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ABSTRACT 

Delays and disruptions in airline operations annually result in billions of dollars of 

additional costs to airlines, passengers, and the economy. Airlines strive to mitigate these 

costs by creating schedules that are less likely to get disrupted or schedules that are easier 

to repair upon disruptions. New types of aircraft, larger fleets, expanding networks and 

increasing constraints on crew scheduling from regulators, crew collective bargains, and 

decreased fares, force airlines to make their operations more efficient. The presence of 

considerable uncertainty makes this already complex problem faced by the airlines even 

harder to solve. The air transportation industry has long tradition of using operations 

research techniques to solve their problems. To cope with their problems the airline 

industry has used optimization models in one form or another. Hence schedules are 

trimmed to eliminate buffers and slacks, but this can lead to greater propagation of delays, 

even due to minor incidents. These intricate problems are hard to understand and all its 

interactions are virtually impossible to grasp in a purely closed-form mathematical 

approach. 

We present in this thesis several methodological approaches to help researchers and 

industry practitioners dealing with uncertainty in airline scheduling. 

First, we present a robust optimization model for the crew pairing problem, which 

generates crew schedules that are less likely to get disrupted. Our model allows adding 

robustness without requiring detailed knowledge of the underlying delay distributions. 

Moreover, our model allows to capture in detail the delay propagation through crew 

connections and the complex cost structure of the pay-and-credit crew salary scheme, thus 

enabling us to find a good tradeoff between the planned costs on one hand and the expected 

delay and disruption costs on the other hand. Our robust crew pairing model is based on a 

deterministic crew pairing model formulated as a mixed-integer linear program. The robust 

version that we propose retains the linearity of the constraints and objective function, and 
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thus can be handled by commercial solvers, which facilitates its implementation in practice. 

We propose and implement a new solution algorithm for solving our model to optimality. 

Several optimal solutions with varying robustness levels are compared for the network of 

a moderate-sized airline in the United States. We test the model’s solutions in a simulation 

environment using real-world delay data. Our simulation results show that the robust crew 

pairing solutions lead to lower delays and fewer instances of operational infeasibilities, 

thus requiring fewer recovery actions to address them. We conclude that, with the inclusion 

of robustness, it is possible to generate crew pairing solutions that significantly reduce the 

delay and disruption costs with only a small increase in planned costs. 

Second, we present a new stochastic simulation platform that is able to simulate the daily 

operations of an airline allowing industry analysts, practitioners and researchers to evaluate 

the behavior of an airline network under uncertainty. This simulation platform was 

developed specifically to be user-friendly and require moderate input needs. We 

demonstrate the adequacy of an agent-based approach to model a complex system such as 

an airline. Additionally, we demonstrate that an accurate representation of an airline’s 

operation needs to explicitly consider the airline’s response to uncertainty and disruptions, 

by accurately modeling the airline as a decision-maker in face of uncertainty. This is 

demonstrated through a detailed case study where we compare two recovery models that, 

due to their different objectives, lead to different behaviors of the simulated airline. We 

demonstrate and compare the tradeoffs between cancelations and flight delays that are 

made by these models to reach to their objectives.  

Third, we present a machine learning metamodel approach where we leverage information 

extracted from the historic data, from previous schedule recovery problems solved by 

optimization models, to generate immediate solutions for the schedule recovery problem. 

In our proof of concept case study, we use an artificial neural network that, using historic 

data of solutions and problems, is able to extract the solution pattern and return the problem 

solution without needing to re-run the optimization model.  We show that it is feasible to 

use machine learning metamodels to predict solutions of optimization models based on 

historic data. With an acceptable level of accuracy, the metamodel was able to predict the 

solution of a recovery optimization model.
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RESUMO 

Atrasos e perturbações nas operações resultam anualmente em milhares de milhões de 

dólares de custos adicionais para as companhias aéreas, para os seus passageiros e para a 

economia em geral. As companhias aéreas tentam mitigar esses custos criando horários 

com menos probabilidade de serem perturbados. Novos desafios devidos a novos tipos de 

aeronaves, à expansão de redes, ao aumento das restrições aos horários das tripulações por 

parte de reguladores e contratos coletivos e à diminuição de tarifas, forçam as companhias 

aéreas a tornarem as suas operações mais eficientes. A presença de incerteza torna a gestão 

das operações de companhias aéreas ainda mais complexa. O setor do transporte aéreo tem 

uma longa tradição de usar técnicas de investigação operacional para resolver os seus 

problemas operacionais. Neste sentido, os horários são otimizados para reduzir margens, o 

que pode levar a uma maior propagação de atrasos.  São problemas complexos e de difícil 

compreensão difíceis de traduzir adequadamente por modelos matemáticos. 

Apresentamos várias abordagens para ajudar os investigadores e profissionais da indústria 

a lidar com a incerteza na gestão operacional de companhias aéreas. Primeiro, 

apresentamos um modelo de otimização robusto para o problema do emparelhamento de 

tripulações, que gera horários para as tripulações com menos probabilidade de serem 

afetados por incerteza. O modelo permite adicionar robustez sem exigir um conhecimento 

detalhado das distribuições subjacentes aos atrasos. Além disso, o modelo permite capturar 

pormenorizadamente a propagação dos atrasos decorrentes das conexões da tripulação e a 

complexa estrutura de custos dos salários dos membros das tripulações, permitindo-nos 

encontrar um bom equilíbrio entre os custos planeados e os custos adicionais relativos a 

atrasos e perturbações das operações. O modelo robusto de emparelhamento de tripulação 

proposto é baseado num determinístico formulado como um problema inteiro misto. A 

versão robusta que propomos mantém a linearidade das restrições e da função objetivo e, 

portanto, pode ser tratada por softwares comerciais, o que facilita a sua implementação 

prática. Propomos e implementamos um novo algoritmo para obter soluções ótimas globais 

para o modelo. Soluções ótimas correspondentes a vários níveis de robustez são 
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comparadas para uma companhia aérea de tamanho moderado que opera nos Estados 

Unidos. Testamos as soluções do modelo em um ambiente de simulação usando dados de 

atrasos reais. Os resultados da simulação mostram que as soluções robustas de 

emparelhamento de tripulações levam a atrasos menores e menos ocorrências de 

inviabilidade operacional, exigindo menos ações de recuperação para as resolver.  

Verificámos que, com a inclusão da robustez, é possível gerar soluções de emparelhamento 

de tripulações que reduzem significativamente os custos com atrasos e perturbações das 

operações com apenas um pequeno aumento nos custos planeados. 

Em segundo lugar, apresentamos uma nova plataforma de simulação estocástica que é 

capaz de simular as operações diárias de uma companhia aérea, permitindo que analistas, 

profissionais e pesquisadores do setor avaliem o comportamento da rede de uma companhia 

aérea sob condições de incerteza. Demonstramos a adequação de uma abordagem baseada 

em agentes para modelar um sistema complexo como uma companhia aérea. Além disso, 

demonstramos que uma representação adequada da operação de uma companhia aérea 

carece da consideração explícita da respetiva resposta a incertezas e perturbações. O 

funcionamento da plataforma é exemplificado por meio de um estudo de caso detalhado 

em que comparamos dois modelos de recuperação de horários de companhias aéreas que, 

devido terem objetivos distintos, levam a diferentes comportamentos da companhia aérea 

simulada. Determinamos e comparamos os trade-offs entre cancelamentos e atrasos de voo 

que são feitos por esses modelos em função dos objetivos da companhia. 

Em terceiro lugar, apresentamos uma meta-modelo “machine learning” onde aproveitamos 

informações extraídas dos dados históricos de problemas de recuperação de horários de 

companhias aéreas resolvidos por modelos de otimização para gerar soluções imediatas. 

No estudo de caso que desenvolvemos como prova de conceito, usamos uma rede neuronal 

artificial que, a partir de dados históricos de soluções e problemas, é capaz de extrair o 

padrão da solução e gerar a solução do problema sem precisar de resolver novamente o 

modelo de otimização. Mostramos que é possível usar meta-modelos de “machine 

learning” para prever soluções de modelos de otimização baseados em dados históricos 

com um nível aceitável de precisão. O meta-modelo conseguiu prever a solução de um 

modelo de otimização de recuperação de horários.  



 

 

 
 
 
 
 
 
 
 
 
 

 

Essentially, all models are wrong, but some are useful. 

Box and Draper, 1987 
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1 INTRODUCTION 

The work of this thesis is focused on airline operations, scheduling, and proactive and 

reactive measures to uncertainty. First, we present a robust planning model for the crew 

scheduling problem. It is a model with a proactive approach to disruptions. Second, we 

present a simulation platform where we explain the need to properly represent all agents 

and the airlines decision making process to be able to simulate the operations of an airline. 

This stochastic simulation model underlying the platform is able to capture in detail the 

operation of an airline. Useful for researchers and industry practitioners alike, it allows 

testing schedules, scenarios, and effectiveness of reactive and proactive measures to tackle 

uncertainty. Finally, this thesis presents a machine learning metamodel that can learn from 

the historic data of an airline and generate solutions to recovery from disruptions, 

improving the process of solving the schedule recovery problem significantly in terms of 

efficiency.  

1.1 Background 

The airline industry in 2018 generated 800 billion US dollars in revenues (IATA, 2018). It 

is easy to understand that inefficiencies and uncertainties affecting the operations of an 

airline can lead to losses of millions of dollars every year. A comprehensive study 

analyzing data from 2007 sets the cost of delays in aviation for the US economy at 32.9 

billion US dollars (Ball et al., 2010). Additionally, the increase in passengers has been 

exponential in the last fifty years; see Figure 1.1. In 2017, the total passengers carried by 

air worldwide rose to approximately 4 billion (IATA, 2018; World Bank, 2018). 



 INTEGRATED SCHEDULE RECOVERY    INTRODUCTION 

David Joaquim Marques Antunes  2 

  

Figure 1.1. Passengers carried worldwide from 1970 to 2017 (World Bank, 2018) 

This increase is not accompanied by the profits since there is a high level of competition. 

One factor of this is that the margin levels are moderate in comparison to other industries. 

Average profit margins were around five percent in 2017 (IATA, 2018). The mature 

markets, United States and Europe, are in consolidation (World Bank, 2017) and are 

characterized by a high level of competition. Increasing demand, high level of competition 

and relatively low margins lead to a strong need of efficient operations. Being the 

operations of an airline highly complex, the industry uses advanced models to support their 

decision processes and develop the schedules for all resources under their control. Efficient 

schedules naturally involve small buffers, which are brittle and easy to be disrupted. Hence, 

one of the biggest challenges that airlines face nowadays is how to operate in face of 

uncertainty.  

There are several sources of uncertainty – for instance, fuel costs. These costs are highly 

uncertain, however they are outside the scope of this thesis, because fuel cost uncertainty 

can be considered a strategic problem, and we want to focus on operational uncertainty. By 

operational uncertainty we mean uncertainty that will directly affect the operations of an 

airline. i.e. uncertainty that will directly affect the schedules and create delays and or 

cancellations. According to the Bureau of Transportation Statistics (BTS), in the US there 
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are five types of causes of delays considered in the Airline On-Time Time Performance 

database (BTS, 2016): 

• Air Carrier: The cause of the cancellation or delay was due to circumstances 

within the airline’s control (e.g. maintenance or crew problems, aircraft cleaning, 

baggage handling, fueling, etc.); 

• Extreme Weather: Adverse meteorological conditions that, in the judgment of the 

carrier, delay or prevent the operation of a flight (e.g. tornado, blizzard, hurricane, 

etc.); 

• National Aviation System (NAS): Delays and cancelations attributable to the NAS 

that refer to a broad set of conditions, such as non-extreme weather conditions, 

airport operations, heavy traffic volume, and air traffic control; 

• Late-arriving aircraft: A previous flight with the same aircraft arrived late, 

causing present flight to depart late. (This is an extremely important point since it 

corresponds to propagated delays in the network. The caveat here is that some 

propagated delays are classified under the Air Carrier point, as we will explain 

further on in greater detail); 

• Security: Delays or cancelations caused by the evacuation of a terminal or 

concourse, re-boarding of aircraft because of security breach, inoperative screening 

equipment, and/or long lines in excess of 29 minutes at screening areas. 

If we observe the data of the Airline on-Time Performance database at a glance (Figure 

1.2), we see that around eighty percent of the flights in the United States are considered on 

time and one to two percent of the flights are canceled. This is similar in the European 

market. According to EUROCONTROL (2018), around eighty percent of the flights are 

considered on time in 2017 in Europe.  
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Figure 1.2. On-time performance flight delays at a glance (BTS, 2018) 

As referred before, uncertainty will eventually affect an airline in one way or another. If an 

event, or set of events, are severe enough they will result in disruptions, that manifest 

typically in delays or cancelations. To handle these issues, airlines have a department 

commonly called Airline Operational Control Center (AOCC). The mandate of an AOCC 

can be resumed as: “guarantee smooth operations and solve any issue of the operations, 

proactively and reactively”. According to Ball et al. (2006), an AOCC is comprised of : 

• Airline operation controllers: At the helm and responsible for aircraft re-routing, 

flight cancelations, and delays decisions; 

• Crew planners: Solve disruptions of crew schedules and coordinate with airline 

operations controllers so solutions remain feasible for crew; 

• Costumer service coordinators: Solve disruptions for passengers and coordinate 

with airline operations controllers to evaluate the impact on passengers of 

disruption solutions; 

• Dispatchers: communicate directly with the pilots providing flight plans; and, 

• Air traffic control groups: collect and provide information related to the ATC 

systems and share it with the airline operations controllers. 
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Of course, this differs greatly from airline to airline, depending on the size, regulatory 

framework, region, tools and structure of the airline.  

Most times the schedule recovery problems are solved sequentially; see Rosenberger et al. 

(2002). This is a relict coming from the planning phase where problems are also tackled in 

a sequential manner. The airline planning and airline recovery procedures are commonly 

performed as presented in Figure 1.3. 

 

Figure 1.3. Airline decision process (Kasirzadeh et al., 2014) 

First, the more expensive and scarce resources are scheduled: the aircraft. This step is 

generally called as Flight Scheduling or Schedule Generation. Here all flights to be flown 

are scheduled considering the different markets. 

The next step is Fleet Assignment. In this phase, the available aircraft types are assigned 

to flights. These flights can have several stops at different airports. Each connection 

between a pair of airports is called a flight leg. The objective is, with the different groups 

of aircraft existing in the airline, to maximize the profit by serving markets. The revenue 

from a flight leg depends on the market for that leg and the type of aircraft that is used for 

flying it. Besides the aircraft type, several other constraints are considered in this phase. 

For instance: legal aspects and connecting flights. 
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After the allocation of the fleet type, the Tail Assignment or Aircraft Routing is made. In 

this step, individual aircraft are allocated. Since the individual identification number of an 

aircraft is written on the tail, this process is known as Tail Assignment. Here the main 

constraint is the maintenance that the aircraft must undergo, which vary for each aircraft 

type, age and flown hours. 

Being everything related to the aircraft already handled, the next resources to be planned 

are the crews. Crews are very important for airlines and, second to fuel, they are usually 

the largest single cost of an airline (Kohl & Karisch 2002; Ball et al. 2010; Bierlaire & 

Gallay 2010). The scheduling of the crews in an airline is generally divided in two sub-

problems: Crew Pairing and Crew Assignment. First the crew paring is solved in which 

each flight is exactly covered by one, and only one, pairing that produces the minimum 

cost. These pairing include rest periods, training time and vacations and must then adhere 

to several constraints, for instance: legal restrictions on flight hours and minimum rest 

among others that may be imposed by the labor organizations. The airline itself can impose 

some constraints to attend to details of the network or add robustness to the schedules. The 

second step, Crew Assignment, is the process of attributing a schedule for each individual 

member taking in account seniority, equality in hours flown, and personal preferences of 

crew members. 

One can divide the crews in two types: the cockpit crew and the cabin crew. Cockpit crews 

are the ones that fly the aircraft and the cabin crews are there to assist the passengers. Each 

cockpit crew is qualified to fly a specific kind of aircraft type or fleet family. The problem 

is divided in various sub problems as a function of the fleet type and crew qualifications. 

As referred before, commercial air transport heavily relies on optimization techniques to 

solve these allocation/scheduling problems, but this results in a very fragile schedule, 

almost without any slacks, that is very sensitive to any perturbation. Even a minor 

perturbation – because there are very few buffers – can lead to system wide disturbances 

of the carrier's schedule. 

This problem has been addressed by the literature in two different ways. One is schedule 

recovery, where the airline, once a delay or disturbance appears, tries to recover the normal 

schedule in an efficient and effective way. The other is robust schedule design where the 
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schedules are generated with a given level of robustness to face uncertainty. These two 

ways – schedule recovery and robust design – are intrinsically related. A highly robust 

schedule, designed for the worst-case scenario, has a low probability to be disrupted, hence 

a low schedule recovery cost. However, it is probably too conservative and costly. On the 

other hand, a highly optimized schedule with no slack or other kind of buffers will be prone 

to disruption and these disruptions translate into higher schedule recovery costs for the 

airlines.  

Besides the combination of robustness and recovery, recovery should be attended in a broad 

perspective, in an integrated manner. It is not good practice to recover a disrupted schedule 

only by trying to alter the resources of a flight that is disrupted. For instance, if a flight is 

delayed and the crew that is onboard has a connecting flight, one could solve that disruption 

by using another crew that is on that airport. But the problem could also be solved by 

delaying the second flight enough time so that the crew can make it on time. With this 

simple example, it is possible to see that schedule recovery tends to be a practice where the 

whole airline and all its components must be considered: aircraft, crews, and passengers. 

Regardless of the planning efforts made by airlines, the recovery problem will always be 

present in their operations. Even the most robust, worst-case design will fail at some point, 

and there will be a need of a highly efficient and effective schedule recovery method. 

1.2 Goal, Objectives, and Tasks of work 

The main goal of this work can be summarized as: 

• Improve the scheduling practices of airlines using proactive and reactive 

approaches. 

In concordance with this goal we devised three objectives. We also present the key tasks 

that where performed to achieve these objectives: 

• Develop a proactive approach to improve the airline scheduling process. 
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o Review the literature on airline planning, airline scheduling, uncertainty, 

proactive responses to uncertainty (robust scheduling); 

o Understand the uncertainty and how it affects the operations of an airline; 

o Develop a robust crew scheduling model that generate crew pairings that 

induce robustness in face of propagated delays through the network of an 

airline; 

• Develop an approach to be able to test and evaluate reactive and proactive models 

used to tackle the airline scheduling problem. 

o Review the literature on simulation, airline operations and scheduling; 

o Develop a stochastic simulation platform to be able to benchmark 

scheduling solutions in face of uncertainty; 

o Understand the implications of different schedule recovery models in an 

airline’s operations. 

• Develop a reactive approach to improve the airline scheduling recovery process. 

o Review the literature on airline scheduling recovery, machine learning and 

metamodels.   

o Understand if a machine learning is the right representation of a schedule 

recovery model and can be used to mimic decision making made by an 

airline; 

o Create a machine-learning tool able to generate immediate solutions for the 

schedule recovery problem leveraging existing historic data for this 

purpose. 
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To be noted, that some of the tasks helped with more than just one objective. For instance, 

literature review done to answer the first objective also helped with the second and third 

objective.  

1.3 Structure of Thesis 

The thesis is organized into five chapters. Chapter 1, the current one, is the introduction 

where the theme of the thesis, background and scope are explained. It also explains the 

objectives of the work and lists them in detail. 

Chapter 2 contains the proactive approach to uncertainty in airline scheduling. Since the 

crews have more complex rules and are important operational costs for airlines, second 

only by fuel costs, we created a robust crew scheduling model, specifically a robust crew 

pairing. It captures the complex legal framework of the industry and collective bargaining 

agreement (CBA). The resulting model is a robust crew pairing model that is formulated 

in linear form as a Mixed Integer Problem (MIP). The model is applied to an US carrier, 

Virgin America, in a case study where several levels of robustness are compared to each 

other using a stochastic simulation model to evaluate the solutions. 

Chapter 3 contains the detailed characterization of a simulation platform. The platform 

relies on a stochastic simulation model using an agent-based modeling approach that 

represents in detail all daily operations of an airline. It allows to compare proactive and 

reactive schedules, robust schedules and schedule recovery solutions, and test them in face 

of uncertainty. We further elaborate on the idea that agent-based representation is a suitable 

way to represent an airline. We developed a case study where we use data from two airlines, 

Virgin America and Alaska Airlines, and apply two different schedule recovery 

approaches.  

Chapter 4 contains a machine learning (ML) metamodeling approach to the airline schedule 

recovery problem. This approach leverages the historic data of schedule recovery problems 

and solutions to train a ML metamodel, specifically, an Artificial Neural Network. It is able 

to capture the patterns in the data and with this information generates immediate solutions. 

This chapter also explains the methodological approach to feed the historic data in a 

structured way. In a proof of concept case study, using data generated by the case study 
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presented in Chapter 3, we verify that these patterns exist and can be captured using the 

ML metamodel.  

Finally, in Chapter 5 we present the final conclusions of the whole thesis and research 

questions that this thesis opened, and further work that should be carried out to answer 

them. 

1.4 Publications and presentations 

The work presented in this thesis was published partially and/or presented on various 

events. Chapter 2 was submitted and has been accepted for publication: 

• Antunes, D., Vaze, V., and Antunes, A. (2019). A Robust Pairing Model for Airline 

Crew Scheduling. Transportation Science. In press. 

Events where part of this work was presented orally or as poster are listed below: 

• IO2018, XIX Congress of the Portuguese Association of Operational Research, 

September 2018, Aveiro, Portugal. Title: Simulating Airline Daily Operations: 

Schedule Recovery and Airline Behavior. 

• 21th ATRS World Conference, July 2017, Antwerp, Belgium. Title: Robust Airline 

Scheduling. 

• CITTA 9th Annual Conference, November 2016, Coimbra, Portugal. Title: Airline 

Schedule Recovery: A Simulation Framework. 

• 2016 MIT Portugal Conference, June 2016, Braga, Portugal. Title: Robust Airline 

Scheduling (poster). It received the “Best Poster Award”. 

• 13th GET conference (Transport Study Group), January 2016, Figueira da Foz, 

Portugal. Title: Robust Airline Scheduling 
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2 A ROBUST PAIRING MODEL FOR AIRLINE 
CREW SCHEDULING 

2.1 Introduction 

The airline schedule planning process consists of making a set of decisions regarding flight, 

aircraft and crew schedules. Traditionally, airline schedule planning is done sequentially, 

and the typical objective of each stage in the sequence is the minimization of the operating 

costs associated with the decisions being made in that stage if the operations are to be 

carried out exactly as planned. The actual costs can be considerably different from their 

planned values though, because airline operations often get disrupted due to various 

unforeseen events, including adverse weather, airport congestion, mechanical problems, 

security delays, etc. Therefore, recent literature has emphasized the need of accounting for 

these delays and disruptions while planning the schedules so that the true costs can be 

minimized. 

This paper focuses on the crew scheduling stage in the airline schedule planning process 

and develops a new mathematical model and solution algorithm for generating crew 

schedules that strive to minimize the total cost, which includes the deterministic component 

of the planned crew costs as well as the costs of disruptions to planned crew schedules. For 

expositional convenience, from here on, we will refer to the deterministic component of 

the planned costs simply as “planned costs”. 

The crew scheduling stage itself consists of two sequential sub-stages. In the first sub-stage, 

sequences of flights are generated to be operated by a single crew. This sub-stage, called 

crew pairing, creates flight sequences that are typically 1 to 4 days long, but does not assign 

these flight sequences to any specific crew members. The second sub-stage, called crew 

rostering, then combines several such sequences into monthly crew schedules and assigns 

these monthly schedules to individual crew members while accounting for other 
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considerations such as training and vacation periods. This paper focuses on the first sub-

stage, that is, crew pairing. 

This chapter is organized as follows. In the remainder of this section we provide some 

background information on the crew pairing problem and on optimization approaches 

under uncertainty. The existing literature on crew pairing problems under uncertainty is 

reviewed in Section 2.2. In Section 2.3, we present an overview of our robust crew pairing 

model and, in Section 2.4, we provide the mathematical formulation of two variants of the 

model. Next, in Section 2.5, we describe the solution algorithm designed to solve the model 

and, in Section 6, we prove some of its key theoretical properties. The two subsequent 

sections are dedicated to presenting a case study involving a real-world airline network 

(Section 2.7) and to discussing the results that we have obtained through its application 

(Section 2.8). Finally, in Section 2.9, we summarize the main contributions of this paper 

and identify some important directions for future research. 

2.1.1 Crew Pairing Problem 

The crew pairing problem is a complex mathematical problem faced by airlines. A crew 

pairing is defined as a schedule for a crew member that covers a sequence of flights while 

adhering to several restrictions, such as starting and ending at a crew base, and satisfying 

various work rules imposed by the collective bargaining agreements (CBAs) and 

government regulations. These pairings must cover each flight scheduled by the airline 

exactly once. 

A crew pairing problem is a special case of the set partitioning problem (SPP) where each 

flight must be covered by exactly one crew pairing and the objective is to minimize the 

total cost of all chosen pairings. Note that the production versions of the crew pairing 

problem that are implemented by an airline in practice may sometimes include some side 

constraints related to crew grouping, workload balance, etc. However, to keep our 

discussion general, like most of the previous literature on the crew pairing problem under 

uncertainty, we focus our attention on the set partitioning formulation of this problem. The 

mathematical model representing the SPP is as follows: 
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min ∑ 𝑐𝑝

𝑝∈𝒫

𝑥𝑝 (2.1) 

Subject to: 

∑ 𝑘𝑓𝑝 ∙ 𝑥𝑝

𝑝∈𝒫

= 1                                                  ∀𝑓 ∈ ℱ (2.2) 

𝑥𝑝 ∈ {0,1}                                                    ∀𝑝 ∈ 𝒫 (2.3) 

where: 

ℱ: Set of all flights; 

𝒫: Set of all feasible pairings; 

𝑐𝑝 ∈ ℝ+: Cost of pairing 𝑝; 

𝑘𝑓𝑝 ∈ {0,1}: Binary parameter that indicates if flight 𝑓 is included in pairing 𝑝; 

𝑥𝑝 ∈ {0,1}: Binary decision variable that indicates if pairing 𝑝 is chosen. 

Solving even the linear programming relaxation of this model in a naïve way requires 

explicitly enumerating all possible pairings, and even for a small airline’s network this 

might result in several billions of possible pairings. So instead of enumerating all possible 

pairings, the model is solved using a method known as column generation. It is an iterative 

method where a restricted version of the set partitioning problem, known as a restricted 

master problem (RMP), is solved first using only a small subset of all feasible pairings. 

Then a second problem, called the pricing problem (PP), is solved to generate additional 

pairings to be added to the RMP such that these new pairings decrease the optimal value 

of the RMP objective function. 



 INTEGRATED SCHEDULE RECOVERY                         A ROBUST PARING MODEL FOR AIRLINE 

CREW SCHEDULING 

David Joaquim Marques Antunes  15 

The PP itself is challenging to solve due to the commonly used non-linear crew pay scheme 

(known as pay-and-credit scheme) and due to the several complex legal and administrative 

restrictions on crew pairings. A crew pairing consists of a sequence of crew duties with 

consecutive duties separated by crew rest times, where a crew duty is defined as a sequence 

of flights scheduled to be operated by a crew during a work-day. Typically, at least for the 

North American airlines, the planned crew pay for a pairing equals the maximum of two 

terms: 1) sum of costs of the duties that constitute the pairing, and 2) a fraction (𝛼) of the 

total elapsed time of the pairing. Total elapsed time of a pairing is sometimes called the 

time away from base (TAFB). Thus, the planned crew pay for a pairing is given by: 

𝑐𝑝 = 𝑚𝑎𝑥 ( ∑ 𝑐𝑑

𝑑∈𝐷𝑝

, 𝛼 ∙ 𝑇𝑝)              (2.4) 

where 𝐷𝑝 is the set of duties in pairing 𝑝, 𝑐𝑑 is the cost of duty 𝑑, and 𝑇𝑝 is the TAFB of 

pairing 𝑝. The duty cost (𝑐𝑑) itself is given as the maximum of three terms, as follows: 

𝑐𝑑 = max(𝑏𝑑, 𝛽 ∙ 𝑒𝑑, 𝜃)              (2.5) 

where 𝑏𝑑 is the sum of block times of all flights in duty 𝑑, 𝛽 is a constant parameter, 𝑒𝑑 is 

the elapsed time of duty 𝑑 and 𝜃 is the minimum guaranteed crew pay per duty. The block 

time is the length of the time interval between an aircraft’s departure time from the gate at 

its origin airport and the aircraft’s arrival time at the gate at its destination airport. This 

interval includes the flying time, takeoff time, landing time, taxi-out time and taxi-in time. 

The parameters 𝛼, 𝛽 and 𝜃 are typically negotiated between the crew union and the airline 

management through a CBA. 

Government regulations and CBAs also impose several constraints on what constitutes a 

permissible pairing. Typical constraints include an upper limit on the elapsed time of a 

pairing, an upper limit on the elapsed time in each duty, an upper limit on the flying time 

in each duty, a lower limit on the time between flights within the same duty (called sit 

time), and a lower limit on the time between two consecutive duties (called rest time). 
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2.1.2 Optimization Approaches under Uncertainty 

Airlines rely heavily on optimization models to solve various resource allocation and 

scheduling problems like the crew pairing problem. However, these models traditionally 

have focused on minimizing planned costs alone. This may result in highly fragile 

schedules, which have very little or no buffers, and thus are very vulnerable to disruptions. 

Consequently, even a minor perturbation can lead to system-wide disturbances in the 

airline’s operations. There are several approaches for capturing the effects of such 

uncertainty in optimization models. Three major approaches are chance-constrained 

optimization (sometimes called as stochastic optimization), stochastic programming and 

robust optimization. 

Chance-constrained optimization models ensure that the probability of satisfying a certain 

constraint is greater than or equal to a certain level. They restrict the feasible region of the 

model to ensure that the probability of a solution remaining feasible under uncertainty is 

high. These models assume the input data to be random and require a priori knowledge of 

the probability distribution functions associated with the data. 

One drawback of the chance-constrained optimization approach is that it is often difficult 

(or even impossible) to obtain the underlying distributions of the uncertain input 

parameters. Sim (2004) states that, even in the cases where we know the distributions, it is 

still computationally challenging to evaluate the chance constraints, let alone solving the 

optimization model. Moreover, the chance constraints can destroy model’s convexity 

properties and increase the complexity of the model, thus further increasing the 

computational effort required to solve it. Hence applying this approach to solve the crew 

pairing problem, whose deterministic version itself has a heavy computational burden, 

seems prohibitively challenging. Indeed, we are not aware of any existing study that 

attempts to apply the chance-constrained optimization approach to solve the crew pairing 

problem under uncertainty. 

Stochastic programming models assume some of the input parameters (coefficients in the 

objective function and/or in the constraints) to be uncertain. Uncertainty is usually 

characterized by a probability distribution function of the input parameters. Typically, the 
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problem is formulated as a two-stage optimization model where some or all parameter 

values get realized after the first-stage decisions are made, and therefore the model is 

formulated as one of minimizing the expected costs of the consequences of the first-stage 

decisions. Note that the second-stage decisions under each realization of the parameter 

values also affect the consequences of first-stage decisions, and thus the accuracy of this 

approach is affected by the accuracy in the characterization and solution of the second-

stage model. Another challenge is the complete enumeration of all possible parameter 

realization scenarios and the corresponding solution of the second-stage model in each 

scenario. Therefore, an approximate solution is often sought by evaluating only a small 

number of scenarios. Indeed, the computational burden of applying a stochastic 

programming approach to the crew pairing problem is enormous. Yen and Birge (2006) is 

an example of a study from past literature that attempts to do so. However, it focuses on a 

flight network of small size, assumes a simplified crew pay structure, considers a simplified 

version of the second-stage problem (called the recovery problem), and uses a sample of 

only 100 scenarios of parameter realizations. 

Robust optimization models involve arguably less severe computational challenges when 

applied to the crew pairing problem, but there is no prior literature attempting to do so, 

except for a recent study by Lu and Gzara (2015) which is discussed in Section 2.2. The 

application of a robust optimization approach to the crew pairing problem is far from being 

straightforward, as discussed in Section 3, which could be one of the reasons for the lack 

of literature in this area. This approach has been shown to perform well in many other 

application areas. Ye et al. (2014) compared a stochastic programming approach and a 

robust optimization approach for a production scheduling problem and concluded that their 

performance is similar. Also, Chen et al. (2007) compared the same two approaches, and 

noted that, compared to stochastic programming, robust optimization relaxes the 

requirement from the users to know the probability distribution functions, and instead only 

needs modest assumptions about them. They also noted that the size of the robust linear 

models is polynomial, rather than exponential, in problem dimensions, making it possible 

to use (state-of-the-art) commercial solvers to handle them. A comparison made by Hasani 

et al. (2012), applied to closed-loop supply networks, showed that lack of knowledge about 

the best fit parameter distributions, as well as the associated modeling and computational 
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complexities, limit the application of stochastic programming, and therefore a robust 

optimization approach is more preferable. In summary, robust optimization models neither 

need detailed information about the probability distribution functions, nor suffer from 

tractability issues as severe as those faced by stochastic programming models. 

Although robust versions of a tractable deterministic optimization model might not always 

be tractable, tractable robust versions of many known optimization problems have been 

formulated. In this paper, we develop a tractable version of the crew pairing problem under 

uncertainty based on the concept of robust optimization presented by Bertsimas and Sim 

(2004). We solve the model to optimality, with an algorithm that iteratively uses 

commercial solvers, within a reasonable amount of time for moderate-sized real-world 

airline networks. We implement and solve our model to compute and compare several 

solutions with varying robustness parameter levels for the network of a moderate-sized 

low-cost airline in the United States. The model’s solutions are thoroughly tested in a 

simulation environment using real-world delay data. The simulation results show that our 

robust crew pairing solutions lead to lower delays and fewer instances of operational 

infeasibilities, thus requiring fewer recovery actions to address them. We find that with the 

inclusion of robustness, it is possible to generate crew pairing solutions that significantly 

reduce the delay and disruption costs with only a small increase in planned costs. 

2.2 Literature Review 

A number of prior studies have dealt with the crew pairing problem under uncertainty. In 

addition to the planned crew costs, they have focused, directly or indirectly, on capturing 

the additional operating costs due to disruptions. All prior studies can be broadly 

categorized into two classes based on their objective: 1) studies that attempt to minimize 

delay propagation through crew connections by judicious allocation of buffers in crew 

connection times, and 2) studies that attempt to create crew schedules that are easier to 

recover once a disruption happens. Note that typical crew schedule recovery actions in 

response to a disruption include delaying flight departures, crew swaps, use of reserve 

crews, flight cancellations and crew deadheads. 



 INTEGRATED SCHEDULE RECOVERY                         A ROBUST PARING MODEL FOR AIRLINE 

CREW SCHEDULING 

David Joaquim Marques Antunes  19 

Yen and Birge (2006) present a model that aims to reduce the propagated delay by 

minimizing the expected value of the total costs through a stochastic programming 

approach. In addition to the planned costs in the form of crew salaries, they include an 

expected delay cost in the objective function. The only possible recovery actions in the 

model consist of delaying flight departures, and it does not capture the effects of violations 

of crew duty rules such as upper limits on duty flying times and duty elapsed times. 

Moreover, the crew pay structures are much simpler compared with the complex structure 

of crew pay in North American airlines as described in Section 2.2.1.1.  

A bi-criteria optimization approach is proposed by Ehrgott and Ryan (2002) to include 

robustness into the crew pairing model. Their idea of a robust solution is based on 

decreasing the number of aircraft changes by the crew when there is insufficient ground 

time between two successive flights. While this is an important aspect of robustness, there 

are many other aspects that may lead to significant delays and infeasibilities in the 

operation of a crew pairing. The authors acknowledge that the model has several 

computational difficulties and a large amount of customization is necessary. Several 

parameters need to be set, making expert knowledge of the model necessary to be able to 

implement it. 

Tam et al. (2011) compare stochastic programming and bi-criteria optimization 

approaches. They conclude that bi-criteria optimization leads to better solutions for cases 

with moderate delay costs and that stochastic programming might be preferred for cases 

with more substantial delay costs. 

Recognizing that crew swaps are an important type of crew recovery action, Shebalov and 

Klabjan (2006) attempt to maximize the crew swapping opportunities at the expense of a 

small increase in the planned crew costs. They solve a somewhat simplified daily (rather 

than multi-day) crew pairing problem. They acknowledge that the underlying mixed-

integer linear programming formulation is very challenging to solve using commercial 

solvers, and instead solve it using a customized algorithm combining delayed column 

generation and Lagrangian relaxation techniques. They conclude that, to seek a good 

tradeoff between planned crew costs and crew recovery potential, the planned crew costs 

should be within 1% of the minimum planned crew costs value. They note that this 1% 
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bound could include several alternative crew schedules, and that the exact choice of such 

bound, as well as the actual crew schedule, needs to be further examined.  

Schafer et al. (2005) propose an approach that modifies the cost of each crew pairing by 

including, in addition to the planned costs, a linear penalty function that penalizes short sit 

times between flights within a duty, short rest times between duties, long flying times 

within a duty, and long elapsed times for a duty. Using an iterative approach and a discrete 

events simulation model to evaluate the resulting crew schedules, the authors fine-tune the 

coefficients of the penalty function to best approximate the expected operational costs. This 

study ignores crew recovery actions and also assumes that there is no aircraft-based 

propagation of delays. Moreover, the success of this approach is contingent on the accuracy 

of the delay distributional assumptions underlying the discrete events simulation model. 

A model for integrated fleet assignment and crew scheduling is presented in Gao et al. 

(2009) where the cost of crew scheduling is not considered in an explicit manner. Instead, 

the model minimizes certain indicators of the cost of crew scheduling under uncertainty. 

Specifically, it attempts to restrict the number of different fleet families and the number of 

different crew bases serving each airport in the network, to create more aircraft and crew 

swapping opportunities. This study is similar, in spirit, to Shebalov and Klabjan (2006) in 

that both focus specifically on improving crew swapping opportunities, but not on other 

issues such as crew delay propagation and potential infeasibilities in crew schedules.  

AhmadBeygi et al. (2010) formulate a model which proposes minor changes to flight 

schedules while maintaining all the crew connections obtained by minimizing the planned 

cost. This is achieved by adjusting the placement of existing slack to improve operational 

performance by reducing propagated delays. The model re-times some flights such that 

more slack is provided in places where it is needed the most to absorb propagated delays, 

while reducing the slack in places where it is less useful. Rather than adjusting crew 

pairings to make them more resilient to disruptions, this approach adjusts the flight timings 

while holding crew pairings unchanged. 

The integrated aircraft routing and crew pairing model presented in Dunbar et al. (2012) 

relies on a simplified model of crew costs based only on flying hours. It is a significant 
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simplification in comparison to the pay-and-credit scheme (described in Section 2.1.1) that 

many airlines use, especially in North America. Their computational results are obtained 

for a daily network consisting of 54 flights. 

Weide et al. (2010) also develop an integrated aircraft routing and crew pairing model 

which tries to ensure that the aircraft and crew stay together as much as possible. Since the 

two individual models by themselves are already hard to solve, combining them would 

increase the computational burden significantly. To avoid this issue, the authors solve the 

two individual models in an iterative manner. It is a highly customized modeling approach 

where several parameters, weights, and a non-robustness measure must be set a priori, and 

it also does not guarantee optimality. 

Finally, Lu and Gzara (2015) propose a robust optimization model that attempts to add 

robustness to a highly simplified version of the crew pairing problem, wherein crew costs 

are approximated by the TAFB (time away from base) component alone. This simplified 

cost of a pairing is the main metric of planned performance for the whole model, and 

robustness is induced by considering uncertainty in this metric. Despite this highly 

simplified cost structure, the approach still leads to a non-linear optimization model that is 

solved through Lagrangian relaxation. The computational results are based on an airline 

network with 46 daily flights spanning across a four-day time horizon. 

In summary, due to the complexity of the problem, most existing approaches to crew 

pairing under uncertainty make strong simplifying assumptions about the crew pay rules 

and delay costs, and most end up developing highly customized algorithms. Furthermore, 

the literature on applying the robust optimization approach to the crew pairing problem is 

rather scarce despite the success of this approach as evidenced in other applications. Our 

paper addresses this gap by developing a robust crew pairing model and an associated 

solution algorithm that can be implemented by directly using commercial solvers in an 

iterative manner. 
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2.3 Model Overview 

Before presenting the full mathematical formulation of the model proposed in Section 4, 

we provide here the motivation behind our modeling approach by highlighting the 

complexity associated with incorporating robustness into the crew pairing problem in a 

comprehensive manner. As mentioned in Section 2, all previous models for the crew 

pairing problem under uncertainty either assume a highly simplified crew pay structure or 

rely on a very limited interpretation of the idea of crew schedule robustness, or both. Our 

model is much more comprehensive. Specifically, we account for the full complexity of 

the pay-and-credit crew salary structure, and we also account for various dimensions of 

crew schedule robustness by considering multiple complex implications of crew schedule 

disruptions on an airline’s overall network. Next, we describe these various implications 

of crew schedule disruptions. 

When a flight is delayed for any reason, such as weather, mechanical failure, security, etc., 

its delayed arrival may leave insufficient time until the departure of the next flight 

scheduled to be operated by the same crew, thus delaying the departure of the next flight 

as well. We call this phenomenon as delay propagation through crew. The delay to the next 

flight is categorized as propagated delay, to be contrasted with the delay to the original 

flight, which is called the root delay. Propagated delays have two major types of operational 

impacts on an airline’s network. First, propagated delays generate additional flight delay 

costs to the airlines through additional aircraft operating costs, passenger misconnection 

costs, loss of passenger goodwill, etc. Second, propagated delays can increase the elapsed 

time of a crew duty and/or the elapsed time of a crew pairing, which in turn has two effects 

– it might result in additional crew costs, and the extra duty elapsed time can also make 

some pairings infeasible to operate. 

In this paper, we develop two variants of a robust crew pairing model, called Robust Model 

1 (RM1) and Robust Model 2 (RM2). RM1 captures the full pay-and-credit crew salary 

structure as well as the flight delay costs due to propagated delays but does not capture the 

effects of the potential increases in duty and pairing elapsed times. RM2 captures all three, 

i.e., the full pay-and-credit crew salary structure, the flight delay costs due to propagated 

delays, and the effects of the potential increases in duty and pairing elapsed times. While 
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flight delays can also increase crew flying time leading to additional crew costs, this is 

usually a small component of the overall delay costs because most delays are taken on 

ground waiting at the gate. Modeling the exact fraction of flight delays taken on ground 

versus in air is beyond the scope of this paper. Instead, we use two alternative approaches 

to handle this cost as reflected by our two robust model variants: RM1 includes crew delay 

costs within the flight delay cost calculation, while RM2 calculates crew delay costs 

separately as functions of only the increases in duty elapsed times and pairing elapsed 

times. 

Our robust crew pairing model is based on the concept of robustness first developed by 

Bertsimas and Sim (2004) wherein the desired level of robustness or conservatism for the 

𝑖th constraint in the model is controlled by a robustness budget (Γ𝑖). Note that this approach 

also allows adding robustness to the objective function coefficients by simply defining a 

new decision variable, setting it equal to the original objective function (and thus moving 

the original objective function to the set of constraints) and then setting this new decision 

variable as the new objective function. The central idea is to ensure that the solutions 

produced by the model are protected against (i.e., are feasible under) all uncertainty 

scenarios where at most ⌊Γ𝑖⌋ coefficients in the 𝑖th constraint take their worst-case values, 

one other coefficient takes a value which is at most (Γ𝑖 − ⌊Γ𝑖⌋) times as bad as the worst-

case value, and all other coefficients remain at their nominal values. The rationale behind 

this is based on the observation that it is very unlikely that all coefficients of a constraint 

will take their worst-case values at the same time, but a subset of them sometimes will do 

so. Bertsimas and Sim (2004) also show that the robust version of a linear optimization 

model can itself be reformulated as a linear optimization model, and the robust version of 

an integer linear optimization model can itself be reformulated as an integer linear 

optimization model. Moreover, they also provide bounds on the constraint violation 

probabilities. 

There is an obvious challenge in applying this concept directly to the set partitioning 

formulation of the crew pairing model given by (1)-(3): the uncertainty comes from flight 

delays which affect, in a non-linear way, both the feasibility and the true cost of covering 

a flight by a pairing. As explained in Section 2.1.1, real-world crew pairing problems are 
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characterized by a prohibitively large number of feasible pairings, making explicit 

enumeration impossible. Instead, column generation techniques are typically used to 

generate and add additional columns to the RMP (restricted master problem) based on their 

ability to reduce the RMP objective function value. Column generation involves solving a 

problem called as pricing problem (PP). Therefore, to add robustness to the crew pairing 

model, we need to especially focus our attention on the pricing problem under uncertainty. 

Past studies have developed and used different methods to solve the PP. A multi-label 

shortest path algorithm is often used (Desaulniers et al., 2005; Vance et al., 1997), which 

relies heavily on the model structure and requires significant implementation effort due to 

its highly customized nature. AhmadBeygi et al. (2009) developed an integer programming 

model as an alternative approach for solving the PP for moderate-sized crew pairing 

problem instances using a commercial solver. Their approach is especially suitable for our 

purposes. It allows us to modify their original PP by adding a variety of new features to 

account for robustness considerations. 

2.4 Mathematical Formulation 

We now describe the mathematical formulation for our two variants of the robust crew 

pairing model. Section 4.1 presents the robust version of the restricted master problem 

(RMP), while Section 4.2 presents the robust version of the pricing problem (PP). We 

denote the original PP formulation presented by AhmadBeygi et al. (2009) as the base 

formulation. To keep our discussion focused, we present in Section 4.2 only the new 

features that transform the base formulation into its robust version and relegate the 

discussion of the remaining parts of the base formulation to the appendix. 

2.4.1 Robust Crew Pairing Model 

We will use the following notation in the RMP formulation.  

2.4.1.1 Sets 

ℱ: Set of all flights; 
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𝒫: Set of all feasible pairings in the absence of uncertainty; 

𝐷𝑝: Set of all duties in pairing 𝑝; 

𝐿𝑝
𝑠 : Set of all ordered flight pairs such that the second flight in the pair immediately follows 

the first flight within the same duty in pairing 𝑝; 

𝐿𝑝
𝑟 : Set of all ordered flight pairs such that the second flight in the pair immediately follows 

the first flight, but the two are in consecutive duties in the same pairing 𝑝. 

2.4.1.2 Parameters 

𝛤 ∈ [0, |ℱ|]: Robustness budget;  

𝑘𝑓𝑝 ∈ {0,1} : Binary parameter that indicates if flight 𝑓 is included in pairing 𝑝; 

𝛾 ∈ ℝ+: Parameter that represents the ratio of the cost of one hour of flight delay to the 

crew pay for one hour of flying time; 

𝜐𝑝 ∈ ℕ+: Number of flights in pairing 𝑝; 

𝛼, 𝛽, 𝜃 ∈ ℝ+: Constant parameters in the pay-and-credit crew salary scheme as described 

in (4) and (5); 

𝑏𝑑𝑝 ∈ ℝ+: Sum of planned block times (ignoring delays) of all flights in duty 𝑑 in pairing 

𝑝; 

∆𝑓 ∈ ℝ+: Root delay of flight 𝑓; 

𝑒𝑑𝑝 ∈ ℝ+: Planned elapsed time (ignoring delays) of duty 𝑑 in pairing 𝑝; 

𝑇𝑝: Time away from base (TAFB) of pairing 𝑝; 
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𝑠𝑓1𝑓2
∈ ℝ+: Planned sit time (ignoring delays) between flights 𝑓1 and 𝑓2; 

𝑟𝑓1𝑓2
 ∈ ℝ+: Planned rest time (ignoring delays) between flights 𝑓1 and 𝑓2; 

𝑓𝑑̅: Last flight in duty 𝑑; 

𝑓𝑝̿: Last flight in pairing 𝑝; 

𝛿 ∈ {0,1}: Binary parameter that equals 0 for RM1 and 1 for RM2; 

𝜏 ∈ ℝ+: Minimum sit time; 

𝜌 ∈ ℝ+: Minimum rest time; 

𝜆 ∈ ℝ+: Maximum duty elapsed time. 

2.4.2 Decision Variables 

𝑥𝑓1𝑓2𝑑 ∈ {0,1}: Binary decision variables from the base formulation indicating if flight 𝑓1 

is immediately followed by flight 𝑓2 within the 𝑑𝑡ℎ duty; 

𝑦𝑓1𝑓2𝑑 ∈ {0,1}: Binary decision variables from the base formulation indicating if flight 𝑓1 

ends the 𝑑𝑡ℎ duty and is followed by flight 𝑓2 starting the (𝑑 + 1)𝑡ℎ duty; 

𝑤𝑓𝑑 ∈ {0,1}: Binary decision variables from the base formulation indicating if flight 𝑓 in 

duty 𝑑 is the last flight in the pairing; 

𝜒𝑝 ∈ {0,1} : Binary decision variable that indicates if pairing 𝑝 is chosen; 

𝜁 ∈ ℝ+: Auxiliary delay variable; 

𝑞𝑓 ∈ ℝ+: Another auxiliary delay variable, specific to each flight 𝑓 ∈ 𝐹; 
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𝜁𝑝 ∈ ℝ+: Another auxiliary delay variable, specific to each pairing 𝑝 ∈ 𝒫; 

𝑞𝑓𝑝 ∈ ℝ+: Another auxiliary delay variable, specific to each combination of flight 𝑓 ∈ 𝐹 

and pairing 𝑝 ∈ 𝒫; 

𝜂𝑝 ∈ ℝ+: Robust version of the cost of pairing 𝑝 (equals 0 if the pairing is not selected); 

𝜓𝑑𝑝 ∈ ℝ+: Robust version of the cost of duty 𝑑 in pairing 𝑝 (equals 0 if the pairing is not 

selected); 

𝑝𝑓1𝑓2𝑝 ∈ ℝ+: Propagated delay from flight 𝑓1to flight 𝑓2 within pairing 𝑝 (equals 0 if the 

pairing is not selected). 

Using this notation, the RMP formulation for the robust crew pairing problem is given by 

(2.6)-(2.20). There are three main differences between this formulation and the 

deterministic crew pairing formulation (2.1)-(2.3). First, the cost of pairing 𝑝 has been 

changed from 𝑐𝑝 ∙ 𝜒𝑝 to its robust version 𝜂𝑝. Second, there is an extra additive term in the 

objective function, 𝛾 ∙ (𝛤 ∙ 𝜁 + ∑ 𝑞𝑓𝑓∈ℱ ), which represents the flight delay costs due to 

propagated delays. Third, the set of feasible pairings is now further restricted by constraints 

(2.19). Constraints (2.9)-(2.18) are necessary to ensure that the modified objective function 

(2.6) and constraints (2.19) represent the robust version of the crew pairing model.  

min ∑ 𝜂𝑝

𝑝∈𝒫

+ 𝛾 ∙ (𝛤 ∙ 𝜁 +  ∑ 𝑞𝑓

𝑓∈ℱ

) (2.6) 

∑ 𝑘𝑓𝑝 ∙ 𝜒𝑝

𝑝∈𝒫

= 1                                             ∀𝑓 ∈ ℱ (2.7) 

𝜒𝑝 ∈ {0,1}                                                     ∀𝑝 ∈ 𝒫 (2.8) 
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𝜁 = ∑ 𝜁𝑝

𝑝∈𝒫

 (2.9) 

𝑞𝑓 = ∑ 𝑞𝑓,𝑝𝑝∈𝒫                                                    ∀𝑓 ∈ ℱ  (2.10) 

𝜁𝑝 + 𝑞𝑓𝑝 ≥ ∑ 𝑝𝑓′𝑓𝑝

𝑓′∈ℱ

+ ∆𝑓 ∙ 𝑘𝑓𝑝 ∙ 𝜒𝑝                  ∀𝑓 ∈  ℱ, ∀𝑝 ∈ 𝒫 (2.11) 

𝑝𝑓1𝑓2𝑝 ≥ ∑ 𝑝𝑓′𝑓1𝑝

𝑓′∈ℱ

+ ∆𝑓1
∙ 𝜒𝑝 − (𝑠𝑓1𝑓2

− 𝜏)   ∀(𝑓1, 𝑓2) ∈ 𝐿𝑝
𝑠  , ∀𝑝 ∈ 𝒫 (2.12) 

𝑝𝑓1𝑓2𝑝 ≥ ∑ 𝑝𝑓′𝑓1𝑝

𝑓′∈ℱ

+ ∆𝑓1
∙ 𝜒𝑝 − (𝑟𝑓1𝑓2

− 𝜌)   ∀(𝑓1, 𝑓2) ∈ 𝐿𝑝
𝑟  , ∀𝑝 ∈ 𝒫 (2.13) 

𝜂𝑝 ≥ ∑ 𝜓𝑑𝑝𝑑∈𝐷𝑝
                                             ∀𝑝 ∈ 𝒫  (2.14) 

𝜂𝑝 ≥ 𝛼 ∙ (𝑇𝑝 ∙ 𝜒𝑝 + (𝜁𝑝 + 𝑞𝑓𝑝̿̿ ̿𝑝) ∙ 𝛿)                   ∀𝑝 ∈ 𝒫 (2.15) 

𝜓𝑑𝑝 ≥ 𝑏𝑑𝑝 ∙ 𝜒𝑝                                 ∀𝑑 ∈ 𝒟 , ∀𝑝 ∈ 𝒫 (2.16) 

𝜓𝑑𝑝 ≥ 𝛽 ∙ (𝑒𝑑𝑝 ∙ 𝜒𝑝 + (𝜁𝑝 + 𝑞𝑓𝑑̅̅ ̅̅ 𝑝) ∙ 𝛿) ∀𝑑 ∈ 𝒟 , ∀𝑝 ∈ 𝒫  (2.17) 

𝜓𝑑𝑝 ≥ 𝜃 ∙ 𝜒𝑝                                   ∀𝑑 ∈ 𝒟 , ∀𝑝 ∈ 𝒫  (2.18) 

 𝜆 ≥ 𝑒𝑑𝑝 ∙ 𝜒𝑝 + (𝜁𝑝 + 𝑞𝑓𝑑
̅̅ ̅̅ 𝑝) ∙ 𝛿                       ∀𝑑 ∈ 𝒟 (2.19) 

𝜁 ∈ ℝ+;  𝑞𝑓 ∈ ℝ+ ∀𝑓 ∈ 𝐹; 𝜁𝑝 , 𝜂𝑝 ∈ ℝ+ ∀𝑝 ∈ 𝒫; 𝑞𝑓𝑝, 𝜓𝑑𝑝 ∈ ℝ+ ∀𝑓 ∈ 𝐹, 𝑝

∈ 𝒫; 𝑝𝑓1𝑓2𝑝 ∈ ℝ+ ∀𝑓1, 𝑓2 ∈ 𝐹, 𝑝 ∈ 𝒫 
(2.20) 

The first term in the objective function (2.6) represents the total cost of crew pairings while 

accounting for the pay-and-credit crew salary structure and the additional crew costs (from 

increased duty and pairing elapsed times) due to delays. The second term in the objective 

function, 𝛾 ∙ (𝛤 ∙ 𝜁 +  ∑ 𝑞𝑓𝑓∈ℱ ), representing the rest of the flight delay costs, is similar in 
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spirit to the expression (𝛤 ∙ 𝑝 +  ∑ 𝑞𝑖𝑖 ) in the objective function of the robust portfolio 

management model (13) presented in Bertsimas and Thiele (2006). Note that, since the unit 

of crew costs is an hour of crew flying time, we use a conversion factor 𝛾 to relate the unit 

delay costs for a given aircraft family with the crew pay per flying hour. 

Constraints (2.7) and (2.8) are constraints (2.2) and (2.3) from the original set partitioning 

problem, respectively, the only difference being that variables 𝑥𝑝 are now replaced by 𝜒𝑝. 

Constraints (2.9) and (2.10) relate the auxiliary variables 𝜁 and 𝑞𝑓 to their pairing-specific 

counterparts, 𝜁𝑝 and 𝑞𝑓𝑝, respectively. Constraints (2.11) require that if a pairing 𝑝 covering 

flight 𝑓 is selected, then our formulation will protect flight 𝑓 against a total arrival delay 

(root delay plus propagated delay) equal to 𝜁𝑝 + 𝑞𝑓𝑝. Constraints (2.12) and (2.13) make 

sure that the delay propagated between every pair of consecutive flights within every 

pairing is calculated correctly. Constraints (2.14)-(2.18) compute the cost of pairing 𝑝 

similarly to equations (2.4) and (2.5). However, in addition to crew salaries calculated 

under the pay-and-credit scheme, they now also include the extra crew pay due to delay-

induced increases in duty and pairing elapsed times. Constraints (2.20) are the variable 

value constraints for all the new decision variables. 

Note that the formulation (2.6)-(2.20) is an integer linear optimization problem which can 

be solved for various values of the robustness parameter 𝛤 ∈ [0, |ℱ|] and for two different 

values of 𝛿 ∈ {0,1}. Setting 𝛤 = 0 is equivalent to solving the deterministic version of the 

problem which does not protect against any delays, while setting 𝛤 = |ℱ| will protect 

against the possibility of all flights in all pairings simultaneously having the worst-case 

delays. For either of these two extreme cases, or for any of the infinite number of cases in 

between, setting 𝛿 = 0 results in RM1 which makes the objective function robust against 

propagated delay costs, but does not protect the pairings against delay-induced increases 

in duty and pairing elapsed times. Setting 𝛿 = 1 results in RM2 which additionally protects 

the pairings against such delay-induced increases in duty and pairing elapsed times.  

Except for the main auxiliary variables (𝜁 and 𝑞𝑓), all other decision variables (namely, 𝜒𝑝, 

𝜁𝑝, 𝑞𝑓𝑝, 𝜂𝑝, 𝜓𝑑𝑝, and 𝑝𝑓1𝑓2𝑝) in this problem are defined at the level of each pairing and 

hence are composite variables. Due to this structure, it is advisable to attempt to convert 
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this into a standard set partitioning problem to enable its solution using column generation 

techniques. We successfully do so by defining a new pairing cost coefficient, 𝑐′𝑝, as 

follows: 

𝑐′𝑝 = 𝑐′′𝑝 + 𝛾 ∙ (
𝜐

|ℱ|
∙ 𝛤 ∙ 𝜁𝑝 +  ∑ 𝑞𝑓𝑝

𝑓∈ℱ

)                     ∀𝑝 ∈ 𝒫 (2.21) 

where, 

𝑐′′𝑝 = max (∑ 𝑐𝑑𝑝𝑑∈𝐷𝑝
, 𝛼 ∙ (𝑇𝑝 + (𝜁𝑝 + 𝑞𝑓𝑝̿̿ ̿𝑝) ∙ 𝛿))                        𝑝 ∈ 𝒫  (2.22) 

𝑐𝑑𝑝 = max(𝑏𝑑𝑝, 𝛽 ∙ (𝑒𝑑𝑝 + (𝜁𝑝 + 𝑞𝑓𝑑̅̅ ̅̅ 𝑝) ∙ 𝛿), 𝜃)       ∀𝑑 ∈ 𝒟 , ∀𝑝 ∈ 𝒫 (2.23) 

Then the reformulated RMP is given as follows: 

min ∑ 𝑐′𝑝

𝑝∈𝒫

∙ 𝜒𝑝 (2.24) 

∑ 𝑘𝑓𝑝 ∙ 𝜒𝑝

𝑝∈Ψ

= 1                                         ∀𝑓 ∈ ℱ (2.25) 

𝜒𝑝 ∈ {0,1}                                              ∀𝑝 ∈ Ψ (2.26) 

Here, Ψ ⊆ 𝒫 is defined as the subset of feasible pairings that satisfy constraints (2.19). 

Note that, a set partitioning problem requires the objective function to be completely 

represented by a per-pairing cost. In order to distribute the second term in (2.6) across the 

pairings, the expression 𝛤 ∙ 𝜁 needs to be somehow distributed across the pairings to avoid 

double-counting. Note that we could choose any distribution scheme as long as the sum 

across all pairings in any feasible pairing solution equals exactly 𝛤 ∙ 𝜁. For simplicity, we 

distribute it proportionally to the number of flights covered by each selected crew pairing. 

Therefore, a pairing containing 𝑣 (out of the total of |ℱ|) flights will correspond to 
𝜐

|ℱ|
∙ 𝛤 ∙

𝜁 of the total cost corresponding to the term 𝛤 ∙ 𝜁. 
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2.4.3 Pricing Problem 

When presenting the pricing problem, we will drop the pairing subscript 𝑝 to avoid 

redundancy. The PP objective function is as follows:  

𝑚𝑖𝑛  𝑐′′ + 𝛾 ∙ (
𝜐

|ℱ|
∙ 𝛤 ∙ 𝜁 +  ∑ 𝑞𝑓

𝑓∈ℱ

) − ∑ ∑ 𝜋𝑓 ∙ 𝑧𝑓𝑑

𝑑∈𝒟𝑓∈ℱ

 (2.27) 

𝜋𝑓 are the dual variable values for constraints (2.25) in the RMP. 𝑧𝑓𝑑 are binary decision 

variables indicating if flight 𝑓 will be covered in duty 𝑑 of the selected pairing. Note that 

𝑣 is not known a priori when finding the minimum reduced cost pairing. If we let 𝑣 be a 

decision variable, then the PP will lose its linearity and hence will become even harder to 

solve. Instead, we solve a separate pricing problem for each possible 𝑣 value iteratively. 

The solution algorithm is described in Section 2.5. The constraints presented in (2.28)-

(2.32) are newly added to the base formulation of the PP to capture the delays. 

𝜁 + 𝑞𝑓 ≥ ∑ 𝑝𝑓′𝑓

𝑓′∈ℱ

+ Δ𝑓 ∙ ∑ 𝑧𝑓𝑑

𝑑∈𝒟

                         ∀𝑓 ∈  ℱ (2.28) 

𝑝𝑓1𝑓2
≥ ∑ 𝑝𝑓′𝑓1

𝑓′∈ℱ

+ Δ𝑓1
− (𝑠𝑓1𝑓2

− 𝜏) − 𝑀 (1 − ∑ 𝑥𝑓1𝑓2𝑑

𝑑∈𝒟

)  ∀𝑓1, 𝑓2

∈  ℱ, 𝑓1 ≠ 𝑓2 

(2.29) 

𝑝𝑓1𝑓2
≥ ∑ 𝑝𝑓′𝑓1

𝑓′∈ℱ

+ Δ𝑓1
− (𝑟𝑓1𝑓2

− 𝜌) − 𝑀 (1 − ∑ 𝑦𝑓1𝑓2𝑑

𝑑∈𝒟′

)  ∀𝑓1, 𝑓2

∈  ℱ, 𝑓1 ≠ 𝑓2 

(2.30) 

𝑞𝑓̿  ≥ 𝑞𝑓 − 𝑀 ∙ (1 −  𝑤𝑓𝑑)                     ∀𝑑 ∈ 𝒟, ∀𝑓 ∈ ℱ (2.31) 

𝑞𝑓𝑑̅̅ ̅̅  ≥ 𝑞𝑓1
− 𝑀 ∙ (1 − 𝑦𝑓1𝑓2𝑑 −  𝑤𝑓1𝑑) ∀𝑑 ∈ 𝒟, 𝑓1, 𝑓2 ∈ ℱ, 𝑓1 ≠ 𝑓2 (2.32) 
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𝒟′ = {1, … , 𝐷 − 1} is the set of all duty indices except the last duty. Parameters 𝑤𝑓𝑑 ∈

{0,1} equal 1 if 𝑓 is the last flight in the pairing and the pairing is 𝑑 duties long. Constraints 

(2.28) are similar in spirit to the second set of constraints in the formulation of the portfolio 

management model presented in Bertsimas and Thiele (2006). Right-hand side of each 

constraint (2.28) is the total arrival delay of a flight 𝑓 and the left-hand side consists purely 

of the two auxiliary delay variables, namely, 𝜁 and 𝑞𝑓. Together 𝜁 and 𝑞𝑓 must serve as an 

upper bound on flight arrival delay, but the balance between 𝜁 and 𝑞𝑓 relates to the 

solution’s robustness level. Constraints (2.28) and the way we compute the cost of a pairing 

play a very important role in setting the appropriate level of robustness consistent with the 

robustness parameter 𝛤. For a small value of 𝛤 (which can be thought of as the penalty on 

𝜁), 𝜁 takes a relatively large value to ensure that constraints (2.28) are satisfied even with 

low (or even zero) values of 𝑞𝑓. For smaller values of 𝛤, and therefore for larger values of 

𝜁, more propagated delays are allowed due to the smaller penalty. So, setting 𝛤 to low 

values allows solving the crew pairing model with more emphasis on the planned crew 

pairing costs and less on the delay costs. On the other hand, as 𝛤 progressively increases 

from 0 to |𝐹|, it makes lower values of ∑ 𝑝𝑓′𝑓𝑓′∈ℱ  increasingly more attractive and thus 

makes the solution increasingly more robust. 

Constraints (2.29) and (2.30) allow the model to calculate the delays propagated within a 

duty and between duties, respectively. The big 𝑀 ensures that if the sum of 𝑥𝑓1𝑓2𝑑  or 𝑦𝑓1𝑓2𝑑 

is 0, then the respective constraints are rendered redundant. Otherwise, these constraints 

(along with non-negativity constraints on all 𝑝𝑓1𝑓2
 variables) ensure that propagated delay 

is the non-negative part of the difference between the total delay to the previous flight 

(which itself is the sum of previous flight’s propagated and root delays) and the slack 

(which is the difference between the planned sit/rest time given by 𝑠𝑓1𝑓2
 and 𝑟𝑓1𝑓2

, and the 

minimum sit/rest time given by parameters 𝜏 and 𝜌, respectively). The model captures 

propagated delays affecting a flight in such a way that, if the flight has enough slack in the 

sit or rest time, then it will absorb all the propagated delay; else it will pass that delay (or 

part of it) to the next flight operated by the same crew. Finally, note that constraints (2.28) 

ensure that if a flight 𝑓 is not covered in the chosen (minimum reduced cost) pairing, then 
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the corresponding 𝑞𝑓 equals 0. Constraints (2.31) and (2.32) correctly set the 𝑞𝑓 values for 

the last flight in the pairing and the last flight in each duty, respectively. 

Here lies another important difference between our work and the study by Lu and Gzara 

(2015). We compute in detail the delays, giving explicit attention to how they propagate 

through the crew connections across the airline network and to how they influence the final 

cost. Lu and Gzara (2015) use a simplification where they assume the cost of a pairing to 

be proportional to only the TAFB, and then they add uncertainty to that simplified cost. In 

other words, while we are adding uncertainty to the root delay, which is the commonly 

used measure of representing uncertainty in airline operations, Lu and Gzara (2015) 

directly consider uncertainty in the cost of a pairing. While their model entails a higher 

level of abstraction, ours treats planned crew costs as well as delay costs in much greater 

detail.  

In addition to adding constraints (2.28)-(2.32) to the PP base formulation, a few other 

modifications to the base formulation are necessary in order to make it robust. 

𝑇′ = ∑ ∑ 𝑏𝑓 ∙ 𝑧𝑓𝑑

𝑑∈𝒟𝑓∈ℱ

 + ∑ ∑ 𝑠𝑓1𝑓2
∙ 𝑥𝑓1𝑓2𝑑

𝑑∈𝒟(𝑓1,𝑓2)∈ℒ

+ ∑ ∑ 𝑟𝑓1𝑓2

𝑑∈𝒟′

∙ 𝑦𝑓1𝑓2𝑑

(𝑓1,𝑓2)∈ 𝒪

+ (𝜁 + 𝑞𝑓̿) ∙ 𝛿 

(2.33) 

In the base formulation, TAFB is computed as the sum of the elapsed times of the duties in 

constraint 2.33 the pairing (the first two terms on the right-hand side) plus the sum of the 

rest periods (the third term in the right-hand side). In constraint (2.33), we modify the base 

formulation renaming the variable 𝑇 to 𝑇′ and adding (𝜁 +  𝑞𝑓̿) ∙ 𝛿 to the right-hand side. 

This extra term equals 0 for RM1. But for RM2 it represents, through the auxiliary 

variables, the total arrival delay to the last flight in the pairing and hence contributes to the 

total elapsed time of the pairing. This in turn affects the pairing cost. 

𝑒′𝑑  = ∑ 𝑏𝑓 ∙ 𝑧𝑓𝑑

𝑓∈ℱ

+ ∑ 𝑠𝑓𝑓1
∙ 𝑥𝑓𝑓1𝑑

(𝑓,𝑓1)∈ ℒ

+ (𝜁 + 𝑞𝑓𝑑̅̅ ̅̅ ) ∙ 𝛿           ∀𝑑 ∈ 𝒟 (2.34) 
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In the base formulation, constraints (2.34) define the elapsed time of the 𝑑𝑡ℎ duty (𝑒𝑑) as 

the sum of all flying times and all sit times in it. In constraints (2.34), we modify the base 

formulation renaming the variable 𝑒𝑑 to 𝑒′𝑑 and adding (𝜁 + 𝑞𝑓𝑑
̅̅ ̅̅ ) ∙ 𝛿 to the right-hand side. 

This equals 0 for RM1. But for RM2 it equals the arrival delay to the last flight in the duty, 

through the auxiliary variables. This influences the duty cost and also affects what duties 

can be considered feasible given the upper limit on the duty elapsed time. 

In this section, we have only presented the new and modified PP constraints when 

compared to the base formulation. The remaining constraints, namely, the cost constraints, 

pairing constraints, balance constraints, and auxiliary constraints which remain unchanged 

from the base formulation, are listed in the appendix. The appendix also presents some 

other new and modified constraints which are not essential for understanding the robustness 

considerations. 

2.4.4 Solution Algorithm 

In this section, we propose a new solution algorithm to solve the robust crew pairing model 

using repeated runs of an off-the-shelf commercial optimization solver. Let 𝑣𝑚𝑎𝑥 ∈ 𝑍+ be 

the maximum number of possible flights in a crew pairing. Then we may need to solve at 

most 𝑣𝑚𝑎𝑥 different PPs. We start with 𝑣 = 1 and solve the corresponding PP. If the 

solution yields a negative reduced cost, then we add it to the RMP, solve the RMP and 

again solve the PP for the same 𝑣 value. When the PP does not produce a negative reduced 

cost column for that 𝑣 value, we solve the PP for the next larger integer value of 𝑣. When 

we reach the 𝑣𝑚𝑎𝑥 value, we cycle back to 𝑣 = 1 and continue the process. Interestingly, 

observe that finding 𝑣𝑚𝑎𝑥, which is the maximum number of flights in a crew pairing, is 

itself a PP that we address by solving the base formulation after setting 𝑐′′ = 0, 𝛾 = 0 and 

𝜋𝑓 = −1 ∀𝑓 ∈ 𝐹. The overall solution process is formally described by Algorithm 1. 

For example, consider a 100-flight network, and assume 𝛤 = 50. Let us also assume that 

𝑣𝑚𝑎𝑥 = 20. Then, instead of solving a single PP we would solve up to 20 different PPs 

each with a different 𝑣 value. Since |𝐹| and 𝜐 are constant parameters of the PP, it retains 

its linearity property.  
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Algorithm 1     

1: solve RMP; 

2: solve PP with 𝑐′′ = 0, 𝛾 = 0 and  𝜋𝑓 = −1 ∀𝑓 ∈ 𝐹 to get 𝑣𝑚𝑎𝑥; 

3: set counter = 0;  

4: set 𝑣 = 1;  
5: solve PP for current 𝑣;   

6: if (the optimal solution of PP gives negative reduced cost) 

7:  add PP solution to RMP; 

8:  solve RMP;   

9:  set counter = 0  

10:  goto 5;   

11: else   

12:  increment counter by 1;  

13:  if (counter = 𝑣𝑚𝑎𝑥)  

14:   stop - optimum found; 

15:  end-if  

16:  if (𝑣 <  𝑣𝑚𝑎𝑥)  

17:   increment 𝑣 by 1;  

18:   goto 5;  

19:  else   

20:   goto 4;  

21:  end-if   

22: end-if    

 

2.5 Theoretical Properties 

We present in this section some key theoretical properties of our model, after providing 

insights into how the robustness budget parameter 𝛤 works for its two variants (RM1 and 

RM2). 

Let us first consider a particular crew pairing 𝑝 in RM1 that consists of 𝑣 flights. The PP 

model ensures that all 𝑞𝑓 values for flights other than those covered in pairing 𝑝 will be 

automatically set to zero. For a given pairing, the values of 𝑐′′ and ∑ ∑ 𝜋𝑓 ∙ 𝑧𝑓𝑑𝑑∈𝒟𝑓∈ℱ  are 

constants. Also, let us define 𝛤′ =
𝜐

|𝐹|
∙ 𝛤. Thus, once we fix the pairing this leaves us with 

a PP objective function given by (2.35). This objective function is comparable to the last 

two terms in the objective function of the portfolio management model presented in 

Bertsimas and Thiele (2006). However, since their model involves the maximization of 

returns, the signs of these two terms are negative. For a given crew pairing 𝑝, the robust 

version of our pricing formulation for RM1 equals the following: 
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min    𝛤′ ∙ 𝜁 +  ∑ 𝑞𝑓

𝑓∈𝑝̃

 (2.35) 

Subject to:   𝜁 + 𝑞𝑓 ≥ 𝑝𝑓 + Δ𝑓                             ∀𝑓 ∈ 𝑝 (2.36) 

                                      𝜁 ≥ 0, 𝑞𝑓 ≥ 0                                     ∀𝑓 ∈ 𝑝 (2.37) 

Here, 𝑝𝑓 is defined as the propagated delay to flight 𝑓 in pairing 𝑝, which is a constant for 

a given pairing. 

We start the analysis of model (2.35)-(2.37) by considering a simple illustrative example 

of a pairing 𝑝 consisting of 4 flights {𝑓1, 𝑓2, 𝑓3, 𝑓4} and their total arrival delays given by 

𝑝𝑓 + Δ𝑓 as follows. 

𝑝1 + Δ1 = 1; 𝑝2 + Δ2 = 2; 𝑝3 + Δ3 = 3; 𝑝4 + Δ4 = 4. (2.38) 

 

We vary 𝛤′ (thus varying the robustness budget) from 0 to 4. Note that we are limiting this 

discussion to integer 𝛤′ values (𝛤′ ∈ {0,1,2,3,4}) for illustration purposes only. In general, 

our formulation allows 𝛤′ to take any fractional values as well. The formulation (2.35)-

(2.37) then becomes: 

min 𝛤′ ∙ 𝜁 +  ∑ 𝑞𝑓𝑓∈{1,2,3,4} ,                                                  (2.39) 

Subject to:                               𝜁 + 𝑞1 ≥ 1; 𝜁 + 𝑞2 ≥ 2; 𝜁 + 𝑞3 ≥ 3; 𝜁 + 𝑞4 ≥ 4 (2.40) 

𝜁, 𝑞1, 𝑞2, 𝑞3, 𝑞4 ≥ 0  (2.41) 

Table 1 lists the optimal objective function values for each 𝛤′ scenario. As expected, the 

value of the objective function increases with increasing 𝛤′. The corresponding values of 

decision variables (𝜁, 𝑞1, 𝑞2, 𝑞3, 𝑞4) are also presented. 
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Table 2.1. Solution to the Illustrative Example 

 𝛤′ = 0 𝛤′ = 1 𝛤′ = 2 𝛤′ = 3 𝛤′ = 4 

𝜁 4 4 3 2 1 

Obj. function value 0 4 7 9 10 

𝑞1 (Δ1 = 1) 0 0 0 0 0 

𝑞2 (Δ2 = 2) 0 0 0 0 1 

𝑞3 (Δ3 = 3) 0 0 0 1 2 

𝑞4 (Δ4 = 4) 0 0 1 2 3 

      

 

As shown in Table 1, for this illustrative example, the objective function always equals the 

sum of the 𝛤′ worst flight arrival delays. 

• For 𝛤′ = 1, the optimal value of the objective function is the largest of the four flight 

arrival delays (4). 

• For 𝛤′ = 2, the optimal value of the objective function is the sum of the two largest 

flight arrival delays (4+3=7). 

• For 𝛤′ = 3, the optimal value of the objective function is the sum of the three largest 

flight arrival delays (4+3+2=9). 

• For 𝛤′ = 4, the optimal value of the objective function is the sum of all four flight 

arrival delays (4+3+2+1=10). 

In the following, we generalize these observations. For this, let us define 𝑐0 = 𝑐′′ −

∑ ∑ 𝜋𝑓 ∙ 𝑧𝑓𝑑𝑑∈𝒟𝑓∈ℱ  which has the same form as the objective function of the deterministic 

version of PP. Also, without loss of generality, let us renumber the flights in pairing 𝑝 in 

non-decreasing order of total arrival delays within pairing 𝑝. Then, we have the following 

result, which helps in understanding how the proposed formulation works. 

Theorem 1: For RM1, the robust version of PP is equivalent to minimizing 𝑐0 +

𝜅 [∑ (𝑝𝑓 + Δ𝑓)𝑓∈{|𝑝̃|−⌊𝛤′⌋+1,…,|𝑝̃|} + (𝛤′ − ⌊𝛤′⌋) ∙ 𝑞|𝑝̃|−⌊𝛤′⌋] where the term in the square 
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brackets equals the sum of the ⌊𝛤′⌋ largest flight arrival delays plus a fraction (𝛤′ − ⌊𝛤′⌋) 

of the (⌊𝛤′⌋ + 1)th largest flight arrival delay. 

Proof: To prove this result, we need to show that for any given pairing 𝑝, the optimization 

model (2.35)-(2.37) sets 𝛤′ ∙ 𝜁 +  ∑ 𝑞𝑓𝑓∈𝑝̃  equal to ∑ (𝑝𝑓 + Δ𝑓)𝑓∈{|𝑝̃|−⌊𝛤′⌋+1,…,|𝑝̃|} +

(𝛤′ − ⌊𝛤′⌋) ∗ 𝑞|𝑝̃|−⌊𝛤′⌋ in the optimal solution. We can re-write the objective function (2.35) 

as follows: 

𝛤′ ∙ 𝜁 +  ∑ 𝑞𝑓𝑓∈𝑝̃   

= (𝛤′ − ⌊𝛤′⌋) ∙ 𝜁 + ∑ 𝑞𝑓𝑓∈{1,…,|𝑝̃|−⌊𝛤′⌋} + ∑ (𝜁 + 𝑞𝑓)𝑓∈{|𝑝̃|−⌊𝛤′⌋+1,…,|𝑝̃|}   

≥ (𝛤′ − ⌊𝛤′⌋) ∙ 𝜁 + ∑ (𝜁 + 𝑞𝑓)𝑓∈{|𝑝̃|−⌊𝛤′⌋+1,…,|𝑝̃|}           

≥ (𝛤′ − ⌊𝛤′⌋) ∙ 𝜁 + ∑ (𝑝𝑓 + Δ𝑓)𝑓∈{|𝑝̃|−⌊𝛤′⌋+1,…,|𝑝̃|} . 

The equality is nothing but a rearrangement of the terms. The first inequality holds because 

𝑞𝑓 ≥ 0 ∀𝑓 ∈ 𝑝 and the second inequality holds due to constraints (2.36).  

The last term ∑ (𝑝𝑓 + Δ𝑓)𝑓∈{|𝑝̃|−⌊𝛤′⌋+1,…,|𝑝̃|}  is the sum of the ⌊𝛤′⌋ largest flight arrival 

delays. Now we just need to find a feasible solution that has an objective function value of 

(𝛤′ − ⌊𝛤′⌋) ∗ 𝜁 + ∑ (𝑝𝑓 + Δ𝑓)𝑓∈{|𝑝̃|−⌊𝛤′⌋+1,…,|𝑝̃|} . Such feasible solution is easy to find by 

first setting 𝜁 to the (⌊𝛤′⌋ + 1)𝑡ℎ largest flight arrival delay in the pairing and then adjusting 

the last ⌊𝛤′⌋ of the 𝑞𝑓 values to make sure the last ⌊𝛤′⌋ of the inequality constraints (2.36) 

are satisfied as equalities. In other words, it is easy to verify that 𝜁 = 𝑝|𝑝̃|−⌊𝛤′⌋+1 +

Δ|𝑝̃|−⌊𝛤′⌋+1, 𝑞1 = 𝑞2 = ⋯ = 𝑞|𝑝̃|−⌊𝛤′⌋ = 0, and 𝑞f = 𝑝𝑓 + Δ𝑓 − 𝜁 ∀f ∈ {|𝑝̃| − ⌊𝛤′⌋ +

1, … , |𝑝̃|} is a feasible solution to constraints (36). So, this solution is optimal. Thus, we 

have proved Theorem 1.∎ 

A corollary of Theorem 1 for integer values of 𝛤′ is given by: 
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Corollary 1: For RM1, and for integer values of 𝛤′, the robust version of PP is equivalent 

to minimizing 𝑐0 + 𝜅(∑ (𝑝𝑓 + Δ𝑓)𝑓∈{|𝑝̃|−𝛤′+1,…,|𝑝̃|} ) where the term in the parentheses 

equals the sum of the 𝛤′ largest flight arrival delays. 

It is straightforward to prove this corollary by simply substituting 𝛤′ = ⌊𝛤′⌋ in Theorem 

1.∎ 

We now illustrate with the help of an example how the model will select more robust 

pairings at higher values of 𝛤′ and less robust ones at lower 𝛤′ values. Let us consider two 

pairings each consisting of four flights: one with arrival flight delays of 1, 2, 3, 4 and the 

deterministic component of the pricing objective function (𝑐0 = 𝑐𝑝 − ∑ ∑ 𝜋𝑓𝑧𝑓𝑑𝑑∈𝒟𝑓∈ℱ ) 

equal to 50; and the other with flight arrival delays 2, 4, 6, 8 and 𝑐0 = 45. For 𝛤′ < 1
1

3
, 

the second pairing is preferred by the PP, while for 𝛤′ > 1
1

3
, the first pairing is preferred. 

At 𝛤′ = 1
1

3
, they both are equally preferred. Note that the second solution is better for the 

deterministic version of the PP, but the first one is more robust and hence is preferred at 

higher 𝛤′ values. 

From this discussion, we note several similarities as well as differences between RM1 and 

the original concept of a robustness budget by Bertsimas and Sim (2004). Our model, like 

theirs, allows the parameter 𝛤′ to dictate the level of robustness where a larger value 

corresponds to more protection against uncertainty. Like the original Bertsimas and Sim 

(2004) model, RM1 also produces a solution identical to the deterministic model when we 

set the robustness budget to 0; and produces the most robust solution when the robustness 

budget is set to be equal to the total number of flights in the pairing. 

However, as mentioned in the introduction, our deterministic model is considerably more 

challenging than the general linear programming model presented in Bertsimas and Sim 

(2004). Moreover, the way uncertainty affects our model is quite different and more 

complex than just a change in the constraint coefficients and/or objective function 

coefficients. Indeed, uncertainty in a delay propagation setting is measured at two different 

levels: 1) root delays of the flights, and 2) total arrival delays of the flights, with the latter 
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being the sum of the root delays and the propagated delays. Therefore, our treatment of 

uncertainty is somewhat different than that of Bertsimas and Sim (2004). They define 

uncertainty sets as the parameter value intervals given by [𝑎̅𝑖𝑗 − 𝑎̂𝑖𝑗, 𝑎̅𝑖𝑗 + 𝑎̂𝑖𝑗] and their 

model finds the optimal solution assuming that at most ⌊𝛤𝑖⌋ of the coefficients in the 𝑖th 

constraint take their worst-case values (i.e., 𝑎̅𝑖𝑗 + 𝑎̂𝑖𝑗), one other coefficient in the 𝑖th 

constraint takes a value which is at most (𝛤𝑖 − ⌊𝛤𝑖⌋) times as bad as the worst-case value, 

and all other coefficients remain at their nominal values (i.e. at 𝑎̅𝑖𝑗). In contrast, in RM1, 

we define the uncertainty set for the root delay of flight 𝑓 as [0, Δ𝑓] and we find an optimal 

solution assuming that, while all root delays can take their worst-case values (Δ𝑓), the delay 

cost of a pairing only accounts for the ⌊𝛤′⌋ largest flight arrival delays and a fraction 

(𝛤′ − ⌊𝛤′⌋) of the (⌊𝛤′⌋ + 1)th largest flight arrival delay. 

Recall that RM1 ignores the fact that sometimes the actual elapsed time of a crew duty 

and/or the actual TAFB are larger compared to their scheduled values due to arrival delays 

to the last flights in a duty. Theorem 1 and its Corollary 1 do not necessarily hold for RM2. 

However, even for RM2, Theorem 1 and Corollary 1 do hold in certain cases as stated by 

Theorem 2 below. 

Theorem 2: For RM2, Theorem 1 and Corollary 1 hold if, for every feasible pairing, the 

last flights in all duties are among the ⌊𝛤′⌋ flights with the largest arrival delays. 

Proof: Consider the same solution that we considered in the proof of Theorem 1: 𝜁 =

𝑝|𝑝̃|−⌊𝛤′⌋+1 + Δ|𝑝̃|−⌊𝛤′⌋+1, 𝑞1 = 𝑞2 = ⋯ = 𝑞|𝑝̃|−⌊𝛤′⌋ = 0, and 𝑞f = 𝑝𝑓 + 𝛥𝑓 − 𝜁 ∀𝑓 ∈

{|𝑝̃| − ⌊𝛤′⌋ + 1, … , |𝑝|}. Then, for the last flight 𝑓 of every duty in pairing 𝑝, 𝜁 + 𝑞𝑓 =

𝑝𝑓 + Δ𝑓. Note that this is the minimum value of 𝜁 + 𝑞𝑓 allowable by constraints (2.28). 

Thus, this gives us the minimum possible value of 𝑇′ in pairing 𝑝 (as per constraint (2.33)) 

and the minimum possible value of 𝑒′𝑑 in pairing 𝑝 (as per constraints (2.34)). So, if this 

solution is not feasible for the PP, then no other solution with this pairing 𝑝 is feasible. 

Also, 𝑇′ and 𝑒′𝑑 both have a non-decreasing effect on 𝑐0, and therefore these minimum 

values of 𝑇′ and 𝑒′𝑑 minimize 𝑐0 for the given pairing 𝑝̃. Moreover, we have already proved 

that this solution minimizes the expression 𝛤′ ∙ 𝜁 + ∑ 𝑞𝑓𝑓∈𝑝̃  for a given pairing 𝑝. Thus, 
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this solution minimizes both parts of objective function (2.27) for a given pairing 𝑝, and 

hence minimizes objective function (2.27) for a given pairing 𝑝. Thus, we have proved that 

Theorem 1 holds for RM2. Corollary 1 follows by substituting ⌊𝛤′⌋ = 𝛤′. ∎ 

Thus, Theorem 1 and Corollary 1 are, in general, more likely to hold for higher, rather than 

lower, 𝛤′ values. Note that the condition stated in Theorem 2 (that for every feasible 

pairing, the last flights in all duties are among the ⌊𝛤′⌋ flights with the largest arrival 

delays), is sufficient but not necessary for Theorem 1 and Corollary 1 to hold for RM2. For 

example, it is easy to see that for problem instances with 𝛼 = 𝛽 = 0 and large values of 𝜆, 

Theorem 1 and Corollary 1 will hold for RM2 even without requiring the conditions in 

Theorem 2. In other cases, however, constraints (2.33) and (2.34) could force a lower value 

of 𝜁 and higher values for some of the 𝑞𝑓 variables than those in the solution considered in 

the proof of Theorem 1. This may result in a larger optimal value of the 𝛤′ ∙ 𝜁 +  ∑ 𝑞𝑓𝑓∈𝑝̃  

part of the objective function for RM2 compared with that for RM1. In other words, RM2 

is equivalent to minimizing 𝑐0 plus a component that may be greater than the sum of the 

⌊𝛤′⌋ largest flight arrival delays plus a fraction (𝛤′ − ⌊𝛤′⌋) of the (⌊𝛤′⌋ + 1)th largest flight 

arrival delay, and this effect is prominent at small but nonzero 𝛤′ values. While RM2 lacks 

the monotonicity properties (that is, Theorem 1 and Corollary 1) enjoyed by RM1, the RM2 

is a more comprehensive characterization of the various mechanisms through which delays 

and disruptions propagate through crew connections. Hence, in the case study described in 

the following sections, we use both variants of our model, and compare the results of both 

variants with each other and with those of the deterministic crew pairing model.  

2.6 Case Study 

In the case study, we used real-world data on U.S. domestic flight delays from the Airline 

On-Time Performance (AOTP) database (Bureau of Transportation Statistics, 2016). For 

all our experiments, we used the flight network of Virgin America (VX) for calendar year 

2014. We chose VX because its network stretches across continental U.S. and thus limits 

possible regional biases in our results. Besides, unlike many other airline carriers with 

nationwide networks, VX has a single fleet family, because of which we do not need to 

subdivide the network into parts to apply our model. Thus, our computational experiments 
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are based on the entire VX network providing a more rigorous test of our modeling and 

solution approach. If we use the datasets from other moderate-sized airlines, we would 

need to focus on smaller-sized sub-networks corresponding to individual fleet families. We 

include in our network (see Figure 1) all VX flights that were flown daily. Our network 

consists of 94 daily flights connecting 14 continental U.S. airports. Figure 1 also provides 

a detailed view of the VX network within the northeastern part of U.S., since several 

airports in this network are located in this region which would be difficult to identify 

without zooming-in. 

Before performing computational experiments using the VX network, two important types 

of parameters need to be set. Section 2.7.1 discusses the choice of the uncertainty sets, 

represented by the Δ𝑓 parameters, while Section 2.7.2 discusses the choice of the unit cost 

of delays represented by the parameter 𝛾. 

 
Figure 2.1. Route map of the VX network considered for the case study 

2.6.1 Uncertainty Sets 

As mentioned in Section 2.6, our model differs from the model in Bertsimas and Sim (2004) 

with respect to the treatment of the uncertainty sets. We define uncertainty in flight delays 

at two different levels, namely, root delays and total arrival delays. We define the 

uncertainty set for root delays as [0, Δ𝑓]. While our model sets all root delays to their worst-

case values, Δ𝑓, the delay cost of a pairing only accounts for the ⌊𝛤′⌋ largest flight arrival 
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delays and a fraction (𝛤′ − ⌊𝛤′⌋) of the (⌊𝛤′⌋ + 1)th largest flight arrival delay. We need to 

select the Δ𝑓 values carefully because they directly impact our model’s performance. 

We used the flight delays data from the entire year 2014 from the AOTP database (Bureau 

of Transportation Statistics, 2016) to calculate the Δ𝑓 values. The AOTP database consists 

of the scheduled and actual arrival times for all flights in our network. Additionally, for 

each flight with an actual arrival time that is later than the scheduled arrival time by 15 

minutes or more, it also provides the source of the delay. The possible sources are: air 

carrier delay; extreme weather delay; national aviation system delay; security delay; and 

late aircraft delay. To calculate the root delays, we would like to eliminate the delays due 

to propagation through aircraft connections and through crew connections. The late aircraft 

delay category represents the delays due to propagation through aircraft connections. The 

air carrier delay category includes the delays due to propagation through crew connections, 

as well as non-propagated delays due to a variety of other causes including aircraft 

maintenance, cleaning, baggage loading, fueling, etc. Therefore, the exact value of delays 

propagating through crew connections is not publicly available. Furthermore, when the 

actual arrival time is earlier than 15 minutes past the scheduled arrival time, the AOTP 

database does not provide a delay cause. Due to these two data limitations, we are not able 

to eliminate all the propagated delays. Instead, we approximate root delay to be equal to 

the actual flight arrival time minus scheduled flight arrival time minus late aircraft delay, 

which results in slightly over-counting the root delays due to the two aforementioned 

reasons. Note that this is a limitation of the publicly available data and not a limitation of 

our methodology. An airline interested in using our methodology will have, available at its 

disposal, proprietary data that does not need to rely on any of these approximations. Note 

that our definition of root delay allows it to be negative. 

We analyze these root delays for the full calendar year to identify reasonable values for the 

Δ𝑓 parameters. We divided all root delay data by the associated nonstop flight segments. 

There are 47 (nonstop) segments in VX daily network. Figure 2 displays box-plots of root 

delays per segment. Each data point represents the root delay to a flight on that segment. 

Each box has a solid black line in the middle representing the median and the two ends of 

the box represent the 1st and 3rd quartiles. We define IQR (Inter-Quartile Range) as the 
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difference between the 1st and 3rd quartiles. The lines extending in either direction from the 

box stretch between the smallest data point that is at least equal to 1st quartile minus 3 

IQRs, and the largest data point that is at most equal to 3rd quartile plus 3 IQRs. 

Additionally, each data point that is at most equal to the 1st quartile minus 1.5*IQR and 

each data point that is at least equal to the 3rd quartile plus 1.5*IQR is shown in the figure 

by an individual red dot. Figure 2.2 indicates that the root delay distribution is highly 

skewed with a long tail and several outliers on the right side. Inclusion of all outliers while 

defining ∆𝑓 values would create overly conservative schedules given that such large delays 

very rarely occur. On the other hand, ignoring all outliers would amount to ignoring a large 

part of the distribution. Therefore, to identify a good tradeoff between these two extremes, 

we tested various strategies for outlier removal before selecting the strategy of setting Δ𝑓 

equal to the largest data point that is at most equal to the 3rd quartile plus 6*IQR.  

2.6.2 Unit Cost of Delay 

The unit cost of delay is represented by 𝛾. To set this value, we need to find the total cost 

of an hour of flight delay (excluding the cost due to additional crew pay) and the crew pay 

per hour of flying time. We based our calculations on two sources: 

MIT Airline Data Project – From the Global Airline Industry Program (Massachusetts 

Institute of Technology, 2014), we obtained the crew pay per hour of flying time. For VX, 

we found this value to be $745.55 per hour. 

From the Airlines for America’s estimate (Airlines for America 2015) of unit delay cost 

($77.81 per minute), we subtracted the per-hour cost of crew flying time ($745.55 per hour) 

to estimate the delay cost excluding that of additional crew pay to be approximately 

$3,923.05 per hour. 

Thus, the ratio of delay costs (excluding crew delay costs) to crew pay is around 5.3, and 

we set 𝛾 = 5.3 for the RM2. For RM1 however, crew pay costs do not include the 

additional costs due to crew delays. Instead we included crew delay costs also as part of 

the total delay costs by using a value of 6.3 for 𝛾 instead of 5.3.  
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Figure 2.2. Boxplots of root delays (minutes) per nonstop segment 

2.7 Case Study Results 

For both variants of our model, RM1 and RM2, we ran 11 scenarios each with a different 

𝛤 value in {0,10,20,30,40,50,60,70,80,90,94}. IBM ILOG CPLEX 12.6 was used to solve 

all optimization instances, accessing the solver through ILOG Concert Technology with 

the code written in the Java language. All experiments were performed on a computer with 

an Intel® Core™ i7-920 (8 core) 2.66 GHz CPU, with 8 GB RAM and Windows 7 

Professional 64-bit operating system. Each run took approximately 4 hours. Figure 3 shows 

the variation in the optimal value of the objective function (expression (2.6)) against 

changes in 𝛤 values. 
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Figure 2.3. Change in optimal objective function value with 𝛤 

As expected, with increasing 𝛤 values, both model variants show a monotonic increase in 

the optimal value of the objective function, highlighting the fact that the objective function 

(2.6) protects against increasingly larger delay values. Recall that, unlike RM2 which 

incurs additional crew delay costs only when the last flight in a duty has a delayed arrival, 

RM1 incurs additional crew delay costs for every delayed flight arrival, as reflected through 

the different 𝛾 values used in the two model variants (6.3 for RM1 and 5.3 for RM2). As a 

result, RM1 is generally found to have higher optimal values of the objective function than 

RM2 (especially for larger 𝛤) despite having less strict versions of constraints (2.33) and 

(2.34). 

Next, in Figure 2.4, we present the percentage change in planned crew pairing costs as a 

function of 𝛤. The percentage change is calculated by first subtracting the optimal value of 

the objective function for 𝛤 = 0 from the planned crew cost under the optimal solution for 

a given 𝛤 value, and then dividing the difference by the optimal value of the objective 

function for 𝛤 = 0. As explained in Section 6, for RM1 the crew pairing cost component 

of the objective function expression equals the planned crew costs. However, for RM2 the 

crew pairing cost component of the objective function may exceed the planned crew costs. 

We find that, with the increase in 𝛤 values, planned crew costs show a generally increasing 

but non-monotonic trend for both RM1 and RM2. Across the two model variants and across 
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the 11 𝛤 values, the percentage increase in planned crew costs does not exceed 4% in all 

but one of the 22 combinations. In fact, for all 12 tested scenarios with 𝛤 ≤ 50, the 

percentage increase is under 3% for RM2 and under 2% for RM1. This demonstrates the 

ability of our model to add robustness as the expense of a very small increase in planned 

crew costs.   

 
Figure 2.4. Percentage change in planned crew costs with 𝛤 

To assess the quality of our robust solutions, we developed a detailed simulation approach. 

It uses the pairings generated by our robust crew pairing model as inputs, and outputs the 

probability distributions of delays propagated through crew connections as well as crew 

disruptions. We use two alternative ways to generate the root delays to be used as 

simulation inputs. First, we use a non-parametric kernel function for probability density 

estimation of root delays using root delay data for each flight in our network during 

calendar year 2014. Then, for each 𝛤 value, we use those estimated density functions for 

generating 10,000 delay samples for every flight. Let us denote this as Simulation 

Approach 1. Note that this approach implicitly assumes that the root delays of different 

flights are statistically independent of each other. Our second approach, which we call 

Simulation Approach 2, does not require independence. In this approach, we simply use 
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the actual root delays for every day in year 2014, thus generating 365 root delay samples. 

Thus, this second approach captures the underlying root delay correlations and allows us 

to test how that affects the performance of our robust solutions, although using much fewer 

root delay samples than the first approach. 

In Table 2.2 we show the upper percentiles of the total propagated delay (in hours) across 

all flights in the network under Simulation Approach 1. For simplicity, we show only the 

upper percentiles (from 90th to 100th) and only a subset of the 11 tested 𝛤 values.  

Table 2.2. Upper percentiles of the total propagated delay using Simulation Approach 1 

RM 𝛤 90th 91th 92th 93th 94th 95th 96th 97th 98th 99th 100th 

1 

0 29.6 34.9 40.9 49.1 60.4 79.1 97.1 132.0 187.0 282.8 526.4 

20 29.8 33.7 38.6 45.0 51.9 62.6 72.9 90.0 117.6 167.4 411.1 

50 26.4 30.0 34.3 40.0 45.9 55.5 65.4 83.1 113.0 167.9 461.3 

80 30.3 34.2 39.1 45.9 55.6 70.4 85.1 110.0 152.2 216.7 533.2 

94 28.0 21.6 35.7 41.1 47.2 56.7 66.2 82.4 110.9 159.7 396.2 

2 

0 29.6 34.9 40.9 49.2 60.4 79.1 97.1 132.0 187.0 282.8 526.4 

20 25.9 29.6 34.2 40.6 48.4 61.3 74.8 96.8 131.7 189.5 582.6 

50 26.1 29.7 34.1 40.2 46.7 57.6 68.8 87.1 130.8 205.0 661.4 

80 27.1 30.4 34.6 40.0 46.2 55.7 65.7 83.4 113.7 165.6 550.6 

94 28.8 32.5 37.5 43.7 50.3 60.9 70.8 87.3 116.2 166.8 423.7 

 

We see that, for both RM1 and RM2, most of these upper percentiles of the propagated 

delays are the highest for 𝛤 = 0 and the lowest for 𝛤 = 94. Comparing the two model 

variants we see that their performances are similar, though RM1 performs slightly better 

overall. For each model variant, the average improvement in these percentiles is more than 

20% compared to the deterministic model. In terms of the 96th and higher percentiles, the 

benefits of our robust model are even more impressive with RM1 and RM2 resulting in 

more than 28% and 25% average improvement respectively. 

In addition to the planned crew costs and the distributions of propagated delays, a 

comprehensive comparison of the results should involve comparing the likelihood of 

infeasibilities in the crew schedules. As explained in Section 2.2, robust schedules can be 
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thought of as those which do not allow delays and disruptions to propagate easily and/or 

those which are easy to recover once disrupted. Since the ability to be easily recovered is 

beyond the scope of this paper, we focus on the likelihood of delay propagation and 

disruptions. Aside from delay propagation, flight delays may lead to violations of the 

maximum duty elapsed time rule. In Table 2.3 we show the upper percentiles of the total 

number of infeasibilities (i.e., the total number of crew rule violations) under Simulation 

Approach 1. 

Once again we see that, in general, for both models, most percentiles of the number of crew 

infeasibilities are the highest for 𝛤 = 0 and the lowest for 𝛤 = 94. The performances of 

the models are again comparable, but here RM2 performs slightly better overall (as 

evidenced by fewer infeasibilities than RM1 in most cases). This is consistent with the fact 

that RM2 explicitly accounts for these potential infeasibilities through constraints (2.34) 

and tries to protect against them. 

If we compare the 96th and higher percentiles (since most values lower than the 96th 

percentile are zeros anyway), RM1 and RM2 yield substantial average improvements (of 

more than 37% and 44% respectively) compared to the deterministic model. The results in 

Table 2.2 and Table 2.3 in conjunction with Figure 4 highlight the fact that both variants 

of our model bring significant improvements in the upper percentiles of delays and 

disruptions in return for a much smaller percentage increase in planned crew costs.  

Table 2.3. Upper percentiles of the number of crew infeasibilities using Sim. Approach 1 

RM 𝛤 90th 91th 92th 93th 94th 95th 96th 97th 98th 99th 100th 

1 

0 0 0 0 0 0 0 2 4 8 11 48 

20 0 0 0 0 0 0 0 3 4 9 43 

50 1 1 1 1 1 1 1 2 3 8 42 

80 0 0 0 0 0 1 1 2 5 10 44 

94 0 0 0 0 0 0 0 2 6 11 42 

2 

0 0 0 0 0 0 0 2 4 8 11 48 

20 0 0 0 0 0 0 0 2 5 8 44 

50 0 0 0 0 0 0 0 2 5 11 44 

80 0 0 0 0 0 0 0 2 4 11 51 

94 0 0 0 0 0 0 0 1 3 8 45 
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Using Simulation Approach 2, we repeated these computations of the percentiles of total 

propagated delays and the number of crew infeasibilities, for both RM1 and RM2. The 

upper percentiles for a representative set of 𝛤 values are presented in Tables 2.4 and 2.5, 

which are equivalent to Tables 2.2 and 2.3 for Simulation Approach 1. 

Table 2.4. Upper percentiles of the total propagated delay using Sim. Approach 2 

RM Γ 90th 91th 92th 93th 94th 95th 96th 97th 98th 99th 100th 

1 

0 22.2 24.1 27.0 31.4 35.0 36.5 45.6 55.1 61.5 82.1 128.7 

20 24.6 26.6 29.7 34.3 37.6 41.3 44.5 51.2 65.1 70.3 113.9 

50 18.6 20.8 23.3 28.2 29.7 32.8 36.9 46.5 56.7 67.7 121.4 

80 21.0 23.4 23.8 28.9 30.9 33.2 39.0 43.9 58.3 65.0 105.1 

94 18.1 19.9 22.9 24.8 27.2 30.0 34.4 40.9 48.5 64.5 99.5 

2 

0 22.2 24.1 27.0 31.4 35.0 36.5 45.6 55.1 61.5 82.1 128.7 

20 18.9 21.3 24.7 28.1 32.7 33.6 35.6 52.3 63.6 68.1 128.1 

50 17.7 22.2 24.7 28.6 31.3 32.5 41.8 52.2 66.5 71.9 132.3 

80 23.5 26.3 28.5 33.5 36.1 40.0 44.6 50.3 65.1 74.5 108.1 

94 20.5 22.1 23.8 27.5 29.0 31.7 35.2 43.5 50.9 62.0 101.7 

 

Similar to the results of Simulation Approach 1, we observe that, in most cases, the upper 

percentiles of total propagated delays and number of crew infeasibilities are found to be 

the highest (or at least close to the highest) for 𝛤 = 0 and the lowest for 𝛤 = 94. However, 

unlike the results of Simulation Approach 1, here we observe that the performances of the 

two models are not comparable. Instead, we find that in terms of propagated delay 

distributions RM1 consistently outperforms RM2, while in terms of the distributions of the 

number of crew infeasibilities RM2 outperforms RM1. If we compare the 96th and higher 

percentiles, RM1 and RM2 yield an average improvement of 15% and 10%, respectively, 

in terms of the propagated delays. Similar comparison based on the number of crew 

infeasibilities shows no significant improvement for RM1, but a 13% average improvement 

for RM2. Both these observations are consistent with how the models are structured. RM1 

has a higher 𝛾 value which further reduces the propagated delays compared with RM2. On 

the other hand, RM2 is more conservative in constraints (2.6) thus resulting in fewer 

infeasibilities than RM1. The results in Table 2.4 and Table 2.5 when compared to those in 

Tables 2.2 and 2.3 show that the overall improvements in the upper percentiles of delays 
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and disruptions are lower, but still significant, under Simulation Approach 2 than those 

under Simulation Approach 1. 

In addition to the upper percentiles, we also calculated the expected values and standard 

deviations of propagated delays and number of infeasibilities. They are summarized in 

Tables 2.6 and 2.7 for Simulation Approach 1 and Simulation Approach 2, respectively. 

All expected values are followed, in parentheses, by the standard errors (that is, the ratio 

of the standard deviation of the simulation result divided by the square root of the number 

of simulation runs) to provide a measure of their statistical significance. Also, in order to 

allow for an easy comparison of the benefits and costs of each of the robust solutions under 

each simulation approach, the increases in planned crew costs are also provided in these 

tables. These increases are obtained by subtracting the planned crew cost of the 

deterministic solution (i.e., that obtained for 𝛤 = 0) and are reported in the units of crew 

flying hour costs.  

Table 2.5. Upper percentiles of the number of crew infeasibilities using Sim. Approach 2 

RM 𝛤 90th 91th 92th 93th 94th 95th 96th 97th 98th 99th 100th 

1 

0 0 0 0 0 0 0 1 1 2 2 8 

20 0 0 0 0 0 0 1 1 2 2 7 

50 1 1 1 1 1 1 1 1 2 2 7 

80 0 0 0 0 0 0 1 1 2 2 7 

94 1 1 1 1 1 1 1 2 2 3 5 

2 

0 0 0 0 0 0 0 1 1 2 2 8 

20 0 0 0 0 0 0 1 1 2 2 7 

50 0 0 0 0 0 0 1 1 2 2 7 

80 0 0 0 0 1 1 1 1 1 2 5 

94 0 0 0 0 0 0 1 1 1 1 4 
 

In order to allow meaningful comparisons across Tables 2.6 and 2.7, let us recall that the 

cost of one hour of delay has been estimated to be approximately equal to the cost of 6.3 

hours of crew flying time. Several key insights can be drawn from the results in these two 

tables. First, we observe that, similar to the upper percentile results, these results do not 

exhibit monotonic trends in expected values of delays and infeasibilities. However, in all 

cases, the solutions for 𝛤 = 0 show the highest or near-highest expected values while 



 INTEGRATED SCHEDULE RECOVERY                         A ROBUST PARING MODEL FOR AIRLINE 

CREW SCHEDULING 

David Joaquim Marques Antunes  52 

solutions for 𝛤 = 94 show the lowest or near-lowest expected values. Standard errors are 

stable across 𝛤 values. 

Table 2.6. Increases in the planned crew costs and expected values (and standard errors) of 

total propagated delays and number of infeasibilities for Sim. Approach 1  

𝛤 

Increase in Planned Crew 

Costs (in Crew Flying 

Hours) 

Total Propagated Delays 

(in Hours) 

Number of 

Infeasibilities 

RM1 RM2 RM1 RM2 RM1 RM2 

0 0 0 15.12 (0.40) 15.12 (0.40) 0.39 (0.03) 0.39 (0.03) 

20 9.65 15.61 9.90 (0.32) 11.33 (0.37) 0.24 (0.02) 0.27 (0.02) 

50 1.69 4.02 10.40 (0.32) 11.51 (0.40) 0.69 (0.02) 0.31 (0.02) 

80 14.29 13.46 12.79 (0.40) 14.93 (0.33) 0.34 (0.02) 0.33 (0.03) 

94 27.44 18.44 10.34 (0.30) 10.60 (0.31) 0.27 (0.02) 0.25 (0.02) 
 

Table 2.7. Increases in the planned crew costs and expected values (and standard errors) of 

total propagated delays and number of infeasibilities for Sim. Approach 2 

𝛤 

Increase in Planned 

Crew Costs (in Crew 

Flying Hours) 

Total Propagated Delays 

(in Hours) 
Number of Infeasibilities 

RM1 RM2 RM1 RM2 RM1 RM2 

0 0 0 9.37 (0.80) 9.37 (0.80) 0.14 (0.03) 0.14 (0.03) 

20 9.65 15.61 9.12 (0.70) 9.13 (0.73) 0.13 (0.03) 0.13 (0.03) 

50 1.69 4.02 9.10 (0.69) 9.10 (0.76) 0.19 (0.03) 0.13 (0.03) 

80 14.29 13.46 9.10 (0.67) 9.12 (0.70) 0.13 (0.03) 0.12 (0.02) 

94 27.44 18.44 9.08 (0.59) 9.08 (0.64) 0.19 (0.03) 0.08 (0.02) 

 

For Simulation Approach 1, all robust solutions (i.e., those with 𝛤 > 0) provide a 

significant reduction in expected delay costs, which more than compensates (after 

accounting for the aforementioned factor of 6.3) for the increase in planned crew costs. 

Note that this analysis does not include the benefits to passengers due to reduction in delay 

costs, which are estimated (Ball et al. 2010; Barnhart et al. 2014) to be twice as large as 

those to the airlines. Moreover, Table 2.6 shows that, in most cases, the number of 

infeasibilities under robust solutions also shows a statistically significant reduction 



 INTEGRATED SCHEDULE RECOVERY                         A ROBUST PARING MODEL FOR AIRLINE 

CREW SCHEDULING 

David Joaquim Marques Antunes  53 

compared with the deterministic solution. While the benefits of these are difficult to 

quantify in a precise manner, they correspond to a considerable additional reduction in 

disruption costs to airlines and passengers. Finally, the undesirability of delay and 

disruption costs goes well beyond what can be captured purely by their expected values, 

because of the unpredictability associated with them, compared with equal amount of the 

planned crew costs. Indeed, the upper percentile results for robust solutions as presented 

earlier in this section point to even larger benefits of robust solutions than those indicated 

by the reductions in expected values. In summary, Simulation Approach 1 demonstrates in 

a comprehensive manner the substantial overall superiority of our robust crew pairing 

solutions compared to the deterministic solutions and makes a compelling argument for 

their implementation in practice. 

For Simulation Approach 2, all robust solutions result in lower expected values of total 

propagated delays. In fact, barring a couple of exceptions, expected values of both total 

propagated delays and number of infeasibilities show a monotonically decreasing trend 

with increases in 𝛤 values. However, the differences are not statistically significant in many 

cases, and in many cases they, by themselves, do not fully compensate for the 

corresponding increases in planned crew costs (after accounting for the aforementioned 

factor of 6.3). The lack of statistical significance is likely due to the significantly fewer 

(~0.3%) simulation runs used for Simulation Approach 2 (365) than for Simulation 

Approach 1 (10,000). Recall that Simulation Approach 2 strives to capture the root delay 

correlations across flights, and hence faces the challenge of using the limited number of 

available real-world realizations from the joint distribution of the large number of root 

delay variables.   

The somewhat lower propagated delay reductions for the robust solutions under Simulation 

Approach 2 are consistent with the fact that our robust crew pairing model does not 

explicitly account for root delay correlations. However, as mentioned earlier in this section, 

the reduction in expected delay costs to the airlines is only a small subset of the overall 

benefits of robust models. When combined with passenger delay reduction benefits, 

reductions in the number of infeasibilities, and the benefits due to less uncertainty in delays 

and disruptions, the robust solutions are expected to more than compensate for the 

corresponding small increases in planned crew costs. Indeed, even under Simulation 
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Approach 2, the relative improvements in upper percentiles of total propagated delays (as 

shown in Tables 2.4 and 2.5) are much larger than those in their expected values shown in 

Table 7 clearly demonstrating the value of our robust solutions. 

2.8 Conclusion 

In sum, this paper makes four major contributions.  

• First, we develop a new mixed-integer linear programming model for the robust 

crew pairing problem. Unlike most existing studies on crew pairing problems under 

uncertainty, our model captures the highly non-linear pay-and-credit crew salary 

scheme, a variety of complex real-world constraints on crew pairing feasibility and 

legality, and a variety of complex effects on the airline network due to the 

propagation of delays and disruptions through crew connections. 

• Second, we develop a new solution algorithm that iteratively uses the commercial 

optimization solvers to solve the robust crew pairing problem to optimality. Unlike 

most existing studies on crew pairing problems, our approach does not require 

extensive customization of this new solution algorithm which facilitates its 

implementation in practice. 

• Third, we motivate the effectiveness of our approach analytically for a small 

example and demonstrate it computationally on a moderate-sized real-world airline 

network. Our analytical results provide a series of intuitive insights into the 

functioning of the highly complex robust crew pairing model and highlight a 

number of mathematical properties of the two model variants. Our computational 

experiments underline the ease of implementation and fast execution of our model 

making it especially suitable for being used by the practitioners. 

• Finally, we test our robust solutions in a detailed simulation environment using real-

world delay data to demonstrate their effectiveness in reducing both the averages 

and the variability of delay and disruption costs to airlines and passengers. We 
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demonstrate that our model leads to significant total benefits (lower values of 

averages and upper percentiles of flight delays, fewer crew infeasibilities, and lower 

passenger delays and disruptions) at the expense of a small increase in planned crew 

costs that is often below 3% and never exceeding 5%. 

Hundreds of airlines around the world have similar-sized or smaller networks and fleets 

than our case study network. These airlines can benefit directly from this research. 

Examples of well-known such airlines include Transavia (42 aircraft), Air Canada Rouge 

(51 aircraft), China United Airlines (42 aircraft), Frontier Airlines (77 aircraft), CEBU 

Pacific Air (62 aircraft) and Thomas Cook Airlines (35 aircraft). Additionally, several 

other, larger airlines use multiple fleet families where the crew pairing decisions are often 

made separately for each fleet family’s sub-network. Our model and solution algorithm can 

be directly applied to several such sub-networks within well-known large airlines across 

the world. Most studies in the previous literature on airline schedule optimization under 

uncertainty, and especially those focused on crew pairing, have typically used small- to 

moderate-sized networks, and have tackled instances no larger than the ones we used in 

this paper. Yet, given the ability of our model and solution algorithm to result in an optimal 

solution within a 4-hour time period for these moderate-sized networks, there are clear 

opportunities to test larger-sized instances directly using our model and solution algorithm. 

Moreover, we anticipate that our model and solution algorithm, when combined with 

additional exact and heuristic acceleration techniques, may enable solving the instances 

corresponding to the mega airlines that have recently emerged from the airline mergers 

across the world. This is a very promising direction for extending this research in the future. 

On the modeling side, another promising direction for future research would be to explicitly 

incorporate the root delay correlations within our robust optimization framework for crew 

scheduling. The findings of recent studies in other areas, such as robust aircraft routing 

(e.g., Yan and Kung 2016), show that explicitly accounting for delay correlations in the 

definitions of delay uncertainty sets increases the effectiveness of the robust optimization 

approach. Thus, explicit handling of delay correlations in the definitions of uncertainty sets 

would be a logical next step in this research. 
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To fully assess the capabilities and performance of the pairings generated by our approach, 

future research may focus on developing a simulation model that includes an operations 

recovery model so that the cost of the infeasibilities can be accurately assessed. 

Furthermore, a passenger rebookings simulator should be integrated into the recovery-

based simulation model to allow for full evaluation of passenger delay and disruption costs. 

Finally, integrated treatment of aircraft and crew schedules in robust scheduling and 

recovery models is another promising direction for future research. 
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3 AN AGENT-BASED SIMULATION FRAMEWORK 
FOR AIRLINE DAILY OPERATIONS AND ITS 
APPLICATION ON THE ASSESSMENT OF 
SCHEDULE RECOVERY MODELS  

3.1 Introduction 

Planning for uncertainty is one of the most challenging tasks that airlines face. Airline 

operations are subjected to several sources of randomness, and airlines need to consider 

several dimensions, components and interactions within their networks. Thus, the 

consequences of disruptions in their operations are difficult to comprehend. One way that 

can help tackle this challenge is a stochastic simulation framework that replicates the 

operations of an airline. Therefore, we propose a framework to simulate in detail the daily 

operations of an airline in a stochastic way and understand how decisions at an operational 

level, i.e. schedule recovery actions, will affect the overall operations.   

When simulating an airline’s operations, it is essential to accurately capture the response 

of the airline to the uncertainty and disruptions during operations. The actions of an airline 

during a major disruption are a significant determinant of the eventual outcomes and hence 

need to be modeled with especial care. Airlines call these major disruption situations as 

irregular operations, and the airline’s actions to mitigate the problem are known as schedule 

recovery actions. When simulating airline operations one can represent this schedule 

recovery actions with a schedule recovery model that closely mimics the behavior of the 

airline being simulated. Interestingly, as will be shown later in this chapter, a simulation 

framework can also help in identifying the best recovery model across multiple candidate 

models to serve as representation of all recovery actions.  
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3.1.1 Airline Schedule Recovery Models 

As stated earlier, the need for a recovery model arises because even the best plan with 

considerable buffers to absorb the predictable disturbances can sometimes get disrupted. 

Therefore, some remediation measures, known as schedule recovery actions in the airline 

industry, must be taken to mitigate the costs that arise from such disruptions. Several 

models for schedule recovery have been developed over the years. Some early models were 

developed by academic researchers (Argüello et al., 1997; Jarrah et al., 1993; Mathaisel, 

1996; Teodorović and Stojković, 1990). With the maturation of the field of recovery 

optimization, a few of them made it into the decision support systems of the airlines.  

Currently, there is little research that can comprehensively compare different recovery 

models to identify the ones that perform better for a given category of problem instance. 

Each model was typically developed while considering one or a few particular objectives. 

Some common objectives are: minimizing total expected delays, minimizing expected 

recovery costs, minimizing the time until complete recovery of schedules, minimizing 

disruption impacts on the most valuable customers, minimizing the number of customer 

complaints, optimizing the repositioning of the resources for future use, minimizing the 

adverse effects on the worst-affected parts of the system, etc. In rare cases the recovery 

models are integrated, they do not attend to the whole airline’s operations simultaneously. 

Consequently, each recovery model generates its own solutions that diverge from those of 

the other models, and most only consider a sub-problem that the airlines face.  

In summary, choosing the right model to generate recovery solutions is a difficult task 

leaving a lot to guess-work. Airlines are typically forced to rely on their experience and 

existing decision support systems. However, the airlines are not able to easily compare the 

models they use with other possible models. Here we identify the need for a way to 

benchmark several recovery models against each other. This is where the use of a stochastic 

simulation framework can be advantageous. Indeed, a framework able to capture 

uncertainty and replicate in detail the daily operations of an airline would give the 

possibility of comparing recovery models, evaluating the robustness of the recovery 

solutions and assessing the tradeoffs one recovery model makes in comparison to another 

one. Such a framework would also help the work of researchers and industry professionals 
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since it would be easier to compare models, develop prototypes, extend, and enhance 

existing ones. Each new iteration of a recovery model could be tested directly in a timely 

fashion, easily verifying the consequences of the new features or modifications that were 

made.  

3.1.2 Contributions and Outline 

With these considerations in mind, we developed a stochastic simulation framework based 

on an agent-based model using a limited amount of input data, and implemented it on a 

computer platform. With this framework, it is possible to simulate the daily operations of 

an airline considering all its main agents: aircraft, crews, and passengers. Using the 

Application Programming Interface (API) of an off-the-shelf commercial optimization 

suite, optimization models for recovery purposes can be used within the computer platform 

implementing the proposed framework in a straightforward manner. Constructed with a 

user-friendly interface, and with a projection on a Geographic Information System (GIS), 

this platform helps the user to verify each detail during the operations and identify 

peculiarities   of the network, airline schedules, and recovery solutions. 

The remainder of the chapter is structured in the following way. In Section 3.2 we describe 

the background concepts. Section 3.3 provides a review of the existing simulation 

platforms related to airline operations. In Section 3.4 we detail our airline simulation’s 

framework. This is followed by Section 3.5 which presents a case study where we analyze 

different schedule recovery models and show how our simulation framework can be used 

to test these models. Finally, in Sections 3.6 and 3.7 we present the conclusions and future 

work, respectively. 

3.2 Background Concepts 

In this section, we provide a brief review of the background concepts relevant to this 

research. We will not review simulation theory, such as system dynamics or queueing 

theory. Rather our focus is on understanding how the literature tackles the problem of 

simulating airline operations, capturing the reality well enough to provide a good 
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representation of the real world while balancing level of details against computational 

efficiency.  

Developing and applying a highly detailed simulation framework would typically lead to a 

computationally complex and expensive endeavor. On the other hand, excessive 

simplifications would lead to a framework that is easy to apply but its outputs would be 

useless due to their large divergence from reality. Thus, any conclusions made on these 

outputs would be of limited practical value. In addition, to properly simulate an airline, its 

behavioral response to uncertainty and disruptions should be simulated. We need to model 

the actions that an airline will take throughout the day that will in turn influence the 

simulation of all other operations performed on that same day. 

Airline operations can be divided into two phases – the planning phase and the execution 

phase. The execution phase includes reactive actions that are necessitated due the 

uncertainty that impacts the original schedules decided in the planning phase. Plans are an 

important input for our simulation framework. These are schedules for all resources that an 

airline utilizes, e.g., aircraft and crews, as well as the schedules of passengers. However, 

uncertainty can disrupt these schedules and render them unfeasible or sub-optimal after a 

disruption event. The airline needs to act to resolve infeasibilities or at least attenuate their 

downstream effects. These actions are called as airline schedule recovery. Both planning 

and recovery are well-studied topics and are addressed frequently with the use of 

optimization models. The models that are used for schedule planning are not the focus of 

this paper. For more information on this subject we refer the reader to Ball et al. (2006) 

and Barnhart et al. (2014). 

A schedule recovery model, however rudimentary, is essential within any stochastic 

simulation framework able to adequately represent airline operations. Nonetheless, 

recovery models that are too rudimentary, such as a rule-based recovery model, are unable 

to resolve large-scale disruptions optimally or even near-optimally; in fact, they are often 

unable to even maintain feasibility of operations under large-scale disruptions. More 

sophisticated recovery models are not only able to resolve operational infeasibilities but 

are also a better depiction of real-world airline operations.  



INTEGRATED SCHEDULE RECOVERY                                       SIMULATION OF AIRLINE DAILY 

OPERATIONS 

David Joaquim Marques Antunes  61 

The scheduling recovery problems raised by operational uncertainty have been addressed 

in the literature in two different ways. One is through schedule recovery models where the 

airline tries to recover the normal schedule after a delay or disturbance appears. The other 

has led to proactive robust schedule planning models that intelligently anticipate potential 

operational problems and generate schedules that are more resistant to delays and 

disruptions. A highly robust schedule, designed for the worst-case scenario, has a low 

probability of being disrupted, but it can be too conservative, hence too costly. On the other 

hand, a highly optimized schedule with no slacks or buffers will be prone to disruptions, 

which in turn translate to higher costs for the airlines. Thus, adding the right degree of 

robustness is essential to minimize true costs to the airlines. An example of such a robust 

scheduling model was presented in the previous chapter, Chapter 2. 

Besides the combination of robustness and recovery, recovery itself should be attended in 

a broad perspective. Schedule recovery should be made in an integrated manner. It is not 

good practice to recover a disrupted schedule only by trying to alter the resources that are 

disrupted. Schedule recovery tends to be an operation where the whole airline should be 

considered in a integrated manner. 

Airline operations will always have to deal with scheduling recovery problems. Even the 

most robust, worst-case design will fail at some point and there will be a need of a highly 

effective and efficient schedule recovery. Indeed, in practice, an airline will always be 

obliged to act during the operations phase to circumvent unforeseen events. Thus, in the 

simulation of airline operations, airlines must be active agents because they will always act 

to solve issues during operations that will turn previous plans infeasible. 

3.2.1 Airline decision making  

To mimic the daily operations of an airline, one must be able to understand how the 

decision processes take place in such companies, how each piece connects and/or 

constrains other pieces and what are the possible decisions that the airline can take. One 

possible approach is to use agent-based models. Jennings (2000) stated that this type of 

models can significantly enhance our ability to model, design and build complex, 

distributed systems and that it would become mainstream in the future. Bond, Gasser, 
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Jennings and Wooldridge (Bond and Gasser (1988) and Jennings and Wooldridge (1998b) 

in Wooldridge, 2008) point out some characteristics of a system for which it is 

advantageous to apply agent-based models: 

• The environment is open, or at least highly dynamic, uncertain, or complex;  

• Agents are a natural metaphor; 

• Data, control, or expertise are distributed; and 

• Existence of legacy systems. 

In the case of airlines, the environment of its operations is clearly highly dynamic. Each 

day of operations can be heavily affected by uncertainty, turning each instance of the airline 

schedule recovery problem unique. It is a complex environment since there are numerous 

agents, stakeholders, resources, and restrictions that must be considered. The agents are 

clearly a natural metaphor, crew members, passengers, and aircraft can be easily 

understood as agents.  

Airlines have in their structure one main entity responsible for decisions on the operational 

level known as Airline Operational Control Center (AOCC). However, the architecture of 

the AOCC distributes the responsibilities for each resource between internal sections and 

as such, each section has different types of data available and the expertise is specialized 

in each section for a given resource. Hence the AOCC centralizes the decision making, 

expertise and data but due the internal architecture of it, the decisions, data and expertise 

are distributed.  

The final point is existence of legacy systems. Airlines use legacy systems, for instance 

Decision Support System (DSS), to tackle their operational problems. To create an agent-

based model that to represent the reality of airline operations one must attend to how the 

existing legacy systems interact with each other so one can properly represent the airlines 

decision making.  
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In our interpretation, legacy systems are, besides the DSS, the human decision makers and 

their expertise that intervenes in the decision-making process. To a similar conclusion came 

also Devore et al. (2006). The authors speak about expanding the system boundaries so that 

the human is part of the decision support system. For instance, there is no fully automatic 

DSS that generates solution for the daily operations of an airline that is robust enough to 

be able to tackle all possible problems that an airline faces at operational level. There will 

always be a human in the loop to supervise and correct solutions for extreme cases that the 

DSS cannot handle by itself. Resuming to simulate an entity like an airline the decision 

making, i.e. behavior, of it must be captured. The behavior is depending on various factors: 

models used, strategy of the airline, experience and skill of the staff, legacy systems, etc. 

This behavior can greatly vary from one airline to another and here an agent-based 

approach is most helpful.  Power and Sharda (2007) defined the issue of agent based 

modeling in an eloquent way: 

"People have been thinking in terms of agent-based modeling for many years but 

just didn’t have the computing power to actually make it useful until recently. With 

agent-based modeling, you describe a system from the bottom up, from the point of 

view of its constituent units, as opposed to a top-down description, where you look 

at properties at the aggregate level without worrying about the system’s constituent 

elements." 

This is the process of assessing and understanding of a system and in a second phase 

designing it. Wooldridge (2008) clams that this is rather tentative and abstract in the 

beginning, but continually gets more concrete, detailed and complex. 

Bonabeau (2002) had a similar perspective. He claims that agent-based modeling is rather 

a mindset than a technology. It contrasts with classical modeling approaches, since it is a 

bottom up approach where we try to define its agents/pieces. He describes the benefits of 

an agent-based model in three points: 

• Captures emergent behavior; 

• Natural descriptions of the system; and 
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• It a flexible modeling approach.  

An emergent phenomenon is hard to model except by using an agent-based model, 

especially when there are phenomena that are counter-intuitive and due to the complexity 

of airline operations is hard to understand all the emergent phenomenon, counter-intuitive 

or otherwise. One can easily describe the operations of an airline by its main components: 

aircraft, crews, passenger, and the airline’s operational decision making, hence the agent-

based modeling approach is a natural description of the system. By airline operational 

decision making we mean all decisions that an airline takes during operations, notably the 

actions to respond to unforeseen events as delays.  

The final point of flexibility is was makes our proposed simulation framework user-

friendly. Since it allows with easy to simulate any airline and extend the model with relative 

ease by, for instance, adding additional agents. In his paper, Bonabeau also identifies the 

shortcomings of agent-based models. The most important one relates to the purpose. There 

is no general simulation that works for all possible circumstances. This perspective is not 

new though – just recall the famous quote from Box and Draper (1987): 

"Essentially, all models are wrong, but some are useful". 

A simulation framework should be designed with a well-defined purpose, as is our case. 

Furthermore, it should have well-defined users. The potential users of our framework can 

be divided into two groups. The first group consist of researchers or industry practitioners 

that want to test scheduling or recovery models for an airline. The second group are 

researchers that want to simulate an airline to see how it reacts to different circumstances 

or scenarios. This second group is the one that needs a fully fleshed out AOCC.  They need 

a simulation that captures the behavior of an airline, the decision making of the airline 

needs to be adequately represented. During operations the decisions are taken inside the 

sub-departments that constitute the AOCC.  

Our scope is not a system wide model but one that is easy to use, small to moderate data 

requirements, and that focus on one airline. Most simulation models available are system 

wide models that render them not adequate, or hard to use at least, for our purpose. A set 
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of existing simulation models can be found in Section 3.3.3 where we analyze them in 

detail.  

One other issue pointed out by Bonabeau (2002) is the fact that humans can have irrational 

behavior. This issue is more prominent in the case for social models. Our model is an 

operational model and as such modeling each agent as rational is not a major sidestep 

compared to the reality. Lastly is that an agent-based model is in general more 

computationally demanding than a simple top down rule-based model. This has also been 

taken into consideration in our case, when we balanced the computational effort versus the 

level of detail captured by the model. 

3.3 Existing Simulation Platforms  

One of the earliest attempts to build a simulation platform for the aviation industry is 

presented in Nordin (1980). This simulation platform was only focused on the operation of 

an airport and not an airline. Hence this makes it unfit for our purpose besides the fact that 

it is an already dated model. 

The ground work for today’s airline operational simulation platforms was laid down by 

Rosenberger et al. (2002). They created SIMAIR, a discrete event simulation platform 

which was aimed to explicitly incorporate uncertainty into the planning process. This 

platform can be used to analyze the sensitivity to disruptions and then evaluate recovery 

policies. 

SIMAIR was later enhanced by Lee et al. (2003) The newest version of the SIMAIR 

platform, version 2.2, dates back to 2004 (National University of Singapore and Georgia 

Institute of Technology, 2013). The approach behind SIMAIR is systems dynamics rather 

than agent-based simulation. In Figure 3.1 we show a high-level representation of the 

platform. 
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Figure 3.1. The SIMAIR platform (Lee et al., 2003) 

SIMAIR consists of 3 modules: Simulation, Controller and Recovery. It can simulate 

Aircraft, Crew, Passengers and Cargo. SIMAIR is a complex platform with high level of 

detail, as we can see in  Figure 3.2. This platform is difficult to feed with data due to the 

large amount of details it requires.  

 

Figure 3.2. Representation of a flight leg inside SIMAIR  (Lee et al., 2003) 
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The scheduling recovery model in SIMAIR is a “black box”. It not designed to obtain 

optimal solutions but rather directed to grant feasibility in a myopic way, and it does not 

consider swapping of aircrafts or crews. The initial implementation assumes a computer 

science background to be able to run it. If it is necessary to adapt it, an even deeper 

knowledge in computer science is needed. 

Another noteworthy simulation platform is MIT Extensible Air Network Simulation 

(MEANS), described in  Clarke (2004). It is also based on a discrete event simulation model 

that tracks aircraft and passengers over the network. The uncertainty is captured through 

re-runs varying some input data with a given distribution. This platform is focused on the 

large-scale simulation of a whole region. It could be used for simulating the daily 

operations of just one airline, however this is not the type of application it is originally 

intended for. If used for daily operations, the quality of the outcomes would suffer greatly. 

In particular, outputs would be characterized by an excessively high level of aggregation.  

A similar conclusion was reached by the FAA when they compiled the “Model Use 

Shortfalls” of the existing simulation platforms in 2006 (FAA, 2006). They evaluated 

several existing systemwide platforms (NASPAC, Systemwide Modeler, ACES, FACET, 

LMINNET and AwSim/AERALIB) and identified several shortfalls in issues like 

simplifications of airport operations, en-route traffic and Airline Operational Control 

Center (AOCC). This last point is a major shortfall. Indeed, the AOCC is one of the most 

important features to be simulated as it “takes” most, if not all, decisions at an operational 

level. Usability was also evaluated in this context. The conclusion was that these platforms 

were hard to set up and lacked the ability to make Monte Carlo replications due to their 

size, i.e. computation time. Absent graphical visualization was another issue. Finally, they 

lacked a proper mechanism to validate the results. In order to overcome these shortfalls, 

FAA developed the System Wide Analysis Capability (SWAC) platform, later replaced by 

the National Airspace System Performance Analysis Capability (NASPAC) platform. This 

is a state-of-the-art platform that incorporates several additional features like fuel burn and 

delays (FAA, 2014). Nevertheless, once again, it is a system-wide simulation platform that 

is not compatible with our intended users and scope. 
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NASA’s FACET is one of the platforms analyzed by the FAA as well, but it lacks airline 

details, and therefore does not fit our purpose. Moreover NASA is trying to license it 

(NASA, 2002). Systemwide Modeler (Baden et al., 2011) is a platform developed by 

MITRE. Yet, as the name indicates, it is also a system-wide platform designed to handle 

hundreds of thousands of flights and not designed to replicate the daily operations of an 

airline. 

Barely none of the referred platforms are available as open source or free version. Making 

the assessment of the potential and drawbacks of each platform cumbersome. Under these 

circumstance, we decided to develop from scratch a user-friendly platform based on an 

agent-based simulation model.  

3.4 Proposed Simulation Platform  

We propose an integrated platform able to simulate the whole operation of an airline using 

an agent base modeling approach, the Airline operational Simulation Platform (AOSP). 

Since the simulation component inside the AOSP is stochastic it also contains a schedule 

recovery model able to fix schedules that are perturbated during the simulation. The main 

reason behind the decision of including a recovery model was to be able capture the 

decision-making process of the airline. The secondary reason was a practical one. Due the 

stochastic nature of the simulation this could lead to infeasibilities during the running of 

the AOSP that could lead to catastrophic computation errors. 

Another concern while developing the AOSP was usability. We developed it always with 

the objective of being user-friendly. Hence significant effort was taken while developing 

the graphical user interface (GUI). This GUI helps to have a better understanding of all 

processes that are happening inside the AOSP.  

AOSP was developed using the AnyLogic software (Anylogic, 2018). It allows to develop 

high quality models having the appropriated tools for it and is flexible enough to 

accommodate any kind of customizations as deemed necessary by the user. Every aspect 

of it can be tailored by the user through Java language. Also, AOSP is incorporates a 

Geographical Information System (GIS) allowing to simulate any airline network in any 
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part of the globe. This GIS also enhances the GUI since the AOSP accurately projects the 

flights and airports worldwide. The framework is tailored to be used to simulate one day 

of operations but allows to simulate longer time window, i.e. weeks or months, only 

needing a minor effort to adapt the AOSP to this purpose. 

AOSP’s simulation model is an agent-based model containing three types of agents: 

aircraft, crews and passengers. Each agent receives as input a fixed schedule. As soon the 

simulation starts running, the agents are put in the starting positions and will try to operate 

the flights as the input schedules dictate. However, the AOSP is capable to add uncertainty 

to the simulation run by altering the flight arrival time and these delays will propagate 

through the network causing additional perturbations. These will propagate through flights 

that share resources and are time dependent. Here, the AOSP simulation model is designed 

in a user-friendly fashion allowing the user to tailor the delay characteristic according to 

his needs. For more information on the delay modeling please refer to sub-section 3.5.1. 

The following figure, Figure 3.3, depicts AOSP and the different modules it integrates. 

 

Figure 3.3. AOSP high-level representation 

In the flowchart of Figure 3.3, we observe that there are two main input sources. One is 

referring to delay distributions and patterns that feed directly into the main environment of 

the AOSP. The second source are the schedules for crews and aircraft, and the passenger 
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itineraries. These are feed into dynamic schedules for each agent. These schedules are 

dynamic since the recovery model can modify them. The AOSP is constructed so that it 

can use the format of the Airline On-Time Performance database form the Bureau of 

Transportation Statistics, BTS (2016), with only minimal data transformation and cleaning. 

The recovery model is called when a signal from the environment is sent informing that 

there is an infeasibility for one of the agent’s schedules. New schedules will be defined 

with additional delays, resources swapping or flight cancelations to counter this 

infeasibility. These new schedules will be saved into the “dynamic schedules” and the 

simulation continues to run. The recovery algorithm will save all important data, namely 

recovery problem and solution, to the output files. This is one component of the output 

being many other data saved during the simulation run. 

The current version of the platform, used in the case study, Section 3.5, has two recovery 

models included besides the default “delay until feasible” model. Before AOSP starts, the 

user must choose which recovery model will be active. For more on the recovery models 

in the current version of AOSP please refer to sub-section 3.5.1. The recovery module, 

depending on the chosen recovery model, will generate a solution that will change the 

“dynamic schedules” and, if necessary, generate also new agents (that represent the move 

up crews and or new aircrafts), delay flights or even cancel them. Once these updates are 

made, the simulation resumes from the same instant. To be noted, the whole simulation 

stops, and all computational power is diverted to the recovery optimization model and only 

after the solution is generated and dynamic schedules updated the simulation resumes. This 

means that, from the simulation point of view, the recovery optimization model is solved 

instantaneously. It is as if the AOCC could analyze the problem, solve it, and send the new 

schedules and cancelations information immediately.  

All those operations are timestamped and send to the final output database, and 

computation times of each operation, optimization, output writing, can be analyzed 

afterwards. The framework encompasses an uncertainty module that generates delays. 

These delays are stochastic in nature. However, they are generated with a unique seed for 

each run. Hence, each uncertainty scenario can be re-run if needed since the seed is also 

stored in the output database. 
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3.4.1 Input and Output 

To keep the model as simple as possible we tried to limit the input needs of the AOSP to a 

minimum. Of course, complex models typically need a large amount of data, otherwise 

their output is not significant enough. Yet, we tried to strike a balance that limits the need 

for input data and maintains an easy to use concept without reducing the quality of the 

results. The input data is divided in three types of parameters: cost parameters specific of 

the airline being simulated; schedules for aircraft, crew and passengers; and delay 

distribution parameters. The cost parameters mimic airline’s cost structure. There are used 

to simulate the company’s costs. These parameters are, for instance. cost of 1-min of delay 

and crew block hour cost. 

The schedules of all agents need to be input in the simulation platform. Since we want this 

step to be as easy as possible, we had to decide on a data structure that would also be 

according to this principle. We chose to use a data structure like the one used by the biggest 

open airline delay database – the Airline On-Time Performance of the Bureau of 

Transportation Statistics, BTS (2016). The data of this database is copied directly and used 

as input file for the AOSP, only needing minimal modifications and complementary 

information to be added (specifically, airport coordinates and time zones). 

The delay parameters are structured in the same way as in Tu et al. (2008). AOSP simulates 

the delays using three components: yearly component, daily component and random 

component. To be noted, it is possible to use the platform without any of these delay 

parameters turning AOSP into a deterministic simulation platform. 

Each application of the platform will create an output database saving the most important 

information, like flight times, real-time timestamps for each activity, and performance 

metrics for each agent. This enables the user to analyze the simulation run in further depth 

than he could just from looking at the graphical user interface. These output databases can 

be analyzed to compare several runs with each other. 
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3.4.2 Agent Based Logic 

Agent based simulation is a modeling logic. Using a few rules, it allows to simulate 

complex systems, like an airline. Probably its most interesting feature is the emergence 

phenomenon.  It consists in behavior that was not explicitly modeled but emerges as the 

various agents interact with each other.  

Agent-based modeling is the core modeling principle behind the proposed simulation 

platform. These agents’ interactions allow to capture the reality of the daily operations of 

an airline since all need to be available for a flight to depart, but each agent has its own 

schedule and can suffer disruptions. Additionally, we are also capturing the agency of the 

airline, as the recovery model makes the main decisions of the airline. Hence, we can 

understand the recovery model as the airline’s AOCC. The agents do interact with each 

other but on a lower level. When they encounter a problem, an infeasibility to operate their 

schedule, the problem is passed to a higher level to the recovery algorithm, i.e. simulated 

AOCC. 

Interestingly there are lots of platforms currently available to develop agent-based 

simulation models, however this is not the scope of this work. For more information on 

this issue we refer the reader, for instance, to the work of Abar et al. (2017). In this research, 

the authors assembled a rich list of modeling tools and describe their characteristics, 

strengths, scalabilities, use scopes and development efforts. 

The simulation and modeling of a real and complex system is inherently a simplification. 

Having that in mind, we need to trim our model and chose our simplifications wisely, so it 

fulfills our objectives. Our objective was designing a model that has the ability without 

needing major customization to simulate the daily operations of any airline. Also, we want 

to capture uncertainty in a simple manner and in a form that the data is available for a large 

set of flights and airlines, so it is easily implemented by researchers or industry 

practitioners. Data quantity, and quality, is a major issue and maybe one of the main reasons 

why simulation models are not disseminated more since most of the existing simulation 

models are custom models, needing custom made input data. Additionally, it is common 
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for simulation models to include a wide array of parameters that are not easy to obtain 

directly, or derive, in most cases. 

As mentioned before, the proposed platform involves the simulation of three agent types, 

each with its own representation as agent. Also, our agents are rather shallow since most 

of these decisions are of the if-then kind. The most complex decisions are made by the 

simulated AOCC, proxied by the recovery algorithm that is active in a given simulation 

run. 

3.4.2.1 Aircraft 

The aircrafts are modeled as individual agents, the most complex one. With the arrival and 

departure of an aircraft most of the interactions with the other agents, i.e. crews and 

passengers, are triggered. In Figure 3.4 we see the state chart that represents and controls 

the behavior of the aircraft: 

 

Figure 3.4. AOSM Aircraft agent state chart representation 
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We can see that the central point of the chart is the parked state, connecting all other states 

in a direct or indirect form. This state is where the aircraft agent rests. Once the departure 

time of the next scheduled flight is reached, the aircraft changes to the next state, 

departure_procedure. Here the aircraft communicates with the crew and passengers 

scheduled to be on this flight, informing that it is ready to depart. If those agents are also 

ready to depart the simulation will clear it for start and move this agent to the next state, 

moving. As the name suggest in this state the aircraft starts to fly. Additionally, the 

simulation will stochastically generate the arrival delay for this flight. This does not 

correspond to the reality since we do not know beforehand at what time an aircraft will 

reach the gate at the destination airport. Immediately after the delays are defined, the agents 

start moving from the departure airport to the arrival airport. This can be accompanied in 

the GIS visualization as depicted in Figure 3.5. 

 

Figure 3.5. GIS visualization inside AOSM snapshot of Alaska Airlines operation 

When an aircraft finishes the flight, it will enter the arrival_procedure state. To be noted, 

the model represents the gate to gate time as flying. This means in the visualization the 

aircraft will be shown flying from gate-to-gate, including taxi-in and taxi-out times. This 

period is known as block time in the airline industry. Once entered the arrival_procedure 
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state, the agents are liberated from this flight. The next step in this loop is an if-statement 

that checks if this was the last flight scheduled for this aircraft or not. If it was the last 

scheduled flight, the aircraft is sent to the final_parked state that retires it from the 

simulation. If it was not the final flight, the next if-statement in the flowchart is reached by 

this agent. Here the simulation checks if there is enough time for the turnaround and if this 

will not compromise the next flight or if there are other disruptions that may impede the 

normal flight departure, creating propagated delay for this flight late arrival. If there is no 

problem, the aircraft moves to the parked state where it waits for the next flight in the 

schedule. In the case of not enough turnaround time the recovery_proc state is activated. 

Here it “moves” the simulation to a higher level and the recovery algorithm will start. As 

mentioned before, while this happens, the simulation stops and will only resume after the 

recovery model has given a solution and this solution is implemented. At this point we also 

depart from reality since it means that the AOCC would instantly have come up with a 

solution and, in the same instant, implemented it.  

After a solution has been found, the aircraft moves to the next state: cancelCheck. As the 

name suggests we check if the flight that the aircraft was supposed to fly has been canceled. 

If it has been canceled the aircraft is retired from the simulation and send to the final parked 

position. This means that if a flight is canceled all following flights are canceled too. This 

is how it is implemented and needs to be considered when implementing a custom recovery 

model with the ability to cancel flights.  

There are two more states that are present though they play a minor role in the agent’s 

“life”. The bootUp state is where the agents are brought to life and are given all their 

characteristics like: type of aircraft, tail number, seats, scheduled flight list, starting 

position, etc. The parked_dep_time state was created to solve a computational issue where 

the simulation would throw an error while changing schedules of a parked aircraft. In other 

words, it is a shadow state that was necessary to create due to computation and 

synchronization issues. 

To be noted, there is a maintenance state but in the current version (the version used in the 

case study, see section 3.6) it is a mere placeholder. It is supposed to be called each time 

the aircraft must be subjected to maintenance, however since the simulation was only 
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intended to be run on 24-hour time windows, this was a low priority state and was not fully 

fleshed out. In case it is mandatory to consider maintenance in the scenario to be tested, 

this must be programmed in the maintenance state. 

3.4.2.2 Crew 

The next agent corresponds to the crew, more exactly, to crew pairings since crews are 

modeled as a team, not as individual persons. Hence, we do not distinguish between cockpit 

and cabin crew in our simulation. In practice we assume that crews stay together until the 

end of their parings, the set of duties and rest times during a day. Similarly, as with the 

aircraft, here we also have a state chart that controls the behavior of the crew pairings, as 

illustrated in Figure 3.6. 

 

Figure 3.6. AOSM Crew agent state chart representation 

The state chart for the crew is simpler than the one for aircraft agents. They start at the 

crew base being set into the standby state. Once a crew receives the “go” signal from the 

aircraft (send by the aircraft agent scheduled on the same flight as the crew pairing in the 

departure_procedure), it will launch the change of state of this agent moving it forward. If 

this agent and the passengers are ready, it moves directly to the travel state. If passengers 

are delayed, then the crew will wait for the passengers to be ready. This happens in the 
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boarding state. Once all passengers are ready the crew agent receives the signal and moves 

into the travel state. Only here the crew sends a message back to the aircraft and the aircraft 

starts its moving state. This connection between the three agents is what creates the 

emergence behavior. Each agent will wait for each other to start the flight, if any of the 

agents (aircrafts, crew pairing or passengers) is missing the flight will be delayed. To be 

noted, the flight will wait for all the passengers. No passengers will stay on the ground and 

miss the flight in the current implementation. After landing, the simulation checks if the 

crew has any more flights to fly. If there are not, the agent is retired. In case it has more 

flights to fly it goes again to the standby state and waits for the next departure time. Also, 

there is a rest state that indicates when the crew is at rest. Similarly, as it happened with 

the maintenance state with the aircraft agents, this is not fully fleshed out in the current 

version of the model (this will change in future versions). 

3.4.2.3 Passengers 

Finally, we have the representation of the passengers, where each agent represents a group 

of passengers with the same origin, destination, and route to fly. These agents have the 

simplest state chart of all agents included in the agent-based model as we can see in Figure 

3.7. 

 

Figure 3.7. AOSM Passenger agent state chart representation 



INTEGRATED SCHEDULE RECOVERY                                       SIMULATION OF AIRLINE DAILY 

OPERATIONS 

David Joaquim Marques Antunes  78 

The passenger agent has only three states. The first state, standby, is when passengers are 

at the airport waiting for their flight. It will transition into the travel state by a message sent 

by the crew agent scheduled on the same flight as this passenger agent. This message is 

sent as soon as the crew agent moves out of its standby state. The travel state is activated 

when the flight starts, and changes to the home state once the flight arrives at its final 

destination. If there is a multi-leg flight, the agent just returns to the standby state waiting 

for its next flight to depart. 

3.5 Case Study 

In this case study we make an evaluation of the usefulness of the AOSP and evaluate of the 

performance of two different schedule recovery models where a default recovery procedure 

will be the baseline case. First, we describe these recovery models, the input data, the 

selected airlines, and scenarios that we considered. Also, we describe in detail the modeling 

of the delays in our simulation. With this case study, we want to further demonstrate the 

advantages of simulation as a tool for researchers and industry practitioners. In our case 

study two recovery models, are the proxies for the airlines AOCC, i.e. they represent the 

airlines decision making. Due their different objective functions each recovery model will 

take different decisions when faced with the same schedule recovery problem. Hence, the 

solutions will vary depending on the recovery model, for each problem and an emergent 

phenomenon will appear at the end of the day of operations. Finally, we demonstrate that 

the tradeoffs in delay and cancelations, due their different objective functions, would be 

hard to understand without a simulation tool.  

3.5.1  Scheduling Recovery Models 

Out of the literature, we decided to include two recovery models into the simulation 

framework: DSTAR and PDM. These models were respectively taken from the following 

articles: Abdelghany et al. (2008): 

Abdelghany, K. F., Abdelghany, A. F., & Ekollu, G. (2008). An integrated decision support 

tool for airlines schedule recovery during irregular operations. European Journal of 

Operations Research, 185, 825–848. (Bratu and Barnhart, 2006) 
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Bratu, S., & Barnhart, C. (2006). Flight operations recovery: New approaches considering 

passenger recovery. Journal of Scheduling, 9 (3), 279-298.  

The main reason that led us to consider these two models is their dissimilar philosophy: 

DSTAR is a partially integrated recovery model whereas PDM is a passenger focused 

recovery model, each with its own advantages and disadvantages. We are aware that there 

is a large set of recovery models in the literature and that a few of those might outperform 

them. However, choosing the best optimization model was not the objective of this case 

study. We did want to test different types of recovery models in depth, and these two allow 

us to show that they lead to different outcomes i.e., to different behaviors of an airline. The 

aim was to test two models with diverse points of view in terms of the objective, and these 

two models were adequate for this purpose.  

As referred before, the main criterion was the different underlying objectives, nonetheless 

we had a second criterion in consideration: the implementation effort required to 

incorporate them into the simulation. These two models have similar input needs and, in 

addition, are designed to be called at similar times during the operations, hence it is possible 

to integrate them in a modular way into the simulation framework. This modularity assures 

also that the comparison does not suffer from the fact that the simulation framework has 

be customized for each recovery model. The result is a modular structure so that each 

recovery action is an independent module of the framework and there is no custom-made 

input or output streams for the interaction outside this module. Finally, although needing a 

larger programming effort, modularity allows to consider user-defined recovery actions. 

The module is made in a way that the input and output connections of the actual recovery 

model are inside the module. Each recovery model must be defined with its own input and 

output functions. To construct a recovery model from scratch the user must define what 

input it needs and the output structure to update schedules.  

For an in depth understanding of these recovery models, we refer the reader to the appendix.  

There, a detailed description of the DSTAR and DPM recovery models is provided 

(respectively in II.a.i and II.a.ii). 



INTEGRATED SCHEDULE RECOVERY                                       SIMULATION OF AIRLINE DAILY 

OPERATIONS 

David Joaquim Marques Antunes  80 

3.5.2 Airlines 

We selected two airlines with different networks and aircraft manufacturers. In this case 

study we decided to use moderate sized airlines so that we could grasp completely the 

emergence phenomena if they occurred. We used airlines within the US since there are data 

readily available for the model inputs, namely from the Airline On-Time Performance 

database of the Bureau of Transportation Statistics (BTS, 2016). To compute the cost 

parameters we used the MIT Airline Industry Program (Massachusetts Institute of 

Technology, 2014) that includes a large set of parameters for several US airlines. 

The smaller of the two chosen airlines, in size of the fleet and number of daily flights, is 

Virgin America (VX). This is a moderated sized airline operating in the continental United 

States of America. We derived a daily network (i.e., a network that repeats every day) from 

the database. In Figure 3.8, we see a representation of the daily network of VX that we 

used in this case study.  

 

Figure 3.8. Virgin America daily flight network 
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Virgin America has a network that stretches across the continental United States of 

America, limiting possible regional biases in our results. Since it uses a single fleet family, 

of Airbus 320 aircraft, we do not need to subdivide the network to apply our models. 

Different aircraft types could be an issue for the recovery actions, since it would add 

another dimension to the simulation if there were incompatibilities between some aircraft 

and the crews that operate them. The daily network consists of 94 daily flights that connect 

14 continental United States of America airports. 

The second airline is Alaska Airlines (AS). Similarly to Virgin America, the network is 

also derived from the Airline On-Time Performance database. In Figure 3.9, we can see 

the representation of this network. 

 

Figure 3.9. Virgin America daily flight network 

It is a network of 67 airports that stretches out over the continental United States of 

America, Alaska and Hawaii archipelago. It offers 544 daily flights and the fleet consist in 
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165 Boeing 737 aircraft, 25 of them of the Classic Line type (CL) and the other 140 are of 

the Next Generation type (NG). The CL and NG aircraft have different type ratings and 

pilots and co-pilots need two type ratings to fly all aircraft. For our case study, we assumed 

that all pilots and co-pilots are trained in both. This allowed us to avoid subdividing the 

problem due to incompatibilities between aircraft and crews.   

3.5.3 Cost parameters for DSTAR and DPM 

Our next step was to define the cost parameters for the recovery models (DSTAR and 

DPM). These cost parameters are based, for AS and VX, on the values shown in Table 3.1. 

Table 3.1. Base values needed to obtain cost parameters for AS and VX airlines 

 AS VX 

Average value of passenger’s time ($/hour) 

Source :http://airlines.org/ (Airlines of America, 2015) 

48.5 48.5 

Average Load Factor (%) 

Source: airlinedataproject.mit.edu (Massachusetts Institute of Technology, 2014) 

84.9 83.5 

Cost of block hour ($) 

Source: airlinedataproject.mit.edu (Massachusetts Institute of Technology, 2014) 

2958 3049 

Average Airline Arrival delay-delayed flights (min) 

Source: https://transtats.bts.gov (BTS, 2016) 

47.0 45.7 

Total cost of block time + passenger time value ($) 

Source: airlinedataproject.mit.edu (Massachusetts Institute of Technology, 2014) 

9711.0 8880.6 

 

For each of the recovery model, three parameters need to be computed: 

DSTAR 

• 𝑐𝑑𝑓 - cost of a one-minute delay of flight 𝑓; 

• 𝑐𝑟𝑓 -  cost of assigning resource 𝑟 to flight 𝑓; 

• 𝑐𝑐𝑓 -  cost of canceling flight 𝑓. 
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DPM 

• 𝑠𝑝  - cost per disrupted passenger; 

• 𝑜𝑡𝑓 -  cost of delaying flight 𝑓, 𝑡 time-steps; 

• 𝑒𝑐𝑚 - cost of calling a reserve crew to operate the 𝑚-th flight leg of the schedule of 

crew 𝑐. 

3.5.3.1 𝒄𝒅𝒇 -  Cost of 1-minute delay of flight 𝑓 ($/min) 

The Cost of 1-minute delay is computed similarly as in the original paper. After reviewing 

the data for the seat capacity of the aircraft a significant variance was noted, hence seat 

capacity was used to compute this parameter for each flight. Sources used were the FAA 

Registry (FAA, 2017) and the website of the airlines (Alaska Airline, 2017; Virgin 

America, 2016):  

• VX: 119 to 149 seats;  

• AS:  124 to 181 seats. 

To calculate the passenger value of time per flight we multiplied the average load factor, 

for each airline 𝑎, by the capacity of the aircraft times and by the average value of 

passengers’ time. Then, we divided by sixty to obtain a per minute value as we can see in 

equation (3.1). This value was used as input to calculate 𝑐𝑑𝑓  as shown below in equation 

(3.2) for both airlines as a function of the number of seats offered in each flight. 

𝑉𝑎𝑙𝑃𝑎𝑥𝑇𝑖𝑚𝑒𝑎 = 𝐴𝑣𝑟𝑔𝐿𝑜𝑎𝑑𝐹𝑎𝑐𝑡𝑜𝑟𝑎 × 𝑠𝑒𝑎𝑡𝑠𝑎𝑓 × 𝐴𝑣𝑟𝑔𝑉𝑎𝑙𝑃𝑎𝑥𝑇𝑖𝑚𝑒/60 (3.1) 

𝑐𝑑𝑓 =
𝐵𝑙𝑜𝑐𝑘𝐻𝑜𝑢𝑟𝐶𝑜𝑠𝑡𝑎

60
+ 𝑉𝑎𝑙𝑃𝑎𝑥𝑇𝑖𝑚𝑒𝑎 = {

𝐴𝑆 = 49.30 + 0.686 ∙ 𝑠𝑒𝑎𝑡𝑠𝑓

𝑉𝑋 = 50.81 + 0.675 ∙ 𝑠𝑒𝑎𝑡𝑠𝑓
 (3.2) 
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3.5.3.2 𝒄𝒓𝒇 -  Cost of assigning resource 𝑟 to flight 𝑓 ($) 

For the 𝑐𝑟𝑓  parameter, as in the original paper, we only allow swaps if the delay to be 

avoided is 20 minutes or more. In other words, the parameter is equal to 20 minutes of 

delay of flight 𝑓: 

𝑐𝑟𝑓 = 20 × 𝑐𝑑𝑓 =  {
𝐴𝑆 = 20 × (49.30 + 0.686 ∙ 𝑠𝑒𝑎𝑡𝑠𝑓)

𝑉𝑋 = 20 × (50.81 + 0.675 ∙ 𝑠𝑒𝑎𝑡𝑠𝑓)
 (3.3) 

3.5.3.3 𝒄𝒄𝒇 -  Cost of canceling flight 𝑓 ($) 

The value for canceling a flight was retrieved directly for the original paper where the 

DSTAR model is described, i.e., $400,000. 

𝑐𝑐𝑓 =  {
𝐴𝑆 = 400,000
𝑉𝑋 = 400,000

 (3.4) 

3.5.3.4 𝒐𝒕𝒇 -  Cost of delaying flight 𝒇, 𝒕 time-steps ($) 

Similar as with the delay cost of the DSTAR model, we computed this cost based on the 

block hour cost for the airlines, AS and VX. The only difference is that in our case study 

we have 15-minute time steps, and as such we need to multiply it with 𝑡 time steps as shown 

in equation (3.5). 

𝑜𝑡𝑓 = 𝑐𝑑𝑓 × 15 × 𝑡 =  {
𝐴𝑆 = 15 × 𝑡 × (49.30 + 0.686 ∙ 𝑠𝑒𝑎𝑡𝑠)

𝑉𝑋 = 15 × 𝑡 × (50.81 + 0.675 ∙ 𝑠𝑒𝑎𝑡𝑠)
 (3.5) 

3.5.3.5 𝒔𝒑   - Estimated cost per disrupted passenger ($/passenger) 

To calculate this parameter, we used a similar method as described in the original paper. 

Specifically, we estimated the average passenger delay by multiplying the average arrival 

delay of the airline by the value of passenger’s time, as depicted in equation (3.6). 
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𝑠𝑝 = 𝑉𝑎𝑙𝑃𝑎𝑥𝑇𝑖𝑚𝑒 ×
𝐴𝑣𝑟𝑔𝐴𝑟𝑟𝐷𝑒𝑙𝑎𝑦𝑎

60𝑚𝑖𝑛
=  {

𝐴𝑆 = 38.35
𝑉𝑋 = 46.10

 (3.6) 

3.5.3.6 𝒆𝒄𝒎 - Cost of calling a reserve crew to operate the 𝒎-th flight leg of crew 𝒄’s 

schedule ($) 

Here we also followed the original paper. It is the cost of a block hour times the block hour 

flown by a given crew pairing, as in equation (3.7). 

𝑒𝑐𝑚 =  {
𝐴𝑆 = 1033.95 × 𝑏𝑙𝑜𝑐𝑘𝑡𝑖𝑚𝑒
𝑉𝑋 =  741.74 × 𝑏𝑙𝑜𝑐𝑘𝑡𝑖𝑚𝑒

 (3.7) 

3.5.4 Delay estimation and curve fitting 

As referred before the AOSM is a stochastic model. The stochasticity is introduced 

assuming independent delays for each flight. This is a simplification for instance, delays 

for two given flights in a given region due to weather are not independent since a whole 

region will be affected. However, the delays of these two flights would be considered 

independent in our model. The AOSP does consider dependency of delays of the model 

since late arrival of a flight can propagate the delays of the next flight. 

Next, we are going to explain the methodology used to estimate and fit the delays, sub-

section 3.5.4.1 and the evaluate the goodness of fit in sub-section 3.5.4.2 of those curve 

fittings. 

3.5.4.1 Delay fitting methodology  

To model the delays we aggregated all uncertainty in a per flight basis as done in: al.  

Tu, Y., Ball, M.O. & Jank, W.S., 2008. Estimating Flight Departure Delay Distributions A 

Statistical Approach With Long-Term Trend and Short-Term Pattern. Journal of the 

American Statistical Association, 103(481), 112–125.  (Tu et al., 2008) 
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The idea is to define splines that capture structural delays, i.e. the non-stochastic 

component of the delays. These splines were calibrated for each airport served by the 

airline. The two components are: 

• Yearly component; 

• Daily component. 

Delay is divided into two parts as we can see in equation (3.8): 

𝐷 = 𝑑𝑝 +  𝑑𝑟 (3.8) 

Where: 

𝐷  - Total delay; 

𝑑𝑝 - Propagated delay; 

𝑑𝑟 - Root delay. 

The yearly pattern is fitted to the average daily departure offset. We are talking about 

offsets and not delays since negative values are possible. We used three years (2013-2015) 

to calculate the average offset. Root delay is itself modeled considering three components, 

as in equation (3.9). 

𝑑𝑟 = 𝑝𝑦 +  𝑝𝑑 + 𝜀 (3.9) 

Where: 

𝑝𝑦 -  yearly pattern; 

𝑝𝑑-  daily pattern; 

𝜀  -  Error component (stochastic) 
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The daily pattern is fitted to the average departure offset discretized in intervals of fifteen 

minutes for the whole day. We also used three years, from 2013 to 2015, to calculate the 

average offset for each fifteen-minute interval. Since offsets distributions tend to have very 

long tails, we made a transformation of the data using the log-modulus transformation. A 

logarithmic transformation could not be used since there are offsets smaller or equal to 

zero. Equation (3.10) provides the formulation of our transformation. 

𝑓(𝑥) = {
𝑙𝑛(|𝑥|) ,       𝑥 < 0
0,                  𝑥 = 0
𝑙𝑛(𝑥) ,          𝑥 > 0

 (3.10) 

The error component (𝜀) was modeled as a finite mixture model that consists in a 

combination of several normal distributions that are scaled and skewed so that the 

combination of them represents the error as accurately as possible, i.e. has the best fit. 

3.5.4.2 Goodness of fit  

For the goodness of fit tests for the error component (𝜀), we have used the Box-Pierce and 

Ljung–Box methods to test the following hypotheses: 

• H0: The data are independently distributed they do not exhibit serial correlation  

• H1: The data are not independently distributed; they exhibit serial correlation.  

Virgin America 

First, we have analyzed the case of Virgin America starting with the yearly pattern. Since 

we are doing several fittings at the same time, a Bonferroni correction was applied. The 

family for the correction was the number of airports. Hence, for our chosen 𝛼 of 0.01 we 

obtained the value computed in equation (3.11): 

𝛼𝑏 =
𝛼

𝑚
=

0,01

14
= 0.0007 (3.11) 
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𝑝𝑦– Yearly pattern 

The in the following table, Table 3.2, we can see the results of the Box-Pierce test until a 

lag equal to 10. 

Table 3.2. Result of the Box-Pierce test for the yearly pattern of VX airline 

Lag SFO LAX LAS SAN SEA DFW ORD FLL BOS EWR JFK PHL IAD DCA 

1 0.0788 0.2715 0.0920 0.0524 0.1072 0.2976 0.1262 0.0156 0.6159 0.0186 0.0093 0.4909 0.0076 0.0670 

2 0.0492 0.0884 0.2208 0.1211 0.0143 0.3038 0.1833 0.0226 0.8993 0.0254 0.0328 0.0403 0.0236 0.0335 

3 0.0980 0.0194 0.0443 0.0557 0.0043 0.4943 0.0337 0.0496 0.1799 0.0466 0.0757 0.0594 0.0494 0.0606 

4 0.1432 0.0157 0.0353 0.1052 0.0089 0.2940 0.0216 0.0117 0.2273 0.0919 0.0964 0.0075 0.0336 0.0531 

5 0.2054 0.0305 0.0039 0.1613 0.0186 0.3562 0.0350 0.0234 0.1950 0.0438 0.1467 0.0151 0.0142 0.0757 

6 0.2681 0.0594 0.0124 0.2055 0.0269 0.2514 0.0392 0.0195 0.0390 0.0373 0.0762 0.0111 0.0269 0.0408 

7 0.3452 0.0903 0.0226 0.2628 0.0463 0.3085 0.0093 0.0297 0.0644 0.0131 0.0592 0.0203 0.0457 0.0685 

8 0.4330 0.0984 0.0375 0.3475 0.0356 0.2292 0.0117 0.0417 0.0699 0.0150 0.0932 0.0304 0.0617 0.1044 

9 0.4738 0.1439 0.0595 0.4384 0.0515 0.2869 0.0015 0.0636 0.0953 0.0254 0.0828 0.0304 0.0617 0.1353 

10 0.5680 0.1699 0.0815 0.5332 0.0779 0.3666 0.0029 0.0766 0.0831 0.0323 0.1105 0.0220 0.0873 0.1617 

 

We can see that with the chosen 𝛼 we have no problem with the yearly pattern, and we can 

assume that the errors after fitting the yearly pattern are independent. The Ljung-Box test 

gives us a similar image, view Table 3.3. 

Table 3.3. Result of the Ljung-Box test for the yearly pattern (VX) 

Lag SFO LAX LAS SAN SEA DFW ORD FLL BOS EWR JFK PHL IAD DCA 

1 0.0775 0.2696 0.0906 0.0514 0.1058 0.2956 0.1246 0.0148 0.6144 0.0182 0.0091 0.4891 0.0074 0.0659 

2 0.0478 0.0862 0.2180 0.1190 0.0137 0.3053 0.1775 0.0021 0.8572 0.0246 0.0318 0.0390 0.0229 0.0325 

3 0.0954 0.0180 0.0422 0.0537 0.0040 0.4899 0.0321 0.0047 0.1749 0.0450 0.0738 0.0530 0.0484 0.0586 

4 0.1364 0.0147 0.0334 0.1018 0.0083 0.2931 0.0019 0.0111 0.2208 0.0892 0.0936 0.0069 0.0320 0.0508 

5 0.2000 0.0287 0.0090 0.1564 0.0174 0.3478 0.0045 0.0222 0.1876 0.0414 0.1426 0.0140 0.0132 0.0723 

6 0.2612 0.0520 0.0112 0.1990 0.0252 0.2417 0.0084 0.0182 0.0356 0.0066 0.0722 0.0101 0.0251 0.0380 

7 0.3369 0.0856 0.0206 0.2547 0.0437 0.2969 0.0083 0.0278 0.0592 0.0099 0.0551 0.0185 0.0428 0.0642 

8 0.4256 0.0927 0.0344 0.3380 0.0328 0.2167 0.0104 0.0389 0.0639 0.0134 0.0873 0.0274 0.0648 0.0983 

9 0.4628 0.1363 0.0549 0.4279 0.0476 0.2722 0.0013 0.0596 0.0873 0.0228 0.0765 0.0271 0.0571 0.1276 

10 0.5564 0.1606 0.0782 0.5223 0.0724 0.3498 0.0024 0.0715 0.0750 0.0290 0.1023 0.0193 0.0811 0.1522 
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𝑝𝑑– Daily pattern 

Having set the yearly pattern, we can now focus on the daily pattern and see if the tests 

also pass the goodness of fit tests. Table 3.4 contains the results of the Box-Pierce test up 

to a lag of 10 and Table 3.5 for the Ljung-Box test, also up to a lag of 10: 

Table 3.4. Results of the Box-Pierce test for the daily pattern (VX) 

Lag SFO LAX LAS SAN SEA DFW ORD FLL BOS EWR JFK PHL IAD DCA 

1 0.3635 0.0781 0.8311 0.4412 0.8832 0.6459 0.0726 0.7713 0.5922 0.3182 0.0363 0.0147 0.1936 0.1231 

2 0.5673 0.0303 0.1018 0.5514 0.9864 0.6541 0.1572 0.0988 0.1266 0.5523 0.0237 0.0495 0.1234 0.3023 

3 0.6485 0.0081 0.0984 0.5502 0.9959 0.9878 0.2897 0.1192 0.2938 0.6458 0.0290 0.1034 0.1464 0.2417 

4 0.7999 0.0230 0.1747 0.7141 0.9977 0.8983 0.0370 0.0684 0.5444 0.7943 0.0585 0.1529 0.1750 0.2096 

5 0.8821 0.0390 0.2732 0.8309 0.8423 0.2986 0.4406 0.0923 0.0762 0.8199 0.7369 0.2113 0.2566 0.3184 

6 0.8907 0.0134 0.3651 0.9064 0.8440 0.5995 0.5653 0.0565 0.0744 0.8920 0.0689 0.1397 0.3644 0.4037 

7 0.9145 0.0258 0.4753 0.8428 0.8609 0.8008 0.6106 0.0857 0.0383 0.9210 0.0683 0.0996 0.4257 0.4546 

8 0.4766 0.0536 0.3371 0.9046 0.8380 0.4021 0.4917 0.1172 0.1624 0.7560 0.0678 0.0987 0.5071 0.5063 

9 0.5781 0.0083 0.4062 0.9279 0.7684 0.3548 0.5393 0.1288 0.7247 0.7899 0.1031 0.1386 0.6082 0.4342 

10 0.5397 0.0085 0.4413 0.9500 0.7872 0.5218 0.6792 0.1683 0.6551 0.8563 0.0954 0.1826 0.6945 0.4621 

 

Table 3.5. Results of the Ljung-Box test for the daily pattern (VX) 

Lag SFO LAX LAS SAN SEA DFW ORD FLL BOS EWR JFK PHL IAD DCA 

1 0.3593 0.0753 0.8384 0.4288 0.8815 0.8815 0.0644 0.7642 0.4418 0.2681 0.0048 0.0095 0.1791 0.0982 

2 0.5612 0.0022 0.1019 0.5303 0.9860 0.9860 0.1442 0.0805 0.2569 0.4769 0.0188 0.0334 0.1037 0.2526 

3 0.6403 0.0060 0.0902 0.5174 0.9860 0.9860 0.2694 0.0939 0.6266 0.5393 0.0217 0.0719 0.1185 0.1683 

4 0.79325 0.0930 0.1618 0.6835 0.9974 0.9975 0.3425 0.0467 0.4200 0.6989 0.4476 0.1041 0.1373 0.1202 

5 0.87675 0.0470 0.2557 0.8065 0.8213 0.8213 0.4055 0.0617 0.6341 0.6790 0.0544 0.1420 0.2053 0.1971 

6 0.8836 0.0107 0.3439 0.8891 0.8198 0.8198 0.5283 0.0312 0.5305 0.7720 0.0417 0.0636 0.3011 0.2537 

7 0.9073 0.0220 0.4519 0.7980 0.8345 0.8345 0.5658 0.0516 0.7688 0.7858 0.0419 0.0295 0.3495 0.2714 

8 0.5388 0.0044 0.3548 0.8712 0.8029 0.8070 0.4206 0.0670 0.5174 0.2334 0.0377 0.0229 0.4214 0.2883 

9 0.4943 0.0060 0.4249 0.8963 0.7146 0.7146 0.4596 0.0696 0.5049 0.2146 0.0600 0.0344 0.5215 0.1613 

10 0.4943 0.0067 0.3984 0.9231 0.7303 0.7303 0.5494 0.0929 0.4650 0.2865 0.0463 0.0473 0.6105 0.1496 

 

As we can see in these tables, the daily pattern does not display any problem too, and we 

can assume that the yearly and daily pattern splines represent well our delays. 
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𝜀 – Error component  

The only step missing is to check the goodness of fit of the finite mixture model. We ran 

our model with a range of values for 𝑘 (𝑘 represents the number of normal distributions 

used fitting the error component with a finite mixture model). The log-likelihoods obtained 

for the Virgin America models are in Table 3.6. 

Table 3.6. Log-likelihood for the finite mixture models (VX) 

 
𝑘 

2 3 4 5 

SFO -207848,23 -207043,30 -206830,80 -206774,20 

LAX -173793,91 -173190,40 -173062,75 -173032,2 

LAS -50369,53 -50104,2 -50046,73 -50039,41 

SAN -23438,05 -23369,38 -23348,44 -23343,31 

SEA -33461,48 -33319,25 -33288,89 -33278,47 

DFW -14842,05 -14795,74 -14785,48 -14790,46 

ORD -20985,14 -20895,79 -20887,46 -20885,09 

FLL -16897,34 -16866,84 -16864,97 -16852,76 

BOS -22155,27 -22102,49 -22101,82 -22080,57 

EWR -25357,34 -25292,47 -25268,65 -25265,63 

JFK -51460,65 -51297,76 -51279,68 -51279,07 

IAD -21816,21 -21815,05 -21739,62 -21749,95 

PHL -8574,102 -8554,04 -8552,17 -8550,86 

DCA -10093,56 -10062,86 -10059,08 -10058,70 

 

Observing the log likelihood figures for each 𝑘 value we observe that biggest increase was 

with a 𝑘 = 3   Increasing it further to 𝑘 = 4, adding a forth normal distribution to fit the 

error component, would only lead to a small increase in loglikelihood. Being the increase 

in loglikelihood with k = 5, ie. five normal distributions, marginal compared to lower 

values of 𝑘. Based on these results, we decided that the best representation for our model 

was a finite mixture model of three distributions (𝑘 = 3). It offers the best balance of 
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accuracy versus complexity. The gains of adding another distribution (𝑘 = 4) were not 

significant in our understanding. 

Alaska Airlines 

Similar as what we did for VX, for Alaska Airlines we also used a Bonferroni correction. 

However, since there are more airports in this case (67), the value is different as shown in 

equation (3.12). 

𝛼𝑏 =
𝛼

𝑚
=

0,01

67
= 0,00015 (3.12) 

As before, we applied the Box-Pierce and Ljung-Box tests on the residuals of the yearly 

pattern and daily pattern. The error component was also modeled with a finite mixture 

model. and the results were resumed in similar tables as before, Table 3.4 and Table 3.5. 

Due the extensive size of the tables for Alaska Airlines, due to the number of airports, they 

are moved to the appendix II.b ,tables II.1 to II.5. In this appendix, there are also some 

further details on the results of the goodness of fit tests. 

3.5.5 Scenarios 

We have created several combinations of scenarios where we combined different airlines, 

schedule recovery models and types of underlying delays. The scenarios are combinations 

based on three key points:  

• Airlines: Alaska Airlines vs Virgin America; 

• Underlying delays: One day simulated 1000 times, denoted as Simulation Delay 

Approach 1 from now on vs. one whole year simulated 15 times, denoted as 

Simulation Delay Approach 2. 

• Recovery models: Default, DSTAR and DPM. 



INTEGRATED SCHEDULE RECOVERY                                       SIMULATION OF AIRLINE DAILY 

OPERATIONS 

David Joaquim Marques Antunes  92 

To be noted, we did not consider the delays that propagate to the next day. We considered 

the cost of said delays, but delays of a previous day were not propagated to the next day, 

i.e. simulation run. This means that, at the beginning of the simulation, the aircraft were on 

their start positions at the time to fly their first flight. The default recovery model is a model 

that delays flights until all agents (aircraft, crew and passengers) are available to make the 

flight. 

3.5.6 Results and Discussion 

As stated before, we made several runs that correspond to millions of simulated flights. 

This has led to dozens of gigabytes of output data. Hence, we decided to focus our results 

on two main metrics, the propagated delay and the cost. We analyzed how the recovery 

models will solve the schedule recovery problems and the emerging behavior arising from 

the interactions of the recovery model with the other components of our simulation 

platform. The baseline case of our analysis was the default recovery model. We compared 

the two other recovery models, DSTAR and DPM with the base case and with each other. 

The default recovery model is a simple set of rules that delay all agents (aircraft, crew and 

passengers) until they are all ready to fly. Multiplying the airlines and simulation 

approaches by the number of recovery models (Default, DSTAR and DPM), we were 

facing 12 scenarios. In total, the number of simulated flights was approximately 12,4 

million as shown in Table 3.7. Table 3.8, shows the delays divided into delay ranges. 

Table 3.7. Total simulated flights 

 Simulation Delay Approach 1  Simulation Delay Approach 2 

 Default DSTAR DPM  Default DSTAR DPM 

VX 94 000 94 000 94000  514 650 514 650 514 650 

AS 544 000 544 000 544 000  2 978 400 2 978 400 2 978 400 

 

From Table 3.8, the first conclusion we can draw is that most flights are on time or suffer 

from just a few minutes of propagated delay. Around eighty-five percent of all flights have 

less than a one-minute delay. We have focused our attention on the heavier delayed flights. 
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These are the flights for which the most differences between recovery actions have been 

observed.  

With Simulation Delay Approach 1, we see that DPM mainly reduced the delays in the 

range of 15-60 minutes, around 1.5 percent for Virgin America and 1.0 percent for Alaska 

Airlines. DSTAR also reduced the delays in the same range. However, it also reduced the 

delays in the 60-300 range. DPM cancels around three percent of the flights for both 

airlines. DSTAR does not cancel any flight. For the default, no cancelations were expected, 

as this model does not consider flight cancelations (all flights must be flown). In contrast, 

DSTAR is able to cancel flights , but this never happened because this would not lead to 

the best possible solution. The reason is probably due to the cost of cancelation of $400,000 

per flight, we will explore this idea in detail further on. 

Table 3.8. Percent of flights per Propagated delays range 

  Sim. Delay Approach 1 Sim. Delay Approach 2 

 
Prop.  

delay range (min) 

Default 

(%) 

DSTAR 

(%) 

DPM 

(%) 

Default 

(%) 

DSTAR 

(%) 

DPM 

(%) 

VX 

<1 84.94 85.34 86.25 87.43 87.97 88.59 

1-15 9.90 10.59 9.58 7.99 8.50 7.51 

15-60 3.10 1.71 0.21 2.68 1.41 0.17 

60-300 2.04 2.26 0.29 1.88 2.05 0.28 

>300 0.02 0.09 0.48 0.03 0.08 0.48 

Canceled 0.00 0.00 3.20 0.00 0.00 2.97 

AS 

<1 89.03 88.92 90.66 90.50 90.42 91.76 

1-15 5.59 6.72 5.44 4.80 5.72 4.57 

15-60 3.82 2.68 0.21 3.28 2.29 0.17 

60-300 1.54 1.66 0.07 1.39 1.56 0.06 

>300 0.03 0.01 0.00 0.03 0.02 0.00 

Canceled 0.00 0.00 3.63 0.00 0.00 3.44 
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DPM on the other hand does not have a cancelation cost but uses cancelations as last resort 

solution. The cancelation option in the DPM model can be understood as a feasibility sink; 

that is, if DPM could not cancel it would return an infeasible solution. Thus, it can be said 

that cancelations take place when there is no other solution. Cancelations might be sub-

optimal since they are integrated in a myopic way. Meaning, DPM was not able to predict 

future delays. With the knowledge of future delays DPM might have been able to avoid 

some cancelations. However not knowing future delays fits the reality since during 

operations the airline is not aware of future delays in most cases. To be noted, both models, 

DPM and DSTAR, cannot predict future delays.  

For the next set of analyses of delays, flight cancelations were not considered possible. If 

we were to consider them, it would be necessary to attribute an arbitrary delay value to 

those flights. The canceled flights would then be offset by that arbitrary value of our choice. 

This would destroy the comparability since we are going to analyze the distributions of 

delays and the canceled delays would all be concentrated on one value, the arbitrary value.  

Figure 3.10 shows the boxplots of the differences of median propagated delays between 

DSTAR and Default for each flight. The boxplots are ordered, color-coded, by median 

value. Bottom boxplot is the flight with smallest median and top boxplot is the fight with 

largest median value. 

As mentioned before Figure 3.10 shows the differences between the delays obtained for 

the base case and through the DSTAR model, by flight and ordered by the median value. 

We can see that most of the box-plots are on the left-hand side of the figure, i.e. the negative 

side. This means that the DSTAR model in general performed better, most of the flights 

have smaller propagated delay in comparison with the default model.  

Interesting is to see that there are a set of flights that constantly perform worse than the 

Default model, the top box plots in Figure 3.10. These flights have in general more 

propagated delay when the simulation was running using DSTAR model than the default 

model. This happens mostly to flights scheduled close to the end of the day. Since we 

simulated only one day, the recovery model could not use next day flights to help recover 

those end-of-the-day flights being obliged to delay them. Finally, we can also observe that 

the delay differences are zero or negligible for about half of the flights. Hence, we can 
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conclude that the DSTAR model reduces delays in comparison with the default model but 

does not dominate it in every flight.  

 

Figure 3.10. Boxplots of differences of median propagated delays for each flight between 

DSTAR and Default for Virgin America in minutes 

Figure 3.11 shows how the DPM model performed in comparison with the default recovery 

model. As with the previous figure the boxplots are ordered, color-coded by median value.  

We see that, as before with the DSTAR vs. Default model, the DPM model often 

outperformed the default model. However, there were some cases where the opposite 

happened, but this is also due to the one-day-only simulation. 
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The most important, and interesting, comparison is between DSTAR and DPM, see Figure 

3.12. In this figure, it is possible to see that most of the medians are on the positive side of 

the graph. These indicates that the DPM performed better than the DSTAR model. The 

caveat here is the filters that were applied, i.e., flight cancelations were not possible. Recall 

that the DSTAR model did not cancel any flights and DPM canceled around three percent. 

We can conclude that this a tradeoff between these models. DSTAR prefers to delay a flight 

more and DPM chooses to cancel this same flight.  

 

Figure 3.11. Boxplots of differences of median propagated delays for each flight between 

DPM and Default of Virgin America in minutes 

We conduct the same type of analysis for Alaska Airline, to see if changing the airline has 

any influence on the performance of the recovery models. The results we have obtained are 

described in Figures 3.13 to 3.15. Since there are around five times more flights for AS 

than for VX, we are not showing boxplots but only the median values (red curve) and 
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quartile ranges (gray area). Using boxplots as before in Figure 3.1, 3.11 and 3.12 would 

lead to unreadable figures. 

 

Figure 3.12. Boxplots of differences of median propagated delays for each flight between 

DSTAR and DPM Virgin America in minutes 

In this figure, Figure 3.13, most flights are represented on the left side of the chart, meaning 

that the DSTAR model performed better than the default model. Indeed, approximately 

half of the flights have their median and quartile limits on the negative side, and for around 

one third of the flights the difference is negligible. Only a small proportion of the flights 
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have a positive median of the differences. This is similar to what happened with Virgin 

America. 

 

Figure 3.13. Ordered median value of differences of propagated delay between DSTAR and 

Default of Alaska Airlines in minutes 

Next, we describe the performance of the DPM model in comparison with the base case, 

see Figure 3.14. In this case, as in the VX case, the differences are negative or negligible 

except for a very small number of flights. This indicated that the results shown before are 

not due to peculiarities of the VX network but rather to the recovery models. 

Finally, in Figure 3.15, we have the comparison between the two recovery models and, as 

it happened for Virgin America, the DPM model outperformed the DSTAR model. 

However, also here we must attend to the filters. Canceling or not canceling a flight is an 

important decision, being hard to assess all the costs, including externalities, that an airline 

incurs when it cancels a flight. We see that with these simulation runs we can analyze the 

difference in performance of two recovery models and this would be extremely important 

information to have for an airline. 
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Figure 3.14. Ordered median value of differences of propagated delay between DPM and 

Default of Alaska Airlines in minutes 

 

Figure 3.15. Ordered median value of differences of propagated delay between DSTAR and 

DPM of Alaska Airlines in minutes 
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We now describe the results we have obtained in our Simulation Delay Approach 2, where 

we simulated a whole year for each airline (repeated fifteen times, i.e. fifteen years). Table 

3.9 summarizes the median differences of propagate delay for the DSTAR and DPM 

models versus the default model for both airlines summing the total days with negative 

delays on one hand and positive values on the other hand, on a per day and per flight basis. 

In the table, we also show the case where we only analyzed flights with propagated delays 

over fifteen minutes, which we will discuss later.  

As the table shows, Table 3.9, in the case of median differences of propagated delays on a 

daily basis, there were no significant differences between both models and both airlines. 

The more interesting results are on a per flight basis. In this respect, we observed that the 

two models in total reduce more delays than they add for both airlines in a given scenario. 

This can also be verified by observing Figure 3.16. This figure shows the median 

differences per flight for DSTAR vs default and DPM vs default for Virgin America. Since 

around 85% of the flights have less than one minute of delay, and this fact could mask the 

results of the recovery models, we decided to analyze only “delayed” cases in the base case. 

This means we only consider the flights that, for the default model, had a propagated delay 

over 15 minutes, and then analyzed the performance of the DSTAR and DPM models for 

these flights. We found that the median differences were mostly negative for the propagated 

delays provided by the DSTAR model. That is, the DSTAR model clearly outperformed 

the Default model, see Figure 3.17. We can deduct from these results that, by considering 

all flights, where over 85% are (practically) on time, the advantages get masked by those 

flights with low delays. If we focus our attention only on the significantly delayed flights, 

there is a clear advantage of using a better recovery action, i.e., a “smarter” AOCC. 

For the DSTAR case we see that in comparison to the base case most flights benefited, 

negative differences, when using DSTAR only a handful of flights had worse performance 

in comparison with the base case. In total there is a net positive effect since adding all 

delays (benefited ones) outweigh the sum of positive differences (the negative affected 

ones). DPM has no negative affected flight to account for, hence there is a clear benefit of 

using DPM versus the Default case. see Figure 3.17 and Table 3.9.  
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Figure 3.16. Median differences of propagated delays DSTAR and DPM vs Default, per 

flight, Virgin America in minutes 

 

Figure 3.17. Median differences of propagated delays DSTAR vs Default and DPM vs 

Default (prop delay>15 min), per flight, Virgin America in minutes 
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A similar propagated delay analysis was conducted for Alaska Airlines. The results are 

shown in Figures 3.18 to 3.21. Here, also on a daily basis, the median differences were 

almost negligible, as shown in Table 3.9. As in the VX case, the real advantages are masked 

by the high percentage of flights that are on time or have small propagated delays. In this 

case, the DPM model performed better than the default model. The differences between 

the DSTAR and DPM are much smaller. The DPM model still performed better in almost 

every day. The differences between the two recovery models are around 10 to 15 minutes. 

For Alaska Airlines, we also looked at the data on a per flight basis. Here we see the similar 

S-shape as before, showing that the DSTAR and DPM model performed better than the 

default model. 

 

Figure 3.18. Differences of propagated delays DSTAR vs Default, per flight, Alaska Airlines 

in minutes 
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Figure 3.19. Differences of propagated delays DPM vs Default, per flight, Alaska Airlines in 

minutes 

 

Figure 3.20.- Differences of propagated delays (>15) DSTAR vs Default, per flight, Alaska 

Airlines in minutes 
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Figure 3.21.- Differences of propagated delays (>15) DPM vs Default, per flight, AS in 

minutes 

Table 3.9.- Sum of differences of propagated delays per day, Simulation Approach 2 

  VX AS 

  Negative Positive Negative Positive 

per day 
DSTAR 0,0 0,0 -1,7 0,0 

DPM 0,0 0,0 -360,0 0,0 

per flight 
DSTAR -1550,9 766,3 -9250,8 4254,2 

DPM -3283,6 885,5 -16215,5 383,8 

per flight  

with propagated 

delay >15 

DSTAR -1997,7 383,8 -14627,2 995,0 

DPM -4884,7 0,0 -24376,5 0,0 

 

We have also examined the cost implications of using the different recovery models. As 

expected, the major implications relate to cancelations. First, we focused on the Simulation 

Delay Approach 1 to see how expected daily costs vary with the recovery model. In Figure 

3.22 and Figure 3.23, we depict the boxplots of those costs on a logarithmic scale for VX 

and AS, respectively. 
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Figure 3.22. Cost Boxplots of Simulation Delay Approach 1 (Virgin America) 

 

Figure 3.23. Cost Boxplots of Simulation Delay Approach 1 (Alaska Airlines) 
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As we can see, the median cost values provided by the DPM recovery model are 

significantly lower than those provided by the DSTAR model. This is in line with the 

perception that we got from the propagated delay analysis. We suspect that the main cause 

of those differences are the cancelations, since DPM does not account for cancelation costs. 

Since we considered a cancelation cost of $400,000 in the DSTAR model, we added 

$400,000 for each cancelation in the DPM model’s results and redraw the previous 

boxplots, see Figure 3.24 and Figure 3.25. 

 

 

Figure 3.24. Corrected Cost Boxplots of Simulation Delay Approach 1 (Virgin America) 



INTEGRATED SCHEDULE RECOVERY                                       SIMULATION OF AIRLINE DAILY 

OPERATIONS 

David Joaquim Marques Antunes  107 

 

Figure 3.25. Corrected Cost Boxplots of Simulation Delay Approach 1 (Alaska Airlines) 

The figures make clear that, when flight cancelation costs are taken into account, the 

DSTAR model outperformed the DPM model in every case by over one order of magnitude 

for both airlines.  

In Figure 3.26 and Figure 3.27, we show the boxplots we have obtain for Simulation Delay  

Approach 2. We first computed the median value for each cost for each recovery model 

and then used those values to render the final boxplots. In this scenario we also have the 

same problem as before in the Simulation Delay Approach 1. Since the cancelations where 

an issue as also here the resorted to the same corrective measure as before. We obtain the 

following boxplots for each airline with corrected cost figures, Figure 3.26 and Figure 3.27: 
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Figure 3.26. Corrected Cost Boxplots of Simulation Delay Approach 2, Virgin America 

 

 

Figure 3.27. Corrected Cost Boxplots Simulation Delay Approach 2, Alaska Airlines 
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As happened for Simulation Delay Approach 1, the costs given by the DPM model are at 

least one order of magnitude higher than those given by the DSTAR model. 

We cannot say that any one of the models clearly dominates one other, but we can say that 

the cancelation being a feasibility sink in the DPM model will lead to an increased cost of 

this model that is not really captured. If anyone uses this model in a real scenario this issue 

could lead to a pitfall. DPM was able outperform the DSTAR model when only considering 

propagated delays but at the cost of a higher level of cancelations. Hence there are 

significant Tradeoffs between DSTAR prefers to delay flights, not canceling any flights 

and DPM prefers to cancel flights and in consequence have fewer and smaller delays. 

3.6 Conclusion  

We demonstrated that it is possible to design a user-friendly simulation model with high 

quality details of an airlines operation that is flexible enough to accommodate most 

researchers needs and able to factually represent the daily operation of an airline. Through 

the analysis of the outputs of the AOSM in the case study it is clear that without a 

simulation model it would be hard to compare recovery models and identify where these 

recovery models have their strengths weaknesses and identify the trade-offs of the 

solutions.  

Further, we demonstrate that for the full comparison of an airline operation a simulation 

needs to include enough detail and capture its uncertainty. While each recovery model in 

fact obtains its optimum, with the simulation model developed by us it is possible to better 

understand what the implementation of a specific recovery model’s solution entails. Not 

saying that this model is a full representation of the reality, but it captures the realty in such 

a way that its useful for most users. For researches, airline industry practitioners and even 

for teaching purposes at an advanced level. 

We saw that the high dimensionality of airline operations is complex and to simple reduce 

it to key performance indicators might be misleading. The comparison of just two schedule 

recovery models allowed us to explore such complexity. This make the case that without a 

simulation model to explore the results of a schedule recovery model we would face great 
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challenges to gauge the actual performance of each schedule recovery model. The biggest 

problem is to compare different optimization models with each other. Each has its own 

objective function; hence each has a different objective. In the here presented case study 

we saw that with a detailed exploration of the schedule recovery models’ solutions it was 

possible to better understand how two recovery optimization models work, what the 

differences in their performance are and where are the trade-offs. These trade-offs that one 

schedule recovery model is willing to make in comparison with the other, represents 

different type of decision-making profile that each airline would have with DSTAR or 

DPM.  

Subsequently we conclude its not enough to just include all aircrafts, flown routes, 

schedules and personnel to simulate an airline. The decision-making profile, i.e. agency, of 

the airline needs to be represented to properly capture the reality. We show that to have an 

adequate representation of an airline in a simulation one needs to include its decision 

making-profile. In our case we used the recovery models as proxy of the AOCC and saw 

that just different philosophies of the recovery models (since in our case the Recovery 

models are a proxy of the AOCC it also means the airline would have different decision-

making profiles) will lead to significantly different outcomes. DSTAR delayed more and 

did not cancel and DPM model ended up cancelling more of the flights but had smaller and 

fever delays. This is even more important if the objective of the simulation model is a 

system wide simulation. Meaning that each airline’s decision-making profile needs to be 

captured so it properly mimics the actions it takes in real life. Assuming that every airline 

has the same behavior in such a systemwide simulations might lead to a misrepresentation 

of the reality. As demonstrated by our simulation where we only simulate one airline, but 

with different recovery models that lead to different decision making profiles, i.e.  

behaviors.  

3.7 Future work 

One of the main priorities is to incorporate the non-independent distributions. For instance, 

introduce weather information and based on that information create the delay profiles. One 

other interesting addition to the simulation model would be several type ratings for crews 
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so mixed fleets can be used and this information is used during the recovery process. Also 

dividing between cockpit crews and cabin crews to capture better the reality of the 

operations the airlines face on a daily basis. One other issue that needs to be addressed is 

to include the maintenance so realistic multi-day simulation can be made and capture better 

the reality of an airline operation. Sensibility analyses on the cost parameters would also 

be interesting to understand how the models would react to varying costs, what are the 

implications on the recovery solutions, and gauge their robustness to these costs. 

Understand which other actions on airlines takes, i.e. the agency of the AOCC at 

operational level, better reflects, and captures the reality. Finally simulate proactive agency 

profiles of airlines. Meaning simulate a proactive behavior of the airline and see what ate 

the benefits of these actions. Also compare various proactive solutions with each other. 
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4 AIRLINE SCHEDULE RECOVERY: USING 
METAMODEL TO PREDICT OPTIMAL RECOVERY 
ACTIONS 

4.1 Introduction 

Irregular operations are one of the most significant problems that the airlines regularly face. 

The airline department mandated to handle this issue is known as the Airline Operational 

Control Center (AOCC). It supervises and controls the operations on a daily basis with 

reactive and proactive actions. Depending on size and complexity of the airlines, AOCC´s 

characteristic can largely vary. It might consist of a small team or, at the other extreme, 

multiple sub-departments each staffed with dozens of people. When the AOCC is 

subdivided into separate units, a structure more common in larger airlines, each unit 

handles one specific problem type. For instance, one unit each is responsible for aircraft, 

crews, or passengers, respectively. Each tries to solve its own problem having at its disposal 

its own tools to solve their problems. These tools can be called as schedule recovery 

models. They try to recover from irregular operations, so that the schedules can be operated 

normally again. These tools must be run in short time windows since the problem at hand 

must be solved real-time during operations. This means that there is a short time window 

of minutes to solve the problem. We must be able to run the actual model in seconds, since 

the solution must be communicated and negotiated with other departments inside the 

AOCC and these actions take time too. There are already some integrated solutions 

developed in research, but actual full implementations of them are still rare; there is no 

production grade tool that can substitute the whole AOCC. 

Most of the models used in each sub-department focus only on their own objectives. Each 

solves issues related to only aircraft, only crews, or only passengers, etc. These models are 

run several times a day leading to hundreds, or even thousands, of optimization runs during 

a year. These runs generate solutions for several individual instances of the problem. 
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However, this data, consisting of problems and their corresponding solutions, are typically 

not reused. Hence, even if a very similar problem reappears in future, the recovery model 

is often required to be run again instead of using the preexisting solution from the previous 

similar day. It might happen that the staff of the AOCC can predict the solution, due the 

recurrence of the problem, but there is no structured way to use this historic data on 

recovery problems and solutions. 

A model that would be able to learn from these historic data could accelerate the decision 

process. A similar conclusion, that the database of historic solutions of the recovery 

problems is an underused asset, was made by Rashedi and Vaze (2019). One approach is 

the creation of a metamodel (a model is a representation of the reality, a metamodel is a 

representation of a model) that predicts the solutions of the optimization model based on 

the historical data on recovery problems with an acceptable degree of accuracy. Best 

candidates for such a metamodel are Machine Learning (ML) models. Interestingly, a 

machine learning model used as a metamodel, once trained, could potentially shed some 

light on the implicit logic inside such machine learning models which are often notorious 

for their “black box” nature. If the ML model to be used is calibrated and validated on the 

historical data consisting of optimal recovery solutions, the ML metamodel’s predictions 

are likely to be close to the optimal solution as well. On the other hand, one can argue that 

since recovery models must run in short time windows and often rely on heuristics to solve 

the recovery problem, their optimality is typically not guaranteed. In this sense, the 

machine learning model may generate solutions that are as good as or better than those 

obtained from the heuristics. This is another advantage of a machine learning metamodel. 

A metamodel framework as proposed in this work can be trained offline. Hence, we can 

decouple the run time of the recovery model from live operations, as depicted in Figure 

4.1. For instance, instead using the heuristics used live inside the AOCC, we can afford to 

use an exact solution approach which might be slower, but would guarantee optimal results. 

Because of the offline nature of the process, these models are not constrained to produce 

solutions in a time window of a few seconds. This means that we can train the ML 

metamodel with historical problems and the corresponding exact optimal solutions, even if 

it takes hours to solve. Additionally, it is even possible to reduce the number of assumptions 

and/or simplifications underlying these models, since the computational time is not a major 

issue anymore. Finally, this would enable the use of fully integrated recovery models, 



 INTEGRATED SCHEDULE RECOVERY                       AIRLINE SCHEDULE RECOVERY  

David Joaquim Marques Antunes  114 

which due to their burdensome computational times, cannot be used in real-time AOCC 

operations. 

 

Figure 4.1. Illustration of using ML metamodel trained on optimal solutions to historical 

instances 

Another important benefit of this approach is that it is possible to be implemented 

gradually, thus not requiring a large commitment of time and effort from the start. Initially, 

one can use the historical recovery solutions for each sub-department inside the AOCC and 

train ML metamodels based on them. Depending on the accuracy and general quality of 

these predictions, as a first step, the ML metamodel can be implemented partially, or its 

predictions can be used as indicators that have the benefit of being immediately available. 

This is so because, ML models, once trained, typically generate almost instantaneous 

predictions. This instantaneous feedback can help operational managers prepare for the 

likely optimal solutions. Moreover, it can also be used to accelerate the computational 

times of the full recovery model solution heuristics. Providing solution values of some 

variables, or dual values of some constraints, from the ML to the full recovery model, 

before the full recovery model’s run starts, can potentially reduce the computational time 

of the full recovery model. After one has more confidence in the ML metamodel’s 

prediction accuracy, one can gradually substitute each original recovery model by the 

corresponding ML metamodel. This step-by-step inclusion, as depicted in Figure 4.2, could 

eventually lead to a fully autonomous AOCC where human interactions would only be 

needed for surveillance purposes and to solve more extreme or rare events. Also, once fully 

implemented, this could be the stepping stone to having a fully integrated, cross-airline 

irregular operations management. Moreover, real-time operational negotiations (such as 
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for ground delay programs or airspace flow programs) between multiple airlines would 

also be much more efficient if there was an autonomous AOCC’s in each airline, assuming 

common communication protocols between them are in place. Airline driven ground 

holding was a thematic that was analyzed by Yan in his Ph.D. thesis Yan (2017).  

 

Figure 4.2. Illustration of a step-by-step inclusion of an ML metamodel into the AOCC 

systems  

Another important feature of the ML metamodel framework as proposed here is that the 

ML metamodel could also learn from the staff working in the AOCC. Even the best 

recovery model has some assumptions or limitations because of which the staff working at 

the AOCC needs to manually alter the solutions eventually. Staff with years of experience 

in an AOCC have invaluable knowledge that would be lost if they leave the airline. The 

ML metamodel would be able to learn from this staff too, thus include the years of 

experience into its predictions. For instance, if we were to train the ML metamodel on the 

solutions not directly from the schedule recovery model but from these manually corrected 

solutions, we would have an ML metamodel that learned for the recovery model and the 

knowledge of the staff working in the AOCC (see Figure 4.3). Additionally, other data 

sources can be used to increase accuracy of the solutions. For instance, weather data that 

were used by the staff to correct the solutions can also be used to improve the performance 

of the ML metamodel. 

 

Figure 4.3. Illustration of an ML metamodel learning from human input and using information 

from weather data 
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In Section 4.2, we will briefly review the literature related to airline schedule recovery, and 

metamodels. In Section 4.3, we present our methodology. Section 4 contains our case study 

where we present our proof-of-concept. Discussion of the results is provided in Section 

4.5. Finally, we present the conclusions in Section 4.6, and an overview of the promising 

directions for future work in Section 4.7. 

4.2 Literature review  

As mentioned in Section 4.1, even the most robust schedules can sometimes break down 

and hence need to be recovered from disruptions. This is known as the airline schedule 

recovery process. Every airline usually has an Airline Operational Control Center (AOCC) 

that manages those recovery measures. These AOCCs are responsible for the execution of 

the planned schedules. Many airlines rely on a rule-based approach heavily dependent on 

the staff expertise. To cope with the complexity, they approach this problem in a sequential 

manner. In other words, they use the same approach for recovery as for planning the 

original schedule (Clausen et al. 2010). Assessing the quality of the recovery solution is a 

challenging task. There are some Decision Support Systems that help in defining the 

recovery measures but there are no fully integrated airline schedule recovery systems in 

operation at any of the airlines (Clausen et al. 2010).  

Schedule recovery is a research topic for a large number of existing studies. One of the first 

approaches in literature was developed by Teodorović and Stojković (1990). Since then, a 

large number of subsequent studies have focused on improving the problem formulations 

to make them increasingly realistic and have also focused on developing faster and more 

accurate solution methods to solve these models. The first resources to be attended in an 

airline schedule recovery process are usually the aircrafts, because of their relative scarcity 

and high cost in the airline business. The crew scheduling problem is also tackled numerous 

times in the literature since the crews are the second most important resources in an airline. 

However, the crew schedule recovery problem has been paid less attention compared to the 

more strategic planning problem of airline crew scheduling (Ball et al. 2010).  

Passenger recovery is rarely addressed in the literature. One example is the research done 

by Bratu and Barnhart (2006). They developed an integrated model and paid particular 
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attention to passenger recovery processes. Passenger disruptions rarely drive the schedule 

recovery, but arriving on time is the service characteristic most valued by passengers (Mitra 

,2001, Bratu & Barnhart 2006)). Bratu and Barnhart (2006) claim that passenger centric 

schedule recovery can be made in an efficient way and that an efficient solution can be 

produced in less than three minutes. Barnhart et al. (2014) faced with the fact that there is 

limited data available in relation to air travelers, developed a multinomial logit model for 

estimating historical passenger travel so future researcher would have a baseline to 

construct future models on it.  

Cargo has been the object of very little attention in the airline schedule recovery literature. 

Nevertheless, in the last couple of years, many airlines have been increasingly using their 

passenger flights to haul a considerable quantity of cargo. If one of those flights gets 

disrupted, it may also disrupt the cargo. While we are not aware of any previous studies 

focusing on schedule recovery of cargo transport operations by commercial passenger 

airlines, there is some literature that accounts for cargo in the scheduling of commercial 

passenger airlines.  Due to the emergence of mixed airlines (passengers and cargo) and the 

use of free belly space of passenger aircraft for cargo, the airline schedule recovery process 

can also affect the cargo transportation, and hence it must be accounted for by the AOCCs 

of those airlines.  

Derigs and Friedrichs (2013) attempted to solve the problem of integrated scheduling and 

pointed out some differences in passenger flights and cargo flights. One is that, in cargo, 

some flights are mandatory and some are optional. So, the cargo carriers establish their 

network to satisfy the most important (mandatory) flights and then they try to fit in the 

other flights (optional). This is not a common practice for passenger flights. One other 

difference is that cargo trips are usually one-way. That is, cargo usually moves from one 

point to another and does not return. However, the aircraft must return to its hub in most 

cases. Passengers normally take round trips and return to their point of origin eventually. 

Another distinctive feature of air cargo business is that the clients attribute a high value to 

schedule stability in order to be able to plan ahead. Derigs and Friedrichs (2013) described 

an integrated model to handle those differences. They proposed a mixed-integer 

mathematical model that considers flight strings and not flight legs.  
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Ball et al., (2006) provide an overall review of the various facets of the challenge of 

irregular operations in the airline industry. It covers the airports perspective, airspace 

perspective and also the airlines perspective. The last of these three is the focus of our 

research. They have identified four points for ensuring a proper schedule recovery. First, 

the recovery must ensure obeying the crew work rules and aircraft maintenance 

requirements. This requires the knowledge of recent history of both, as well as the 

knowledge of passenger itineraries. Second, recovery may use additional resources, i.e., 

standby crews and aircraft. Third, there are multiple objectives of the airline schedule 

recovery problem, and this multi-objective nature of the problem turns it into a tradeoff of 

various performance indicators that the airlines need to be aware of. Fourth, the problem 

must be solved in a time window of seconds. We refer the reader to this work for a deeper 

understanding of irregular operations including aircraft recovery, crew recovery and 

passenger recovery. The multi-objective and real-time nature of the problem, as highlighted 

by the last two points, makes it especially difficult to integrate the aircraft, crew and 

passenger recovery operations into a single mathematical model.  

Existing studies on integrated schedule recovery have attempted varying degrees of 

integration. DESCARTES (DEcision Support for integrated Crew and AiRcrafT recovery) 

was one of the first attempts to solve the airline schedule recovery in an integrated way 

(Kohl et al., 2007). The authors note that the process of schedule recovery relies heavily 

on the staff that is responsible for it at each airline, i.e. staff of the AOCCs. Integrated 

schedule recovery is one of the major challenges that both academia and industry have been 

trying to tackle for years using a wide array of approaches. This has resulted in several 

related initiatives, notably the creation of the 2009 ROADEF challenge, a competition 

organized by the French Operational Research and Decision Analysis Society. Each year 

ROADEF announces an operations research related challenge proposed by the industry. In 

the 2009 version, AMADEUS SAS proposed a challenge where they made a call for 

algorithms to solve a disruption management problem for a commercial airline. This 

challenge did not include crews. Bisaillon et al. (2010) won the 2009 ROADEF Challenge. 

It was an important milestone in the recovery research because it compares the performance 

of several models. 
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As mentioned before, schedule recovery consists of repairing the schedule after a 

disruption. But as mentioned by Petersen et al. (2010), an optimization approach might not 

be possible due to the computational time necessary to solve any component of the 

problem. They also state that most carriers usually do not use mathematical programming 

to tackle the integrated problem. Most frequently the recovery is performed sequentially, 

and the passengers are the last components to be attended to. However, since regulations 

(in EU or US, for example) may require that compensation should be given to the passenger 

for large delays, Petersen et al. (2010) make a case for the companies to solve the recovery 

problem in an integrated, rather than a sequential, way. Petersen et al. propose such an 

integrated approach but reduce its scope, so it is solvable in an acceptable time frame. They 

also reduce the flights that are considered by the model. This model uses the concept of 

flight strings rather than flight trips. 

Abdelghany et al. (2008) solve the recovery problem using a combination of simulation 

and optimization models. Similarly, to other authors they claim that most recovery models 

are not integrated. They mention that the type of violations/disruptions for crews and 

aircrafts are similar and he mentions that it is possible for crews to make a deadhead trip 

(flying as passenger) but does not mention the similar movement for aircrafts: flight of an 

aircraft without passengers. They also refer the typical practices to solve planning 

disruptions and claim that due to the complexity involved, this is made on a flight-to-flight 

basis rather than in an integrated way. These researchers state that schedule recovery is a 

time critical process that needs solutions in a very short time window. This work does not 

have in consideration the passengers. 

Castro and Oliveira (2011) attempted to create a fully automated system (although always 

with a human in the loop) for the integrated schedule recovery problem. They constructed 

a multi-agent framework in which each of the agents represents one department of an 

AOCC (aircraft, crews, passengers). Each agent creates its own solution while focusing on 

their respective infeasibilities. Then each agent must negotiate the solution with the other 

agents to obtain a final integrated recovery plan. They assume a considerably high 

automation of the whole recovery process that might be difficult to implement since there 

are still very few companies that have a DSS to start with and thus might be very reluctant 

to change to a totally automated process. Castro and Oliveira were the first to tackle the 
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problem with a multi-agent framework. In 2012 they made some improvements on this 

original paper (Castro et al., 2012) and tested it with real data from the Portuguese airline 

company TAP Air Portugal. 

Clausen et al. (2010) claimed that the traditional sequential approach is outdated and 

inefficient. They divided past research studies into three categories: aircraft recovery 

models, crew scheduling models and integrated schedule recovery. This paper showed that 

the most used operations research methods were mixed-integer optimization models and 

several heuristics. For a more recent review of the schedule recovery in transportation, we 

refer the reader to Visentini et al. (2014). These authors make an extensive review of 

existing schedule recovery models for various transportation model, air included, present 

in the literature. And for a deeper understanding of Irregular operations we refer the reader 

to Barnhart and Vaze (2015) 

Another topic that we briefly reviewed the literature on is metamodeling, which can be 

thought of as a heuristic approach. Metamodeling (also knowns as surrogate modeling) can 

be defined as the act of using a model of a given base model to expedite the modeling and 

solution process. This approach is widely used in various fields such as engineering design, 

design optimization, model-driven optimization, and simulation optimization, to name a 

few. The details and types of metamodeling approaches are not the focus of this work. For 

further detail on metamodeling and a literature review of the state-of–the-art on this topic 

we refer the reader to Sprinkle et al. (2014). 

Metamodeling is a well-researched topic, as can be seen from the review Barton (1994) of 

the state of art of the previous century. Most common approach to metamodeling is the 

model-driven engineering approach in a context where expensive simulation models must 

be run several times to get key performance indicators. To accelerate this process, one 

creates a metamodel that substitutes the base simulation and can generate the same KPI’s 

in a fraction of the time.  Wang and Shan (2007) provide a comprehensive list of 

metamodeling techniques in support of engineering design optimization. Many studies 

have used Artificial Neural Networks (ANN) as a metamodel.  Hornik et al. (1989) and 

Funahashi (1989) concluded that a Multilayer Perceptron, a basic type of ANN, was 

capable of approximating any function to a desired degree of precision. However, the most 
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common use of ANN in metamodeling situations is in simulation metamodeling. There are 

plenty of examples of neural networks, being universal approximators, used as 

metamodels, for instance: Melo et al. (2014) and  Pan et al. (2014). Here, a computationally 

expensive model (viz., a simulation model) is substituted by a metamodel to be able to 

quickly generate simulation outputs. Rauch et al. (2016) use high performance computing 

to tackle the challenge of training of the artificial neural networks. One example of a study 

that uses metamodels to partially substitute an optimization problem is Werbos et al. 

(2012). 

The closest example to metamodeling techniques applied to airlines in the existing 

literature is by Cetinkaya and Camci (2014), which focused on creating a metamodel for 

airport simulation. In addition to our focus on a very different application, our 

metamodeling approach also differs from the one used in this study. 

We are not aware of any other study, except Rashedi and Vaze (2019) , that uses Machine 

learning models for approximating an optimization model. Most metamodeling on complex 

models, like computationally intensive simulation models, involves prohibitively large 

computational times for the individual runs of the complex underlying models. In our case, 

we have moderate computational times, but have an extremely short time window to solve 

them. Therefore, we attempt to leverage an ML metamodel to generate immediate 

solutions. In the next section we present our methodology and explain in detail our 

conceptual approach.  

4.3 Methodological Approach 

We use as inputs the parameters of problems that are faced by an AOCC and the resulting 

solutions generated by the AOCC for those problems. We create a database of these 

problems and solutions and then train an ML metamodel on that database. Afterwards, we 

include the trained ML metamodel into the AOCC systems and predict solutions to new 

problem instances with it.   

These problem-solution constitute the database that will be used to train the ML model that 

will predict the solution of the schedule recovery problem. Once the ML metamodel is 
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trained and if the solutions are of acceptable accuracy, we can then, in a second step, plug 

the ML metamodel into the AOCC systems. When a new problem instance is presented to 

the AOCC, the ML metamodel will input that same problem and instantly predict the 

solution, (as illustrated in Figure 4.4).  

 

Figure 4.4. High level representation of the ML metamodel methodology 

Using this approach, it is also possible to use more complex optimization models to solve 

the recovery problem. This is of special interest if we want to use an integrated schedule 

recovery model that typically has prohibitively long computational times, and hence cannot 

be used live in an AOCC. This approach decouples the running time of the models from 

the execution time during operations. In practice, we can run more advanced optimization 

models on the set of problems present in the historic database and save the high quality 

solutions. This new set of solutions, should outperform, at least in theory, the solutions 

from the original optimization model that was used live by the AOCC. These will then be 

used to train the ML metamodel. Once the ML metamodel is trained so it returns solutions 

with acceptable level of accuracy the ML metamodel can be implemented live into the 

AOCC systems to generate better solutions, at least in theory, than the original schedule 

recovery model.  

The 1st part consist of training the ML model on historic data of optimization problems and 

solutions. In other words, using the problem parameter matrices, we estimate an ML model, 

so it accurately predicts the solutions. 

A popular way to use machine learning for optimization problems is as heuristic. View 

seminal works applied to the Traveling Salesman problem like Kirkpatrick, (1984) using  



 INTEGRATED SCHEDULE RECOVERY                       AIRLINE SCHEDULE RECOVERY  

David Joaquim Marques Antunes  123 

an simulated annealing  and Geem and Kim, (2001) using an genetic algorithm for the same 

problem. In these cases the ML models are used as a heuristic approach to substitute the 

optimization approach without using any of the data generated by the optimization model. 

At best, the solutions of the optimization approach are used as benchmarks to gauge the 

quality of the solutions of the ML model. Although such a ML model does not guarantee 

optimal solutions, ML models have been gaining popularity. 

An alternative, proposed here, is to train the ML model using as features the problem itself, 

in the forms of the problem’s cost and constraints matrices, and as labels the solution vector 

computed by the optimization solver. This would combine the strengths of both models. A 

properly trained ML model would provide high quality solutions since the ML model 

would be trained using the true optimal solutions, and these solutions will be provided 

extremely fast. 

In a matrix representation of a linear, integer or mixed integer optimization problem (the 

features), first row represents the objective function, while each of the other rows 

represents a constraint. Each column, except the last one, represents a decision variable, 

while the last column represents the right-hand side of the problem. Finally, the solution 

(the labels) is given as one value for each variable, which can be thought of as on extra 

row. However, the dimensions of feature matrix and the labels vector will differ depending 

on the problem. Also, the problem structure differs considerably from the image 

recognition problems that have been widely studied in the last several years where most 

advances have been made using deep artificial neural networks. These models will not 

work here, at least not directly, since the columns and rows can be interchanged in an 

optimization problem’s matrix representation without affecting the problem itself. Any 

model that relies on neighborhood of the input data will have difficulties in producing 

meaningful results. This means that the first step is to create a structured, i.e. standardized, 

way of representing the problems, with varying sizes and interchangeable columns and 

rows, so that we are able to train an ML metamodel on them. To get started with this task 

we first briefly recall the canonical form of a linear problem: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑐𝑇𝑥 (4.1) 

𝑠. 𝑡. 
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𝐴𝑥 ≤ 𝑏 (4.2) 

𝑥 ≥ 0 (4.3) 

Linear problems can be maximization problems or minimization problems depending on 

the objective. This example problem (denoted by (4.1)-(4.3)) is a minimization problem. 𝑥 

is the vector of decision variables, and 𝑐 is a vector of cost coefficients. 𝑏 is a vector of the 

right hand side (rhs) coefficients. Both, 𝑐 and 𝑏 are known vectors. Matrix 𝐴 is a matrix of 

coefficients that are present in the constraints given by (4.2). 𝐴 is also a known matrix. 

Finally (4.3) requires 𝑥 variables to be greater or equal to zero. Now if we write this 

problem in the matrix form, we obtain the following: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒   [𝑐1 … 𝑐𝑛] [

𝑥1

⋮
𝑥𝑛

] (4.4) 

𝑠. 𝑡. 

[

𝑎11 ⋯ 𝑎1𝑛

⋮ ⋱ ⋮
𝑎𝑚1 ⋯ 𝑎𝑚𝑛

] [

𝑥1

⋮
𝑥𝑛

] ≤ [
𝑏1

⋮
𝑏𝑚

] (4.5) 

[

𝑥1

⋮
𝑥𝑛

] ≥ [
0
⋮
0

] (4.6) 

Here 𝑚 is the number of constraints and 𝑛 is the number of decision variables. This 

representation of the problem allows us to exploit its structure and train a ML metamodel 

on several optimization problems. The known coefficients will be used as input features, 

and the unknown as output labels. Consider now the set of all problems 𝑃 = {𝑝1, … , 𝑝𝑘}, 

where 𝑘 is the number of problems 𝑝𝑖 in the database. Consequently, we have an additional 

dimension for the matrix form given by (4.4) to (4.6). Problem 𝑝𝑖 in set 𝑃 is given by (4.7) 

to (4.9). 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒   [𝑐1𝑝𝑖
… 𝑐𝑛𝑝𝑖] [

𝑥1𝑝𝑖

⋮
𝑥𝑛𝑝𝑖

] (4.7) 
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𝑠. 𝑡. 

[

𝑎11𝑝𝑖
⋯ 𝑎1𝑛𝑝𝑖

⋮ ⋱ ⋮
𝑎𝑚1𝑝𝑖

⋯ 𝑎𝑚𝑛𝑝𝑖

] [

𝑥1𝑝𝑖

⋮
𝑥𝑛𝑝𝑖

] ≤ [

𝑏1𝑝𝑖

⋮
𝑏𝑚𝑝𝑖

] (4.8) 

[

𝑥1𝑝𝑖

⋮
𝑥𝑛𝑝𝑖

] ≥ [
0
⋮
0

] (4.9) 

For any problem 𝑝𝑖 in the historical database, all vectors and matrices, including the 

solution vector 𝑥𝑝𝑖
, are known. Now the next step is to train the ML metamodel on this 

dataset and predict a new solution vector for an unseen problem 𝑝* for which we are not 

given the values of the vector 𝑥𝑝∗  . If we have several optimization problems we can think 

of the overall system of problems as several sheets of problems, all staked together, as 

illustrated by Figure 4.5.  

 

Figure 4.5. Input-output pairs for ML metamodel training 

Figure 4.5 illustrates that the ML metamodel will be trained using matrix 𝐴 and vectors 𝑏 

and 𝑐 as inputs, and the solution vector 𝑥 as output for each 𝑝𝑖. Each vector or matrix of a 



 INTEGRATED SCHEDULE RECOVERY                       AIRLINE SCHEDULE RECOVERY  

David Joaquim Marques Antunes  126 

problem 𝑝𝑖 can be understood as a sheet (layer) inside a cube with depth equal to 𝑘. 

Training the metamodel on this set of information will lead to the ML metamodel 

eventually “understand” the patters that exist in the data. For the optimization problem and 

the ML metamodel’s perspective the inputs are known. The outputs are only known from 

the ML metamodels perspective for every 𝑝𝑖  ∈ 𝑃. Yet the metamodel does not know 

beforehand the solution vector of the problem 𝑝*, the unseen problem and not previously 

solved by the optimization model. The objective of the second step is to predict the values 

of the solution vector 𝑥 for problem 𝑝*, as depicted in Figure 4.6. 

  

Figure 4.6. Predict solution vector 𝑥𝑝∗ based on input data of problem 𝑝∗ 

This naïve would be directly applicable to a set of problems that have the exact same size 

as each other. But if either 𝑚 or 𝑛 (or both) vary across the problems within 𝑃, then this 

approach is not directly applicable. First one needs to find the maximum values of both 𝑚 

and 𝑛 across all 𝑝𝑖  ∈ 𝑃, and then add extra columns or rows filled with zeros to the dataset 

to make all problems artificially become the same size as that given by the maximum values 

of 𝑚 and 𝑛. All problems 𝑝𝑖 will be of the same size after this adjustment. However, it’s 

not enough to simply add new columns and rows, because the types of constraints must be 

respected as well. Furthermore, special attention must be given if there is more than one 

type of variables. This implies that we must attend to the number of variables and 

constraints and the fact that they are interchangeable. Each combination of constraints and 
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variables needs to have a fixed sized window that is equal or greater than the maximum 

size in both dimensions: number of rows and number of columns.  

We will explain this concept further using an example. Consider an example problem 𝑝𝑖, 

with two types of variables, 𝑥 and 𝑦 and two types of constraints, 𝑐𝑛𝑡𝑟1 and 𝑐𝑛𝑡𝑟2. 

Consequently, matrix 𝐴 has two rows, as seen in (4.11). 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒   [𝑐1 𝑐2] [
𝑥1

𝑦1
] (4.10) 

𝑠. 𝑡.: 

[
𝑎11 𝑎12

𝑎21 𝑎22
] [

𝑥1

𝑦1
] ≤ [

𝑏1

𝑏2
] (4.11) 

[
𝑥1

𝑦1
] ≥ [

0
0

] (4.12) 

For this example problem we know that for the whole set of problems 𝑃, the maximum 𝑛 

for each variable type is equal to two. Meaning the largest problem has the following set 

of variables: 𝑥1, 𝑥2, 𝑦1 and 𝑦2. As said before each constraint is dependent on the size of 

variable 𝑥.  Thus, each constrain type has two constrains in the largest problem (i.e. for the 

largest 𝑝𝑖, matrix 𝐴 has in total four columns and four rows). We need to code this 

accordingly into the data so the ML metamodel will not have problems reading it. Thus, 

the input data for this example problem would be: 

[

𝑎11 0
0 0

𝑎12 0
0 0

𝑎21 0
0 0

𝑎22 0
0 0

], (4.13) 

[𝑐1 0 𝑐2 0],  (4.14) 

[

𝑏1

0
𝑏2

0

] (4.15) 

And the output is given in (4.16): 
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[

𝑥1

0
𝑦1

0

] (4.16) 

 

The optimization problems can vary in number of rows (constraints) and columns 

(variables).  Also, the columns and rows are interchangeable, the position is not fixed.  A 

structured way to represent the data in each instance (for each 𝑝𝑖) is needed. The way to 

achieve this is creating smaller window inside the existing data and divide the inputs into 

standardized sets. In this example we had two constraints, 𝑐𝑛𝑡𝑟1 and 𝑐𝑛𝑡𝑟2, and each 

constrain was dependent on size 𝑥. Thus, the largest 𝐴 matrix is a matrix of 4 × 4. This 

size is the base of our standardized input format for the ML metamodel. We divide the 

inputs for matrix 𝐴 into small windows: “constrain ↔ variables”. Resulting in four small 

windows  ("𝐴𝑐𝑛𝑡𝑟1 ↔ 𝑥", "𝐴𝑐𝑛𝑡𝑟2 ↔ 𝑥"," 𝐴𝑐𝑛𝑡𝑟1 ↔ 𝑥" and  "𝐴𝑐𝑛𝑡𝑟1 ↔ 𝑥" ) for 𝐴 matrix as 

depicted in figure 4.7. Similar proceeding is necessary to standardize the input format for 

the vector 𝑐 and 𝑏.  

 

Figure 4.7. Standardized input of data for the ML metamodel 
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Each window can now directly be connected to the ML metamodel having always the same 

size and structure for every 𝑝𝑖 ∈ 𝑃 and unseen 𝑝∗.  This allows to capture the data in a 

format so it’s not affected by the interchangeability of the columns and rows. This 

standardization method also solves the problem of 𝑝𝑖 with missing constraints. These 

windows are possible to connect directly to the ML metamodel and if there is data missing 

due to smaller size, missing constrains, missing variables, etc. the input values are just set 

to zero inside the corresponding window. 

As said this coding of the information allows the metamodel to be trained on problems 𝑝𝑖 

that have different sizes, i.e., different number of constraints and/or variables. Also, this 

allows to only feed part of the input vectors or matrices if one wished to do so. For instance, 

for the previous example given by (4.13) to (4.16), let us assume that we only want to 

predict the values of the 𝑥 variable and during training it was shown that only the first type 

of constraints (𝑐𝑛𝑡𝑟1) is enough to accurately predict the value of the 𝑥 vector for all 𝑝𝑖. 

Then, the input for this particular case for the 𝐴 matrix we only would need as input 

windows: "𝐴𝑐𝑛𝑡𝑟1 ↔ 𝑥","𝑐 ↔ 𝑥" and "𝑏𝑐𝑛𝑡𝑟1",  given by (4.17) to (4.19): 

[
𝑎11 0
0 0

], (4.17) 

[𝑐1 0],  (4.18) 

[
𝑏1

0
] (4.19) 

 

And the output, the x vector for this particular 𝑝𝑖 would be as given by (4.20): 

[
𝑥1

0
] (4.20) 

 

In this example, we only show how to apply this methodology to a linear problem, but this 

methodology is also equally applicable to integer problems (IP) or mixed integer problems 
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(MIP). To be able to train an ML metamodel additional steps might be needed to guarantee 

integrality of the solutions though. 

This framework is not limited to data from the optimization model. Additional data can be 

used as input to help improve the accuracy of the ML metamodel that is not present in the 

optimization problem but available for all 𝑝𝑖, or at least for most of them. Likewise, 

transformation of the data can also be used; for instance, normalization of the input data 

and/or output data can be explored for its predictive quality using this framework as well.  

4.4 Proof of concept case study 

To show the feasibility of the concept presented in the previous section, we designed a case 

study to serve as proof of concept. This is a feasibility study where we have chosen one 

type of ML model to be used as metamodel: Artificial Neural Networks (ANN). This is 

one of the most flexible machine learning model types that exists today. In the last few 

years, great advancements have been made in this very dynamic research topic. These 

ANNs are most prominently used in the field of image recognition, and are popular in 

academic research and the industry alike. 

4.4.1 Historical Data  

As explained in Section 4.2, ML models need large sets of data to be able to identify 

patterns in those data sets. This is especially the case with artificial neural networks which 

are known to be very data-intensive to be effective. The kind of data that is needed is not 

easy to obtain from a public database, nor do we have access to such data from an AOCC. 

One could try to infer such data from public datasets. However, this would be extremely 

challenging given the large number of missing data points. Given our need for a large 

dataset such endeavor would be also an onerous task.  

A better approach would use a simulation model to simulate the operations of an airline 

performing schedule recovery. This recovery model would serve as proxy for the AOCC. 

For this purpose, we used the AOSP and simulated one day of operations for Alaska 

Airlines (AS). This is the simulation model platform by us and presented in Chapter 3 using 

data from the case study in that chapter, given in Section 3.5. It allows simulating any 
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airline’s operations across the world due to an integrated GIS environment (see Figure 3.5) 

that enables the user to have a detailed understanding for the simulation as it runs. The 

model also propagates delays from one flight to another via shared resources, such as, 

crews and aircraft. The ability to recover schedules is of utmost importance to us, and is 

provided by the AOSP. 

We simulated Alaska Airlines’ operations to create a database of problems and solutions. 

Figure 4.8 depicts the network operated by Alaska Airlines that was used in our simulation. 

We derived the daily operations of the airline based on the data extracted from the Airline 

on-Time performance database from the Bureau of Transportation Statistics, BTS (2016). 

This information from this database also allowed calibration of the delay distributions. For 

further information, please refer to the case study in Chapter 3, Section 3.5. In total, we 

repeated one day of operations 1000 times resulting in 544,000 total simulated flights. 

 

Figure 4.8. Network of Alaska Airlines used in the simulation 
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As proxy for our AOCC, we use a partially integrated schedule recovery model. This 

recovery model is an integrated part of the simulation framework and is able to 

automatically recover schedules if the need arises to do so. It is based on the DSTAR model 

developed by Abdelghany et al. (2008). This model has the capability of delaying and 

canceling flights, and swapping aircraft and crews between flights. Across the 1,000 

repetitions, the recovery model was executed 1,900 times. Hence, our ML metamodel has 

a database of 1,900 problem-solution pairs to be trained on. The delay distribution is 

summarized in Table 4.1. This data is the same as what was presented earlier in Chapter 3, 

Table 3.8, but here we only show the data that is necessary for this case study. These are 

the propagated delays, and not the root delays, added by the simulation model 

stochastically. Propagated delays that occur when the time buffers are not able to absorb 

delays and result in propagation of delays trough the flights that are time depended. 

Table 4.1. Propagated delays for simulated flights 

Prop. delay range (min) (%) 

<1 88.92 

1-15 6.72 

15-60 2.68 

60-300 1.66 

>300 0.01 

Canceled 0.00 

 

The DSTAR model was run each time the AOSM generated a notification of infeasibility 

of a flight that could not be flown on schedule. This flight and all its resources together are 

considered as the “problem flight”. Additionally, DSTAR model’s pre-processing selects 

a set of flights according to predefined rules and adds those resources, aircraft and crews 

to the set of flights that are allowed to be modified to recover the schedule. These additional 

flights themselves do not have any issue with their schedules, but could be adjusted to try 

to minimize the overall costs by giving the recovery model more options to recover the 

schedules. Across the 1,900 instances, the recovery model added a maximum of 7 flights 

to the set of flights to be recovered. Since most of the non-problematic flights had small or 



 INTEGRATED SCHEDULE RECOVERY                       AIRLINE SCHEDULE RECOVERY  

David Joaquim Marques Antunes  133 

no delays added to them, we decided to focus only on the 1st flight, the “problem flight”. 

This solves another potential issue associated with the ordering of the added flights to be 

modified by the schedule recovery model. Then the ordering could be different from 

instance to instance. The ML metamodel could have difficulties in the training phase if the 

orders are different in each instance. Figures 4.9 and 4.10 show the histograms of the delays 

added by the model to the problem flights and the cost of all 1,900 recovery problem 

solutions, respectively. 

 

Figure 4.9. Histogram of delays of the problem flight 
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Figure 4.10. Histogram of costs of all 1900 instances 

If we compare the histogram of the delay of the first flight with the histogram of the costs, 

we see that they are very similar. This happens because the cost is almost a linear 

transformation of the delays. The objective function of the DSTAR schedule recovery 

model is a sum of three independent costs: resource swapping, minutes of delays and 

cancelations. Since there weren’t any cancelations and swapping of resources was rare 

(please refer to Chapter 3 to understand the reason behind the inexistence of cancelations 

with DSTAR), the delays are the main contributors, if not the only contributors, to the total 

cost. The only difference is that the cost also included the delays of the other flights that 

the recovery model delayed. However, problem flight was the most delayed one in most 

cases, subsequently dominated the contribution to the total cost. Since we observed a better 

performance of our approach when predicting the delays, likely due to the fact that delays 

are only from the problem flight and cost includes all flights considered by the recovery 

model, we only show the results of ML metamodels when trying to predict the delays added 
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by DSTAR. Figure 4.11 shows the number of problem flights, grouped together by the 

planned departure time at the gate: 

 

Figure 4.11. Number of problem instances per scheduled departure time 

As seen from Figure 4.11, in the beginning of the day there are no major issues. Most 

problem flights appear between 11:00-12:00 hours. This number gradually reduces over 

the day. The next graph, Figure 4.12, a set of boxplots of delays, shows us the distribution 

of the delays added by the DSTAR model grouped together by departure hour. We see that 

the medians are relatively low, most between twenty and forty minutes. However, the 

distributions are skewed, presenting long tails stretching to a delay of over two hours in 

some cases. This information, i.e. the solution of the DSTAR model, is the ground truth 

that we will try to predict with the ML metamodels. 
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Figure 4.12. Boxplot of delays for each scheduled departure hour 

4.4.2 Machine Learning models 

As ML model, we decided to use Artificial Neural Networks (ANNs), and specifically a 

feed forward variant of ANNs. We developed various versions of two types of models: 

regressions to predict exact values and classifications to predict classes. We used Google’s 

Tensorflow library (Google, 2018) to develop our ANNs. TensorFlow is an open-source 

software library for machine learning, developed by Google, capable of building and 

training neural networks to detect and decipher patterns and correlations. Most of the effort 

was spent on deciding the structure of the ML metamodel (defining hyperparameters like: 

number of layers, types of layers, types and number of connections, etc.) so they would 

generate a prediction with acceptable accuracy.  

Two types of predictions were made. One is a value prediction, trying to predict the delays 

of a solution, similar to a regression. The other type is a classification where we predict the 

group to which the solution belongs, based on predetermined definitions of groups or 

classes. In the latter case, the ANN tries to predict the right class of the solution. In this 

case study, we present four models where we focus only on the delays added to the first 

flight as explained before. 
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ANN1: Classification - only coefficients from the objective function used as features; 

ANN2: Classification - coefficients of objective function and constraints used as features;  

ANN3: Regression - only coefficients from the objective function used as features; 

ANN4: Regression - coefficients of objective function and constraints used as features;  

All training was done with a validation set of corresponding to 20% of the data. This means 

that in the training phase, the set of 1,900 problems and solutions was divided into two 

groups where 80% (1,520 instances) were used for training, and 20% (380 instances) were 

used for validation. This is a standard feature of the TensorFlow library (Google, 2018). 

4.5 Results and Discussion 

In this subsection, we present the results of the case study, discuss them and compare the 

performance of the four ANNs. 

4.5.1 ANN1  

The first model, ANN1, is the simplest one of the four presented here. We divided the 

solutions into only two classes. To create the classes, we divided the data into two groups; 

with group 1 corresponding to delays less than ten minutes and group 2 corresponding to 

delays greater than or equal to ten minutes. The final topology, number of neurons, number 

of layers, and type of layers for ANN1 are presented in Figure 4.13. In Figure 4.13, we 

only show the dense layers, while not showing the concatenation and dropout layers, and 

other minor details. This makes it easier to understand the general topology of ANN1. As 

a relevant indicator of the size, we can use the number of trainable parameters. ANN1 had 

a total of 49,926 trainable parameters. Since the size of the input data can vary with problem 

size, the number of columns of the problem matrix of the optimization problem is 

dependent on the number of variables. Thus, we need to make sure that we can handle the 

largest size of input dimensions as described in Section 4.3. We analyzed the dataset of 

1,900 runs to obtain the largest dimensions. When the actual problem size is smaller, we 

filled the remaining parts of the problem matrices with null or empty values. “Input OF X” 
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and “Input OF m” refer to the objective function coefficients of variable 𝑋 and 𝑚 

respectively, of the DSTAR problem matrix. The 𝑋 values are essentially the swapping 

costs of resources and 𝑚 parameters are the costs of 1-minute of delays. Please refer to 

Appendix I.a.i to better understand the structure (objective function, constraints, 

parameters and variables) of the DSTAR model, and also to understand how the cost 

parameters were computed. 

 

 

Figure 4.13. ANN1 Structure 

We observe that ANN1 tends to overestimate, predicting more than the actual number of 

flights to have greater than or equal to ten minutes of delay (which corresponds to group 

2). That was expected since the initial set of data was unbalanced in favor of group 2. Hence 

ANN1 has a higher tendency to return as solution group 2 labels (see Table 4.2). One can 

think that the information gained is limited.  The total accuracy of the model is 76.21, Table 

4.3. However, if we analyze the Receiver Operating Characteristic curve (ROC curve) we 

see a different picture, Figure 4.14. This plots the False Positive Rate (FPR) on the X axis 

and the True Positive Rate (TPR), also known as Sensitivity, on the Y axis. The FPR closely 

related to the concept of Specificity; FPR equals to one minus the Specificity. 
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Table 4.2. Confusion matrix of ANN1 

 
 Prediction 

  Group 1 Group 2 

Truth 
Group 1 161 351 

Group 2 101 1287 

 

 Table 4.3. Accuracy of ANN1 

 

 

The diagonal in this graph represents a random choice between the two classes. Hence any 

model with the ROC curve below the diagonal would represent a performance poorer than 

a coin toss. This diagonal represents a lower bound for any model we want to test. A perfect 

model that would always classifies correctly would have the first point of the curve at (0,1) 

continuing a horizontal line afterwards. One common indicator of fitness of a model is the 

Area Under Curve (AUC). A perfect model would return an AUC equal to 1 and random 

choice would return an AUC value of 0.5. As we can see from Figure 4.14, ANN1 has an 

AUC value of 0.7245 that is good performance already. Note that the curve is color coded. 

This color code is according to the scale on the right-hand side in Figure 4.14. It represents 

the value that the ANN returns. Meaning it represent the certainty that the model had that 

the correct label would be Group 2 (a value between 0 and 1) this indirectly also tells us 

the certainty that the model had that model had it would be Group 1, being the certainty for 

Group 1 equal to one minus the certainty for Group 2.  

If we analyze a selected point on the curve, we can extract interesting information about 

the performance. Consider the three points in Table 4.4. Each point on the ROC curve 

represents 3 values: Model Certainty, FPR and TPR. Model certainty is the parameter that 

help us decide the best cutoff value. Lower values will consider more of the instances, 

returning a label for more instances but at the cost of accuracy. Higher cutoff values would 

lead to higher accuracy but with the cost of more instance without any label given by the 

model, i.e. more instances with inclusive results. 

 False True 

number 452 1448 

% 23.79 76.21 
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With this model certainty parameter (cutoff value), we can construct partial accuracy 

values. For instance, if we consider only values higher as 0.90 of model certainty (cutoff 

value of 0.90), only a fraction of 0.07 of the total cases are considered. The rest of the 0.93 

instances would return as solution “inconclusive”. However, for the 0.07 fraction the partial 

accuracy, on the fraction, would be 97%. This is a high accuracy but for a very small 

fraction of the data. With a cutoff value of 0.80 the model would be useful for a fraction of 

0.21 with a partial accuracy of 94%, that is a significant increase in fraction for a low cost 

in accuracy loss. The most interesting value is the certainty level of 0.70. here the model 

would consider a fraction 0.80 of the cases, only returning inconclusive for 0.20, with a 

partial accuracy of 83%. This is an encouraging performance for a relatively simple ANN 

topology attending we only feed data form the objective function to it. 

 

Figure 4.14. ROC curve of ANN1 

Table 4.4. Selected ROC points of ANN1 

ROC curve point   

Model 

Certainty 
FPR TPR 

Fraction 

of cases 

Partial 

accuracy 

0.90 0.01 0.09 0.07 97% 

0.80 0.05 0.26 0.21 94% 

0.70 0.56 0.88 0.80 83% 
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4.5.2 ANN2  

For the next model, ANN2, we used additional information present in the problem matrices 

to try to generate better predictions. This also meant that we needed to change the topology, 

number and size of layers and the connections between them. The resulting structure is 

presented in Figure 4.15. Similarly, as with the previous ANN, ANN1 (Figure 4.13), we 

only show the most important information, input layers, dense layers, the connections 

between them, and the output neuron, i.e. predicted class.  

 

Figure 4.15. Structure of ANN2 

Here, besides the objective function parameters of variables 𝑋 and 𝑚, “Input OF X” var 

coefficients and “Input OF m” var coefficients respectively, we also used information from 

the constraints. On one side we included the coefficients multiplying the 𝑋 variable in 

constraints 2, 3.1a, 3.2b and 6, input layers “X_c2”, “X_c3.1a”, “X_c31b”, and “X_c6” 

represent the standardized windows as defined as we referred in section 4.3. Note that 

constraint numbering is according to the original paper by Abdelghany, et al. (2008). For 

variable 𝑚, we also gather the constraint coefficient information for constraint 6 in input 

layer “m_c6” (i.e. window “m_c6”). We can see that 𝑋 and 𝑚 coefficients from the 

objective function and constrains are first joined together in one dense layer each and then 

those dense layers merger together into the main trunk of ANN2. Information from the 
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objective function passes an additional dense layer before joining with the information 

from the constraints, for both variables. ANN2 has 2,200,294 trainable parameters making 

it much more computationally intensive to train than ANN1. 

Table 4.5. Confusion matrix of ANN2 

 

 

 

 

Table 4.6. Prediction accuracy of ANN2 

 False True 

number 445 1455 

% 23.42 76.58 

 

The added data does not improve the accuracy significantly. We can see this by comparing 

Tables 4.2 and 4.3 with 4.5 and 4.6. The confusion matrix shows a small decrease in false 

labeling for both groups, but the total accuracy only increases slightly (less than one percent 

point increase in comparison with ANN1).  

By analyzing the corresponding ROC curve, we have a more complete picture of the 

performance of ANN2 compared to that of ANN1. First indicator is the AUC that is equal 

to 0.734 for ANN2, which is a slight increase in comparison with ANN1. Similarly, as with 

Table 4.4 in case of ANN1, we present the same points of the ROC curve in Table 4.7 for 

ANN2. If the cutoff value of the certainty level is 0.90 ANN considers a fraction of 0.21 

of the cases with a partial accuracy level of 94% this means this outperforms the point in 

the ROC curve with a certainty of 0.80 for ANN1. Having a similar accuracy level (94%) 

for a larger fraction, 0.21 for ANN2 and 0.07 for ANN1. However, when we analyze the 

certainty level of 0.70 the accuracy level of ANN2 is higher for the same level of ANN1 

but the fraction of cases is smaller, 0.56 for ANN2 versus 0.80 for ANN1. So, we can say 

that in some case ANN2 is slightly better than ANN1, but does not consistently dominate 

  Prediction 
  Group 1 Group 2 

Truth 
Group 1 148 364 

Group 2 81 1307 
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ANN1. Hence, we cannot claim that this added complexity is worth it since the increase in 

accuracy is limited.  

 

Figure 4.16. ROC curve of ANN2 

Table 4.7. Selected ROC points of ANN2 

ROC curve point   

Model 

Certainty 
FPR TPR 

Fraction 

of cases 

Partial 

accuracy 

0.90 0.05 0.26 0.21 94% 

0.80 0.09 0.39 0.32 93% 

0.70 0.31 0.64 0.56 87% 

 

4.5.3 ANN3  

ANN3 is similar to ANN1 in terms of its topology. The only difference lies in the last 

neuron where instead of providing a class as the result, the provided result is a scalar value: 

ANN3 tries to predict the delay added by the DSTAR schedule recovery model. Figure 

4.17 depicts the topology of ANN3. 
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Figure 4.17. Structure of ANN3 

Since this is a value prediction, i.e., similar to a regression, there is no model certainty 

returned by the ANN (unlike for ANN1 and ANN2). The only output is the predicted value 

of delay added by the DSTAR. Figure 4.18 shows us the violin graph of the absolute 

differences between the prediction and the actual values, on the Y axis. We can see that 

most of the predictions have a difference of 25 minutes or lower, with a large number of 

values being predicted with less than 10 minutes of differences from the ground truth, 

which is actual solution value of DSTAR. 
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Figure 4.18. Violin plot of the absolute differences between truth and prediction of ANN3 

Next, we analyze in more details the prediction depending on the value of the solution, i.e., 

in terms of the delay added by DSTAR. With this purpose in mind, we generated a boxplot 

graph of the DSTAR delay divided into bins with ranges of 10 minutes each (see Figure 

4.19). We see that for added delays of around 30 minutes, ANN3 tends to overestimate the 

added delays. For values larger than that the model tends to underestimate the true values. 

This progression seems to be almost linear with an increase in the DSTAR delay value. 

This suggests that the model might need more flexibility or that there is a pattern in the 

data that was not shown to the ANN in the training phase. 
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Figure 4.19. Boxplots of the differences between truth and prediction of ANN3, grouped by 

delay value 

4.5.4 ANN4  

As we can see from Figure 4.20, the structure of this ANN is similar to that of ANN2. 

However, after some additional testing, we found that a shallower ANN (one with fewer, 

but wider, layers with more neurons), had a slighter better performance. It was only 

marginally better, and hence we cannot say that a wider ANN would necessarily be 

preferable. Figure 4.21 provides the violin chart of the differences between the prediction 

versus the DSTAR solution, similar to that in Figure 4.18 for ANN3. We can see that the 

overall performance is better than ANN3 having more prediction values at a lower 

difference between them and the truth. 
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Figure 4.20. Structure of ANN4 

Figure 4.21. Violin plot of the absolute differences between truth and prediction of ANN4 

We wanted to see if ANN4 was able to “understand” the aforementioned pattern identified 

while analyzing the comparative boxplots forANN3. With that purpose in mind, we created 

a similar graph for ANN4 (see Figure 4.22). Although there is still a small overestimation 

for small values of delays and underestimation for higher values, the linear trend that we 
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saw with ANN3 (Figure 4.19) is a bit less clear. ANN4 seems to be flexible enough, or is 

fed the right data, to be able to “understand” that pattern. In this case, the more complex 

model ANN4 appears to perform better than the less complex one. 

 

Figure 4.22. Boxplots of the differences between truth and prediction of ANN4, grouped by 

delay value 

To further compare ANN3 and ANN4, we create a graph that depicts the empirical 

cumulative density function (ECDF) of the absolute differences between prediction and 

truth for ANN3 and ANN4 (see Figure 4.23). From this graph, we can see that ANN4 

outperforms ANN3, by shifting the ECDF to the left side compared to that for ANN3. In 

this case, when comparing ANN4 vs ANN3, we can argue that the added complexity of 

feeding more data and having a wider artificial neural network topology is beneficial. 
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Figure 4.23. ECDF of the absolute differences between prediction and truth for ANN3 and 

ANN4 

This difference can be further evidenced by analyzing common accuracy metrics compiled 

in Table 4.8. 

Table 4.8. Accuracy metrics for ANN3 and ANN4 

 ANN3 ANN4 Difference 

R2 0.32 0.51 0.19 

R 0.10 0.26 0.16 

MAE (min) 20.34 16.20  -4.14 

MAPE (%) 7.90 6.10 -1.80 

MSE (min) 681.80 487.53 -194.27 

RMSE (min) 26.11 22.08 -4.03 

 

When comparing the goodness-of-fit or R2 (or its square-root – R) values, we see that the 

values are better for ANN4 than for ANN3. However, these metrics are not the most 

adequate to measure the accuracy of predictions of an ANN. Mean absolute error (MAE) 

given by (4.21) is more informative. For ANN3 the MAE is 20.34 minutes, while for ANN4 
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it improves by approximately 4 minutes to 16.20 minutes. To better understand this error 

in a relative sense compared to the truth, the Mean Absolute Percentage Error (MAPE) 

given by (4.22) was computed. Here, we see that ANN3 has an error of only 7.90%, 

whereas ANN4, which is generally the better preforming model, achieves an even better 

result with just 6.10% MAPE. Finally, we also compute the Mean Square Error (MSE), 

given by (4.23), and the Root Mean Squared Error (RMSE), given by (4.24). As expected, 

ANN4 has smaller values of both these errors than the corresponding values for ANN3. 

MSE allows comparing models to each other, but its actual value is difficult to use to judge 

model accuracy. RMSE is a better metric for this purpose. As with all other error measures, 

the RMSE for ANN4 is better than that for ANN3 demonstrating its superiority. 

𝑀𝐴𝐸 =  
1

𝑁
∑ |Ŷ𝑖 − 𝑌𝑖|

𝑁
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4.6 Conclusion 

We showed that it is possible to create a metamodel that predicts the optimal solutions of 

a schedule recovery model. In this chapter, we have provided a proof of this concept. 

Although we could not accurately predict the exact solution in every instance, we showed 

that it is possible to use such an approach to aid the decision-making process of an AOCC. 

The ML metamodels presented in the case study were applied to airline operations. 

However, such an approach can potentially be applied to other optimization problems 

which run repeatedly and thus generate large databases of optimization problems and 
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solutions. We developed a general methodology that allows the creation of databases ready 

to be used by an ML model as training set. The methodological concept presented in this 

work, Section 4.3, contains a standardized way to feed multiple optimization problems with 

varying dimensions to an ML metamodel so the ML metamodel can predict optimal 

solutions. This methodology solves the issue of varying problem dimensions, changing 

number of variables and constraints, and the interchangeable nature of the columns and 

rows of a problem matrix of an optimization problem. 

Classification ANNs are advantageous due their model prediction certainty parameter. This 

implies that, besides the class, it returns the level of certainty that the model has of its 

prediction. From the case study results, we find that if we choose a high enough cutoff 

value for the model certainty, we can have a nearly perfect prediction accuracy level. This 

would be helpful for confidently using such a metamodel in real life. 

When comparing the classification models, ANN1 and ANN2, we couldn’t conclude that 

the model with the higher complexity is necessarily better at prediction, because there was 

only a small increase in accuracy with the increased complexity, and even after accounting 

for different certainty levels, the accuracy is lower for ANN2 than for ANN1, for the 

highest certainty. So, in this particular case, we can say that the simpler model might 

sometimes be preferred over the more complex one, depending on the utilization, topology, 

and data used to train them. 

Our regression ANN’s had difficulties in predicting the exact value for costs and delays. 

After digging deeper into the results, it was noted that too much similarity across the 

training problems led to an effective reduction in the size of the database. The data was just 

not sufficiently diverse for the models to learn and accurately predict the values of costs or 

delays. The unbalanced nature of the data, having significant more instances with one type 

of class than another, created additional difficulties for the classification ANNs. However, 

our ANNs presented promising results. 

The artificial neural networks presented in the case study are only intended as proofs of the 

concept that they could be used in real life. Since we are only predicting one value at a 

time, the scope is limited. However, this could be used as information to accelerate the 

performance of the recovery optimization model, for instance, by using the results from the 
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classification ANNs (ANN1 and ANN2) as extra constraints. The results from the 

regression ANNs (ANN3 and ANN4) could be used to provide a solution of this variable 

directly to the recovery model. Both potentially could reduce the computational time of the 

recovery model. 

Our methodology is possible to be applied to any optimization problem as long as there 

exists a large set of historical problems and solutions to feed it and train the ML model. 

Thus, the methodological approach as described in Section 4.3 can leverage historical data 

and extract the patterns that exist in these datasets to predict optimization problem 

solutions.  

4.7 Future Work 

The present case study is not an exhaustive listing of all possible ANN topologies. 

Additional types of ANNs could be tested and compared with these results. Consequently, 

the next steps would be to further optimize the topology of the neural network to see if this 

could lead to improved predictive accuracy. As mentioned before, artificial neural 

networks are data hungry. More data and more diverse data, e.g. simulation of additional 

days and multiple types of delays, might be beneficial. It would also be interesting to 

perform an analysis of the transferability of the trained ML metamodels to the data from 

other airlines. It is important to also note that other types of machine learning models, 

besides artificial neural networks, could also be used as ML metamodel, and compared to 

ANNs to see if there is an advantage in using any one of them. 

One important issue in an ML metamodel for optimization problems, especially 

combinatorial problems, is the feasibility of the solutions, i.e., the question of how to 

guarantee that the ML metamodel would generate feasible solutions. One way to proceed 

is checking the final solutions for feasibility and discard the ones that are not feasible. This 

is simple and fast method to implement but with a high risk of not producing usable 

solutions. Another enhancement to be made is to train the ML metamodel with a penalizing 

function for unmet constraints. Both options need to eb compared and the results assessed.  
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5 CONCLUSION 

In this chapter, we gather the main conclusions of the thesis and propose further 

improvements and possible continuations on the research questions we have addressed in 

this document. 

5.1 Main Conclusions 

The work presented in this thesis was able in general to achieve the objectives defined 

when we initiated our research. 

With the robust crew pairing model presented in Chapter 2, we showed that there is an 

optimal level of robustness to be added to schedules. Additionally, it was shown that crew 

schedules due to their constraints – legal framework, complex working rules, etc. – are the 

ideal candidates to add such robustness. Although the answer to uncertainty always 

involves balancing proactive measures and the ability to reactively respond to the 

disruptions, we showed that there is a level of robustness (buffers) that should be added to 

a schedule making it less brittle and able to absorb some of the undesirable consequences 

of the disruptions caused by uncertainty. Since we were able to keep the model in linear 

form, it can be used by any airline directly using off the shelf commercial optimization 

software.  

Similarly, it was possible to show the benefits of the simulation platform presented in 

Chapter 3. It is an easy to use platform that allows any interested party, being it academic 

researchers or industry practitioners, to use the simulation framework with minimal effort. 

Likewise, the simulation model showed its capabilities to benchmark schedule recovery 

solutions. Consequently, it also benchmarks the models that generate these solutions. This 

is important because, otherwise it is hard to compare recovery models without 

implementing their outcomes in practice. 
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We feature an analysis of the behavior of an airline in the model of Chapter 3. We 

confirmed the idea that an agent-based formulation is a suitable way to model an enterprise 

like an airline. We also showed how variations in schedule recovery models can greatly 

influence the outcomes, the decisions that are made and the consequent costs of the 

operation of an airline.  

In the final part of the thesis, Chapter 4, we coupled an airline schedule recovery model 

with a machine learning metamodel, specifically an artificial neural network. We 

demonstrated the potential of such metamodel to be used based on the historical database 

of schedule recovery problems and solutions, an underused asset of the airlines. We also 

conceived an approach that is able to capture the patterns in these data, making it a stepping 

stone for further work to be done in the area of airline schedule recovery. 

5.2 Further improvements 

As valuable as the models, methodologies and conclusions presented here can be, there are 

still further improvements that can be made. 

Relating to the work described in Chapter 2, one of the most important improvements is to 

add robustness to the schedules of other resources of an airline, in particular, the aircraft. 

This would allow to compare the effectiveness of the added robustness for each schedule 

and to compare them which each other. Of course, an integrated way of adding robustness 

to the utilization of all possible resources would be preferable and would be an obvious 

further improvement that could generate interesting conclusions, especially when 

comparing with partial robustness of one resource like the crews, specifically crew 

pairings, as presented in this thesis.  

As referred before, the answer to uncertainty is always a combination of proactive and 

reactive measures. The most important future work is to understand how robust scheduling 

solutions and schedule recovery solutions interact with each other. This means that it is not 

clear that the robust schedules (inducing buffers, redundancy or flexibility in the schedules) 

will always have the same outcomes with the different schedule recovery models used to 

correct disruptions. These interactions between the two should be tested and understood 
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further. This is one of the applications where all three models presented in this thesis would 

come in handy: a robust proactive approach exemplified with our robust crew paring 

model; a platform that is able to simulate the daily operations of an airline in great detail; 

and a machine learning metamodel that is potentially able to mimic any reactive model.  

Finally, we showed that it is possible to learn patterns from the historic database of 

optimization problems and solutions. However, the model we used as proof of concept 

needs to be further developed so it can be used confidently as an AOCC metamodel.  
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7 APPENDIX I 

In this appendix, we present the remaining parameters, variables and constraints in our PP 

formulation that were not presented in Section 2 of the Thesis. Some of these are borrowed 

directly from the base formulation. Others are added or modified by us but are not directly 

related to the robustness considerations. The parameters, sets and decision variable listed 

here are similar to those in the paper by AhmadBeygi et al. (2009). We retained most of 

them exactly as in the original model. For a small number of them, we simply changed 

their notations to avoid naming conflicts with the variables and parameters that were added 

by us (see Section 4 for such added notations). 

I.a Sets 

Ω: Set of crew bases; 

𝒟 = {1, … , 𝐷}: Set of all possible duty indices; 

𝒟′ = {1, … , 𝐷 − 1}: Set of all duty indices except the last duty; 

𝒟′′ = {2, … , 𝐷}: Set of all duty indices except the first duty;  

𝒟′′′ = {2, … , 𝐷 − 1}: Set of all duty indices except the first and the last duties; 

ℬ: Set of all flights originating at a crew base; 

ℰ: Set of all flights terminating at a crew base; 

𝒪: Set of all flight pairs that can end a duty and start the next one; 

ℒ: Set of all flight pairs that can form a permissible sequence within a duty. 
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I.b Parameters 

𝜑 ∈ ℝ+: Maximum duty flying time; 

𝐷 ∈ ℤ+: Maximum allowable number of duties in the pairing. 

I.c Decision Variables 

𝑣𝑓 ∈ {0,1} ∶ Binary decision variable indicating if flight 𝑓 is the first flight in the pairing; 

𝑢𝑑 ∈ {0,1} ∶ Binary decision variable indicating if the pairing contains at least 𝑑 duties. 

I.d Cost Constraints 

𝑐𝑑 ≥  𝜃 ∙ 𝑢𝑑                                                   ∀𝑑 ∈ 𝒟  (I.1) 

𝑐𝑑 ≥ ∑ 𝑏𝑓 ∙ 𝑧𝑓𝑑

𝑓∈ℱ

                                           ∀𝑑 ∈ 𝒟   (I.2) 

𝑐𝑑 ≥ 𝛽 ∙ 𝑒′𝑑                                                ∀𝑑 ∈ 𝒟   (I.3) 

𝑐′′ ≥ ∑ 𝑐𝑑

𝑑∈𝒟

 (I.4) 

𝑐′′ ≥  𝛼 ∙ 𝑇′ (I.5) 

Constraints (I.1) to (I.3) set the cost of each duty to be the maximum of 1) the minimum 

guaranteed payment per duty; 2) the total block time of the duty; and 3) a fraction, 𝛽, of 

the elapsed time of the duty. Similarly, constraints (I.4) and (I.5) set the cost of the pairing, 

𝑐′′, to be the maximum of 1) the sum of all duty costs; and 2) a fraction, 𝛼, of the TAFB. 
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I.e Duty Constraints 

∑ 𝑏𝑓 ∙ 𝑧𝑓𝑑

𝑓∈ℱ

≤ 𝜑                                                 ∀𝑑 ∈ 𝒟 (I.6) 

𝑒′𝑑  ≤ 𝜆                                                          ∀𝑑 ∈ 𝒟 (I.7) 

Constraints (I.6) ensure that the total flying time in the 𝑑𝑡ℎ duty does not exceed the 

maximum permitted flying time. Constraints (I.7) prevent the 𝑑𝑡ℎ duty from violating the 

maximum elapsed time restriction. These two constraints are directly borrowed from the 

base formulation. 

I.f Pairing Constraints 

∑ 𝑧𝑓𝑑 ≤ 1   

𝑑∈𝒟

                                              ∀𝑓 ∈ ℱ (I.8) 

∑ ∑ 𝑧𝑓,𝑑

𝑓∈ℱ𝑑∈𝒟

= 𝜐    (I.9) 

Constraints (I.8), which are directly borrowed from the base formulation, ensure that each 

flight 𝑓 can appear at most once across all duties.  Constraint (I.9), which ensures that the 

pairing has exactly 𝜐 flights in it, is a new constraint that we have added to the base 

formulation. 

I.g Balance constraints 

∑ 𝑣𝑓 = 1   

𝑓∈ℱ

                                              ∀𝑓 ∈  ℱ (I.10) 

∑ 𝑥𝑓1𝑓1

𝑓1∈ℱ:(𝑓1,𝑓)∈ ℒ

 = ∑ 𝑥𝑓𝑓11

𝑓1∈ℱ:(𝑓,𝑓1)∈ ℒ

+ ∑ 𝑦𝑓𝑓11

𝑓1∈ℱ:(𝑓,𝑓1)∈ 𝒪

       ∀𝑓 

∈ ℱ\(ℬ ∪ ℰ) 

(I.11) 
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𝑣𝑓 + ∑ 𝑥𝑓1𝑓1

𝑓1∈ℱ:(𝑓1,𝑓)∈ ℒ

 = ∑ 𝑥𝑓𝑓11

𝑓1∈ℱ:(𝑓,𝑓1)∈ ℒ

+ ∑ 𝑦𝑓𝑓11

𝑓1∈ℱ:(𝑓,𝑓1)∈ 𝒪

           ∀𝑓

∈ ℬ\ℰ 

(I.12) 

∑ 𝑥𝑓1𝑓1

𝑓1∈ℱ:(𝑓1,𝑓)∈ ℒ

 = ∑ 𝑥𝑓𝑓11

𝑓1∈ℱ:(𝑓,𝑓1)∈ ℒ

+ ∑ 𝑦𝑓𝑓11

𝑓1∈ℱ:(𝑓,𝑓1)∈ 𝒪

+ 𝑤𝑓1             ∀𝑓

∈ ℰ\ℬ 

(I.13) 

𝑣𝑓 + ∑ 𝑥𝑓1𝑓1

𝑓1∈ℱ:(𝑓1,𝑓)∈ ℒ

 

= ∑ 𝑥𝑓𝑓11

𝑓1∈ℱ:(𝑓,𝑓1)∈ ℒ

+ ∑ 𝑦𝑓𝑓11

𝑓1∈ℱ:(𝑓,𝑓1)∈ 𝒪

  + 𝑤𝑓1 ∀𝑓 

∈ ℰ ∩ ℬ 

(I.14) 

𝑣𝑓   + ∑ 𝑤𝑓𝑑

𝑑∈𝒟

≤ 1, ∀𝑓 ∈ ℱ (I.15) 

∑ 𝑥𝑓1𝑓𝑑

𝑓1∈ℱ:(𝑓1,𝑓)∈ ℒ

+ ∑ 𝑦𝑓1𝑓,𝑑−1

𝑓1∈ℱ:(𝑓1,𝑓)∈𝒪

= 

= ∑ 𝑥𝑓𝑓1𝑑

𝑓1∈ℱ:(𝑓,𝑓1)∈ ℒ

+ ∑ 𝑦𝑓𝑓1𝑑

𝑓1∈ℱ:(𝑓,𝑓1)∈ 𝒪

     ∀𝑓 ∈ ℱ\ℰ, ∀𝑑 ∈ 𝒟′′′ 

(I.16) 

∑ 𝑥𝑓1𝑓1

𝑓1∈ℱ:(𝑓1,𝑓)∈ ℒ

+ ∑ 𝑦𝑓1𝑓,𝑑−1

𝑓1∈ℱ:(𝑓1,𝑓)∈𝒪

= 

= ∑ 𝑥𝑓𝑓1𝑑

𝑓1∈ℱ:(𝑓,𝑓1)∈ ℒ

+ ∑ 𝑦𝑓𝑓1𝑑

𝑓1∈ℱ:(𝑓,𝑓1)∈ 𝒪

+ 𝑤𝑓𝑑     ∀𝑓 ∈ ℰ, ∀𝑑 ∈ 𝒟′′′ 

(I.17) 

∑ 𝑥𝑓1𝑓𝐷

𝑓1∈:ℱ,(𝑓1,𝑓)∈ ℒ

+ ∑ 𝑦𝑓1𝑓,𝐷−1

𝑓1∈ℱ:(𝑓1,𝑓)∈𝒪

=  ∑ 𝑥𝑓𝑓1𝐷 +

𝑓∈ℱ:(𝑓,𝑓1)∈ ℒ

𝑤𝑓𝐷     ∀𝑓

∈ ℰ 

(I.18) 

∑ 𝑥𝑓1𝑓𝐷

𝑓1∈ℱ:(𝑓1,𝑓)∈ ℒ

+ ∑ 𝑦𝑓1𝑓,𝐷−1

𝑓1∈ℱ:(𝑓1,𝑓)∈𝒪

=  ∑ 𝑥𝑓𝑓1𝐷

𝑓∈ℱ:(𝑓,𝑓1)∈ ℒ

           ∀𝑓

∈ ℱ\ℰ 

(I.19) 

∑ 𝑣𝑓 = ∑ ∑ 𝑤𝑓𝑑

𝑑∈𝒟

 

𝑓∈ℱ:𝑑𝑓=𝜔

 

𝑓∈ℱ:𝑜𝑓=𝜔

                                    ∀𝜔 ∈ Ω (I.20) 
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Constraints (I.10) to (I.20) ensure that the flow of crew across the flight network is balanced 

and also ensure that the crew pairing represents a feasible sequential path in the flight 

network. Apart from a few adjustments, these constraints (other than constraints (I.14), 

(I.15) and (I.20)) are mostly borrowed from the base formulation. These adjustments were 

required to ensure that our model can correctly handle flight networks with multiple crew 

bases. Constraints (I.10) ensure that there is only one first flight in each pairing. Constraints 

(I.11) ensure flow balance for every flight that is in the first duty but neither starts nor ends 

at a crew base. Constraints (I.12), (I.13), and (I.14) ensure flow balance for the flights in 

the first duty that, respectively, start but do not end at a crew base, end but do not start at a 

crew base, and start as well as end at a crew base. Constraints (I.14) did not exist in the 

base formulation because they correspond to a special case that the base formulation did 

not attend to. Constraints (I.15) which are also new constraints, ensure that a flight may 

start or end a pairing, but it cannot do both. This ensures that we do not have pairings 

consisting of a single flight. Constraints (I.16) ensure flow balance for the flights in duties 

other than the first and the 𝐷th one that do not end at a crew base, while constraints (I.17) 

do the same for those which do end at a crew base. Constraints (I.18) ensure flow balance 

for flights in the 𝐷th duty which terminate at a crew base while constraints (I.19) achieve 

the same for those which do not. Constraints (I.20), which we added as new constraints, 

ensure that each pairing starts and ends at the same crew base. This was a small 

modification we made so that the model would handle multiple crew bases. 

I.h Auxiliary Constraints 

𝑢1 = 1     (I.21) 

𝑢𝑑 = ∑ 𝑦𝑓1𝑓2,𝑑−1

(𝑓1,𝑓2)∈ 𝒪

                           ∀𝑑 ∈  𝒟′′     (I.22) 

𝑧𝑓1 = ∑ 𝑥𝑓1𝑓1

𝑓1∈ℱ:(𝑓1,𝑓)∈ ℒ

                                ∀𝑓 ∈ ℱ\ℬ     (I.23) 

𝑧𝑓1 = 𝑣𝑓 + ∑ 𝑥𝑓1𝑓1

𝑓1∈ℱ:(𝑓1,𝑓)∈ ℒ

                                 ∀𝑓 ∈ ℬ     (I.24) 
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𝑧𝑓𝑑 = ∑ 𝑦𝑓𝑓1𝑑

𝑓1∈ℱ:(𝑓,𝑓1)∈ 𝒪

+ ∑ 𝑥𝑓𝑓1𝑑

𝑓1∈ℱ:(𝑓,𝑓1)∈ ℒ

    ∀𝑓 ∈ ℱ\ℰ, ∀𝑑 ∈ 𝒟′′′    (I.25) 

𝑧𝑓𝑑 = 𝑤𝑓𝑑 + ∑ 𝑦𝑓𝑓1𝑑

𝑓1∈ℱ:(𝑓,𝑓1)∈ 𝒪

+  ∑ 𝑥𝑓𝑓1𝑑

𝑓1∈ℱ:(𝑓,𝑓1)∈ ℒ

       ∀𝑓 ∈ ℰ, ∀𝑑 ∈ 𝒟′′′      (I.26) 

𝑧𝑓𝐷 = ∑ 𝑥𝑓𝑓1𝐷

𝑓1∈ℱ:(𝑓,𝑓1)∈ ℒ

                                       ∀𝑓 ∈ ℱ\ℰ      (I.27) 

𝑧𝑓𝐷 = 𝑤𝑓𝐷 + ∑ 𝑥𝑓𝑓1𝐷

𝑓1∈ℱ:(𝑓,𝑓1)∈ ℒ

                                  ∀𝑓 ∈ ℰ           (I.28) 

Constraints (I.21) to (I.28) are unchanged from the base formulation. They implement the 

relationships between all the flight-specific or duty-specific decision variables of the base 

formulation, namely, 𝑥𝑓1𝑓2𝑑, 𝑦𝑓1𝑓2𝑑, 𝑧𝑓𝑑, 𝑣𝑓, 𝑤𝑓𝑑 and 𝑢𝑑. Constraints (I.21) ensure that there 

is at least one duty in the chosen pairing, while constraints (I.22) ensure that, for all 

subsequent duties, there exists exactly one 𝑦 variable that connects it to the previous duty. 

Constraints (I.23) and (I.24) ensure that if a flight, which is covered by the first duty in a 

pairing, starts at a crew base then it can be the first flight of the pairing, and otherwise it 

must be preceded by another flight in the same duty. Analogously, constraints (I.25) and 

(I.26) ensure that if a flight ends at a crew base then it can be the last flight of the pairing, 

and otherwise it must be followed by another flight in the same or the next duty. Finally, 

constraints (I.27) and (I.28) ensure that, for any flight covered by the last duty of the 

pairing, if it ends at a crew base then it can be the last flight in the pairing, and otherwise 

it must be followed by another flight in the same duty. 
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8 APPENDIX II 

Appendix II relates to the Section 3 of the Thesis 

II.a Recovery models 
II.a.i DSTAR 

The DSTAR model is based on the work done by Abdelghany et. al(Abdelghany et al., 

2008): 

Abdelghany, K. F., Abdelghany, A. F., & Ekollu, G. (2008). An integrated decision support 

tool for airlines schedule recovery during irregular operations. European Journal of 

Operations Research, 185, 825–848. 

The recovery process is divided into stages where at end of each stage, in case any flight is 

disrupted in this stage, resources (i.e. aircrafts, cockpit crew pairs, cabin crew pairs) are 

rescheduled, delayed. If necessary, flights canceled to be able to cope with the delays. 

Every stage is limited by independent flights in terms of time and space. The optimization 

algorithm is developed as a mixed integer formulation. This model gave us a good 

framework how to insert the optimization algorithm into the simulation framework, using 

the staging scheme (view Figure II.1). 
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Figure II.1. Framework how the DSTAR model works (source (Abdelghany et al., 2008)) 

In the AOSM the model does not run all stages until the end. We decided to only run a 

stage at the time since the model was designed to know beforehand the future delays. In a 

stochastic model, as AOSM, this is not the case. It leads to a more myopic version 

compared the original DSTAR model, but it better represents the reality faced by an AOCC 

of an airline. They do not know the delays in advance. 

II.a.i.i Sets and indices 

𝐹𝑠: set of flights 𝑓 in stage 𝑠 (in our case the is only one stage each time the DSTAR model 

is called); 

𝑘: defines the type of resource (aircraft, crew pairing); 

𝑟𝑘: represents the resource 𝑟 of type 𝑘; 
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II.a.i.ii Variables 

𝑥𝑟,𝑓: binary variable that indicates that resource 𝑟 is covering flight 𝑓; 

𝑏𝑟,𝑓: binary variable that indicates if resource can cover any part of trip pair 𝑟; 

𝑝𝑟,𝑓: the part of the crew paring that can be covered by resource 𝑟; 

𝐿𝑓: binary variable that indicates if flight 𝑓 is canceled or not; 

𝑚𝑓: variable that indicates the actual departure time of flight 𝑓; 

𝑛𝑓: variable that indicates the actual arrival time of flight 𝑓; 

II.a.i.iv Parameters 

𝑎𝑟,𝑓: ready time of resource 𝑟 to operate flight 𝑓; 

𝑐𝑟,𝑓: swapping cost of resource 𝑟 to flight 𝑓; 

𝑐𝑑𝑓: 1 minute of delay cost for flight 𝑓; 

𝑐𝑐𝑓: cost for canceling flight 𝑓; 

𝑣𝑟:  available time in duty that resource 𝑟 still has left; 

𝑡𝑓: planned departure time of flight 𝑓; 

𝑇𝑓: block time of flight 𝑓; 

II.a.i.v Objective Function 

Without any major modification we were able to incorporate the model. In (II.1) the 

objective function of the model is given: 
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min ∑ ∑ 𝑐𝑟,𝑓 ⋅ 𝑥𝑟,𝑓

𝑟𝑓∈𝐹𝑠

+  ∑ 𝑐𝑑𝑓 ⋅ [𝑚𝑓 − 𝑡𝑓]

𝑓∈𝐹𝑠

+  ∑ 𝑐𝑐𝑠 ⋅ 𝐿𝑓

𝑓∈𝐹𝑠

 (II.1) 

The objective function minimizes is the sum of three components. First parcel minimizes 

the swapping of resources the second is the cost relative to delays and the final one captures 

the cancelation cost. 

II.a.i.vi Constraints 

 The objective function is subjected to the following constrains: 

𝑥𝑟,𝑓  ≤ 𝑏𝑟,𝑓                                                     ∀𝑓 ∈ 𝐹𝑠 , 𝑟 (II.2) 

The first constraint, equation (II.2), indicates that the resource 𝑥𝑟,𝑓 is only possible to be 

used if it is available. 

∑ 𝑥𝑟,𝑓

𝑓∈𝐹𝑠

 ≤ 1                                                       ∀𝑓 ∈ 𝑟 (II.3) 

In (II.3) the constrain obliges the model to only assign resource 𝑥𝑟,𝑓 to a single flight. 

[1 − 𝐿𝑓] ∙ 𝑔𝑘,𝑓 =   ∑ 𝑥𝑟𝑘,𝑓

𝑟𝑘

                                 ∀𝑓 ∈ 𝐹𝑠 , 𝑘 (II.4) 

The constraint (II.4) assures that if a flight is cancelled there cannot be assigned any 

resources to that flight. 

𝑚𝑓 ≥ 𝑎𝑟,𝑓 ∙ 𝑥𝑟,𝑓                                                ∀𝑓 ∈ 𝐹𝑠, 𝑟 (II.5) 

In constraint given by (II.5) the model is forced to for any given flight the departure time 

is later that the allocated resources latest ready time. 

𝑛𝑓 ≤ 𝑣𝑟 ∙ 𝑥𝑟,𝑓 + (1 − 𝑥𝑟,𝑓) ∙ 𝑈𝐵(𝑛𝑓)                            ∀𝑓 ∈ 𝐹𝑠, 𝑟 (II.6) 

Constraint in (II.6) assures that in case of delays the maximum duty time is not violated. 
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𝑛𝑓 = 𝑚𝑓 + 𝑇𝑓                                                 ∀𝑓 ∈ 𝐹𝑠 (II.7) 

Constraint described in (II.7) computes the arrival time. It is equal the real departure time 

plus the block time. 

𝑚𝑓 ≥ 𝑡𝑓                                                      ∀𝑓 ∈ 𝐹𝑠 (II.8) 

In constraint (II.8) all flight must depart at or after their scheduled departure. This means 

that there are no early departures, i.e. negative delays. 

𝑥𝑟,𝑓 , 𝐿𝑓  ∈  {0,1}                                          ∀𝑓 ∈ 𝐹𝑠  , 𝑟 (II.9) 

 

𝑚𝑓 , 𝑛𝑓  ∈  ℤ                                             ∀𝑓 ∈ 𝐹𝑠   (II.10) 

In(II.9) and (II.10)we assure that 𝑥𝑟,𝑓 and 𝐿𝑓 are binary and in that  𝑚𝑓 and 𝑛𝑓 are integers. 

II.a.ii DPM model 

The DPM model currently integrated into de AOSM is based on the following work from 

Bratu and Barnhart (2006): 

Bratu, S., & Barnhart, C. (2006). Flight operations recovery: New approaches 

considering passenger recovery. Journal of Scheduling, 9(3),279-298. 

These authors developed a recovery model that it is passenger centric.  The paper contains 

2 models: the passenger delay model (PDM) where the cost for passenger are modelled in 

high detail and the disrupted passenger metric (DPM) where these costs are captured in a 

simplified manner. It allows to delay or cancel departures and assign reserve crews to 

individual flight legs. The computational tests showed that the more detailed version 

(PDM) has tractability issues not able to be solved in a real-time environment where as the 

DPM is able to produce solutions in an efficient manner. As we can see in Figure II.2 the 

model is also developed to be solved inside a simulation and re-run in steps (t1, t2, t3,.., 

te). One other important detail is that this model is not linear. 



 INTEGRATED SCHEDULE RECOVERY   APPENDIX II 

David Joaquim Marques Antunes  175 

 

 Figure II.2. Framework of the DPM model (source (Bratu and Barnhart, 2006)) 

II.a.ii.i Sets and indices 

𝐾: set of fleet types; 

𝐴: set of airports; 

𝐹𝑛+
𝑘,𝑎

: set of flight arcs of fleet type 𝑘 departing form node 𝑛 of airport 𝑎; 

𝐹𝑛−
𝑘,𝑎

: set of flight arcs of fleet type 𝑘 arriving form node 𝑛 of airport 𝑎; 

𝑁(𝑘, 𝑎): Set of nodes with in or outflow at airport 𝑎 for fleet type 𝑘; 

𝑅: set of crews; 

𝑓𝑐(𝑚): 𝑚th flight leg scheduled to be operated by crew 𝑐: 

𝑀(𝑐, 𝑚, 𝑡): set of copies of light leg 𝑓𝑐(𝑚 + 1) to which crew c cannot connect with. 

𝐼(𝑓𝑐(𝑚)): Set of flight copies of flight leg 𝑓𝑐(𝑚); 



 INTEGRATED SCHEDULE RECOVERY   APPENDIX II 

David Joaquim Marques Antunes  176 

𝐼𝑇(𝑝): set of flight legs in itinerary p; 

𝑃: set of passenger itineraries; 

II.a.ii.ii Variables 

𝑥𝑓
𝑡: binary variable that indicates if flight 𝑓 will depart at the 𝑡th offset time; 

𝑧𝑓: binary variable that indicates if flight f is canceled or not; 

𝑦𝑡
𝑘,𝑎

: integer variable that indicates the number of aircrafts on the ground of type 𝑘, at 

airport 𝑎, at time 𝑡; 

𝑞𝑚
𝑐 : integer variable that indicates a reserve crew is necessary to operate the 𝑚th flight leg 

of crew 𝑐 original scheduled flights due to work rule violation; 

𝑟𝑚
𝑐 : integer variable that indicates a reserve crew is necessary to operate the 𝑚th flight leg 

of crew 𝑐 original scheduled flights due to cancelation; 

II.a.ii.iii Parameters 

𝑒𝑐
𝑚: cost of calling a reserve crew to operate 𝑚th flight of crew 𝑐 schedule; 

𝑠𝑝: Cost per disrupted passenger; 

𝑜𝑡𝑓: Cost of delaying flight 𝑓, 𝑡 time-steps; 

𝑛𝑝: Number of passengers in itinerary 𝑝; 

𝑛𝑓: Number of itineraries that end with flight 𝑓; 

𝛽𝑓
𝑝
: Indicates if itinerary 𝑝 terminates with flight 𝑓; 

𝑑𝑓
𝑡 : delay cost per non- disrupted passenger of flight 𝑓, time offset 𝑡. 
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II.a.ii.iv  Objective function 

The objective function given in (II.11) minimizes the sum of 3 parcels. First the cost of 

disrupted passengers, second is the cost of delay and the 3rd related to the cost of extra crew 

pairing necessary to cover the flights: 

min ∑ 𝑠𝑝 ∙ 𝑛𝑝 ∙ 𝜆𝑝

𝑝∈𝑃

+ ∑ ∑ (𝑜𝑓
𝑡 + (𝑛𝑓 − ∑ 𝑛𝑝 ∙ 𝛽𝑓

𝑝 ∙

𝑝∈𝑃

𝜆𝑝)) ∙ 𝑥𝑓
𝑡

𝑡∈𝐼(𝑓)𝑓∈𝐹

+ ∑ ∑ 𝑒𝑚
𝑐

𝑚=1,…,𝑛𝑐𝑐∈𝑅

∙ (𝑟𝑚
𝑐 + 𝑞𝑚

𝑐 ) 

(II.11) 

 

II.a.ii.v  Constraints 

∑ 𝑥𝑓
𝑡

(𝑓,𝑡)∈𝐹𝑛−
𝑘,𝑎

+ 𝑦𝑛−
𝑘,𝑎  − ∑ 𝑥𝑓

𝑡

(𝑓,𝑡)∈𝐹𝑛+
𝑘,𝑎

− 𝑦𝑛+
𝑘,𝑎 = 0      ∀𝑘 ∈ 𝐾, ∀𝑎 ∈ 𝐴, ∀𝑛 

∈ 𝑁(𝑘, 𝑎) 

(II.12) 

∑ 𝑥𝑓
𝑡

(𝑓,𝑡)∈𝐹𝑏+
𝑘,𝑎

+ 𝑦𝑛+
𝑘,𝑎 = 𝑁𝑏

𝑘,𝑎                           ∀𝑘 ∈ 𝐾, ∀𝑎 ∈ 𝐴 
(II.13) 

∑ 𝑥𝑓
𝑡

(𝑓,𝑡)∈𝐹𝑒−
𝑘,𝑎

+ 𝑦𝑒−
𝑘,𝑎 = 𝑁𝑒

𝑘,𝑎                           ∀𝑘 ∈ 𝐾, ∀𝑎 ∈ 𝐴 
(II.14) 

Constraint (II.12) to (II.14) are aircraft flow balance constrains. The authors mention in the 

original paper that if necessary, it is possible to add spare aircrafts to the model by adding 

them to the right-hand side of these constrains. 
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∑ 𝑥𝑓
𝑡

𝑡 ∈𝐼(𝑓)

+ 𝑧𝑓 = 1                                                ∀𝑓 ∈ 𝐹 (II.15) 

Constraints in (II.15) guarantees that each aircraft is assigned to a flight leg or cancelled. 

𝑥𝐼𝑇(𝑝,1)
𝑡 ∑ 𝑥𝐼𝑇(𝑝,2)

𝑢

𝑢∈𝑀𝐶(𝐼𝑇(𝑝,1),𝑡)

− 𝜆𝑝 ≤ 1         ∀𝑝 ∈ 𝐶, ∀𝑡 ∈ 𝐼(𝐼𝑇(𝑝, 𝑞))  (II.16) 

𝜆𝑝 ≥ 𝑧𝑓                          ∀𝑝 ∈ 𝑃, ∀𝑡 ∈ 𝐼(𝐼𝑇(𝑝)) (II.17) 

When there are cancelled flights, or insufficient connection time the passengers on that 

route are classified as disrupted this is handled by constraints (II.16) and (II.17), 

respectively. 

𝑥𝑓,𝑐(𝑚)
𝑡 + ∑ 𝑥𝑓,𝑐(𝑚)

𝑢

𝑖∈𝑀(𝑐,𝑚,𝑡)

− 𝑞𝑚+1
𝑐 ≤ 1,   ∀𝑐 ∈ 𝑅, ∀𝑚 ∈ 1, … , 𝑛𝑐 − 1, ∀𝑡 

∈ 𝐼(𝑓𝑐(𝑚)) 

(II.18) 

Constraint given by (II.18) assures that a reserve crew is placed at a flight that does not 

sufficient time to connect to the next flight and so one or more work rules would be 

violated. 

∑ ∑ 𝑥𝑓,𝑐(𝑚)
𝑡

𝑡∈𝐼(𝑓𝑐(𝑚))𝑚=1,…,𝑖

∙ 𝛾𝑎1𝑐(𝑚)
𝑎1𝑐(𝑖)

− 𝑥𝑓,𝑐(𝑚)
𝑡 ∙ 𝛾𝑎2𝑐(𝑚)

𝑎1𝑐(𝑖)
− ∑ 𝑟𝑚

𝑐 ∙ 𝛾𝑎1𝑐(𝑚)
𝑎1𝑐(𝑖)

𝑚=1,…,𝑖

< 0 

 ∀𝑐 ∈ 𝑅, ∀𝑖 = 2, … , 𝑛𝑐 

(II.19) 

In (II.19) we present the constraints that handles the reserve crews needed due to 

cancellations.  

∑ ∑ (𝑟𝑚
𝑐 + 𝑞𝑚

𝑐 )

𝑚=1,…,𝑛𝑐𝑐∈𝑅

∙ 𝛾𝑎1𝑐(𝑚)
𝑎 ∙ 𝛿𝑐

𝑘 ≤ 𝐸(𝑎, 𝑘)   ∀𝑎 ∈ 𝐴′, ∀𝑘 ∈ 𝐾′ (II.20) 

The constraint in (II.20) limits the new assigned reserve crew due to work rule violations 

or cancelations to the maximum available crews. 
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0 ≤ 𝜆𝑝 ≤ 1                                                     ∀𝑝 ∈ 𝑃, (II.21) 

0 ≤ 𝑟𝑐
𝑚, 𝑞𝑐

𝑚 ≤ 1                    ∀𝑚 ∈ 1, … , 𝑛𝑐 , ∀𝑐 ∈ 𝑅 (II.22) 

𝑥𝑓
𝑡 ∈ {0,1}                              ∀𝑓 ∈ 𝐹, ∀𝑡 ∈ 𝐼(𝑓) (II.23) 

𝑧𝑓 ≥ 0                                                  ∀𝑓 ∈ 𝐹 (II.24) 

𝑦𝑛
𝑘,𝑎 ≥ 0       ∀𝑘 ∈ 𝐾, ∀𝑎 ∈ 𝐴, ∀𝑎 ∈ 𝐴, ∀𝑛 ∈ 𝑁(𝑘, 𝑎) (II.25) 

Constraints (II.21) to (II.25) grant that 𝑥𝑓
𝑡 is binary, 𝑦𝑛

𝑘,𝑎
  and 𝑧𝑓 ≥ 0  are non-negative, and 

that 𝑟𝑐
𝑚, 𝑞𝑐

𝑚, 𝜆𝑝 are between 0 and 1. 

II.b Delay modeling details 

II.b.i 𝒑𝒚– Yearly pattern 

Table II.1. Result of the Box-Pierce test for the yearly pattern of Alaska Airlines  

Lag 1 2 3 4 5 6 7 8 9 10 

ABQ 0.8088 0.7946 0.9064 0.6621 0.7696 0.5923 0.7036 0.6444 0.7324 0.7797 

ADK 0.3081 0.4674 0.5459 0.2679 0.2306 0.2434 0.2385 0.3166 0,1577 0,1655 

ADQ 0,6330 0,6012 0,4510 0,4918 0,3112 0,4284 0,3389 0,3859 0,4391 0,5340 

ANC 0,1738 0,0026 0,0018 0,0022 0,0025 0,0034 0,0046 0,0022 0,0035 0,0054 

ATL 0,3648 0,3374 0,2098 0,3386 0,4736 0,4888 0,5826 0,3403 0,4348 0,4904 

AUS 0,0269 0,0300 0,0712 0,1278 0,1917 0,2843 0,3383 0,3678 0,4026 0,4471 

BET 0,3381 0,3469 0,0632 0,1159 0,1893 0,2222 0,3120 0,2042 0,2767 0,3584 

BNA 0,1474 0,3062 0,4887 0,4915 0,6360 0,7524 0,8314 0,8477 0,9012 0,9255 

BOS 0.3677 0.5930 0.5222 0.0306 0.0317 0.0567 0.0815 0.0605 0.0589 0.0505 

BRW 0.5067 0.5018 0.3466 0.0563 0.0273 0.0428 0.0713 0.1033 0.1091 0.1403 

BUR 0.7461 0.9144 0.7589 0.6891 0.6853 0.6101 0.7183 0.8065 0.3066 0.3222 

BWI 0.9644 0.8473 0.8550 0.9122 0.8418 0.8396 0.8448 0.9041 0.4660 0.2026 

CDV 0.0276 0.0842 0.1679 0.2810 0.3118 0.3942 0.4914 0.5106 0.6115 0.3628 

CHS 0.1660 0.3768 0.4505 0.5712 0.6829 0.7709 0.8563 0.8432 0.8626 0.8872 

DCA 0.7141 0.2955 0.2605 0.3811 0.4695 0.5159 0.5944 0.2099 0.0867 0.0630 

DEN 0.2579 0.0135 0.0289 0.0545 0.0912 0.1470 0.0083 0.0023 0.0041 0.0061 
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DFW 0.8484 0.0083 0.0096 0.0033 0.0075 0.0109 0.0015 0.0030 0.0051 0.0056 

DTW 0.0729 0.0901 0.1337 0.1927 0.2844 0.3910 0.4851 0.3608 0.4111 0.4841 

EWR 0.5945 0.6678 0.8133 0.0028 0.0056 0.0111 0.0199 0.0174 0.0119 0.0194 

FAI 0.0276 0.0848 0.0803 0.0112 0.0182 0.0340 0.0238 0.0398 0.0585 0.0835 

FLL 0.0019 0.0068 0.0153 0.0336 0.0621 0.0313 0.0530 0.0840 0.0337 0.0260 

GEG 0.2982 0.3038 0.4641 0.5458 0.6347 0.5818 0.5498 0.6245 0.6864 0.7688 

HNL 0.0247 0.0781 0.1004 0.1709 0.2105 0.0477 0.0338 0.0449 0.0638 0.0817 

IAD 0.8202 0.8553 0.6757 0.1762 0.1093 0.1720 0.2156 0.2970 0.2176 0.2795 

IAH 0.0512 0.1234 0.2134 0.2317 0.3326 0.3120 0.2463 0.3259 0.4173 0.3458 

JFK 0.7822 0.5611 0.7415 0.8406 0.8870 0.9288 0.9570 0.9787 0.9883 0.0151 

JNU 0.6610 0.8996 0.9721 0.5254 0.6526 0.3323 0.4367 0.5448 0.6072 0.6296 

KOA 0.0018 0.0033 0.0027 0.0027 0.0057 0.0115 0.0090 0.0064 0.0101 0.0113 

KTN 0.0015 0.0009 0.0008 0.0021 0.0040 0.0020 0.0040 0.0036 0.0011 0.0005 

LAS 0.9336 0.0008 0.0003 0.0009 0.0021 0.0046 0.0003 0.0004 0.0006 0.0011 

LAX 0.4066 0.0442 0.0967 0.0024 0.0009 0.0017 0.0014 0.0028 0.0040 0.0057 

LIH 0.1715 0.0143 0.0003 0.0010 0.0023 0.0037 0.0055 0.0056 0.0090 0.0101 

MCI 0.9193 0.9125 0.3061 0.3756 0.3824 0.5042 0.6203 0.6914 0.4862 0.4505 

MCO 0.1871 0.1674 0.3063 0.4336 0.5004 0.3004 0.4043 0.4999 0.5807 0.6724 

MSP 0.0052 0.0200 0.0479 0.0843 0.0999 0.0103 0.0103 0.0173 0.0291 0.0076 

MSY 0.0013 0.0007 0.0022 0.0010 0.0007 0.0016 0.0029 0.0036 0.0059 0.0083 

OAK 0.0281 0.0896 0.0004 0.0008 0.0016 0.0022 0.0045 0.0078 0.0124 0.0193 

OGG 0.0532 0.0756 0.1601 0.0309 0.0015 0.0021 0.0028 0.0018 0.0012 0.0023 

OMA 0.0004 0.0016 0.0026 0.0061 0.0110 0.0089 0.0058 0.0053 0.0060 0.0103 

OME 0.5677 0.7811 0.8867 0.8693 0.8175 0.8110 0.8199 0.6112 0.6460 0.3495 

ONT 0.2199 0.4685 0.6763 0.8219 0.8140 0.8594 0.9152 0.9165 0.9498 0.9699 

ORD 0.2850 0.0105 0.0274 0.0519 0.0837 0.1115 0.1699 0.2395 0.2859 0.3309 

OTZ 0.8803 0.9026 0.9537 0.7888 0.6064 0.7277 0.5639 0.5676 0.3836 0.2684 

PDX 0.0253 0.0395 0.0742 0.0969 0.1395 0.2100 0.1319 0.1914 0.2561 0.3301 

PHL 0.0327 0.0938 0.1486 0.1088 0.1567 0.1408 0.0928 0.1212 0.1748 0.1956 

PHX 0.0388 0.0475 0.0220 0.0138 0.0217 0.0282 0.0487 0.0212 0.0201 0.0326 

PSG 0.6776 0.6582 0.8082 0.9140 0.9488 0.9739 0.8641 0.9195 0.8820 0.8841 

PSP 0.5502 0.8339 0.9324 0.9224 0.3347 0.3929 0.1260 0.1679 0.2129 0.2530 

RDU 0.9836 0.3995 0.5914 0.2607 0.3123 0.3985 0.1868 0.2515 0.3348 0.4225 

SAN 0.0058 0.0168 0.0115 0.0200 0.0043 0.0073 0.0111 0.0189 0.0157 0.0248 

SAT 0.1395 0.2201 0.3352 0.4932 0.4975 0.0986 0.1522 0.2169 0.2785 0.3593 

SCC 0.0788 0.0251 0.0384 0.0704 0.1006 0.0821 0.1297 0.1658 0.2292 0.2363 

SEA 0.3262 0.1736 0.2478 0.0881 0.0667 0.0961 0.0499 0.0748 0.1123 0.0857 

SFO 0.1780 0.3624 0.2613 0.3239 0.4242 0.4453 0.5503 0.6569 0.7161 0.7903 

SIT 0.6821 0.0017 0.0032 0.0078 0.0076 0.0120 0.0124 0.0140 0.0237 0.0367 

SJC 0.0295 0.0761 0.0396 0.0141 0.0286 0.0415 0.0698 0.0785 0.1179 0.0281 
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SLC 0.3818 0.6820 0.6470 0.3700 0.4976 0.5577 0.4176 0.2847 0.3715 0.4606 

SMF 0.0353 0.0660 0.0735 0.1095 0.0738 0.0679 0.0733 0.1070 0.1428 0.1984 

SNA 0.0196 0.0647 0.0114 0.0165 0.0330 0.0557 0.0706 0.1096 0.1132 0.1572 

STL 0.5132 0.5329 0.7162 0.8515 0.9134 0.9522 0.8558 0.9079 0.7078 0.7464 

TPA 0.0261 0.0320 0.0037 0.0045 0.0019 0.0031 0.0062 0.0113 0.0195 0.0278 

TUS 0.3178 0.3974 0.6051 0.7629 0.8662 0.9254 0.9594 0.9284 0.9490 0.9129 

WRG 0.1357 0.3284 0.5148 0.2630 0.1734 0.1771 0.2091 0.1762 0.0657 0.0967 

YAK 0.0604 0.1517 0.0843 0.0294 0.0417 0.0478 0.0354 0.0567 0.0846 0.1059 

AKN 0.8588 0.9803 0.7630 0.8377 0.8590 0.9017 0.9267 0.9375 0.9624 0.9000 

DLG 0.6350 0.8021 0.9219 0.9252 0.9705 0.9198 0.9357 0.9666 0.9562 0.9034 

GST 0.3760 0.2714 0.4336 0.5765 0.7027 0.7862 0.8658 0.8330 0.8045 0.8645 

 

Table II.2. Result of the Lijung-Box test for the yearly pattern of Alaska Airlines 

Lag 1 2 3 4 5 6 7 8 9 10 

ABQ 0.8081 0.7927 0.9050 0.6554 0.7636 0.5809 0.6931 0.6303 0.7196 0.7673 

ADK 0.3053 0.4628 0.5396 0.2580 0.2192 0.2299 0.2231 0.2982 0.1407 0.1465 

ADQ 0.6316 0.5980 0.4453 0.4848 0.3019 0.4177 0.3260 0.3714 0.4230 0.5173 

ANC 0.1721 0.0024 0.0016 0.0020 0.0022 0.0030 0.0041 0.0019 0.0030 0.0047 

ATL 0.3628 0.3338 0.2051 0.3323 0.4663 0.4798 0.5731 0.3258 0.4189 0.4732 

AUS 0.0263 0.0291 0.0692 0.1245 0.1871 0.2784 0.3308 0.3585 0.3915 0.4343 

BET 0.3361 0.3433 0.0606 0.1117 0.1832 0.2146 0.3026 0.1936 0.2638 0.3437 

BNA 0.1457 0.3031 0.4848 0.4856 0.6303 0.7473 0.8271 0.8424 0.8971 0.9217 

BOS 0.3658 0.5903 0.5172 0.0286 0.0293 0.0528 0.0761 0.0553 0.0533 0.0449 

BRW 0.5049 0.4983 0.3410 0.0532 0.0252 0.0395 0.0663 0.0964 0.1011 0.1303 

BUR 0.7450 0.9137 0.7552 0.6831 0.6777 0.5993 0.7085 0.7983 0.2872 0.3010 

BWI 0.9643 0.8458 0.8527 0.9102 0.8370 0.8336 0.8379 0.8990 0.4444 0.1833 

CDV 0.0269 0.0825 0.1649 0.2768 0.3059 0.3870 0.4835 0.5007 0.6017 0.3458 

CHS 0.1630 0.3715 0.4428 0.5622 0.6737 0.7621 0.8494 0.8328 0.8513 0.8760 

DCA 0.7130 0.2916 0.2553 0.3745 0.4618 0.5068 0.5846 0.1968 0.0776 0.0550 

DEN 0.2560 0.0129 0.0276 0.0522 0.0877 0.1419 0.0072 0.0019 0.0034 0.0051 

DFW 0.8478 0.0079 0.0091 0.0030 0.0068 0.0100 0.0013 0.0026 0.0044 0.0047 

DTW 0.0717 0.0882 0.1306 0.1882 0.2784 0.3839 0.4771 0.3490 0.3976 0.4696 

EWR 0.5930 0.6651 0.8109 0.0025 0.0050 0.0100 0.0180 0.0154 0.0103 0.0169 

FAI 0.0270 0.0831 0.0780 0.0104 0.0169 0.0317 0.0218 0.0366 0.0539 0.0773 

FLL 0.0018 0.0066 0.0147 0.0323 0.0600 0.0294 0.0501 0.0796 0.0306 0.0231 

GEG 0.2962 0.3003 0.4596 0.5402 0.6285 0.5727 0.5380 0.6125 0.6742 0.7580 

HNL 0.0241 0.0765 0.0979 0.1669 0.2052 0.0443 0.0308 0.0409 0.0582 0.0746 
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IAD 0.8195 0.8539 0.6711 0.1696 0.1033 0.1636 0.2052 0.2844 0.2041 0.2636 

IAH 0.0503 0.1212 0.2099 0.2268 0.3263 0.3038 0.2365 0.3143 0.4044 0.3300 

JFK 0.7813 0.5575 0.7381 0.8376 0.8841 0.9264 0.9552 0.9777 0.9876 0.0118 

JNU 0.6597 0.8988 0.9717 0.5171 0.6444 0.3199 0.4228 0.5303 0.5922 0.6131 

KOA 0.0017 0.0032 0.0025 0.0025 0.0053 0.0108 0.0082 0.0057 0.0091 0.0100 

KTN 0.0014 0.0008 0.0008 0.0019 0.0038 0.0018 0.0036 0.0032 0.0009 0.0004 

LAS 0.9333 0.0007 0.0003 0.0008 0.0019 0.0042 0.0002 0.0004 0.0005 0.0010 

LAX 0.4046 0.0428 0.0938 0.0021 0.0008 0.0015 0.0012 0.0024 0.0034 0.0049 

LIH 0.1697 0.0137 0.0003 0.0009 0.0020 0.0034 0.0049 0.0050 0.0081 0.0089 

MCI 0.9190 0.9116 0.3000 0.3680 0.3732 0.4942 0.6105 0.6815 0.4691 0.4307 

MCO 0.1853 0.1645 0.3019 0.4282 0.4938 0.2906 0.3930 0.4878 0.5681 0.6605 

MSP 0.0050 0.0193 0.0466 0.0820 0.0966 0.0093 0.0092 0.0156 0.0263 0.0064 

MSY 0.0012 0.0007 0.0021 0.0009 0.0007 0.0015 0.0026 0.0032 0.0053 0.0074 

OAK 0.0275 0.0878 0.0004 0.0007 0.0015 0.0020 0.0040 0.0070 0.0112 0.0175 

OGG 0.0522 0.0739 0.1570 0.0292 0.0013 0.0018 0.0024 0.0015 0.0010 0.0019 

OMA 0.0003 0.0014 0.0023 0.0056 0.0100 0.0078 0.0048 0.0043 0.0048 0.0083 

OME 0.5661 0.7794 0.8851 0.8665 0.8123 0.8044 0.8123 0.5951 0.6291 0.3266 

ONT 0.2180 0.4656 0.6734 0.8196 0.8101 0.8555 0.9123 0.9127 0.9471 0.9680 

ORD 0.2830 0.0100 0.0262 0.0498 0.0804 0.1070 0.1637 0.2316 0.2764 0.3196 

OTZ 0.8798 0.9016 0.9529 0.7839 0.5968 0.7191 0.5498 0.5518 0.3638 0.2482 

PDX 0.0247 0.0384 0.0721 0.0939 0.1351 0.2041 0.1254 0.1829 0.2457 0.3180 

PHL 0.0320 0.0919 0.1456 0.1052 0.1517 0.1348 0.0870 0.1137 0.1650 0.1840 

PHX 0.0380 0.0462 0.0209 0.0129 0.0203 0.0262 0.0456 0.0191 0.0178 0.0291 

PSG 0.6764 0.6554 0.8056 0.9124 0.9475 0.9730 0.8576 0.9149 0.8742 0.8753 

PSP 0.5486 0.8326 0.9316 0.9207 0.3238 0.3805 0.1166 0.1560 0.1984 0.2362 

RDU 0.9835 0.3954 0.5869 0.2534 0.3035 0.3881 0.1762 0.2384 0.3195 0.4056 

SAN 0.0056 0.0162 0.0109 0.0190 0.0040 0.0066 0.0101 0.0173 0.0140 0.0223 

SAT 0.1379 0.2172 0.3309 0.4882 0.4906 0.0922 0.1433 0.2056 0.2649 0.3438 

SCC 0.0775 0.0242 0.0369 0.0678 0.0969 0.0780 0.1238 0.1583 0.2198 0.2250 

SEA 0.3242 0.1705 0.2433 0.0842 0.0630 0.0908 0.0458 0.0690 0.1042 0.0778 

SFO 0.1763 0.3593 0.2565 0.3177 0.4167 0.4361 0.5405 0.6477 0.7066 0.7820 

SIT 0.6808 0.0016 0.0030 0.0072 0.0071 0.0110 0.0113 0.0127 0.0216 0.0335 

SJC 0.0289 0.0745 0.0381 0.0132 0.0269 0.0390 0.0659 0.0737 0.1112 0.0247 

SLC 0.3799 0.6798 0.6428 0.3622 0.4889 0.5480 0.4043 0.2699 0.3546 0.4423 

SMF 0.0346 0.0645 0.0713 0.1062 0.0703 0.0640 0.0686 0.1005 0.1344 0.1879 

SNA 0.0192 0.0632 0.0108 0.0155 0.0312 0.0528 0.0668 0.1042 0.1067 0.1488 

STL 0.5114 0.5295 0.7129 0.8490 0.9114 0.9508 0.8495 0.9030 0.6920 0.7305 

TPA 0.0255 0.0310 0.0034 0.0041 0.0017 0.0028 0.0055 0.0103 0.0178 0.0253 

TUS 0.3159 0.3939 0.6013 0.7596 0.8638 0.9236 0.9582 0.9250 0.9460 0.9066 

WRG 0.1341 0.3254 0.5111 0.2566 0.1665 0.1690 0.1993 0.1656 0.0588 0.0872 
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YAK 0.0594 0.1493 0.0816 0.0277 0.0392 0.0447 0.0325 0.0523 0.0785 0.0981 

AKN 0.8556 0.9793 0.7412 0.8169 0.8349 0.8799 0.9061 0.9153 0.9463 0.8472 

DLG 0.6289 0.7946 0.9171 0.9176 0.9667 0.9040 0.9199 0.9568 0.9400 0.8626 

GST 0.3674 0.2557 0.4127 0.5532 0.6801 0.7645 0.8487 0.8023 0.7595 0.8272 

II.b.ii 𝒑𝒅– Daily pattern 

Similar as with the before we also ran the same tests, view Table II.3 and Table II.4:  

Table II.3. Result of the Box-Pierce test for the yearly pattern of Alaska Airlines 

Lag 1 2 3 4 5 6 7 8 9 10 

ABQ 0.5807 0.312 0.3439 0.4313 0.4183 0.5412 0.6496 0.7481 0.7944 0.8533 

ADK 0.5688 0.8041 0.8734 0.9365 0.9688 0.9883 0.9867 0.9945 0.9978 0.9992 

ADQ 0.7048 0.4154 0.587 0.6345 0.7266 0.7436 0.6469 0.7448 0.8034 0.8662 

ANC 0.0288 0.0424 0.0963 0.1477 0.1759 0.2428 0.0093 0.0006 0.0012 0.0022 

ATL 0.2532 0.4996 0.5075 0.6628 0.7805 0.8174 0.8701 0.8983 0.9381 0.9523 

AUS 0.3837 0.4998 0.6755 0.5368 0.5614 0.6175 0.6575 0.7499 0.8244 0.7208 

BET 0.0938 0.136 0.0517 0.0651 0.1083 0.0758 0.0567 0.0847 0.0746 0.0643 

BNA 0.7775 0.345 0.4208 0.5333 0.6752 0.7883 NA NA NA NA 

BOS 0.5743 0.4282 0.4683 0.6138 0.6366 0.6152 0.3539 0.4512 0.3959 0.3755 

BRW 0.4382 0.5925 0.6684 0.7615 0.7801 0.8638 0.9231 0.9457 0.9684 0.9787 

BUR 0.607 0.6703 0.7078 0.5894 0.5062 0.3109 0.3982 0.4593 0.5375 0.5119 

BWI 0.6083 0.5551 0.7524 0.8229 0.6552 0.7643 0.7161 0.7454 0.8191 0.8181 

CDV 0.2144 0.1942 0.3507 0.5124 0.5657 0.5842 0.6918 0.7735 0.8445 0.8453 

CHS 0.9949 0.9122 0.915 NA NA NA NA NA NA NA 

DCA 0.1229 0.0533 0.1174 0.2068 0.2253 0.3152 0.3972 0.5025 0.2855 0.3314 

DEN 0.1567 0.3465 0.1447 0.2315 0.2659 0.2521 0.2297 0.0695 0.0295 0.0416 

DFW 0.2786 0.5395 0.5747 0.7365 0.7111 0.7586 0.8278 0.8934 0.8618 0.801 

DTW 0.3043 0.5875 0.7085 0.8464 0.9257 0.9603 0.9826 0.9926 0.9971 NA 

EWR 0.6633 0.2933 0.4635 0.5279 0.4155 0.3713 0.4367 0.5186 0.6196 0.7066 

FAI 0.0086 0.0274 0.0572 0.1018 0.1568 0.2106 0.1052 0.0419 0.0493 0.0726 

FLL 0.4544 0.5779 0.4541 0.2579 0.3795 0.3761 0.4717 0.573 0.671 0.7508 

GEG 0.0229 0.0301 0.0643 0.0856 0.0224 0.024 0.0417 0.0677 0.099 0.1234 

HNL 0.2326 0.4895 0.6976 0.6975 0.6895 0.7557 0.8363 0.8578 0.8847 0.8061 

IAD 0.5655 0.2657 0.1776 0.2885 0.2826 0.3798 0.4907 0.5955 0.6928 NA 

IAH 0.1736 0.2226 0.1849 0.2156 0.3272 0.3973 0.3892 0.4825 0.5321 0.6246 

JFK 0.6866 0.384 0.5728 0.733 0.847 0.9183 NA NA NA NA 

JNU 0.4535 0.2723 0.3979 0.4552 0.4411 0.5678 0.6733 0.7669 0.82 0.8218 
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KOA 0.3411 0.571 0.4249 0.5827 0.6755 0.7884 0.6588 0.7357 0.7935 0.8119 

KTN 0.0235 0.0518 0.1128 0.1456 0.1586 0.0525 0.0852 0.1266 0.173 0.2139 

LAS 0.9846 0.0117 0.0302 0.0317 0.036 0.062 0.0564 0.0894 0.092 0.1328 

LAX 0.2208 0.465 0.6749 0.8204 0.9064 0.6954 0.7868 0.8475 0.8197 0.8791 

LIH 0.0777 0.209 0.1217 0.0588 0.0889 0.1186 0.1519 0.2103 0.2278 0.3003 

MCI 0.4055 0.5039 0.5928 0.7535 0.7396 0.8404 0.9008 0.9432 0.8784 0.9155 

MCO 0.2609 0.4446 0.6097 0.7658 0.6006 0.6785 0.7787 0.8562 0.9093 0.9285 

MSP 0.1031 0.2158 0.2751 0.4031 0.5457 0.571 0.6732 0.7253 0.7468 0.7727 

MSY 0.6515 0.9027 0.8349 0.895 0.8997 0.8341 0.8828 0.9081 0.8889 0.9211 

OAK 0.6073 0.0789 0.166 0.0791 0.1133 0.1364 0.139 0.2019 0.2724 0.3527 

OGG 0.4367 0.6553 0.5993 0.6087 0.7298 0.7795 0.7801 0.8385 0.4849 0.4862 

OMA NA NA NA NA NA NA NA NA NA NA 

OME 0.7195 0.1524 0.2196 0.2136 0.3183 0.186 0.2682 0.3202 0.4055 0.4987 

ONT 0.4015 0.6352 0.8194 0.9201 0.9274 0.9004 0.9125 0.9511 0.9643 0.9563 

ORD 0.0024 0.009 0.0236 0.0333 0.0573 0.0971 0.1085 0.0652 0.0689 0.086 

OTZ 0.7778 0.3098 0.3952 0.4963 0.3735 0.2834 0.3799 0.4552 0.29 0.3441 

PDX 0.8265 0.8009 0.8893 0.9577 0.9829 0.6864 0.7749 0.8483 0.2782 0.3604 

PHL 0.1693 0.3755 0.5252 0.2701 0.247 0.3469 0.4387 0.5446 0.644 0.7267 

PHX 0.6449 0.4528 0.6555 0.8054 0.849 0.9193 0.9562 0.9768 0.989 0.9887 

PSG 0.3665 0.6467 0.8046 0.5351 0.6363 0.4997 0.5774 0.6744 0.5941 0.6858 

PSP 0.981 0.602 0.7894 0.8504 0.8361 0.899 0.9393 0.8218 0.7712 0.8391 

RDU 0.3469 0.4009 0.4507 0.6112 0.7478 NA NA NA NA NA 

SAN 0.1161 0.1327 0.1123 0.1752 0.2078 0.2986 0.4015 0.4924 0.5789 0.6386 

SAT 0.2269 0.4818 0.5927 0.731 0.8048 0.8857 0.9343 0.966 0.8872 0.9225 

SCC 0.9909 0.8876 0.9691 0.8407 0.876 0.927 0.963 0.9807 0.9876 0.9942 

SEA 0.5823 0.0932 0.0663 0.021 0.0131 0.0088 0.0037 0.0068 0.0025 0.0017 

SFO 0.0712 0.0819 0.0627 0.1084 0.1698 0.2367 0.3285 0.4171 0.4721 0.5675 

SIT 0.5206 0.7817 0.4198 0.5872 0.7009 0.8095 0.8167 0.8843 0.8767 0.9152 

SJC 0.9987 0.9787 0.9662 0.3321 0.4422 0.5674 0.6724 0.7671 0.8248 0.872 

SLC 0.2405 0.2669 0.4501 0.4786 0.5734 0.6714 0.7753 0.8131 0.8771 0.9087 

SMF 0.0446 0.1256 0.1876 0.0551 0.0862 0.0984 0.0903 0.0676 0.0485 0.0651 

SNA 0.0615 0.1721 0.193 0.3055 0.3553 0.425 0.5237 0.5429 0.6399 0.5069 

STL 0.6386 0.6804 0.5539 0.663 0.7433 0.7105 0.8077 0.8754 0.9236 0.9553 

TPA 0.5912 0.5668 0.7616 0.7442 0.8552 0.7453 0.8315 0.8952 0.9243 0.9142 

TUS 0.0494 0.1444 0.2264 0.1344 0.1013 0.113 0.1728 0.1804 0.1055 0.1171 

WRG 0.0173 0.0153 0.0273 0.0562 0.0939 0.1452 0.1627 0.2302 0.2942 0.3678 

YAK 0.8381 0.4711 0.6208 0.4218 0.3776 0.4429 0.5601 0.5459 0.4653 0.5606 

AKN 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

DLG 0.2714 0.5292 0.5614 0.7244 0.6979 0.7476 0.8194 0.8871 0.8569 0.7954 

GST 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
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Table II.4. Result of the Ljung-Box test for the yearly pattern for Alaska Airlines 

Lag 1 2 3 4 5 6 7 8 9 10 

ABQ 0.5332 0.1997 0.1891 0.2284 0.1585 0.2344 0.3125 0.41 0.3597 0.3984 

ADK 0.5273 0.7603 0.8179 0.8918 0.9346 0.9711 0.9408 0.9679 0.983 0.9918 

ADQ 0.6719 0.3043 0.4505 0.4505 0.5223 0.4649 0.2093 0.2879 0.3095 0.3905 

ANC 0.0277 0.0403 0.0922 0.1413 0.1673 0.2315 0.0072 0.0004 0.0008 0.0015 

ATL 0.2255 0.4571 0.4373 0.59 0.7138 0.7358 0.7911 0.8131 0.8724 0.8822 

AUS 0.3486 0.439 0.6083 0.4023 0.3936 0.4225 0.43 0.5275 0.6198 0.3252 

BET 0.0714 0.0956 0.0228 0.0258 0.0453 0.0194 0.0083 0.0134 0.0066 0.0027 

BNA 0.7293 0.149 0.1475 0.1744 0.2687 0.3783 NA NA NA NA 

BOS 0.5649 0.4054 0.4367 0.5798 0.5932 0.5571 0.2707 0.3575 0.289 0.2573 

BRW 0.4198 0.5633 0.6288 0.719 0.7243 0.8184 0.8906 0.9152 0.9462 0.9592 

BUR 0.5935 0.6451 0.6715 0.5236 0.416 0.2062 0.2745 0.3192 0.3849 0.3321 

BWI 0.5783 0.4838 0.6855 0.7465 0.4582 0.5755 0.437 0.4264 0.5138 0.4241 

CDV 0.1868 0.15 0.2845 0.4344 0.4628 0.4474 0.5559 0.6424 0.73 0.6787 

CHS 0.9928 0.7591 0.4656 NA NA NA NA NA NA NA 

DCA 0.112 0.0428 0.097 0.1752 0.1835 0.2621 0.3337 0.4336 0.1872 0.2172 

DEN 0.1477 0.3301 0.1245 0.202 0.2283 0.2069 0.1779 0.0392 0.0126 0.0182 

DFW 0.2665 0.5222 0.5476 0.712 0.6719 0.7154 0.7884 0.8634 0.8101 0.713 

DTW 0.2356 0.4917 0.5778 0.7405 0.8525 0.8927 0.9418 0.9674 0.9825 NA 

EWR 0.6352 0.213 0.3553 0.3867 0.2184 0.1432 0.1657 0.2052 0.28 0.356 

FAI 0.0074 0.0235 0.0494 0.0886 0.1374 0.1842 0.0783 0.0247 0.0282 0.0429 

FLL 0.4097 0.5011 0.3158 0.1039 0.1739 0.1321 0.1789 0.2423 0.3224 0.3942 

GEG 0.0192 0.0239 0.0518 0.067 0.0129 0.0129 0.0233 0.0396 0.0595 0.0732 

HNL 0.2231 0.4751 0.6837 0.6743 0.6564 0.7215 0.8073 0.8254 0.8522 0.7396 

IAD 0.507 0.1407 0.05 0.0935 0.0518 0.076 0.1169 0.163 0.2277 NA 

IAH 0.148 0.1776 0.1265 0.138 0.2234 0.2683 0.2268 0.2964 0.3151 0.3982 

JFK 0.6212 0.1829 0.3099 0.4573 0.6026 0.7255 NA NA NA NA 

JNU 0.4446 0.2548 0.374 0.4244 0.4008 0.5254 0.6318 0.73 0.7843 0.7767 

KOA 0.33 0.5553 0.3943 0.5494 0.6399 0.7581 0.5957 0.6745 0.7347 0.7469 

KTN 0.0211 0.0461 0.1018 0.1295 0.1373 0.0379 0.0631 0.0958 0.133 0.165 

LAS 0.9844 0.01 0.0261 0.0266 0.0296 0.0516 0.045 0.0726 0.0724 0.1066 

LAX 0.2157 0.457 0.6669 0.8142 0.9021 0.671 0.7653 0.8286 0.7927 0.8577 

LIH 0.0669 0.1846 0.0929 0.036 0.0548 0.0724 0.0915 0.1312 0.1332 0.185 

MCI 0.3752 0.4506 0.5203 0.688 0.6347 0.7539 0.8296 0.8911 0.6915 0.7475 

MCO 0.2438 0.4163 0.5761 0.7364 0.526 0.5992 0.708 0.7987 0.8648 0.8829 
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MSP 0.0858 0.1804 0.2217 0.3334 0.4688 0.4663 0.5668 0.6048 0.5976 0.5987 

MSY 0.6187 0.883 0.7583 0.8194 0.7884 0.5889 0.643 0.6461 0.4679 0.501 

OAK 0.5988 0.0669 0.1442 0.0604 0.0866 0.1024 0.0993 0.1493 0.2073 0.2769 

OGG 0.429 0.645 0.5799 0.5827 0.7054 0.7534 0.747 0.8084 0.4014 0.3943 

OMA NA NA NA NA NA NA NA NA NA NA 

OME 0.706 0.1168 0.1665 0.1476 0.2303 0.0964 0.1497 0.1775 0.2382 0.3138 

ONT 0.3852 0.6133 0.8019 0.9092 0.9101 0.8646 0.8718 0.9229 0.9382 0.9142 

ORD 0.0018 0.0067 0.018 0.0246 0.0428 0.0745 0.0787 0.0373 0.0363 0.0445 

OTZ 0.7682 0.2679 0.3381 0.4262 0.2771 0.1755 0.2491 0.3054 0.1298 0.157 

PDX 0.825 0.7967 0.8855 0.9556 0.9818 0.6616 0.7528 0.8301 0.2342 0.3096 

PHL 0.1299 0.3034 0.4275 0.1202 0.0796 0.1259 0.1694 0.238 0.3175 0.3894 

PHX 0.6409 0.4416 0.644 0.796 0.8387 0.9123 0.9515 0.9738 0.9873 0.9862 

PSG 0.3482 0.6243 0.7837 0.4639 0.5599 0.387 0.4547 0.5523 0.4263 0.5206 

PSP 0.9806 0.5843 0.7744 0.8346 0.8117 0.8796 0.9247 0.7675 0.6942 0.7734 

RDU 0.2341 0.1918 0.1408 0.2257 0.3402 NA NA NA NA NA 

SAN 0.1115 0.125 0.1027 0.1609 0.1891 0.2748 0.374 0.4621 0.5472 0.6046 

SAT 0.1918 0.4266 0.5154 0.6524 0.718 0.817 0.8812 0.9316 0.6246 0.6815 

SCC 0.9906 0.876 0.9641 0.7989 0.8329 0.8939 0.9418 0.9669 0.976 0.9877 

SEA 0.5796 0.0891 0.0621 0.0187 0.0112 0.0072 0.0029 0.0054 0.0018 0.0011 

SFO 0.0676 0.076 0.056 0.0975 0.1539 0.2158 0.303 0.3879 0.4382 0.533 

SIT 0.5081 0.7694 0.3761 0.5401 0.6538 0.7701 0.7659 0.8445 0.8209 0.8685 

SJC 0.9987 0.9778 0.9639 0.3021 0.4071 0.5306 0.6367 0.7354 0.7958 0.8466 

SLC 0.2291 0.2471 0.424 0.4424 0.532 0.6287 0.738 0.7724 0.8446 0.8785 

SMF 0.0397 0.1135 0.1682 0.041 0.0648 0.0717 0.061 0.04 0.0245 0.0331 

SNA 0.0572 0.1621 0.178 0.2848 0.3283 0.3922 0.4877 0.4985 0.5962 0.4372 

STL 0.6157 0.634 0.4611 0.5597 0.6322 0.5452 0.6607 0.7512 0.8263 0.8841 

TPA 0.5512 0.4761 0.6762 0.5935 0.7319 0.439 0.544 0.6466 0.6588 0.4277 

TUS 0.0376 0.1144 0.1781 0.0802 0.0471 0.0472 0.0785 0.0704 0.0206 0.0197 

WRG 0.0114 0.0083 0.0143 0.031 0.0531 0.085 0.0838 0.1258 0.1633 0.2111 

YAK 0.8246 0.3908 0.5249 0.2623 0.1882 0.2167 0.3065 0.2329 0.1072 0.1534 

AKN 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

DLG 0.2593 0.5118 0.5339 0.6991 0.6578 0.7033 0.7788 0.856 0.8043 0.7065 

GST 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

Sme issues appeared but further analysis showed that the issue with BNA, CHS, DTW, 

IAD, OMA, RDU AKN and GST airport where due to insufficient data to properly 

calculate the test values. We decided that we would still use the spline for all airport except 
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AKN and GST. Here we used no daily pattern. This means that the daily pattern for the 

whole day is equal to 0. 

II.b.iii  𝜺 – Error component (stochastic) 

Fixing the patterns, we proceeded to fit the finite mixture model for the error component 

for the AS airline.  

Table II.5. Log-likelihood for the finite mixture models of Alaska Airlines 

 
k 

2 3 4 5 

ABQ -3437.505 -3436.503 -3436.5 -3419.25 

ADK -955.6579 -954.2507 -951.8311 -948.2419 

ADQ -5790.552 -5722.039 -5701.59 -5699.17 

ANC -156253.7 -155807 -155764.7 -155798.4 

ATL -7932.816 -7925.439 -7922.06 -7920.21 

AUS -5572.404 -5550.579 -5543.952 -5542.936 

BET -10948.81 -10892.65 -10848.52 -10847.31 

BNA -1945.171 -1933.572 -1940.17 -1930.33 

BOS -21046.75 -21001.34 -21001.11 -20988.2 

BRW -11001.17 -10996.99 -10981.84 -10984.84 

BUR -13336.42 -13273.52 -13258.1 -13256.95 

BWI -5887.021 -5883.094 -5865.37 -5861.2 

CDV -8516.986 -8455.07 -8437.51 -8445.93 

CHS -510.459 -506.0968 -500.05 -499.86 

DCA -19650.81 -19606.12 -19604.16 -19605.3 

DEN -20699.33 -20491.74 -20469.17 -20464.87 

DFW -17282.97 -17230.15 -17227.64 -17226.53 

DTW -3964.272 -3955.431 -3951.069 -3951.069 

EWR -10166.84 -10136.83 -10131.18 -10127.05 

FAI -26429.38 -26330.62 -26324.21 -26321.59 

FLL -4804.094 -4801.839 -4787.598 -4782.498 

GEG -18770.43 -18645.79 -18625.49 -18619.45 

HNL -32128.4 -32125.38 -32090.33 -32084.5 

IAD NA NA NA NA 

IAH -5658.077 -5643.636 -5638.184 -5635.158 

JFK -1988.663 -1978.472 -1978.036 -1976.049 

JNU -51662.43 -51429.61 -51373.85 -51363.84 
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KOA -17552.91 -17537.49 -17535.47 -17535.69 

KTN -15942.65 -15906.79 -15904.29 -15927.78 

LAS -17854.39 -17770.16 -17767.08 -17757.3 

LAX -35450.75 -35350.75 -35345.01 -35344.6 

LIH -16094.92 -16071.44 -16065.08 -16064.36 

MCI -5695.804 -5668.558 -5668.557 -5664.618 

MCO -9870.977 -9845.982 -9855.07 -9841.762 

MSP -8858.386 -8809.472 -8807.784 -8799.772 

MSY -3948.679 -3938.192 -3937.737 -3925.364 

OAK -28978.22 -28868.7 -28824.35 -28817.12 

OGG -36577.38 -36536.59 -36534.03 -36533.12 

OMA -201.9061 -196.9246 -196.5673 -193.6135 

OME -8077.813 -8049.229 -8046.699 -8044.305 

ONT -9622.643 -9621.529 -9567.13 -9562.843 

ORD -8811.872 -8769.975 -8764.846 -8763.983 

OTZ -8351.39 -8289.001 -8281.257 -8280.71 

PDX -56939.45 -56876.19 -56666.41 -56666.16 

PHL -5069.193 -5058.731 -5051.576 -5046.101 

PHX -30028.32 -29888.13 -29863.94 -29854.84 

PSG -8535.606 -8498.574 -8497.793 -8490.021 

PSP -20229.46 -20132.72 -20111.01 -20106.41 

RDU -2053.325 -2045.993 -2036.297 -2046.204 

SAN -70702.74 -70460.99 -70389.77 -70386.02 

SAT -4539.918 -4530.645 -4528.098 -4524.323 

SCC -10453.54 -10449.44 -10442.19 -10433.71 

SEA -237383.9 -236946.9 -236829.7 -236821.9 

SFO -64726.76 -64381.32 -64323.46 -64297.62 

SIT -15122.92 -15064.87 -15047.98 -15045.75 

SJC -54596.6 -54249.1 -54175.22 -54170.93 

SLC -25929.86 -25693.47 -25667.52 -25650.98 

SMF -26234.73 -26106.5 -26097.39 -26087.01 

SNA -41688.62 -41512.74 -41493.98 -41492.7 

STL -5762.321 -5739.992 -5732.029 -5730.567 

TPA -4166.229 -4150.096 -4145.569 -4147.959 

TUS -4543.551 -4542.248 -4521.897 -4519.138 

WRG -8251.022 -8211.151 -8202.631 -8206.657 

YAK -8432.935 -8417.134 -8412.59 -8412.893 

AKN NA NA NA NA 

DLG NA NA NA NA 

GST NA NA NA NA 
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The previous problems propagated inevitably into the error component. Hence, for these 

airports we decided to turn off the random component. Meaning these airports will not add 

root delay to the flight. Also, here we went for a three-component model for the same 

reason as before additionally we wanted to have a similar model, i.e. baseline, for both 

airlines.  

 
 
 


