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1Chapter 14

2Targeted siRNA Delivery Using Lipid Nanoparticles

3Andreia Jorge, Alberto Pais, and Carla Vitorino AU1

4Abstract

5Efficient intracellular delivery of small-interfering ribonucleic acid (siRNA) to the target organ or tissues in
6the body is assumed as the main hurdle for a widespread use of siRNAs in the clinics. Solid lipid-based
7nanoparticles (SLNs) and derivatives can potentially fit this purpose by enabling to overcome the extracel-
8lular and intracellular physiological barriers affecting the delivery. For that, rational formulations and
9rational process designs are needed. This chapter addresses a comprehensive description and critical
10appraisal of the main production methods of this particular type of lipid nanoparticles and the leading
11strategies to prompt a targeted delivery of siRNA.

12Key words RNA interference, Solid lipid-based nanoparticles, Targeting, siRNA delivery, Tempera-
13ture-based methods, Solvent-based methods

141 Introduction AU2

15In the 1990s, Fire and Mello discovered the ability of the small-
16interfering ribonucleic acid (siRNA) to robustly inhibit the expres-
17sion of specific genes inCaenorhabditis elegans and plants [1]. Since
18then, RNA interference (RNAi) received a great deal of attention
19for their application as next-generation medicines with potential to
20prevent and treat genetic disorders, providing an alternative treat-
21ment when conventional drugs fail.
22The RNAi mechanism involves the pairing of double-stranded
23siRNA with a 21-nucleotide (nt) endogenous mRNA. Briefly,
24siRNA loads in a double-stranded fashion into a gene regulatory
25complex, known as RNA-Induced Silencing Complex (RISC),
26which includes three proteins, DICER, Argonaute2, and transacti-
27vation response RNA-binding protein (TRBP) [2, 3]. One strand,
28the sense strand, is discarded, degraded, and released, while the
29antisense strand is paired to a complementary mRNA through
30RISC complex. The bound mRNA is then cleaved at a position
3110 and 11 nt from the 50-end of the antisense siRNA by the
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32Argonaute2 that is considered the catalytic processor of the RNAi
33machinery [4, 5].
34From a therapeutic perspective, siRNA can be synthetically
35designed to induce sequence-specific endonucleolytic cleavage of
36a disease-causing mRNA. Although this approach is widely used in
37preclinical models, the clinical translation of RNAi is still challeng-
38ing, because of the difficulty in achieving good biodistribution and
39pharmacokinetics. Similarly to other oligonucleotides, siRNA faces
40multiple obstacles before reaching their intracellular site of action,
41including plasma membrane and intracellular trafficking. Addition-
42ally, naked siRNA is relatively unstable in the blood circulation, due
43to the nonspecific uptake by the reticuloendothelial system (RES)
44and aggregation with serum proteins, which leads to a rapid clear-
45ance from the body by rapid renal excretion following degradation
46by nucleases. Thus, when designing an effective siRNA delivery
47strategy, the following requirements must be considered: (1) pro-
48tection from the enzymatic digestion, (2) enhancement of the
49pharmacokinetics by avoiding RES uptake and rapid renal filtration,
50(3) improvement of the translocation through the endothelium,
51(4) enhancement of the diffusion through the extracellular matrix,
52(5) improvement of the cellular uptake, (6) intracellular endolyso-
53somal escape, and (7) minimization of potential siRNA-induced
54toxicity [6–9].
55Progresses have been made toward the goal of siRNA applica-
56tion as therapeutic oligonucleotides, recently recognized by US
57Food and Drug Administration (FDA) with the approval of the
58first drug based on RNA interference, ONPATTRO™ (patisiran)
59from Alnylam Pharmaceutics. In addition, at least six other RNAi
60therapeutics are currently in the late stage of clinical trials (Phase
61III) [10]. Likewise, European Medicines Agency has also recently
62approved patisiran. The success of converting siRNA molecules
63into efficient drugs stems from the development of oligonucleotide
64chemistries that evolved to increase the resistance to nucleases,
65increase silencing potency, reduce off-target activity, and avoid
66innate immune responses [11–13]. However, and more impor-
67tantly, the incorporation of siRNA molecules into “smart” vehicles
68that can efficiently escort them into the target cells is a requisite. In
69this regard, solid lipid-based nanoparticles (including solid lipid
70nanoparticles and nanostructured lipid carriers) represent a
71promising candidate for gene delivery.
72The matrix of these carrier systems consists of a relatively firm
73core of physiological lipids stabilized by an aqueous solution of
74surfactant(s); therefore, to clearly differentiate these particles from
75other lipid nanostructures, for example, nanoemulsions and lipo-
76somes, they are called as solid lipid nanoparticles (SLN) [14]. SLN
77is made from solid lipids (i.e., lipids that are solid both at room and
78body temperature, e.g., fatty acids, glycerides, or waxes), while the
79nanostructured lipid carriers (NLC), considered a second
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80generation of lipid nanoparticles, result from a blend of solid and
81liquid lipids (oils), with the blend being solid at body temperature.
82The addition of the oil compound precludes the formation of
83perfect lipid crystals, thus creating more imperfections and
84providing a lipid matrix with enhanced drug-loading capacity and
85physical stability [15, 16]. These nanostructures also bear a cationic
86compound, usually a lipid, that electrostatically interacts with the
87negative charges of the nucleic acids and forms a complex at the
88particle surface [17]. Alternatively, neutral lipid�siRNA conjugates
89have become a subject of considerable interest to improve the safe
90delivery of oligonucleotides and enhance their pharmacokinetic
91behavior and transmembrane delivery [8].
92SLNs and NLCs claim a number of technical advantages as
93compared to other nanoparticle systems. These include (1) the
94use of biocompatible lipids, therefore improving cell tolerance to
95treatment; (2) high encapsulation; (3) protection capacity for
96nucleic acid cargoes from biological impacts within the blood cir-
97culation and at the target site; (4) control over release, ascribed to
98their solid nature matrix; (5) appropriate storage stability; (6) effi-
99cient scaling for large-scale production with a good cost-effective
100ratio, together with their (7) feasibility to support sterilization, and
101lyophilization, as secondary processes [9, 18–20].
102In this chapter, design considerations of solid lipid-based nano-
103particles will be extensively reviewed, with focus on the production
104methods and particle/siRNA targeting strategies to encourage the
105scientific community to explore these valuable carriers. Oligonucle-
106otide and lipid chemistries will be briefly discussed and overviewed
107to highlight their utility to engineer targeted, safe, and efficient
108lipid-based nanoparticles for siRNA delivery.

1092 Materials

110Select the appropriate essential excipients for the nanoparticles
111preparation (see Note 1). These include solid lipids (as matrix
112material in the case of SLN) or both solid and liquid lipids
113(as matrix material in the case of NLC; see Notes 2 and 3), emulsi-
114fier and water. The term lipid is used here in a broader sense and
115encompasses the classes referred in Table 1. As emulsifiers, all
116classes of surfactants/cosurfactants have been employed, but phys-
117iologically compatible emulsifiers are preferred as stabilizers
118[24]. Choose the cationic lipid/surfactant considering the mini-
119mum amount required, according to the positive charge density-
120toxicity profile balance (see Note 4).
121Prepare all solutions using ultrapure water (purifying deionized
122water, to attain a sensitivity of 18 MΩ-cm at 25 �C) and analytical
123grade reagents. Prepare and store all reagents at room temperature,
124unless indicated otherwise (according to the stability). Carefully fol-
125low all waste disposal regulations for the disposal of waste materials.

Targeted siRNA Delivery Using Lipid Nanoparticles
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2.1 Equipment 126The specialized equipment necessary for carrying out the techni-
127ques described in Subheading 3 is indicated in Table 2.
128High-pressure homogenizers function as follows: a pump
129pushes a liquid (the hot pre-emulsion, or cold pre-suspension, as
130referred in Subheading 3.1.1) with high pressure (100–2000 bar)
131through a constricted passageway named the gap region (usually in
132the range of a few microns). The fluid accelerates on a very short
133distance to a very high velocity (over 1000 km/h), leaves the gap
134region, and enters the exit region flowing in the direction of the
135impact ring. After passing through this region, the fluid (nanoe-
136mulsion) exits through the outlet [25].
137

1383 Methods

3.1 Preparation of

SLNs

139The design of solid lipid-based nanoparticles and derivatives (for
140the sake of generality, the term SLN will be applied in a broader
141sense to denote this type of carrier systems) for the delivery of
142siRNA requires in most cases the use of cationic compounds (e.g.,
143lipids or surfactants) that should be incorporated in their formula-
144tion to provide proper surface positive charge necessary for the
145complexation with siRNA. These complexes could be either
146entrapped in the core or adsorbed on the nanoparticle surface. In
147the case of the former, a neutral electrostatic complex (1:1 siRNA:
148cationic lipid charge ratio) is intended. When siRNA is carried at
149the particle surface, the optimal ratio of cationic SLNs to siRNA
150must be obtained for maximizing siRNA complexation. Ideally, the
151formulation of SLNs should be achieved with the least amount of
152the cationic lipid, without compromising the properties that make
153them suitable for the delivery of nucleic acids, that is, a sufficient
154positive charge along with a reasonable colloidal stability. An excess
155of these components can result in a higher degree of cytotoxicity.
156There exists a number of successful methods of preparation of SLNs
157and derivatives for an effective delivery of nucleic acids into target

t:1 Table 2
Equipment required according to the technique employed for the production of the nanoparticles

High-pressure

homogenization

technique

Melt dispersion

technique

Solvent emulsification-

evaporation technique

Hydrophobic

ion paring Double emulsiont:2

1. High-speed stirrer

2. High-pressure

homogenizera

1. High-speed

stirrer

2. Ultrasonicator

1. High-speed stirrer

2. Ultrasonicator

3. Rotavapor

1. Magnetic/

mechanical

stirrer

2. Ultrasonicator

3. Rotavapor

1. Magnetic/

mechanical

stirrer

2. Ultrasonicator

3. Rotavaport:3
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158cells (see Table 3). They can be classified into two distinct cate-
159gories: temperature- and organic solvent-based methods. The for-
160mer involves generally the use of high temperatures (above solid
161lipid melting point), while the latter implies the use of organic
162solvents. The most relevant ones will be described in detail [26].
163

3.1.1 Temperature-

Based Methods

High-Pressure

Homogenization

163High-pressure homogenization (HPH) is a technique widely used
164in several research areas, including the pharmaceutical, for example,
165in the production of parenteral emulsions [39]. The already estab-
166lished HPH large-scale production lines allow to circumvent the
167lack of scaling up associated to some nanoparticle production
168methods. It is also a simple and very cost-effective technique.
169Additionally, HPH leads to a product relatively homogeneous in
170size, that is, possessing a higher physical stability in the aqueous
171dispersion [40].
172HPH can be used in two different production techniques: at
173elevated temperature, hot HPH, or below room temperature, cold
174HPH, including the steps described in what follows.
175

Hot High-Pressure

Homogenization

1761. Heat the lipid to ~5–10 �C above its melting point.

1772. Mix water, surfactant(s), cosurfactant(s) (see Note 5), and the
178cationic lipid, and heat to the same temperature as the lipids.

1793. Add the melted lipid(s) in the hot aqueous phase containing
180the cationic lipid(s) (see Note 6) and the surfactant(s) under
181vigorous stirring with a high-speed stirrer to promote the
182formation of the pre-emulsion.

1834. Homogenize the pre-emulsion in a heated high-pressure
184homogenizer for several homogenization cycles (see Note 7)
185to form a hot o/w nanoemulsion.

1865. Cool down the hot o/w nanoemulsion to room temperature,
187to allow the lipid recrystallization and promote the formation
188of SLNs.

1896. Purify the SLN dispersion through, for example, ultrafiltration-
190centrifugation or dialysis.
191

Cold High-Pressure

Homogenization

1921. Heat the lipid to ~5–10 �C above its melting point.

1932. Mix water, surfactant(s), cosurfactant(s), and the cationic lipid,
194and heat to the same temperature as the lipids.

1953. Rapidly cool the melted lipids in liquid nitrogen or dry ice.

1964. Grind to obtain lipid microparticles (~50–100 μm).

1975. Disperse the milled powder in a cold aqueous surfactant solu-
198tion to form a pre-suspension.

1996. Homogenize the pre-suspension in a high-pressure homoge-
200nizer at room temperature or below for several homogeniza-
201tion cycles to obtain the nanosuspension of SLN.

Andreia Jorge et al.
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2027. Purify the SLN dispersion through, for example, ultrafiltration-
203centrifugation or dialysis.
204

Melt Dispersion 205This technique is similar to the hot high-pressure homogenization,
206differing in the homogenizing principles that are underlined. The
207main steps are described in what follows:

2081. Heat the lipid to ~5–10 �C above its melting point.

2092. Mix water, surfactant(s), cosurfactant(s), and the cationic lipid,
210and heat to the same temperature as the lipids.

2113. Add the melted lipid(s) in the hot aqueous phase containing
212the cationic lipid(s) and the surfactant(s) under high-shear
213homogenization to promote the formation of a hot o/w
214nanoemulsion.

2154. If necessary, sonicate the obtained hot nanoemulsion in order
216to reduce particle size and narrow the size distribution [23].

2175. Cool down the hot o/w nanoemulsion to room temperature,
218to allow the lipid recrystallization and promote the formation
219of SLNs.

2206. Purify the SLN dispersion through, for example, ultrafiltration-
221centrifugation or dialysis.
222

3.1.2 Solvent-Based

Methods

Solvent Emulsification/

Evaporation

223The solvent emulsification-evaporation is a method similar to the
224production of polymeric nanoparticles by solvent evaporation in
225o/w emulsions, comprising the following steps:

2261. Dissolve the lipids in an organic solvent immiscible with water
227(e.g., chloroform or methylene chloride).

2282. Prepare an aqueous solution containing the surfactant(s) and
229the cationic lipid.

2303. Disperse (emulsify) the organic solution in the aqueous phase
231containing the cationic lipid(s) and the surfactant(s) under
232high-shear homogenization. For guidance, please see [41].

2334. If necessary, sonicate the obtained emulsion in order to reduce
234particle size and narrow the size distribution (see Note 8).

2355. Remove the organic solvent using a magnetic stirring or a
236Rotavapor under reduced pressure in order to promote the
237lipid precipitation in the aqueous medium and the formation
238of the SLNs.

2396. Purify the SLN dispersion through, for example, ultrafiltration-
240centrifugation or dialysis.
241

Hydrophobic Ion Pairing 242The hydrophobic ion pairing (HIP) is an approach that enables to
243overcome the challenge of loading siRNA within SLNs. Accord-
244ingly, a drug-surfactant complex is first formed, which provides
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245lipophilicity enough for incorporation of the siRNA in the lipid
246core of SLN [7, 42]. This technique comprises the following steps:

2471. Dissolve siRNA in RNAse-free water and a cationic lipid (usu-
248ally DOTAP) in chloroform.

2492. Add the DOTAP solution dropwise to the siRNA solution
250while stirring (see Note 9).

2513. Briefly sonicate in a water bath sonicator (seeNote 10) and mix
252it with an appropriate volume of methanol to form a single-
253phase solution.

2544. After incubation at room temperature (ca. 1 h), extract the
255siRNA/DOTAP complexes into chloroform by phase
256separation.

2575. Separately, dissolve the lipid matrix (e.g., lecithin and choles-
258terol) in chloroform.

2596. Add this solution dropwise to the siRNA/DOTAP complexes
260in chloroform while stirring.

2617. If applicable, add PEG derivatives (e.g., polyethylene glycol
262(2000)-hydrazone-stearic acid (C18) derivative (PHC) and
263polyethylene glycol (2000)-amide-stearic acid (C18) derivative
264(PAC) [42], also previously dissolved in chloroform dropwise
265to the siRNA-lipids mixture.

2668. Dry the resulting mixture under nitrogen gas.

2679. Dissolve the solid residual in an appropriate volume of organic
268solvent (e.g., tetrahydrofuran).

26910. Add the previous solution dropwise into water while stirring to
270form nanoprecipitates.

27111. Stir the resultant nanoparticle suspension (SLN) at room tem-
272perature for a sufficient time to facilitate the evaporation of
273organic solvent alternatively using a Rotavapor.

27412. Purify the SLN dispersion through, for example, ultrafiltration-
275centrifugation or dialysis.
276

Double Emulsion 277The preparation of SLN through the solvent emulsification evapo-
278ration method based on the water-in-oil-in-water (w/o/w) double
279emulsion technique usually involves the following steps:

2801. Dissolve the lipid(s) (see Note 11) in an appropriate organic
281solvent immiscible with water (e.g., chloroform, methylene
282chloride).

2832. Dissolve the siRNA in RNAse-free water.

2843. Disperse (emulsify) the aqueous phase containing the siRNA in
285the organic solution including the lipid(s) under high-shear
286homogenization or sonication to form the primary emulsion
287(w/o) (see Note 12).
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2884. Prepare an aqueous solution containing the surfactant(s) and, if
289applicable, cationic lipids.

2905. Disperse the primary emulsion (w/o) into an appropriate vol-
291ume of the aqueous surfactant(s) solution under high-shear
292homogenization or sonication to obtain the double emulsion
293(w/o/w).

2946. Remove the organic solvent using a magnetic stirring or a
295Rotavapor under reduced pressure in order to promote the
296lipid precipitation in the aqueous medium and the formation
297of the SLNs.

2987. Purify the SLN dispersion through, for example, ultrafiltration-
299centrifugation or dialysis.
300

3.1.3 Methods Overview 301A global appraisal of the promising fabrication techniques of the
302solid lipid-based nanoparticles applied to siRNA delivery is dis-
303played in Table 4. The feasibility of the potential scale-up of these
304methods to the industrial environment is also addressed.
305

3.2 Loading siRNA

into SLN

306siRNA loading into SLN typically involves direct complexation of
307siRNA molecules to the surface of the preformed cationic carriers.
308However, after abandoning the carrier protection, siRNA mole-
309cules rapidly degrade, and the lack of true encapsulation will likely
310result in the loss of siRNA in circulation. The same happens once
311these molecules enter the target cells, resulting in a sharp and
312rapidly decaying siRNA profile due to lack of control over release.
313Such a trend will cause a short RNAi action, implying a more
314frequent administration. Considering that siRNA is effective at
315low level, a substantial fraction of the quickly discharged siRNA
316will be consequently wasted, and the high levels of intracellular
317siRNA could be associated to toxicity [9]. Moreover, when
318siRNA is loaded electrostatically adsorbed at the particle surface,
319an excess of positive charge (cationic compound) is necessary,
320which in turn incurs into additional toxicity. The encapsulation of
321siRNA within SLNs to provide a sustained release of siRNA is thus
322highly desirable. Notwithstanding, the hydrophobic nature of
323SLNs impedes efficient loading of hydrophilic drugs, such as oli-
324gonucleotides. This issue could be overcome by previously forming
325electrically neutral siRNA-cationic lipid/surfactant complexes, in
326order to facilitate their loading into SLNs [7]. A summary of pros
327and cons and a description of both siRNA-loading strategies into
328SLNs are presented in Table 5 and in the following sections,
329respectively.
330

3.2.1 Coating of SLNs

with siRNA via Electrostatic

Interactions

3311. Prepare siRNA/SLN complexes using a range of molar ratios
332considering the ratio of amine groups (N) of the cationic lipid
333to phosphate groups (P) of the siRNA. This charge ratio gives
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334an indication of the ionic balance of the complexes and it can be
335calculated by

N=P ratio ¼ Ammonium groups from cationic lipid½ �
Phosphate groups from siRNA½ �

336

3372. For that, add a fixed volume of siRNA aqueous solution at a
338fixed concentration to a fixed volume of SLN dispersion at
339variable concentrations, depending on N/P ratio selected.
340The order of addition should be kept constant throughout
341experiments (see Notes 13 and 14).

3423. Vortex the final solution and incubate for 30 min at 37 �C to
343allow siRNA binding to positively charged SLNs.
344

3.2.2 Encapsulation of

siRNA into SLNs

3451. Prepare a complex electrically neutral of cationic lipid-siRNA
346(1:1 charge ratio) (see Note 13).

3472. Add the previous electrically neutral complex to the lipid/
348organic phase.

3493. Disperse into the aqueous phase and homogenize according to
350the method selected (see Subheading 3.1).
351

3.3 Targeted siRNA-

SLN

352Despite the substantial advances in siRNA technology, currently
353available systems still demand more optimization. The key for
354successful optimization is substantially dependent on developing
355improved carriers for the efficient and safe siRNA delivery to a
356target tissue/organ. The current optimization steps focus mainly
357on improving the stability of siRNA in the circulation, enhancing

t:1 Table 5
Advantages and drawbacks of siRNA-loading strategies into SLNs

siRNA loading into SLN
strategy Advantages Drawbackst:2

Electrostatically complexed
in the surface

– Simple preparation
– More adequate for local
delivery

– More susceptible to degradation
– Reduced control over release
– Possible siRNA dose dumping and
potential toxic effects

– Toxicity associated to cationic lipidt:3

Encapsulated – Higher protection
– Sustained release
– More adequate for intravenous
administration

– Reduced toxicity associated to
cationic lipida

– Complex formulation
– Risk of siRNA degradation during
SLN preparationbt:4

t:5 aA reduced toxicity associated to the cationic lipid is predicted, since it is entrapped in the core, and duly neutralized with

siRNA (1:1 ratio), in contrast to the higher amount required and surface exposition observed when siRNA is complexed

at the surface
bIf proper salt and mild temperature conditions are not provided
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358tissue targeting and cellular uptake, and improving endosomal
359escape. As shown in Table 3, PEG conjugation to siRNA or lipids
360is the most common strategy used to reduce the risk of siRNA
361degradation that along with the encapsulation or adsorption of
362this genetic material on SLNs should be able to protect the cargo.
363Nevertheless, there exist an extended knowledge in the field of
364oligonucleotide chemical modification that could provide addi-
365tional protection of siRNA, reduce its immunostimulatory activity,
366and minimize unwanted off-target effects, and it is important to
367consider their utility in in vivo applications. Alongside with these
368chemical modifications, careful design of covalent strategies for
369linking siRNA and targeting moieties to reach specific sites of
370intended action in body is also a requisite for achieving successful
371silencing activity. In this section, a comprehensive enumeration of
372the strategies developed so far for the enunciated purposes will be
373presented. These will be directed either to siRNA modification or
374engineered SLN surface.
375

3.3.1 Stability in the

Circulation

PEG Conjugation

375PEG increases the colloidal stability and the water solubility of
376nanoparticles (NPs) by forming a protective hydrophilic layer on
377the surface of NPs that reduce their aggregation tendency and
378interaction with blood components. As a result, this phenomenon
379decreases the opsonization phenomenon and the uptake of NPs by
380the macrophages of the mononuclear phagocyte system prolonging
381the blood circulation times [43]. Furthermore, PEG surface modi-
382fication is helpful to the incorporation of active targeting ligands,
383which allows for the development of effective antitumor therapeu-
384tic strategies [44]. PEG can be conjugated with (1) a lipid, for
385example, DSPE amine, and in this case, it is added directly to the
386oily/organic phase [7, 32] or aqueous phase [37] (depending on
387the technique employed; see Subheading 3.1) in the SLN prepara-
388tion, or (2) directly conjugated with siRNA through a disulfide
389bond [25]. The latter option comprises two sequential steps: the
390conjugation of siRNA with PEG and incubation with SLN. The
391conjugation of siRNA with PEG can be also performed by using a
392linker (e.g., 30-hexylamine) to connect the two molecules [26]. For
393guidance, please see refs. 26, 45.
394

siRNA Chemical

Modification

395Most siRNAs used currently are chemically modified following
396phosphoramidite approach as single-stranded RNA and then are
397hybridized into double-stranded fashion. The incorporation of a
398variety of natural and artificial modifications into the siRNA strands
399may allow to solve the problems inherent to in vivo administration,
400including nuclease degradation, and also enhance siRNA potency
401and specificity [46–48]. These modifications are typically per-
402formed on the internucleotide phosphate linkage through the
403replacement of the non-bridging oxygen with, for instance, sulfur
404(PS) (phosphorothioate) [49, 50], boron (boranophosphate) [51],
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405or methyl (methylphosphonate) groups [52]. In addition, modifi-
406cations at 20-position of the ribose can also reduce nuclease degra-
407dation while increasing duplex stability and offering protection
408from immune activation. At this position, the most common mod-
409ifications are 20-fluoro (20-F), 20-O-(2-methoxyethyl) (20OMe),
41020-O-(2-methoxyethyl) RNA (MOE), and 20-fluoro-β-D-arabino-
411nucleotide (FANA) [53–55]. Another modification of interest at
412this level is siRNA with locked nucleic acids (LNA), which consists
413of a methylene bridge that connects the 20-O with the 40-C of the
414nucleobase and helps not only to increase the resistance of siRNA to
415nucleases but also to increase the potency of siRNA [56].
416

3.3.2 Tissue Targeting

and Cellular Uptake

417Indeed, targeted delivery of anticancer drugs to cancer cells and
418tissues is a widely exploited field due to its potential to spare
419normal/healthy ones. Based on the growing knowledge in cell
420biology, it is recognized that there are many overexpressed recep-
421tors in cells that can mediate the internalization of specific ligands
422and their cargoes. Taking advantage from cell-type-specific finger-
423print, many smart nanoparticles have been designed to incorporate
424specific moieties that can bind to the receptor docking sites
425[57–59]. To achieve the desired selectivity, aptamers, antibodies,
426peptides, proteins, carbohydrates, and small molecules, such as
427folate and vitamins, are considered suitable candidates to act as
428recognition modules. The advanced chemistries developed so far
429for the functionalization of oligonucleotides offer great opportu-
430nities to combine these specific modules with siRNA [60]. Proce-
431dures for each of these alternatives will be referenced for guidance.
432Aptamer chimeras are synthetic single-stranded DNA or RNA
433molecule with high affinity and specificity to cell receptors or pro-
434teins with large application in diagnostic and therapeutic field
435[61, 62]. Their structure is strategically selected and optimized
436in vitro by a procedure known as Systematic Evolution of Ligands
437by Exponential Enrichment (SELEX) [63]. To date, multiple
438chemical approaches have been developed for conjugating siRNAs
439and aptamers [64]. Aptamers can be used in three different ways to
440deliver siRNA: (1) covalently linked by a small spacer, (2) form a
441chimera, and (3) electrostatically or covalently combined to nano-
442particles. Aptamer-mediated targeted systems have been used to
443deliver therapeutic oligonucleotides such as siRNA, miRNA, or
444antisense DNA and proved to be valuable to improve the specificity
445of nanoparticles. For example, McNamara and colleagues devel-
446oped an aptamer-siRNA chimeric RNAs for the treatment of pros-
447tate cancer in which the aptamer portion of the chimera mediates
448the binding to a specific cell receptor overexpressed in prostate
449cancer cells whereas the siRNAmodulates the expression of survival
450genes [65].
451Small, larger peptides and protein-based targeting moieties
452excel in mediating cell-specific delivery of siRNA. Among these
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453natural macromolecules, cell-penetrating peptides have large appli-
454cability due to their ability to cross biological barriers, so as cell
455membrane and blood-brain barrier [66, 67], and they may be
456obtained from natural or synthetic sources [68]. Electrostatic com-
457plexation of nucleic acids with CPP has demonstrated to assist
458oligonucleotide nuclear delivery [69]. Covalent strategies were
459also exploited for conjugating CPPs with siRNA oligonucleotides
460in an attempt to increase the efficacy of siRNA delivery and reduce
461the risk of CPP dissociation in physiological fluids. Various types of
462siRNA-CPPs conjugates were developed using, for example, Pene-
463tratin, Tat, Transportan, and melittin peptide, among others
464[70]. It is established that properties such as the biological activity
465of siRNA-CPPs conjugates, cellular uptake, intracellular localiza-
466tion, and cytotoxicity are dependent on the kind of CPP used as
467well as on the length of the cationic peptide [71].
468Another important class of molecules able to bind selectively to
469cell receptors are carbohydrates. These molecules are included in
470distinct biological processes including cell surface recognition
471through lectins and specific binding to proteins. Galactose (Gal)
472has demonstrated to be valuable for the delivery of siRNA to
473hepatocytes by targeting cell surface lectins, the asialoglycoprotein
474receptors [72], and have been extendedly exploited [73–75]. In
475particular, the administration of siRNA-conjugated triantennaryN-
476acetylgalactosamine (GalNac) is currently being evaluated in a
477Phase III clinical trial for the treatment of a rare neurodegenerative
478disease [76, 77]. Another important carbohydrate derivative used
479to direct cellular uptake is the hyaluronic acid (HA), a glycosami-
480noglycan polymer ubiquitously found in extracellular matrix.
481Chemical modification of HA with functional groups to achieve
482novel HA derivatives with enhanced properties for drug, gene, and
483protein delivery has been also exploited [78]. Surface modification
484of cationic liposomes with biocompatible HA enhances their effi-
485cacy by mediating active CD44 targeting in cancer cells while
486augmenting their circulation time [79]. Hyaluronan-grafted lipid-
487based nanoparticles have been reported for the delivery of anti-P-
488glycoprotein (P-gp) and luciferase siRNAs, having shown to target
489the cancer cells efficiently and specifically reduce mRNA and P-gp
490protein levels when compared with control particles [80].
491

3.3.3 Endosomal Escape 492Once SLN-siRNA complexes internalize cells through endocytosis,
493they stay trapped in endosomes. Nevertheless, siRNA should reach
494the cytoplasm to be able to achieve the expected silencing activity.
495The endosomal uptake pathway is considered to be a rate-limiting
496barrier in intracellular delivery, especially for oligonucleotides that
497due to their large size and high negative charge fail to reach the
498cytoplasm of cells [81]. The accepted mechanisms for promoting
499endosomal escape are (1) membrane destabilization and pore
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500formation, which generally occurs with fusogenic peptides and
501ionizable polycations, (2) rupture, which typically occurs with
502highly ionizable polycations, and (3) membrane fusion, which
503commonly occurs with lipid nanoparticles containing fusogenic
504lipids. Reference [82] provides a compilation of the most relevant
505methods used to follow the endosomal escape of nanoparticles and
506a complete description of the associated mechanisms.
507Fusogenic peptides, for example, GALA and HA2-penetratin
508peptides [83, 84], undergo a structural change in response to
509acidification of the endosome which stimulate to release from
510endosome. Likewise, the change in the arrangement of
511pH-sensitive lipids from lamellar to hexagonal phase, as it occur
512for, for example, DOPE, also causes the destabilization of the
513endosomal membrane and triggers the release of siRNA to the
514cytoplasm. Within this class, cholesterol and PEG-lipid conjugates
515have shown a crucial role in the fusogenicity and pharmacokinetic
516properties of liposomes [85, 86]. Cationic polymers with ionizable
517amino groups, such as polyethylenimine (PEI) and polyamidoa-
518mine (PAMAM) dendrimer, are also powerful candidates to induce
519the rupture of the endosomal membrane. Many mechanisms have
520been proposed to explain the effect of cationic polymers with
521ionizable amino groups on endosomes, but the more accepted
522hypothesis is the so-called proton sponge that triggers the rupture
523of endosome through osmotic swelling [87]. PEI is one of the most
524efficient polycation used for siRNA delivery, due to its great ability
525to compact RNA combined with its excellent buffering capacity.
526However, this polycation is highly cytotoxic which hampers its
527application in in vivo settings [88]. The selection of low molecular
528weight and branched PEI or the use of PEI polymers composed by
529low molecular weight oligoamines bound with different reducible
530cross-linkers may represent a solution to reduce its inherent cyto-
531toxicity [89, 90].
532

5334 Notes AU4

5341. The optimization of solid lipid nanoparticles benefits from a
535relevant design of experiments. This methodology elucidates
536the effects of many factors (composition and process para-
537meters) simultaneously, also enabling to assess their relative
538importance and to determine whether the factors interact
539[91]. When optimizing a formulation or process, there are a
540number of different methods for tackling the problem, and the
541resulting data may also be analyzed in a number of different
542ways. In what concerns experimental designs, a rough classifi-
543cation into screening designs, response surface designs, and
544mixture designs can be carried out. Screening designs, for

Andreia Jorge et al.



545example, fractional factorial and Plackett-Burman designs,
546allow screening a relatively large number of factors in a rela-
547tively small number of experiments. They are used to identify
548the most influencing factors affecting the system, being applied
549in the context of optimizing processes. Most often, the factors
550are evaluated at two levels in these designs. In turn, response
551surface designs are applied to find the optimal factor settings,
552while mixture designs are used to optimize, for instance, the
553excipients composition in formulations [92]. For guidance,
554please see [93].

5552. When NLCs are selected for siRNA condensation, the lipid
556choice is dictated by preliminary studies to assess physical com-
557patibility between solid and liquid lipids. For that, prepare
558mixtures of the solid and liquid lipid in a ratio of 1:1 in different
559glass tubes. Melt the lipid mixture, shake, and allow to solidify
560at room temperature. Analyze visually the glass tubes for the
561absence of separate layers in the congealed lipid mass. Addi-
562tionally, smear the congealed mixtures of solid-liquid lipid over
563a glass slide and examine them microscopically [94].

5643. A higher liquid lipid content, in relation to the solid lipid,
565generally results in an improved delivery achieved by a decrease
566in particle size (typically below 100 nm). This type of carriers
567system has been named ultrasmall nanostructured lipid
568carriers [95].

5694. If a cationic surfactant is used, one-tailed cationic surfactants
570are generally more cytotoxic than the two-tailed surfactants,
571whereas the amino acid corresponding derivatives and cationic
572lipids are well tolerated [23].

5735. Lipophilic emulsifiers (e.g., soya lecithin) are added to the oily
574phase, while hydrophilic (o/w) emulsifiers (e.g., polysorbates)
575are added to the aqueous phase.

5766. If a cationic lipid is used, it can be alternatively dissolved in the
577oily phase rather than in the aqueous phase [23].

5787. When high-pressure homogenization is used for SLN produc-
579tion, the number of cycles/time and pressure of homogeniza-
580tion should be optimized according to the formulation
581composition. Increasing the homogenization period does not
582necessarily result in particle reduction. Instead, size enlarging
583due to particle coalescence usually occurs, because of the high
584kinetic energy of the particles.

5858. In the solvent emulsification/evaporation technique, the emul-
586sification step can be supported by ultrasonication, followed by
587high-shear homogenization or vice versa.

5889. Add siRNA and a cationic lipid (e.g., DOTAP) in an appropri-
589ate charge ratio (1:1, i.e., one DOTAP molecule per phosphate
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590group on the siRNA). In this mixture, DOTAP binds to siRNA
591and forms a hydrophobic ion pair. The siRNA/DOTAP com-
592plex is tightly held together by electrostatic interaction
593between the negatively charged phosphodiester backbone and
594the positively charged DOTAP headgroup, while the DOTAP
595hydrophobic domains facilitate efficient encapsulation of the
596siRNA/DOTAP complex in the lipid nanoparticle [96].

59710. The sonication step used to aid the formation of siRNA/
598DOTAP complex should be carried out using a water bath
599sonicator and not a tip sonicator and for a short period of
600time (seconds), so as to prevent possible siRNA degradation.

60111. When using the hydrophobic ion pairing (HIF) technique, the
602incorporation of the siRNA/DOTAP complexes into SLN can
603be alternatively carried out by another solvent-based method,
604for example, nanoprecipitation/solvent displacement tech-
605nique, similar to that employed in the polymeric nanoparticles
606preparation. For guidance, please refer to [7].

60712. The addition of w/o surfactants may be needed to provide
608stabilization of the primary emulsion.

60913. A careful selection of buffer conditions should be carried out
610considering the role of pH and ionic strength in the electro-
611static interaction [97–99]. Rational siRNA design is a required
612step in order to increase nuclease resistance and reduce
613off-target effects. Chemical modifications are strategically
614used to optimize siRNA pharmacokinetic properties and bio-
615availability (see Subheading 3.3.1).

61614. Complexes are preferably formed with a slight excess of posi-
617tive charge to allow them to interact with the negatively
618charged cell surface. Additionally, size and charge depend on
619the weight ratio between the particle and siRNA [17].

62015. PEG is used to prevent the interaction of drug carrier mole-
621cules with insoluble blood proteins that would otherwise accel-
622erate the clearance of nanoparticles. This is a beneficial
623property of PEG for siRNA delivery provided the role of
624DOTAP is not overshadowed by the presence of PEG. Thus,
625DOTAP to PEG ratio should be optimized to achieve desired
626results [21].
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