by consumers, companies have adopted lines that produce more than one product 

without considering lots and with a design different from the straight line. These solutions 

have become more flexible and economically viable. Still, they have also become a factor 

that reduces profits by causing difficulties in balancing and sequencing that generate a lot of 

idle time. Over the past few years, algorithms for solving them have been developed. But 

due to its complexity, practical solutions that can be easily used by companies are less 

addressed. 

This work allowed the study of some factors that help to minimise the idle time. 

The idle time provides knowledge of the bottleneck and target stations. The blocking or 

starved time is caused by the adjacent stations, with more weight in the stations that are not 

the bottleneck. Target stations or problem stations are those that have the longest blocking 

or starved time, and these are the ones that should be studied. A perfectly balanced line 

achieves perfect sequencing when the blocked time is null, and the starved time only occurs 

in the warmup period of the line.  

The operational ratio (OPR) depends on AL balance and sequencing. The OPR 

reflects unscheduled stops by balancing. However, the OPR should not be analysed as a 

single factor but must be associated with others to obtain a complete analysis of the 

productive efficiency of the line because a line with low efficiency will easily be closer to 

the ideal OPR. 

The balancing method used for this type of assembly line is WACT. WACT is a 

very sensitive parameter. In AL, small changes in production quantities or task times cause 

the WACT change and, consequently, the line becomes unbalanced. 

The number of existing phenomena is dependent on the balance of the line. In 

the case of a simple and perfectly balanced line, the removal of these allows achieving the 

expected OPR with high efficiency. 
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Noting the exponential increase of combinations that cause the blocked time 

when the line is not correctly balanced, becomes essential for futures works to apply an 

optimisation tool to find the perfect task allocation. Only then can it be concluded if the 

impact of a line balanced by an optimisation tool versus one balanced manually will decrease 

losses or complexity. When the line is unbalanced, it will be essential to understand whether 

blocking or idle time cannot be minimised without disrespecting production percentages. It 

is crucial to understand the weight of the rules for the company, as breaking some rules can 

be more beneficial than compliance with them. At the end of this work, some unanswered 

questions would be important for futures works, such as what will be the idle time goal to 

achieve on an unbalanced line or what the simulation time required to test all the 

combinations that cause blocking. In what concerns this last question, one can envisage the 

development of machine learning approaches to identify phenomenon and to propose an 

Heijunka sequence that minimize the total blocking time of an AL. 
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