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ABSTRACT

The European stability design rules for prismatic steel columns and beams are classically based
on the buckling curve approach, whereas the verification of beam-columns combines the
resistances of a column and a beam through interaction factors. For generic single members,
built-up or not, uniform or not, with complex support conditions or not, the available
possibilities for such cases are the General Method given in clause 6.3.4 of Eurocode 3 (2005)
or advanced numerical simulations. The applicability of the General Method, however, is
limited and in some aspects inconsistent Simoes da Silva et al. (2010). For instance, when
applied to non-uniform members, the choice of the imperfection factors is not straight-forward
and their definition may lead to either unsafe or over conservative solutions. As an alternative
to the General Method, the stability of non-uniform members can be analysed using numerical
GMNIA which, again, requires the definition of the correct imperfection shape and magnitude,
but it is also a time-consuming procedure; and the output and its reliability are highly dependent

on the experience of the user.

On the other hand, the safety of design rules in the Eurocodes is based on the limit state design,
where relevant design situations are distinguished by the use of partial factors accounting for
the uncertainties related to loading and resistance. Hence, the design rules and their accuracy
depend on the scatter of the basic variables such as material properties, geometric properties
and imperfections. It is therefore required to appropriately characterize the statistical
distributions of these basic variables in order to comply with the (semi-) probabilistic safety
level assessment of design rules. The buckling curves rely on the calibration of imperfection
factors in order to estimate the maximum resistance which gives the flexibility of adjusting

imperfection factors according to the cross-section shape, steel grade and other relevant



parameters. This feature allows the adoption of the Ayrton-Perry design philosophy for more

general applications.

In this thesis, a novel general formulation for stability design of steel columns, beams and beam-
columns with variable geometry, loads and supports covering any buckling mode is proposed.
The verification is based on the buckling mode as shape of the initial imperfection with an
amplitude previously calibrated for the standard prismatic simply-supported columns and
beams in Eurocode 3. In order to ensure its reliability, safety assessment of the Eurocode 3-1-1
stability design rules for prismatic columns, beams and beam-columns are assessed using

statistical data which reflects the steel production nowadays.

This general formulation is transparent and consistent with the Eurocode 3-1-1 design rules. It
avoids the calibration of additional factors because it is applied as an interaction equation and
the first and second order contributions to the longitudinal stress utilization are added for each
cross-section along the member length. To promote its ease of use, several aspects regarding
the member behaviour in the context of a specific buckling mode are discussed. Finally,
validation of the approach is carried out based on large number of numerical simulations

calibrated to experimental tests. The results confirm its consistency and accuracy.

Keywords: Stability, Steel, General formulation, Reliability



RESUMO

As regras Europeias de dimensionamento de estabilidade para colunas e vigas de ago
prismaticos sdo classicamente baseadas na abordagem da curva de encurvadura, enquanto a
verificacao de vigas-coluna combina as resisténcias de uma coluna e uma viga através de fatores
de interagdo. Para elementos separados e genéricos, soldados ou ndo, uniformes ou ndo, com
condi¢des de suporte complexas ou ndo, as opgdes disponiveis para tais casos sdo o Método
Geral dado na clausula 6.3.4 do Eurocddigo 3 (2005) ou o recurso a métodos computacionais
avangados (FEM). A aplicabilidade do M¢todo Geral, entretanto, ¢ limitada e, em alguns
aspetos, inconsistente Simoes da Silva et al. (2010). Por exemplo, quando aplicada a elementos
ndo uniformes, a escolha dos fatores de imperfeicdo ndo ¢ direta e sua definicdo pode levar a
solugdes inseguras ou conservadoras. Como uma alternativa ao Método Geral, a estabilidade
de membros ndo uniformes pode ser analisada usando analise numérica avangada que, por sua
vez, requer a definicdo da forma e magnitude correta da imperfei¢do inicial, que ¢ um
procedimento computacionalmente exigente sendo o resultado altamente dependente da

experiéncia do utilizador.

Por outro lado, a seguranca das regras de dimensionamento nos Eurocddigos baseia-se na
verificacdo de estado limite, em que as situagdes de dimensionamento relevantes sao
distinguidas pela utilizagdo de fatores parciais responsaveis pelas incertezas relacionadas com
o carregamento e a resisténcia. Assim, as regras de dimensionamento e sua precisdo dependem
da dispersao das variaveis basicas, como propriedades do material, propriedades geométricas e
imperfei¢des. Portanto, ¢ necessario caracterizar apropriadamente as distribuicdes estatisticas
dessas variaveis basicas, a fim de cumprir a avaliacdo (semi-) probabilistica do nivel de

seguranca das regras de dimensionamento. As curvas de encurvadura baseiam-se na calibragdo
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dos fatores de imperfeicao para estimar a resisténcia maxima, o que dé a flexibilidade de ajustar
os fatores de imperfei¢do de acordo com a forma da se¢do transversal, grau de ago e outros
parametros relevantes. Esse recurso permite a adogao da filosofia de dimensionamento Ayrton-

Perry para aplicagdes mais gerais.

Nesta tese, uma nova formulagdo geral para analise de estabilidade de colunas, vigas e vigas-
colunas de aco com geometria varidvel, cargas e condi¢des de fronteira para qualquer modo de
encurvadura ¢ proposta. A verificagao ¢ baseada no modo de encurvadura como forma da
imperfei¢do inicial com uma amplitude previamente calibrada para as colunas e vigas simples
prismaticas padrao no Eurocodigo 3. Para garantir sua fiabilidade, a avaliagao de seguranga do
Eurocode 3-1-1, as regras de dimensionamento de estabilidade para colunas, vigas e vigas-
coluna prismaticas sdo avaliadas usando dados estatisticos que refletem a producdo de ago

atualmente.

Esta formulagdo geral ¢ transparente e consistente com as regras de dimensionamento no
Eurocodigo 3-1-1. Evita a calibracao de fatores adicionais porque ¢ aplicada como uma equagao
de interagcdo e as contribuigdes de primeira e segunda ordem para a utilizacdo de tensdo
longitudinal sdo adicionadas para cada secdo transversal ao longo do comprimento do elemento.
Para promover a sua facilidade de uso, varios aspetos relacionados como comportamento do
elemento no contexto de um modo especifico de encurvadura sdao discutidos. Finalmente, a
validagdo desta abordagem inovadora foi realizada através de um extenso estudo numérico
paramétrico, baseado em modelos previamente calibrados por ensaios experimentais. Os

resultados confirmam sua consisténcia e precisao.

Palavras-chave: estabilidade, ago, formulacao geral, fiabilidade
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1 INTRODUCTION

1.1 Motivation and objectives

The development of structural design codes is guided by the need to provide practical design
rules that cover recurring design situations with an appropriate level of safety and ease of use.
These are also the aims of the Structural Eurocodes between the member states in the EU, i.e.

reduction of the National Determined Parameters (Kuh/mann & Rasche, 2017).

Since the release of part 1-1 of Eurocode 3 (CEN, 2005) a lot of research work has been done
at the European and global levels, aiming at the improvement of the design rules. Within the
ongoing revision of the Structural Eurocodes, these efforts led to the final draft of prEN 1993-
1-1 (CEN/TC250, 2017) that includes many of the modifications and extensions proposed over

the last years.

The Eurocode 3 procedures, existing and new proposals, have been calibrated to safety levels
which are not necessarily uniform: within the design rule and/or in comparison with other
design rules. This results in lack of consistency and different safety levels which can
compromise the design. In the past, several reliability assessments were carried out, e.g. in the
research projects Partial safety factors for resistance of steel elements to EC3 and EC4 -
Calibration for various steels products and failure criteria (Chabrolin et al., 2002) and
PROQUA — Probabilistic quantification of safety of a steel structure highlighting the potential
of steel versus other materials (Cajot et al., 2005), which aimed at the justification of the partial
factors used in Eurocode 3. Generally, there is a broad agreement on the partial factor yuo,
which is not the case regarding the stability design rules and yu;. This partial factor deviates

from the recommended value in several member states (Germany, Austria, Denmark) while
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some authors claim that it is different for the different stability phenomena, i.e. for the
interaction between bending and axial force (Chabrolin et al., 2002) and it could also be non-

uniform within the same rule Taras (2010).

Nevertheless, even though the stability design of members is a classical topic, the extensions,
corrections and improvements that evolved over time since the beginning of the development
of the column buckling curves in the 1960°s and 70’s were not very often assessed under the
same assumptions, resulting in scatter of the safety level across the range of cases covered by

the design formulas.

In addition, there is a continuous development of new structural steels with largely improved
mechanical properties that, combined with the stricter quality control procedures for the
geometrical dimensions of steelwork, also contribute to the need for reassessment of the safety

levels in order to keep the competitiveness of the steel construction.

Regarding the basic variables that are required in a reliability assessment, a considerable
advantage for the standardization, application and economy of design rules can be achieved by
maintaining a database of statistical variation of all relevant basic input parameters (Simoes da
Silva et al., 2009), (Rebelo et al., 2009). Such collection can serve for the critical assessment
and comparison in future versions of Eurocode 3, but also for the evaluation of new design rules

on the same basis as the calibration of the existing ones.

From a methodological point of view, the verification of columns, beams and beam-columns
based on the generalized imperfection approach leads to good agreement with experimental
results, with a good balance between accuracy and economy. However, their scope is still
limited to uniform members effectively braced at the ends only. The more general case of single
members, built-up or not, uniform or not, with complex support conditions or not, is not directly
covered by the generalized imperfection approach. Hence, Eurocode 3-1-1 proposes an
alternative method, denoted general method to address such cases. However, recent research
work shows the wide scatter of the method varying from -50% (unsafe) up to 70% (safe), when
applied to frames (Naumes, 2009). Additionally, in Simoes da Silva et al. (2010) and Marques
(2012) this was also confirmed, probably because of the lack of mechanical background. In
Marques (2012), the (analytically backed) account for a design location was provided for
flexural and lateral-torsional buckling or web-tapered columns and beams respectively and
applied to beam-columns based on interaction formulae approach. However, a general solution

is still missing.



Finally, nowadays the available computational resources together with programming
techniques and symbolic mathematical manipulation permit a higher level of accuracy in the
prediction of the stability behaviour, thus allowing for a new generation of design codes based
on numerical analyses using FEM (finite element method). All these improvements are the tools
to be used in the future structural design where the classical analysis and design of individual
members (extracted from the real structure) will be replaced by the analysis and design of sub-

structures and/or entire structures.

All these points yielded as a motivation for this research with the main focus of the dissertation
on the stability design of steel members, keeping a strong relation to their respective safety

levels.

Therefore, the goal of this work is to contribute towards safer yet economic stability

design rules, which are general, but mechanically consistent.
The goal was achieved through the completion of the following objectives:

e Data collection for basic variables: these were essential for the outcome of the safety
assessment since the statistical analysis is always performed in the basis of assumed
distributions. It was aimed to collect data and to understand the distributions which
reflect the steel production nowadays.

e Safety assessment of design rules: it was necessary to assess to what extent the existing
rules comply with the target reliability in the Eurocode 3. It was also useful in order to
understand the background of these rules.

e General stability design methodology: The third objective was the development of a
methodology which is capable of dealing with various aspects regarding the stability
design of members. Since the use of computer calculations has become the standard
practice, it was aimed to incorporate it to some extent in the design process, yet keeping
simplicity and mechanical consistency. For the complete validation of this approach,
experiments on web-tapered members were carried out; the test results helped to
confirm and validate the numerical model usually adopted for the validation of stability
design rules. The experimental programme also contributed towards additional
knowledge for the member imperfections, namely the residual stresses and initial out-

of-straightness.
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A part of this research was performed in line with the European RFCS project RFSR-CT-2013-
00023 SAFEBRICTILE. In the project the main objective was the harmonization of the
reliability level of design rules for steel structures covering modes driven by ductility, stability
and fracture. The project provided an objective safety assessment procedure which was applied
to the studied failure modes using statistical data collected throughout the project reflecting the
current steel market. Another part of the thesis was carried out in line with the objective of the
nationally funded project TAPERSTEEL PTDC/ECM-EST/1970/2012. In TaperSteel, the main
objective was to develop design rules for web tapered steel members. Hence, following the
research goals this work comprises safety of the existing design rules and makes the necessary

towards the development of consistent design rules for the design of non-uniform members.

1.2 Scope

The dissertation covers the stability design of steel members with a strong emphasis on the
accuracy of the adopted design approaches. The steel members included by this work are
uniform and non-uniform in geometry and/or loading and/or boundary conditions/restraints.
Their assessment and proposed design approaches are based on analytical, experimental and

numerical approaches.

From analytical point of view, it was aimed to keep consistency with the mechanical
background of the studied phenomena as well as with the existing Eurocode 3 design rules. For
that, it was necessary, firstly, to study the basic and uniform cases for the various buckling

modes.

The experimental work carried out in the scope of the TAPERSTEEL project aimed to supply
experimental evidence of the buckling behaviour of non-uniform members. It was used as a

reference for validation of advanced numerical model.

The numerical approaches were employed for generation of large number of numerical
“experiments” using the validated advanced numerical model. These results were used for the

reliability assessment of the existing design rules and for the validation of the novel procedures.

A great attention was paid to the data collection. Data for the material and geometrical
properties were collected in European database of steel properties from the partner institutions

in the SAFEBRICTILE, from university laboratories, and literature. Data on the material and



geometrical imperfections was collected mainly from the literature since it is hardly accessible

from the industry.

The studies covered in this thesis extend to steel grade S460. It is generally limited to the
application of H and I sections fabricated by welding of hot-rolled plates or hot-rolled profiles.

1.3 Outline of the dissertation

The research objectives are described in the seven chapters of this dissertation. Following the
general introduction in Chapter 1, Chapter 2 presents a general state-of-the-art for the stability
and safety of steel members. It gives a brief overview of the existing stability design rules for
uniform and non-uniform members. It focuses on their evolution and on the future trends for
steel member design. Regarding the safety of these design rules, in Chapter 2, a summary of

the basis of design according to the Eurocodes is also described.

In Chapter 3, the experimental programme carried out in the scope of the research project
TAPERSTEEL is presented. Firstly, a review of previous experimental campaigns on non-
uniform members, as well as available sources with measurements on residual stresses and
geometrical imperfections is carried out. In a second step, the experimental layouts for the
buckling tests and the supplementary tests (residual stress measurements, material
characterization and geometrical imperfections) are described in detail. Finally, a summary of
the test results is offered. These results were then used for validation of an advanced numerical

model. The model and its validation are described in Chapter 4.

In Chapter 5, following the Eurocode objective of harmonization and to extend the stability
design rules to non-uniform members, it was necessary to assess the reliability of the existing
design rules. This task was carried out in the scope of the SAFEBRICTILE project. The
assessment was performed on the basis of the safety assessment procedure developed within
the project and using the statistical distributions of basic variables also recommended by the
project. In this chapter, firstly, a brief overview of the underlying theoretical basis is given.
Secondly, adopted methodologies and parametric studies for columns, beams and beam-
columns are presented. Then, the results are presented and discussed and the necessary

conclusions are highlighted.
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The general formulation is presented in Chapter 6. It relies on an interaction equation of linear
stress utilization that includes: (i) normal stresses due to applied forces; and (ii) normal stresses
due to second order forces. The procedure is easily applicable to members with varying
geometry, loading and support conditions. Firstly, the theoretical background of the new
methodology is summarized, it is then followed by its validation for: i) flexural buckling of
columns and beam-columns with non-uniform sections and/or non-uniform compression; ii)
lateral-torsional buckling of beams and beam-columns with non-uniform sections and/or non-

uniform loading;

Finally, in Chapter 7 the general conclusions of this work are summarized. It also gives

recommendations for future developments.



2 STABILITY DESIGN: BACKGROUND
AND EXISTING DESIGN RULES

2.1 Introduction

Owing to the high strength of the material, a common problem in the steel construction is its
stability due to the high slenderness of the structural components. The design of steel structures
requires the appropriate consideration of the various stability phenomena that may cause
structural failure. The very beginning of the stability theory is the Euler’s derivation of the
elastic critical load of a pin-ended strut in 1744 (Euler, 1744). Since then, researchers pursue

the quest for a thorough understanding of the buckling behaviour of steel members.

The first attempts for the consideration of the behaviour of columns in the inelastic range may
be tracked to the Considere-Engesser theory (1889, 1895) who introduced the double modulus
concept that was further developed by von Karman (1910). The milestone in the understanding
of the post-buckling behaviour of inelastic columns was achieved by Shanley (1947) who
explained the paradox between the tangent and the reduced modulus theories. At the same time,
the behaviour of imperfect columns also attracted the attention of researchers. The classical
work in this direction is the work by Ayrton & Perry (1886), whereby the resistance of the
member is defined as the first yield of the most compressed fibre is reached, calculated using
second order forces. The Ayrton-Perry model was validated experimentally by Robertson in
1925 (Robertson, 1925). This model is in the origin of the European buckling curves which
were established in the 1970’s, based on an extensive experimental programme carried out by
the European Convention for Constructional Steelwork (ECCS) (Sfintensco, 1970), on
theoretical developments by thorough analysis of the experimental programme (Beer & Schulz,

1970) and on reliability assessment by Monte Carlo simulations Strating & Vos (1973). In this
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way, the column buckling curves account for the member geometry and its deviations, as well
as different material properties and residual stresses. Similar approaches were adopted by
design codes around the world, i.e. in the United States and Canada column buckling resistance

is based on the SSRC curves. (Ziemian, 2010).

The elastic lateral-torsional buckling of beams was intensively studied since the middle of the
twentieth century. However, the first important work is by Saint-Venant (1855) on uniform
torsion, which set the beginning of a reliable description of the twisting behaviour of members
in torsion. Michell (1899) and Prandtl (1899) explored flexural torsional buckling, precisely
lateral buckling of a beam with narrow rectangular cross-section. Warping torsion was firstly
considered by Timoshenko (1905). Further research by Wagner (1936) led to the development
of a general theory for lateral-torsional buckling (7imoshenko 1953, Viasov, 1961). Closed-
form solutions for the elastic critical moment are available only for the simplest cases. The most
trivial case is a prismatic beam with “fork™ support conditions subject to constant bending
moment (7imoshenko & Gere, 1961). Numerical solutions for beams under variable moments
are available by Massonet (1947), Horne (1954), Salvadori (1955, 1956) and Kirby & Nethercot
(1974) among others. The lateral buckling of beams with bracings was studied by Kitipornchai
& Richter (1978), Hancock & Trahair (1979). Lateral buckling of beams with mono-symmetric
sections can be found in Galambos (1968), Kitipornchai & Trahair (1980). Clark & Hill (1960)
developed a 3-factor formula, which accounts for the destabilizing effect of the load, mono-
symmetry, support conditions and non-uniform bending moment distributions. Nowadays,
simple specific computer programs for the calculation of the elastic critical moment of beams
under generic conditions are available (LTBeamN, 2015). Nethercot & Trahair (1976) and Dux
& Kitipornchai (1984) developed inelastic solutions of beams. At present, the inelastic buckling
behaviour of beams is accounted for by the buckling curve approach adopted in Europe with a
normalized slenderness calculated using the value of the elastic critical moment and assuming

that the columns and beams have similar behaviour regarding their buckling resistance.

Furthermore, extending to more complex case of beam-columns, a summary of the available
analytical solutions and approximations is provided by Chen & Atsuta (1977) for in- and out-
of-plane buckling. Due to the complexity of the problem, it is common to separate the behaviour
into both planes for design purposes and add calibrated factors which account for the joint
behaviour of the applied forces and their second order contributions. These are the approaches
adopted by Eurocode 3, the north American standard AISC (2010), the Canadian CSA-S16-09
(CSA, 2009) and the Australian AS-4100-1998 codes.



Finally, all these members are part of a global structure. The structural analysis shall take into
account the global second order effect (P-A) and member second order effects (P-0) (Simaes da
Silva et al., 2014). Modern design codes like Eurocode 3 and AISC (2010) provide clear
specifications on the type on analysis and the subsequent verification checks to be performed
with these results. Currently, the preferred practical approach is to carry out a 2" order analysis
incorporating global (P-A) effects followed by the verification of the buckling resistance of
individual member using the buckling curve approach. Alternatively, even though the codes
provide guidance on how to perform second order analysis with imperfections, these are still
too complex for daily applications at the design office, because they are time-consuming,
require correct definition of the initial imperfections in shape and magnitude, and their

reliability is questionable since it depends on the experience of the user.

This chapter aims at summarizing the necessary background of the analytical expressions and
current design rules, so that it can be used to extend it towards the achievement of the objectives
of the thesis. It also offers a short summary of the basis of design in order to facilitate the
understanding of the reliability background of the Eurocode. Finally, the recent developments

in the stability design by other authors are summarized.

2.2 Buckling of members

2.2.1 Basic equations
In this section the equations governing beam-column behaviour are presented in their general

form. They are used as a reference for further discussions in this section.

Without loss of generality, when the analysed member is perfect (without any initial

imperfections) the differential equilibrium equations are given by:

42w (x)
EL, T2 + Nw(x) + My, + M,6(x) =0
d?v(x)
El,—5+ M,0(x) + Nv(x) + M, = 0 (2.1)
d36(x) do(x) dv(x) dw(x) do(x)
El -Gl —+M 2 =0
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Figure 2.1 - Coordinate system and cross-sectional displacements

In these equations, v(x) and w(x) are the transverse displacements (along y and z, respectively),
0(x) 1s the twist rotation (positive according to the right-hand rule). Moreover, EI, is the in-
plane bending stiffness, EI is the out-of-plane bending stiffness, El,, is the warping stiffness,

G, is the Saint-Venant torsional stiffness and 7y is the polar radius of gyration.

For simply supported members loaded with uniform axial force and bending moments, the

10| system of differential equations is solved by half sine waves as functions for the displacements

and rotations.

X
w(x) = v_vsinT

@) = osi X

v(x) = vsin I (2.2)
_ . TX

9(X)=95i1’17

Furthermore, if the member is considered with an initial imperfection, there are additional terms

and the system of equations is transformed to Eq. (2.3).

d’w(x
El (x)

y— o+ Nw(x) + My, + M,0(x) = —Nwg(x) — M,0,(x)

(2.3)

2
El d“v(x)

Z dx?

+ M, 0(x) + Nv(x) = —M,,0y(x) — Nvg(x)




d36(x) do(x) dv(x) dw(x) , do(x)
Elw dx3 Gl dx + My dx + M, dx To dx
_ dvg(x) _ 2 dfy(x) Y dwy(x)
Y dx 0 dx 7 dx

vo (X), wo (X), B0 (X) represent the initial deviation from a perfectly straight member, as shown

in Figure 2.1.

2.2.2 Critical forces and amplification relationships
2.2.2.1 Flexural buckling of columns

In view of its fundamental character as a guideline for subsequent developments, the out-of-
plane behaviour of a column (M, = M, = 0) with an initial imperfection (see Figure 2.2) is
briefly addressed here. It is common to assume that the initial imperfection has the same shape

as the lateral displacement:

X
vo(x) = ﬁosinT (2.4)

In these circumstances, the differential equation (2.3), together with the boundary conditions
v(0) = v(L) = 0, yields
N X X

VpSin— = vsin— (2.5)

v(x) = Ny —N L L

2
where N, , = EILZ—ZH is the elastic critical load. The following amplification relationship can thus

be established:
_ o 1 _
Vit =V + Vg = WUO (26)
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Figure 2.2 — Compressed column with initial imperfections
In-plane flexural buckling is described with identical equations and relationships, the only
change is that the critical force N..- becomes N, the displacement v(x) - w(x) and the initial

imperfection v, - W, respectively.



2.2.2.2 Flexural buckling of beam-columns

The case of flexural buckling of a beam-column under bending moment and axial force is
addressed here. This problem has a closed-form solution; however, it is problem dependent.

Solutions for various bending moment distributions can be found in the literature Chen & Lui

(1987).

In this section, the case of a beam-column loaded with uniform bending moment is considered,

as shown in Figure 2.3.

MyN NMy
C»A\\\\ ***** ”///7 U

Figure 2.3 — Prismatic beam-column loaded with uniform axial force and bending moment

If the column in consideration is loaded with major axis bending moment and axial force, the
solution for the in-plane displacement is given by:
M, coskL —1 (2.7)

. kx — ————sinkx — 1
Elykz COS KX sin kL SIn KX
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in which k = N/E1,,.

The displacement function can be used to determine the maximum second order bending
moment, which in this case occurs at mid-span:
1 1 1 (2.8)

Mymax" =M =M ~ My ————
ymax y y T Y1 —
cosk% cos5+/N/Ney 1=N/Ney

5
My £ N My
C=—T1T 7
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Figure 2.4 — Second order bending moment




Eq. (2.8) gives the maximum second order bending moment that consists of the primary
moment M, acting on the member and the second order component caused by the axial force

Neq magnified by the maximum displacement wyqx as shown in Figure 2.4.

2.2.2.3 Lateral-torsional buckling of beams
Considering the standard case of a simply-supported beam with fork supports (v(0) = v(L) =

0,0(0)=6(L) =0and ZZTZ (0) = 2272 (L) = 0) subject to a uniform bending moment (Figure

9,

\\ e
—~—— e —

Figure 2.5 - Simply supported beam subject to uniform bending
it can be verified Chen & Atsuta (1977) that the amplitudes of the first buckling mode shapes

of the perfect system Eq.(2.2) are related by

In Eq. (2.9), M., is the elastic critical bending moment and N, is the pure torsional buckling

force:

Mg, = To+/ Ncr,x Ncr,z

1 (El,m?
Ncr,x = 7"—2 L—2+ Glt .

0

2.2.2.4 Lateral-torsional buckling of beam-columns
Consider the standard case of a simply-supported beam-column with fork supports (v(0) =
2 2
v(L) =0,6(0) =60(L) =0and Z—x(z (0) = Z—xz (L) = 0) subject to a uniform bending moment

and axial force Figure 2.3, but in this time exhibiting lateral-torsional buckling. Then Eq. (2.1)

leads to the following relationships between the critical forces:

(MCT,NM)Z — (1 _ Ncr,NM) <1
Mcr Nerz

_ Ncr,NM

(2.9)

(2.10)

2.11)

(2.12)
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and between the amplitudes of the lateral displacement and rotation:

12 — MCT,NM (2 13)
9 Ncr,z_Ncr,NM )

If a beam-column with initial imperfections is subjected to an axial force and bending moment,

it is again assumed that the relationship between the lateral imperfection and the rotation

amplitudes is the same as in Eq.(2.13):
Vg

Mer.nm
0 criz—Ner,NM

Furthermore, considering that the axial force and bending moment are increased proportionally,

that 1s, the ratio between the applied forces is equal to the ratio between the critical forces:

Mernm _ My (2.15)
Ncr,NM N

using expressions (2.14) and (2.15) in the system of equations (2.3), it is possible to obtain the

following amplification of the amplitudes of the initial imperfections:

17tot] 1 170]
1-1/acr 90

(2.16)

Qtot

in which a,1s the critical load multiplier.
2.3 The Eurocode 3 stability design rules

At present the stability design of members in Eurocode 3-1-1 is based on the buckling curve
approach for uniform columns and beams; and on an interaction approach for the design of
members loaded in bending and compression. For non-standard cases, the code offers a

Merchant-Rankine type of empirical interaction expression denoted general method.

2.3.1 Members in compression
2.3.1.1 Flexural buckling

Regarding the resistance of uniform members in compression are given in clause 6.3.1 of

Eurocode 3. According to the code, the buckling resistance of members is verified using:



Ngq
<1.0 (2.17)
XNga

where Ngq is the design axial force, Ngq is the plastic resistance in compression and y is the

reduction factor for the relevant buckling mode.
S <1.0
¥ = — < 1. 2.18
¢ +p? T2 >0
¢ =0.5(1+ a(1—0.2)+2?) (2.19)

where 1 = ’:—fy is the normalized slenderness and a is the imperfection factor (see Table 2.1).

Table 2.1 — Imperfection factor for buckling curves

Buckling curve b a b c d

Imperfection factora¢ | 0.13 0.21 034 049 0.76

The buckling curves for I-section are chosen according to Table 2.2.

| 15
Table 2.2 — Selection of buckling curve for a section
EC3-1-1
Fabrication Limits Axis | S235 | S460
S355
y-y a a0
:! <40 mm ey b a
2 b
,;? = 40 mm<t< yy a
L‘é 100 mm Z-Z C a
S
5 yy | b a
‘g 2 <100 mm 77 . .
VI
£ y-y d c
<! t>100 mm
z-Z d c
6 — Yy b b
= )i <40 mm
g y hy
e
3 = y-y
g —— % t>40 mm 77 d d
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2.3.1.2 Torsional and Flexural-torsional buckling

For open sections, the code endorses the verification of the possibility of torsional or flexural-
torsional buckling, using Eq. (2.18) with the non-dimensional slenderness A for torsional or
flexural-torsional buckling calculated with N.=Nc.rr or Ne,r . The imperfection factors used
in this verification are the ones relative to minor axis flexural buckling with the corresponding

cross-section type.

The new version of Eurocode 3, prEN 1993-1-1 (CEN/TC250, 2017), contains additional rule
for double-symmetric I- and H- section members in compression with continuous or discrete
intermediate lateral restraints, failing in torsional or torsional-flexural buckling. The buckling

reduction factor is calculated as follows:

1
- <1.0
XTF . - (2.20)
¢TF + ¢TF ATF
A_ 2
drp = 0.5 (1 + /TT—anTF(/TZ - 0.2)+,TTF2> 2.21)
Z

where the imperfection factor is given by

Af,(i2 + d?)
_ /— (2.22)
%TF = %z | 762561,

o I,+1 ) ) ) . .
with 15 = ZTy and d is the distance of the intermediate restraint from the shear centre.

2.3.2 Members in bending

The stability of members in bending is verified using the design recommendations from clause
6.3.2 of Eurocode 3. There are two approaches currently available: the General case and the
Special case given in clauses 6.3.2.2 and 6.3.2.3, respectively. Both of them make use of the
buckling curve approach, thus assuming that the columns and beams have similar behaviour

regarding their buckling resistance.

Recent research by Taras & Greiner (2008) has resulted in a new Ayrton-Perry design rule,
which is based on mechanically consistent analytical derivation and imperfection factors

calibrated based on an extensive numerical parametric study. The method is already included



in the final draft of the new Eurocode 3 prEN 1993-1-1 (CEN/TC250, 2017) and it is included

in the summary of this section. It is henceforth referred to as New EC3 method or nEC3.

2.3.2.1 General case

The buckling resistance of members is verified using:

My ga
—2"<1.0 (2.23)
XirMy ra
where M, rq 1s the design major axis bending moment, M,, rs is the plastic resistance for cross-
section classes 1 and 2, the elastic resistance for cross-section class 3 and the effective resistance

for slender sections; y;r is reduction factor for lateral-torsional buckling.

1
= <
Xir o 10 (2.24)
bur + | bur” — Ay
¢ur = 0.5(1 + ayr(Ar — 0.2) + 2Z7) (2.25)

= , Wy fy . ) ) ) ) .
where A, = ]; Iy is the normalized slenderness and «; 7 is the imperfection factor depending
cr

on the buckling curve. The buckling curves are chosen according to the member geometry

according to Table 2.3 with imperfection factors as given in Table 2.4.

Table 2.3 — Buckling curve selection

Cross-section Limits Buckling curve (GC) | Buckling curve (SC)
h/b<2 a b
Rolled I-section
h/b>2 b c
h/b<2 c c
Welded I-section
h/b>2 d d

Other section - d -

117
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Table 2.4 — Imperfection factor for buckling curves

Buckling curve a b c d

Imperfection factora¢ | 0.21  0.34  0.49 0.76

2.3.2.2 Special case

The Special case is intended for the verification of rolled sections or equivalent welded sections.

The buckling reduction factor is determined from:

1.0
1 1
Xt = — = = (2.26)
¢ + ,/¢LT2 — By Air
¢rr = 0-5(1 + aLT(ZLT - /TLT,O) + ﬁ_ﬁr) (2.27)

the additional parameters /TLT'O and [ are a choice of the National Annex, the recommended

values are: /TLT,OZOA and 8 = 0.75. The method is applied with the buckling curves from Table
2.3.

For a variable bending moment, the method allows a correction in the reduction factor:
XLT,mod = T <10 (2.28)
The factor f depends on the bending moment diagram
f=1-051—ko)[1-2(Zr - 0.8)2] < 1.0 (2.29)

The k. is the correction factor chosen depending on the bending moment distribution (see Table

2.5).



Table 2.5 Correction factors k. and fn,

Moment distribution ke fu
| | 1.0 1.0
A Ao,
1
Myf\*\*lwm 1.33 - 0.33y 1.25 — 0.1y — 0.15y)2
<1.0
_~—— 0.94 1.05
Mo < 5.1.0+ 13520 033(M°)3
MnD MQIWW i o0 Mo S MM
e —~_1 —
0.91 M,
—2>2:1.05
My
" 0.86 1.10
Mo 147:125+15 (MO)Z 0.275 (M°)4
T N—— o7 | SR T
~——- o
0.82 M,
—%>147:1.05
My,

2.3.2.3 New EC3 method

The new version of Eurocode 3 prEN 1993-1-1 (CEN/TC250, 2017) has a new method for the
verification of the lateral-torsional buckling resistance of H- and I- sections between discrete
lateral restraints on both flanges, for which the buckling reduction factor is calculated from the

following:

Xur = Ju <1.0

. 2.30
bur + ’ bur’ — fulir 239

2

yl - _

Z




The imperfection factor oy is selected from Table 2.6. The factor fis is chosen according to

Table 2.5.
Table 2.6 — Selection of buckling curve for a section
Cross-section Limits arr
b Wel,y
O T— t<40 mm 0.12 <0.34
P p— ~ . Wei,z
s 3
2 = Wel y
o ¥ ¥ 0.16 = <049
= « t=>40 mm Wei,
E
kS N W
L= | g i 0.16 |2 < 0.49
2 § Wel,z
3 ——— WeLy
2 0.21 < 0.64
= t<40 mm Wos
g, vl v
2 w,
= = ely
€ S — t>40 mm 025 |32 < 0.76

2.3.3 Members in bending and compression
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The stability of members in bending and compression is verified according to clause 6.3.3. The

general interaction format is given by the equations:

Ngq t My gq + AMy, g4 My pq + AM, gq <10 (232)
XyNra Y X1t My ra e M3 ra o .

Ngq e My gq + AMy, g4 M, gq + AMy g <10 (2.33)
XzNRra i X1t My ra i M, ra - .

where Nga, M), caand M gq are the design values of the axial force and the maximum bending
moments about y-y and z-z axes, respectively; Nrs, My rs and M: rq are the design resistances

and k;; and k;; are the interaction factors.

The interaction factors for Method 1 are given in 7able 2.7. The additional coefficients used

with the interaction coefficients for Method 1 are given by equations (2.34)-(2.46).

_ 1- NEd/Ncr,y
1- XyNEd/Ncr,y

iy (2.34)



1- NEd/Ncr,z

, = (2.35)
z 1- XZNEd/Ncr,z
W, 2.36
=22 <15 (2:36)
ely
W, 2.37
w, = Pl <15 2.37)
el,z
Table 2.7 - Method 1: Interaction factors
Int. Design assumptions
factor
Elastic cross-sectional properties Plastic cross-sectional properties
Class 3 and 4 Class1 and 2
Hy My 1
CoryConir —————— - v -
kyy mymLe 1- NEd/Ncr,y CmyCmLT 1- NEd/Ncr,y ny
k C ﬂ—y C ‘u—yio 6 Wz
" ™1 - NEd/Ncr,z - NEd/Ncr,z Cyz . Wy
Uz Hz 1 W.
kzy ConyCmir o — Cony Conpr ————————0.6 |—=
Y my mLT 1 _ NEd/Ncr,y my mLT 1 _ NEd/Ncr,y Czy WZ
Uz Uz 1
kzz C TN N C = A N~
me 1- NEd/Ncr,z me 1- NEd/Ncr,z sz
For Class 3 and 4 w=w,~=1.
1.6 - - 2 Ngg4 Wery
Cypy=1+(w, —1) | 2= —Cpny” (Amax + 2 —— b= (238
yy ( y ) [( wy, my ( max max )) NRk/yMl LT Wpl,y ( )
Crp=14(w,—1) (2- 14 mzz’lma’“ > 06 |[w2 Wz 55
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vz z _ NRk/)’M1 wy Wiz
[ 1 2.40)
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i ( Y ) ( NRk/YMl ] w, Wiy

1.6 _ | _Nea | Wer, (24D
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Amax 18 the highest member slenderness.

I

aLT=1—1—20

y

My,Ed Mz,Ed

bLT = O.SaLT/T.OZ

XLTMpl,y,Rd Mpl,z,Rd

Ao
CLT == 10aLT

2

>0

My gq

Ao

5+ /TZ4 ConyXetMpLyra

>0

My,Ed Mz,Ed

dir = 2apr

0.1+ /Tz4 CmyXLTMpl,y,Rd szMpl,Z,Rd

>0

My,Ed

>0

The equivalent moment factors are used as specified in 7able 2.8 and Table 2.9.

Table 2.8 — Method 1: Equivalent moment factors Cy; o

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

Moment diagram Chio
22 |
MEa N
M e wMes Cmio = 0.79 + 0.213); + 0.36(h; — 0.33) —-2
Nea NEka Ner i
m2EL;|S N
Cmi,0=1+<2 llxl _1> Ed
_AzEd[\ /]\VMELL_ L |Ml-_Ed(x)| NCT,i
NEd - Nea
M; gq(x) is the maximum moment My, g4 o1 M, g4
|6, | is the maximum displacement along the member
) NEd
i i Cmio = 1—0.18—=
_\/H cr,i
NEa Neka
—_— s NEd
Cmio=1+0.03
Ncr,i
M A
_Mysa A (2.47)
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Table 2.9 — Method 1: Equivalent moment factors Cyig

No torsional deformation Possible torsional deformation
Ao < Aiimie Ao > Aimit
Cmy = Cmy0 Cony = +(1-c )—a”‘/g
my my,0 my,0 1+ aLT\/g
Cmz = sz,o Cmz = sz,o
kLT = 1.0 CmyZaLT
kir =
J(l - NEd/Ncr,z)(l - NEd/Ncr,T)

The interaction factors for Method 2 are given in Table 2.10 and Table 2.11.

n

n

_ Ngq
Y XyNRk/VM1

_ Ngg
z XzNRk/VMl

(2.48)

(2.49)

The equivalent moment factors are chosen according to Table 2.12.

Table 2.10 — Method 2: Interaction factors for members susceptible to lateral-torsional buckling

Int. CS Design assumptions
factor
Elastic cross-sectional properties Plastic cross-sectional properties
Class 3 and 4 Classl and 2
Cny[1+0.6Ayn,] < Cy[1+ | Cuy[1+ (4 — 0.2)1,] < Cpyy [1 +
kyy I, RHS
0.6n, ] 0.8n, |
k- I, RHS ke 0.6 k..
k- I, RHS 0.8k, 0.6k,
; Cnz|1+ (22, + 0.6)n,] < Cpy[1+
. Conz[1 + 0.61,1,] < Cip[1 + Lan,]
- 0.67’1.2] C 1 7
+ (A, —0.2)n,| < Cpyll +
RHS mz[ ( z ) Z] mz
0.8n,]
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Table 2.11 - Method 2: Interaction factors for members susceptible to lateral-torsional buckling

Design assumptions
Int.
factor | Elastic cross-sectional properties Class 3 | Plastic cross-sectional properties Class3 and
and 4 4
kyy ky,y from Table 2.10 ky, from Table 2.10
k- k- from Table 2.10 k- from Table 2.10
0.12, 0.1
[1 " Cur—0.25 nz] 2 [1 N cmLT—o.zan]
_ 0052, _ 005 Forl, < 04
key [1 CrnLr—0.25 nz] 2 [1 CrnLr—0.25 Z] z
k,, =06+2,<|1 0.14,
zy SO T A= T 025
ke k.- from Table 2.10 k.- from Table 2.10

Table 2.12 — Method 2: Equivalent moment factors C

Cyy and Cyz and Cyrr
Moment diagram Range Uniform load Concentrated
load
24 | M,
D v —1<y<1 0.6 + 0.4 > 0.4
0<a,<1 |-1<y<1 0.2+ 0.8a, > 0.4
- 0.1 — 0.8a,
Ml Ms WM o<sy<1 > o4 —0.8a5 = 0.4
T —— -1 < a, =
os = Ms/Mn 0
< 01(1—1) — 0.2(—y) —
1<y <0
0.8a5 = 0.4 0.8a5 = 0.4
0<a,<1 |-1<yY<1| 095+ 0.05x;, 0.90 + 0.10ay,
M
th WM o<sy<1 0.95 + 0.05a;, 0.90 + 0.10a,
e -1< (247
o =MiMs <0 0.95 + 0.95 +
-1<¢y <0
0.05a,(1 +2vy) | 0.10a,(1 + 2¢)

For members with sway mode the equivalent uniform moment factor should be taken C,,=0.9 or C,,-=0.9,
respectively.

Ciny,Ciz and Cyurrshall be obtained according to the bending moment diagram between the relevant braced

points.




2.3.4 General method for lateral and lateral-torsional buckling of structural
components

The method is used where the rules, given in the previous sections, do not apply. It targets the
verification for the resistance to lateral and lateral-torsional buckling of single members, built-
up or not, uniform or not, with complex support conditions or not or plane frames or sub-frames

composed of such members.

The overall resistance of the structural component is verified using:

a
XovZuitk 5 1.0 (2.50)
Ym1

where ay;¢ is the minimum load amplifier of the design loads to reach the characteristic
resistance of the most critical cross-section of the structural component, considering its in-plane
behaviour without taking lateral or lateral-torsional buckling into account however for all
effects due to in-plane geometrical deformation and imperfections, global and local, where

relevant;

Xop 1 the reduction factor for the non-dimensional slenderness /Top which is determined

accounting for lateral or lateral-torsional buckling as given in Eq. (2.18)

Ayitk

&)

= (2.51)
P Aerop
where @y p 18 the minimum amplifier for the in-plane loads to reach the elastic critical

resistance of the structural component with regards, to latera or lateral-torsional buckling

without accounting for in-plane flexural buckling.

The reduction factor x,, is then determined as the minimum of y according to clause 6.3.1 or

x.r according to clause 6.3.2 or interpolated value between both.

Although it claims generality, the reliability of the method was questioned several times, e.g.
Simoes da Silva et al. (2010), Taras (2010), Marques (2012), SAFEBRICTILE final report
Simoes da Silva et al. (2017) and it was shown that due to lack of mechanical background it
may lead to either over-conservative or unsafe estimates of the design resistance. In the

following it will not be further discussed.
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2.4 Background of the European design rules

2.4.1 Introduction

This section is dedicated to the background of the design rules for columns, beams and beam-
columns presented in the previous section. This summary aims at identifying a consistent way
of extending them to a general approach applicable to any kind of member and buckling mode.
It also addresses inconsistencies associated with the application of these rules which have been

identified by other researches. It follows the organization of the previous section.

2.4.2 Members in compression

The verification format for the flexural buckling of columns is directly derived from the
differential equations (2.3) for a column with an initial imperfection. It is achieved by applying
a first yield criterion at mid-span for a simply-supported column (i.e., equating the normal stress
at the most compressed fibre to f,):

o N M

T + W 1.0 (2.52)

where the second order moment due to the initial imperfection is obtained using the

amplification relationship derived in Eq.(2.6),

N No 1
+— =10 )53
Ay Wiy - 2L (2.53)

crz

which is transformed to

X
Xt T (2.54)

= ,A . . . . .
where 4 = N—fy is the normalized slenderness, y = % is the buckling reduction factor and n =
cr y

_ A . . . . . . )
€y 18 the generalized imperfection factor (accounting for out-of-straightness and residual

stresses), with W denoting the elastic section modulus relative to the buckling axis. Eq.(2.54) is
the buckling curve equation where the only unknown is the amplitude of the imperfection é,.
This advantage of the Ayrton-Perry representation of the problem was used in the calibration

of the European design rules.



The buckling curves were established in the 1970’s, and their development was based on an
extensive experimental programme carried out by the European Convention for Constructional
Steelwork (ECCS) in several European countries; on theoretical developments by thorough
analysis of the experimental programme; and on reliability assessment by a Monte Carlo

simulation.

The experimental programme was summarized by Sfintesco (1970) comprising a total of 1067
column tests. It covered a variety of cross-sections (I and H, hollow and T sections); fabrication
procedures (welded and rolled sections). In the scope of the experimental programme, the
material and geometrical properties (cross-section dimensions and out-of-straightness) of each

column were evaluated and carefully documented.

Furthermore, Beer & Schulz (1970) carried out a thorough analysis of the ECCS experimental
programme, assessing various parameters that can possibly occur and affect the resistance of
compressed members. Special attention was paid to the member imperfections, focussing on:

1) initial out-of-straightness; ii) load eccentricity; and iii) residual stresses;

AR
N ) R 10 ———] L 4{_ N 4
10 — - ¢=0(EULER) ———r— QZ\\\
S el e /40=1,25mm (m=, =005 - RS R 2
f=18mm SN e=1/20=243mm|(m= 0,1} 08 ] B )
08F e ragm iy 9B (me02) SN | = /2000
re29amm? o7 Qg 1o 4#8mmiim=0.2) 1 e 27200077 SN N~ £/1000 ) GE=0
N\ | ] 0 p 0513%05{ &/10007 SR 2/ s00
08 N N ¢/ 500" SN
) S0 _~EULER
0,4+ f=2/1000 | N - 04— Palﬁ OE (compression) [ N \
| g '=S0Zmm il e ‘ 03 \*%
02— —|[— (+ troction) =3
02— T o ] ' =
P TE=0 70 |
0 1 1 I 1 0 | —-
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| .
Aa82,9(C, =24) W) 3=260
a) Load eccentricity and out-of-straightness b) Residual stresses and out-of-straightness

Figure 2.6 — Sensitivity to imperfections Beer & Schulz (1970)

The geometrical imperfections (initial out-of-straightness and load eccentricity) were measured
in the experimental programme, providing plausible estimations of their distributions. It was
shown in Beer & Schulz (1970) that the limit of /1000 as initial out-of-straightness could cover
load eccentricities up to Smm as shown in Figure 2.6a. It was also noticed that the unintentional
eccentricity can only have a noticeable effect in the low slenderness range, but it was assumed
that it could be compensated by the fact that the strain hardening was neglected in the

calculations.
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There was a certain difficulty in the adoption of magnitude of the residual stresses due to the
lack of available data and the high variability of the available measurements. In order to assess
the influence of the residual stresses and the geometrical imperfection, a comparison was
performed for three levels of geometrical imperfections (L/2000; L/1000 and L/500), with or
without considering the residual stresses as shown in Figure 2.6b. It was concluded that the
influence of the geometrical imperfection reduces with increasing residual stresses. It was
possible to show that the curvature effect reaches its maximum at a normalized slenderness A

between 1.0 and 1.3, depending on the level of residual stresses.

Later, the safety of one of the curves was evaluated by Monte Carlo simulation by Strating &
Vos (1973), accounting for the variability of various parameters such as residual stresses, out-
of-straightness, load eccentricity, geometrical and material properties. The adopted

distributions are summarized in Table 2.13.

Table 2.13 - Distributions for basic variables in Strating & Vos (1973)

Gamma distribution Normal distribution
Basic variable
A k mean st.dev
Load eccentricity 2.798 1.663 -
Out-of-straightness - - 0.00085L 0.0002L
Area (mm?) - - 2047.33 81.15
Yield stress (MPa) - - 314.8 26.5
Residual stresses - - 0.20% 0.050%

A general assumption was that reasonable safety is achieved by using twice the standard
deviation as upper or lower limit. It was applied to all of the variables, except for the yield stress
in certain cases. The distributions for all basic variables were considered with Normal

distribution, except for the load eccentricity which was considered with Gamma distribution.

Even though the distributions of some of the basic variables in Table 2.13 have very high
variability and not very high mean-to-nominal ratios, it was concluded that the curve is

sufficiently reliable.



Finally, Maquoi & Rondal (1978) derived the analytical Ayrton-Perry format of the design

verification and the curves were put into equation.

At present the code proposes 5 buckling curves, as shown in Figure 2.7. Curves a to d were
originally calibrated on the basis of the experimental programme. The most relaxed curve ao,
was added later to account for the most favourable properties of high strength steels (HSS). It
is worth pointing out that there is an inconsistency regarding the curves for steel grades higher
than S460: in Table 2.2, the buckling curve selection for the different buckling axes is always
more favourable for in-plane buckling than out-of-plane. This is very logical, since the usual
residual stress distribution (welded and rolled) is more unfavourable for a member bent about
its minor axis. For steel grades higher than S460, however, this fact is not reflected in the
buckling curve selection. In Chapter 5, this issue will be discussed on the basis of the reliability

assessment.

1.2

Redusction factor y

0 0.5 1 1.5 2
Normalized slenderness

Figure 2.7 - The European buckling curves

2.4.3 Members in bending
2.4.3.1 Existing methods

It was shown already that in the current version of Eurocode 3, there are two possibilities for
the verification of the lateral-torsional buckling resistance of beams. The first approach, the
General case, assumes that columns and beam act alike, i.e. the compression flange is supposed
to act like an equivalent column, and therefore, the same imperfection factors were assumed for
the method. It does, however, adopt a different split according to the cross-section geometry,

accounting for their different torsional rigidity. According to ECCS No. 119, these curves are
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meant to be used with deep and slender sections which are outside of the scope of rolled
sections. The method has been criticized for being over conservative when applied to members

with variable bending moment diagram Rebelo et al. (2009), Taras (2010).

As an alternative for rolled and equivalent welded sections, Eurocode 3 has another set of
buckling curves, denoted as the Special case. The method was calibrated on the basis of
extensive numerical studies in the Research Project Lateral-torsional buckling of steel and
composite beams (1993) and Salzgeber (2000). Additional calibration was carried out by
Grainer & Kaim (2001) on the basis of experimental results by Janss & Maquoi. In order to
justify, the plateau at 0.4, experimental results by Byfield & Nethercot (1998) were used in the
assessment according to Annex Z of ENV 1993-1-1:1992. However, the method was shown to
be unconservative when compared to numerical results Snijder & Hoenderkamp (2007), Rebelo

et al. (2009).

2.4.3.2 New LT-buckling curves

The new version of Eurocode 3 prEN 1993-1-1 (CEN/TC250, 2017), includes a new method
for lateral-torsional buckling of beams with H- and I- sections. The method was developed by
Taras & Greiner (2008) and it has mechanically consistent analytical background with
imperfection factors calibrated on the basis of advanced numerical simulations and assessed

using Monte Carlo simulations.

The analytical derivation is performed directly from the differential equations (2.3) for a beam
with initial imperfection. It is achieved by applying a first yield criterion at mid-span as it was
done for flexural buckling of columns, but in this case, there is an additional second order term

that appears in the equation due to warping:

o(x) _ My(x)  M/(x)  My()
o WO W,(0f  Ww(f,

(2.55)

where W,,, W, and W,, denote the elastic section moduli.

Assuming now that the initial imperfections have the same shape as the first buckling mode,

that is,

X ~ X
vo(x) = ﬁosinT 0,(x) = HosinT



and enforcing a first yield limit condition eventually leads to the Ayrton-Perry equation

M, M, e Nez

+ =1.0
Wyfy = Wify 1— ﬂ Me, (2.57)
MCT
which is transformed to
XLT
Xir+—————=mr =10 (2.58)
1= xurir

with the buckling reduction factor and the normalized slenderness given by:

MJ’ /T _ fy WJ’
LT —

Yir = (2.59)
AW, M.,

A similar transformation was also performed by Szalai & Papp (2010), however without further

calibration of the respective imperfection factors.

For design purposes, the generalized imperfection factor in Eq. (2.58) required further

calibration:
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Figure 2.8 — Amplitudes of the geometrical imperfections

The meaning of the geometrical parameter €, appearing in the above definition of 1, is

indicated in Figure 2.8.
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The calibration was performed for the term Avéo from Eq. (2.60) and the two following options

were considered:
m = a(, —0.2) (2.61)
nu = a(/TLT - 02) (262)

These options were compared with the numerical estimate 1,,,,. It was shown that the
imperfection proportional to A, adjusts better to the numerical curve up to a certain point where
the geometrical imperfections, which are length dependent, become more relevant (4,
approximately 3.0 corresponding to A;; = 1.0). Hence new imperfection factors azr were
developed, see Table 2.6. They use the same limits as the column buckling curves for rolled
sections and their magnitude is bound by the imperfection factors for minor axis flexural

buckling.

The effect of non-uniform bending moment distributions was included by the calibration of an

additional factor fu, given in Table 2.5.

2.4.4 Members in bending and compression

For prismatic members loaded in bending and compression, Eurocode 3 provides an interaction
formula. It is based on linear interaction between the axial force and the bending moments,
which are combined through interaction factors accounting for the non-linear effects in the
beam-column behaviour. In the development of the interaction formula there were two teams:
the “French-Belgian” team which was responsible for the interaction coefficients in Method 1
and the “Austrian-German” team responsible for the development of the coefficients associated
with Method 2. The main difference between the two methods is the way of considering the
various effects which affect the beam-column behaviour. The interaction coefficients associated
with Method 1 were developed aiming to distinguish each structural effect in the interaction
coefficient, therefore laying the ground for any further modifications, if necessary, and to
directly identify the impact of each physical phenomenon. Method 2, aimed at easier practical
implementation, combines the non-linearities into global interaction factors k;; and k;; calibrated

on the basis of an extensive numerical programme.

In Section 2.2.2.1 it was shown that the in-plane behaviour of beam-columns is associated with

the presence of a second order bending moment which arises from the additional lever arm to



the axial force Ngs causing amplification of the deflection and of the bending moment. In the
same section, it was also shown that for uniform bending moment, the location where this

moment has a maximum is at mid-span.

For non-uniform bending moment distributions, this location varies and to avoid its
determination, both methods consider the equivalent moment concept. It is illustrated in Figure
2.9, the bending moment Mgq is replaced with CMgs, with a sinusoidal bending moment
distribution and results in the same second order moment. Then the second order elastic check
at the most loaded cross section is given by:

Ngq 1 Ngqép 1 CmMEgamax

+ + <1.0 (2.63)
NRd 1- NEd/Ncr MRd 1- NEd/Ncr MRd

For Method 1, the Cy, factors are chosen with more correct expressions that depend on the axial
force, see Table 2.8. Method 2 uses the Austin formula, which relates to a beam subject to

uniform bending moment and does not depend on the axial force,

Table 2.12.

2 — 133

M Ed,max

Figure 2.9 - Equivalent moment concept

At low slenderness, the in-plane behaviour of a beam-column may exhibit plastic behaviour.
For that reason in Method 1, M. ra 1s replaced with CMp;ra in Mra:
Ngg . Mgq

+ <1.0 2.64
Nra  CMy;pa (2.64)

The factor C is found as a function of the member slenderness, applied axial force, the
equivalent moment factor C, and the ratio between the plastic and elastic moduli. It was
calibrated in order to achieve continuity with the cross-section resistance. The expressions for
Cii and Cy, as given by Eq. (2.38)-(2.41) were calibrated with a lower bound at M, zs. They also

consider the biaxial bending interaction.
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For Method 2, the equivalent sinusoidal moment concept was kept; however, the inclusion of
plasticity was considered directly in the k-factors, therefore not allowing to split the

amplification terms from the plasticity effects at low slenderness.

Regarding lateral-torsional buckling, Method 1 has it incorporated implicitly in the formulation
of the interaction coefficients. Method 2 offers a separate set of interaction coefficients to verify
the lateral-torsional buckling resistance and therefore distinguish the members as susceptible

or not to lateral-torsional deformations, see Table 2.10 and Table 2.11.

Both methods were assessed on the basis of the same set of advanced numerical simulations

(Boissonnade et al.,2006).

In the present version of Eurocode 3, both sets of interaction coefficients are given in Annex A
and Annex B, respectively. In the new version or Eurocode 3 prEN 1993-1-1 (CEN/TC250,
2017) only Method 2 is specified and the interaction coefficients are included in the main text
of the code, while Method 1 is included in a technical specification CEN/TC 250 prCEN/TC
1993-1-101:2016.

2.5 Buckling resistance outside Europe

2.5.1 Introduction

Up to this point, the presented design formats were only focused on European standards. In this
section, the design recommendations of the north American AISC, (2010) code are

summarized.

2.5.2 Design of members in compression

The nominal resistance of members with non-slender members is given by:
P, = F A, (2.65)

in which 4, is the cross-section area and F., is the critical stress determined from:

KL E 2
— < 4.71 Fy F., = [0.658%|F, (2.66)



KL E
—>471 |~ F., = 0.877F, (2.67)
y

F. is the elastic critical buckling stress.

m’E
( ﬂ)z (2.68)
r

e

The verification is also based on the buckling curve approach. However, unlike the 5 buckling
curves of Eurocode 3, the AISC (2010) verification is based on a single buckling curve. It is
exactly the same as the SSRC curve 2P (Ziemian, 2010), even though it has a different

representation.

2.5.3 Design of members in bending

The lateral-torsional buckling resistance is verified according to Section F2 of AISC, (2010).

In this case, the curve is divided into three regions: a plastic, inelastic and purely elastic.

L, <L, M, =M, = Z,F,
L,—L,
Ly<L,<L, M, = Cy, |M, — (M, — 0.75S,F,) L.-1L, <M, (2.69)
Ly > Ly My, = SyFer < M

Ly is the distance between the points braced against lateral displacement. F, is the critical stress:

g2 OmE L 0078 (L”)z
s m
Tts

The length limits are defined as:

L, = 1767, |— 2.71)

EE
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E | Jc Jc \? 0.7F\°
L =1 7 (2.72)
r 95rf50.71:y th0+\/<5xh0) +o 6( E )

The verification assumes the transition of the elastic to inelastic region to happen at 0. 7F),. This

format has been recently criticized by Subramanian & White (2017), who claimed it is unsafe
in the inelastic region due to the incorrect consideration of the buckling length and the typically

high magnitudes of the imperfections adopted in numerical simulations.

2.5.4 Design of members under bending and axial force

The design of members in bending and compression is performed by using an interaction

approach. For members prone to flexural buckling, AISC (2010) gives the following equations:

By o2 &+§<er+%><10
c B Pc 9 Mcx Mcy -
(2.73)
P B (My M,y
T<0.2 — <1.0
P, T (Mcx * M)~

The lateral-torsional buckling stability of members in bending and compression is verified

using a separate formula:

P, Pr> Mryx \?
(15— 05" +( ) <1.0° (2.74)
Pcy( Pcy Cchx

Both verifications are linked to the member resistances obtained separately as in Section 2.5.2

for members in compression and Section 2.5.3 for members in bending.

2.6 Structural design and code verification

The structural design codes provide the link from theory to practice. Their aim is to ensure that
design principles and application rules lead to appropriate safety levels. The safety margin
directly reflects the risk society is willing to accept yet that maximises economical design. The
family of Eurocodes, EN 1990 to EN 1999, are based on the limit state design philosophy, and
the use of partial factors. It is often applied since it incorporates the variability in the design

code and offers a clear guidance to the engineer. The American code offers two possibilities for



design: the Load and Resistance Factor Design (LRFD) which is a limit state approach, or the

allowable stress design as a tradition from the past.

The basic document of the Eurocodes is EN 1990 — Basis of structural design. 1t establishes
principles and requirements for the safety assessment of structures; it describes the basis of their

design and provides guidelines for structural reliability.

The limit state design method recognizes relevant design situations, where the design values
are established by use of partial factors. These safety factors are used on load and on the
resistance sides and the design is considered adequate whenever the appropriate limit states are

verified:
Eqg <Ry (2.75)
where Ey is the design value of the actions; Ry is the design value of the resistance.

The safety factors are established based on a statistical evaluation of experimental data; or based
on a calibration to experience derived from a long building tradition. They should be calibrated
such that the reliability level is as close as possible to the target reliability. The calibration of
safety factors can be performed based on full probabilistic methods, or on First Order Reliability
Methods. The full probabilistic approach is often not possible to use due to the lack of sufficient
statistical data. Vrouwenvelder (2002) reports that the analysis can be based on the Bayesian
interpretation of probabilities, where the probabilities are evaluated using available data and

previous knowledge.
Figure 2.10 illustrates the various possible reliability methods according to EN 1990.

The level of safety in EN 1990 is chosen according to Consequence classes (CC) defined in
Annex B. The consequence classes establish the reliability differentiation of the code by
considering the consequence of failure or malfunction of the structure. The Consequence
Classes (CC) correspond to Reliability classes (RC), which define the target reliability level
though the reliability index f. This index defines the probability of failure, given by:

P = o(—p) (2.76)

where @ is the cumulative distribution function (CDF) for the standard normal distribution.
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Figure 2.10 Possible Reliability methods

The reliability index covers the scatter on both resistance and action sides. It can be expressed

in terms of number of standard deviations as shown on Figure 2.11.
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Figure 2.11 Reliability index

Q=

According to Gulvanessian et al. (2002), “the target reliability index or the target failure
probability is the minimum requirement for human safety from the individual or societal point
of view when the expected number of fatalities is taken into account. It starts from an accepted
lethal accident rate of 10° per year, corresponding to a reliability index i = 4.7”. The
reference period (the design life) depends on the Reliability class, i.e. for most of the structures

it is 50 years which leads to f=3.8.




The probability of failure as expressed in Eq. (2.76) includes the loading and the resistance

parts. EN 1990 allows to separate the scatter due to loading and resistance in terms of

coefficients ag and ag, respectively (see Figure 2.11), where:

/aﬁ +aZ=~1.0 (2.77)

The partial factors related to the resistance are determined based on the following expression:

P(r <ry;) = ®(—agp) (2.78)

where 7 stands for resistance and ry is the design resistance. The factor az may be assumed to

have a fixed value of 0.8 in case the standard deviation of the load effect and the resistance do

not deviate very much (0.16<cr/0r<7.6). This simplification is crucial for a standardized

determination of the partial factors for the resistance side without the need to simultaneously

consider the action side.

The LRFD in AISC (2010), for example, does not allow such split and the reliability index f1s

calibrated for Live-to-Dead load ratio of 3 and it is approximately 2.6 for members and 4.0 for

connections. This imposed reliability assessment which is load dependent and more laborious

to perform.

The partial factors used in EN 1990 are:

yr — Partial factor for actions, also accounting for model uncertainties and dimensional
variations;

yy— Partial factor for actions, which takes account of the possibility of unfavorable
deviations of the action values from the representative values;

ysa - Partial factor associated with the uncertainty of the action and/or action effect
model;

yu - Partial safety factor for a material property also accounting for model uncertainties
and model variations;

ym— Partial factor for a material property;

yra— Partial factor associated with the uncertainty of the resistance model,

The relation between individual partial factors in the Eurocodes is schematically shown in

Figure 2.12:
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Figure 2.12 - Relation between individual partial factors

Since Eurocode 3 allows the split between the load and the resistance side, henceforth only the

resistance part will be discussed and the partial factor y related to it.

Regarding the design resistance, in Section 6 of EN 1990, three different alternatives for its
evaluation are proposed, for steel structures, Eurocode 3 recommends the use of Method 2
(clause 6.3.5(3)): the design resistance may be obtained directly from the characteristic value
of product or material resistance, without explicit determination of the design values for

individual basic variables:

R, = 2.79
a=y (2.79)

The latter is applicable to products or members made of a single material and it is also used in

connection with Annex D of EN 1990.

Furthermore, in Eurocode 3, depending on the type of design rule in consideration there are

different partial factors y:

— Resistance of cross-sections whatever the class is yuo,
— Resistance of members to instability assessed by member checks jui;

— Resistance of cross-sections in tension to fracture yp,
2.7 Recent advances

2.7.1 Introduction

Even though the stability design rules presented in this section were based on extensive

research, the stability problem continues to attract the attention of researchers due to the



enhanced material properties, new cross-section geometries and the possibility of computer
aided design. In this section, the recent developments in the scope of the European design rules
are summarized. There are several works which build upon the Ayrton-Perry format for flexural
buckling of columns, extending it to beam-columns, non-uniform members and members
subject to arbitrary loading. It was shown that this concept is relatively easily extended to
flexural-torsional and lateral-torsional buckling once the correct analytical behaviour is
considered Taras (2010). In Naumes (2009), the equilibrium equation for the flexural buckling
of tapered members was also established; in this derivation, the shape of the initial imperfection
was considered eigenmode conform. It was shown that the Ayrton-Perry design format can be
adopted for the design of non-uniform members. However, the proposed expressions are not
applicable for practical design verification due to lack of recommendations for the
determination of the design location. Furthermore, Taras (2010) offers the same type of model
for flexural buckling of beam-columns. Marques (2012) provided design equations for flexural
buckling of web-tapered columns and lateral-torsional buckling of web-tapered beams in the
same Ayrton-Perry format. An approximate verification format for beam-columns is proposed
by Hoglund (2014): aiming for simplicity, the stress utilizations due to axial force and bending
moments are specified as power functions. The method claims to provide better representation
of the transition between Class 2 and Class 3 sections, which however are already implemented
in the final draft of prEN 1993-1-1 (CEN/TC250, 2017) following the recommendations of the
European project SEMICOMP+ (Greiner et al., 2011). It is incorporated in Eurocode 9 for
verification of aluminium beam-columns. Recent research by Szalai (2017) shows the extension
of the Ayrton-Perry equation to prismatic simply supported members subject to arbitrary
loading. The author does not provide calibration of the corresponding imperfection factors but
shows that it is theoretically possible to achieve this format for various buckling modes. Based
on this development, Szalai & Papp (2017) built their proposal for reformulation of the General
method, by putting it into the derived Ayrton-Perry proposal for prismatic simply supported
members subject to arbitrary loading, which is its major flaw, being unable to capture the

specific aspects of non-uniform members.

Furthermore, there are a few developments supporting the design by use of numerical analyses.
Their proposals were mainly focused on the definition of the equivalent geometrical
imperfection to be considered in the design Chladny & Stujberova (2013a,b), Aguero et al.
(2015a,b), Papp (2016) and a mixture between LBA conform imperfection and a reduction
factor calculation Badari & Papp (2015).
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The methods can be separated

according to the type of members

they can deal with in the

following table:
Table 2.14 — Recent advances
Author Members in Members in Members in bending
compression bending and compression
Taras (2010) X
Marques et al. (2012), (2013),
X X X
(2014)
Chladny & Stujberova
X
(2013a,b)
Aguero et al. (2015a,b) X X
Badari & Papp (2015) X
Papp (2016) X X X

42| In this section, these recent methods are briefly summarized.

2.7.2 Members in compression

2.7.2.1 Tapered columns

For the verification of linearly web tapered columns, an Ayrton-Perry analytical model was

built by Marques et al. (2012), based on an equivalent simply-supported segment between

effective restraints. The verification format is established on a linear interaction between the

first order forces and second order bending moments utilizations, leading to a maximum

utilization (and, consequently, to the ultimate load factor) at a certain location, denoted as the

second order failure location. The utilization ratio of any section is given by the quotient of

applied and resistant forces. It is also the inverse of the load multiplier auii Figure 2.13

illustrates this aspect over the length L of a tapered column buckling about its major axis.



Utilization ratio €x)

hmin

Figure 2.13 Determination of the failure location

In this model for tapered members, eigenmode conform imperfections were considered for the
second order forces shape, leading to similar equations as those presented in EC3-1-1 for the
stability verification of prismatic columns. As a result, as long as a second order failure location
1s known and an additional imperfection factor is considered to account for the non-uniformity
either of the loading or of the cross section, the verification may be performed analogously to
the rules for prismatic columns. The utilization ratio is given by Eq. (2.80) for flexural buckling
of columns
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(2.80)
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It was shown that this second order failure location and additional imperfection factor may be
replaced by an “over-strength” factor ¢ which accounts for the relation between the ultimate
resistance multiplier of the second order location, owu i(x.") and the first order location, auk(xc),

such that if the p-factor is determined, the verification is always based on x... ¢ is given by

0= Nk (x¢") /Nga (x{) _ ault,k(xél)
Npi(x¢)/Ngq(x8) e (x8)

2.81)

2.7.2.2  Frames with unique local and global imperfection

Chladny & Stujberova (2013) show the principles of the application of EN 1993-1-1 section
5.3.2(11), where the amplitude of the imperfection is defined on the basis of flexural buckling

of prismatic columns and the shape is adopted according to the relevant buckling mode.
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- 14
eold = a(/l - 0.2) 1461 ;yMl (2.82)

Even though it is put in the context of a frame, the imperfection is derived for “frame structure
with axially loaded members” whose resistance “shall be equal to the flexural buckling
resistance of the equivalent member”. This equivalent member is simply supported, its cross-
section and axial force are equal to the critical cross-section of the frame and its length is such
that it equals the axial force at the critical section for the critical loading (Chladny & Stujberova
(2013)). Following this fundamental requirement and establishing the utilization along the

member as a sum of the first and second order stresses:

NEd (X) Mrlllinit,m (X)

V0= Na® T Mra (0

(2.83)

they derived the following expression for the imperfection by equalising the imperfections for

the equivalent and real member at the critical cross—section:

acrN Edm

A= Ner(x) (2.84)
Elmlrl cr,ml -

Ninit,;m (x) =€

in which the index m stands for the critical cross-section.

The procedure is intended for direct use in second order analysis; however, some applications
(for members) are possible using direct calculation. In any case, the definition of the critical

location for the determination of the magnitude of the imperfection requires an iterative process.

2.7.2.3 Equivalent geometrical imperfection in steel structures sensitive to flexural

and/or torsional buckling due to compression

Aguero et al. (2015a) extended the concept presented in the previous section to members in
compression sensitive to flexural and/or torsional buckling. Their method also finds its basis in
section 5.3.2(11) of EN 1993-1-1. Aguero et al. (2015a) use the same assumptions as Chladny
& Stujberova (2013). However, in this case, Aguero et al. (2015a) propose two different
expressions for the initial imperfection for Class 2 and Class 3 cross-sections which are used to

amplify the second order forces obtained from LBA.
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where "', n”',,,n"" g are the second derivatives of the mode shape translations in y, z directions

and twist rotation about x-axis.

This method is also applied using an iferative procedure to find the critical location along the

member for which the magnitude of the imperfection is calculated.

2.7.3 Members in bending

2.7.3.1 Tapered beams

Similarly to the model for web-tapered columns, an Ayrton-Perry analytical model was built
by Marques et al. (2013) for the verification of linearly web tapered beams. It is also based on
an equivalent simply-supported segment between effective restraints. The verification format
is based on a linear interaction between the first and second order bending moment utilizations,
leading to a maximum utilization. The utilization ratio is given by:

xII
e(x!) = yur(xi) + Hir(xe) X |45
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This theoretical utilization ratio was used for the calibration of “over-strength” factors as it was

done for the columns.
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2.7.3.2 Equivalent geometrical imperfection in steel structures sensitive to flexural

and/or torsional buckling due to compression

Aguero et al. (2015b) extended their concept presented in Aguero et al. (2015a) to members in
bending sensitive to lateral-torsional buckling. Using the same assumptions as described in

section 2.7.2.3, the amplitude of the imperfection is given by:

- 2
_ _ 1— 11— Xur
e (Xer) = aur(Aur — Auro) Y1 ! (2.87)
cr 7 2 % 2 I n I n '
Air 1—-BAir Xur E (Mplzz — n', + Mpl‘:\//Rdn 9)

2.7.3.3 Lateral-torsional buckling of prismatic beams

Badari & Papp (2015) proposed new buckling curves for lateral-torsional buckling based on
the analytical derivation by Szalai & Papp (2010). The imperfection factors for the LT-curves

were calibrated on the basis of advanced numerical simulations.

They also propose a verification which is performed in terms of a reduction factor y calculation
for various locations along the beam by using the buckling mode and the actual load
distribution. The normalized slenderness is calculated at location i along the beam as a ratio
between the ultimate load multiplier for the section and the critical load multiplier:

Quit ki

/TLT,l' = a— (2 88)
cr

and the generalized imperfection at each section is taken as a part of the maximum

v.
Miri = My — (2.89)
vmax
Then the bending moment resistance of each cross-section is obtained as:
Xir My ka
Mb,Rd,i = Wpl,yfy - (2.90)

Ym1 My gai



2.7.4 Members in bending and compression
2.7.4.1 Ayrton-Perry formulation for in-plane flexural buckling of beam-columns

Taras (2010) proposed an Ayrton-Perry equation for in-plane flexural buckling on prismatic
beam-columns. The verification format is derived in two alternative forms as a reduction factor

applied to the axial force and taking into account the bending moment,

N
—F <10 (2.91)
Xy,noNRd

or as a global in-plane reduction factor which multiplies both axial force and bending moment

aiming towards the definition of an overall concept for beam-columns.

= “ <1.0
Xip = .. (2.92)
¢ip + ¢ip - knicolip
. = 2
Pip = 0.5 (ki + Meor + coliy”) (2.93)
Ntot = k:u'CmSUO + TIimp,EC3 (2~94)

The generalized imperfection, given by Eq.(2.94), has two terms - due to initial imperfection |47

amplified by the axial force and by the second order bending moment.

As mentioned earlier, the in-plane behaviour of beam-columns is highly influenced by plasticity
at low slenderness, which led to the calibration of additional plasticity factors in the interaction
formula, as described in Section 2.4.4. In the developed Ayrton-Perry equation, since it is based
on a first yield criterion, it was also necessary to develop additional factors. They are given by
Eq. (2.95) and (2.96). Taras (2010) adopted a “split” approach, a multiplier for the moment and

the axial force.

kni = kni + (1 — kni)pCmSAip <10 (2.95)
kr*ni = kni + (W - kni)pCmS/Tip =w (2~96)

where

0.8
1-0.8km1

kpy =1.0 kpy=1.0—05a =075 15y = (2.97)
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Similar factors were calibrated for minor axis flexural buckling of I-sections, hollow circular

and rectangular cross-sections.

2.7.4.2 Tapered beam-columns

In Marques et al. (2014) the design rules for tapered columns and beams developed by the same
authors were used to propose a verification format for the stability verification of web-tapered
beam-columns. The verification uses the Eurocode 3 interaction approach and adjusted values
for k,, and £k, interaction factors. The interaction formula applied at the first order failure
location (Egs. (2.99) and (2.100)), with the reduction factors y calibrated for tapered columns

and beams; and the interaction factors according to Table 2.15.

Ny (x! M !

IEd(xC'N) — + ky, Iy'Ed(xC’M) — < 1.0 (2.99)
Xy(xc,N)NRd(xc,N) XLT(xc,M)My,Rd(xC,M)

Nea(xen) +k My 5a(xem) <1.0 (2.100)

Xz (xé,N)NRd(xé,N) i XLT(xé,M)My,Rd (xé,M) h
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In Table 2.15, ny and n. are obtained using Eqgs. (2.48) and (2.49) for the first order failure

location.
Table 2.15 - Method 2: Interaction factors for members susceptible to lateral-torsional buckling

Int. Design assumption

factor Plastic cross-sectional properties Class1 and 2
kyy Coy[1 + (4, (xy) — 0.2)n,] < Cpy[1 + 081

LG R [1-—2—n,| Ford,(xlly) <04
CmLT—O.ZS nz - CmLT—O.ZS nZ or. z xC’N ’
ke
- 0.12,(xy)
k,, = 0.6+ 1,(x!ly) < |1 —-—22%n
zy (el Copr — 0.25 %




2.7.4.3 Overall imperfection method

Finally, Papp (2016) proposed an innovative general methodology for the calculation of the
buckling resistances of columns, beams and beam-columns. The method avoids the iterations

in the previous ones, it transforms the calculation to an equivalent simply-supported member.
The procedure is applied in the following sequence:

— LBA is performed to obtain the critical load multiplier a.- and the elastic buckling shape
Ver(X)

— In a second step, a second order stress analysis with v.(x) as initial imperfection is
carried out, which gives the defined reference location where the second order stress
has maximum - Xes

— The amplitude of the imperfection is then calculated for the reference member, which
has cross-section properties of the member at location x,.r and the length is calculated
so that the reference member has the same critical forces as the designed member at the
reference location.

— Once the amplitude is obtained, a second order analysis with the calculated amplitude
is carried out.

— Finally, the verification is performed as a cross-section check of the designed member.

2.7.5 Summary

This section summarized the recent developments in the scope of the European stability design.
New design methods based on an extension of the Ayrton-Perry concept were proposed, namely
for flexural buckling of prismatic beam-columns by 7aras (2010) and for web-tapered columns
and beams by Marques (2012). These methods rely on the inevitable calibration of factors to

account for the over-strength due to the variation of the failure location.

The second group of methods, that would eventually avoid the additional calibration of factors
accounting for the failure location, are the methods which establish the shape of the initial
imperfection as the buckling shape of the member. Several developments were presented in this
direction as well. Chladny & Stujberova (2013a,b) covered the flexural buckling of members
and Aguero et al. (2015a,b) extended the concept to flexural-torsional and lateral-torsional

buckling. In terms of practical application, the major drawback of these methods is the iterative
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process in the determination of the critical location. The method by Papp (2016) resolves the
issue with the critical location by setting a criterion for its evaluation. However, the
determination of the amplitude of the initial imperfection is not found very practical (especially
for application in a design office) since it requires a two-step procedure: i) second-order stress
analysis with random amplitude of the buckling shape to determine the reference location and

i1) transformation of the real member to an equivalent at this reference location.

In the following chapters, as a part of the research objectives, it was aimed to develop a method
that overcomes the mentioned issues, a method that is general, reliable and consistent with the

existing rules.



3 EXPERIMENTAL BUCKLING
BEHAVIOUR OF NON-UNIFORM
STEEL MEMBERS

3.1 Introduction

The stability design rules for prismatic members presented in the previous chapter were
developed on a sound analytical background, validated with experimental, numerical and
statistical work. Due to the possible economic advantages, the buckling behaviour of non-
uniform members has attracted the interest of the researchers since the very beginning of the
last century. Initially, the contributions were focused on analytical solutions for the elastic
critical behaviour of non-uniform members. 7Timoshenko & Gere (1961) propose numerical
solutions for the critical loads of stepped columns and bars with linearly varying cross-section.
Lee et al. (1972) presented an equivalent member approach for the critical loads of linearly-
web-tapered columns. Hirt & Crisinel (2001) established an expression for the determination
of an equivalent moment of inertia for tapered columns, which is used in the Euler formula for
the calculation of the critical buckling force. Marques (2012) derived closed form expressions
for the critical load of web-tapered columns based on the Rayleigh-Ritz method. Regarding
lateral-torsional buckling, the first studies on the torsional behaviour of non-uniform members
are found in Lee (1956) and Lee & Szabo (1967). Their developments were later used by
Kitipornchai & Trahair (1972) who provided the theoretical basis for the lateral-torsional
buckling of tapered beams. Later, Brown (1981) proposed solutions using finite differences for
the determination of the critical loads for simply-supported beams and cantilevers with tapered

sections. Other approaches for the elastic critical moment of web-tapered beams are available
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by Galea (1986) for non-uniform beam under constant bending moment and for web-tapered
beams subject to a linear bending moment distributions and cantilevers by Andrade et al.

(2007).

Furthermore, using the finite element method, theoretical developments were performed by
Yang & Yau (1987); Bradford & Cuk (1988) proposed a solution for mono-symmetric tapered
beams; Bradford (1988) treated the behaviour of web-tapered beam-columns with restraints;
Rajasekaran (1993a,b) developed a formulation for tapered thin-walled members with a generic
section; Gupta et al. (1996) addressed on the behaviour of continuous tapered beams. Lei &
Shu (2008) presented a new theoretical formulation that correctly accounts for the effects of

tapering by incorporating second-order taper effects in the strain-displacement equations

In most common structural applications, however, the real stability behaviour of steel members
includes imperfections and nonlinear material behaviour. Accounting for these, design methods
for tapered columns were proposed by Baptista & Muzeau (1998) adjusting the Eurocode 3
design rule for flexural buckling of prismatic columns by adding a numerically calibrated
coefficient & to account for the extra resistance. Raftoyiannis & Ermopoulos (2005) proposed a
verification format based on a first yield criterion which was validated with numerical
simulations. Kim (2010) adjusted the AISC (2010) expressions for prismatic columns and
beams to tapered, using the equivalent member concept. As mentioned earlier, Marques (2012)
developed Ayrton-Perry equations for tapered columns and beams. Unlike the design rules for
prismatic members, these design methods were validated only numerically, and even though,
nowadays, the laboratory experiments are often substituted with advanced numerical
simulations, due to the added complexity the experimental evidence is essential in order to
evaluate the member response in terms of characterization of the real behaviour and member

imperfections.

Therefore, the objective of the present chapter is to provide the experimental background for
the development of design rules for non-uniform members. For that, firstly, the existing
experimental tests on non-uniform columns, beams and beam-columns were collected.
Furthermore, the results from an experimental programme carried-out at the University of
Coimbra are presented. These results were then used in the validation of the numerical model

in Chapter 4.



3.2 Experiments by others

3.2.1 Experiments on tapered members

There are a few experimental programmes carried out in the past and summarized hereby. Only
a brief overview of each is given, in order to provide an idea of the scope of the existing

experimental results.

Krefeld et al. (1959) performed experimental tests on cantilevered I-section tapered steel beams,
analysing the critical stress for different taper ratios and member lengths. The experimental
programme consisted of 16 built-up I and C section beams. The maximum member length was
about 5 m and the largest cross-section tested had about 450 mm height, flange width of 220
mm, flange and web thicknesses of about 10 mm and 6 mm, respectively. Based on the results
obtained, the authors proposed a method for estimation of the elastic bending stress for non-
uniform cantilevered beams, which is built on a comparison of the experimental results for
tapered and uniform members and by setting up additional reduction factors depending on the

cross-section dimensions, supports and taper angle.

Butler & Anderson (1963) carried out experimental tests on the elastic stability of tapered I
members loaded in compression and a combination of bending and compression. The
experimental programme covered 14 different specimens, web and/or flange tapered. The
maximum cross-section height was about 500 mm, flange width 120 mm and flange and web
thicknesses of 8 and 6 mm respectively. The results obtained led to the conclusion that the pure
compression tests are in excellent agreement with the analytical solution of the problem; the

combined loading revealed interaction dependency on the taper ratio.

Later Butler (1966), carried out experiments on elastic buckling of lateral and torsional bracing
of beams. The tested specimens were tapered I steel tip-loaded cantilevers. The beam
dimensions were chosen to be similar to the previous study Butler & Anderson (1963). The
conclusions of the paper reveal that end bracing is most effective on the tension flange; the most
efficient bracing configuration is tip and mid-span bracing at the tension and compression
flanges, respectively. A tension bracing at mid-span would have no influence on the lateral-

torsional buckling capacity.
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As a continuation of the work by Butler, Prawel et al. (1974) performed an experimental study
where fifteen tapered I-section members were tested in bending and in a combination of bending
and compression. The tested members were chosen to fail in the inelastic range. The
experiments covered three beams and twelve beam-columns. The members had identical
shallow sections (approximately 152x152x6x3 mm). The taper was varied using three different
taper ratios (2, 2.67 and 3) and also covering prismatic members. The tapered members were
fabricated by welding of the flanges to one side of the web. The study also assessed the effects
of oxygen and shear cuts plates. The nominal yield stress was 42 ksi (approximately 290 MPa)
and the yield stress determined from the experiments was 52 ksi (approximately 360 MPa).
Based on the measurements carried out, the authors proposed a pattern of residual stresses. The
maximum tensile stress in both flanges and web is set equal to the yield stress. The tension
spreads over 1/3 of the flanges. Regarding the compressive stresses, in the flanges the maximum
compression at the flange tips is suggested as 0.5/, which decreases to 0.3f, before the stress

changes sign.

Shiomi & Kurata (1980) report on an experimental programme on tapered beam-columns which
aimed at the characterization of the structural behaviour of such members for the development
of a design formulation. The experimental programme covered 24 full-scale beam-columns
with and without lateral restraints and discrete measurements of the residual stresses for three
members. The nominal yield stress of the steel was 235 MPa. Before testing the initial out-of-
straightness was measured for all members. It was found that for flanges and web taper
members, a decrease of the residual compression stress of the flange and an increase in the
residual compression stress of the web as the web depth and flange width decreased was noted.
The authors also report that the constant width flanges did not exhibit any dependence on the

change of the web height.

Experiments and design method for tapered and haunched beams were reported by Horne et al.
(1979), focussed on the development of plastic design rules for pitched-roof portal frames.
Hence, to reflect the realistic case of inclined rafters under gravity loading, the test specimens
were supported at intervals along the tension flange. The objective of the experimental
programme was to verify their ability to undergo plastic deformation without major loss in the
bending moment resistance. The experimental programme consisted of eight haunched beams
subject to equal end bending moments and three tapered beams subject to moment gradient
such that the plastic moment at the shallow end was achieved and the deeper end was close to

yielding. The maximum height of the profiles considered was about 300 mm. The material



properties were characterized by tensile tests, the measured yield stress was around 300 MPa
and the actual plastic bending moment resistance was obtained from two control tests. The
resulting design procedure led to the definition of a stable length (Simdes da Silva et al., 2014)
but it was too specific for general application to tapered members. It was also emphasized that
the compressive residual stresses induce premature yielding and local buckling of the

compression flange.

Salter et al. (1980) carried out tests on web-tapered steel columns. The specimens were loaded
in axial compression and major axis bending moment. In total, eight tests were performed. In
three of the tests, lateral restraint was provided to one flange at mid-height. The specimens were
about half to one third of their full size. The shallow section dimensions were approximately
hs=125 mm or 4,=100 mm, the flange width and #=100 mm or »=90 mm; the flange thickness
was #=6.4 mm or #=4.7 mm; and the web thickness was #,=4.7 mm. The members were
designed using four different taper ratios: 2, 2.2, 2.4 and 2.5. The material properties were
determined after testing of the main specimens. The measured yield stress varied between 315
and 335 MPa. The initial out-of-straightness was measured only for the minor column axis. The
imperfections were very high: only 1 of 8 measurements was lower than the tolerance of L/750
in EN1090-2 (2011). The residual stresses were measured. However, the paper only reports
only on the conclusions. Salter et al. (1980) have adopted the pattern proposed in Young &
Robinson (1975). The test results were compared with numerical non-linear analyses for which
good agreement was reported. Regarding the code estimations for the resistance of such

columns, the authors conclude that they are safe sided with possibility for improvement.

In the scope of the European project Lateral-torsional Buckling in Steel and Composite Beams
(2002) on the lateral-torsional buckling of steel and composite beams, seven tests on web-
tapered steel beams were carried out. They have measured the sweep on both flanges of the
tapered beams. The beams were executed by welding of steel plates in steel grade S355. The
material properties were determined by tensile coupon tests for all members. The tested
specimens had two tapering ratios 2 and 3, with the same shallow section, a built-up I
300x180x10x8. The tests are well-documented and reported in the project deliverable. The

experimental results were then used for the validation of design rules.
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3.2.2 Member imperfections

In this section, similar studies on the member imperfections for welded prismatic members are

summarized.

Avent & Wells (1982) carried out an experimental programme on seven welded prismatic
columns. The columns were tested under axial compression; prior to the main tests, residual
stresses (seven measurements), initial geometrical imperfections and material properties were
determined. The tested specimens ranged from 229 to 610 mm depths, the flange widths were
127, 152 or 205 mm, the flange thicknesses were 5.6, 6.4 or 9.5 mm and the web thicknesses
3.2 or 4.8 mm. The nominal yield stress was 50 ksi (345 MPa equivalent), with the tensile tests
revealing a lower grade for the flanges of 2 columns. For the material imperfections, it is
reported that the value of the flange tip compressive residual stress could be approximated with
/2. It is also proposed that the change in the compressive region occurs approximately at 0.15

of the flange width at f,/3, identical to the pattern proposed by Prawel et al. (1974).

Fukumoto & Itoh (1981) summarized a statistical assessment of experiments performed on
prismatic welded beams. The study aimed at the characterization of the lateral-torsional
buckling stability of these beams as a follow-up to a similar study on rolled beams. It covered
34 tests on residual stresses of welded beams with I cross-section (250x100x6x8 mm). The
material properties were determined for the web and flanges separately for the steel with a
nominal yield stress of 235 MPa, resulting in f,w,»=337.7 MPa and f;»=283.5 MPa,
respectively. The results are reported as statistical indicators. They also performed a statistical
characterization of the geometrical imperfection of 68 welded prismatic beams. Fukumoto &
Itoh (1981) report only on statistical parameters and distribution, the individual results are not
presented. The statistics are provided for both major and minor axis out-of-straightness as well
as for the twist. The mean values obtained for the major and minor axis are 0.000125(1/8000)
and 0.000296 (1/3378) respectively with coefficients of variation of 92% and 81%. The
goodness-of-fit was verified by %* and Kolmogorov-Smirnov for Weibull model are of close fit

with the measured values by the authors.

Chernenko & Kennedy (1991) carried out a numerical assessment on the buckling behaviour of
welded wide flange columns. Their assessment was based on statistical data collected from
earlier studies. They proposed a residual stress pattern which has the maximum tensile stress in
the flange-to-web junction, varying from 80 % to 100 % of the yield stress while the tension at

the flange tips varies from 50 % to 82 % of the yield stress. Regarding the compressive stresses,



their variation in the flanges is between 28 % and 40 %. The out-of-straightness is also
discussed in the paper. Furthermore, Chernenko & Kennedy (1991) provide statistics on the
out-of-straightness based on measurements collected during a site visit at Algoma Steel in Sault
Site. Marie, Ontario and also from the company’s quality assurance files. Regarding the camber,
the mean value was 0.00053 (1/1890) with coefficient of variation of 30.7%. They collected
data on the sweep as well, total of 11 measurements with a mean value of 0.000293 (1/3413)
and a coefficient of variation of 52.5%. Chernenko & Kennedy (1991) point out that no
measurements below the tolerance of L/1000 are rarely recorded, because of the additional
straightening of the members which develop excessive camber. The camber is reported to be
more severe than the sweep of these columns. The large coefficient of variation of the samples
is explained by the order of the imperfections (very small). The authors did not recommend

suitable distribution that fits the measured data.

3.3 Experimental programme

3.3.1 Scope

The experiments were performed in the framework of the research project TAPERSTEEL
PTDC/ECM-EST/1970/2012. Its objective was to study the stability behaviour of non-uniform
steel members. The experimental programme covered flexural buckling of columns under
uniform compression, lateral-torsional buckling of non-uniform beams under linearly varying
bending moment and lateral-torsional buckling of beam-columns loaded with major axis

bending moment and uniform compressive force.

All specimens were web-tapered, with different tapering ratios, and two different shape
configurations were used: 1) different inclination of each flange with respect to the centroid of
the beam (shape L Figure 3.1a); 1i) the equal flange inclination with respect to its centroidal
axis (shape V Figure 3.1b). The nominal dimensions of the tested members are summarized in
Table 3.1. The test specimens were fabricated by welding of hot-rolled steel plates fabricated
according to EN 10025-2:2004. The steel grade of these steel plates is S355 and the steel quality
is JR. The steel grade of all additional plates used to fabricate the hinges is the same or higher
and the steel used for the pins and bolts (M30, Grade A, EN 15048-1 and EN ISO 4017) is high
strength steel, class 8.8. The nuts and washers required for the bolts are also Grade A, in

accordance with the standards EN ISO 4032 and EN ISO 7089, respectively.
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Table 3.1. Experimental programme

Mernber Yh Shape hmin hmax b tw tr L

= = mm mm mm mm mm m

Cl 4 v 120 | 480 | 100 | 12 2 | 6

C2 2 \% 185 370 110 6 12 6

C3 3 L 120 360 100 10 16 6

Bl 4 L 250 1000 200 15 16 4

B2 4 L 250 1000 200 6 16 4

BC 3 L 120 360 100 10 16 6
| 1 P

I __ 1

All member dimensions were measured prior to the tests. The material properties were
determined by tensile coupon tests, six coupons were milled from each specimen. The
geometrical imperfections (out-of straightness) were measured for all members, for B1 and B2
advanced laser measurement was used, as for C1-C3 and BC the imperfections were measured
manually. The residual stresses were measured for specimens C1, C2, C3 and BC using the

sectioning method.

The experimental part related to the beams was also part of the Master thesis of Rodrigues

(2016).

In the following sections, firstly the test set-ups by member type are presented, then the loading

conditions are explained and finally a brief summary of the results recorded during each test is

presented.

Figure 3.1— a) “L”-shape tapered member; b) “V’’-shape tapered member



3.3.2 Column tests

The column specimens were designed aiming for the assessment of their in-plane flexural
buckling resistance; as a second objective, it was intended to study different variations of the
cross-section class along the member length. Table 3.2 and Figure 3.4 summarize the variation
of the cross-section class along the member length (L) for the three specimens. For C1

approximately 18% of the member was in class 4, for C2 86% and 5% for C3, respectively.

Table 3.2 Cross-section classification of column members.

Hinge

Cross-section class Column 1 Column 2 Column 3
1 [0; 0.59L] - [0; 0.67L]
2 (0.59L; 0.71L] [0; 0.05L] (0.67L; 0.83L]
3 (0.71L; 0.82L] (0.05L; 0.14L] (0.83L; 0.95L]
4 (0.82L; L] (0.14L; L] (0.95L; L]
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Figure 3.2 - Test layout, Column 3 (and identical for the other columns)
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The tested specimens had different taper ratios (2, 3 and 4, respectively), but the same length
of 6 m. The three columns were tested using the layout shown in Figure 3.2. They were simply
supported at both ends using pinned connections (Figure 3.3a), which allowed the free rotation
in the plane of the column. At the point of load application, the vertical and transversal
movements of the columns were restrained (Figure 3.3b). The global out-of-plane buckling was
prevented by the implementation of lateral restraints at each meter length of the column (5 in

total), Figure 3.3c.

The lateral restraints along each member were implemented using vertical SHS 250x10 profiles
rotated by 45° with the edge aligned with the members’ top and bottom flanges (Figure 3.3c).
The SHS 250x10 profiles are connected at their bases to a horizontal profile attached to the

strong floor and at their top welded to a plate connecting both sides.

Pinned connection b) Lateral bracing c) Lateral restraints
at support

Figure 3.3 Supports

Strains were measured using strain-gauges type FLA-6-11 glued to the web and the flanges. On
the web, they were positioned along vertical lines (3 or 4 at each cross-section), and three strain
gauges on each flange (top and bottom). For the measurement of vertical and lateral
displacements during the experiment, LVDTs (linear variable differential transducers) were
installed at several locations along the columns, their position for the three column specimens
is shown in Figure 3.4. The positions of measurement of vertical displacements are marked

with V and the horizontal with H, respectively.
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Figure 34 - Plan of LVDTs and strain gauges

3.3.3 Beam tests

Two beam tests were performed. Their shape was chosen to resemble part of a simply supported

tapered beam, having the shorter flange in compression. Real examples are shown in Figure

3.5.

The test set-up is shown on Figure 3.6, where the tested non-uniform specimens were fabricated
with an uniform cantilever segment, which served for load application. The bending moment at
the deepest cross-section was achieved through a concentrated force applied at the end of the
cantilever part (Figure 3.6). Hence, the beams were designed with variable cross-section in
their first 4 meters of length and 1.8 meters of uniform cantilever section serving for the load

application, Figure 3.6.
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Figure 3.5 — Web-tapered steel girders

The two specimens have identical cross-section with respect to depth, flange widths and flange
thickness. The web thickness varies from 15 mm for Beam 1 (B1) and 6 mm for Beam 2 (B2)
(see Table 3.1). The ratio between the deep and shallow sections for both beams is defined by

a taper ratio of y,—=4.

In addition, the cantilever uniform segment of B2 was reinforced with transverse web-stiffeners

in order to avoid local cross-section effects in this part of the beam aimed exclusively for load
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Figure 3.6 - Beams’ test layout

It was intended to test the beams as simply supported, according to the test layout shown in
Figure 3.6. At the shallow section, the beams were supported with bi-directional pinned

connections, which allowed the free rotation in- and out-of-plane. At the intermediate support,


http://www.newsteelconstruction.com/wp/the-new-bullring-shopping-centre/
http://www.newsteelconstruction.com/wp/the-new-bullring-shopping-centre/
http://www.steelconstruction.info/Long-span_beams

the vertical displacements were prevented as shown in Figure 3.7a). The beams were laterally
restrained at the point of load application and the intermediate support. The lateral braces used
were coupled to roller-bearings, perpendicular to the free end (one roller-bearing on each side)
(Figure 3.7b) and parallel to the intermediate support elements (two roller-bearings on each

side), preventing twisting of the beam (Figure 3.7¢).

Figure 3.7 - Support conditions beam tests: a) intermediate support; b) Lateral restraint at the free end;
c)Lateral restraint at the intermediate support
The load was applied as a point load on the top flange of the beam 85 mm away from the end

of the cantilever part.

Strains were measured using strain-gauges type FLA-6-11 glued to the web and the flanges. On
the web, they were positioned in a quadratic mesh, and three strain gauges on each flange (top

and bottom) at axes B, F and I, as shown in Figure 3.6.

For the measurement of vertical and lateral displacements during the experiment, LVDTs were
installed at several locations along the beams. The horizontal (out-of-plane) displacements were
recorded on the centroidal beam axis designated as H3, H5, H7, HS and H9 in Figure 3.6. In
addition, on axis F, the out-of-plane displacements were measured at the top and bottom
flanges. Additional measurements were obtained at the supports, in order to ensure the desired
functionality of the implemented layout: at the intermediate support H2./ and H2.2 measured
the out-of-plane displacements for the top and bottom flanges, respectively and HI was

measured at the point of load application.

The vertical displacements were also recorded at several locations. At the expected critical

location (axis F) they were monitored on both flange tips for the top (in V;;;and Vi;,) and
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bottom (in Vi2;and Vi2,) flanges, at the shallow section V;3,;and Vi3, Vio measured the vertical

displacement at the point of load application and V4 between the two pins.

3.3.4 Beam-column test

For the validation of the beam-column behaviour, the last test performed was on a member
loaded in bending and compression. The specimen had the exact same dimensions as column
C3. In this experiment, it was meant to validate the lateral-torsional buckling of a beam-column
loaded with axial force and major axis bending moment. The load was applied with eccentricity
(Figure 3.8), allowing for proportional increase of the bending moment and the axial force. The
test layout is shown on Figure 3.9, where the member was restrained laterally at mid-span. At
the shallow end, the specimen was connected to the reaction wall through a pinned connection,
which allowed free rotation out-of-plane. At the deepest section where there was a welded
cantilever section which served for the load application, it was vertically and laterally

restrained.

Figure 3.8 Point of load application

The vertical and horizontal displacements were measured at each meter of length of the member
(VIto V5and H2, H4, H7, H9). Additional measurements were obtained at the expected critical
locations at axis B and E, where the horizontal displacements were measured at the level of the

flanges as well.
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Figure 3.9 Test layout

3.3.5 Loading protocol

For each specimen, the loading was divided into two stages: firstly, a cycle of loading and
unloading (in the elastic range) was applied and, in the second stage, the columns were loaded

until failure.

Table 3.3 Loading protocol

Load — Unload Cycles[kN] 1% phase 2™ phase
Specimen | 65

1 2 3 4 kN/s mm/s
C1 0—600—5 0.5 0.003
C2 0—400—5 0.5 0.003
B1 0—85—0 0—180—0 0—370—-0 0—-570—0 0.2 0.015
B2 0—65—0 0—130—0 0—260—0 0—400—0 0.2 0.015
C3 0—400—5 0.5 0.003
BC 0—-50—-5 0.25 0.0025

The first loading stage allowed for adjustments in the test layout (test specimen, hinges and
reaction frame), and served for the elimination of initial gaps in the test layout. This initial stage

also allowed to verify the functionality of the strain gauges, LVDT’s and data logger.
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In the first stage, the loading was applied in force control and in the second in displacement

control. The speeds used in each test are given in Table 3.3.

For the beam tests four cycles of loading and unloading were performed. In the column tests,
which were performed after the beam tests, it was considered sufficient to carry on only one

cycle of loading and unloading.

The magnitude of each peak load was chosen as a percentage of the initially estimated

beam/column resistance (maximum of 60%).

3.4 Experimental results

3.4.1 Complementary tests
3.4.1.1 Material properties

The complete characterization of the experiments requires the determination of the actual
material properties. For that, standard coupons were extracted from each specimen and tested
in tension. A total of six coupons were milled from each specimen: three from flanges and three
from the webs, according to EN ISO 377 and ISO 6892-1. The value of the yield stress f is
taken as the upper yield strength Ry and the tensile strength R,. is used for the ultimate strength

Ju

Table 3.4 - Mechanical properties of steel from of coupons tests for C1, C2, C3 and BC

Specimen Cl1 C2 C3

Location - flange web flange web
f 376.7 371.3 362.1 385.5 450.8
Ju 570.3 571.0 507.4 5354 595.3
E 208.1 213.1 206.0

The yield and ultimate stresses are reported for each specimen according to the plate thickness,
i.e. for specimens having different thicknesses in the web and in the flanges, the results are
reported separately. The Young’s modulus is calculated as an average from all tests performed

per specimen. The results are summarized in 7Table 3.4.



Table 3.5 - Mechanical properties of steel from of coupons tests for Bl and B2

Specimen Bl B2 BC

Location flange web flange web flange web
f 4214 422.7 405.3 388.4 391.9 443.1
Su 552.9 543.7 551.1 526.7 540.4 588.8
E 208.4 203.9 210.2

3.4.1.2 Measurement of geometrical imperfections

Geometrical imperfections are one of the most important features determining the global
stability behaviour of beams and columns. They may be of different nature (Figure 3.10) and
may have different impact on the buckling behaviour of steel members. For each member, the
depths of the deep and shallow cross-sections were measured as well as the web and flange

thicknesses at various locations along the member length.
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Figure 3.10 Geometrical imperfections

The imperfections were measured for both beams using the advanced measurement system
ROBOT Romer F-41800 Montoire, as shown in Figure 3.11. The measurement procedure gives

a map where the local deviations from the nominal geometry can be clearly seen.

The measurement on Beam 1 does not show any considerable local deformation in the web,
besides the corner at the change of the cross-section with magnitudes of about 2.5 mm.
However, this section falls in the zone of the support, and so it is not expected to influence the

behaviour.
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Figure 3.11 - Geometrical imperfections: a) Laser system used; b) 3D model

The maps for both beams are presented in Figure 3.12.
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b) Test B2

Figure 3.12 - Amplitudes of the geometric imperfections measured by the laser system

Regarding the initial out-of-plane deformation of Beam 1, the upper flange has a global
deformation with a maximum amplitude of about 3.75 mm; the measurements of the
deformation of the bottom flange are inconclusive. The initial out-of-plane deformation of
Beam 2 revealed high local deformations of 3.85 mm between axes C and D. The maximum
global out-of-plane imperfection of the tension flange is approximately 3 mm and in the bottom
flange it is found to be of a smaller magnitude of about 1.5mm.

The columns measurement procedure involved a “low mass” nylon string which was tied to
two nuts at the member’s extremities and it was stretched to its maximum. The distance of the
string to the member was then measured at each 0.50 m length. To obtain the magnitude of the

imperfection the nuts height was subtracted. The measurement was performed for three lines



along the member web and one for each flange. The magnitude of the geometrical imperfection

was considered as an average of the measurements.

Even though it is not an advanced measurement method, it allows for an initial idea of the

magnitude the imperfections to be used in the numerical models.

The average results obtained for all members are shown on Figure 3.13.
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Figure 3.13 Initial out-of-straightness

34.1.1 Residual stresses

In order to completely characterize the behaviour of the tested specimens, residual stress

measurements were also carried out for C1, C2, C3 and BC. The measurements were made on |69
test pieces with dimensions representing different regions of the tapered columns and beam-
columns corresponding to various taper ratios and depths (Figure 3.14). The approximate
location of the column segments and the specimen dimensions are given in Figure 3.15. The
length of the test pieces was chosen to be about 5 times the depth of the measurement cross-

section in order to avoid any possible boundary effects in the measurement.

Figure 3.14 - Specimens after testing
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Figure 3.16 shows the arrangement of strain gauges in each specimen. Electrical strain gauges
(2x6 mm) manufactured by Tokyo Sokki Kenkyujo Co. Ltd. were used. Strain gauges were
glued to both sides of the flanges and web of each specimen in order to calculate the average
membrane stress afterwards. For specimens RS1 and RSS5 strain gauges were glued also on the
weld fillet. The test procedure followed the sectioning method Tebedge et al. (1973), which is
a commonly adopted measurement procedure for structural engineering purposes Spoorenberg
et al. (2010). The procedure involves longitudinal and transversal cuts which provoke the
release of stresses locked in the test specimen, which in turn cause deformations. Then it is
possible to record these deformations and transform them further into stresses using Hooke’s

law Tebedge et al. (1973).
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Figure 3.15 Location of specimens for the residual stress measurements
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Figure 3.16 - Specimen dimensions and strain gauge arrangement

The cutting was performed using an electric band saw, which was continuously cooled by
compressed air in order to avoid temperature disturbance of the measurement. The cutting
sequence involved two transversal cuts as shown in Figure 3.17 and then a series of longitudinal
cuts, where the transverse cuts contributed to the largest part of the measured residual stresses.

The data was continuously recorded during the experiment using data logger TML TDS 530




with extension box TML SSW-50D. The recording was terminated approximately 20 minutes

after the last cut when no further fluctuations in the readings were noticed.

Figure 3.17 - Transversal and longitudinal cuts

The obtained measurements are given in Figure 3.18 and Figure 3.19.
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Figure 3.18 - Results for the welded specimens Column 2 and Beam-column in MPa

The measurements are further transformed in a non-dimensional form in Figure 3.20. The stress
distribution for each section was normalized to the yield stress obtained from the tensile coupon
tests. Figure 3.20 shows that the peak tensile stress in the flanges varies from 0.3f, up to the

yield stress. The compression in the flange exhibits a maximum of 40 % of the yield stress,
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although the majority of measurements it does not exceed 20 %. Furthermore, the variability of
the residual stresses is assessed. For the tensile stresses, this assessment is based on the
maximum values found in the flange-to-web junctions for both the flanges and the web. The
residual compression is evaluated on the basis of an average compressive stress calculated by

integration over the compression region for each outstand flange.
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Figure 3.19 — Measured residual stresses for Column I and Column 3 in MPa

A histogram of the distribution of the compressive stress in the flanges is given in Figure 3.21a
and the variation of the maximum tension is shown in Figure 3.21b. The statistical parameters

are then summarized in Table 3.6.




1.40
1.00
0.60 |
0.20

-0.20

-0.60

-1.00

1.40
1.00
0.60
0.20 [h.
-0.20
-0.60
-1.00

Figure 3.20 - Normalized residual stress distribution
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Figure 3.21 - Histograms of the stress distributions in the flanges
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Table 3.6 — Statistical parameters

- Mean St. dev. C.0o.V. Min. Max.
Flange
) -0.15 0.09 0.62 -0.32 -0.01
compression
Flange tension 0.70 0.25 0.36 0.32 1.07
Web
) -0.29 0.125 0.43 -0.43 -0.13
compression
Web tension 0.72 0.28 0.39 0.38 1.06

In the flanges, the average value of the compression is -0.15f, with a coefficient of variation of
62% and the average maximum tension is 0.7f, with a coefficient of variation of 36%. For the
web, the average compression is -0.29f, and the coefficient of variation is 43%, while the
corresponding values for the maximum tension in the web-to-flange junction are 0.72f, and

39%.

The mean value of the compression is about half of the ECCS pattern, even though there is a
high variability. The residual tension in the flanges is also lower than the nominal value. In the
web, the tension is slightly lower than the nominal and the compression is higher than the

nominal. However, the residual stresses in the web are not as important for stability problems.

3.4.2 Column tests

3.4.2.1 TestCl

In this section, the results recorded during test C1 are summarized. The final deformation of the
specimen is shown in Figure 3.22. Despite the large number of lateral restraints, C1 still buckled
out-of-plane in between the lateral restraints almost simultaneously as it reached its in-plane
resistance. Also, even though test C1 had a slender cross-section (cross-section class is 4 for

18% of its length), failure was driven by global rather than local instability phenomena.

The column’s displacements and strains were monitored at several locations along the member
length, aimed to facilitate the subsequent calibration of a numerical model and also to serve as

control measurements in order to confirm the reliability of the results.



Figure 3.23 illustrates the load-displacement curve at the point of load application (H; and H>).
The maximum applied load during the experiment was 1397.6 kN. The loading was stopped
when the applied force dropped to approximately P=1000kN.

1397.6

0 2 4 6 8 10 12 14 16
Displacement, 6 [mm]

Figure 3.23 Load-displacement curves H; and H> for Column 1.

It is worth analyzing the vertical displacements along the column. Figure 3.24 shows the
evolution of the curvature at 200 kN intervals of loading at measurement points Vs to Vi, Vig
and V;s, until the maximum load Pu.ieyp and after the maximum load was reached for two

additional load steps. The amplification of the initially imperfect shape is clearly visible, which
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is transformed at higher loads into the in-plane buckled shape. Yet, at the end of the experiment

the out-of-plane deformations were more considerable than the in-plane ones.
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Figure 3.24 Variation of the vertical displacements along the length with increasing loading for test C1.
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Figure 3.25 Stress distribution at sections A and E for various load levels

Furthermore, the stresses were also measured at several cross-sections along the member length.
All strains were converted into stresses using the Young’s modulus from 7able 3.4, and since
all stresses were in compression, a positive sign is used to represent them. Whenever the strains

exceeded gy, the respective stresses were set equal to the measured yield stress.

The stress evolution for sections A and E are shown in Figure 3.25. Section A falls in the Class

3 region; nevertheless, the recorded stress distributions are purely elastic and far from the yield




limits given in Table 3.4. The other cross-section, at axis E, is in Class 1 and being smaller it

was subject to higher stresses so that at the maximum load it was fully yielded.

3422 TestC2

The second experiment, C2, was planned for an interaction between global and local buckling.
In this case, similarly to C1, the column also buckled in between the lateral restraints. Since
more than 85% of the member was in Class 4, it was also possible to observe local buckles on

the web towards the deeper cross-section. Figure 3.26 illustrates the failure of Column 2.

|77

Figure 3.26 Collapse of C2

Figure 20 shows the load-displacement curve at the point of load application (H; and Hz). The
maximum applied load during the experiment was 1313.6 kN. The loading was stopped when

the applied force dropped to approximately P=1000 kN.
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Figure 3.27 Load-displacement curves H; and H> for Column 2.
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Figure 3.28 Variation of the vertical displacements along the length with increasing loading for test C2.

As in-plane buckling was the expected failure mode, the vertical deformations were measured
at several locations for C2 as well. Figure 3.28 shows the evolution of the curvature at 200 kN
intervals of loading at measurement points V4 to Vio, V3 and V14, until the maximum load Pui exp
and after the maximum load was reached for two additional load steps. In this case it is also
possible to identify the amplification of the initially imperfect shape which is transformed at
higher loads into the in-plane buckled shape. However, this increase at higher loads is found
rather small, due to the fact that at the end of the buckled test the column buckled in between

the lateral restraints.
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The stress evolution for sections B and F are shown in Figure 3.29. Section B falls in the Class
4 region, and the local buckling can be seen in the stress distribution for the load levels 1200

kN and the maximum 1313.6 kN. The other cross-section, at axis F, is also classified as Class
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Figure 3.29 Stress distribution at sections B and F for various load levels

4, however closer to the limit with Class 3, and no local deformation were recorded.

In this section, the results recorded during the test C3 are summarized. The final deformation
of the specimen is shown in Figure 3.30. In this experiment, it was possible to observe distinct

in-plane flexural buckling. The test C3 has a stocky cross-section (cross-section class is 4 for

3423 TestC3

5% of its length), failure was driven by global rather than local instability phenomena.
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Figure 3.30 Column 3 after the experiment
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Figure 3.31 illustrates the load-displacement curve at the point of load application (H3 and H>).
The maximum applied load during the experiment was 1460 kN. The loading was stopped after
the column buckled in-plane, which corresponded to a drop of the load to 800 kN.
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Figure 3.31 Load-displacement curves Hs and H> for Column 3

Furthermore, Figure 3.32 and Figure 3.33 show the evolution of the curvature for various load
levels, where Figure 3.33 illustrates the development of the in-plane displacements until the
maximum load was recorded. It is very similar to Figure 3.24 and Figure 3.28, where for lower
load levels the shape amplifies the initially imperfect one. After the maximum load was
achieved, at a force of approximately 1460 kN, C3 buckled in-plane exhibiting an instantaneous

increase of the deformations, as shown in Figure 3.33.
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Figure 3.32 Variation of the vertical displacements along the length with increasing loading for test C1
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Figure 3.33 Variation of the vertical displacements along the length beyond the maximum load for test

The stress evolution for sections B and G are shown in Figure 3.34. Both cross-sections are in
Class 1, no local buckling was registered neither observed during the experiment. However, in
both cross-sections it is possible to observe the impact of the in-plane buckling behavior. For
load levels up to the maximum load the member stresses are mostly in uniform compression;
after the buckled position took place at 1427 kN the compressive stresses in the top flanges

decrease and in Section G they even become tensile, due to the second order in-plane bending

C3

moment.
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Figure 3.34 Stress distribution at sections B and G for various load levels
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3.4.3 Beam tests

343.1 TestBl

In this section, the results recorded during test B1 are presented. The final deformation of the
specimen is shown in Figure 3.35; as expected, it collapsed in lateral-torsional buckling. Also,
as test B1 has a stocky cross-section (cross-section class is 1 for almost 90% of its length),

failure was driven by global rather than local instability phenomena.

The beam’s displacements and strains were monitored at several locations along the member
length, aimed to facilitate the subsequent calibration of a numerical model and also to serve as

control measurements in order to confirm the reliability of the results.

Figure 3.36 illustrates the load-displacement curve at the point of load application (V;0). The
maximum applied load during the experiment was 1205 kN. The loading was stopped when a
20% drop in the applied force was approximately registered. After the maximum load was
reached, for P=1113 kN, an abrupt load decrease caused by brittle failure of the weld at the top
web-flange connection near to the intermediate support section was recorded. Hence, the

experimental results are considered only until this load (see Figure 3.36).

Figure 3.35 - Collapse mode of test Bl

The stresses at the cross-sections in axes A and F are plotted in Figure 3.37 for the initial load
cycles. The resulting stresses are clearly below the yield strength of the beam and thus confirm
that the initial assumption for the load cycles that were performed in the elastic range.
Furthermore, the development of stresses is illustrated in Figure 3.38 for 0.7Pyexp, 0.8 Py exp and
0.9P,.cxp (before collapse) and for P,... The deviation from a straight line is clear for both

sections thus indicating the development of plastic strains at these sections.
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Figure 3.37 - Longitudinal stresses at section A and F for test Bl at 1*' load stage
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Figure 3.38 - Longitudinal stresses at section A and F for test Bl at 2 load stage

The out-of-plane displacements at the centroid of the cross section are plotted in Figure 3.39.

The rapidly increasing out-of-plane displacement at the maximum load is clearly identified, as

well as the post-maximum displacements. The maximum displacement observed during the

experiment was around axis F, between the measurements of LVDTs HS5 and H7, about 1700

mm away from the deep end. This is also confirmed in Figure 3.39.
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Figure 3.39 Lateral displacements at H3, H5, H7, H8 and H9 for various load levels for test Bl

The cross-section at axis F was the one expected to be critical. Its vertical displacements were

measured at both flange tips for the top and bottom flanges and the horizontal displacements




were measured at the middle of both flanges and the middle of the web. Figure 3.40 illustrates

the measured displacements for the maximum load.

Figure 340 - Cross-section displacements at axis F (in mm)

3432 TestB2

The failure mode of test B2 exhibited a buckled shape typical for a lateral torsional mode 185
(Figure 3.41). Unlike test B1, local instability also occurred in the web between section C
(cross-section class 4) and F (cross-section class 3), mostly visible in section E. It is highlighted
that the local instability appears in a zone where the geometric imperfections present the highest

values for the web, as shown in Figure 3.12.

Figure 341 - Collapse mode of test B2



The load-displacement curve at the point of load application is plotted in Figure 3.42. The
magnitudes of the initial load cycles are also identified on that figure. The maximum applied
load was 845.5 kN and the test was stopped for an applied load of 552.5 kN. Similarly to B1,
the stress levels obtained for the initial cycles are plotted in Figure 3.43, that also indicate that
the stress distributions remained elastic for the 4 cycles. Furthermore, the development of
stresses is illustrated in Figure 3.44 for 0.7Py,exp, 0.8Py,exp and 0.9P,, ., (before collapse) and
for P, eyp. The deviation from a straight line is clear for both sections thus indicating the

development of plastic strains at these sections.
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Figure 3.42 - Load-displacement curve at V9, Beam 2
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Figure 3.43 - Longitudinal stresses at section A and F for test B2 at 1*' load stage
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Figure 3.44 - Longitudinal stresses at section A and F for test B2 at 2" load stage

000
900 405.27

o0
(=3
(=]

3
(=3
(=}

(=
(=3
S

151.94
500

B
(=3
(=]

70% Pu,exp
80% Pu,exp
—0—=90% Pu,exp

—&—Pu.exp

W
(=3
(=}

-450-350 250 -150 -50 50 150 250 350 450
Stress [MPa]

a) Section C (h = 865mm).

The out-of-plane displacements at measurement points Hs, Hs, H;, Hs and Hy are plotted in
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Figure 3.45 Longitudinal stresses at section C and D for test B2 at 2" load stage

Figure 3.46 for different load levels.
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Figure 3.46 — Lateral displacements at H3, H5, H7, H8 and H9 for various load levels B2

The rapidly increasing out-of-plane displacement at the maximum load is clearly identified,
which is even more pronounced at the end of the experiment. The maximum displacement
observed during the experiment was between axes D and F, and between the measurements of
LVDTs H; and Hs, about 1200 mm from the deep end. This is also shown in Figure 3.46. Figure

3.47 illustrates the measured displacements at maximum load at cross-section F.

Figure 3.47 - Cross-section displacements at axis F'

3.4.4 Beam-column test

Finally, in this section the results from the beam-column test are summarized. The member had
identical geometry as C3, but the axial force was applied with an eccentricity at the deep end

of the member.




3 EXPERIMENTAL BUCKLING BEHAVIOUR OF NON-UNIFORM STEEL MEMBERS

Figure 3 48 Deformation of the specimen after the test

The final deformation of the specimen is shown in Figure 3.48. As expected, the specimen
collapsed in a lateral-torsional buckling mode. Also, since BC has a stocky section in almost

all of its length, failure was driven by global rather than local instability phenomena.

Figure 3.49 illustrates the load-displacement curve at the point of load application (H;). The
maximum applied load registered during the experiment was 379 kN corresponding to a
bending moment equal to 163 kNm. The loading was stopped when the applied force dropped
to approximately P=270 kN.

Furthermore, Figure 3.50 and Figure 3.51 show the evolution of the curvature for various load
levels. Figure 3.50 illustrates the development of the out-of-plane displacements and Figure

3.51 the in-plane ones. The dotted line is added to illustrate the expected measurement of the
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LVDT’s at these points. Due to the large deformations the vertical and horizontal LVDT’s at

this point stopped recording data after the maximum load was reached.

The strains were also recorded at several locations. It is interesting to show the evolution of
stresses for axis F (in the middle of the second span), Figure 3.52 shows the stress distribution
for a few load levels. The resulting distribution at maximum load and after the maximum is

typical for lateral-torsional buckling.
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Figure 3.50 Out-of-plane displacement
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3.5 On the variation of the material and geometrical imperfections

Figure 3.52 Stress distribution in the flanges at axis F

3.5.1 Introduction

Finally, in this section, a discussion on the member imperfections for tapered columns, beams
and beam-columns is presented. It is based on the measured imperfections from the

experimental programme and on the collected data from the literature review in Section 3.2.

3.5.2 Residual stresses

The assessment of the residual stresses is based on stresses normalized to the yield stress

obtained from coupon tests data points and their dispersion region along the section is

normalized either to the flange width b or web depth 4.
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From all data sources, only the studies from Prawel et al. (1974) and Shiomi & Kurata (1980)
report discrete results for the measured residual stresses on web-tapered members. The other

sources are used for comparison and discussion.
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Figure 3.53 — Histograms: residual stresses
The compressive stresses in the flanges are assessed as an average compressive stress in each
outstand flange. The mean value of the compression in the flanges is -0.17f, which is below the
nominal profile currently used (according to the ECCS nominal pattern), yet with a large
coefficient of variation. The statistics for the tensile stresses in the flanges are based only on
the maximum value registered in each flange. The mean value is lower than the specified
nominal f,, with smaller variability in comparison to the flange compressive stress. The tension
in the web is higher, in many cases approaching the yield stress. The web compression is found

with high variability and a mean value higher than the recommended nominal.

Figure 3.53 and Table 3.7 summarize the obtained statistics of the combination of results from
the experimental programme and the measurements reported by Prawel et al. (1974) and Shiomi

& Kurata (1980).

Chernenko & Kennedy (1991) provide a summary of residual stresses measurements collected
from the literature with a mean value of average compressive stress in the flanges of -0.25f, and

a standard deviation of about 32 %.

The mean value of the average compressive residual stress according to Fukumoto & Itoh

(1981) is -0.12f, with a larger coefficient of variation of 46 %. These results compare well with




the experiments reported in the previous section, where the mean value was estimated to -0.15f,
with a slightly higher coefficient of variation of 62 %. When all data was combined, the mean
value of the average compressive stress in the flanges was found slightly higher but with a
smaller coefficient of variation. Besides the high coefficient of variation, the histogram of the
distribution in Figure 3.53 shows a trend towards smaller average compressive stress in the
flanges. The residual tension in the flanges is represented by a more uniform-like distribution
according to Figure 3.53 and it varies from 0.5/, up to the actual yield stress. The measurements
performed by Prawel et al. (1974), Salter et al. (1980), Avent & Wells (1982), Fukumoto & Itoh
(1981), Shiomi & Kurata (1980) report residual tension in the flanges approaching the yield

stress.

Table 3.7 - Statistical parameters: residual stresses

- Mean St.dev. C.o.V. Min. Max.
Flange compression -0.17 0.08 0.50 -0.37 -0.01
Flange tension 0.70 0.27 0.38 0.15 1.07
Web compression -0.38 0.25 0.66 -0.83 -0.11
Web tension 0.88 0.24 0.28 0.38 1.14

Most of these studies recommended residual stress patterns based on the measurements
performed, where they suggest the yield stress as a maximum value for the tension in the
flanges: Prawel et al. (1974) and Avent & Wells (1982) propose identical residual stress pattern,
Salter et al. (1980) proposed similar to the ECCS pattern, for Chernenko & Kennedy (1991)
the maximum tensile stress in the flange-to-web junction varies from 80% to 100% of the yield

stress. These recommendations are safe-sided when compared to the test measurements.

Regarding the average compressive stress in the flanges, Prawel et al. and Avent and Wells
propose a maximum of 0.5f, which decreases to 0.3f,. Salter et al. again is comparable with the

ECCS pattern 0.23 f,. and for Chernenko and Kennedy it is between 0.28f, and 0.4f,.
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3.5.3 Geometrical imperfections

The initial out-of-straightness is usually assumed with the shape of the relevant buckling mode
and amplitude of L/1000. In this assessment, particular attention is paid to the magnitude of the
deviation from straight member and not the precise shape. Some of the experimental studies
carried out measurements on the out-of-straightness (in and out-of-plane) and some studies

report on the initial twist.

For some of the collected test results, the measurement was performed for the minor axis
deformation, for other according to the major axis and for some tests the measurement direction
was not even specified. In this grouping, all data was considered together, and split according
to in and out of-plane. The statistical parameters are given in Table 3.8 and the histogram is
presented in Figure 3.54. It is highlighted that the majority of cases are web-tapered members
(40 out of 48); Shiomi & Kurata (1980) report that the geometrical imperfection for tapered

members tend to be higher due to the increased difficulty in fabrication.

The statistics obtained for the initial out-of-straightness are quite different from those presented
by Fukumoto & Itoh (1981), nevertheless the statistics presented are based on a larger sample
which covered uniform members of the same size. This can explain the difference in the mean
values between both studies; on the other hand, the coefficients of variation reported by
Fukumoto & Itoh (1981) are considerably higher. The results obtained for welded members
were also compared to a similar study (Fukumoto et al., 1980) on rolled beams that revealed a

greater scatter for the welded beams and lower mean-to-nominal ratios.
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Figure 3.54 - Histogram of the distribution of the collected initial out-of-straightness



Further comparison with Chernenko & Kennedy (1991) shows closer fit for both indicators:
mean and standard deviation, where the mean values lay between 1/2000 and 1/3500. Even
though the coefficient of variation is about 40%, the mean values are at least twice less than the
usually adopted imperfection of L/1000. The histogram in Figure 3.54 shows the trend that the
majority of the population is concentrated around the mean value, the large coefficient of
variation is somehow inevitable, since there always be imperfections laying closer to the
tolerance. The minimum value of the collected sample is lying above the current execution
tolerance of L/750 in EN 1090-2:2011. Chernenko & Kennedy (1991) also mention that
according to their study, members with geometrical imperfection which does not satisfy the
tolerance occur in less than 2% of the specimens and in such cases the beams are subject to

straightening.

Finally, if the results obtained are compared with the classical work on the development of the
European buckling curves: the ECCS experimental programme by Sfitensco (1970); the
theoretical basis by Beer & Schluz (1970) and the Monte Carlo simulation by Strating & Vos
(1973). The out-of straightness used in by Strating & Vos (1973) based on the experiments
Sfitensco (1970) has mean value of 0.00085L (L/1176.5) and c.o.v of 23.5%, which is the
smaller than the one obtained in 7Table 3.8 (46.7%). However the mean value calculated for the
collected sample is about two times smaller (L/2160). Even though the development of the
buckling curves was based on hot-rolled members, the results are illustrative of the

improvement of the production quality nowadays.

Table 3.8 - Statistical parameters for the collected initial out-of-straightness

Subset n Mean St. dev C.o.V. Min Max
0.000342 0.00016 0.000588
In 11 0.000123 0.36
(1/2924) (1/6250) (1/1700)
0.000499 0.00020 0.00125
Out 37 0.000231 0.46
(1/2004) (1/5000) (1/800)
0.000463 0.00016 0.00125
All 48 0.00022 0.476
(1/2160) (1/6250) (1/800)
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3.6 Summary

Chapter 3 was dedicated to the experimental background of the buckling behaviour of non-
uniform members. Firstly, available experiments by other researchers were collected and
presented in a comprehensive literature review. This collection covered non-uniform members
in compression, bending and combination of bending and compression. Most of the studies
carried out were based on I-section members fabricated by welding of plates. For that it was
considered useful to extend the collection to experiments on member imperfections for welded

sections.

This chapter also summarized six full-scale experimental tests on the stability behaviour of
linearly web-tapered steel columns, beams and beam-column. The columns were tested under
constant axial force aiming for the assessment of their in-plane flexural buckling resistance, the
under linearly varying bending moment and one member was tested under bending and axial
force. The material and geometrical properties of all members were characterized
experimentally and detailed global results were reported. The test campaign also included
residual stresses tests, where four specimens with different geometries were tested. The member
geometrical properties were chosen to vary from stocky cross-sections to columns with slender
(class 4) cross-sections, and therefore, they provide a good basis for their use as reference tests

for the calibration and validation of numerical models.

Finally, the collected data for member imperfections was combined with the results from the
experiments: out-of-straightness and residual stresses. It was shown that despite of the high
variation, the mean values of the member imperfections were lower that the assumed in the
calibration of the buckling curves and thus opening a future discussion on the magnitude of the

imperfection factors.



4 NUMERICAL MODEL

4.1 Introduction

Numerical results are a powerful tool for the validation of design rules. They are often chosen
instead of experiments because they are cheaper and significant amount of cases can be very
rapidly achieved. However, the model should be carefully validated before applying it to a large
parametric study in order to ensure correct results. The numerical model used later in this thesis
1s adapted from previous research in the field, namely, work by Rebelo et al. (2009), Taras

(2010), Marques (2012) among others.

This chapter is dedicated to the numerical model used for the validation of design rules, related
modelling assumptions and its validation with experimental results. Hence, in this chapter,
firstly, the characteristics of the numerical model are described, providing details for the
material modelling, boundary conditions and meshing; and then the assumptions for the
member imperfections are presented. In a second step, the model validation with the

experimental results presented in Chapter 3 is carried out.

4.2 Numerical model

4.2.1 General description

Members affected by stability problems are highly sensitive to second order effects which are
introduced by various imperfections. In order to ensure the highest accuracy, advanced analyses
were performed using geometrical and material non-linearities with imperfections. This type of

analysis, also known as GMNIA, takes into account the second order effects in the members
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due to their imperfect nature. Therefore, the results are assumed to represent closely the real

behaviour.

In order to perform a GMNIA analysis, firstly a Linear Buckling Analysis (LBA) is performed
to obtain the initial imperfection shape, which in this case is assumed to be the first buckling

mode.

The numerical results used in this thesis were obtained using the FE software Abaqus and its
versions 6.12, 6.14 and 6.17. Each structural element is modelled with four-node linear shell

elements (S4) with six degrees of freedom.

The adopted mesh is 16 sub-divisions in the web and flanges and at least 100 divisions along

the member’s axis for every 10 m of length.

4.2.2 Material properties

The following constitutive assumptions are made:

— Linear isotropic elastic response, characterized by the Young's modulus E=210 GPa and
Poisson ratio v=0.3;

— von Mises yield criterion with uni-axial yield stress f, specified according to the
provisions of the product standard EN 10025;

— associated Levy-Saint-Venant flow rule;

— o hardening (i.e. perfect plasticity)

Stress

o

Strain

|
|
|
E
I
I

Ey

Figure 4.1 — Material constitutive law

4.2.3 Boundary conditions

If not mentioned otherwise, the boundary conditions are implemented as end fork conditions in

the shell model. The following restraints are used — vertical (J,) and transverse (0:)



displacements and rotation about x-x axis () are prevented at supports. In addition, the
longitudinal displacement (Jx) is prevented in node 1 according to Figure 4.2 at one end of the
element. End cross-sections are constrained to be plane, nevertheless allowing for the free

warping of the end cross-sections, i.e. the flanges can move independently from the web.

Figure 4.2 - Boundary conditions

The fixed boundary condition was implemented by restraining all DOFs at the end cross-
section. The influence of slender webs was neglected by restraining them from local buckling

and distortion.

Intermediate lateral restraints equally spaced may be applied at the extremes of the flanges

according to Figure 4.3a and partial restraints according to Figure 4.3b.

Figure 4.3 - Location of the intermediate lateral restraints in the cross section

4.2.4 Loading

The load is applied using a load stepping routine, in which the increment size is chosen in order
to meet the accuracy and convergence criteria. The equilibrium equations are solved for each

increment using the Newton-Raphson iteration technique.

The load is always applied at the centre of the doubly-symmetric section, as shown in Figure

4.4 and with reference to the plastic resistance of the shallow cross-section.
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Figure 44 - Load application

4.2.5 Imperfections

Geometrical imperfections were incorporated in the shell model with the shape of the first or
other buckling modes considered relevant for the studied case. The magnitude of the
imperfection amplitude was chosen according to the recommendations of ECCS pub. No.23,

(1976), 60=L/1000, see Figure 4.5.

L

5,(x) =3, (x)eo =3, (x) (4.1)

1000

Figure 4.5 - Initial geometrical imperfection in the shape of the buckling mode

For members with partial restraints, L was adopted to be the length between the inflection points

of the compressed flange.

Local imperfections are not considered provided that only global instability failure modes are
analyzed. Therefore, the numerical models are prevented from developing local buckling

deformations in the cross sections.

Material imperfection is introduced according to the recommendations of ECCS publication
No. 33, (1984) shown on Figure 4.6. The residual stress patterns corresponding both to hot-

rolled (Figure 4.6) and welded cross-section were considered.
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Figure 4.6— Residual stresses (“+” Tension and “—“Compression)

4.3 Comparison with experimental results

4.3.1 Introduction

The experiments presented in Chapter 3 had the objective of providing reliable data for the
calibration of a numerical model, which is able to reproduce the real behaviour of web-tapered
members. The numerical models were implemented using the same modelling assumptions and
techniques as described in the previous section. However, in this case, since the objective is to
accurately model the experiments, a few modifications in the ideal conditions were necessary

since those are sometimes challenging to implement in the laboratory experiments.

In the following paragraphs the modelling of the beams and columns are presented separately,

due to the difference of the buckling phenomena and test layout.

4.3.2 Columns

Even though a few modifications in the described model were necessary, it was aimed to
maintain the model as simple as possible for validation purposes. Firstly, the material properties
introduced were according to the results obtained for the coupon tests in section 3.4.1.1, i.e.
including strain-hardening. About 20 points were chosen from the yield point to the ultimate
tensile stress, in the numerical model. Those were transformed and introduced as true stresses

and logarithmic strains, separately for the flanges and the webs.
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The residual stresses were also introduced according to the measurements performed in section
3.4.1.1. The flanges were divided into 10 segments and the residual stresses were introduced as

an average measured stress for each segment.

The initial geometrical imperfections were modelled as a combination of buckling modes,
which resembled the measurement of the geometrical imperfections (see section 3.4.1.2). For
Column 1, the adopted imperfection was the combination of a global buckling in-plane mode
(1.6 mm) (Figure 4.7a) with an out-of-plane mode (4.7 mm) including local effects (Figure
4.7b).

For Column 2, the adopted imperfection was the combination of a global buckling in-plane
mode (Figure 4.8a) with an out-of-plane mode including local effects (Figure 4.8b) with

nominal amplitude of L/1000 for the in-plane mode and 2 mm for the local mode.
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a) Column 1 in-plane mode b) Column 1 out-of-plane mode

Figure 4.7 Buckling modes as initial imperfection C1

N\

a) Column 2 in-plane mode b) Column 2 out-of-plane mode

Figure 4.8 Buckling modes as initial imperfection C2

For Column 3, the adopted imperfection was the combination of a global buckling in-plane

mode (2.4 mm) (Figure 4.9a) with an out-of-plane mode (4.5 mm) (Figure 4.9b).



a) Column 3 in-plane mode b) Column 3 out-of-plane mode

Figure 4.9 Buckling modes as initial imperfection C3

The boundary conditions were adopted in order to represent the experimental layout Figure
4.10. Firstly, the actual buckling length of the members was longer than the actual member
length due to the physical dimensions of the supports. To account for this, the boundary
conditions were modelled outside of the member at a distance which coincides with the actual
axis of rotation of the hinge. The out-of-plane rotations were restrained. The presence of small
eccentricities in the layout were included by adding small rotations at the point of load

application.

Finally, the resulting load-displacement curves at the point of load application are shown in
Figure 4.11. In each case, it was possible to achieve satisfactory agreement between the
numerical and experimental results in both shape and magnitude. The obtained results and the
respective difference between numerical and experimental results are given in Table 4.1. A

comparison between the experimental and numerical deformations can be seen in Figure 4.12.

Another important parameter for the design of non-uniform members is the critical cross-
section which governs the design. For that, these critical locations obtained from the numerical
model and experimental tests are now compared. The experimental critical location was
estimated approximately as the cross-section with maximum deformation after the test. The
numerical critical location was chosen to correspond to the element with the highest strain at
the maximum load. In Table 4.1, it is possible to compare the experimental and numerical
results. Since this quantity is highly dependent on the member imperfections, an exact match

can be hardly achieved. Nevertheless, the obtained results show very good agreement.
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Figure 4.10 Column and beam-column models
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Figure 4.11 Numerical and experimental results for each experiment



Table 4.1 Numerical and experimental results

Test Maximum load A Critical location x/L
Experimental Numerical Experimental Numerical
- KN KN - - -
C1 1397.6 1393.0 -0.3% 0.110 0.082
C2 1313.6 1289.9 -1.8% - 0.250
C3 1460.0 14494 -0.7% 0.125 0.153
BC 379.0 386.9 +2% 0.708 0.773

Figure 4.12 Column 3: numerical and experimental deformed shape

4.3.3 Beams

Firstly, the model simulated the complete beam, including the segment with uniform cross-
section. In fact, the option to include this segment for load application was specifically chosen
to avoid uncertainties in the definition of the boundary conditions of the shell model at the deep

end of the tapered beam in the numerical model.

Secondly, the two pinned connections at the shallow end of the beam do not act as perfect
hinges. Each of these connections has physical dimensions, which in turn means that the test
specimens have two different buckling lengths in and out of the beam plane, Figure 4.14. In
addition, even though the pins were treated with lubricant before each experiment, the friction

between the pin and the plates is not fully eliminated and thus introduces some degree of

restraint.
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Figure 4.13 Numerical model

Hence, it was decided to tackle this deviation from the intended behaviour by introducing a
spring at the beams’ end, matching the behaviour directly obtained from the experiments. The
spring was set to be fully rigid with respect to translation and rotation about the longitudinal

beam axis (x-axis), it was free to rotate around the y and z axes, and the translations in y and z

axes were calibrated to match the experimental results.
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Figure 4.14 Buckling lengths

At the intermediate support, as the vertical and lateral displacements were restrained, the cross-
section was modelled to remain straight (with warping restrained) corresponding to the

configuration of the experiment. At the point of load application, the section was also modelled



to remain straight, its lateral displacement was restrained and the load was applied with

displacement control.

The material properties were considered as an average from the coupon tests carried out in
Chapter 3. The geometrical imperfections were modelled as a combination of buckling modes,
which resembled the measurement of the geometrical imperfections (see section 3.4.1.2).
Several shapes were checked in order to obtain the best fit. For Beam I, the adopted
imperfection was the combination of the modes in Figure 4.15a and Figure 4.15b

corresponding to global buckling of the top or bottom flanges.

For Beam 2, it was chosen to have a similar configuration, a combination of the two global
modes corresponding to buckling of the top or bottom flange Figure 4./6a) and b), and
additional local mode Figure 4.16¢c) to account for the large local imperfection from the

measurements as shown in Figure 3.11.

In this experimental campaign, the residual stresses were not measured for the beams despite
being a relevant parameter for the buckling resistance. For this reason, it was necessary to verify
various options for their magnitude. Since all other relevant parameters were modelled as

measured, the only “unknown” were the residual stresses.

a) Mode 1 Beam 1 (3.75 mm) b) Mode 2 Beam 1 (2.5 mm)

Figure 4.15Modes chosen as a shape of the initial geometrical imperfection: Beam 1
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a) Mode 3 Beam 2 (3 mm) b) Mode 5 Beam 2 (1.5 mm) c) Mode 2 Beam 2 (3.85 mm)

Figure 4.16 Modes chosen as a shape of the initial geometrical imperfection: Beam 2

The adopted residual stresses corresponded to the two following assumptions about the residual
tensile stress: /,=235 MPa or f,=355 MPa, which are further referred to as Pattern 235 and
Pattern 355, respectively. In Table 4.2, it is possible to compare the results for the two different
assumptions. It was found that Partern 235 gives better agreement with the experimental result
for both beams: for Beam 1, an 8% difference instead of 17%, and for Beam 2, a 2% difference
instead of -6%. The change in the residual stresses magnitude for both beams leads to a similar
drop in the resistance of about 8%. This difference is found acceptable, keeping in mind the

typical large scatter of the residual stresses in magnitude and shape.

The model behaviour was verified at various locations along the beam, to ensure a similar
performance with respect to the experiments. The spring at the shallow beam end was calibrated
exactly with the purpose of matching the readings during the experiments. Examples are given
in Figure 4.17 and Figure 4.18, where the first one compares the for horizontal displacement

H6 of Beam I and the second compares the vertical displacement at V;2 of Beam 2.

Table 4.2 Results for the different assumptions on the residual stresses

Test Experimental Numerical A Numerical A
Pattern 235 Pattern 355
- kNm kNm - kNm -
B1 2066.6 1921.2 -8% 1768.5 -17%

B2 1452.6 1488.1 +2% 1375.1 -6%




1250

1000

~3
W
(]

Load P (kN)
]
S
(]

[\®)
[
(=)

0 20 40 60 80 100

Horizontal displacement H6 (mm)

1000
900
800

Z 700

= 600

T 500
S

400

300

200

100

0 ’

0

1109

5 10 15 20 25

Vertical displacement V12(mm)

Figure 4.18 Vertical displacement of Beam 2 at VI2 (axis F)

Finally, it can be concluded that if the numerical model adopted incorporates all relevant

parameters, it accurately reproduces the behaviour of the tapered beams.

4.4 Final remarks

In this chapter the adopted numerical model was presented with all relevant modelling
assumptions. It was also validated with experimental results on non-uniform columns, beams
and beam-columns. It was seen that if the material and geometrical properties together with the
correct measured imperfections are introduced in the model, a good agreement is achieved with

the experimental results.



In the following chapters, if not mentioned otherwise, this numerical model is used for the

parametric studies carried out and the validation of design rules.
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5 SAFETY ASSESSMENT OF DESIGN
RULES

5.1 Introduction

This chapter is dedicated to the assessment of the safety of Eurocode 3-1-1 stability design
rules. As it was mentioned earlier, the main purpose of modern design codes is to provide design
principles and application rules that lead to appropriate safety levels. However, because design
codes combine a very large number of design rules that evolved over many decades of extensive
research work, the safety level is not uniform across the various design rules and also within a
single design rule. Eurocode 3 (2005) is no exception, despite the enormous work that was put
in its development and the wide past proven experience that it incorporates. In addition, the
development of new structural steels with largely improved mechanical and geometrical
properties and dramatically improved quality control procedures, required a reassessment of
the current safety levels of the stability design rules of EC3-1-1. For these reasons, a safety
assessment of the available stability design rules in Eurocode 3 was carried out. Similar studies
were done in the past and it is worth mentioning them. Project Partial safety factors for
resistance of steel elements to EC3 and EC4. Calibration for various steels products and failure
criteria (Chabrolin et al., 2002) provided a justification for the adoption 1.0 instead of 1.1 for
ymo. The assessment was carried out using the ENV1993 (1992) Annex Z, which is the
predecessor of the current Annex D of EN 1990. The first project objective was achieved by
performing a collection of available data at the time for the material properties of steel grades
S235 to S460 and a large variety of cross-sections. The second objective was to provide

sufficient evidence considering various limit states in order to avoid different values for the
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partial factor regarding the stability design of members yy; in the national determined
parameters. This objective was tackled by performing experimental tests and the collection of
available data of experiments performed by others. Regarding yum;, it was concluded that 1.1 is
quite satisfactory, besides the interaction between bending and axial force where lower factors

were obtained.

A similar assessment was carried by Muller (2003), on the basis of the ECCS tests (Figure 5.1).
Taras (2010) carried out a Monte Carlo simulation assuming similar variability for the basic
variables as in the ECCS tests. The conclusions of both were that the ENV 1993 version for the

partial factor yu; fits better the obtained results.

Slenderness
1.15 1.13
1.10 1.08 1.08
1.05
1.00
0.95
Low Medium High

Figure 5.1 — Assessment by Muller (2003) for flexural buckling of columns

Later on, the research project PROQUA (2005), carried out a probabilistic assessment of the
Eurocode design rules for steel and composite structures. The analysis included the load and
the resistance sides. The results of the analyses revealed that the Eurocode rules have higher
reliability than the requirements of EN 1990. The project gave recommendations for statistical
data for the action and resistance sides including imperfections. The project conclusions state

that the partial factors yno and yu; would be equal to 1.0.

The European project Optimizing the seismic performance of steel and steel-concrete structures
by standardizing material quality control OPUS (2013) collected large number of coupon tests
reflecting the current production in Europe. The project was aiming at giving recommendations
for the over-strength of the yield stress in the context of seismic design of structures. The data,
however, is valuable for assessment of any other steel design rule because it is an updated

version of what exists.

Finally, the SAFEBRICTILE project (Ref. N® RFSR-CT-2013-00023) intended to contribute
towards the harmonization of the reliability level of design rules for steel structures covering

modes driven by ductility, stability and fracture. The project provided an objective and



consistent safety assessment procedure for the various failure modes that are relevant for steel
structures. It also recommended statistical distributions of the relevant basic variables, which
were collected continuously during the project in a database of steel properties. This chapter is
a summary of the work carried out at the University of Coimbra covering the reliability

assessment of the stability design rules.

It is organized as follows: 1) firstly, the possible ways of safety assessment are summarized; ii)
the statistical distributions of the relevant basic variables are discussed; iii) the stability design

rules for I-shaped hot-rolled steel columns, beams and beam-columns is carried out.

5.2 Methods for safety assessment

5.2.1 Structural reliability

It is common to use the reliability index £ as a measure of the structural safety. Its quantity is

directly equivalent to the probability of failure.

B =—-d(P) (5.1)

In general, the probability of failure can be determined by exact analytical integration
(whenever possible), numerical integration methods, approximate analytical methods such as

first or second order reliability methods (FORM or SORM) and simulation methods.

According to Annex C of EN 1990 “Design values should be based on the values of the basic
variables at the FORM design point, which can be defined as the point on the failure surface

(g() = 0) closest to the average point in the space of normalised variables.”

The design is considered sufficient if the limit states are not reached when the design values are

introduced into the analysis models, as given by:
Ed = E(adl, Ao, -y Fdl' Fle . le, 9(12) ) (52)

Rd = R(adl, Ao, ""FdliFdZ’ . 9d1, 9d21 ) (53)

E is load action; R is the resistance; F is an action; X is a material property; a is a geometrical

property; @ is a model uncertainty.

1113



114 |

The design shall be based on the limit state function g(.), as the limiting condition is g=0 also
referred as failure surface. FORM is used to find the failure surface, an increased accuracy can
be achieved using SORM (Second Order Reliability Method), at the cost of higher

computational effort.

Since EN 1990 allows to split in the resistances and actions, (see Section 2.6), it is possible to

obtain the “failure surface” based only on the resistance side as in Eq.(2.78).

5.2.2 Design assisted by testing

One of the main objectives of the SAFEBRICTILE project consisted in the improvement of
existing and the development of new procedures for the reliability assessment of design rules
for steel structures. For this purpose, the existing procedures for the safety assessment of design
rules verified by testing, given in EN 1990 Annex D, were reanalysed, adapted and expanded
for the purposes and applications of the project and beyond. The main, semi-probabilistic
reliability approach adopted in EN 1990 was kept as a reference framework for the developed
safety assessment procedure. The procedure retains the semi-probabilistic approach of the
Eurocodes, i.e. the assumption that the resistance component of the total reliability level
(expressed by the reliability index f) has a fixed value. Recommendations on the reduction of
the model variability were specified, namely, divisions into smaller groups, use of the tail
approximation and weighting of different failure mores. The use of numerical experiments was
also addressed and their compliance to physical tests in the laboratory, and requirements and

limits for their application were developed.

The application of the procedure is summarized in Figure 5.2.
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O (X X FAX o X)) = (X s X e X))

it

ax. AX

J J
where AX; is sufficiently small increment .

Determine design value of the Determine the partial safety factor, as a mean
resistance value from the safety factors for each specific
case:

0, =In(W,> +V, > +1)

rt,i

, — 7M*=1/nZ7M,i*
oy =br (X, ) expl—k, .0, 0507

7 _>X< = rnom,[
M., rd .

!
s

Figure 5.2 Flow-chart for the test-based statistical evaluation procedure of EN 1990 Annex D
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5.3 Statistical distributions of basic variables

5.3.1 Introduction

According to the procedure given in Figure 5.2, information about the scatter of the basic input
parameters is required. Within the scope of the European project SAFEBRICTILE, data
collection for material and geometrical properties was carried out. This collection aimed at
providing reliable data for the application of the reliability assessment performed within the
project. The data was collected in the European database provided by the project. It also

collected data from previous collections in order to increase the data pool.

The collection of data aimed to attract contributions coming from different industries. In
particular, focus was given to steel profiles and plates in different steel grades fabricated in
2013 and 2014. During the project, data was also collected from other sources such as, coupon
tests performed at universities around Europe. These tests serve for independent comparison
with the results which were supplied by the steel producers, as the steels tested at the university
laboratories are supplied by random producers. Data was also collected from the literature: 1)
collection in Simoes da Silva et al (2009) that comprised a large amount of tests (7454 coupon
test results) tested between 1996 and 2007 for steel grades S235, S275, S355, S460 and S690;
i1) data collected within the framework of the European project OPUS that comprises a large
amount of data (25425 coupon test results) tested between 2007 and 2010 for steel grades S235,
S275, S355, S460.

Regarding the geometrical properties, the tolerances on shape and dimensions (Figure 5.3) for
H and I sections are standardized and the profiles are produced according to EN 10034:1993.
This implies that the dimensions are continuously measured and their variation is bounded by

the standard.

¥ .|
5 3 e . o] S
S o (&)
<
b1 b2 < e
Al fESa ”g.l% r.g:_.é-li

Figure 5.3 Measurements on H and I sections — cross - section




Data collection for geometrical properties of steel H and I profiles, according to the
specifications of EN 10034:1993, was performed among several steel producers in Europe:
ArcelorMittal, Dillinger, Salzgitter, Stahlwerk-Thueringen, TataSteel. The results were

supplied only as statistical parameters.

The geometrical and material imperfections, however, are not standardized and there are not
many sources of information. In Chapter 3, a collection of results various from literature sources
was carried out. The conclusions, however, revealed high variability which is based on only
several dozens of results unlike the material and geometrical properties where the collected data
were several thousands. The out-of-straightness and the residual stresses, despite of being very
relevant parameters do not appear explicitly in the Eurocode 3 stability design rules, for that
reason they were not considered as random variables in the reliability assessment summarized

by this chapter.

5.3.2 Material properties

Based on the collected data, recommendations for the distributions of the material properties
were specified. These were adopted also in the present assessment. The SAFEBRICTILE
recommendations are given in Table 5.1. They were specified in a normalized manner in order

to be easily applicable to the variation of the yield stress with thickness according to EN 10025.

Table 5.1 Recommended distributions

Steel 18 mom el 1w C.0.V.
S235 235 1.25 5.5%
S355 355 1.2 5%

S460 460 1.15 4.5%

Furthermore, the modulus of elasticity also being an important parameter for the stability
behaviour is not a standardized property. The result of the measurement procedure is highly
dependent on the party that performs it; hence for that reason, the available results are
questionable. A recommendation for the distribution for the modulus of elasticity was adopted
based on DNV (1995) that reports a mean value Em = Enom and a c.0.v. of 5%. Since the

statistical characterization of the modulus of elasticity is not so strongly supported by
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experimental evidence and the testing procedures are not often as reliable with respect to this
property, a sensitivity study is carried out with respect to this property by also considering a
c.0.v. of 3%. Furthermore, from theoretical and methodological point of view the Young’s

modulus should not exhibit variability (Feldman, (2018))

5.3.3 Geometrical dimensions

Table 5.2 summarizes the recommended distributions for the geometrical properties of H and I

hot-rolled sections.

Table 5.2 Recommended distributions

Dimension b h iy te
mean/nom 1 1 1 0.975
c.0.vV 0.9% 0.9% 2.5% 2.5%

They were based on more than 1000 collected data in the database and data supplied from steel
producers in Europe. These statistics correlate well with that was reported in the past Alpsten,

8 |

(1972) and results reported in Taras (2010), who reported statistics as given in Table 5.3.

Table 5.3 — Distributions on geometrical distributions Alpsten, G. (1972)

Dimension b h tw te
mean/nom 1 1 1.025 0.975
c.0.vV 0.9% 0.9% 4.0% 3.0%

Although the reports by Alpsten. (1972) and Taras (2010) are not recent, the statistical
characterization of the cross-section dimensions is in line with the statistical indicators for area,
moment of inertia and bending modulus as given in the report from the research project
PROQUA, where the area, section modulus and moment of inertia are reported with a mean

value of 0.99 the nominal and c.o.v varying from 1 to 4%.

Recently, as part of the Eurocode 3-1-1 revision, the final draft prEN 1993-1-1 (CEN/TC250,

2017) specifies recommended distributions for the basic variables for the calibration of the



partial factors in its Annex E. The recommended distributions are based on the

recommendations of SAFEBRICTILE.

5.4 Safety level of the design rules

5.4.1 Scope and assumptions

The assessment encompasses the design rules for prismatic members in compression, bending

and combination of bending and compression.

The comparison is carried out on the basis of partial safety factor ym~ calculated using the

procedure from Section 5.2.2 with the statistical data for basic variables from 5.3.

The buckling strength of the members is obtained using advanced numerical finite element

simulations as described in Chapter 4.

For each case (flexural and lateral-torsional buckling), a wide range of I-shaped cross sections
covering several buckling curves were analyzed across a wide ranges of slenderness. The
parametric studies are organized by buckling mode and they are defined in Section 5.4.3 for

members in compression, bending and combined bending and compression.
The safety assessment procedure was applied together with the following assumptions:

— The variability of the input variables in the design model is not considered for the
calculation of Vs; the value is obtained from nominal properties since the “experimental”
results are considered with nominal properties;

— The coefficient of variation of the basic variables, V;,, considers only the variability of
cross section dimensions, yield stress and modulus of elasticity; for these parameters
more information is known and documented with recent data;

For the flexural buckling of columns, the yield stress, f;, is considered either according to the
provisions of the product standard EN 10025, or from Table 3.1 of EC3-1-1. Since Table 3.1 of
EC3-1-1 does not account for £~~80 mm, for such cases, the same value of f, as in EN 10025

was considered, see Figure 5.4.

1119



120 |

- , w= EN 1993-1-1
440 | = EN 10025-2
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B25____|

Minimum yield stress [MPa]

2107 los

160 20 40 60 80 100 120 140

Material thickness [mm]

Figure 5.4 — Variation of the yield stress with thickness

For beams and beam-columns, the variation of the yield stress with thickness was assumed

according to the product standard.

For columns, the geometrical imperfections were modelled using an initial sinusoidal
imperfection introduced in the weak or strong axis of the cross-section, with an amplitude
eo=L/1000 at mid span. Residual stresses were considered according to Figure 5.5. The adopted
value of f,* indicated in Figure 5.5 was f,235=235 MPa. Nevertheless, for comparison,

equivalent cases were included using the nominal value of the yield stress f;.

0.5/7 0.3f3

0.5(5 [ 0.5 0.3/7

03/1

N
0.31%

0.5¢% 0.3f>

(a) Hot-rolled, h/b<1.2 (b) Hot-rolled, h/b>1.2
Figure 5.5 — Residual stresses (“+” Tension and “—*“Compression)
As the main purpose of this study is the assessment of existing rules for prismatic members in
compression, bending and a combination of bending and compression from EC3-1-1, in order
to cover all types of hot-rolled sections according to Table 6.2 of EC3-1-1, a wide range of I-

shaped cross-sections was selected so that flange thickness and the ratio 4/b would vary.



In this section, firstly, the scope of the parametric study is introduced; subsequently, the

methodology for assessment of results is given and finally, the results are discussed.

5.4.2 Design resistance
5.4.2.1 Members in compression

For the evaluation of the flexural buckling resistance of steel columns, clause 6.3.1 in EC3-1-1
is considered to represent the theoretical result, 7, in the safety assessment procedure. The
design procedure is summarized in Section 2.3.1 for simply supported members of length L,
whereas the imperfection factors are summarized in Table 2.2 for the cross section shapes
covered by the parametric study. The imperfection factors are considered from 7able 2.2 and
imperfection factors by Snijder et al. (2014) for hot-rolled heavy cross-sections with #>100
mm and A/b>1.2.

Table 5.4 - Imperfection factors and generalized imperfection limits for flexural buckling

EC3-1-1 (Snijder et al.,
Fabrication Limits Axis 2014)
S235 | S460 | S235 | S460
$355 $355
y-y | 021 | 0.13
t<40 mm zz | 034 | 0.13
N -
2 40 mmetes vy | 034 | 021 _ _
§ 100 mm Z-Z 0.49 0.21
y-y 034 | 021
Rolled w=100mm -, 049 | 034
vy | 034 | 021
o =100 mm zz | 049 | 021
Al
< vy | 0.76 | 0.49
t>100 mm zz | 076 | 0.49

5.4.2.2 Members in bending

For the evaluation of the lateral-torsional buckling resistance, the methods described in Section
2.3.2 were used. A similar assessment performed in 2009 (Rebelo et al., 2009) considered the
General Case modified with the factor f from the Special Case. The method was included here

for completeness.
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5.4.2.3 Members in bending and compression

The design resistance of members in bending and compression was evaluated using the

interaction formula with interaction coefficients for Method 2/Annex B (see Section 2.3.3) since

it was foreseen that only this method would remain in a future version of Eurocode 3.

5.4.3 Parametric studies

5.4.3.1 Flexural buckling of columns

Table 5.6 summarizes the hot-rolled sections selected for the study, organized according to

Table 6.2 of Eurocode 3 (2005). The selection also includes 2 (two) American profiles.

The parametric study comprised 7332 numerical models, both for minor and major axis flexural

buckling behaviour (3666 models for each mode). It includes several levels of slenderness,

different steel grades, and two different levels of residual stresses (proportional to the yield

stress or as a fraction of 235MPa), as given in Table 5.5.

Table 5.5: Parametric study for columns: additional parameters

Fabrication z Material and Material
standard for £, imperfections
h/b<1.2:
0.5;0.6;0.7; 0.8 EN 10025: ﬁ;ﬁ
0.9;1.0; 1.2; 1.4; ’
15 $355 h/b>1.2:
1.6, 1.8;2.0; 2.5 S460 Juzss

N




Table 5.6. Sections of the parametric study for columns

.. . Sections
Fabrication Limits b i Profiles
1.22 40 HEM340
1.3 19 HEA400
1.7 40 HEMS500
1.92 6.9 IPE140
2.19 40 HEMG650
1.74 5.2 IPERO
tr< 40 mm 1.82 5.7 IPE100
1.33 24 HEB400
1.67 28 HEBS500
1.95 7.4 IPE160
1.41 40 HEM400
1.50 24 HEB450
1.28 40 HEM360
2.28 55.9 HL920x588
2.29 62 HL920x656
~ 2.35 99.1 HL920x1077
T. 3.36 64 HE1000x584
§ 2.31 73.9 HL920x787
2.30 68.1 HL920x725
40 m‘:‘nﬁéloo 3.08 65 W920x310x576
2.56 70 HL1000x748
2.05 69.1 W610x325x551
2.06 54 HE600x399
2.36 46 HE700x352
Rolled 2.69 54 HE800x444
3.01 54 HE900x466
1.231 130 HD400x1202
2.4 109 HL920x1194
1.201 106 HD400x900
100 mm 1.23 115 HD400x990
2.37 115.1 HL920x1269
2.31 115.1 HL920x1377
1.25 125 HD400x1086
1.26 140 HD400x1299
1.2 22.5 HEB360
1.17 97 HD400x818
0.96 8 HEA100
1.0 19 HEB300
1.1 39 HEM300
o 1.0 10 HEB100
‘\7:I <100 mm 1.0 15 HEB200
§ 1.17 17.5 HE360A
1.09 67.6 HD400x551
1.12 77.1 HD400x634
1.04 52.6 HD400x421
1.10 72.30 HD400x592
1.00 17 HEB240
t2>100 mm No sections exist
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5.4.3.2 Lateral-torsional buckling of beams

Table 5.7 summarizes the hot-rolled sections selected for the assessment of lateral-torsional

buckling of prismatic beams.

Table 5.7 - Sections of the parametric study for beams.

Limits Sections
Fabrication | EC3-1-1 t EC3-1-1 Wb te Profiles
Columns Beams [mm]
222 135 IPE400
h/b>2.0 2.50 16 IPE500
2.73 19 IPE600
t<40 mm 182 57 IPE100
hb <2.0 200 85 IPE200
200 98 IPE240
200 10.7 IPE300
230  68.1 HL920x725
2.56 70 HL1000x748
R 231 73.9 HL920x787
A Wb>20 | 336 64  HE1000x584
= 3.08 65  W920x310x576
205  69.1 W610x325x551
40 mm<t<100 1.41 40 HE400M
mm 1.71 40 HES500M
124 Rolled 130 19 HE400A
1.33 24 HE400B
h/b<2.0 20 30 HEG600B
252 419  HL1000x443
2.52 46 HL1000x483
227  51.1 HL920x537
1.00 19 HE300B
1.00 15 HE200B
1.00 10 HE100B
~ 1.13 20 HE100M
Zl <100 mm ; .10 21 HE300M
= 0.95 8 HE120A
1.09  67.6 HD400x551
1.10 723 HD400x592
.12 77.1 HD400x634

The parametric study consists of 3523 numerical calculation runs. It includes several levels of

slenderness and different steel grades (the ones currently included in EC3-1-1). The parameters

are summarized in Table 5.8. Due to the diversity of the cross-sections and in order to avoid

unrealistic lengths, only beams with ratios L/A < 40, where L is the beam length and /4 is the

cross-section depth, were considered in the parametric study.




Table 5.8 - Parametric study for beams: additional parameters

Fabric v o Material standard Material
. . . Load
ation for £, imperfections
0.2,0.4,0.6,0.8; EN 10025: h/b<1.2: e
1.0;1.1; 1.2; 1.3; Sr235 o
Rolled 9235 8 =
14;1.5;1.6;1.7,
S355 h/b>1.2:
1.8;2.0;2.1 S460 o238 |- |

5.4.3.3 Beam-columns

For the assessment of the members under bending and compression, numerical results by Ofner
(1997) used in the calibration of the interaction formula, additional cases for lateral-torsional
buckling under major axis bending moment and axial force performed in the scope of the
Master's thesis by Anwar (2015) and additional cases carried out at UC were used. Table 5.9
lists the selected hot-rolled sections and Table 5.10 summarizes the parameters which give a

total of 11 345 cases.

Table 5.9 - Sections of the parametric study for beam-columns.

Fabrication Limits h/b b Profiles s
[mm]

1.82 5.7 IPE100 Anwar (2015)
1.95 7.4 IPE160 Anwar (2015)
2.00 8.5 IPE200 Ofhner (1997)
2.5 16 IPE500 Ofhner (1997)
t<40 mm 1.98 8 IPE180 Anwar (2015)
~ 212 127 IPE360 Anwar (2015)
n 1.30 19 HE400A Anwar (2015)
e 1.67 28 HE500B Anwar (2015)
= 2.17 21 HE650B Anwar (2015)
Rolled 2.04 46 HE600x337  Anwar (2015)

228 559  HL920x588 UC (2018)

40 mm<t<100 | 3.36 64  HE1000x584 UC (2018)

mm 2.36 46 HE700x352 UC (2018)

2.69 54 HE800x444 UC (2018)
2.20 46 HE650x342  Anwar (2015)
1.0 19 HE300B Ofner (1997)
N 0.97 14 HE300A Anwar (2015)
v £<100 mm 1.01 437 HD400x347  Anwar (2015)
= 1.05 29 HE300C Anwar (2015)
113 215 HE340B Anwar (2015)
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Table 5.10 - Parametric study for beam-columns: additional parameters

Material Material
Fabrication A, ¢ standard imperfections Load
for f,
. | 5.67,2.74,
04,05, 0.6, EN hb<1.2: [
0.8;1.0;1.2; | 173,119 | 10025: fr235 -
Rolled <=
14:15,1.6; | 083,057 T
T S235 h/b>1.2:
1.8; 0.36,0.17 Jo2ss NW
0

5.5 Columns

5.5.1 Methodology

In the subsequent sections, the results for minor and major axis flexural bucking of columns are

detailed. The following main topics are discussed:

126 | — Influence of the specification of the minimum yield stress according to EN 10025 and
Eurocode 3;
— Influence of the magnitude of residual stresses used in the numerical analyses;
— Influence of the imperfection factor a for steel grade S460;
— Validation of the buckling curves for heavy sections;
— Influence of the number of random variables;

Throughout the following paragraphs, charts and tables, the following methodology is adopted:

— The partial factors for different subsets are computed considering the procedure
summarized in Figure 5.2.
— Whenever a subset according to slenderness is analyzed, the following division is

adopted:

= Low slenderness — normalized slenderness 4 e [0.5;0.8];

= Medium slenderness— normalized slenderness 4 e (0.8;1.5];



» High slenderness — normalized slenderness de (1.5;2.5];

— For the first 4 topics listed above, only the variability of the yield stress is considered,
as a relative assessment is sufficient to establish the influence of each parameter;

— In order to establish the influence of additional random variables, the following
variables are considered: yield stress, geometrical dimensions of the cross-section and

modulus of elasticity.

Hereby the results for minor axis and major axis flexural buckling are presented and discussed.
Firstly, the reference cases for hot-rolled cross sections are analyzed: the value of the yield
stress both in 7. and ; is considered according to EN 10025 and the level of the residual stresses

is proportional to 0.3(0.5) x 235 MPa for 4/b>(<1.2). Subsequently, the reference cases are

analyzed considering the value of the yield stress and 7; according to Table 3.1 of EC3-1-1, the
experimental value 7. is computed according to the EN 10025, assuming it as the “reality”.
Finally, the reference cases are analyzed considering the level of the residual stresses

proportional to 0.3(0.5) x £, for A/b>(<1.2);

5.5.2 Results and discussion — Minor axis flexural buckling

The parametric study was constructed aiming to cover all buckling curves for hot-rolled H and
I sections and therefore, the sample includes members whose resistance is evaluated using
different imperfection factors (o according to Table 2.2), different steel grades which are
defined by different distributions, etc. Hence, further division into subsets is required, in order

to avoid undesired bias of the results.

Since the reduction factor is mainly a function of slenderness, results should be assessed and
organized by subsets of the slenderness ranges, as shown in Figure 5.6. The subsets are adopted
according to Low [0.5; 0.8]; Medium (0.8; 1.5]; and High (1.5; 2.5]. A larger partial safety
factor is observed for S460 in Figure 5.6 when compared to the other steel grades for all
slenderness ranges. A possible explanation for this value is that the imperfection factors
currently adopted for steel grade S460 may not be appropriate. This was independently

confirmed by Lindner (2015) and may thus require adjustment.
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STABILITY DESIGN OF STEEL COLUMNS, BEAMS AND BEAM-COLUMNS:
BEHAVIOUR, GENERAL FORMULATION AND RELIABILITY

Flexural buckling, minor axis

1111

1.040 1.053
Lo 97 o3 LO07 o oo 0977 0,935
*s
=
05
00
Low Medium High
8235 " §355 5460

Figure 5.6 All results organized by slenderness for hot-rolled cross sections — f, according to EN 10025

Figure 5.7 illustrates the results organized by the divisions given in Table 2.2, regardless of the
slenderness range, thus allowing a direct comparison of the buckling curves in EC3-1-1. Firstly,
it is clear that steel grade S355 leads to lower values of yu;. This is due to the relative amplitude
of the residual stress with respect to the yield stress of the member when compared to S235
steel. Figure 5.7 again confirms that the imperfection factors for S460 may not be adequate,
except for h/b>1.2, t/>100 mm because they were recently proposed and calibrated as this range
was not available in the code (Snijder et al., 2014). Finally, note that no cases with #/b<1.2 and
t7>100mm are included in the parametric study since no sections with these characteristics were

found in catalogs.

Flexural buckling, minor axis

1.109 1.055 1.109

1.014 1.028

Lo 0.963 0936 0915 0972 093 0974 0.984
=
0.5
0.0
Wb>12 tf<40mm Wb>12  tf40;100)mm hb>12 t£>100mm h/b<1.2 t£<100mm

S235 8355 = 8460

Figure 5.7 All results organized by buckling curve division for hot-rolled cross sections — f, according to
EN 10025

5.5.2.1 |Influence of the variation of the yield stress with thickness

The value of the yield stress in the theoretical value of the resistance r; is now considered
according to EC3-1-1, Table 3.1 and the “experimental” resistance r. is computed considering
the sub-divisions according to EN 10025, and presented in relative terms with respect to the
results of EN 10025 (Figure 5.8). Results of Figure 5.8 are better interpreted together with
Figure 54. The second group for S235 and third group give the same values since the
specifications of the yield stress in EN 10025 and EC3-1-1 are equal for the cross sections




considered in the parametric study. On the other hand, for the first and fourth groups as well as
second group for S355 and S460, differences are noted, for sections with thicknesses falling in

the ranges (16; 40) and (63; 80), since the specifications in EC3-1-1 and EN 10025 are different

in those ranges.

z-z flexural buckling

8.0% 0
* 630% 6-90% \
6.0% 5.53 A)

3.94% 4.40%
4.0% 3.11%
2.31% 2.10%
2.0%
0.00% 0.00% 0.00% 0.00%

0.0%
h/b>12 tf<40mm  h/b>1.2 tf(40;100)mm h/b>1.2 t£>100mm b/b<1.2 t100mm

5235 S355 S460

Figure 5.8 Percentage difference for normalized yu; between yield stress calculated according to EC3-1-
1 and EN 10025
The results in Figure 5.8 include thickness ranges that are different from the division according
to EN 10025; hence, Figure 5.9 compares results between EN 10025 and EC3-1-1 for the
intervals defined in EN 10025, highlighting maximum differences of about 8%.

z-z flexural buckling

0,
12.0% 9.99%

10.0% 9.30%
8 0% 7.45%

6.0% 4.54% 4.51%
4.0%
2.0%
0.0%

0.00% 0.00% 0.00% 0.00%
0.00% | 0.00% 0.00% | 0.00% 0.00% 0.00% | 0.00% 0.00% \ 0.00%

0<tf<16 16 <tf<40 40 <tf <63 63 <tf <80 80 <tf< 100 tf> 100

S235 S355 5460

Figure 5.9 Percentage difference for normalized yu; between yield stress calculated according to EC3-1-
1 and EN 10025

5.5.2.2 Influence of the assumptions for the residual stress

Figure 5.10 and Figure 5.11 present relative results for the partial factor similarly to Figure
5.7, but assuming the conservative option that the level of the residual stresses is proportional
to the yield stress 0.3(0.5) x £, for h/b>(<1.2). Since a higher level of the residual stresses is
now considered (more conservative), the partial safety factor is expected to increase. This is
observed both for steels S355 and S460, see Figure 5.10 and Figure 5.11 respectively. For steel

grade S235, the analysis is not relevant.
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10.0%
8.0%
6.0%
4.0%
2.0%
0.0%

5.61%

S355

4.02%

3.07%
- - .
| 0.54%
—

h/b>1.2 tf<40mm

Wb>12 t(40;100)mm

3.29%

1.30%
0.49%
—

h/b>1.2 t£>100mm

7.99%

3.61%
2.20%

h/b<1.2 tf<100mm

Low ®Medium = High

Figure 5.10 All results organized by buckling curve and slenderness division for hot-rolled cross sections

and steel grade S355 — residual stress proportional to the actual value of f, (f; according to EN 10025)
Figure 5.10 and Figure 5.11 represent the subsets by buckling curve, slenderness and steel
grade. It is clearly seen that the influence of the residual stresses has higher impact in the
medium slenderness range, as expected. Moreover, Figure 5.11 further shows that the adoption

of residual stresses proportional to the yield stress 0.3(0.5) x £, is too conservative.

S460
15.0% 13.77%
10.0% 9-16%
7.34% 7.25% 7.41%
5.70% 5.35%
5.0% 5 86% 3.69% 3299
N 0,
130 | 198% 1.14%
0.0% | —

h/b>12 tf<40mm h/b>1.2 tf(40;100)mm h/b>1.2 t£>100mm h/b<1.2 tf<100mm

Low ®Medium ® High

Figure 5.11 All results organized by buckling curve and slenderness division for hot-rolled cross sections
and steel grade S460 — residual stress proportional to the actual value of f, (fy according to EN 10025)

5.5.2.3 Evaluation of the partial safety factor considering new imperfection

factors for 460

It was already seen that the results for steel grade S460 are significantly higher than those for
the other steel grades. A possible improvement can be introduced by considering higher

imperfection factors for minor axis flexural buckling as shown in Table 5.11 (values in bold).

Figure 5.12 and Figure 5.13, similarly to Figure 5.6 and Figure 5.7 show the results according
to slenderness and buckling curve division, respectively. The improvement of using higher

imperfection factors for steel grade S460 is clear.



5 SAFETY ASSESSMENT OF DESIGN RULES

Table 5.11 New imperfection factor for steel grade S460, minor axis

EC3-1-1 Snijder et al.
Fabricat Lirmit Axi (2014)
abrication 1ts XIS 179235 [ S460 | S235 | S460
$355 $355
vy | 021 | 0.13
E=40mm 9 | 921
(@\| -
. 40 mm vy [034 021 ] _
S | <u<l00mm | zz | 049 | 034
Rolled y-y 0.34 | 0.21
t>100mm - 049 | 034
v y-y 0.34 | 0.21
o <100 mm - -
= = 7-7 0.49 | 0.34

*h/b<1.2 and t£>100 mm is not included in the table, because no cross-sections were
found

Flexural buckling, minor axis

Lo 097 qo31 0973 1007 oo 0969 0977 0935 0.958
=
=
05
00
Low Medium High
8235 =$355 = 8460

Figure 5.12 All results organized by slenderness for hot-rolled cross sections — f, according to EN 10025

Flexural buckling, minor axis

L5
1.014 1015 1055 1019
10 0.963 0936 0915 0955 0972 0936 0974 0.984
>
0.5
0.0

h/b>1.2 tf<40mm h/b>1.2 tf(40;100)mm h/b>12 tf£>100mm h/b<1.2 tfF<100mm
S235 = S355 = 5460

Figure 5.13 All results organized by buckling curve division for hot-rolled cross sections — f, according to
EN 10025

5.5.3 Results and discussion — Major axis flexural buckling

Identically to minor axis flexural buckling, the safety assessment is computed considering the
Annex D procedure and the variability of yield stress only. Firstly, the reference cases for hot-

rolled cross sections are analyzed: the yield stress both in 7. and r; is considered according to

1131



STABILITY DESIGN OF STEEL COLUMNS, BEAMS AND BEAM-COLUMNS:
BEHAVIOUR, GENERAL FORMULATION AND RELIABILITY

EN 10025. Unlike minor axis flexural buckling, the relative values of the partial safety factor

are more uniform for the different steel grades (Figure 5.14).

Flexural buckling, major axis
1.5

Lo 0936 0937 0980 0962 g5 0983 0976 0961 0.992
*
k3
05
0.0
Medium High
S235 ® S355 " S460

Figure 5.14 All results organized by slenderness for hot-rolled cross sections — f, according to EN 10025

Similarly to Figure 5.7 for minor axis flexural buckling, Figure 5.15 illustrates the results
organized according to the divisions presented in Table 2.2, regardless of the slenderness range,
thus allowing a direct comparison of the buckling curves specified in EC3-1-1. All cases fall

within an acceptable range of variation of the partial safety factor.

Flexural buckling, major axis

132 10 0987 0970 10 0934 0936 0973 0944 0941 0.980 0967 0955 0998
*2 ’
=
0.5
0.0
Wb>12 tf<40mm Wb>12 tf40;100)mm Wb>12 t£100mm h/b<1.2 tf<100mm

S235 W 8355 " S460

Figure 5.15 All results organized by buckling curve division for hot-rolled cross sections — f, according to

EN 10025
Furthermore, when the influence of the variation of the yield stress with increasing flange
thickness was analysed, similar conclusions were drawn. Identical results were found when the

residual stresses were assumed proportional to the yield stress as in Section 5.5.2.2.

5.5.4 Influence of the number of random variables

In the previous sub-sections, only f; was considered as a random variable. In reality, in the case
on flexural buckling of columns, other basic variables also affect the behaviour of a column,
such as the cross-section dimensions and the Young’s modulus. It is noted that geometrical and

material imperfections such as initial curvature and residual stresses are not included as basic




random variables as they are included implicitly in the design model (Simoes da Silva et al.

2014).
Hence, the following random variables are included in the analysis:

— Yield stress — f;;
— Geometrical dimensions — b, A, ty, tr;
— Young’s modulus — E;

The distributions of the basic variables are considered as given in Section 5.3. The influence of
the number of basic variables is accounted as their number is gradually increased. The following

cases are considered:

— Annex D (fy) — considers the yield stress as the only basic variable, the other parameters
are assumed as deterministic quantities with no variability;

— Annex D (fy+CS) — considers the yield stress and the geometrical dimensions of the
cross-section as random variables;

— Annex D (fy+CS+E) — considers the yield stress, the geometrical dimensions of the

cross-section and the modulus of elasticity as random variables;
| 133

yui" is calculated for both major and minor axis flexural buckling for all three cases.

5.5.4.1 Minor axis flexural buckling

Subsets of steel grade and slenderness are analysed in Figure 5.16 for Annex D (fy + CS + E),
partial factors obtained for minor axis and considering the assumptions previously made. As
expected, higher values of ym1" are obtained, the rate of increase of ymi rises with increasing
slenderness as Young’s modulus and geometrical dimensions (moment of inertia) become more

relevant in the medium and high slenderness ranges.
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Flexural buckling, minor axis [fy+CS+E]

.095 1112 1.092
1009 og7; 1013 1005 1059 1.059
1.0
b
=
0.5
0.0
Low Medium High
S235 W S355 " S460

Figure 5.16 - All results organized by slenderness and steel grade — using fy, cross-section dimensions
and modulus of elasticity as random variables

Similarly, results split according to buckling curve and steel grade are given in Figure 5.17.

Flexural buckling, minor axis [fy+CS+E]
1.5

1155
L1260 g7 1118 1038 003 1048 1066 1gp9 1070 1075 1109

™m*

0.5

0.0

h/b>1.2 tf<40mm h/b>1.2 tf{40;100)mm h/b>12 t£>100mm h/b<1.2 tf<100mm
S235 mS355 = S460
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Figure 5.17 - All results organized by buckling curve for hot-rolled cross sections — using fy, cross-
section dimensions and modulus of elasticity as random variables
Finally, a comparison of different assumptions of the coefficient of variation of the Young’s
modulus is illustrated in Figure 5.18, where the differences become more significant for high

slenderness.

1.097
1012 1008 10761057 1.06

1.0
s
=

0.5

0.0

Medium High
HcovE5% BcovE3%

Figure 5.18 - Assessment of different assumptions of the coefficient of variation of the modulus of
Elasticity




5 SAFETY ASSESSMENT OF DESIGN RULES

5.54.2 Major axis flexural buckling

The same evaluation was performed for major axis of flexural buckling. The results are similar
to the conclusions in the previous section, i.e. the presence of the modulus of elasticity leads to
higher values for ym1 (Figure 5.19 and Figure 5.20). However, in general, the values of the ym1
for major axis flexural buckling are lower than those for minor axis as presented in section

5.54.1.

Flexural buckling, major axis [fy+CS+E]
L5

1.133
1.071 1098 1073
0968 0968 1014 1039 0,996
1.0
*s
>
0.5
0.0
Low Medium High
$235 uS355 8460

Figure 5.19 - All results organized by slenderness and steel grade — using fy, cross-section dimensions
and modulus of elasticity as random variables

Flexural buckling, major axis

1092 1067 1120 1016 1, 1063 1025 1on 1067 1059 1033 1094

1.007
1.0
*s
=
0.5
0.0
Wb>12 ti<40mm Wb>12 tf40;100)mm Wb>12 t£-100mm h/b<1.2 t<100mm

S235 m 8355 = 5460

Figure 5.20 - All results organized by buckling curve for hot-rolled cross sections — using fy, cross-
section dimensions and modulus of elasticity as random variables

5.5.5 Assessment of the partial factor

The previous section analysed the design rules for the flexural buckling of columns in terms of
the required value of the partial factors y;" to match the target probability of failure specified
in EN 1990. The analysis was carried out relatively because the value of yuy;" is highly
dependent on the quality of the design rules and scatters for the various subsets that are
considered. It was shown that the design rules provide consistent results across the various

possible subsets, with small scatter on the value of yu;".
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In this section it is proposed to discuss the adoption of a single global ym; for flexural buckling

of columns that is in line with the failure probability in EN 1990 and incorporates all the

viewpoints that support code drafting and the choice of safety factors.

Table 5.12 summarizes the partial factors obtained for minor and major axis, now given as

absolute values instead of normalized values.

Table 5.12 - Values of yu1 obtained using different random variables for major and minor axes flexural

buckling
Annex D Annex D Annex D
(fy) (fy+CS) (fy+CS+E)
Limits Axis
S235 S235 S235
S460 S460 S460
S355 S355 S355
y-y 0.978 1.006 1.030 1.066 1.079 1.120
<40 mm
z-Z 0.989 1.015 1.055 1.077 1.098 1.118
S 40 mm y-y 0.935 0.973 0.973 1.018 1.011 1.063
% <t<100 mm 7-7 0.925 0.955 0.983 1.011 1.021 1.048
y-y 0.943 0.980 0.978 1.021 1.018 1.067
t=>100 mm
z-Z 0.954 0.974 | 1.008 1.032 1.043 1.070
Vi y-y 0.961 0.998 1.004 1.047 1.046 1.094
o N <100 mm
= zZ-Z 1.020 1.019 1.079 1.075 1.115 1.109

Table 5.13 - Average yu for minor and major axis flexural buckling, according to buckling curves and

slenderness
Axis | Annex D(fy) | Annex D(fy+CS) Annex D(fy+CS+E)
Mean y-y 0.937 0.988 1.035
value 7z 0.936 1.002 1.041
y-y 3.8% 4.5% 6.4%
CoV
z-7 4.1% 4.4% 5.6%

Further division into subsets according to slenderness is performed in order to be able to

compare the different slenderness ranges (Simoes da Silva et al. (2016)). Even though finer




subsets into slenderness, steel grade and buckling curve are adopted, partial factors higher than

unity are mostly only observed when the Young’s modulus is included.

Table 5.13 summarizes the mean and standard deviation of ym for the three different sets of
random variables that were considered. It is concluded that depending on the random variables
included in the analysis (just f,; f, and cross-section geometry; or f,, cross-section geometry and
modulus of elasticity E) the average value of ymi varies from 0.936 to 1.041 with the c.o.v
varying from 3.8% to 6.4%. The mean value is lower than 1.05 for the more unfavourable case
and the c.o.v. is low. Additionally, in general, the values of the ymi for major axis flexural

buckling are similar to those for minor axis.

Recalling that the currently recommended value of ymi in Eurocode 3, part 1, is 1.0, and
comparing with available data from the literature that led to the choice of ym1 = 1.0, the results
presented in this report for ymi are lower. In Muller (2003), a study on the flexural buckling
resistance of hot-rolled sections was done and the corresponding partial safety factors were
assessed, see Figure 5.1, corresponding to an average value of ymi for minor axis flexural

buckling of 1.097 (cf. 0.937 as these results only considered the variability of ).

It is interesting to note that the observed trend (also in Muller (2003)) of an increasing value of
ym1 in the intermediate slenderness range disappears when variability in cross-section and
Young’s modulus is included: in this case the value of ym: increases monotonically with
slenderness. It is noted that the higher value of ym for high slenderness is not so relevant
because of practical reasons (practical range of column slenderness), as the parametric study
included normalised slenderness (1) up to 2.5. It is therefore recommended to keep ymi1=1.0 for
columns. This recommendation was taken in the final draft of prEN 1993-1-1 (CEN/TC250,
2017).

5.6 Beams

5.6.1 Methodology
In the following sections, the results for lateral-torsional buckling of beams are detailed. The

main topics that are discussed are:

— Comparison of the various design methodologies for the determination of the lateral-

torsional buckling resistance of hot-rolled I-beams with fork conditions;
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— Influence of the bending moment distribution;
— Assessment of the imperfection factors for the New EC3 method;

— Influence of the number of random variables

Throughout the following paragraphs, charts and tables, the following methodology is adopted:

— The General Case is presented as the reference method for comparative purposes;

— The partial factors for the different subsets are computed considering the Annex D
procedure summarized in Figure 5.2;

— A lower tail approximation is applied to all subsets;

— Whenever a subset according to slenderness is analysed, the following division is
adopted:

= Low slenderness — normalized slenderness A € (0.2; 0.8];
»  Medium slenderness— normalized slenderness A € (0.8; 1.2];
= High slenderness — normalized slenderness A € (1.2; 2.1];

— For the first three topics listed above, only the variability of the yield stress is
considered, as a relative assessment is sufficient to establish the influence of each
parameter;

— In order to establish the influence of additional random variables, the following
variables are considered: yield stress, geometrical dimensions of the cross-section and

modulus of elasticity.

5.6.2 Overview

Before applying the Annex D procedure for statistical evaluation, it is useful to examine the
design model accuracy. In Figure 5.21 and Figure 5.22 scatterplots for all the methods are
given. In the abscissa, the estimation of the advanced numerical simulations is plotted, while

the ordinates correspond to one of the design methods.

In order to give a quantitative measure of the model variations, the statistical parameters for the
ratio experimental over theoretical values (r./7;) are given in Table 5.14, where ratios higher
than unity indicate a safe-sided estimation, and on the contrary, ratios lower than 1.0 indicate
unsafe results. The General Case and GC/f show a high variability of the results, with
coefficients of variation of 8.8% and 7.7% respectively. The ratios re/r; vary from about 10%

unsafe to about 40% safe.
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Figure 5.22 Scatterplots General Caself and Taras

The other two methods, Special Case and New EC3 have lower coefficients of variation (4.9%
and 4.5%, respectively) but the level of overestimation of the resistance by the Special Case is

significantly higher than for the New EC3 method.

These results confirm earlier studies on the lateral torsional buckling of beams Rebelo et al.

(2009), Simoes da Silva et al. (2009) and Taras (2010) whereby a high scatter of the LTB



resistances across the slenderness was also observed, from unsafe to very safe for the three first

methods.

Table 5.14 - Statistical parameters (>1.0 safe-sided)

nEC3 GC SC GC/f

mean 1.03 1.13 1.01 1.08
cov 4.5% 8.8% 4.9% 7.7%
min 0.91 0.93 0.88 0.93

max 1.30 1.44 1.21 1.43
<0.97 144 20 625 73
<1 719 214 1230 431

5.6.3 Results and discussion: General Case

In this section the reference cases considering the General Case are presented. In Figure 5.23
the ym™ results are divided according to slenderness and steel grade. It is observed that there is
not a significant difference between the considered steel grades. The higher results in the low
slenderness range occur for all steel grades, reflecting the more decisive role that f; plays for

this slenderness range.

140 | Slenderness and Steel
1.200
1.100
1.022
0.975 0.999 0.977 0.971
1.000 0.961
% 0.938 0,925 0.921
= 0900
0.800
0.700
Low slenderness Medium slenderness High slenderness
mS235 mS355 S460

Figure 5.23 - yu* organized by slenderness and steel

Figure 5.24 and Figure 5.25 organize the results by buckling curve division. The first compares
different steel grades, while the latter compares different slenderness ranges. Figure 5.24 shows
that considering subsets organized by steel grade there is a trend of the y»* values to increase
with the steel grade. This contrasts with the results of Figure 5.25, highlighting the importance
of the consideration of subsets and the sensitivity of results to the choice of subsets Taras et al.

(2017). Figure 5.25 shows that the safety level of the two buckling curves is not homogeneous.
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Figure 5.24 — yy*organized by buckling curve and steel grade for General Case
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Figure 5.25 - yu*organized by buckling curve and slenderness for General Case

5.64 Comparison of the design methods

5.64.1 General results

This section compares the four methods. In particular, the influence of the buckling curves and

the shape of the bending moment are examined in detail.

1.200

1.100

1.000

™*

0.900

0.800

0.700

Slenderness

1.040 1058
_ 1.007 1.0061.011
1.001 0.97

Low slenderness Medium slenderness High slenderness
B General Case ™ Special Case General Case/f ®new EC3

Figure 5.26 compares the General Case, the Special Case, General Case/f and the New EC3

method, according to the slenderness range based on all results available. The Special Case

Figure 5.26 - yy*organized by slenderness
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exhibits lower safety, confirming the results of Table 5.14. The new EC3 method shows
consistent safety across the various slenderness ranges, while the General case yields

significantly higher safety for the Medium and High slenderness ranges.

5.64.2 |Influence of the buckling curve

In order to verify the consistency according to the buckling curves, the respective subsets are
considered. Figure 5.27 and Figure 5.28 compare the several methodologies organized by their
respective buckling curve and slenderness divisions (General Case, Special Case and General
Case/f are split for #/b><2, while for the New EC3 method the buckling curves are divided for
h/b><1.2. This subdivision of the buckling curves presents the advantage of matching the
subdivision of column buckling curves. The imperfection factors are adopted as given in Table

24.

h/b>2.0(1.2)
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1.100

1.000

*
£
0.900
142 | 0.800

0.700
Low slenderness Medium slenderness High slenderness
B General Case ™ Special Case General Case/f ®new EC3

Figure 5.27 yu*organized by buckling curve and slenderness
h/b<2.01.2)
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B General Case M Special Case General Case/f ®new EC3

Figure 5.28 yu* organized by buckling curve and slenderness

It 1s seen that for all methods except the newEC3 method, the results for h/b < 2.0 (1.2) are

higher in the medium and high slenderness ranges.



Unlike the buckling curve divisions for columns, the imperfection factors for beams are
independent of the flange thickness. In order to verify the influence of the flange thickness,
further subsets according to the divisions for buckling curves for the columns are considered.
Figure 5.29, Figure 5.30 and Figure 5.31 summarize the results according to slenderness for
each interval of the column buckling curves. The results for General Case, Special Case and
General Case /f given in Figure 5.29 and Figure 5.30 are not very different than the ones in
Figure 5.28, the Special Case showing results with higher safety factors with significant
differences in the medium and high slenderness. Finally, for #/b < 1.2 (Figure 5.31) all methods
show similar results except the General Case in the intermediate slenderness range that is
significantly more conservative. It is noted that, in this case, there are no cases in the high

slenderness range because they would correspond to unrealistic long beams.

h/b>1.2 t{<40mm
1.200
1.100 1.074 1.073
1.020
0. 997 311.0071.001 1.007
1.000 0.991 0 990
*
£
0.900
0.800
0.700
Low slenderness Medium slenderness ngh slenderness
B General Case  ® Special Case General Case /f ®new EC3

Figure 5.29- yu* organized by buckling curve division for hot-rolled columns and slenderness
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Figure 5.30 yy*organized by buckling curve division for hot-rolled columns and slenderness
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h/b<1.2 tf<100mm
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Medium slenderness
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Low slenderness
B General Case

High slenderness
General Case/f ®new EC3

Figure 5.31 yu*organized by buckling curve division for hot-rolled columns and slenderness

5.64.3 Influence of the shape of the bending moment

The bending moment distribution is an important parameter, which influences the lateral-
torsional buckling behaviour of beams. Hence, in this section divisions according to load case

and slenderness are presented for the various methods (Figure 5.32 to Figure 5.36).

Firstly, it is clearly seen that the General Case is unable to capture the beneficial effect of non-
uniform bending moment distributions and thus severely underestimates the LTB resistance,
(Figure 5.32 to Figure 5.36). As discussed in Rebelo et al. (2009), the GC/f provides a good
estimation of the resistance, despite the f factor being based on calibration to numerical results
without any mechanical meaning Taras (2010). The New EC3 method provides relatively
uniform partial factors for all load cases and across the various slenderness ranges. The Special

Case exhibits considerably higher results mainly in the high slenderness range for all load cases.

v=1o g
1.200 P
1.100 1.043 1.067
0.996] 0.9960.988 0. 994 0 994 977
5 1.000 0.93808880.9380-949
= 0,900
0.800
0.700
Low slenderness Medium slenderness ngh slenderness
B General Case ™ Special Case General Case/f ®new EC3

Figure 5.32 yu* organized by bending moment distribution — constant bending moment
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Figure 5.33 yu* organized by bending moment distribution — triangular bending moment
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Figure 5.34 yu*organized by bending moment distribution — bi-triangular bending moment
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Figure 5.35 yu*organized by bending moment distribution — concentrated load
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Figure 5.36 yM*organized by bending moment distribution — distributed load




5.6.5 Buckling curves for the New EC3 method

Originally, the buckling curves for the New EC3 method were proposed as shown in Table 5.15

that differs from Table 2.4 for the range h/b>1.2, 40 mm<#<100 mm.

Table 5.15 - Original imperfection factors for the New EC3 method

Limits Source and Method
.. EC3-1- EC3-
F EC3
abrication New EC3 EC3-1-1 | 1GC; | 1-1SC .
GC/tf
h/b>2.0 0.34 0.49 W) l
0.12 £ <034
t<40 mm 021 | 034 »
h/b<2.0 '
S
g h/b>2.0 0.34 0.49
= 40 mm<t=<100 ’ 0‘21 0‘34 0.12 /W <034
ROHed mm h/b§20 : ° z.el
h/b>2.0 0.34 0.49 W
o t<100mm 0.16
7 = 021 | 034 W,
§ h/b<2.0

146 | Figure 5.37 compares the values of ym* for the thickness range 40 mm to 100 mm for all

methods using the original imperfections from Table 11 for the newEC3 method. It shows that
the Taras method presents worse results than the SC for this thickness range. This reflects the
fact that the method was calibrated for sections with flange thicknesses lower than 40 mm

(Taras, 2010).

h/b>1.2t(40;100Jmm
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Medium slendemness ngh slenderness
General Case/f mnew EC3

Figure 5.37 yu*organized by buckling curve division for hot-rolled columns and slenderness(old
imperfection factors)

Hence, recalibration of the imperfections for the thickness range 40 mm to 100 mm led to the

imperfection factor of Table 2.4. The corresponding comparison is illustrated in Figure 5.38,



showing a clear improvement by adopting the same buckling curve as for cross-sections with

h/b>1.2.

h/b>1.2 tf(40;100Jmm
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1.013 1.015 1.009
0.995
1.000 0.980
s
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0.800
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m Old imperfection = New imperfection

Figure 5.38 yu* evaluated using old and recommended imperfection factors for New EC3 method

5.6.6 Influence of the number of random variables

In all previous comparisons, only the yield stress f, was considered as a random variable. In
reality, in the case of lateral-torsional buckling of beams, other basic variables also affect the
behavior of a beam, such as the cross-section dimensions and the Young’s modulus. It is noted
that geometrical and material imperfections such as initial curvature and residual stresses are
not considered as basic random variables as they are included implicitly in the design model.
Hence, in this section, the following basic variables are considered as random variables: yield | 147
stress — fy; geometrical dimensions — b, h, tw, t; and Young’s modulus — E. Their statistical
parameters were defined in Section 5.3. In order to highlight their influence, the following cases

are considered:

— Annex D (fy) — considers the yield stress as the only basic variable, the other parameters

are assumed as deterministic quantities with no variability;

— Annex D (fy+CS) — considers the yield stress and the geometrical dimensions of the

cross-section as random variables;

— Annex D (fy+CS+E) — considers the yield stress, the geometrical dimensions of the

cross-section and the modulus of elasticity as random variables;
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Basic variables: General Case
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Figure 5.39 - yi* by slenderness and using different number of random variables: GC

Basic variables: new EC3 method
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Figure 540 - yy* by slenderness and using different number of random variables: new EC3

The General Case is presented as the reference case for this assessment. Figure 5.39 compares
the results for the 3 cases defined above, according to slenderness range. Similarly, to the
observations in Simdes da Silva et al. (2016), the increased number of random variables leads
to higher partial factors. This effect becomes more noticeable with increasing slenderness due
to the increased influence of the geometrical properties and the modulus of elasticity. Similar
results are obtained for the other methods. Figure 5.40 illustrates the corresponding results for

the New EC3 method.

5.6.7 Assessment of the value of the partial factor

Table 5.16 and Table 5.17 summarizes the results for ym™ for the three different sets of random
variables that were considered and the four design methods, using a lower tail approximation
due to the systematic deviation from a normal distribution. The conclusion from the previous

section is confirmed for all methods - depending on the random variables included in the



analysis (just fy; fv and cross-section geometry; or f;, cross-section geometry and modulus of

elasticity E) the partial factor increases its magnitude.

Table 5.16 Values of yu1* obtained using different combinations of basic variables for General Case and
Special Case

Annex D Annex D

Annex D (fy)
(fy+CS) (fy+CS+E)

Limits

GC SC GC SC GC SC

t<40 mm 0.987 | 1.056 | 1.030 | 1.128 | 1.039 | 1.160
A 40 mm<t<100
n 0.983 | 1.032 | 1.017 | 1.082 | 1.020 | 1.094
2 mm
<

te>100 mm - - - - - -
N
Y t<100 mm 0.983 | 1.010 | 1.018 | 1.050 | 1.018 | 1.052
el
=

Table 5.17 Values of yyi* obtained using different combinations of basic variables for New EC3 method

and General Case/f
Annex D Annex D
Annex D (fy)
Limits (fy+CS) (fy+CS+E) | 149

nEC3 | GC/f | nEC3 | GC/f | nEC3 | GC/f

<40 mm 1.003 | 1.004 | 1.058 1.056 1.069 1.072
N 40 mm<t<100
"N 0.978 | 0.978 | 1.027 1.018 1.034 1.023
S mm
=

t=>100 mm - - - - - _
N
Y <100 mm 1.006 | 0.999 | 1.051 1.038 1.054 1.039
Ne)
=

Firstly, except for the Special Case, a good homogeneity of results is observed across the
different buckling curves, with maximum variations of 0.05. Secondly, the Special Case
systematically presents higher partial factors (0.05 higher on average) for most of the subsets
(Simoes da Silva et al. (2019)). The General Case presents the lowest partial factors. However,

recalling Table 5.14, it is clearly over conservative, leading in many cases of practical relevance



to values of design resistance up to 40% lower than those obtained from advanced numerical

simulations.
Table 5.18 Partial factors for beams and columns (fy+CS+E)
Annex D (fy+CS+E)
Flexural Buckling | Lateral-torsional buckling
Limits Axis S235
S460 EC3 GC | nEC3
S355
y-y 1.079 1.120 h/b>2.0
t<40 mm 1.039 | 1.069
Z-Z 1.098 1.118 h/b<2.0
™
—_ - 1.011 1.063 h/b>2.0
= 40mm<t=<100 y-y 1.020 | 1.034
§ mm zZ-Z 1.021 1.048 h/b<2.0
- 1.018 1.067
=100 mm Y ) i ]
z-Z 1.043 1.070
y-y 1.046 1.094
« t=<100 mm h/b<2.0 1.018 | 1.054
— zZ-Z 1.115 1.109
él Y-y
= t=>100 mm - - ; _ _
zZ-Z

150 | Table 5.18 compares the ym* values for the General Case and the New EC3 method with the
results obtained for the flexural buckling resistance of columns considering f,, cross-section
geometry and £ as random variables, using the same statistical characterization of the random

variables.

Furthermore, the ym* values for lateral-torsional buckling of beams were obtained using the
lower-tail approximation, which takes into account only the worst results; for that reason further
split as done for the columns Table 5.13 was not performed. Even though, the direct comparison
between both buckling models reveals that the partial factors obtained for LTB of beams are
generally lower than those obtained for flexural buckling of columns, giving a mean value of
1.053 and c.o.v of 1.7%. Hence, it is recommended to keep ymi=1.0 for beams. This

recommendation was taken in the final draft of prEN 1993-1-1 (CEN/TC250, 2017).



5.7 Beam-columns

5.7.1 Methodology

In the following sections, the results for members under bending and compression are

discussed. The main topics that are discussed are:

— Influence of the buckling mode: with and without lateral-torsional buckling;
— Influence of the bending moment distribution;

— Influence of the number of random variables

Throughout the following paragraphs, charts and tables, the following methodology is adopted:

— The partial factors for the different subsets are computed considering to the Annex D
procedure summarized in Figure 5.2;
— Whenever a subset according to slenderness is analysed, the following division is
adopted:
= Low slenderness — normalized slenderness A € (0.4; 0.6];
= Medium slenderness— normalized slenderness A € (0.6; 1.2];

= High slenderness — normalized slenderness A € (1.2; 3.0];

Similarly to the other buckling modes, to establish the influence of additional random variables,
the yield stress, geometrical dimensions of the cross-section and modulus of elasticity were

considered.

In this case the theoretical resistance was obtained using the interaction factors for
Method2/Annex B and corresponding to proportional increase of the applied forces. The
limiting cases of a column and a beam were not considered in this assessment, since they were
already covered by the assessments carried out for columns and beams. The method was applied

with the imperfection factors for lateral-torsional buckling according to the New EC3 method.

In the assessment, all assumptions from Boissonnade et al. (2006) for the assessment of Method
2 were kept, namely 1) cases where the cross-section resistance governs were not considered;

i1) cases where the normalized axial force is less than 0.1 were also not considered.
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5.7.2 Results without LTB

Figure 541 to Figure 543 summarize the results obtained for beam-columns in bi-axial

bending which do not fail in lateral-torsional buckling.

In case of beam-columns, similar conclusions to the columns and beams can be drawn: there is
an increase of the partial factor with slenderness and the load cases with non-uniform bending

distribution tend to be safe-sided.

Slenderness
1.200
1.100 Lo47 1059
0.984 0.985 0.986 1015
« 1.000 0961 : 0.952 0.980 O.
2
0.900
0.800
0.700
Low Medium High

O AnnexD (fy) B AnnexD (fy+CS) B AnnexD (fy+CS+E)

Figure 541 - yu* by slenderness and using different number of random variables: no LTB

Figure 541 to Figure 5.43 show slight increase of the partial factor with slenderness, similar
results within the different buckling curves. Regarding the different bending moment
distributions, a small disturbance is found for bending moment distribution y=-1, which can be

explained on the accuracy of the equivalent moment factors C,, for this load case.

Buckling curve
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Figure 542 - yy* by buckling curve and using different number of random variables: no LTB



Load case
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Figure 543 yw* for different bending moment distributions and using different number of random
variables: no LTB

5.7.3 Results with LTB

In this section, the results regarding lateral-torsional buckling of prismatic hot-rolled beam-
columns are discussed. Figure 5.44 to Figure 5.46 show the partial factors obtained for subsets

according to slenderness, buckling curve division and load case, respectively.

Slenderness
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1.100 s 103
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Figure 544 - yu* by slenderness and using different number of random variables: LTB
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Figure 545 - yu* by buckling curve and using different number of random variables: LTB
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The variation within the different buckling curves is not significant, despite the division of
h/b>1.2 and flange thickness higher than 40 mm; however, in this subset, the number of data

points is significantly lower than the other two.

The results for beam-columns without lateral-torsional buckling are found very similar to the
ones without lateral-torsional buckling and thus indicating a homogeneous reliability within

both failure modes.

Load case
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Figure 546 - yu* for different bending moment distributions and using different number of random
variables: LTB

5.7.4 Influence of the number of basic variables

Figure 5.43 to Figure 5.46 plot the results obtained for the different subsets considered, already
including the variability of different number of basic variables. The same trend of increasing
the partial factor with the increased number of variables considered is registered. However, in
both cases with and without LTB, it is noted that the relative increase is not as big as it was
found for columns and beams. This leads to the conclusion that the interaction factors are able

to somehow “compensate” the variability of the random parameters.

5.7.5 Assessment on the value of the partial factors

The interaction formula from Eurocode 3 clause clause 6.3.3 for members in bending and
compression with the interaction factors from Annex B was assessed. The assessment covered
a large number of numerical simulations, covering various cross-section shapes, bending
moment distributions, slenderness ranges. The obtained partial factors are summarized in Table

5.19 for the various types of basic variables.



Table 5.19 Values of yui* obtained using the interaction formula

Annex D Annex D Annex D
(fy) (fy+CS) (fy+CS+E)
Limits
No No No
LTB LTB LTB
LTB LTB LTB
t<40 mm 0.979 1.029 1.006 1.052 1.014 1.061
h/b>1.2 40 mm<t<100 mm - 0.887 - 0.924 - 0.939
t=>100 mm - - - - - -
h/b<1.2 <100 mm 0.994 1.018 1.026 1.035 1.034 1.044

It is seen that even when the modulus of elasticity is considered the partial factors do not diverge

strongly from unity. Furthermore, the analysis in subsets of buckling curve and slenderness is

carried out as in Table 5.13 for columns. The results obtained show low mean value of the

partial factor with coefficients of variation comparable to the results for columns (7able 5.20).

Table 5.20 - Average yy per buckling modes (with and without LTB), according to buckling curves and

slenderness
Mode Annex D(fy) Annex D(fy+CS) Annex D(fy+CS+E)
No LTB 0.974 1.002 1.009
Mean value
LTB 0.964 0.989 0.999
Cocfficient of No LTB 3.5% 3.8% 4.2%
variation LTB 7.9% 72% 7.2%

It is therefore recommended to keep yu;=1.0 for beam-columns. This recommendation was

taken in the final draft of prEN 1993-1-1 (CEN/TC250, 2017).

5.8 Summary

In this chapter the safety assessment of the European stability design rules was summarized. It

covered members in compression, bending and combination of bending and compression.
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The safety assessment of EC3-1-1 rules for flexural buckling of columns with hot-rolled I-

shaped cross sections led to the following conclusions:

Influence of the adopted minimum yield stress using EN 10025 or Table 3.1 of Eurocode
3: the level of the minimum yield stress was assessed for both minor and major axis of
flexural buckling of hot-rolled columns. It was shown that in both cases the values
proposed in EC3 can reach up to 10% non-conservative in certain cases.

Influence of the level of the residual stresses adopted in the numerical models: the
buckling curves are currently calibrated for level of residual stresses proportional to the
yield stress f,,, which was shown to be conservative. When the results were divided into
slenderness — in the medium slenderness range, where the residual stresses are actually
important, high differences were obtained. These variations are relevant for the group
of buckling curves S235-S420, with increasing difference as the steel grade increases;
about 8% were noticed for S355.

Imperfection factor for flexural-buckling of columns about minor axis which are made
of steel grade S460: it was shown that the imperfection factor currently prescribed for
flexural buckling of steel columns made of S460 about the minor axis is not adequate.
This change is already taken into consideration in the final draft of the new version

Eurocode 3.

The safety assessment of EC3-1-1 rules for lateral-torsional buckling of prismatic beams with

hot-rolled I-shaped cross sections led to the following conclusions:

Similar conclusions as stated in for columns are also valid for beams concerning the
influence of the adopted minimum yield stress using EN 10025 or Table 3.1 of Eurocode
3.

The results highlight a strong sensitivity of ymi1” to the subsets that are considered in the
calculation. This trend is also confirmed by comparing these results with the
corresponding results from Rebelo et al. (2009) and Simoes da Silva et al. (2009). This
difference led to the consideration of a lower tail approximation that significantly
improved the homogeneity of results.

Regarding the different design methods considered, the conservative nature of the
General Case was confirmed, the Special Case systematically led to higher values of
ymi~ for the majority of subsets and the accuracy of the New EC3 method was confirmed.

Regarding this method, an adjustment of the imperfection factors is proposed for cross-



sections with /b >1.2 and flange thickness higher than 40 mm, because this geometric

range was not considered in the original derivation of the imperfection factors.

The safety assessment of EC3-1-1 rules for prismatic members in bending and compression

with hot-rolled I-shaped cross sections led to the following conclusions:

— Similar conclusions as stated in for columns and beams are also valid for beam-columns

concerning the influence of the adopted minimum yield stress using EN 10025 or Table

3.1 of Eurocode 3;

— The results for the different buckling modes, with and without, lateral-torsional buckling

were found very similar, showing that the interaction coefficients are calibrated with

sufficient accuracy for both cases.

— The results highlight lower ymi” - values than the ones calculated for columns and beams

separately and thus indicating that the interaction factors are providing sufficient safety;

Table 5.21 Mean and c.0.v of yui"=1.0 for all modes

Columns Beams Beam-columns
ALL
y-y Z-Z No LTB LTB
Weight 20% 20% 20% 20% 20%
ymi*Mean 1.035 1.041 1.053 1.009 0.999 1.027
yMmi*c.0.v 6.4% 5.6% 1.7% 4.2% 7.2% 5.0%

Finally, the value of the partial safety factor was discussed and an assessment of the average

ymi" obtained from all subsets and for all buckling modes was carried out (Table 5.21). With

the proposed modifications, it is recommended to keep ym1=1.0 for columns, beams and beam-

columns. This recommendation was taken in the final draft of prEN 1993-1-1(2017).
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6 A GENERAL FORMULATION FOR THE
STABILITY DESIGN OF STEEL
COLUMNS, BEAMS AND BEAM-
COLUMNS

6.1 Introduction

In the previous chapters, several aspects regarding the stability design of members were
discussed. The behaviour of non-uniform members was tested with full-scale experiments, it
was shown that advanced numerical simulations with material and geometrical imperfections
can accurately predict the buckling behaviour of non-uniform members. It was also shown how
the safety and reliability of design rules can be assessed and adjusted if required. This chapter
is dedicated to the extension of the stability design verification of columns, beams and beam-
columns by developing a general formulation (GF), applicable to members with a generic non-

uniform cross-section along their length, and arbitrary support and loading conditions.

Up to this point, the available possibilities for design of such non-standard cases are the General
Method given in clause 6.3.4 of Eurocode 3 (2005) or advanced numerical simulations. The
applicability of the general method, however, is limited and in some aspects inconsistent
(Simoes da Silva et al., 2010). In structures constructed using non-uniform members, the choice

of imperfection factors is not straight-forward and their definition using standard procedures
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may lead to either unsafe or over conservative solutions. As an alternative to the General
Method, the stability of non-uniform members can be analysed using numerical GMNIA which,
again, requires the definition of the correct imperfection shape and magnitude, but it is also a

time-consuming procedure and the output is highly dependent on the experience of the user.

It was already discussed that the European buckling curves have the flexibility of adjusting
imperfection factors according to their sections, yield stress, steel type and other relevant
parameters. On the other hand, their major drawback is the need of adjusting imperfection
factors and/or calibrating over-strength factors to account for the variation of the failure

location, as done by Taras (2010) and Marques (2012).

In this chapter, a general formulation for the stability design of steel columns, beams and beam-
columns with variable geometry, loads and supports is proposed. The aim is to follow, as much
as possible, the specifications for uniform columns, beams and beam-columns. In particular,
the need to verify separately the resistance of beam-columns for two buckling modes (in-plane
and out-of-plane) is maintained. The approach uses the buckling mode as the shape of the initial
imperfection and an amplitude previously calibrated for the standard prismatic simply-
supported columns and beams in Eurocode 3. It avoids the calibration of additional factors
because it is applied as an interaction equation and the first and second order contributions to
the longitudinal stress utilization are added for each cross-section along the member length. Its
organization follows the sequence: 1) firstly, additional considerations from theoretical point of
view are presented: torsion of non-uniform members and the Ayrton-Perry equation for beam-
column; i1) secondly, the general formulation for the design of steel members is presented in a
universal format covering any buckling mode; iii) thirdly, the various buckling modes are
discussed separately in order to highlight specific aspects of the member behaviour; iv) finally,

validation of the general formulation is carried out to show its consistency and accuracy.

6.2 Buckling of beam-columns: additional considerations

6.2.1 Ayrton-Perry equation for beam-columns
6.2.1.1 Scope

Chapter 2 summarized the analytical background regarding uniform members and their relevant
theoretical developments. It was shown that having calibrated and reliable imperfection factors

for the prismatic member, the Ayrton-Perry equation can be extended to other types of buckling



or non-uniform members. However, for lateral-torsional buckling of beam-columns, there is no

imperfection factor since the Eurocode 3 uses interaction formula.

The following paragraphs summarize the derivation and calibration of an Ayrton-Perry
equation for lateral-torsional buckling of beam-columns. It is performed assuming proportional
loading, and it is applied with previously calibrated imperfection factors for the limit cases of

columns and beams.

6.2.1.2 Derivation

The derivation is performed starting from the following assumptions:

— All members are prismatic and simply supported;

— The material is linear elastic until it reaches the yield stress f,,

— The loads applied are: axial stress applied at the shear centre (V) and uniform
bending moment (M,);

— In the equations apply the approximations for small displacements and rotations
and the Bernoulli hypothesis;

— The effect of pre-buckling deflections, namely 1) the amplification due to the
axial compressive force of the first order bending moments and deflections; ii)

the effect of in-plane curvature on out-of-plane buckling, are neglected.

The amplification relationship for the lateral-torsional buckling of beam-columns was derived
in Chapter 2. The relation given by Eq. (2.16) is essential for the derivation of the Ayrton-Perry
equation for beam-columns. The next step for establishing the Ayrton-Perry equation is the

linear yield criterion at mid-span:

<

MII MII
+—2 + = (6.1)
y w

| =
S

in which the second order forces are

(6.2)

i i ~ _ 1
M}" =My pabio; + NgaDror = (My.EdHO + NEdvo)m
cr

My = y,EdVtot T TOZNEdH_tot - Glté = (6.3)
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After a few straight-forward transformations, the equation is rearranged as:

A I/Vy I/Vzl_l/a'cr

NEd My,Ed 9_0 1 <NEdﬁ0 thr,z)

(6.4)

(6.5)

For doubly symmetrical sections, there is a geometric relationship between the lateral

displacement and the section rotation, as defined by Eq. (6.6) and Figure 6.1. This relation

allows to express the initial imperfection of Eurocode 3, é,, for columns and beams as a

162 | function of the lateral displacement and the rotation of the section:
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Figure 6.1 - Amplitude of the initial imperfection

Then Eq. (6.5) is transformed to

(6.6)




AW, T W1-1/a,

M y,Ed 9_0 2 Acr

N., M 6, M Nga¥ hN,
ga  Myrd Yo v,Ed < EA70 L 14 CW) =, (6.7)

The above equation can be solved for the bending moment or the axial force. Here it is shown

how the reduction factor is applied to the axial force.

Nig 1

XBc = =
A _ 6.8
fy ¢bpc + ,"Péc — Budje ©9

With
bpc = O-S(ﬁM + Neor + 11230) (6.9)
where
. Abc
Neot = apc(A, —0.2) = (6.10)

A

with a proposed interpolation between the imperfection factors for a column and a beam.

The interpolation of the imperfection factor is defined as a function of the ratio between the 16
163
applied axial force and the bending moment (¢):

My /M

Noo N (6.11)

For high axial forces, it tends to the imperfection for flexural buckling of columns a. and for

high bending moments it becomes o .

aLT<1—9>+aZ? ¢ <10
2 2
Apc = 1 1 (6.12)

— 1-— > 1.

\“LT2¢+“Z< 2¢)’ ¢=10

The normalized slenderness is given by:

_ A

Agc = Iy (6.13)
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The result of the verification shows an axial load level that can be resisted for a given ratio
between the bending moment and axial force. In particular, if the applied axial force is equal to
the flexural strength of the element, it will not be able to withstand any additional bending
moment; if the axial stress equals zero, the resistance of the member is equal to the lateral-
torsional buckling one. The equation can be equivalently written for the bending moment, and

even as a global out-of-plane reduction factor relevant to both moment and axial force:

Ry N (1 4 1) 1
X = —-— X —_— =
TR, P ® . . (6.14)
d)op + d)op - Aop
with
Gop = 0.5(1 + 1, + 12,) (6.15)
and
_ Ntot
Mop = 1 (6.16)
¢
The normalized slenderness is given by:
P Rpi i 1
op — RCT — /'BC 1 (6.17)
1+ y

6.2.1.3 Assessment of the accuracy of the Ayrton-Perry equation for beam-columns

A validation of the Ayrton-Perry equation for beam-columns is carried out to demonstrate its

consistency and accuracy. It is compared to advanced numerical simulations (GMNIA).

Numerical results are used from a parametric study carried out at the University of Coimbra in
the scope of the Master's thesis by Anwar (2015). The main parameters included in the
parametric study are given in Table 6.1. To cover the use of different buckling curves, several
thicknesses #r of the section flanges and 4/b ratios within the two groups > or <1.2 were
considered. In addition, several ratios of the bending moment in the principal axes M, s and

axial force Ngs were also considered.



All sections considered are compact (Class 1 or 2), and their plastic resistance is used in the

checks.

The difference between theoretical and experimental resistance is used as a measure of the
accuracy of the new formulation. The "theoretical" result obtained using the new formulation
is the reduction factor y"sc, which is calculated at the same ratio ¢ as the numerical result.

Likewise, the numerical results can be represented as a pair of N/ Ny and M / M.

Table 6.1 — Parametric study for prismatic beam-columns

Steel | 4. ¢ Limit h/b tr Section
182 | 57 IPE100
195 | 7.4 IPE160
198 | 8.0 IPE180
0 5.67 212 | 127 IPE360
041 274
06 | 175 | 7121 130 | 19 | HE400A
08 | 119 1.67 | 28 HE500B
1.0 204 | 46 | HE600x337
0.83
$235
12 | 057 217 | 31 HE650B
14 | a6 220 | 46 | HE650x342
1.6
8 0.17 097 | 14 HE300A
' 0 1.00 | 19 HE300B
Wb<l2 | 1.01 | 43.7 | HDA400x347
1.05 | 29 HE300C
1.13 | 21.5 | HE340B

An illustration is given in Figure 6.2, where the plots are obtained using the new imperfection
(Method), and the result of advanced numerical simulations (GMNIA). These are presented for

two sections IPE360 and HE300A and for three levels of slenderness 4. = 0.4; 1.0 and 1.6.

It is also noted that these figures show a larger difference between the analytical and numerical
estimates at low slenderness, which is explained by the fact that this formulation, and the

Ayrton-Perry equations in general, use an elastic yield criterion. The latter results in more

conservative estimates for the lower slenderness, as illustrated in Figure 6.2.
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In Figure 6.3 they are demonstrated for various ratios of bending moment and axial force for
the same profile and a reasonable range of normalized slenderness ratios. It shows the buckling

reduction factors calculated using Eq. (6.8) and Eq.(6.14).

IPE 360 HE 300A
1.00 1.00
——— Method Az=0.4 Method Az=0.4
~0 ==0=-GMNIA rz=04 ==0=-GMNIA rz=0.4
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3_0'60 --0=--GMNIA 1z=1.6 3_0'60 -=0=-GMNIA Az=1.6
= =
=
= 0.40 0.40
0.20 0.20
0.00 0.00
1 1
N/Np| N/Np]

Figure 6.2 - Comparison between the proposed method and numerical results

The buckling curve representation helps for a better understanding of a global out-plane
reduction factor; it develops in a normalized format which is somehow "independent" of the
ratio of the bending moment to the axial force. Nevertheless, since the conversion is direct, both

factors correspond to the same level of precision.

In Table 6.2, the statistical parameters (mean value, coefficient of variation, minimum and
maximum values, total number of cases, number of cases smaller than 1 and less than 0.97) are
compared for the beam-column Ayrton-Perry equation and the Eurocode 3-1-1 interaction

formula.

Figure 6.4 shows the dispersion plots obtained for the Ayrton-Perry equation and the interaction
formula, respectively. The mean value of r. / 7; for the new equation is 1.03 and the coefficient
of variation is approximately 4.9%, which are slightly lower than the Interaction formula. The
minimum values for both methods are very similar, however, most "unsafe" results are found
between 0.97 and 1.0 with the Ayrton-Perry equation having a larger amount of points falling
below 1.0.
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Figure 6.3 — Different representations of the reduction factors for lateral-torsional buckling of beam-
columns
Table 6.2 - Statistical parameters
Mean Min Max
C.o.v N N« N<o.97
value value  value
Be 1.03 49% 088  1.17 1120 400 111
Interaction
1.08 5.5% 095 1.24 1120 124 5
formula
Nac Interaction formula
1.0 1.0
0.8 0.8
0.6 0.6
i =
0.4 0.4
° re/tt o Interaction
formula
0.2 e *10% unsafe 0.2 — 0% safe
qeeeee 20% safe eeeees 10% unsafe
0.0 0.0
0.00 0.20 0.40 0.60 0.80 1.00 0 0.2 0.4 0.6 0.8 1
I Te

Figure 6.4 - Scatter plots
A similar derivation was performed in Tankova et al. (2017). However, it was based on fixed

level of the axial force, which results in slightly different amplification relationship. The
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method also included calibration for non-uniform bending moment distributions and
corresponds to comparable safety levels. It is very suitable for hand calculation, but for the
purposes of this chapter, the proportional increase of both bending moment and axial force is

found more appropriate.

6.2.2 Torsion of non-uniform members

Due to their varying geometry and/or boundary and loading conditions, non-uniform members
exhibit a different behaviour when compared to the uniform ones. As already stated in Chapter
3, the first studies on the torsional behaviour of non-uniform members were found by Lee
(1956) and Lee & Szabo (1967). Their developments were later used by Kitipornchai & Trahair
(1972), where they provided the theoretical basis for the lateral-torsional buckling of tapered
beams. In order to formulate the differential equations for the lateral-torsional buckling of
tapered beams, it was necessary to establish the theoretical background for torsion of non-
uniform beams where the divergence in the behaviour between prismatic and tapered beams is

found.

Given the non-uniform beam subject to torsion shown in Figure 6.5, the uniform torsional

moment component is given by:

do(x)
T =Gl 6.18
(x) t " dx ( )
7 14 dh/dx
P
"y Z‘ Miy¢
o) v dh/dz

~~

(a) Deformations of the cross-section (b) Flange moment and shear

Figure 6.5 Tapered beam subject to torsion



This term remains unchanged for non-uniform beams. The non-uniform torsional moment is

given by

o) . do()

B, (6.19)

TW(x) = _EIW

In Eq.(6.19) an additional warping component appears relatively to the prismatic beam case

due to the inclination of the flanges given by —2 G diix)

) Mgy, see Figure 6.5(b). Combining

both components, the torsional moment for non-uniform beams was established:

do(x) NG

—El, —2 _ 6.20
dx W dx3 Y dx (6:20)

Tw(x) = Gl

. . 2 dh\?
in which I, = (HE) Iy .

With the correct torsional expression for tapered beams, it was possible to derive the differential
equation for the lateral-torsional buckling of simply-supported tapered beams.

6.3 General formulation for the stability verification of steel 169

members

6.3.1 Overview

In Chapter 2 it was shown how the member design rules in Eurocode 3 were derived for uniform
members. The uniform loads and geometry present the advantage of a priori known failure
location of the member, which permits the definition of the maximum utilization due to
longitudinal stresses in the flanges as a simple sum of the stress components from the first and
the second order forces. The imperfection factors were then calibrated to experimental and/or
numerical results. The beneficial effect of variable loads is considered by calibration of
additional factors which account for the difference in the location where the maximum of the

first and second order forces occur.

A similar approach was used for the extension of the Ayrton-Perry verification format to

symmetrically web-tapered columns and beams (Marques et al., 2012, Marques et al., 2013).
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The extension was achieved by calibration of the critical location, which does not occur at mid-
span, as shown in Figure 6.6, whereby the stress utilization in the most compressed fibre of a
flange of a web-tapered column buckling about its major axis is a combination of a non-linear
distribution of the first and second order stress components. However, this approach presents
the drawback that it is only valid for symmetrically web-tapered columns and beams. Extension

to other geometries, load cases or support conditions requires new derivations.
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Figure 6.6- Stress utilization

The third objective of this research work, stated in Chapter 1, was to develop a procedure
applicable to members with varying geometry, subject to arbitrary loading and boundary

conditions.

The proposed procedure adopts the Ayrton-Perry design philosophy, however in a “raw” format
of an interaction equation, and not as reduction factor y calculation as the well-known design

equations for columns and beams, derived in Section 2.4.2 and 2.4.3.2.

The interaction equation consists of linear stress utilization that includes: (i) normal stresses

due to applied forces; (ii) normal stresses due to second order forces.

This interaction between first and second order stresses is consistent with the Eurocode 3
procedures where the reduction factors x was also derived on the basis of a linear direct stress
condition assuming that the shape of the initial imperfection follows the same shape as the

buckling mode (Eq. (2.53)).



Hence, it is beneficial to assume that the relevant buckling mode and critical load factor can be
obtained numerically by a Linear Buckling Analysis (LBA), which can be used to compute the
direct stresses due to second order forces. The terms concerning the stress utilization due to
second order forces are amplified by the imperfection according to the relevant buckling mode

and thus, keeping consistency with the rules for prismatic members.

The developed interaction equation needs to be applied for all potential failure modes. Hence,
as in clause 6.3.3 of EN 1993-1-1, it is necessary to apply it twice, for failure induced either by

in-plane instability or failure induced by out-of-plane instability.

6.3.2 General formulation (GF)

Consider the generic member of Figure 6.7, which has variable geometry and loading along its

length and non-standard boundary conditions.

S eesd ¥ A
) A
~

Figure 6.7 — Non-uniform member subject to non-uniform loading
with the following assumptions:

eigenmode and eigenvalue obtained from LBA are used to calculate the 2" order

forces in the member;

— The effect of pre-buckling deflections, namely 1) the amplification due to the
axial compressive force of the first order bending moments and deflections; ii)
the effect of in-plane curvature on out-of-plane buckling, are neglected for
lateral-torsional buckling modes;

— The material is linear elastic until it reaches the yield stress f,,

— In the equations apply the approximations for small displacements and rotations
and the Bernoulli hypothesis;

— the imperfection factors are adopted for each second order component according

to the corresponding buckling direction
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The utilization ratio of this generic member may be expressed by equating the total longitudinal
stress, o, due to first and second order forces, to the yield stress, f,, for each cross-section along

its length:

o) _ NG | My | M) My (x) | M) |, M)
fy A fy Wy (%) fy W (x)fy — Wy(X)fy Wz (%) fy Ww (X) fy

(6.21)

where A(x) is the cross-section area, W, (x) and W- (x) are the section moduli relative to the y-
and z axes, respectively, and W, (X)=Lu(X)/Wnax(X) 1s the warping modulus at location x along

the member, with Wy (X)=hb/4 .

Then, as long as the second order contributions can be determined, the buckling resistance may
be verified for an appropriate number of locations along the member and checking if the

inequality is satisfied:

Nx) | M) | M(x) M/ N M) | Mw() (6.22)
ADfy,  W,(f, W,(f, W@f, W,(0f W,(f =

The second order bending moments are obtained from the buckling mode shape and critical

load factor according to:

—EIy(x)W"Cr(x)g N(x)wy (x)

11 —
My (X) N Ao — 1 0.y Ay — 1
—EL(x)v" o (%) < N(x)vpm(x)
11 — - - 7
M7 (x) = 2o —1 50,2 + 2 —1 (6.23)
—EI " —
il = @ () 5

ow
cr 1

where So,y, 80,2, and &, are the amplitudes of the initial in-plane, out-of-plane and torsional

imperfections, respectively.

The verification for any single member with variable geometry, boundary conditions and that
is subject to arbitrary loading, may be done by verifying Eq. (6.22) at a sufficient number of
locations along the member. At each position, the respective value of the first order axial force,
N(x), bending moments M,(x), M:(x), second order contributions obtained from the relevant
buckling mode and cross-section properties, A(x), I-(x), etc. are to be used. A simple illustration
is given in Figure 6.8, where the verification at cross-section i is performed with the cross-

sectional properties, normal force and mode shape at the same section i. It is noted that this



verification shall be performed for the global buckling modes which concern the behaviour of
the studied member, for instance in and out-of-plane buckling. This means that for beam-
columns, eq. (6.22) must be applied, in turn, for in-plane buckling and out-of plane buckling. It
is further noted that the requirement to check the cross section resistance at the extremities of
the member is automatically included, as the member is checked for a sufficient number of

cross-sections, including the end-sections, as explained above.

This approach avoids the need of additional calibration of parameters such as the critical
location and non-uniform bending moment factors, since it relies on the Ayrton-Perry equation
in its “raw” format, i.e., as an interaction equation without the use of a reduction factor y and

any resistance buckling force or bending moment.

1 2 3 i j . n
Ai I 7&1 A/ l_,' 7\,/ l
i
[
N
- ___________________\ _______ e A -
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?/ Xm
~Ni ~Nj
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\%_’/
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A Py A
Li L L L |/

7 A
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Figure 6.8 — Verification illustration

6.3.3 Buckling cases

The solution of the differential equations for a perfect member describes its elastic buckling
behaviour, resulting in the critical load (moment and/or force). In a standard configuration, as
shown in Chapter 2, the applied load which triggers the buckling of a member has a maximum,
its critical load, i.e. for minor axis flexural buckling of a column loaded with axial force, it is
the critical force N.... The applied load may consist of several components (forces and

moments), and not all of them may be relevant to the buckling behaviour. For instance, for a

1173



174 |

column loaded with axial force and minor axis bending moment, the bending moment does not

contribute to the critical force N, but it only affects the utilization ratio.

Hence, depending on the applied forces the resulting buckling modes may be active or passive.
Table 6.3 gives a summary of the possible buckling modes for doubly-symmetric sections,
indicating the corresponding critical load and critical mode shape component (in or out-of-plane
displacement and/or twist rotation). It is pointed out that the in-plane buckling modes are clearly

distinguished from the lateral and lateral-torsional buckling ones and they cannot occur

simultaneously.
Table 6.3 — Buckling cases
Buckling mode Applied loads Critical loads Critical mode shape
component
FB y-y N Nery Wer(X)
N+M,
FB z-z N ]vcr,z VCV(X)
N+M,
LTB M, y M, cr,N + ]vcr,NM Vcr(x) + gc'r(x)
N+M,
TB (FTB) N Nerx Oer(X)(+ ver(x))

* The case of bi-axial bending is not treated here

In Chapter 2, it was shown for prismatic members that all these buckling cases are covered by
the Eurocode 3 design rules by providing methodologies for the verification of the stability of
isolated prismatic structural members and providing the necessary imperfection factors. The
only condition is that the designer needs to choose the relevant buckling mode and the

corresponding verification format.



The general formulation can be applied without the need of identifying explicitly the buckling
mode beforehand. Each second order moment in Eq.(6.22) is obtained from the buckling mode
in consideration using Eq. (6.23), amplified with the critical load multiplier o, and the
amplitude of the initial imperfection, and since w.{(X), ve{(X) and 6.(x) cannot occur at the same

time, the verification will fall in one of the buckling cases given in Table 6.3.

In the following sections, the general formulation is detailed for the buckling modes of Table
6.3 separately in order to show how it works for each of them and discuss specific aspects
relevant to the buckling mode. This does not restrict the generality of the procedure but rather

helps for its better understanding.

6.4 Flexural buckling of columns

6.4.1 Verification format

In this section, focus is given to the simplest case of flexural buckling of a column subject to
axial force. The general interaction equation Eq.(6.22) according to Table 6.3 is reduced to Eq.
(2.52). Eq. (2.52) holds true for both in-plane and out-of-plane flexural buckling; henceforth,
in the following equations, the index i is used to represent both buckling modes.

o(x)  Nx) = M%) (6.24)

A, Twap =1

In Eq. (2.52), the second order bending moment is given by:
M (x) = EL;(x)&" (x) (6.25)
where 0 is the curvature for the respective buckling mode.

At each cross-section, the curvature can be calculated from the amplification relationship

(Marques et al. (2012)):

N(x)8," (x) (6.26)
acrN(x) - N(x)

(S”(X) —

as the initial imperfection, similarly to the derivation performed in Section 2.4.2, is assumed to

have the same shape as the buckling mode:
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60”(36) = 6cr”(x)go (6.27)

i.e., the initial imperfection is proportional to the buckling mode shape J.-”, and the amplitude
is given by do. According to Chladny & Stujberova (2013), the amplitude of the imperfection
of the equivalent member and the real member should be the same. This condition is expressed

for the equivalent member by:

1 _ AcrNggmax@o
01_1/acr aer — 1

Mi” () = NEd,max(Stot = NEd,max6 (6.28)

while the second order bending moment for the real member at the maximum of the deformed

shape is

Mi” (x) = _Eli(x)acr”(xm)go —1 (6.29)
cr
that results in the amplitude of the imperfection to be used in the verification:
— aqN, e,
50 cr'YEd,max®©0 — fne_o (6.30)

- Eli(xm)|6cr”(xm)|

which is expressed in terms of the equivalent geometrical imperfection for the standard case of

flexural buckling of uniform columns:

W;(x)
A(x)

€ = a(A(x) —0.2) (6.31)

However, additional terms from the mode shape and the geometrical properties calculated at
the location x,, are also included. Ideally, x,, should be chosen as the correct critical location,
which was shown earlier. In order to avoid an iterative procedure, the location x,, is adopted

where the absolute value of d.-"”" has maximum.
Let # be the amplitude of the generalized imperfection, which is finally given by:

W;(x)

100 = (100 = 02) 15 (16er (I S5

(6.32)

where A is the normalized slenderness calculated from:



o ’A(x)fy

The final verification equation is given by:

NEd(x) _Eli(x)gcr”(x) (634)

TAGf, T AW g — 1

g(x) a(A(x) — 0.2) £, ()18 (x)| < 1.0

The verification can be seen as a verification of different “equivalent columns” with

geometrical properties of the respective cross-section and critical load a.-N(x) (Figure 6.8)

6.4.2 Design resistance

The resistance is expressed as a load multiplier, similarly to the critical load a.r, but here it is
called load multiplier leading to the member resistance, denoted as as. The resistance can be

obtained using the following equation:

abNEd(x) + _Eli(x)6cr”(x)ab
A(x)fy A(x)fyacr — p

(6.35)

a(A(x) — 0.2)f, ()18, (x)| = 1.0

Eq. (6.35) is easily solved for as at each location along the member, being a quadratic equation.
The resistance is given by the load factor which leads to a maximum utilization for the whole
member equal to 1.0, i.e., to the lowest a5 for all locations. Alternatively, instead of solving Eq.

(6.35) for o, the design resistance may be obtained using an incremental procedure for as.

6.4.3 Consistency with Eurocode 3
6.4.3.1 Flexural buckling of prismatic column

If the column is uniform loaded with an uniform axial force, the verification leads to:

NEd(x) + _Eli(x)(scr”(x)
A(x)fy A(x)fy(acr - 1)

a(A(x) = 0.2) fyNer () |64-(x)| = 1.0 &

Npg  ELm?/L?

=10 6.36
Afy " Afy(acr - 1) 10 ( )

_ N
0((). — 02) FZT/LZ

Niq + Ngq
Afy Afy(l - N/Ncr)

a(2-02)=1.0e
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X -
+———a(1-02)=1.0
X 1— yA? ( )
which is the Ayrton-Perry equation for the flexural buckling of prismatic columns as given in

Eq. (2.54).

6.4.3.2 Discussion

The general formulation relies on an interaction equation of linear stress utilization that
includes: (i) normal stresses due to applied forces; (ii) normal stresses due to second order
forces allowing the verification of members with varying geometry and loading conditions. It
was shown that the approach has the same basis as the column buckling curves and it leads to

the buckling curve equation for prismatic columns loaded with uniform axial force.

1.6 -
Nmax=131.6kN
1.4 Nmax=329kN
N
,I’ \\\ Nmax=460.6kN
12+ N
K4 \\ Nmax=526.4kN
© Y/ kY Nmax=559.3kN
s RN Nmax=582kN
=
S 0.8 - \\\ ====Nmax=658kN
= \
E 0.6 X Critical location
5 0
0.4 -
0.2
0
0 1 2 3 4 5 6 7 8 9 10
Length, m

Figure 6.9 - Utilization ratio for various load levels

There is, however, an inevitable level of approximation in this generalization, since the equation
is nonlinear but the value of the imperfection for any level of loading is fixed, even if the
amplitude factor is still considered. In fact, this imperfection is valid when the equation is equal
to 1 and not <1: the location of the critical cross section varies with increasing of load along the
member since the relationship between first order and second order terms varies. For instance,
in Figure 6.9, the method is applied to a tapered column with taper ratio y,=y»=3 (flange and
web tapered) loaded with a uniformly distributed axial force. The load level is changed and the
total utilization ratio is plotted along the column length. It can be seen that the critical position
changes with the level of applied force due to the change of the amplification of the second

order effects.



Furthermore, an example of application is presented to illustrate the benefit of using the GF.
Consider a welded tapered column, which has restraints along the span with dimension
100x100x10x10 at the shallow section and web-taper ratio of 3. The usual approach would be
to verify the member in three segments, using the procedure from ECCS Publication Noll9;
however, instead of calculating various segments, using the proposed procedure it is possible

to verify the whole member at once. Firstly, a LBA is performed for the member.

Figure 6.10 - Example 1: Tapered column with intermediate restraints

The buckling mode shape is given in Figure 6.11. The normalized shape for J.. and its
derivatives are given in Figure 6.12a, which is used to verify the interaction equation at the
various locations along the member, as shown in Figure 6.12b; that also illustrates the variation
of the first and second order utilization ratios showing excellent agreement. The maximum

resistance was compared with GMNIA and the results are given in Table 6 4.
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a) Mode shape b) Utilization ratio

Figure 6.12 - Utilization ratio
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Table 6.4 — Example tapered column
Example Method GMNIA Difference

Tapered column 413kN 406kN 2%

6.5 Flexural buckling of beam-columns

6.5.1 Verification format

The case of flexural buckling of members loaded with bending moment and axial force is
probably the most common in the engineering practice. The only difference with regard to
members loaded with axial force only is the additional bending moment. In this case, it does
not cause any additional buckling because it acts in the flexural buckling plane and the critical
load factor will only depend on the applied axial force. However, the additional contribution
from the bending moment should be added to the first and second order utilization. Then the

stress, utilization becomes:

180 | o(x) _ N(x) M;(x) M (x)
iy Ay * Wi (x)f, + W,(x)f, =10 (6.37)

with
MY (x) = EL(x)8" (%) + Ml (%), 638)

Leading to the following interaction equation:

NEd(x) My(x) Eli(x)acr”(x)
A(x)fy [/Vy(x)fy A(x)fy (acr - 1)

a(/T(x) - O.Z)fn(x)|6cr(x)| +
(6.39)
My (016,
(acr - 1)VVy(X)fy =10

The second order contribution from the applied bending moment is separated from the second
order contribution due to the initial imperfection. In addition, it is assumed that the second order

moment due to the bending moment can be approximated by:



Ml (x) = NSC)W_MSC) ~ Myg‘)kicrl(xﬂ (6.40)

6.5.2 On the beam-column behaviour

According to Eurocode 3 (2005), the in-plane flexural buckling resistance of members loaded
in bending and compression is performed using interaction formula. Its background was
detailed in Chapter 2. The interaction factors were derived and calibrated in order to account
for the various aspects that influence the beam-column behaviour. Regarding non-uniform
bending moment distributions, both sets of interaction factors (Method 1 and Method 2) adopt
the equivalent moment factor C, in order to avoid the explicit consideration of the critical
location. In contrast, the application of the general formulation does not require additional
factors to account for the design location since the verification is performed at each cross-

section and the influence of the location is implicitly included in the verification.

Furthermore, to take in the plasticity effects, the interaction factors for Method 1 include the
plasticity factors Ci; and Cj; for cross-section Class 1 and 2. These factors account for the non-
linear interaction between bending moment and axial force in the low/medium slenderness
ranges but also for the fact that the full-plastic moment may not be reached with the increase of
the slenderness. The factors reduce to the cross-section check for rectangular cross-section
when the slenderness tends to zero. Similar factors were proposed by Taras (2010) for the

Ayrton-Perry formulation for in-plane resistance of beam-columns in mono-axial bending.

The proposed general formulation, being applied a as linear interaction equation, is not able to
capture the cross-section interaction at low slenderness. Therefore, there is a need of
introducing a similar factor Cj; in order to account for this. A preliminary verification was
carried out by using the Cj; factors taken from Method 1. The comparison was performed for
three different profiles, three slenderness ratios and various ratios between the bending moment

and axial force using numerical results from Ofner (1997).

Figure 6.13 illustrates the comparison between the interaction formula Method 1 (M1), Method
2 (M2), GMNIA and the general formulation for two sections at low slenderness. Furthermore,
detailed results are given in Table 6.5. It is noted that the difference in applying C;; or not is not
considerable: the results get slightly safer at low slenderness, but for high slenderness the mean

value gets lower because C;; tends to the elastic moment and the general formulation is applied
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with the plastic moment. However, this smaller difference is also due to the smaller shape factor

for the sections considered (Wyi,/Weiy); if @ minor axis flexural buckling is considered, the

divergence would become higher.
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Figure 6.13 - Comparison between the different methods
Table 6.5 - Statistical parameters
HEB 300 IPE 200 IPE 500
A n m Cov Min Max | n m Cov Min Max | n m Cov Min Max
0.5 100 1.022 23% 0977 1.077 | %4 1.034  32% 0979 1.111 94 1.039  3.6% 0.981 1.120
5
< 1.0 97 1.043  29% 0991 1.104 | 101 1.042 3.7% 0983 1.123 | 96 1.047 3.7% 0985 1.131
>
23
&) 1.5 99 1.053 49% 0982 1.178 | 95 1.050 53% 0970 1.179 | 98 1.055 54% 0967 1.183
= 0.5 100 1.047 23% 1.005 1.103 | 94 1.066  39% 0.997 1.160 | 94 1.072  43% 0999 1.177
&)
=
3 1.0 97 1.040 33% 0989 1.103 | 101 1.041 4.8% 0977 1.160 | 96 1.046 49% 0980 1.172
=
=
é 1.5 99 1.033  5.7% 0958 1.194 | 95 1.027  6.6% 0951 1.200 | 98 1.031 6.6% 0.953 1.205
0.5 110 1.010 1.8% 0985 1.069 | 104 1.023 2.5% 0988 1.107 | 104 1.026 2.6% 0991 1.114
E 1.0 106 1.030 26% 0985 1.092 [ 110 1.035 29% 0979 1.097 | 105 1.038 29% 0976 1.102
=
1.5 109 1.024 27% 0985 1.092 | 104 1.034 29% 0977 1.103 | 108 1.037 29% 0977 1.107
0.5 60 1.030 1.1% 0.991 1.051 | 63 1.034  2.0% 0984 1.076 | 52 1.044 19% 1.011 1.083
%‘ 1.0 73 1.082 3.6% 1.014 1.231 80 1.046 3.7% 0974 1.172 | 71 1.055 3.8% 1.000 1.179
=
1.5 77 1.106 72% 1.011 1348 | 77 1.079  72% 0997 1.299 | 78 1.084 7.2% 1.004 1.306
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Figure 6.14 — Comparison for tapered member with shallow section 250x200x8x16 for different taper
ratios and lengths
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Furthermore, the factor Ci;; was applied to tapered members. Its application to members with
variable cross-section required the following adjustments: i) firstly, the C, factors as
recommended by the interaction formula were not considered since they are calibrated for
uniform members; ii) secondly, the level of the axial force Nes/N, was considered constant as

the ratio ¢.

Figure 6.14 shows the results obtained for tapered members with ,=2 and for three different

lengths.

At low slenderness, the members tend to their cross-section resistance, in such case, the use of
Cii helps to obtain resistances closer to GMNIA. However, for higher bending moments relative
to the axial force, where the difference is larger, the improvements are minimal. At high
slenderness, the results are closely approximated by GMNIA with and without the use of Cj;

since the effect of plasticity vanishes.

The factor was calibrated for uniform members, and therefore, is not suitable for application
with non-uniform members. Hence, this issue required further elaboration that is outside the

scope of this thesis.

6.5.3 Design resistance
The design resistance is obtained as described for the flexural buckling of columns under axial

force (Section 6.4.2) using the following equation:

apNgq (x) N apM,, (x)
A(x)f, A,

(6.41)
EL(x)8.," (X)a,
A(x)fy (acr - ab)

aszy(x)lscr(x)l _

@ —apW,f,

a():(x) — O.Z)fn(x)lgcr(x)l +

6.5.4 Consistency with Eurocode 3

Even though the interaction formula of Eurocode 3 makes use of calibrated factors, it has its
analytical background. It is shown in this section that the general formulation and the interaction
formula are consistent for the case of flexural buckling of prismatic beam-columns. Considering

Eq. (6.38) for a prismatic beam-column loaded with constant bending moment and axial force:



Npa(x) = My(x) = EL;(x)8c" (x)
A(x)fy W(x)fy A(x)fyacr -1
M, ()16, _

(acr - 1)Wy(x)fy

AerNgg ()8 ()]
Eli (xm) |6cr”(xm) |

a(A(x) —0.2)

1.0

Ngq4 crNpg €A Mpg(1+ag — 1)

Ny Afy(ag—1) W (acr — DMgg (6.42)
o Ngq4 N 1 Nggeg + My gq ~10
Npl (1 _ ai) MRd
cr
(_)NEd_I_ 1 NEdeo'l'My’Ed _ 10
cr

It can be seen that Eq. (6.42) coincides with the interaction equations in their raw format, before
the calibration of the interaction coefficients and is therefore valid for both methods — Method
1 and 2, as presented in the background document for its development, ECCS Pub. 119
(Boissonnade et al., 20006).

6.6 Lateral-torsional buckling of beams 18

6.6.1 Verification format
For lateral-torsional buckling of beams the general interaction equation Eq.(6.22) and

considering Table 6.3, becomes:

o(x) _ My Mz (x) My (x)
fy Wy(X)fy — Wz(x)fy Wy (X)fy

(6.43)

where there are two second-order contributions, the out-of-plane bending moment depending
on the lateral displacement:
MI(x) = —EL,(x)v"(x) (6.44)

and the bi-moment depending on the twist rotation:

M (x) = —EI,(x)6"(x). (6.45)
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For tapered beams, an additional warping component appears due to the inclination of the

flanges (Kitipornchai and Trahair, 1972) leading to:
11 " 2 a1 1
MY} () = —E1L, () (0" (x) + 26’ (R’ (6.46)

For simply supported beams it was possible to obtain the amplitude by the coupling of the
lateral displacement and twist rotation (Eq. (2.9)). In a more general configuration (variation of
the geometry along the member, different boundary and loading conditions, etc.), this
relationship may not be held. For that reason, it was chosen to use both components of the mode
shape in the definition of the initial imperfection, assuming that they are multiplied by the same

amplitude:

Vo(x) = Ver (x)SO,LTB 0o (x) = Ocr(x) gO,LTB (6.47)
The resulting amplification relationship for the displacement and rotation is given by:

1

aer—1

v(x) = vy (x) (6.48)

1

Acr—1

0(x) = 0,(x) (6.49)

Similarly to a column, it is considered that the real beam should have the same resistance as an
equivalent simply supported member. This equivalent beam has the same geometry as the real
member at the critical cross-section and the same elastic critical moment. Hence, it is possible
to obtain the required generalized imperfection by setting equal the second order utilization for
the equivalent and real beam. The second order moments for a simply supported beam at mid-

span are given by:

1 _ achy,Ed 3_0 Hcr (xm)

MU =M 6, =M 0 6.50
z (xm) y,Ed¥tot y,EAY0 1— 1/acr Ay — 1 ( )
i 1 1
My, (Xpm) = My, gqVior — G1:0 = M,, pqg e GI; (90 Tian 90) =
(6.51)

_ achy,Ede_Oecr (xm) (UO Glt)

Aoy — 1 90 B Mcr

which when combined together form the second order utilization ratio for the equivalent

member:



MY (xm) s M ()
W,(em)fy W (enmdfy

gIIl/; (xm) =

_ achy,Ede_Oecr(xm) <1 n Ver (Xm) Wy (%) n Gl (xm) sz(xm)) _ (6.52)
— Ncr,ze_o
Vl/z(xm)fy(acr - 1)
The second order utilization of the real beam at the location x,, is given by:
ey~ MEGn) | M)
WG fy W Genfy
(6.53)

EL () (V' er Com) + 5 6" cr (im) + 6 cr (i)' 8
- VVz(xm)fy (acr - 1)

Equalling Egs. (6.52) and (6.53) leads to the following expression for the amplitude of the
imperfection:
Ncr,ze_o

s = o
o El,(xm) (v”cr () + %0"(xm) + Hl(xm)h’) o (6.54)

This amplitude is used with the proposed generalization. It contains the equivalent geometrical
imperfection €, but also additional terms ensuring the consistency with the Eurocode 3 design
rules. Ideally, the location x, should be obtained in an iteration as the exact critical location of
the beam; however, in order to avoid iterative process, x, is assumed at the location where v’ ...

reaches a maximum.

Finally, the generalized imperfection becomes:

] W,
'@ = a(I(x) — 0.2)f, |67 ()| ﬁ (6.55)
6ﬂ(x) = v (x) + @9”(3() (6.56)

2
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Ncr,z (657)
fn = h
EL Gem) (V"er (im) + 58" Cem) + 87 (i)

and the utilization ratio is given by:

Mysa) | B (er (O + R () + 0 (O

(6.58)
Wy ()fy ACO S, (@ — 1) n(x) < 1.0

em(x) =

with

n(x) = a(A(x) — 0.2)f,|67(x)| (6.59)

6.6.2 On the generalized imperfection factor

In section 6.4.1, it was shown that the application of the method is directly used with the column
buckling curves for prismatic members. This is only possible because of the assumption of
correspondence with the equivalent prismatic member. In the previous paragraph, it was shown
that the generalized imperfection can be written in a way accounting for this assumption. Hence
it is ready to be used with a-factors calibrated for prismatic beams. There are two possibilities
for the adoption of the imperfection factor, the adoption of the New EC3 method or the General

Case.

In Chapter 5, the safety assessment for prismatic beams showed that the New EC3 method for
lateral-torsional buckling of prismatic beams gave the best results in terms of partial factors.
This is due to its mechanical consistency and calibration of the imperfections in a consistent
way. For that, this is the preferred method to be used for the calculation of the imperfection

factor.

The application of the New EC3 imperfections for lateral-torsional buckling uses the normalized
slenderness A,. This brings a certain level of difficulty for the generalization to non-standard
cases. For instance, let’s consider the four cases given in Figure 6.15 four beams with an IPE
200 cross-section, with the same length of 6.0 m and loaded with an uniform bending moment.
Case 1 the reference case for which the imperfections are calibrated: a simply supported beam

loaded with uniform bending moment. In Case 2, the beam has out-of-plane restraints on both



flanges, in Case 3 it has a restraint on the compression flange and in Case 4 it has a restraint on

the tension flange.

Case1 Case3
Ct Lo L : T
Case?2 Case4

Al
e
-

Figure 6.15 — Example: uniform member in bending with restraints

The critical moments and forces are given in Table 6.6 and the buckled shapes in Figure 6.16.
Under constant bending moment Case I, the beam buckles in a half sine wave; for Case 2 and
3, the member buckles in two half-waves, since in both cases the compression flange which
tends to buckle is the restrained one. In Case 4 the beam buckles in a half-wave, however, the
value of the critical moment is slightly higher due to the presence of the restraint, although it is
not as effective as doubling the critical moment, but still the critical moment benefits from its

presence.

The same member is considered loaded in compression, in order to obtain the corresponding
minor axis critical force Ne.. Similarly to the beam case, in Case I it buckles in a half sine
wave, while in Case 2 it buckles in two half-waves (Figure 6.17). Cases 3 and 4 are identical
for the member loaded in compression, as in for this particular geometry it buckles in 2 half-
waves. For different geometrical arrangement, the member may even buckle in a torsional mode

with a critical force between N> and 4N, .

Table 6.6 — Critical forces and moments for all cases

; Mer,abg Me: theo Nerzabg Nertheo
kNm kNm kN kN
Case 1 23.2 23.0 81.9 81.9
Case 2 53.6 53.0 330.3 327.6
Case 3 53.6 53.0 330.3 327.6
Case 4 37.0 37.0 330.3 327.6
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Figure 6.16 - Buckling modes: member loaded in bending

This feature introduces to a discontinuity since the relative increase of the critical force does

not follow the relative increase of the critical moment as in cases 1 to 3.

Case 1 Case 2, 3 and 4

Figure 6.17 — Buckling modes: member loaded in compression



To overcome this discontinuity, it was assumed that the imperfection can be calculated for an
equivalent elastic critical force Ne-eq. This force is “retrieved” from the buckling mode using

the differential equation for flexural buckling:
EL,(xX)V" cr(X) + Ny Ve () = 0. (6.60)
Then, the equivalent force becomes:

N _ El (xp) V" o ()|
el [Ver (xm) |

(6.61)

It is this force that is used for the calculation of the normalized slenderness:

G = [ (6.62)

6.6.3 Design resistance

Similarly to flexural buckling, the design resistance is given by the load multiplier a;,using Eq.

(6.63):

abMy.Ed(x) EIZ(x) (v”CT(x) + %9"Cr(x) + elcr(x)h’) ap
Wy(x)fy A(x)fy(acr - ab)

n(x) =1.0 6.63) 191

6.6.4 Consistency with Eurocode 3
6.6.4.1 Lateral-torsional buckling of prismatic beam

The consistency of the GF with the existing rules for lateral-torsional buckling of prismatic

beams is easily verified. For uniform members, the shape of the buckling mode is given by
TT
Ver (%) = O (%) = SinT

and the utilization ratio is given by:
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EL(x) (v (tm) + 26", (xm>>

My Ed (xm) =
- A0,
W, Conf, A f (g =1y LA
h
Ncr,z vcr(xm) + ze(xm)‘
-0.2) - =10
EL(tm) (Ve () + /20" () )
h
Mygq Nerz|Ver + 70(xm)| My, ga Wy fy «(1-02)=1.0 o (6.64)
Wyfy Afy(acr - 1) My,Ed Wy y

Mypqg Mygq a(2—0.2) ZET

— =10
Wty Wy (1 _M) /_15
cr
Zz
1—xirdir A,

which is exactly Eq. (2.58).

6.6.4.2 Discussion

The theoretical summary presented briefly in Section 6.6.1 is based on the assumption of
constant bending moment distribution. However, a constant bending moment distribution is
rare and therefore other bending moment distributions should be accounted for. Typically, the
existing methods for LTB verification make use of calibrated factors which take into
consideration the increase in the critical moment and the difference relative to the adopted
buckling mode shape. The proposed method does not require any additional factors because it
is applied as a direct interaction of the first and second order forces leading to the maximum
load factor at the location of the beam where the utilization has a maximum and not at a pre-

defined location such as mid-span.

An illustration is given in Figure 6.18a, where the utilization ratio for a web-tapered beam with
=3 and a shallow end section of 100x100x10x10 loaded with a triangular bending moment is
shown. The total utilization ratio as well as the first and the second order contributions are
plotted Figure 6.18a. It shows that the failure location is found for a bending moment which
is lower than the maximum applied moment. Furthermore, since both utilization ratios are non-

linear, it is practically impossible to “guess” the critical location along the member. The



resistance obtained with the GF compares very well to GMNIA as shown in Table 6.7. This

trend is confirmed for various slenderness ratios as plotted in Figure 6.18b.

Table 6.7 Comparison with GMNIA

Example Method GMNIA Difference
Tapered beam with non-uniform bending 44.34 45.05kNm 1.6%
moment
Tapered beam with restraint on the tension | 24.3kNm 23.56kNm 3%
flange

~ 08
=
=
—
) g 06
w L‘c—“
£ =
£ S
% 5 04
5 =
Q
%
0.2
0.0
0 ) 2 3 4 5 6 7 0.0 0.5 1.0 1.5 2.0 25
Length [L] Normalized slenderness A(x")
Example 2: web-tapered beam loaded with Comparison with GMNIA across various
linearly varying bending moment slenderness

Figure 6.18 Web-tapered beam yh =3 with y=0

Another interesting application of the method is illustrated in Figure 6.19, a tapered beam with
taper ratio of 2, loaded with a constant bending moment with a partial restraint on the tension
flange. The tension flange restraints can contribute to higher lateral-torsional buckling
resistance, but their efficiency depends on the geometry and loading of the beam. The buckling
mode is shown in Figure 6.20. Critical shapes of the translation and twist rotation at the shear
centre of the cross-section are shown in Figure 6.21a, which are used to compute the utilization
ratio plotted in Figure 6.21b. At mid-span, it is observed that the second order utilization
becomes close to zero due to the difference in the location of zero translation and twist rotation
of the mode shape (Figure 6.21a). Table 6.7 shows the excellent agreement between the method

and advanced numerical simulation.
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5.0 1.2
ell

Utilization &(x)

Utilization &(x)

Length [L] © Length[L]

a) Mode shape b) Utilization ratio

Figure 6.21 Beam with partial restraints on the compression flange

6.7 Lateral-torsional buckling of beam-columns

6.7.1 Introduction

The lateral torsional buckling of beam-columns is a joint case of the lateral-torsional buckling
of beams and the flexural buckling of columns about their minor axis. It is also, the most
complex buckling mode since its shape varies depending on the ratio between the applied
bending moment and axial force. For high ratios of bending moment to axial force, the
behaviour is more “beam-like” with a mixture of flexure and torsion, while for low ratios the

behaviour is more “column-like” (Figure 6.22).



M A

beam <—Mb,Rd ¢

Nore N

column
Figure 6.22 Beam-column behaviour for the variation between N and M

In the previous sections, it was shown how the proposed method works for columns and beam:s,
where the application of the method was only possible together with previously calibrated
imperfection factors for the uniform and simply-supported case. For beam-columns, however,
Eurocode 3 provides interaction formula for members loaded in bending and compression. The
interaction formula makes use of the expressions for beams and columns combining them
through interaction factors which account for the joint action of the forces, which makes them
not appropriate for the design formulation presented here. This led to the need of deriving an

Ayrton-Perry equation for uniform beam-columns, presented in Section 6.2.

It is then used to derive the general verification format for lateral-torsional buckling of non-

uniform beam-columns with various support, geometrical and loading conditions.

6.7.2 Verification format

For lateral-torsional buckling of members loaded in bending and compression, the interaction

equation is given by:

o(x) _ N My (x) MY (x) My (%) (6.65)
fy A fy Wy () fy W, (%) fy Ww(x)fy, .
where there are two second-order contributions, the out-of-plane bending moment:
Ml (x) = —EL,(x)v"(x) (6.66)

and the bi-moment:

My () = —EL,(x) (8"(x) + 6'(0)h'2) (6.67)
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including the additional warping component appears due to the inclination of the flanges

(Kitipornchai & Trahair, (1972)).

Following the same assumptions as for lateral-torsional buckling of beams, it is considered that
the initial lateral displacement and twist rotation follow the buckling shape and have the same

amplitude:
o (%) = Ve (%), Bo(x) = 6cr-(x) 8, (6.68)

with the same amplification relationship:

1

v(x) = po— (%) (6.69)
0(x) = ——0,(x) (6.70)

Then the interaction equation becomes:

N(x) N My(x)  ElL(x)8 |Ver(x) +%90r"(x)+ecr,(x)h’

AXfy  Wfy,  W(0f o — 1 <10 (6.71)

Adopting the same assumptions as for columns and beams, and using the second order
contributions for the equivalent beam-column, which in this case are given by (6.2) and (6.3)
for the weak axis bending moment and the bi-moment, respectively, it is possible to define the
generalized imperfection as:

W, (%)

n*(x) = a(A(x) — O.Z)fn(Sﬂ(x)m (6.72)

where f,, and f,6 Ft(x) are given by Egs. (6.56) and (6.57), leading to the utilization ratio

Nea) | Myga) | B (v'er () + 20" () + 0 (ON)

] (6.73)
A(x)fy + W, (x)f, A, (@ — 1) n(x) <1.0

eun (%) =
with
n(x) = a(A(x) — 0.2)£,67(x) (6.74)

The imperfection factor o is used as proposed in Section 6.2.1.2 and the normalized slenderness

is used as in Section 6.6.2.



6.7.3 Beam-column buckling modes

It was already mentioned earlier that complexity of the beam-column behaviour arises from the
variation in the relative ratio between the bending moment and the axial force, as well as across
the various slenderness ranges. Since it is possible to have “beam-like” modes and “column-
like’-modes, it was already ensured in the previous section that the imperfection magnitude
varies from beam to column according to the applied loads. In this section, a discussion on the
shape of the buckling mode is offered because it also varies according to the relative ratio of
the bending moment and axial force, which is important for the application of the general

formulation to ensure safe and economical design.

To illustrate the problem, the following example is proposed. Consider an uniform welded
member with a cross-section 350x175x12x8 with a restraint on the compression flange and
length L=5m, as shown in Figure 6.23, is loaded with five different ratios of uniform bending

moment to the axial force.

175

. 5

o)

350

12

5.0m

Figure 6.23 — Example member loaded in bending and compression with restraint on the compression

flange
The buckling mode shapes are shown in Figure 6.24. For ¢ =0.2, 0.4 and 1.0, the behaviour is
dominated by lateral-torsional buckling. In contrast, ¢ =2.4 and 5.0, the beam-column does not
buckle in two half-waves but the bottom flange buckles in a single half-wave. This only shows
that the compressive stress required to cause buckling of the bottom flange is lower than the

compressive stress necessary to buckle the top flange in two half-waves.
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e) §=2.4 f) ¢ =5.0

Figure 6.24 — Buckling modes for different ratios of bending moment and axial force

The stresses that are present in the cross-section are shown in Figure 6.25. The buckling modes
of Figure 6.24 for ¢ =0, 0.2, 0.4 and 1.0 lead to a stress configuration for which the maximum

compressive stress is equal to the sum of the absolute values of each stress component.



Figure 6.25 - Stresses in member under bending and compression

However, for the buckling modes of Figure 6.24 for ¢ =2.4 and 5.0, the twist rotation exhibits
opposite sign and results in the stress distributions as shown in Figure 6.26. For such pattern,
it is not clear which is the flange governing the design, and therefore, it is required to verify

both flanges according to Eq.(6.75).

B | 199

Figure 6.26 - Stresses in member under bending and compression

N, My, M M,

max N ull oyl (6.75)
N_ v % Mw
1 Wy+Wz+WW_1'0

6.7.4 Design resistance

Similarly to flexural buckling, the design resistance is given by the load multiplier a,

according to Eq. (6.76):



apNpa(x) |~ apMy pq(x) El,(x) (v”cr(x) + %encr(x) + elcr(x)h’) ap
AQOfy Wy ()f, A fy(aer — ap)

n =10 (6.76)

6.7.5 Consistency with the uniform member

Consistency with the existing rule for lateral-torsional buckling of prismatic beam is easily

verified. In case of a prismatic steel beams with N=0, then Eq. (6.73) reduces to:

MypaG)  ELGO (e () + 5660 () + 0y (O

"t W07, ACOF, (e — 1) nd) =10
EL(x) (v Qo) + 267, (xm>>
My kq (Xm) 2 a(i(x )
Wy(xm)fy A(xm)fy(acr - 1) "

| o [proim) + 5000

—0.2 =10
EL, () (Ve () +1/2.60” () ) 6.77)
N o +Roce )|
200 Moea ol T2 i Msa®ly (7 02)=1.0 o
Wyfy Afy(acr - 1) My,Ed Wy y

= =2
My,Ed i My,Ed 0((/1 - 02) Aﬂ _

=10«
Wyfy ~ Wyfy (1 _ My,Ed) /‘13
MCT
72
Xr t+ L_Z_LZT a(1-0.2)=1.0
1= xirdir A,
while M,=0, then Eq. (6.73) reduces to:
Nigq (x) EL(x) (v"er () + % x0+0xh)
+O+ a(A(x)
Ay A fy (@ —1)
h (6.78)
Nor. [per) + 3 x 0|

=10

- 0.2) . 1
EL () (V' erGtm) + h/2x 0+ 0 x 1)



Ngq(x) —EI; (x)vcr”(x) acrNEd(x)lvcr(x)l _

2005, T A fae =D O T 0D E e S~ 0
Ngq(x) ElLim?/L? 7 N, _
T VAC=Y a(1-0.2) I 1.0 &

Ngq(x) Ngq(x)

a5, Afy(l_N/Ncr)a(A—o.z)=1.0<—>

X
1— yA2

X+ a(2-102)=1.0

6.8 Validation

6.8.1 Scope

In this section, the general formulation is validated against GMNIA resulta. The numerical
models were carried out in accordance with the previously described procedure in Chapter 4.
In this validation, special attention was paid to the applicability of the GF to non-uniform
columns, beams and beam-columns as well as for members with varying loads along their
length and load application (top/bottom flanges or shear centre, members with restraints only

at one flange (compression or tension) and members which are not simply supported.

Firstly, the global parametric study is presented and its statistical assessment with respect to
GMNIA results. Then the method is evaluated in comparison with existing methods for design
of non-uniform members: the General method and the design methods for web-tapered columns

and beams by Marques (2012).

6.8.2 Methodology

In order to have a common basis for comparison, the generalized reduction factors are
considered at the first order failure location: ¥ A(x =M/ S(x})  and
AMethod(x Hy=aMehod f, 1 E5(xcY), in which as* is the resistance multiplier obtained numerically
(x=GMNIA) or by the method (x=Method) and ou:x° is the cross section resistance multiplier.
Xc' is the location along the member where the utilization due to applied (first order forces) is

maximum and becomes: x.»’ for a column; x../ for a beam.
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The imperfection factors were considered according to Table 6.2 from Eurocode 3 for flexural
buckling and for lateral-torsional buckling according to the new EC3 method. For beam-

columns, the proposed interpolation in Section 6.2.1.2 was adopted.
6.8.3 Parametric study
The parametric study is summarized in 7able 6.8. It covers several types of members, loading

and support conditions, totalling 2213 cases.

Figure 6.27 shows the cases #1 from Table 6.8, Tap D type of member — web tapered with
different inclinations of both flanges, including restraint to the tension flange and a built-in end

at the deep section.

el 1 & 1

Pt

202 |

Figure 6.27 - Cases #1 Tap D member

Figure 6.28 illustrates prismatic members (Cases #2 and #8 in Table 6.8). They were considered
with one restraint either to the compression or the tension flanges and two restraints to the

tension flange.

oL v 1o &f 1w
[

M M

Ce e

Figure 6.28 - Cases #3 Uniform member




Cases #3 are shown in Figure 6.29. They consist of members with a parabolic variation of cross-
section whereby the deep section was takes as 1.5 times the shallow one. These members were
also considered with no intermediate restraints, one restraint either to the compression or the

tension flanges or two restraints to the tension flange.

M

Aév%& Aé‘x e
/

Figure 6.29 - Cases #3 Parabolic member

Figure 6.30 illustrates cases #4 to #7 from Table 6.8, Taper S type of member, web-tapered
with symmetrical inclination of both flanges, without any restraint, with a tension flange
restraint or fixed at the deep end. A part of them, cases #5, #6 and #7, were considered
fictitiously as “rolled” by modelling the residual stress pattern for rolled sections. This aimed | 203

for the assessment of the consistency with the imperfection factors for rolled sections.

M M M M
G 35 o 15

Pod
K

Ple

Figure 6.30 — Cases #4, #5, #6 Tap S member

Finally, cases #9 that correspond to numerical simulations carried out by Ofner (1997), that
were also used to extend the parametric study with independent results by other author. They
consist of prismatic section, restrained from out-of-plane buckling, for various ratios of bending

moment to axial force and different bending moment distributions.
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Table 6.8 - Parametric study

# Member Section L vyh yb Supports Restraints Load (1) U} N
hxbxtgxt,, m
. 0;0.2;0.4;
1 Taper D 250x200x16x8  5-12 234 1 SS-SS 1x tension My 1245 1 270
SS-Fix None My+N
. . 0;0.2;0.4;
2 Uniform 350x175x12x8  3-12 - - SS-SS 1x tension My 12,45 1 223
250x200x16x8 2x tension ~ My+N
500x200x16x8 1x compression
. . 0;0.2;0.4;
3 Parabolic 350x175x12x8  3-12 - - SS-SS 1x tension My 12,45 1 350
250x200x16x8 2x tension ~ My+N
500x200x16x8 1x compression
1,23
4 Taper S IPE240eq 3-12 21’5’ 234 SS-SS Out N - - 207
HEA300eq
1,23, 1,2,3,
5 Taper S 100x100x10x10 2"5 ’ 45 SS-SS None N - 1,0 32
Out
6 Taper S 100x100x10x10  5-12 115 SS-SS None My - 1 60
3, 45
5,6
2,3,
7 Taper S 100x100x10x10 5-12 4,5, 1 SS-SS None My - 0,0.5 120
6
SS-Fix 1x tension Distributed
8  Uniform HEB200 3-12 - - SS-SS None My - 1,0,-1 76
IPE300 IX tension Dist (top. bot,
center)
1x compression
9  Uniform IPE200 3-18 - - SS-SS Out My+N 0.08-10 1,0,-1 875
(Ofner)  HE300B Dist., Conc.
IPES500
2213
6.8.4 Statistical analysis
The statistical evaluation of the GF is carried out on the basis of the ratios r./r; or y“MNA/ ,Method

It covers all cases from Table 6.8, totalling 2213 members. The statistical parameters for all

results and relevant subsets are presented in Table 6.9 and Figure 6.31 shows scatterplots for

the different types of members considered in the parametric study.
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Figure 6.31: Scatter plot: All results

The comparison is performed based on statistical parameters, obtained for the ratios r./7,, where
re 1s the result from the numerical simulations and 7; is the result from the general formulation.
The ratio r./r; is higher (respectively lower) than unity when the “theoretical” result is a safe-

sided (respectively non-conservative) estimate.

Table 6.9 and Figure 6.31 show very good agreement between numerical and theoretical results,
considering that the parametric study consists of “non-standard” members (with restraints, fixed
supports, varying geometry along the member length, etc.). For uniform members, the results

present similar accuracy when compared to Method 1 and better than Method 2 (see Table 6.5)
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Table 6.9 - Statistical parameters

Subset n Average Cov Min Max N N
<0.95 >1.1
All 2213 1.05 5.2 0.878 1.205 34 398
Uniform 1174 1.04 52 0.878 1.205 20 170
Taper D 270 1.08 4.98 0.966 1.188 - 118
Taper S 419 1.03 4.8 0.933 1.185 5 46
Parabolic 350 1.05 4.98 0.905 1.187 9 64
Columns 239 1.03 5.1 0.946 1.177 1 35
Beams 400 1.03 4.9 0.924 1.185 10 46
Beam- 1574 1.05 52 0.878 1.205 23 317
Columns

Rolled 1163 1.04 4.95 0.929 1.205 6 138
Welded 1050 1.05 5.4 0.878 1.188 28 260

Table 6.9 and Figure 6.31 show that the welded cases have more cases in percentage to the total
which fall higher than 1.1 or lower than 0.95. This safety issue is directly linked to the
imperfection factors used for welded sections. In Marques (2012), it was shown that the
Eurocode 3 imperfection factors are unsafe in the intermediate slenderness range for welded
cross-sections and they become over conservative for members with normalized slenderness

ratio higher than 1.0.

6.8.5 Comparison with analytical methods from Marques (2012)
6.8.5.1 Scope

Furthermore, the method is compared with the theoretical method from Marques (2012) for
flexural and lateral-torsional buckling of web-tapered columns and beams. The approach
adopted by Marques (2012) relies on the exact critical location and the comparison is useful to

evaluate the impact of the approximation for the critical location of the GF.



For the evaluation of results, the following methodologies are considered:

e GMNIA — Results given by the numerical models (geometrically and materially

nonlinear analysis with imperfections);
e Application of proposed procedure for:

— Flexural buckling of columns, (Eq. (6.34) ) and the theoretical method from
Marques et al. (2012) (LM) (Eq.(2.80))

— Lateral-torsional buckling of beams (Eq.) and the theoretical method from Marques

et al. (2013) (LM) (Eq.(2.86)):

6.8.5.2 Application of the method

Firstly, the shape of the utilization ratio was studied for the general formulation in comparison
with the theoretical derivation given in Marques (2012). An example is illustrated in Figure
6.32 for a tapered column with taper ratio y,=y»=3 loaded with uniformly distributed axial force.
The utilization ratio is plotted for the load multiplier o, along the column length. Both terms of
the utilization ratio are separated, the utilization due to normal stresses due to applied forces
(designated as €7) and normal stresses due to second order forces (designated as ¢;7) and the sum

of both — Etot.

1.2 4
— ctot, GF
e | e ell, GF
7 /ab=0-88 ......... !
av=0.91 fot, LM
508 5 stot,
2 el, LM
& 11, LM
‘g 0.6 - - el
=
= oS
504 - S
II
,
’
7
02 14T
II o
’
J RS
e R B P Dk S50 e
0+ : ER S
0 1 2 3 4 5 6 7 8 9 10
Length, m

Figure 6.32: Utilization ratio

Since the amplification relationship is slightly different, the expected deviation in the critical

position is inevitable as shown in Figure 6.32, the second order utilization for both methods are
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different. However, in terms of maximum load multiplier as, both methods lead to similar

predictions.

These comparisons are carried out for the same cases used to calibrate the theoretical model of
Marques et al. (2012) and (2013) for flexural buckling of web-tapered columns and lateral-

torsional buckling of web-tapered beams. These are the cases #5 and #6 from Table 6.8.

6.8.5.3 Tapered members — comparison with cases from Marques et al. (2012) and
(2013).

The comparison is performed for the reduction factor y (x./), where in Figure 6.33a, Figure

6.34a and Figure 6.35a, the results for in plane, out-of-plane and lateral-torsional buckling are

plotted.

The results are presented as a buckling curve representation (Figure 6.33a, Figure 6.34a,
Figure 6.35a) where the abscissa is set to the normalized slenderness for the smallest cross-
section so that, the predictions by the GF, GMNIA and the theoretical method from Marques
et al. (2012) and (2013), are compared for the same normalized slenderness. The GF compares

well providing similar resistances to GMNIA and the theoretical method proposed in Marques

et al. (2012) and (2013).
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Figure 6.33: Theoretical vs experimental resistance — major axis flexural buckling
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Figure 6.34: Theoretical vs experimental resistance — minor axis flexural buckling

Table 6.10 summarizes the statistical parameters for the two cases: flexural buckling and lateral-
torsional buckling. Regarding tapered members, the mean value of the ratios
CMNHA(x Ly Method(x 1y is slightly higher than unity with small coefficient of variation, thus

indicating a good precision of both methods.
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Figure 6.35: Theoretical vs experimental resistance — lateral torsional buckling

Figure 6.33b, Figure 6.34b and Figure 6.35b summarize the scatter plots for both methods and
for the three buckling modes considered in this assessment, where the ordinate is the theoretical

estimation opmodel and the abscissa is the ob GMmNIA.
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Table 6.10: Statistical parameters ab, GMNIA/ ab,model

0.00 0.30 0.60 0.90 120 1.50

Normalized slenderness A; 1(xY)

¢) taper ratio y,=3

Buckling mode In plane (y-y) Out-of-plane (z-z) LTB
LM GF LM GF LM GF
Mean 1.03 1.05 1.02 1.03 1.01 1.02
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Figure 6.36 — Critical locations for lateral-torsional buckling of web-tapered beams




The critical location was also assessed the GF, GMNIA and the theoretical method from
Marques et al. (2012) and (2013). Figure 6.36 shows the variation of the critical location with
increase of the member slenderness for web-tapered members with taper ratios 1.2, 2, 3 and 5
under constant bending moment. For the analysed cases, the critical location for the three

methods was not found very different.

6.8.6 Comparison with the General Method

In this section comparison with the General Method given in clause 6.3.4 of Eurocode 3 (2005)
is presented. The assessment was performed for a set of tapered members, Cases #1 from Table

6.8, which are simply supported, or with one end fixed, or with restraints to the tension flange.

The General Method was applied according to the recommendations of section 6.3.4, the in-
plane resistance was obtained by using GMNIA in-plane with magnitude of the initial
imperfection L/1000. The buckling curve used is curve ¢ welded section in flexural buckling

out-of-plane or lateral-torsional buckling General Case (for the smallest cross-section).

Figure 6.37 Scatterplot: Method vs General method

The scatterplots for both methods are given in Figure 6.37, the numerical results are plotted on
the abscissa and the calculated estimations by both methods are on the ordinate. Table 6.11
summarizes the statistical parameters for the General formulation and the General Method. The

direct comparison of both methods on the basis of the statistical parameters favours the




proposed method: lower scatter and mean value of the ratio r./7; much closer to unity than the

General method.

Table 6.11 — Statistical parameters

Subset Mean C.o.v  Min Max N N« N<o.97
All 1.08 4.98% 0.966 1.188 270 19 -
S
% SS-SS 1.08 4.2% 0.973 1.155 90 8 -
=
hS Restraint 1.07 5.1% 0.966 1.169 90 5 1
3 SS-Fix 1.09 5.5% 0976 1.188 90 6 -
All 1.28 77% 1.079 1.567 270 - -
e
% SS-SS 1.25 8.1% 1.113  1.567 90 - -
]
g
E Restraint 1.31 6.5% 1.162 1.566 90 - -
5
© SS-Fix 1.27 7.9% 1.079 1.514 90 - -
212 |
6.9 Example

Finally, an illustrative example is proposed to demonstrate the application of the General
formulation. For this purpose, consider the beam-column shown in Figure 6.38. The first 5
meters of the member are with uniform cross-section 250x200x8x16, while the last 2.5 m web-

tapered section which has a depth at the deepest cross-section equal to 500 mm.

The member is simply-supported at one end allowing for the longitudinal displacement and is
fully-fixed at the other end. A discrete intermediate restraint at the bottom flange is added at
the change of the cross-section. The applied loads are a concentrated axial force, a concentrated

major axis bending moment at the left end and a uniformly distributed load along the member.

In this example, the verification of the in-plane buckling mode is omitted because it is not

critical.



The general application of the method is summarized in the flowchart of Figure 6.39, where
firstly the user shall determine the eigenmode and the corresponding critical load factor ., by

linear buckling analysis. It is noted that the critical load multiplier should be higher than unity

so that the verification would make sense.

4.5 kN/m
200 - 200
e Ne=894KNy v vy vy vy v v v v Y VY YV YV Yoy —
B
a e C;’ g s
I = K
e = vy
M;.5=89kNm e \ .
Sm 2.5m
1
7.5m
< s
2 3
~
) \Q
[3g] [=N
(]
=
N
[oe]
Figure 6.38 — Design example: geometry and first-order internal forces
Member Cross-section
Fori=1 to ncg
Calculate eigenmode 1
and its derivatives Evaluate . mn (%)
Evaluate &kfy(x)
e —
Calculate x,,, Ny o0 1y 4
l Evaluate &ypy(x)
v
(;hoos.e member Check &yny(x) <1
discretization ncg
End.
Figure 6.39 - Application of the method
In this case, the critical load factor corresponding to the applied forces is:
a.=224>21.0 (6.79)
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The mode shapes are shown in Figure 6.40 for the lateral displacement v.(x) and the twist
rotation €.(x). The discontinuity in the second derivative of the twist rotation is explained by
the change of the cross-section and the torsional properties of the whole segment. The second
derivatives, in this case, are obtained numerically using central finite differences, alternatively,

they can be automatically supplied by the software.

0.80 4.00

3.00

2.00

1.00

0.00

-1.00

-0.40 -2.00
Member length [m] Member length [m]

Figure 6.40 — Mode shapes

They are used to compute the location where maximum amplitude of the imperfection is taken
and its magnitude from Eq. (6.72). The location x in this case is at 2.01m from the left beam

end. Then the equivalent critical force Ney.-¢q 1s calculated from Eq.(6.61) :

EL ()" ()| 210000 X 10% X 0.02134 x 1073 x |—0.26]

Ncr,z,eq = -
[Ver Cem) | 0.62 (6.80)
Nerzeq = 1876.6kN
and the constant factor in Eq. (6.74) becomes:
f _ Ncr,z,eq _
T EL () " o (Xm) + h(xn) /2 6" (xm) + 6" (Xm)h' (X))
(6.81)

1876.6kN

= 1.15
210000 x 103 x 0.02134 x 103(0.26 + 0.125 x 0.802 + 0.745 x 0)

Finally, the utilization shall be verified at several locations along the member. For this, the

member was divided into ncs=15 parts 0.5 m each, as shown in Figure 6.41. The verification



of the utilization ratio is performed at each of the 16 cross-sections with the member geometry

and loading corresponding to the respective location.

(383
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Figure 6.41 — Verification locations
The values corresponding to the eigenmode are given in Table 6.12.
Table 6.12 — Example: mode shape data
Nceg X h h' Ver v Ocr 0'cr 0"cr d(x)
- m mm - - m? m?! m? m? -
M) @ 3 ) (©) (6) (@) 8) (©) 10)
1 00 250 0.00 0.00 -0.001 0.00 1.68 0.00 0.00
2 05 250 000 022 -0.108 0.84 1.64 -0.26 0.32
3 1.0 250 000 041 -0.191 1.61 1.44 -0.55 0.61
4 1.5 250 0.00 0.55 -0.243 2.26 1.12  -0.73 0.83
5 2.0 250 0.00 0.629 -0.263 2.73 0.75 -0.80 0.97
6 25 250 0.00 0.65 -0.238 3.00 0.35 -0.80 1.02
7 30 250 0.00 0.60 -0.180 3.08 -0.02 -0.70 0.99
8§ 35 250 0.00 052 -0.100 298 -036 -0.68 0.89
9 40 250 000 041 -0.010 272 -0.68 -0.63 0.75
10 4.5 250 0.00 0.30 0.078 2.31 -0.97 -0.60 0.59
11 50 250 0.00 0.21 0.141 1.75 -1.26  0.00 0.42
12 55 300 0.10 0.11 0.140 1.15  -1.08 0.45 0.28
13 6.0 350 0.10 0.05 0.119 0.67 -0.85 048 0.16
14 65 400 0.10 0.01 0.084  0.31 -0.60  0.55 0.07
15 7.0 450 0.10 0.00 0.043 0.08 -0.31 0.60 0.02
16 7.5 500 0.00 0.00 -0.001 0.00 0.00 0.00 0.00

The required geometrical properties are given in Table 6.13.

The total utilization ration is calculated from Eq. (6.73), also given as:

In all expressions where there is a quantity (X) it means that it varies along the member.

emn (X) = el (x) + efin(x) < 1.0

(6.82)
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The utilization due to first order forces &/ (x) is determined for each cross-section using the diagrams

Figure 6.38:

Nga(x) = My pq(x) (6.83)
Afy,  W()fy

gIIVIN(x) =

The obtained results are given by column (7) in Table 6.14.

The second order utilization is calculated in column (8) of Table 6.14 by using the following

expression:
h() g 6.84
B (Ve + 2520000 + 0 (n () (6.84)
ell(x) = n(x)
A(x)fy(acr - 1)
The generalized imperfection calculated according to Eq. (6.72):
nx) = a(x)(/T(x) — O.Z)S(x)f,7 = 1.15a(x)():(x) - O.Z)S(x) (6.85)
Table 6.13 — Example: cross-section properties
Ncs X A Wy,pl Wy,el Wz,el Iz NRd My,Rd
= m mm’x10° mm’x10° mm’x10° mm’x10° mm*x10* kN kNm
216 | @ ) 3) “@ ®) (6) @) @®) ()
1 0.0  81.440 843.8 7572 21343 21343 19138 1983
2 0.5  81.440 843.8 7572 21343 21343 19138 1983
3 1.0 81.440 843.8 7572 21343 21343 19138 1983
4 1.5 81.440 843.8 757.2 213.43 2134.3 1913.8 198.3
5 2.0 81.440 843.8 757.2 213.43 2134.3 1913.8 198.3
6 2.5 81.440 843.8 757.2 213.43 2134.3 1913.8 198.3
7 3.0 81.440 843.8 757.2 213.43 2134.3 1913.8 198.3
8 3.5 81.440 843.8 757.2 213.43 2134.3 1913.8 198.3
9 4.0 81.440 843.8 757.2 213.43 2134.3 1913.8 198.3
10 4.5 81.440 843.8 757.2 213.43 2134.3 1913.8 198.3
11 5.0 81.440 843.8 757.2 213.43 2134.3 1913.8 198.3
12 5.5 85.440 1052.4 946.8 213.45 2134.5 2007.8 247.3
13 6.0 89.440 1271.0 1143.2 213.47 2134.7 2101.8 298.7
14 6.5 93.440 1499.6 1346.5 213.49 2134.9 2195.8 352.4
15 7.0 97.440 1738.2 1556.4 213.51 2135.1 2289.8 408.5
16 7.5 101.440 1986.8 1773.1 213.53 2135.3 2383.8 466.9
with the mode shape at the compression flange (see column (10) of Table 6.12):
h(x)
l _
6f (x) - vcr(x) + 2 Hcr(x) (686)

and the imperfection factor a(x) calculated as an interpolated value from Eq. (6.12):



with imperfection factor a, = 0.49 according to Table 2.2 for welded prismatic columns, and

@(@) = 0z () (

1—9)+a29

2

a;r for welded prismatic beams from Table 2.6:

The ratio of the applied loads ¢ is taken at the most loaded cross-section with first order forces

(in this case section 1):

_ My,pl/My,Ed

2

198.3/89

2228

Ny /Ngq

Then Eq. (6.87) becomes:

a(x) = 0.5a;7(x) +0.49 x 0.5 = 0.5a;7(x) + 0.245

= = =1.0
1913.8/859.4 2.228

The variation of the imperfection factor is given in column (3) of Table 6.14.

Table 6.14 — Example: verification

Dcs X o A Myeq Neq SIMN SHMN EMN
- m - - kNm kN - - -
o @ O 4) ) (6) () ® (&)
1 0.0 0.443 1.01 89.0 859.4 0.90 0.00 0.90
2 0.5 0.443 1.01 81.7 859.4 0.86 0.03 0.89
3 1.0 0.443 1.01 73.3 859.4 0.82 0.12 0.93
4 1.5 0.443 1.01 63.8 859.4 0.77 0.20 0.975
5 2.0 0.443 1.01 53.1 859.4 0.72 0.26 0.977
6 2.5 0.443 1.01 41.3 859.4 0.66 0.25 0.91
7 3.0 0.443 1.01 28.4 859.4 0.59 0.20 0.79
8 3.5 0.443 1.01 14.3 859.4 0.52 0.12 0.64
9 4.0 0.443 1.01 0.8 859.4 0.45 0.05 0.50
10 4.5 0.443 1.01 17.1 859.4 0.54 0.07 0.60
11 5.0 0443 1.01 34.5 859.4 0.62 0.04 0.67
12 5.5 0466 1.03 33.7 859.4 0.56 0.04 0.60
13 6.0 0.488 1.06 32.9 859.4 0.52 0.01 0.53
14 6.5 0.509 1.08 32.0 859.4 0.48 0.01 0.49
15 7.0 0.528 1.10 31.2 859.4 0.45 0.00 0.45
16 7.5 0.548 1.13 30.4 859.4 0.43 0.00 0.43

The obtained utilization ratio along the member is plotted in Figure 6.42. It reaches a maximum

at the 2 m and the maximum utilization is 0.977. The actual maximum utilization, where

eyn (@) = 1.0, is found at 1.82 m.

(6.87)

(6.88)

(6.89)

(6.90)
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In this example, the loading was chosen so that it corresponds to the member resistance;

however, the verification is valid for lower loads as well.

Utilization

1.20
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0.60

0.40

0.20

0.00
0.0 1.5 3.0 4.5 6.0 7.5

Figure 6 42 - Utilization ratio

Furthermore, this verification is compared to GMNIA result. The geometrical imperfection was
considered with an equivalent length of 5 m corresponding to the inflexion point of the
deformation of the compression flange (see Figure 6.43). This leads to 5.8% higher resistance

218
| than the one obtained with the general formulation.

Figure 6 43 — Eigenmode for the applied loading

For comparison, the General Method is also applied. According to Eurocode 3, as summarized
in Section 2.3.4. The critical load multiplier for the applied loads is given in Eq. (6.79). The

ultimate load multiplier was obtained from in-plane GMNIA as:



ault’k = 1.224 (691)

Hence, the normalized slenderness becomes:

— Ayt k 1.224
°p /acr,op } 2.24 (6.92)

The buckling curve for minor axis flexural buckling of welded prismatic columns and lateral-

torsional buckling of prismatic beams (General Case) of the prismatic part is curve ¢, which

gives an imperfection factor a=0.49:

$op = 0.5 (1 + a(Zyp —0.2) + ,Topz) = 0.5(1 + 0.49(0.739 — 0.2) + 0.7392)

(6.93)
= 0.902
The reduction factor is calculated from:
! ! 0.702
X = = = V.
op ., - 2 0.902++0.9022 — 0.7392 (6.94)
d)op + ¢op - Aop
Finally, the verification is performed: | 219
a 0.702 x 1.224
Xopulck _ = 0.86 < 1.0 (6.95)

Y 1.0

The verification according to the General Method is not satisfied and therefore a larger cross-

section should be used to resist the applied force.

6.10 Summary

In this chapter, a general formulation for the stability design of steel columns, beams and beam-
columns with variable geometry, loads and supports was presented. The approach uses the
buckling mode as shape of the initial imperfection and amplitude previously calibrated for the

standard prismatic simply-supported columns and beams according to EFurocode 3.

The method was presented in its general form in a universal format covering any buckling
mode. The various buckling modes are discussed separately, highlighting specific aspects of

the member behaviour.
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It was demonstrated that the general approach is more flexible in comparison to a procedure
that relies on unavoidable calibration for each possible effect that might cause difference form
the uniform member, as non-uniform members, non-standard loading cases, or irregular

distribution of restraints, etc.

The method was thoroughly validated by comparison with a large number of advanced
numerical simulations, yielding very good results with low scatter. Additionally, for standard
prismatic members, its accuracy was similar to the results obtained with the code prescriptions

of clauses 6.3.1, 6.3.2 and 6.3.3 of EC3-1-1.



7 CONCLUSIONS AND FUTURE
RESEARCH

7.1 Conclusions

The goal of this thesis was to contribute towards safer yet economic stability design rules, which
are general, but mechanically consistent. The goal was pursued by: 1) data collection for basic
variables relevant to the stability design in order to provide realistic estimations for their
distributions; 1ii) safety assessment of the existing stability design rules to ensure that the
existing imperfection factors correspond to the target reliability in the Eurocodes; and iii) the
development of a general formulation for stability design of columns, beams and beam-

columns.

Relatively to the first objective, the data collection for basic variables relevant to stability
design rules, it was carried out in the scope of the European project SAFEBRICTILE. Data for
material properties of steel were collected from: i) steel profiles and plates in different steel
grades fabricated in 2013 and 2014; coupon tests performed at universities around Europe; iii)
from the literature (collection in Simoes da Silva et al., 2009) and data collected within the
framework of the European project OPUS). Concerning the geometrical properties, data
collection for geometrical properties of steel H and I profiles, according to the specifications of
EN 10034:1993, was performed among several steel producers in Europe: ArcelorMittal,
Dillinger, Salzgitter, Stahlwerk-Thueringen, TataSteel and also among the partners of the
SAFEBRICTILE project. This collection allowed for the recommendation of normalized

distributions about the material and geometrical properties of rolled steel profiles. These
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recommendations were considered in the final draft of prEN 1993-1-1 (CEN/TC250, 2017) for

calibration of partial factors in its Annex E.

Furthermore, the data collection was extended to the member imperfections as a part of the
experiments carried out on web-tapered members. The collection provided valuable
information for the distributions of the imperfections for welded sections. The collected data
for member imperfections was combined with the results from the experiments: out-of-
straightness and residual stresses. It was shown that despite the high variation, the mean values
of the member imperfections were lower than those assumed in the calibration of the buckling
curves (Strating & Vos, 1973; Beer & Schulz, 1970), in line with the values assumed in the
AISC standard, which allows for further studies in this field and improvement of the accuracy

of the Eurocode 3-1-1 design rules.

Moreover, as a part of the second objective, safety assessment of the European stability
design rules on members in compression, bending and combination of bending and
compression. The results obtained led to the following main conclusions: the partial factor ym:
for buckling resistance of columns, beams and beam-columns may be kept as ym1=1.0 for the
current mix of steels that are sold in Europe (i.e., that match the standard characterization for
the tensile properties of steel, cross-section geometry and Young’s modulus that are included
in Annex E of EN 1993-1-1 (2017) and result from the SAFEBRICTILE project), provided that
the yield stress of steel is taken from product standards (EN 10025-2:2004) and into account
the modified specification of buckling curves in prEN1993-1-1(2017). Additionally, the

following conclusions are also highlighted:

— Influence of the adopted minimum yield stress using EN 10025 or Table 3.1 of Eurocode
3: the level of the minimum yield stress was assessed for both minor and major axis of
flexural buckling of hot-rolled columns. It was shown that in both cases the values
proposed in EC3 can reach up to 10% non-conservative in certain cases. These
conclusions are considered applicable for beams and beam-columns.

— Imperfection factor for flexural-buckling of columns about minor axis which are made
of steel grade S460: it was shown that the imperfection factor currently prescribed for
flexural buckling of steel columns made of S460 about the minor axis is not adequate.
This change is already taken into consideration in the final draft of the new version

Eurocode 3.



— For beams, the results highlight a strong sensitivity of ym1~ to the subsets that are
considered in the calculation. This trend is also confirmed by comparing these results
with the corresponding results from Rebelo et al. (2009) and Simées da Silva et al.
(2009). This difference led to the consideration of a lower tail approximation that
significantly improved the homogeneity of results.

— Regarding the different design methods for LTB considered, the conservative nature of
the General Case was confirmed, the Special Case systematically led to higher values
of ymi” for the majority of subsets and the accuracy of the New EC3 method was
confirmed. Concerning this method, an adjustment of the imperfection factors is
proposed for cross-sections with h/b >1.2 and flange thickness higher than 40 mm,
because this geometric range was not considered in the original derivation of the
imperfection factors. This change is already implemented in the final draft of prEN
1993-1-1;

— Regarding beam-columns, the results for the different buckling modes, with and
without, lateral-torsional buckling were found very similar, showing that the interaction
coefficients are calibrated with sufficient accuracy for both cases.

—  The results highlight lower ymi” - values than the ones calculated for columns and beams

separately and thus indicating that the interaction factors are provide enhanced safety;

Finally, a general formulation for the buckling resistance of single members built-up or
not, uniform or not, with complex support conditions or not was developed in line with the
third objective. It relies on the consistent identification of the second order contributions in
accordance with the applied loading, amplified by the imperfection according to the critical
buckling mode. The verification is implemented as a sequence of cross-section verifications

along the member length.

This general formulation is easily implemented as an additional cross-sectional verification or
has a hand calculation procedure, provided the user can obtain the shape of the buckling mode
and its derivatives. This is of enormous practical interest for the design of steel structures as it
eliminates one of the major barriers in the stability verification of steel structures, as it greatly

simplifies the implementation in structural design software.

The method was thoroughly validated by comparison with a large number of advanced

numerical simulations, yielding very good results with low scatter. Additionally, for standard
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prismatic members, its accuracy was similar to the results obtained with the code prescriptions

of clauses 6.3.1, 6.3.2 and 6.3.3 of EC3-1-1.

7.2 Future research

The work carried out in the scope of this thesis has its limitations. In the following paragraph,

the aspects which are considered worth exploring in the future are summarized:

Reliability assessment of the stability design rules for welded sections. The
reliability assessment of the stability design rules in Chapter 5 was carried out for hot-
rolled sections; it is important extending it to welded sections since these are frequently
used in steel design practice and it is important to ensure that they retain the same level
of safety.

The data collection on material and geometrical properties and imperfections shall be
continued in order to provide a solid base for future assessments and calibration of new
design rules. This can be easily achieved by maintaining the European database of steel
properties developed in the scope of SAFEBRICTILE.

Imperfection factors for members in HSS. Nowadays, the use of high strength steels
is continuously increasing. This requires the adjustment the stability design rules in
order to incorporate the specific aspects related to the use of HSS, such as for example,
more favourable residual stress distributions, enhanced material properties, different
plastic behaviour, etc.

Plasticity effects at low slenderness. In the development of the general formulation it
was noted that it requires an adjustment to account for plasticity effects in the low
slenderness. Their incorporation shall be achieved in a transparent way so that it can be
applied to various types of members, loading and support conditions.

Extend the scope of the validation. The general formulation was validated for I-
sections and various types of members, loading and supports. This validation should be
extended to different types of cross-sections, slender cross-sections and bi-axial

bending.
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NOTATIONS

Lowercase Latin letters

ao, a, b, c, d
b

<]

I

hmax
hmin

17
hxc JAim

Ky, Key, Koz, ez

ro
Ve
¥t
tr

tw

Class indexes for buckling curves according to EC3-1-1

Cross-section width/ Retrogression coefficient

Maximum amplitude of a member imperfection

Yield stress

Cross-section height | 243
Maximum cross section height
Minimum cross section height

Cross-section height at xc. jin'

Interaction factors dependent of the phenomena of instability and plasticity

involved

Number of cases

Polar radius of gyration
Experimental resistance
Theoretical resistance
Flange thickness

Web thickness
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v(x)
vo(x)
Ver(X)
w(x)
wo(x)
Wer(X)
Xe, lim”

XeN, Xe,M, Xe,uN'

Xmin
X-X

Yy

Transverse displacement along z-axis

Initial transverse displacement along z-axis

Transverse displacement component of the mode shape along z-axis
Transverse displacement along y-axis

Initial transverse displacement along y-axis

Transverse displacement component of the mode shape along y-axis
Second order failure cross section for a high slenderness level

Denomination of the failure cross section (to differentiate from the type of
loading it refers to): N — do to axial force only; M — due to bending moment

only; MN — due to the combined action of bending moment and axial force
First order failure cross section

Second order failure cross section

Location corresponding to the smallest cross section

Axis along the member

Cross-section axis parallel to the flanges

Cross-section axis perpendicular to the flanges

Uppercase Latin letters

A
Ag
Amin
Ch

Cn

Cross-section area

Gross cross-section area

Cross-section area of the smallest cross section in of a tapered member
Lateral-torsional buckling modification factor

Equivalent moment factor according to clause 6.3.3



CmS
Cii,, Cji

Cw

Eyq

Fe

L

My, ra

M, cr

Mex

MEaq

Equivalent moment factor
Plasticity factors according to clause 6.3.3
Warping constant

Modulus of elasticity

Design value of the actions
Elastic critical stress

Specified minimum yield stress
Shear modulus

Torsional moment

Moment of inertia y-axis
Moment of inertia z-axis
Torsional constant

Member length

Length between points that are either braced against lateral displacement of

the compression flange or braced against twist of the cross section

Limiting length

Limiting length

Bending moment

Design buckling resistance moment
Elastic critical moment

Factored buckling strength about x-x axis
Factored buckling strength about y-y axis

Design bending moment
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M,

M;x
M;x

Mpiy,ra

My'Ed

Mpl,z,Rd

Mz,Ed

Ner
N, crx
N, cry
N, crz

NEq

P,
P,

Ra

Nominal flexural strength

Plastic bending moment

Maximum bending moment design value about x-x axis

Maximum bending moment design value about y-y axis

Design value of the plastic resistance to bending moments about y-y axis
Bending moments, y-y axis

Design bending moment, y-y axis

Design value of the plastic resistance to bending moments about z-z axis
Bending moments, z-z axis

Design bending moment, z-z axis

Normal force

Elastic critical force

Elastic critical force for torsional buckling

Elastic critical force for in-plane buckling

Elastic critical force for out-of-plane buckling

Design normal force

Plastic resistance to normal force at a given cross section

Design plastic resistance to normal forces of the gross cross section
Factored buckling strength

Probability of failure

Nominal buckling strength

Maximum axial design values acting on the member

Design value of the resistance



Sx
W
VVy, el
Wypi
VVz, el
VVz, Dl

Zx

Elastic section modulus about the x-axis
Elastic warping modulus

Elastic section modulus y-y axis

Plastic section modulus y-y axis

Elastic section modulus z-z axis

Plastic section modulus z-z axis

Plastic section modulus about the x-axis

Uppercase Greek letters

0]

Cumulative distribution function (CDF) for the standard normal distribution

Lowercase Greek letters

CE

OR

Qa, GQEC3

ab(Method)

Angle of taper

FORM (First Order Reliability Method) sensitivity factor for effects of

actions

FORM (First Order Reliability Method) sensitivity factor for resistance
Imperfection factor according to EC3-1-1

Load multiplier which leads to the resistance for a given method

Load multiplier which leads to the elastic critical resistance

Minimum amplifier for the in-plane design loads to reach the elastic critical

resistance with regard to lateral or lateral-torsional buckling

Load amplifier defined with respect to the plastic cross section bending

Moment
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ol

Clultk

Ymo

Ml

YF

vf

Vsd

Ym
YRd

00

EM
e’

EN

nLr

Load amplifier defined with respect to the plastic cross section axial force

Minimum load amplifier of the design loads to reach the characteristic

resistance of the most critical cross section
Reliability index
Partial factor for resistance associated with cross-section checks

Partial factor for resistance of members to instability assessed by member

checks

Partial factor for actions, also accounting for model uncertainties and

dimensional variations

Partial factor for actions, which takes account of the possibility of unfavorable

deviations of the action values from the representative values

Partial factor associated with the uncertainty of the action and/or action effect

model

Partial safety factor for a material property also accounting for model

uncertainties and model variations

Partial factor for a material property

Partial factor associated with the uncertainty of the resistance model;
General displacement of the imperfect shape

General displacement of the critical mode

Utilization ratio at a given cross section

Utilization ratio regarding first order bending moment M

Utilization ratio regarding the second order bending moment
Utilization ratio regarding the axial force N

Generalized imperfection

Generalized imperfection for lateral-torsional buckling



Niot Total generalized imperfection

Ny Generalized imperfection for flexural buckling, y-y axis
Nz Generalized imperfection for flexural buckling, z-z axis
Zop

Global non-dimensional slenderness of a structural component for out-of-

plane buckling according to the general method of clause 6.3.4

A Non-dimensional slenderness

Mx) Non-dimensional slenderness at a given position

Zip Non-dimensional slenderness for in-plane flexural buckling

Ay Non-dimensional slenderness for flexural buckling, y-y axis

A Non-dimensional slenderness for flexural buckling, z-z axis

At Non-dimensional slenderness for lateral-torsional buckling 1249
ALt Plateau length of the lateral torsional buckling curves for rolled sections
A Plateau relative slenderness

® Over-strength factor

¢ Ratio between opi™ and op™
p Cross-section factor

c Standard deviation

0(x) Twist rotation

Ao(x) Initial twist rotation

Ocr(X) Twist rotation component of the mode shape

x Reduction factor



XLT Reduction factor due to lateral-torsional buckling

Anum Reduction factor (numerical)

Xop Reduction factor for the non-dimensional slenderness 4

Xy Reduction factor due to flexural buckling, y-y axis

Xz Reduction factor due to flexural buckling, z-z axis

W Ratio between the maximum and minimum bending moment, for a linear

bending moment distribution
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ACRONYMS AND ABBREVIATIONS

CoV
FB
FBy-y
FB z-z
FEM
FORM
FTB
GF
GM
GMNIA
LBA
LTB
SORM
TB

UDL

Coefficient of variation

Flexural buckling

Flexural buckling about the major axis
Flexural buckling about the minor axis
Finite Element Method

First Order Reliability Method
Flexural-torsional buckling

General formulation

General Method

Geometrical and Material Non-linear Analysis with Imperfections
Linear Buckling Analysis

Lateral Torsional-Buckling

Second Order Reliability Method
Torsional buckling

Uniformly distributed loading
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