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 ABSTRACT 
 

The European stability design rules for prismatic steel columns and beams are classically based 

on the buckling curve approach, whereas the verification of beam-columns combines the 

resistances of a column and a beam through interaction factors. For generic single members, 

built-up or not, uniform or not, with complex support conditions or not, the available 

possibilities for such cases are the General Method given in clause 6.3.4 of Eurocode 3 (2005) 

or advanced numerical simulations. The applicability of the General Method, however, is 

limited and in some aspects inconsistent Simões da Silva et al. (2010). For instance, when 

applied to non-uniform members, the choice of the imperfection factors is not straight-forward 

and their definition may lead to either unsafe or over conservative solutions. As an alternative 

to the General Method, the stability of non-uniform members can be analysed using numerical 

GMNIA which, again, requires the definition of the correct imperfection shape and magnitude, 

but it is also a time-consuming procedure; and the output and its reliability are highly dependent 

on the experience of the user. 

On the other hand, the safety of design rules in the Eurocodes is based on the limit state design, 

where relevant design situations are distinguished by the use of partial factors accounting for 

the uncertainties related to loading and resistance. Hence, the design rules and their accuracy 

depend on the scatter of the basic variables such as material properties, geometric properties 

and imperfections. It is therefore required to appropriately characterize the statistical 

distributions of these basic variables in order to comply with the (semi-) probabilistic safety 

level assessment of design rules. The buckling curves rely on the calibration of imperfection 

factors in order to estimate the maximum resistance which gives the flexibility of adjusting 

imperfection factors according to the cross-section shape, steel grade and other relevant 
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parameters. This feature allows the adoption of the Ayrton-Perry design philosophy for more 

general applications. 

In this thesis, a novel general formulation for stability design of steel columns, beams and beam-

columns with variable geometry, loads and supports covering any buckling mode is proposed. 

The verification is based on the buckling mode as shape of the initial imperfection with an 

amplitude previously calibrated for the standard prismatic simply-supported columns and 

beams in Eurocode 3. In order to ensure its reliability, safety assessment of the Eurocode 3-1-1 

stability design rules for prismatic columns, beams and beam-columns are assessed using 

statistical data which reflects the steel production nowadays.  

This general formulation is transparent and consistent with the Eurocode 3-1-1 design rules. It 

avoids the calibration of additional factors because it is applied as an interaction equation and 

the first and second order contributions to the longitudinal stress utilization are added for each 

cross-section along the member length. To promote its ease of use, several aspects regarding 

the member behaviour in the context of a specific buckling mode are discussed. Finally, 

validation of the approach is carried out based on large number of numerical simulations 

calibrated to experimental tests. The results confirm its consistency and accuracy. 

 

Keywords: Stability, Steel, General formulation, Reliability 
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RESUMO 
 

As regras Europeias de dimensionamento de estabilidade para colunas e vigas de aço 

prismáticos são classicamente baseadas na abordagem da curva de encurvadura, enquanto a 

verificação de vigas-coluna combina as resistências de uma coluna e uma viga através de fatores 

de interação. Para elementos separados e genéricos, soldados ou não, uniformes ou não, com 

condições de suporte complexas ou não, as opções disponíveis para tais casos são o Método 

Geral dado na cláusula 6.3.4 do Eurocódigo 3 (2005) ou o recurso a métodos computacionais 

avançados (FEM). A aplicabilidade do Método Geral, entretanto, é limitada e, em alguns 

aspetos, inconsistente Simões da Silva et al. (2010). Por exemplo, quando aplicada a elementos 

não uniformes, a escolha dos fatores de imperfeição não é direta e sua definição pode levar a 

soluções inseguras ou conservadoras. Como uma alternativa ao Método Geral, a estabilidade 

de membros não uniformes pode ser analisada usando analise numérica avançada que, por sua 

vez, requer a definição da forma e magnitude correta da imperfeição inicial, que é um 

procedimento computacionalmente exigente sendo o resultado altamente dependente da 

experiência do utilizador. 

Por outro lado, a segurança das regras de dimensionamento nos Eurocódigos baseia-se na 

verificação de estado limite, em que as situações de dimensionamento relevantes são 

distinguidas pela utilização de fatores parciais responsáveis pelas incertezas relacionadas com 

o carregamento e a resistência. Assim, as regras de dimensionamento e sua precisão dependem 

da dispersão das variáveis básicas, como propriedades do material, propriedades geométricas e 

imperfeições. Portanto, é necessário caracterizar apropriadamente as distribuições estatísticas 

dessas variáveis básicas, a fim de cumprir a avaliação (semi-) probabilística do nível de 

segurança das regras de dimensionamento. As curvas de encurvadura baseiam-se na calibração 
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dos fatores de imperfeição para estimar a resistência máxima, o que dá a flexibilidade de ajustar 

os fatores de imperfeição de acordo com a forma da seção transversal, grau de aço e outros 

parâmetros relevantes. Esse recurso permite a adoção da filosofia de dimensionamento Ayrton-

Perry para aplicações mais gerais. 

Nesta tese, uma nova formulação geral para análise de estabilidade de colunas, vigas e vigas-

colunas de aço com geometria variável, cargas e condições de fronteira para qualquer modo de 

encurvadura é proposta. A verificação é baseada no modo de encurvadura como forma da 

imperfeição inicial com uma amplitude previamente calibrada para as colunas e vigas simples 

prismáticas padrão no Eurocódigo 3. Para garantir sua fiabilidade, a avaliação de segurança do 

Eurocode 3-1-1, as regras de dimensionamento de estabilidade para colunas, vigas e vigas-

coluna prismáticas são avaliadas usando dados estatísticos que refletem a produção de aço 

atualmente. 

Esta formulação geral é transparente e consistente com as regras de dimensionamento no 

Eurocódigo 3-1-1. Evita a calibração de fatores adicionais porque é aplicada como uma equação 

de interação e as contribuições de primeira e segunda ordem para a utilização de tensão 

longitudinal são adicionadas para cada seção transversal ao longo do comprimento do elemento. 

Para promover a sua facilidade de uso, vários aspetos relacionados como comportamento do 

elemento no contexto de um modo específico de encurvadura são discutidos. Finalmente, a 

validação desta abordagem inovadora foi realizada através de um extenso estudo numérico 

paramétrico, baseado em modelos previamente calibrados por ensaios experimentais. Os 

resultados confirmam sua consistência e precisão. 

 

Palavras-chave: estabilidade, aço, formulação geral, fiabilidade 

 



 

 
 

| v 

 

ACKNOWLEDGEMENTS 
 

This has been an interesting journey and many people contributed to its successful end. In the 

following lines I would like to express my gratitude to those who took part of it. 

First and most, I would like express my deepest gratitude to my supervisor, Professor Luís 

Simões da Silva, for his guidance, encouragement and thrust. He provided me with excellent 

working conditions; always made sure that I was following the right direction and offered me 

a broader vision of the world. He gave me the opportunity to participate in the European project 

SAFEBRICTILE, several ECCS TC8 meetings and numerous international conferences, where 

I could see the value of my work. 

Big thanks are also due to my co-supervisor, Dr. Liliana Marques. She has always been 

supportive, even when away, with a pinch of humour and sarcasm. I am very glad we had the 

opportunity to work together, but even more that I found a great friend.  

Special thanks to the SAFEBRICTILE project partners for the interesting discussions and 

suggestions for improving my work during the project meetings; and also for their patience 

when I was making my first steps as part of an European project. 

I am very grateful to the colleagues and friends from ISISE, for making the daily life easier, 

funnier and many times putting a smile on my face; for all discussions we had that improved 

my work; and for helping me in difficult moments (especially Manuela and Rui). 

The financial support of the Portuguese Foundation of Science and Technology under grant 

agreement SFRH/BD/99702/2014 is gratefully acknowledged and also the support of my host 



STABILITY DESIGN OF STEEL COLUMNS, BEAMS AND BEAM-COLUMNS: 
BEHAVIOUR, GENERAL FORMULATION AND RELIABILITY 
 

 

 
 

vi | 

institution ISISE – Institute for Sustainability and Innovation in Structural Engineering (POCI-

01-0145-FEDER-007633). 

I would also like to thank to all of my friends from Coimbra Toastmasters Club, for helping me 

to become a better speaker (especially in Portuguese) and for encouraging me to never stop 

improving myself in whatever I do. 

Heartfelt thanks to my friends, for being able to distract me and show me that there are more 

things in life besides work; for maintaining our friendship even though we do not spend as 

much time nowadays.  

Nothing of this would have been possible without the unconditional support of my family. They 

were always present to cheer me up when I was feeling down and to share my happiness even 

when I was away from home for a long time. Благодаря ви. 

Finally, big thanks to my very special person, for all the passion and affection that he brought 

into my life; for encouraging me and making me believe in myself; for showing me how to 

embrace life as he does every day. It is to him that I dedicate this thesis. 

 



 

 
 

| vii 

 

Contents 
 

Abstract ...................................................................................................................................... i 

Resumo ..................................................................................................................................... iii 

Acknowledgements ................................................................................................................... v 

1 Introduction ...................................................................................................................... 1 

1.1 Motivation and objectives ................................................................................................... 1 

1.2 Scope ..................................................................................................................................... 4 

1.3 Outline of the dissertation ................................................................................................... 5 

2 Stability design: background and existing design rules ................................................ 7 

2.1 Introduction .......................................................................................................................... 7 

2.2 Buckling of members ........................................................................................................... 9 

2.2.1 Basic equations .................................................................................................................. 9 

2.2.2 Critical forces and amplification relationships ................................................................ 11 

2.3 The Eurocode 3 stability design rules .............................................................................. 14 

2.3.1 Members in compression ................................................................................................. 14 

2.3.2 Members in bending ........................................................................................................ 16 

2.3.3 Members in bending and compression ............................................................................ 20 

2.3.4 General method for lateral and lateral-torsional buckling of structural components ...... 25 

2.4 Background of the European design rules ....................................................................... 26 

2.4.1 Introduction ..................................................................................................................... 26 

2.4.2 Members in compression ................................................................................................. 26 

2.4.3 Members in bending ........................................................................................................ 29 

2.4.4 Members in bending and compression ............................................................................ 32 

2.5 Buckling resistance outside Europe ................................................................................. 34 



STABILITY DESIGN OF STEEL COLUMNS, BEAMS AND BEAM-COLUMNS: 
BEHAVIOUR, GENERAL FORMULATION AND RELIABILITY 
 

 

 
 

viii |

2.5.1 Introduction ...................................................................................................................... 34 

2.5.2 Design of members in compression ................................................................................. 34 

2.5.3 Design of members in bending ........................................................................................ 35 

2.5.4 Design of members under bending and axial force ......................................................... 36 

2.6 Structural design and code verification ........................................................................... 36 

2.7 Recent advances ................................................................................................................. 40 

2.7.1 Introduction ...................................................................................................................... 40 

2.7.2 Members in compression ................................................................................................. 42 

2.7.3 Members in bending ........................................................................................................ 45 

2.7.4 Members in bending and compression ............................................................................ 47 

2.7.5 Summary .......................................................................................................................... 49 

3 Experimental buckling behaviour of non-uniform steel members ............................ 51 

3.1 Introduction ........................................................................................................................ 51 

3.2 Experiments by others ....................................................................................................... 53 

3.2.1 Experiments on tapered members .................................................................................... 53 

3.2.2 Member imperfections ..................................................................................................... 56 

3.3 Experimental programme ................................................................................................. 57 

3.3.1 Scope................................................................................................................................ 57 

3.3.2 Column tests .................................................................................................................... 59 

3.3.3 Beam tests ........................................................................................................................ 61 

3.3.4 Beam-column test ............................................................................................................ 64 

3.3.5 Loading protocol .............................................................................................................. 65 

3.4 Experimental results .......................................................................................................... 66 

3.4.1 Complementary tests ....................................................................................................... 66 

3.4.2 Column tests .................................................................................................................... 74 

3.4.3 Beam tests ........................................................................................................................ 82 

3.4.4 Beam-column test ............................................................................................................ 88 

3.5 On the variation of the material and geometrical imperfections ................................... 91 

3.5.1 Introduction ...................................................................................................................... 91 

3.5.2 Residual stresses .............................................................................................................. 91 

3.5.3 Geometrical imperfections ............................................................................................... 94 

3.6 Summary ............................................................................................................................. 96 

4 Numerical model ............................................................................................................ 97 

4.1 Introduction ........................................................................................................................ 97 

4.2 Numerical model ................................................................................................................ 97 

4.2.1 General description .......................................................................................................... 97 



CONTENTS 
 

 

 
 

| ix 

4.2.2 Material properties........................................................................................................... 98 

4.2.3 Boundary conditions ........................................................................................................ 98 

4.2.4 Loading ............................................................................................................................ 99 

4.2.5 Imperfections ................................................................................................................. 100 

4.3 Comparison with experimental results .......................................................................... 101 

4.3.1 Introduction ................................................................................................................... 101 

4.3.2 Columns ......................................................................................................................... 101 

4.3.3 Beams ............................................................................................................................ 105 

4.4 Final remarks ................................................................................................................... 109 

5 Safety assessment of design rules ................................................................................ 111 

5.1 Introduction ...................................................................................................................... 111 

5.2 Methods for safety assessment ........................................................................................ 113 

5.2.1 Structural reliability ....................................................................................................... 113 

5.2.2 Design assisted by testing .............................................................................................. 114 

5.3 Statistical distributions of basic variables ..................................................................... 116 

5.3.1 Introduction ................................................................................................................... 116 

5.3.2 Material properties......................................................................................................... 117 

5.3.3 Geometrical dimensions ................................................................................................ 118 

5.4 Safety level of the design rules ........................................................................................ 119 

5.4.1 Scope and assumptions .................................................................................................. 119 

5.4.2 Design resistance ........................................................................................................... 121 

5.4.3 Parametric studies .......................................................................................................... 122 

5.5 Columns ............................................................................................................................ 126 

5.5.1 Methodology ................................................................................................................. 126 

5.5.2 Results and discussion – Minor axis flexural buckling ................................................. 127 

5.5.3 Results and discussion – Major axis flexural buckling ................................................. 131 

5.5.4 Influence of the number of random variables ................................................................ 132 

5.5.5 Assessment of the partial factor .................................................................................... 135 

5.6 Beams ................................................................................................................................ 137 

5.6.1 Methodology ................................................................................................................. 137 

5.6.2 Overview ....................................................................................................................... 138 

5.6.3 Results and discussion: General Case ........................................................................... 140 

5.6.4 Comparison of the design methods ............................................................................... 141 

5.6.5 Buckling curves for the New EC3 method .................................................................... 146 

5.6.6 Influence of the number of random variables ................................................................ 147 

5.6.7 Assessment of the value of the partial factor ................................................................. 148 



STABILITY DESIGN OF STEEL COLUMNS, BEAMS AND BEAM-COLUMNS: 
BEHAVIOUR, GENERAL FORMULATION AND RELIABILITY 
 

 

 
 

x |

5.7 Beam-columns .................................................................................................................. 151 

5.7.1 Methodology .................................................................................................................. 151 

5.7.2 Results without LTB ...................................................................................................... 152 

5.7.3 Results with LTB ........................................................................................................... 153 

5.7.4 Influence of the number of basic variables .................................................................... 154 

5.7.5 Assessment on the value of the partial factors ............................................................... 154 

5.8 Summary ........................................................................................................................... 155 

6 A GENERAL FORMULATION FOR THE STABILITY DESIGN OF STEEL 

COLUMNS, BEAMS AND BEAM-COLUMNS............................................................... 159 

6.1 Introduction ...................................................................................................................... 159 

6.2 Buckling of beam-columns: additional considerations ................................................. 160 

6.2.1 Ayrton-Perry equation for beam-columns ..................................................................... 160 

6.2.2 Torsion of non-uniform members .................................................................................. 168 

6.3 General formulation for the stability verification of steel members ........................... 169 

6.3.1 Overview ........................................................................................................................ 169 

6.3.2 General formulation (GF) .............................................................................................. 171 

6.3.3 Buckling cases ............................................................................................................... 173 

6.4 Flexural buckling of columns .......................................................................................... 175 

6.4.1 Verification format ........................................................................................................ 175 

6.4.2 Design resistance ........................................................................................................... 177 

6.4.3 Consistency with Eurocode 3 ........................................................................................ 177 

6.5 Flexural buckling of beam-columns ............................................................................... 180 

6.5.1 Verification format ........................................................................................................ 180 

6.5.2 On the beam-column behaviour ..................................................................................... 181 

6.5.3 Design resistance ........................................................................................................... 184 

6.5.4 Consistency with Eurocode 3 ........................................................................................ 184 

6.6 Lateral-torsional buckling of beams ............................................................................... 185 

6.6.1 Verification format ........................................................................................................ 185 

6.6.2 On the generalized imperfection factor.......................................................................... 188 

6.6.3 Design resistance ........................................................................................................... 191 

6.6.4 Consistency with Eurocode 3 ........................................................................................ 191 

6.7 Lateral-torsional buckling of beam-columns ................................................................. 194 

6.7.1 Introduction .................................................................................................................... 194 

6.7.2 Verification format ........................................................................................................ 195 

6.7.3 Beam-column buckling modes ...................................................................................... 197 

6.7.4 Design resistance ........................................................................................................... 199 



CONTENTS 
 

 

 
 

| xi 

6.7.5 Consistency with the uniform member .......................................................................... 200 

6.8 Validation ......................................................................................................................... 201 

6.8.1 Scope ............................................................................................................................. 201 

6.8.2 Methodology ................................................................................................................. 201 

6.8.3 Parametric study ............................................................................................................ 202 

6.8.4 Statistical analysis ......................................................................................................... 204 

6.8.5 Comparison with analytical methods from Marques (2012) ......................................... 206 

6.8.6 Comparison with the General Method........................................................................... 211 

6.9 Example ............................................................................................................................ 212 

6.10 Summary .......................................................................................................................... 219 

7 Conclusions and future research ................................................................................. 221 

7.1 Conclusions ....................................................................................................................... 221 

7.2 Future research ................................................................................................................ 224 

7.3 Publications ...................................................................................................................... 225 

7.3.1 Publications in international journals (ISI) .................................................................... 225 

7.3.2 Other journals ................................................................................................................ 226 

7.3.3 Publications in international conference proceedings ................................................... 226 

References.............................................................................................................................. 229 

Notations ................................................................................................................................ 243 

Acronyms and abbreviations ............................................................................................... 251 

 





 

 
 

| 1 

 

1 INTRODUCTION 

1.1 Motivation and objectives 

The development of structural design codes is guided by the need to provide practical design 

rules that cover recurring design situations with an appropriate level of safety and ease of use. 

These are also the aims of the Structural Eurocodes between the member states in the EU, i.e. 

reduction of the National Determined Parameters (Kuhlmann & Rasche, 2017). 

Since the release of part 1-1 of Eurocode 3 (CEN, 2005) a lot of research work has been done 

at the European and global levels, aiming at the improvement of the design rules. Within the 

ongoing revision of the Structural Eurocodes, these efforts led to the final draft of prEN 1993-

1-1 (CEN/TC250, 2017) that includes many of the modifications and extensions proposed over 

the last years.  

The Eurocode 3 procedures, existing and new proposals, have been calibrated to safety levels 

which are not necessarily uniform: within the design rule and/or in comparison with other 

design rules. This results in lack of consistency and different safety levels which can 

compromise the design. In the past, several reliability assessments were carried out, e.g. in the 

research projects Partial safety factors for resistance of steel elements to EC3 and EC4 - 

Calibration for various steels products and failure criteria (Chabrolin et al., 2002) and 

PROQUA – Probabilistic quantification of safety of a steel structure highlighting the potential 

of steel versus other materials (Cajot et al., 2005), which aimed at the justification of the partial 

factors used in Eurocode 3. Generally, there is a broad agreement on the partial factor γM0, 

which is not the case regarding the stability design rules and γM1. This partial factor deviates 

from the recommended value in several member states (Germany, Austria, Denmark) while 
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some authors claim that it is different for the different stability phenomena, i.e. for the 

interaction between bending and axial force (Chabrolin et al., 2002) and it could also be non-

uniform within the same rule Taras (2010). 

Nevertheless, even though the stability design of members is a classical topic, the extensions, 

corrections and improvements that evolved over time since the beginning of the development 

of the column buckling curves in the 1960’s and 70’s were not very often assessed under the 

same assumptions, resulting in scatter of the safety level across the range of cases covered by 

the design formulas. 

In addition, there is a continuous development of new structural steels with largely improved 

mechanical properties that, combined with the stricter quality control procedures for the 

geometrical dimensions of steelwork, also contribute to the need for reassessment of the safety 

levels in order to keep the competitiveness of the steel construction.  

Regarding the basic variables that are required in a reliability assessment, a considerable 

advantage for the standardization, application and economy of design rules can be achieved by 

maintaining a database of statistical variation of all relevant basic input parameters (Simões da 

Silva et al., 2009), (Rebelo et al., 2009). Such collection can serve for the critical assessment 

and comparison in future versions of Eurocode 3, but also for the evaluation of new design rules 

on the same basis as the calibration of the existing ones. 

From a methodological point of view, the verification of columns, beams and beam-columns 

based on the generalized imperfection approach leads to good agreement with experimental 

results, with a good balance between accuracy and economy. However, their scope is still 

limited to uniform members effectively braced at the ends only. The more general case of single 

members, built-up or not, uniform or not, with complex support conditions or not, is not directly 

covered by the generalized imperfection approach. Hence, Eurocode 3-1-1 proposes an 

alternative method, denoted general method to address such cases. However, recent research 

work shows the wide scatter of the method varying from -50% (unsafe) up to 70% (safe), when 

applied to frames (Naumes, 2009). Additionally, in Simões da Silva et al. (2010) and Marques 

(2012) this was also confirmed, probably because of the lack of mechanical background. In 

Marques (2012), the (analytically backed) account for a design location was provided for 

flexural and lateral-torsional buckling or web-tapered columns and beams respectively and 

applied to beam-columns based on interaction formulae approach. However, a general solution 

is still missing.  
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Finally, nowadays the available computational resources together with programming 

techniques and symbolic mathematical manipulation permit a higher level of accuracy in the 

prediction of the stability behaviour, thus allowing for a new generation of design codes based 

on numerical analyses using FEM (finite element method). All these improvements are the tools 

to be used in the future structural design where the classical analysis and design of individual 

members (extracted from the real structure) will be replaced by the analysis and design of sub-

structures and/or entire structures. 

All these points yielded as a motivation for this research with the main focus of the dissertation 

on the stability design of steel members, keeping a strong relation to their respective safety 

levels.  

Therefore, the goal of this work is to contribute towards safer yet economic stability 

design rules, which are general, but mechanically consistent.  

The goal was achieved through the completion of the following objectives: 

x Data collection for basic variables: these were essential for the outcome of the safety 

assessment since the statistical analysis is always performed in the basis of assumed 

distributions. It was aimed to collect data and to understand the distributions which 

reflect the steel production nowadays.  

x Safety assessment of design rules: it was necessary to assess to what extent the existing 

rules comply with the target reliability in the Eurocode 3. It was also useful in order to 

understand the background of these rules. 

x General stability design methodology: The third objective was the development of a 

methodology which is capable of dealing with various aspects regarding the stability 

design of members. Since the use of computer calculations has become the standard 

practice, it was aimed to incorporate it to some extent in the design process, yet keeping 

simplicity and mechanical consistency. For the complete validation of this approach, 

experiments on web-tapered members were carried out; the test results helped to 

confirm and validate the numerical model usually adopted for the validation of stability 

design rules. The experimental programme also contributed towards additional 

knowledge for the member imperfections, namely the residual stresses and initial out-

of-straightness. 
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A part of this research was performed in line with the European RFCS project RFSR-CT-2013-

00023 SAFEBRICTILE. In the project the main objective was the harmonization of the 

reliability level of design rules for steel structures covering modes driven by ductility, stability 

and fracture. The project provided an objective safety assessment procedure which was applied 

to the studied failure modes using statistical data collected throughout the project reflecting the 

current steel market. Another part of the thesis was carried out in line with the objective of the 

nationally funded project TAPERSTEEL PTDC/ECM-EST/1970/2012. In TaperSteel, the main 

objective was to develop design rules for web tapered steel members. Hence, following the 

research goals this work comprises safety of the existing design rules and makes the necessary 

towards the development of consistent design rules for the design of non-uniform members.  

1.2 Scope  

The dissertation covers the stability design of steel members with a strong emphasis on the 

accuracy of the adopted design approaches. The steel members included by this work are 

uniform and non-uniform in geometry and/or loading and/or boundary conditions/restraints. 

Their assessment and proposed design approaches are based on analytical, experimental and 

numerical approaches.  

From analytical point of view, it was aimed to keep consistency with the mechanical 

background of the studied phenomena as well as with the existing Eurocode 3 design rules. For 

that, it was necessary, firstly, to study the basic and uniform cases for the various buckling 

modes.  

The experimental work carried out in the scope of the TAPERSTEEL project aimed to supply 

experimental evidence of the buckling behaviour of non-uniform members. It was used as a 

reference for validation of advanced numerical model. 

The numerical approaches were employed for generation of large number of numerical 

“experiments” using the validated advanced numerical model. These results were used for the 

reliability assessment of the existing design rules and for the validation of the novel procedures. 

A great attention was paid to the data collection. Data for the material and geometrical 

properties were collected in European database of steel properties from the partner institutions 

in the SAFEBRICTILE, from university laboratories, and literature. Data on the material and 
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geometrical imperfections was collected mainly from the literature since it is hardly accessible 

from the industry. 

The studies covered in this thesis extend to steel grade S460. It is generally limited to the 

application of H and I sections fabricated by welding of hot-rolled plates or hot-rolled profiles. 

1.3 Outline of the dissertation 

The research objectives are described in the seven chapters of this dissertation. Following the 

general introduction in Chapter 1, Chapter 2 presents a general state-of-the-art for the stability 

and safety of steel members. It gives a brief overview of the existing stability design rules for 

uniform and non-uniform members. It focuses on their evolution and on the future trends for 

steel member design. Regarding the safety of these design rules, in Chapter 2, a summary of 

the basis of design according to the Eurocodes is also described. 

In Chapter 3, the experimental programme carried out in the scope of the research project 

TAPERSTEEL is presented. Firstly, a review of previous experimental campaigns on non-

uniform members, as well as available sources with measurements on residual stresses and 

geometrical imperfections is carried out. In a second step, the experimental layouts for the 

buckling tests and the supplementary tests (residual stress measurements, material 

characterization and geometrical imperfections) are described in detail. Finally, a summary of 

the test results is offered. These results were then used for validation of an advanced numerical 

model. The model and its validation are described in Chapter 4.  

In Chapter 5, following the Eurocode objective of harmonization and to extend the stability 

design rules to non-uniform members, it was necessary to assess the reliability of the existing 

design rules. This task was carried out in the scope of the SAFEBRICTILE project. The 

assessment was performed on the basis of the safety assessment procedure developed within 

the project and using the statistical distributions of basic variables also recommended by the 

project. In this chapter, firstly, a brief overview of the underlying theoretical basis is given. 

Secondly, adopted methodologies and parametric studies for columns, beams and beam-

columns are presented. Then, the results are presented and discussed and the necessary 

conclusions are highlighted.  
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The general formulation is presented in Chapter 6. It relies on an interaction equation of linear 

stress utilization that includes: (i) normal stresses due to applied forces; and (ii) normal stresses 

due to second order forces. The procedure is easily applicable to members with varying 

geometry, loading and support conditions. Firstly, the theoretical background of the new 

methodology is summarized, it is then followed by its validation for: i) flexural buckling of 

columns and beam-columns with non-uniform sections and/or non-uniform compression; ii) 

lateral-torsional buckling of beams and beam-columns with non-uniform sections and/or non-

uniform loading; 

Finally, in Chapter 7 the general conclusions of this work are summarized. It also gives 

recommendations for future developments. 
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2 STABILITY DESIGN: BACKGROUND 

AND EXISTING DESIGN RULES 

2.1 Introduction 

Owing to the high strength of the material, a common problem in the steel construction is its 

stability due to the high slenderness of the structural components. The design of steel structures 

requires the appropriate consideration of the various stability phenomena that may cause 

structural failure. The very beginning of the stability theory is the Euler’s derivation of the 

elastic critical load of a pin-ended strut in 1744 (Euler, 1744). Since then, researchers pursue 

the quest for a thorough understanding of the buckling behaviour of steel members. 

The first attempts for the consideration of the behaviour of columns in the inelastic range may 

be tracked to the Considère-Engesser theory (1889, 1895) who introduced the double modulus 

concept that was further developed by von Karman (1910). The milestone in the understanding 

of the post-buckling behaviour of inelastic columns was achieved by Shanley (1947) who 

explained the paradox between the tangent and the reduced modulus theories. At the same time, 

the behaviour of imperfect columns also attracted the attention of researchers. The classical 

work in this direction is the work by Ayrton & Perry (1886), whereby the resistance of the 

member is defined as the first yield of the most compressed fibre is reached, calculated using 

second order forces. The Ayrton-Perry model was validated experimentally by Robertson in 

1925 (Robertson, 1925). This model is in the origin of the European buckling curves which 

were established in the 1970’s, based on an extensive experimental programme carried out by 

the European Convention for Constructional Steelwork (ECCS) (Sfintensco, 1970), on 

theoretical developments by thorough analysis of the experimental programme (Beer & Schulz, 

1970) and on reliability assessment by Monte Carlo simulations Strating & Vos (1973). In this 
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way, the column buckling curves account for the member geometry and its deviations, as well 

as different material properties and residual stresses. Similar approaches were adopted by 

design codes around the world, i.e. in the United States and Canada column buckling resistance 

is based on the SSRC curves. (Ziemian, 2010). 

The elastic lateral-torsional buckling of beams was intensively studied since the middle of the 

twentieth century. However, the first important work is by Saint-Venant (1855) on uniform 

torsion, which set the beginning of a reliable description of the twisting behaviour of members 

in torsion. Michell (1899) and Prandtl (1899) explored flexural torsional buckling, precisely 

lateral buckling of a beam with narrow rectangular cross-section. Warping torsion was firstly 

considered by Timoshenko (1905). Further research by Wagner (1936) led to the development 

of a general theory for lateral-torsional buckling (Timoshenko 1953, Vlasov, 1961). Closed-

form solutions for the elastic critical moment are available only for the simplest cases. The most 

trivial case is a prismatic beam with “fork” support conditions subject to constant bending 

moment (Timoshenko & Gere, 1961). Numerical solutions for beams under variable moments 

are available by Massonet (1947), Horne (1954), Salvadori (1955, 1956) and Kirby & Nethercot 

(1974) among others. The lateral buckling of beams with bracings was studied by Kitipornchai 

& Richter (1978), Hancock & Trahair (1979). Lateral buckling of beams with mono-symmetric 

sections can be found in Galambos (1968), Kitipornchai & Trahair (1980). Clark & Hill (1960) 

developed a 3-factor formula, which accounts for the destabilizing effect of the load, mono-

symmetry, support conditions and non-uniform bending moment distributions. Nowadays, 

simple specific computer programs for the calculation of the elastic critical moment of beams 

under generic conditions are available (LTBeamN, 2015). Nethercot & Trahair (1976) and Dux 

& Kitipornchai (1984) developed inelastic solutions of beams. At present, the inelastic buckling 

behaviour of beams is accounted for by the buckling curve approach adopted in Europe with a 

normalized slenderness calculated using the value of the elastic critical moment and assuming 

that the columns and beams have similar behaviour regarding their buckling resistance.  

Furthermore, extending to more complex case of beam-columns, a summary of the available 

analytical solutions and approximations is provided by Chen & Atsuta (1977) for in- and out-

of-plane buckling. Due to the complexity of the problem, it is common to separate the behaviour 

into both planes for design purposes and add calibrated factors which account for the joint 

behaviour of the applied forces and their second order contributions. These are the approaches 

adopted by Eurocode 3, the north American standard AISC (2010), the Canadian CSA-S16-09 

(CSA, 2009) and the Australian AS-4100-1998 codes.   
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Finally, all these members are part of a global structure. The structural analysis shall take into 

account the global second order effect (P-∆) and member second order effects (P-δ) (Simões da 

Silva et al., 2014). Modern design codes like Eurocode 3 and AISC (2010) provide clear 

specifications on the type on analysis and the subsequent verification checks to be performed 

with these results. Currently, the preferred practical approach is to carry out a 2nd order analysis 

incorporating global (P-Δ) effects followed by the verification of the buckling resistance of 

individual member using the buckling curve approach. Alternatively, even though the codes 

provide guidance on how to perform second order analysis with imperfections, these are still 

too complex for daily applications at the design office, because they are time-consuming, 

require correct definition of the initial imperfections in shape and magnitude, and their 

reliability is questionable since it depends on the experience of the user.  

This chapter aims at summarizing the necessary background of the analytical expressions and 

current design rules, so that it can be used to extend it towards the achievement of the objectives 

of the thesis. It also offers a short summary of the basis of design in order to facilitate the 

understanding of the reliability background of the Eurocode. Finally, the recent developments 

in the stability design by other authors are summarized. 

2.2 Buckling of members 

2.2.1 Basic equations 

In this section the equations governing beam-column behaviour are presented in their general 

form. They are used as a reference for further discussions in this section.  

Without loss of generality, when the analysed member is perfect (without any initial 

imperfections) the differential equilibrium equations are given by:  

௬ܫܧ
݀ଶݓሺݔሻ
ଶݔ݀

൅ ሻݔሺݓܰ ൅ܯ௬ ൅ܯ௭ߠሺݔሻ ൌ Ͳ 

௭ܫܧ (2.1)
݀ଶݒሺݔሻ
ଶݔ݀

൅ ሻݔሺߠ௬ܯ ൅ ሻݔሺݒܰ ൅ ௭ܯ ൌ Ͳ 

௪ܫܧ
݀ଷߠሺݔሻ
ଷݔ݀

െ ௧ܫܩ
ሻݔሺߠ݀
ݔ݀

൅ܯ௬
ሻݔሺݒ݀
ݔ݀

൅ܯ௭
ሻݔሺݓ݀
ݔ݀

൅ ଴ଶܰݎ
ሻݔሺߠ݀
ݔ݀

ൌ Ͳ 
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Figure 2.1 - Coordinate system and cross-sectional displacements 

In these equations, v(x) and w(x) are the transverse displacements (along y and z, respectively), 

θ(x) is the twist rotation (positive according to the right-hand rule). Moreover, EIy is the in-

plane bending stiffness, EIz is the out-of-plane bending stiffness, EIw is the warping stiffness, 

GIt is the Saint-Venant torsional stiffness and r0 is the polar radius of gyration. 

For simply supported members loaded with uniform axial force and bending moments, the 

system of differential equations is solved by half sine waves as functions for the displacements 

and rotations.  

ሻݔሺݓ ൌ ഥݓ ���
ݔߨ
ܮ

 

ሻݔሺݒ (2.2) ൌ ҧݒ ���
ݔߨ
ܮ

 

ሻݔሺߠ ൌ ҧߠ ���
ݔߨ
ܮ

 

Furthermore, if the member is considered with an initial imperfection, there are additional terms 

and the system of equations is transformed to Eq. (2.3). 

௬ܫܧ
݀ଶݓሺݔሻ
ଶݔ݀

൅ ሻݔሺݓܰ ൅ ௬ܯ ൅ܯ௭ߠሺݔሻ ൌ െܰݓ଴ሺݔሻ െ  ሻݔ଴ሺߠ௭ܯ
(2.3) 
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௪ܫܧ
݀ଷߠሺݔሻ
ଷݔ݀

െ ௧ܫܩ
ሻݔሺߠ݀
ݔ݀

൅ܯ௬
ሻݔሺݒ݀
ݔ݀

൅ ௭ܯ
ሻݔሺݓ݀
ݔ݀

൅ ଴ଶܰݎ
ሻݔሺߠ݀
ݔ݀

ൌ െܯ௬
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ݔ݀

െ ଴ଶܰݎ
ሻݔ଴ሺߠ݀
ݔ݀

െܯ௭
ሻݔ଴ሺݓ݀
ݔ݀

 

v0 (x), w0 (x), θ0 (x) represent the initial deviation from a perfectly straight member, as shown 

in Figure 2.1. 

2.2.2 Critical forces and amplification relationships 

2.2.2.1 Flexural buckling of columns 

In view of its fundamental character as a guideline for subsequent developments, the out-of-

plane behaviour of a column (ܯ௬ ൌ ௭ܯ ൌ Ͳ) with an initial imperfection (see Figure 2.2) is 

briefly addressed here. It is common to assume that the initial imperfection has the same shape 

as the lateral displacement: 

ሻݔ଴ሺݒ ൌ ݊݅ݏҧ଴ݒ
ݔߨ
ܮ

 (2.4) 

In these circumstances, the differential equation (2.3), together with the boundary conditions 

ሺͲሻݒ ൌ ሻܮሺݒ ൌ Ͳ, yields 

ሻݔሺݒ ൌ
ܰ

௖ܰ௥ǡ௭ െ ܰ
݊݅ݏҧ଴ݒ

ݔߨ
ܮ
ൌ ݊݅ݏҧݒ

ݔߨ
ܮ

 (2.5) 

where ܰ ௖௥ǡ௭ ൌ
ாூ೥గమ

௅మ
 is the elastic critical load. The following amplification relationship can thus 

be established: 

ҧ௧௢௧ݒ ൌ ҧݒ ൅ ҧ଴ݒ ൌ
ͳ

ͳ െ ܰȀ ௖ܰ௥ǡ௭
 ҧ଴ (2.6)ݒ

 
Figure 2.2 – Compressed column with initial imperfections 

In-plane flexural buckling is described with identical equations and relationships, the only 

change is that the critical force Ncr,z becomes Ncr,y, the displacement ݒሺݔሻ - ݓሺݔሻ and the initial 

imperfection ݒҧ଴ - ݓഥ଴, respectively. 
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2.2.2.2 Flexural buckling of beam-columns 

The case of flexural buckling of a beam-column under bending moment and axial force is 

addressed here. This problem has a closed-form solution; however, it is problem dependent. 

Solutions for various bending moment distributions can be found in the literature Chen & Lui 

(1987). 

In this section, the case of a beam-column loaded with uniform bending moment is considered, 

as shown in Figure 2.3. 

 
Figure 2.3 – Prismatic beam-column loaded with uniform axial force and bending moment 

If the column in consideration is loaded with major axis bending moment and axial force, the 

solution for the in-plane displacement is given by: 

ሻݔሺݓ ൌ
௬ܯ

௬݇ଶܫܧ
൤��� ݔ݇ െ

��� ܮ݇ െ ͳ
��� ܮ݇

��� ݔ݇ െ ͳ൨ 
(2.7) 

in which ݇ ൌ ܰȀܫܧ௬. 

The displacement function can be used to determine the maximum second order bending 

moment, which in this case occurs at mid-span: 

௬ǡ௠௔௫ܯ
ூூ ൌ ௬ܯ

ͳ

��� ݇ ʹܮ
ൌ ௬ܯ

ͳ

�ʹߨ�� ඥܰ ௖ܰ௥Τ
ൎ ௬ܯ

ͳ
ͳ െ ܰ ௖ܰ௥Τ  (2.8) 

 
Figure 2.4 – Second order bending moment 
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Eq. (2.8) gives the maximum second order bending moment that consists of the primary 

moment My acting on the member and the second order component caused by the axial force 

NEd magnified by the maximum displacement wmax as shown in Figure 2.4. 

2.2.2.3 Lateral-torsional buckling of beams 

Considering the standard case of a simply-supported beam with fork supports (ݒሺͲሻ ൌ ሻܮሺݒ ൌ

Ͳ, ߠሺͲሻ ൌ ሻܮሺߠ ൌ Ͳ and ௗ
మఏ

ௗ௫మ
ሺͲሻ ൌ ௗమఏ

ௗ௫మ
ሺܮሻ ൌ Ͳ) subject to a uniform bending moment (Figure 

4), 

 
Figure 2.5 - Simply supported beam subject to uniform bending 

it can be verified Chen & Atsuta (1977) that the amplitudes of the first buckling mode shapes 

of the perfect system Eq.(2.2) are related by 

ҧݒ
ҧߠ
ൌ

௖௥ܯ

௖ܰ௥ǡ௭
ൌ ଴ඨݎ

௖ܰ௥ǡ௫

௖ܰ௥ǡ௭
 (2.9) 

In Eq. (2.9), ܯ௖௥ is the elastic critical bending moment and ௖ܰ௥ǡ௫ is the pure torsional buckling 

force: 

௖௥ܯ ൌ ଴ඥݎ ௖ܰ௥ǡ௫ ௖ܰ௥ǡ௭ (2.10) 

௖ܰ௥ǡ௫ ൌ
ͳ
଴ଶݎ
ቆ
ଶߨ௪ܫܧ

ଶܮ
൅  ௧ቇǤ (2.11)ܫܩ

2.2.2.4 Lateral-torsional buckling of beam-columns 

Consider the standard case of a simply-supported beam-column with fork supports (ݒሺͲሻ ൌ

ሻܮሺݒ ൌ Ͳ, ߠሺͲሻ ൌ ሻܮሺߠ ൌ Ͳ and ௗ
మఏ

ௗ௫మ
ሺͲሻ ൌ ௗమఏ

ௗ௫మ
ሺܮሻ ൌ Ͳ) subject to a uniform bending moment 

and axial force Figure 2.3, but in this time exhibiting lateral-torsional buckling. Then Eq. (2.1) 

leads to the following relationships between the critical forces: 

 ቀெ೎ೝǡಿಾ
ெ೎ೝ

ቁ
ଶ
ൌ ൬ͳ െ ே೎ೝǡಿಾ

ே೎ೝǡ೥
൰ ൬ͳ െ ே೎ೝǡಿಾ

ே೎ೝǡೣ
൰ (2.12) 
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and between the amplitudes of the lateral displacement and rotation: 

ҧݒ 
ҧߠ ൌ

ெ೎ೝǡಿಾ
ே೎ೝǡ೥ିே೎ೝǡಿಾ

 (2.13) 

If a beam-column with initial imperfections is subjected to an axial force and bending moment, 

it is again assumed that the relationship between the lateral imperfection and the rotation 

amplitudes is the same as in Eq.(2.13): 

 
ҧ଴ݒ
ҧ଴ߠ

ൌ ெ೎ೝǡಿಾ
ே೎ೝǡ೥ିே೎ೝǡಿಾ

  (2.14) 

Furthermore, considering that the axial force and bending moment are increased proportionally, 

that is, the ratio between the applied forces is equal to the ratio between the critical forces: 

௖௥ǡேெܯ

௖ܰ௥ǡேெ
ൌ
௬ܯ

ܰ
 

(2.15) 

 using expressions (2.14) and (2.15) in the system of equations (2.3), it is possible to obtain the 

following amplification of the amplitudes of the initial imperfections: 

 ൤
ҧ௧௢௧ݒ
ҧ௧௢௧ߠ

൨ ൌ ଵ
ଵିଵȀఈ೎ೝ

ൈ ൤
ҧ଴ݒ
ҧ଴ߠ
൨ (2.16) 

in which ߙ௖௥is the critical load multiplier. 

2.3 The Eurocode 3 stability design rules 

At present the stability design of members in Eurocode 3-1-1 is based on the buckling curve 

approach for uniform columns and beams; and on an interaction approach for the design of 

members loaded in bending and compression. For non-standard cases, the code offers a 

Merchant-Rankine type of empirical interaction expression denoted general method. 

2.3.1 Members in compression 

2.3.1.1 Flexural buckling 

Regarding the resistance of uniform members in compression are given in clause 6.3.1 of 

Eurocode 3. According to the code, the buckling resistance of members is verified using: 
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ாܰௗ

߯ ோܰௗ
൑ ͳǤͲ (2.17) 

where NEd is the design axial force, NRd is the plastic resistance in compression and ߯ is the 

reduction factor for the relevant buckling mode.  

߯ ൌ
ͳ

߶ ൅ ඥ߶ଶ െ ᪄ଶߣ
൑ ͳǤͲ (2.18) 

߶ ൌ ͲǤͷ൫ͳ ൅ ᪄ߣ൫ߙ െ ͲǤʹ൯൅ߣ᪄ ଶ൯ (2.19) 

where ߣ᪄ ൌ ට஺௙೤
ே೎ೝ

 is the normalized slenderness and ߙ is the imperfection factor (see Table 2.1). 

Table 2.1 – Imperfection factor for buckling curves 

Buckling curve a0 a b c d 

Imperfection factor 0.76 0.49 0.34 0.21 0.13 ߙ 

 

The buckling curves for I-section are chosen according to Table 2.2. 

Table 2.2 – Selection of buckling curve for a section 
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2.3.1.2 Torsional and Flexural-torsional buckling 

For open sections, the code endorses the verification of the possibility of torsional or flexural-

torsional buckling, using Eq. (2.18) with the non-dimensional slenderness ߣ᪄் for torsional or 

flexural-torsional buckling calculated with Ncr=Ncr,FT or Ncr,T . The imperfection factors used 

in this verification are the ones relative to minor axis flexural buckling with the corresponding 

cross-section type. 

The new version of Eurocode 3, prEN 1993-1-1 (CEN/TC250, 2017), contains additional rule 

for double-symmetric I- and H- section members in compression with continuous or discrete 

intermediate lateral restraints, failing in torsional or torsional-flexural buckling. The buckling 

reduction factor is calculated as follows: 

்߯ி ൌ
ͳ

߶்ி ൅ ට߶்ி
ଶ െ ᪄்ிߣ

ଶ
൑ ͳǤͲ (2.20) 

߶்ி ൌ ͲǤͷ ൭ͳ ൅
᪄்ிߣ

ଶ

᪄௭ߣ
ଶ ᪄௭ߣி൫்ߙ െ ͲǤʹ൯൅ߣ᪄்ி

ଶ൱ (2.21) 

where the imperfection factor is given by 

ி்ߙ ൌ ௭ඨߙ
ܣ ௬݂൫݅௣ଶ ൅ ݀ଶ൯
͸Ǥʹͷܫܩ௧

 (2.22) 

with ݅௣ଶ ൌ
ூ೥ାூ೤
஺

 and d is the distance of the intermediate restraint from the shear centre. 

2.3.2 Members in bending 

The stability of members in bending is verified using the design recommendations from clause 

6.3.2 of Eurocode 3. There are two approaches currently available: the General case and the 

Special case given in clauses 6.3.2.2 and 6.3.2.3, respectively. Both of them make use of the 

buckling curve approach, thus assuming that the columns and beams have similar behaviour 

regarding their buckling resistance.  

Recent research by Taras & Greiner (2008) has resulted in a new Ayrton-Perry design rule, 

which is based on mechanically consistent analytical derivation and imperfection factors 

calibrated based on an extensive numerical parametric study. The method is already included 
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in the final draft of the new Eurocode 3 prEN 1993-1-1 (CEN/TC250, 2017) and it is included 

in the summary of this section. It is henceforth referred to as New EC3 method or nEC3. 

 

2.3.2.1 General case 

The buckling resistance of members is verified using:  

௬ǡாௗܯ

߯௅்ܯ௬ǡோௗ
൑ ͳǤͲ (2.23) 

where My,Ed is the design major axis bending moment, My,Rd is the plastic resistance for cross-

section classes 1 and 2, the elastic resistance for cross-section class 3 and the effective resistance 

for slender sections; ߯௅் is reduction factor for lateral-torsional buckling.  

߯௅் ൌ
ͳ

߶௅் ൅ ට߶௅்
ଶ െ ᪄௅்ଶߣ

൑ ͳǤͲ (2.24) 

߶௅் ൌ ͲǤͷ൫ͳ ൅ ҧ௅்ߣ௅்൫ߙ െ ͲǤʹ൯ ൅ ᪄௅்ଶߣ ൯ (2.25) 

where ߣҧ௅் ൌ ටௐ೤௙೤
ெ೎ೝ

 is the normalized slenderness and ߙ௅் is the imperfection factor depending 

on the buckling curve. The buckling curves are chosen according to the member geometry 

according to Table 2.3 with imperfection factors as given in Table 2.4. 

Table 2.3 – Buckling curve selection 

Cross-section Limits Buckling curve (GC) Buckling curve (SC) 

Rolled I-section 
h/b≤2 

h/b>2 

a 

b 

b 

c 

Welded I-section 
h/b≤2 

h/b>2 

c 

d 

c 

d 

Other section - d - 
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Table 2.4 – Imperfection factor for buckling curves 

Buckling curve a b c d 

Imperfection factor 0.76 0.49 0.34 0.21 ߙ 

 

2.3.2.2 Special case 

The Special case is intended for the verification of rolled sections or equivalent welded sections. 

The buckling reduction factor is determined from: 

߯௅் ൌ
ͳ

߶௅் ൅ ට߶௅்
ଶ െ ᪄௅்ଶߣߚ

൑ ቐ
ͳǤͲ
ͳ
᪄௅்ଶߣ

 (2.26) 

߶௅் ൌ ͲǤͷ൫ͳ ൅ ҧ௅்ߣ௅்൫ߙ െ ҧ௅்ǡ଴൯ߣ ൅ ᪄ߣߚ ௅்
ଶ ൯ (2.27) 

the additional parameters ߣҧ௅்ǡ଴ and ߚ are a choice of the National Annex, the recommended 

values are:ߣ�ҧ௅்ǡ଴=0.4 and Ⱦ ൌ ͲǤ͹ͷ. The method is applied with the buckling curves from Table 

2.3. 

For a variable bending moment, the method allows a correction in the reduction factor: 

߯௅்ǡ௠௢ௗ ൌ
߯௅்
݂

൑ ͳǤͲ (2.28) 

The factor f depends on the bending moment diagram 

݂ ൌ ͳ െ ͲǤͷሺͳ െ ݇௖ሻ ቂͳ െ ʹ൫ߣҧ௅் െ ͲǤͺ൯
ଶ
ቃ ൑ ͳǤͲ (2.29) 

The kc is the correction factor chosen depending on the bending moment distribution (see Table 

2.5). 
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Table 2.5 Correction factors kc and fm 

Moment distribution kc fM 

 
1.0 1.0 

 

ͳ
ͳǤ͵͵ െ ͲǤ͵͵߰

൑ ͳǤͲ 
ͳǤʹͷ െ ͲǤͳ߰ െ ͲǤͳͷ߰ଶ 

 
0.94 1.05 

 

0.90 

0.91 

଴ܯ

௛ܯ
൏ ʹǣ ͳǤͲ ൅ ͳǤ͵ͷ

଴ܯ

௛ܯ
െ ͲǤ͵͵ ൬

଴ܯ

௛ܯ
൰
ଷ
 

଴ܯ

௛ܯ
൒ ʹǣ ͳǤͲͷ 

 
0.86 1.10 

 

0.77 

0.82 

଴ܯ

௛ܯ
൏ ͳǤͶ͹ǣ ͳǤʹͷ ൅ ͳǤͷ ൬

଴ܯ

௛ܯ
൰
ଶ
െ ͲǤʹ͹ͷ൬

଴ܯ

௛ܯ
൰
ସ
 

଴ܯ

௛ܯ
൒ ͳǤͶ͹ǣ ͳǤͲͷ 

 

2.3.2.3 New EC3 method 

The new version of Eurocode 3 prEN 1993-1-1 (CEN/TC250, 2017) has a new method for the 

verification of the lateral-torsional buckling resistance of H- and I- sections between discrete 

lateral restraints on both flanges, for which the buckling reduction factor is calculated from the 

following: 

߯௅் ൌ
ெ݂

߶௅் ൅ ට߶௅்
ଶ െ ெ݂ߣ᪄௅்ଶ

൑ ͳǤͲ (2.30) 

߶௅் ൌ ͲǤͷቌͳ ൅ ெ݂ ൭
᪄௅்ߣ

ଶ

᪄௭ߣ
ଶ ҧ௅்ߣ௅்൫ߙ െ ͲǤʹ൯ ൅ ᪄௅்ଶߣ ൱ቍ (2.31) 
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The imperfection factor DLT is selected from Table 2.6. The factor fM is chosen according to 

Table 2.5. 

Table 2.6 – Selection of buckling curve for a section 

Cross-section Limits ߙ௅் 

R
ol

le
d 

pr
of

ile
s 

 

h/
b>

1.
2 

tf≤40 mm ͲǤͳʹඨ ௘ܹ௟ǡ௬

௘ܹ௟ǡ௭
൑ ͲǤ͵Ͷ 

tf>40 mm ͲǤͳ͸ඨ ௘ܹ௟ǡ௬

௘ܹ௟ǡ௭
൑ ͲǤͶͻ 

h/
b≤

1.
2 

- ͲǤͳ͸ඨ ௘ܹ௟ǡ௬

௘ܹ௟ǡ௭
൑ ͲǤͶͻ 

W
el

de
d 

pr
of

ile
s 

 

tf≤40 mm ͲǤʹͳඨ ௘ܹ௟ǡ௬

௘ܹ௟ǡ௭
൑ ͲǤ͸Ͷ 

tf>40 mm ͲǤʹͷඨ ௘ܹ௟ǡ௬

௘ܹ௟ǡ௭
൑ ͲǤ͹͸ 

2.3.3 Members in bending and compression 

The stability of members in bending and compression is verified according to clause 6.3.3. The 

general interaction format is given by the equations:   

ாܰௗ

߯௬ ோܰௗ
൅ ݇௬௬

௬ǡாௗܯ ൅ οܯ௬ǡாௗ

߯௅்ܯ௬ǡோௗ
൅ ݇௬௭

௭ǡாௗܯ ൅ οܯ௭ǡாௗ

௭ǡோௗܯ
൑ ͳǤͲ (2.32) 

ாܰௗ

߯௭ ோܰௗ
൅ ݇௭௬

௬ǡாௗܯ ൅ οܯ௬ǡாௗ

߯௅்ܯ௬ǡோௗ
൅ ݇௭௭

௭ǡாௗܯ ൅ οܯ௭ǡாௗ

௭ǡோௗܯ
൑ ͳǤͲ (2.33) 

where NEd, My,Ed and Mz,Ed are the design values of the axial force and the maximum bending 

moments about y-y and z-z axes, respectively; NRd, My,Rd and Mz,Rd are the design resistances 

and kii and kij are the interaction factors. 

The interaction factors for Method 1 are given in Table 2.7. The additional coefficients used 

with the interaction coefficients for Method 1 are given by equations (2.34)-(2.46). 

௬ߤ ൌ
ͳ െ ாܰௗ ௖ܰ௥ǡ௬Τ
ͳ െ ߯௬ ாܰௗ ௖ܰ௥ǡ௬Τ  (2.34) 
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௭ߤ ൌ
ͳ െ ாܰௗ ௖ܰ௥ǡ௭Τ
ͳ െ ߯௭ ாܰௗ ௖ܰ௥ǡ௭Τ  (2.35) 

௬ݓ ൌ
௣ܹ௟ǡ௬

௘ܹ௟ǡ௬
൑ ͳǤͷ 

(2.36) 

௭ݓ ൌ
௣ܹ௟ǡ௭

௘ܹ௟ǡ௭
൑ ͳǤͷ 

(2.37) 

Table 2.7 - Method 1: Interaction factors 

Int. 
factor 

Design assumptions 

Elastic cross-sectional properties 
Class 3 and 4 

Plastic cross-sectional properties   
Class1 and 2 

kyy ܥ௠௬ܥ௠௅்
௬ߤ

ͳ െ ாܰௗ ௖ܰ௥ǡ௬Τ ௠௅்ܥ௠௬ܥ 
௬ߤ

ͳ െ ாܰௗ ௖ܰ௥ǡ௬Τ
ͳ
௬௬ܥ

 

kyz ܥ௠௭
௬ߤ

ͳ െ ாܰௗ ௖ܰ௥ǡ௭Τ ௠௭ܥ 
௬ߤ

ͳ െ ாܰௗ ௖ܰ௥ǡ௭Τ
ͳ
௬௭ܥ

ͲǤ͸ඨ
௭ݓ

௬ݓ
 

kzy ܥ௠௬ܥ௠௅்
௭ߤ

ͳ െ ாܰௗ ௖ܰ௥ǡ௬Τ ௠௅்ܥ௠௬ܥ 
௭ߤ

ͳ െ ாܰௗ ௖ܰ௥ǡ௬Τ
ͳ
௭௬ܥ

ͲǤ͸ඨ
௬ݓ

௭ݓ
 

kzz ܥ௠௭
௭ߤ

ͳ െ ாܰௗ ௖ܰ௥ǡ௭Τ ௠௭ܥ 
௭ߤ

ͳ െ ாܰௗ ௖ܰ௥ǡ௭Τ
ͳ
௭௭ܥ

 

For Class 3 and 4 wz=wy=1. 

௬௬ܥ ൌ ͳ ൅ ൫ݓ௬ െ ͳ൯ ൥൭ʹ െ
ͳǤ͸
௬ݓ

௠௬ܥ
ଶ ቀߣҧ௠௔௫ ൅ ҧ௠௔௫ߣ

ଶቁ൱ ாܰௗ

ோܰ௞ ெଵΤߛ െ ܾ௅்൩ ൒
௘ܹ௟ǡ௬

௣ܹ௟ǡ௬
 (2.38) 

௬௭ܥ ൌ ͳ ൅ ሺݓ௭ െ ͳሻ ൥൭ʹ െ ͳͶ
௠௭ܥ

ଶߣҧ௠௔௫
ଶ

௭ݓ
ହ ൱ ாܰௗ

ோܰ௞ ெଵΤߛ െ ܿ௅்൩ ൒ ͲǤ͸ඨ
௭ݓ

௬ݓ

௘ܹ௟ǡ௭

௣ܹ௟ǡ௭
 (2.39) 

௭௬ܥ ൌ ͳ ൅ ൫ݓ௬ െ ͳ൯ ൥൭ʹ െ ͳͶ
௠௬ܥ

ଶߣҧ௠௔௫
ଶ

௬ݓ
ହ ൱ ாܰௗ

ோܰ௞ ெଵΤߛ െ ݀௅்൩ ൒ ͲǤ͸ඨ
௬ݓ

௭ݓ

௘ܹ௟ǡ௬

௣ܹ௟ǡ௬
 

(2.40) 

௭௭ܥ ൌ ͳ ൅ ሺݓ௭ െ ͳሻ ቈቆʹ െ
ͳǤ͸
௭ݓ

௠௭ܥ
ଶ ቀߣҧ௠௔௫ ൅ ҧ௠௔௫ߣ

ଶቁቇ െ ݁௅்቉
ாܰௗ

ோܰ௞ ெଵΤߛ ൒ ௘ܹ௟ǡ௭

௣ܹ௟ǡ௭
 

(2.41) 
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 .ҧ௠௔௫�is the highest member slendernessߣ

ܽ௅் ൌ ͳ െ
௧ܫ
௬ܫ
൒ Ͳ (2.42) 

ܾ௅் ൌ ͲǤͷܽ௅்ߣҧ଴
ଶ ௬ǡாௗܯ

߯௅்ܯ௣௟ǡ௬ǡோௗ

௭ǡாௗܯ

௣௟ǡ௭ǡோௗܯ
൒ Ͳ (2.43) 

ܿ௅் ൌ ͳͲܽ௅்
ҧ଴ߣ

ଶ

ͷ ൅ ҧ௭ߣ
ସ

௬ǡாௗܯ

௣௟ǡ௬ǡோௗܯ௠௬߯௅்ܥ
൒ Ͳ 

(2.44) 

݀௅் ൌ ʹܽ௅்
ҧ଴ߣ

ͲǤͳ ൅ ҧ௭ߣ
ସ

௬ǡாௗܯ

௣௟ǡ௬ǡோௗܯ௠௬߯௅்ܥ

௭ǡாௗܯ

௣௟ǡ௭ǡோௗܯ௠௭ܥ
൒ Ͳ 

(2.45) 

݁௅் ൌ ͳǤ͹ܽ௅்
ҧ଴ߣ

ͲǤͳ ൅ ҧ௭ߣ
ସ

௬ǡாௗܯ

௣௟ǡ௬ǡோௗܯ௠௬߯௅்ܥ
൒ Ͳ 

(2.46) 

The equivalent moment factors are used as specified in Table 2.8 and Table 2.9. 

Table 2.8 – Method 1: Equivalent moment factors Cmi,0 

Moment diagram Cmi,0 

 
௠௜ǡ଴ܥ ൌ ͲǤ͹ͻ ൅ ͲǤʹͳ߰௜ ൅ ͲǤ͵͸ሺ߰௜ െ ͲǤ͵͵ሻ ாܰௗ

௖ܰ௥ǡ௜
 

 

௠௜ǡ଴ܥ ൌ ͳ ൅ ቆ
௫ȁߜ௜ȁܫܧଶߨ
ሻหݔ௜ǡாௗሺܯଶหܮ

െ ͳቇ ாܰௗ

௖ܰ௥ǡ௜
 

௭ǡாௗܯ�ݎ݋�௬ǡாௗܯ ሻ is the maximum momentݔ௜ǡாௗሺܯ  
ȁߜ௫ȁ is the maximum displacement along the member 

 

௠௜ǡ଴ܥ ൌ ͳ െ ͲǤͳͺ ாܰௗ

௖ܰ௥ǡ௜
 

௠௜ǡ଴ܥ ൌ ͳ ൅ ͲǤͲ͵ ாܰௗ

௖ܰ௥ǡ௜
 

 

 

௬ߝ ൌ
௬ǡாௗܯ

ாܰௗ

ܣ
௬ܹ
൒ Ͳ (2.47) 
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Table 2.9 – Method 1: Equivalent moment factors Cmi,0 

No torsional deformation       
ҧ଴ߣ ൑  ҧ௟௜௠௜௧ߣ

Possible torsional deformation               
ҧ଴ߣ ൐  ҧ௟௜௠௜௧ߣ

௠௬ܥ ൌ  ௠௬ǡ଴ܥ
௠௬ܥ ൌ ௠௬ǡ଴ܥ ൅ ൫ͳ െ ௠௬ǡ଴൯ܥ

ܽ௅்ඥߝ௬
ͳ ൅ ܽ௅்ඥߝ௬

 

௠௭ܥ ൌ ௠௭ܥ ௠௭ǡ଴ܥ ൌ  ௠௭ǡ଴ܥ

݇௅் ൌ ͳǤͲ 
݇௅் ൌ

௠௬ܥ
ଶܽ௅்

ට൫ͳ െ ாܰௗ ௖ܰ௥ǡ௭Τ ൯൫ͳ െ ாܰௗ ௖ܰ௥ǡ்Τ ൯
 

 

The interaction factors for Method 2 are given in Table 2.10 and Table 2.11. 

݊௬ ൌ
ாܰௗ

߯௬ ோܰ௞ ெଵΤߛ  (2.48) 

݊௭ ൌ
ாܰௗ

߯௭ ோܰ௞ ெଵΤߛ  (2.49) 

The equivalent moment factors are chosen according to Table 2.12. 

Table 2.10 – Method 2: Interaction factors for members susceptible to lateral-torsional buckling 

Int. 
factor 

CS Design assumptions 

Elastic cross-sectional properties 
Class 3 and 4 

Plastic cross-sectional properties 
Class1 and 2 

kyy I, RHS 
௠௬ൣͳܥ ൅ ͲǤ͸ߣҧ௬݊௬൧ ൑ ௠௬ൣͳܥ ൅

ͲǤ͸݊௬൧  

௠௬ൣͳܥ ൅ ൫ߣҧ௬ െ ͲǤʹ൯݊௬൧ ൑ ௠௬ൣͳܥ ൅

ͲǤͺ݊௬൧  

kyz I, RHS kzz 0.6 kzz 

kzy I, RHS 0.8kyy 0.6kyy 

kzz 

I 
௠௭ൣͳܥ ൅ ͲǤ͸ߣҧ௭݊௭൧ ൑ ௠௭ሾͳܥ ൅

ͲǤ͸݊௭ሿ  

௠௭ൣͳܥ ൅ ൫ʹߣҧ௭ ൅ ͲǤ͸൯݊௭൧ ൑ ௠௬ሾͳܥ ൅

ͳǤͶ݊௭ሿ  

RHS 
௠௭ൣͳܥ ൅ ൫ߣҧ௭ െ ͲǤʹ൯݊௭൧ ൑ ௠௭ሾͳܥ ൅

ͲǤͺ݊௭ሿ  
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Table 2.11 - Method 2: Interaction factors for members susceptible to lateral-torsional buckling 

Int. 
factor 

Design assumptions 

Elastic cross-sectional properties Class 3 
and 4 

Plastic cross-sectional properties Class3 and 
4 

kyy kyy from Table 2.10 kyy from Table 2.10 

kyz kyz from  Table 2.10 kyz from  Table 2.10 

kzy ቂͳ െ ଴Ǥ଴ହఒഥ೥
஼೘ಽ೅ି଴Ǥଶହ

݊௭ቃ ൒ ቂͳ െ ଴Ǥ଴ହ
஼೘ಽ೅ି଴Ǥଶହ

݊௭ቃ  

ቂͳ െ ଴Ǥଵఒഥ೥
஼೘ಽ೅ି଴Ǥଶହ

݊௭ቃ ൒ ቂͳ െ ଴Ǥଵ
஼೘ಽ೅ି଴Ǥଶହ

݊௭ቃ  

Forߣҧ௭ ൏ ͲͶ 

݇௭௬ ൌ ͲǤ͸ ൅ ҧ௭ߣ ൑ ቈͳ െ
ͲǤͳߣҧ௭

௠௅்ܥ െ ͲǤʹͷ
݊௭቉ 

kzz kzz from  Table 2.10 kzz from  Table 2.10 

 

Table 2.12 – Method 2: Equivalent moment factors Cm 

Moment diagram Range 
Cmy and Cmz and CmLT 

Uniform load Concentrated 
load 

 
െͳ ൑ ߰ ൑ ͳ ͲǤ͸ ൅ ͲǤͶ߰ ൒ ͲǤͶ 

 

Ͳ ൑ ௦ߙ ൑ ͳ െͳ ൑ ߰ ൑ ͳ ͲǤʹ ൅ ͲǤͺߙ௦ ൒ ͲǤͶ 

െͳ ൑ ௦ߙ
൏ Ͳ 

Ͳ ൑ ߰ ൑ ͳ 
ͲǤͳ െ ͲǤͺߙ௦
൒ ͲǤͶ 

െͲǤͺߙ௦ ൒ ͲǤͶ 

െͳ ൑ ߰ ൏ Ͳ 
ͲǤͳሺͳ െ ߰ሻ െ

ͲǤͺߙ௦ ൒ ͲǤͶ  

ͲǤʹሺെ߰ሻ െ

ͲǤͺߙ௦ ൒ ͲǤͶ  

 

Ͳ ൑ ௛ߙ ൑ ͳ െͳ ൑ ߰ ൑ ͳ ͲǤͻͷ ൅ ͲǤͲͷߙ௛ ͲǤͻͲ ൅ ͲǤͳͲߙ௛ 

െͳ ൑ ௛ߙ
൏ Ͳ 

Ͳ ൑ ߰ ൑ ͳ ͲǤͻͷ ൅ ͲǤͲͷߙ௛ ͲǤͻͲ ൅ ͲǤͳͲߙ௛ 

െͳ ൑ ߰ ൏ Ͳ 
ͲǤͻͷ ൅

ͲǤͲͷߙ௛ሺͳ ൅ ʹ߰ሻ  

ͲǤͻͷ ൅

ͲǤͳͲߙ௛ሺͳ ൅ ʹ߰ሻ  

For members with sway mode the equivalent uniform moment factor should be taken Cmy=0.9 or Cmz=0.9, 
respectively. 

Cmy,Cmz and CmLT shall be obtained according to the bending moment diagram between the relevant braced 
points. 
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2.3.4 General method for lateral and lateral-torsional buckling of structural 
components 

The method is used where the rules, given in the previous sections, do not apply. It targets the 

verification for the resistance to lateral and lateral-torsional buckling of single members, built-

up or not, uniform or not, with complex support conditions or not or plane frames or sub-frames 

composed of such members. 

The overall resistance of the structural component is verified using: 

߯௢௣ߙ௨௟௧ǡ௞
ெଵߛ

൒ ͳǤͲ (2.50) 

where ߙ௨௟௧ǡ௞ is the minimum load amplifier of the design loads to reach the characteristic 

resistance of the most critical cross-section of the structural component, considering its in-plane 

behaviour without taking lateral or lateral-torsional buckling into account however for all 

effects due to in-plane geometrical deformation and imperfections, global and local, where 

relevant; 

߯௢௣ is the reduction factor for the non-dimensional slenderness ߣҧ௢௣ which is determined 

accounting for lateral or lateral-torsional buckling as given in Eq. (2.18) 

ҧ௢௣ߣ ൌ ඨ
௨௟௧ǡ௞ߙ
௖௥ǡ௢௣ߙ

 (2.51) 

where ߙ௖௥ǡ௢௣ is the minimum amplifier for the in-plane loads to reach the elastic critical 

resistance of the structural component with regards, to latera or lateral-torsional buckling 

without accounting for in-plane flexural buckling. 

The reduction factor ߯௢௣ is then determined as the minimum of ߯ according to clause 6.3.1 or 

߯௅் according to clause 6.3.2 or interpolated value between both. 

Although it claims generality, the reliability of the method was questioned several times, e.g. 

Simões da Silva et al. (2010), Taras (2010), Marques (2012), SAFEBRICTILE final report 

Simões da Silva et al. (2017) and it was shown that due to lack of mechanical background it 

may lead to either over-conservative or unsafe estimates of the design resistance. In the 

following it will not be further discussed. 
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2.4 Background of the European design rules 

2.4.1 Introduction 

This section is dedicated to the background of the design rules for columns, beams and beam-

columns presented in the previous section. This summary aims at identifying a consistent way 

of extending them to a general approach applicable to any kind of member and buckling mode. 

It also addresses inconsistencies associated with the application of these rules which have been 

identified by other researches. It follows the organization of the previous section. 

2.4.2 Members in compression 

The verification format for the flexural buckling of columns is directly derived from the 

differential equations (2.3) for a column with an initial imperfection. It is achieved by applying 

a first yield criterion at mid-span for a simply-supported column (i.e., equating the normal stress 

at the most compressed fibre to ௬݂): 

ߪ
௬݂
ൌ

ܰ
ܣ ௬݂

൅
௜ܯ

ூூ

௜ܹ ௬݂
ൌ ͳǤͲ (2.52) 

where the second order moment due to the initial imperfection is obtained using the 

amplification relationship derived in Eq.(2.6),  

ܰ
ܣ ௬݂

൅
തͲݒܰ
௜ܹ ௬݂

ͳ

ͳ െ ܰ
ݖǡݎܿܰ

ൌ ͳǤͲ (2.53) 

which is transformed to  

߯ ൅
߯

ͳ െ ᪄ଶߣ߯
ߟ ൌ ͳǤͲ (2.54) 

where ߣ᪄ ൌ ට஺௙೤
ே೎ೝ

 is the normalized slenderness, ߯ ൌ ே
஺௙೤

 is the buckling reduction factor and ߟ ൌ

ҧ݁଴
஺
୛

 is the generalized imperfection factor (accounting for out-of-straightness and residual 

stresses), with W denoting the elastic section modulus relative to the buckling axis. Eq.(2.54) is 

the buckling curve equation where the only unknown is the amplitude of the imperfection ҧ݁଴Ǥ 

This advantage of the Ayrton-Perry representation of the problem was used in the calibration 

of the European design rules. 



2 STABILITY DESIGN: BACKGROUND AND EXISTING DESIGN RULES 
 

 

 
 

 

| 27 

The buckling curves were established in the 1970’s, and their development was based on an 

extensive experimental programme carried out by the European Convention for Constructional 

Steelwork (ECCS) in several European countries; on theoretical developments by thorough 

analysis of the experimental programme; and on reliability assessment by a Monte Carlo 

simulation.  

The experimental programme was summarized by Sfintesco (1970) comprising a total of 1067 

column tests. It covered a variety of cross-sections (I and H, hollow and T sections); fabrication 

procedures (welded and rolled sections). In the scope of the experimental programme, the 

material and geometrical properties (cross-section dimensions and out-of-straightness) of each 

column were evaluated and carefully documented. 

Furthermore, Beer & Schulz (1970) carried out a thorough analysis of the ECCS experimental 

programme, assessing various parameters that can possibly occur and affect the resistance of 

compressed members. Special attention was paid to the member imperfections, focussing on: 

i) initial out-of-straightness; ii) load eccentricity; and iii) residual stresses; 

 
 

a) Load eccentricity and out-of-straightness b) Residual stresses and out-of-straightness 

Figure 2.6 – Sensitivity to imperfections Beer & Schulz (1970) 

The geometrical imperfections (initial out-of-straightness and load eccentricity) were measured 

in the experimental programme, providing plausible estimations of their distributions. It was 

shown in Beer & Schulz (1970) that the limit of L/1000 as initial out-of-straightness could cover 

load eccentricities up to 5mm as shown in Figure 2.6a. It was also noticed that the unintentional 

eccentricity can only have a noticeable effect in the low slenderness range, but it was assumed 

that it could be compensated by the fact that the strain hardening was neglected in the 

calculations.  
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There was a certain difficulty in the adoption of magnitude of the residual stresses due to the 

lack of available data and the high variability of the available measurements. In order to assess 

the influence of the residual stresses and the geometrical imperfection, a comparison was 

performed for three levels of geometrical imperfections (L/2000; L/1000 and L/500), with or 

without considering the residual stresses as shown in Figure 2.6b. It was concluded that the 

influence of the geometrical imperfection reduces with increasing residual stresses. It was 

possible to show that the curvature effect reaches its maximum at a normalized slenderness λ 

between 1.0 and 1.3, depending on the level of residual stresses. 

Later, the safety of one of the curves was evaluated by Monte Carlo simulation by Strating & 

Vos (1973), accounting for the variability of various parameters such as residual stresses, out-

of-straightness, load eccentricity, geometrical and material properties. The adopted 

distributions are summarized in Table 2.13. 

Table 2.13 - Distributions for basic variables in Strating & Vos (1973) 

Basic variable 
Gamma distribution Normal distribution 

O k mean st.dev 

Load eccentricity 2.798 1.663 - . 

Out-of-straightness - - 0.00085L 0.0002L 

Area (mm2) - - 2047.33 81.15 

Yield stress (MPa) - - 314.8 26.5 

Residual stresses - - 0.2VE 0.05VE 

 

A general assumption was that reasonable safety is achieved by using twice the standard 

deviation as upper or lower limit. It was applied to all of the variables, except for the yield stress 

in certain cases. The distributions for all basic variables were considered with Normal 

distribution, except for the load eccentricity which was considered with Gamma distribution. 

Even though the distributions of some of the basic variables in Table 2.13 have very high 

variability and not very high mean-to-nominal ratios, it was concluded that the curve is 

sufficiently reliable. 



2 STABILITY DESIGN: BACKGROUND AND EXISTING DESIGN RULES 
 

 

 
 

 

| 29 

Finally, Maquoi & Rondal (1978) derived the analytical Ayrton-Perry format of the design 

verification and the curves were put into equation. 

At present the code proposes 5 buckling curves, as shown in Figure 2.7. Curves a to d were 

originally calibrated on the basis of the experimental programme. The most relaxed curve a0, 

was added later to account for the most favourable properties of high strength steels (HSS). It 

is worth pointing out that there is an inconsistency regarding the curves for steel grades higher 

than S460: in Table 2.2, the buckling curve selection for the different buckling axes is always 

more favourable for in-plane buckling than out-of-plane. This is very logical, since the usual 

residual stress distribution (welded and rolled) is more unfavourable for a member bent about 

its minor axis. For steel grades higher than S460, however, this fact is not reflected in the 

buckling curve selection. In Chapter 5, this issue will be discussed on the basis of the reliability 

assessment. 

 
Figure 2.7 - The European buckling curves 

2.4.3 Members in bending 

2.4.3.1 Existing methods 

It was shown already that in the current version of Eurocode 3, there are two possibilities for 

the verification of the lateral-torsional buckling resistance of beams. The first approach, the 

General case, assumes that columns and beam act alike, i.e. the compression flange is supposed 

to act like an equivalent column, and therefore, the same imperfection factors were assumed for 

the method. It does, however, adopt a different split according to the cross-section geometry, 

accounting for their different torsional rigidity. According to ECCS No. 119, these curves are 
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meant to be used with deep and slender sections which are outside of the scope of rolled 

sections. The method has been criticized for being over conservative when applied to members 

with variable bending moment diagram Rebelo et al. (2009), Taras (2010). 

As an alternative for rolled and equivalent welded sections, Eurocode 3 has another set of 

buckling curves, denoted as the Special case. The method was calibrated on the basis of 

extensive numerical studies in the Research Project Lateral-torsional buckling of steel and 

composite beams (1993) and Salzgeber (2000). Additional calibration was carried out by 

Grainer & Kaim (2001) on the basis of experimental results by Janss & Maquoi. In order to 

justify, the plateau at 0.4, experimental results by Byfield & Nethercot (1998) were used in the 

assessment according to Annex Z of ENV 1993-1-1:1992. However, the method was shown to 

be unconservative when compared to numerical results Snijder & Hoenderkamp (2007), Rebelo 

et al. (2009). 

2.4.3.2 New LT-buckling curves 

The new version of Eurocode 3 prEN 1993-1-1 (CEN/TC250, 2017), includes a new method 

for lateral-torsional buckling of beams with H- and I- sections. The method was developed by 

Taras & Greiner (2008) and it has mechanically consistent analytical background with 

imperfection factors calibrated on the basis of advanced numerical simulations and assessed 

using Monte Carlo simulations.  

The analytical derivation is performed directly from the differential equations (2.3) for a beam 

with initial imperfection. It is achieved by applying a first yield criterion at mid-span as it was 

done for flexural buckling of columns, but in this case, there is an additional second order term 

that appears in the equation due to warping: 

ሻݔሺߪ
௬݂

ൌ
ሻݔ௬ሺܯ
௬ܹሺݔሻ ௬݂

൅
௭ܯ

ூூሺݔሻ
௭ܹሺݔሻ ௬݂

൅
௪ܯ

ூூሺݔሻ
௪ܹሺݔሻ ௬݂

 (2.55) 

where ௬ܹ, ௭ܹ and ௪ܹ denote the elastic section moduli. 

Assuming now that the initial imperfections have the same shape as the first buckling mode, 

that is, 

ሻݔ଴ሺݒ ൌ ݊݅ݏො଴ݒ
ݔߨ
ܮ

ሻݔ଴ሺߠ ൌ ݊݅ݏ෠଴ߠ
ݔߨ
ܮ

��������
ො଴ݒ
෠଴ߠ

ൌ
௖௥ܯ

௖ܰ௥ǡ௭
ൌ ଴ඨݎ

௖ܰ௥ǡ௫

௖ܰ௥ǡ௭
 (2.56) 
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and enforcing a first yield limit condition eventually leads to the Ayrton-Perry equation  

௬ܯ

௬ܹ ௬݂
൅

௬ܯ

௜ܹ ௬݂

᪄݁଴

ͳ െ
௬ܯ
௖௥ܯ

௖ܰ௥ǡ௭

௖௥ܯ
ൌ ͳǤͲ (2.57) 

which is transformed to  

߯௅் ൅
߯௅்

ͳ െ ߯௅்ߣ᪄௅்
ଶ ௅்ߟ ൌ ͳǤͲ (2.58) 

with the buckling reduction factor and the normalized slenderness given by: 

߯௅் ൌ
௬ܯ

௬݂ ௬ܹ
᪄௅்ߣ����������� ൌ ඨ ௬݂ ௬ܹ

௖௥ܯ
��� (2.59) 

A similar transformation was also performed by Szalai & Papp (2010), however without further 

calibration of the respective imperfection factors. 

For design purposes, the generalized imperfection factor in Eq. (2.58) required further 

calibration: 

௅்ߟ ൌ
ܣ ᪄݁଴

௭ܹ

᪄௅்ଶߣ

᪄௭ଶߣ
 (2.60) 

 
Figure 2.8 – Amplitudes of the geometrical imperfections 

The meaning of the geometrical parameter ᪄݁଴ appearing in the above definition of ߟ௅் is 

indicated in Figure 2.8. 
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The calibration was performed for the term ஺௘᪄బ
ௐ೥

 from Eq. (2.60) and the two following options 

were considered: 

ூߟ ൌ ҧ௭ߣ൫ߙ െ ͲǤʹ൯ (2.61) 

ூூߟ ൌ ҧ௅்ߣ൫ߙ െ ͲǤʹ൯Ǥ (2.62) 

These options were compared with the numerical estimate ߟ௡௨௠. It was shown that the 

imperfection proportional to ߣҧ௭ adjusts better to the numerical curve up to a certain point where 

the geometrical imperfections, which are length dependent, become more relevant (ߣҧ௭ 

approximately 3.0 corresponding to ߣҧ௅் ൌ ͳǤͲ). Hence new imperfection factors DLT were 

developed, see Table 2.6. They use the same limits as the column buckling curves for rolled 

sections and their magnitude is bound by the imperfection factors for minor axis flexural 

buckling.  

The effect of non-uniform bending moment distributions was included by the calibration of an 

additional factor fM, given in Table 2.5. 

2.4.4 Members in bending and compression 

For prismatic members loaded in bending and compression, Eurocode 3 provides an interaction 

formula. It is based on linear interaction between the axial force and the bending moments, 

which are combined through interaction factors accounting for the non-linear effects in the 

beam-column behaviour. In the development of the interaction formula there were two teams: 

the “French-Belgian” team which was responsible for the interaction coefficients in Method 1 

and the “Austrian-German” team responsible for the development of the coefficients associated 

with Method 2. The main difference between the two methods is the way of considering the 

various effects which affect the beam-column behaviour. The interaction coefficients associated 

with Method 1 were developed aiming to distinguish each structural effect in the interaction 

coefficient, therefore laying the ground for any further modifications, if necessary, and to 

directly identify the impact of each physical phenomenon. Method 2, aimed at easier practical 

implementation, combines the non-linearities into global interaction factors kii and kij calibrated 

on the basis of an extensive numerical programme.  

In Section 2.2.2.1 it was shown that the in-plane behaviour of beam-columns is associated with 

the presence of a second order bending moment which arises from the additional lever arm to 
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the axial force NEd causing amplification of the deflection and of the bending moment. In the 

same section, it was also shown that for uniform bending moment, the location where this 

moment has a maximum is at mid-span.  

For non-uniform bending moment distributions, this location varies and to avoid its 

determination, both methods consider the equivalent moment concept. It is illustrated in Figure 

2.9, the bending moment MEd is replaced with CmMEd, with a sinusoidal bending moment 

distribution and results in the same second order moment. Then the second order elastic check 

at the most loaded cross section is given by: 

ாܰௗ

ோܰௗ
൅

ͳ
ͳ െ ாܰௗ ௖ܰ௥Τ

ாܰௗ ᪄݁଴
ோௗܯ

൅
ͳ

ͳ െ ாܰௗ ௖ܰ௥Τ
ாௗǡ௠௔௫ܯ௠ܥ

ோௗܯ
൑ ͳǤͲ (2.63) 

For Method 1, the Cm factors are chosen with more correct expressions that depend on the axial 

force, see Table 2.8. Method 2 uses the Austin formula, which relates to a beam subject to 

uniform bending moment and does not depend on the axial force,  

Table 2.12. 

 

Figure 2.9 - Equivalent moment concept 

At low slenderness, the in-plane behaviour of a beam-column may exhibit plastic behaviour. 

For that reason in Method 1, Mel,Rd is replaced with CMpl,Rd in MRd: 

ாܰௗ

ோܰௗ
൅

ாௗܯ

௣௟ǡோௗܯܥ
൑ ͳǤͲ (2.64) 

The factor C is found as a function of the member slenderness, applied axial force, the 

equivalent moment factor Cm and the ratio between the plastic and elastic moduli. It was 

calibrated in order to achieve continuity with the cross-section resistance. The expressions for 

Cii and Cij, as given by Eq. (2.38)-(2.41) were calibrated with a lower bound at Mel,Rd. They also 

consider the biaxial bending interaction.  
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For Method 2, the equivalent sinusoidal moment concept was kept; however, the inclusion of 

plasticity was considered directly in the k-factors, therefore not allowing to split the 

amplification terms from the plasticity effects at low slenderness. 

Regarding lateral-torsional buckling, Method 1 has it incorporated implicitly in the formulation 

of the interaction coefficients. Method 2 offers a separate set of interaction coefficients to verify 

the lateral-torsional buckling resistance and therefore distinguish the members as susceptible 

or not to lateral-torsional deformations, see Table 2.10 and Table 2.11. 

Both methods were assessed on the basis of the same set of advanced numerical simulations 

(Boissonnade et al.,2006).  

In the present version of Eurocode 3, both sets of interaction coefficients are given in Annex A 

and Annex B, respectively. In the new version or Eurocode 3 prEN 1993-1-1 (CEN/TC250, 

2017) only Method 2 is specified and the interaction coefficients are included in the main text 

of the code, while Method 1 is included in a technical specification CEN/TC 250 prCEN/TC 

1993-1-101:2016. 

2.5 Buckling resistance outside Europe 

2.5.1 Introduction 

Up to this point, the presented design formats were only focused on European standards. In this 

section, the design recommendations of the north American AISC, (2010) code are 

summarized.  

2.5.2 Design of members in compression 

The nominal resistance of members with non-slender members is given by: 

௡ܲ ൌ  ௚ (2.65)ܣ௖௥ܨ

in which Ag is the cross-section area and Fcr is the critical stress determined from:  

ܮܭ
ݎ

൑ ͶǤ͹ͳඨ
ܧ
௬ܨ

௖௥ܨ  ൌ ቈͲǤ͸ͷͺ
ி೤
ி೐቉  ௬ (2.66)ܨ
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ܮܭ
ݎ

൐ ͶǤ͹ͳඨ
ܧ
௬ܨ

௖௥ܨ  ൌ ͲǤͺ͹͹ܨ௘ (2.67) 

Fe is the elastic critical buckling stress. 

௘ܨ ൌ
ܧଶߨ

ቀݎܮܭ ቁ
ଶ (2.68) 

The verification is also based on the buckling curve approach. However, unlike the 5 buckling 

curves of Eurocode 3, the AISC (2010) verification is based on a single buckling curve. It is 

exactly the same as the SSRC curve 2P (Ziemian, 2010), even though it has a different 

representation. 

2.5.3 Design of members in bending 

The lateral-torsional buckling resistance is verified according to Section F2 of AISC, (2010). 

In this case, the curve is divided into three regions: a plastic, inelastic and purely elastic. 

௕ܮ ൑ ௡ܯ ௣ܮ ൌ ௣ܯ ൌ ܼ௫ܨ௬ 

௣ܮ (2.69) ൑ ௕ܮ ൑ ௡ܯ ௥ܮ ൌ ௕ܥ ቈܯ௣ െ ൫ܯ௣ െ ͲǤ͹ͷܵ௫ܨ௬൯ ቆ
௕ܮ െ ௣ܮ
௥ܮ െ ௣ܮ

ቇ቉ ൑  ௣ܯ

௕ܮ ൐ ௡ܯ ௥ܮ ൌ ܵ௫ܨ௖௥ ൑  ௣ܯ

Lb is the distance between the points braced against lateral displacement. Fcr is the critical stress: 

௖௥ܨ ൌ
ܧଶߨ௕ܥ

ቀܮ௕ݎ௧௦
ቁ
ଶ ඨͳ ൅ ͲǤͲ͹ͺ

ܿܬ
ܵ௫݄଴

൬
௕ܮ
௧௦ݎ
൰
ଶ

 (2.70) 

The length limits are defined as: 

௣ܮ ൌ ͳǤ͹͸ݎ௬ඨ
ܧ
௬ܨ

 (2.71) 
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 (2.72) 

The verification assumes the transition of the elastic to inelastic region to happen at 0.7Fy. This 

format has been recently criticized by Subramanian & White (2017), who claimed it is unsafe 

in the inelastic region due to the incorrect consideration of the buckling length and the typically 

high magnitudes of the imperfections adopted in numerical simulations. 

2.5.4 Design of members under bending and axial force 

The design of members in bending and compression is performed by using an interaction 

approach. For members prone to flexural buckling, AISC (2010) gives the following equations: 

 

௥ܲ
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(2.73) 
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The lateral-torsional buckling stability of members in bending and compression is verified 

using a separate formula: 

௥ܲ

௖ܲ௬
ቆͳǤͷ െ ͲǤͷ ௥ܲ

௖ܲ௬
ቇ ൅ ൬

௥௫ܯ

௖௫ܯ௕ܥ
൰
ଶ
൑ ͳǤͲ(2.74) כ 

Both verifications are linked to the member resistances obtained separately as in Section 2.5.2 

for members in compression and Section 2.5.3 for members in bending. 

2.6 Structural design and code verification 

The structural design codes provide the link from theory to practice. Their aim is to ensure that 

design principles and application rules lead to appropriate safety levels. The safety margin 

directly reflects the risk society is willing to accept yet that maximises economical design. The 

family of Eurocodes, EN 1990 to EN 1999, are based on the limit state design philosophy, and 

the use of partial factors. It is often applied since it incorporates the variability in the design 

code and offers a clear guidance to the engineer. The American code offers two possibilities for 
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design: the Load and Resistance Factor Design (LRFD) which is a limit state approach, or the 

allowable stress design as a tradition from the past. 

The basic document of the Eurocodes is EN 1990 – Basis of structural design. It establishes 

principles and requirements for the safety assessment of structures; it describes the basis of their 

design and provides guidelines for structural reliability.  

The limit state design method recognizes relevant design situations, where the design values 

are established by use of partial factors. These safety factors are used on load and on the 

resistance sides and the design is considered adequate whenever the appropriate limit states are 

verified: 

ௗܧ ൑ ܴௗ (2.75) 

where Ed is the design value of the actions; Rd is the design value of the resistance. 

The safety factors are established based on a statistical evaluation of experimental data; or based 

on a calibration to experience derived from a long building tradition. They should be calibrated 

such that the reliability level is as close as possible to the target reliability. The calibration of 

safety factors can be performed based on full probabilistic methods, or on First Order Reliability 

Methods. The full probabilistic approach is often not possible to use due to the lack of sufficient 

statistical data. Vrouwenvelder (2002) reports that the analysis can be based on the Bayesian 

interpretation of probabilities, where the probabilities are evaluated using available data and 

previous knowledge. 

Figure 2.10 illustrates the various possible reliability methods according to EN 1990. 

The level of safety in EN 1990 is chosen according to Consequence classes (CC) defined in 

Annex B. The consequence classes establish the reliability differentiation of the code by 

considering the consequence of failure or malfunction of the structure. The Consequence 

Classes (CC) correspond to Reliability classes (RC), which define the target reliability level 

though the reliability index β. This index defines the probability of failure, given by: 

௙ܲ ൌ Ȱሺെߚሻ (2.76) 

where Φ is the cumulative distribution function (CDF) for the standard normal distribution.  
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Figure 2.10 Possible Reliability methods 

The reliability index covers the scatter on both resistance and action sides. It can be expressed 

in terms of number of standard deviations as shown on Figure 2.11. 

 

Figure 2.11 Reliability index β 

According to Gulvanessian et al. (2002), “the target reliability index or the target failure 

probability is the minimum requirement for human safety from the individual or societal point 

of view when the expected number of fatalities is taken into account. It starts from an accepted 

lethal accident rate of 10-6 per year, corresponding to a reliability index E1 = 4.7”. The 

reference period (the design life) depends on the Reliability class, i.e. for most of the structures 

it is 50 years which leads to β=3.8.  
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The probability of failure as expressed in Eq. (2.76) includes the loading and the resistance 

parts. EN 1990 allows to separate the scatter due to loading and resistance in terms of 

coefficients αE and αR, respectively (see Figure 2.11), where: 

ටߙோଶ ൅ ாଶߙ ൎ ͳǤͲ (2.77) 

The partial factors related to the resistance are determined based on the following expression: 

ܲሺݎ ൑ ௗሻݎ ൌ Ȱሺെߙோߚሻ (2.78) 

where r stands for resistance and rd is the design resistance. The factor αR may be assumed to 

have a fixed value of 0.8 in case the standard deviation of the load effect and the resistance do 

not deviate very much (0.16<σE/σR<7.6). This simplification is crucial for a standardized 

determination of the partial factors for the resistance side without the need to simultaneously 

consider the action side.  

The LRFD in AISC (2010), for example, does not allow such split and the reliability index E is 

calibrated for Live-to-Dead load ratio of 3 and it is approximately 2.6 for members and 4.0 for 

connections. This imposed reliability assessment which is load dependent and more laborious 

to perform. 

The partial factors used in EN 1990 are: 

� JF – Partial factor for actions, also accounting for model uncertainties and dimensional 

variations; 

� Jf – Partial factor for actions, which takes account of the possibility of unfavorable 

deviations of the action values from the representative values; 

� JSd - Partial factor associated with the uncertainty of the action and/or action effect 

model; 

� JM – Partial safety factor for a material property also accounting for model uncertainties 

and model variations; 

� Jm – Partial factor for a material property; 

� JRd – Partial factor associated with the uncertainty of the resistance model; 

The relation between individual partial factors in the Eurocodes is schematically shown in 

Figure 2.12: 
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Figure 2.12 - Relation between individual partial factors 

Since Eurocode 3 allows the split between the load and the resistance side, henceforth only the 

resistance part will be discussed and the partial factor JM related to it. 

Regarding the design resistance, in Section 6 of EN 1990, three different alternatives for its 

evaluation are proposed, for steel structures, Eurocode 3 recommends the use of Method 2 

(clause 6.3.5(3)): the design resistance may be obtained directly from the characteristic value 

of product or material resistance, without explicit determination of the design values for 

individual basic variables: 

ܴௗ ൌ
ܴௗ
ெߛ

 (2.79) 

The latter is applicable to products or members made of a single material and it is also used in 

connection with Annex D of EN 1990.  

 Furthermore, in Eurocode 3, depending on the type of design rule in consideration there are 

different partial factors JMi: 

� Resistance of cross-sections whatever the class is JM0; 

� Resistance of members to instability assessed by member checks JM1; 

� Resistance of cross-sections in tension to fracture JM2; 

2.7 Recent advances 

2.7.1 Introduction 

Even though the stability design rules presented in this section were based on extensive 

research, the stability problem continues to attract the attention of researchers due to the 

Uncertainty in representative 
values of actions 

Model uncertainty in actions and 
action effects

Model uncertainty in structural 
resistance

Uncertainty in material properties

γf

γSd

γRd

γm

γF
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enhanced material properties, new cross-section geometries and the possibility of computer 

aided design. In this section, the recent developments in the scope of the European design rules 

are summarized. There are several works which build upon the Ayrton-Perry format for flexural 

buckling of columns, extending it to beam-columns, non-uniform members and members 

subject to arbitrary loading. It was shown that this concept is relatively easily extended to 

flexural-torsional and lateral-torsional buckling once the correct analytical behaviour is 

considered Taras (2010). In Naumes (2009), the equilibrium equation for the flexural buckling 

of tapered members was also established; in this derivation, the shape of the initial imperfection 

was considered eigenmode conform. It was shown that the Ayrton-Perry design format can be 

adopted for the design of non-uniform members. However, the proposed expressions are not 

applicable for practical design verification due to lack of recommendations for the 

determination of the design location. Furthermore, Taras (2010) offers the same type of model 

for flexural buckling of beam-columns. Marques (2012) provided design equations for flexural 

buckling of web-tapered columns and lateral-torsional buckling of web-tapered beams in the 

same Ayrton-Perry format. An approximate verification format for beam-columns is proposed 

by Hoglund (2014): aiming for simplicity, the stress utilizations due to axial force and bending 

moments are specified as power functions. The method claims to provide better representation 

of the transition between Class 2 and Class 3 sections, which however are already implemented 

in the final draft of prEN 1993-1-1 (CEN/TC250, 2017) following the recommendations of the 

European project SEMICOMP+ (Greiner et al., 2011). It is incorporated in Eurocode 9 for 

verification of aluminium beam-columns. Recent research by Szalai (2017) shows the extension 

of the Ayrton-Perry equation to prismatic simply supported members subject to arbitrary 

loading. The author does not provide calibration of the corresponding imperfection factors but 

shows that it is theoretically possible to achieve this format for various buckling modes. Based 

on this development, Szalai & Papp (2017) built their proposal for reformulation of the General 

method, by putting it into the derived Ayrton-Perry proposal for prismatic simply supported 

members subject to arbitrary loading, which is its major flaw, being unable to capture the 

specific aspects of non-uniform members. 

Furthermore, there are a few developments supporting the design by use of numerical analyses. 

Their proposals were mainly focused on the definition of the equivalent geometrical 

imperfection to be considered in the design Chladný & Stujberová (2013a,b), Aguero et al. 

(2015a,b), Papp (2016) and a mixture between LBA conform imperfection and a reduction 

factor calculation Badari & Papp (2015). 
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The methods can be separated according to the type of members they can deal with in the 

following table: 

Table 2.14 – Recent advances 

Author Members in 
compression 

Members in 
bending 

Members in bending 
and compression 

Taras (2010)   x 

Marques et al. (2012), (2013), 

(2014) 
x x x 

Chladný & Stujberová 

(2013a,b) 
x   

Aguero et al. (2015a,b) x x  

Badari & Papp (2015)  x  

Papp (2016) x x x 

 

In this section, these recent methods are briefly summarized. 

2.7.2 Members in compression 

2.7.2.1 Tapered columns 

For the verification of linearly web tapered columns, an Ayrton-Perry analytical model was 

built by Marques et al. (2012), based on an equivalent simply-supported segment between 

effective restraints. The verification format is established on a linear interaction between the 

first order forces and second order bending moments utilizations, leading to a maximum 

utilization (and, consequently, to the ultimate load factor) at a certain location, denoted as the 

second order failure location. The utilization ratio of any section is given by the quotient of 

applied and resistant forces. It is also the inverse of the load multiplier αult,k. Figure 2.13 

illustrates this aspect over the length L of a tapered column buckling about its major axis.  
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Figure 2.13 Determination of the failure location 

In this model for tapered members, eigenmode conform imperfections were considered for the 

second order forces shape, leading to similar equations as those presented in EC3-1-1 for the 

stability verification of prismatic columns. As a result, as long as a second order failure location 

is known and an additional imperfection factor is considered to account for the non-uniformity 

either of the loading or of the cross section, the verification may be performed analogously to 

the rules for prismatic columns. The utilization ratio is given by Eq. (2.80) for flexural buckling 

of columns  

௖ூூሻݔሺߝ ൌ ߯ሺݔ௖ூூሻ ൅
߯ሺݔ௖ூூሻ

ͳ െ ௖ூூሻݔ௖ூூሻ߯ሺݔ᪄ଶሺߣ
ቈ݁଴

ோܰሺݔ௖ூூሻ
௖ூூሻݔோሺܯ

቉ ቈ
௖ூூሻ൯ݔ௖௥̶ሺߜ௖ூூሻ൫െݔሺܫܧ

௖௥ߙ ாܰௗሺݔ௖ூூሻ
቉ (2.80) 

It was shown that this second order failure location and additional imperfection factor may be 

replaced by an “over-strength” factor φ which accounts for the relation between the ultimate 

resistance multiplier of the second order location, αult,k(xc
II) and the first order location, αult,k(xc

I), 

such that if the φ-factor is determined, the verification is always based on xc
I. φ is given by 

߮ ൌ ோܰ௞ሺݔ௖ூூሻ ாܰௗሺݔ௖ூூሻΤ

ோܰ௞ሺݔ௖ூሻ ாܰௗሺݔ௖ூሻΤ ൌ
௖ூூሻݔ௨௟௧ǡ௞ሺߙ
௖ூሻݔ௨௟௧ǡ௞ሺߙ

 (2.81) 

2.7.2.2 Frames with unique local and global imperfection 

Chladný & Stujberová (2013) show the principles of the application of EN 1993-1-1 section 

5.3.2(11), where the amplitude of the imperfection is defined on the basis of flexural buckling 

of prismatic columns and the shape is adopted according to the relevant buckling mode.  
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݁଴ǡௗ ൌ ᪄ߣ൫ߙ െ ͲǤʹ൯ ௘ܹ௟

ܣ

ͳ െ ͳ െ ᪄௠ߣ
ଶ߯

ெଵߛ

ͳ െ ᪄௠ߣ
ଶ߯

 (2.82) 

Even though it is put in the context of a frame, the imperfection is derived for “frame structure 

with axially loaded members” whose resistance “shall be equal to the flexural buckling 

resistance of the equivalent member”. This equivalent member is simply supported, its cross-

section and axial force are equal to the critical cross-section of the frame and its length is such 

that it equals the axial force at the critical section for the critical loading (Chladný & Stujberová 

(2013)). Following this fundamental requirement and establishing the utilization along the 

member as a sum of the first and second order stresses: 

ܷሺݔሻ ൌ ாܰௗሺݔሻ
ோܰௗሺݔሻ

൅
ఎ೔೙೔೟ǡ೘ܯ

ூூ ሺݔሻ
ሻݔோௗሺܯ

 (2.83) 

they derived the following expression for the imperfection by equalising the imperfections for 

the equivalent and real member at the critical cross–section: 

ሻݔ௜௡௜௧ǡ௠ሺߟ ൌ ݁଴ǡௗ
௖௥ߙ ாܰௗǡ௠

ԢԢ௖௥ǡ௠หߟ௠หܫܧ
 ሻ (2.84)ݔ௖௥ሺߟ

in which the index m stands for the critical cross-section. 

The procedure is intended for direct use in second order analysis; however, some applications 

(for members) are possible using direct calculation. In any case, the definition of the critical 

location for the determination of the magnitude of the imperfection requires an iterative process. 

 

2.7.2.3 Equivalent geometrical imperfection in steel structures sensitive to flexural 

and/or torsional buckling due to compression 

Aguero et al. (2015a) extended the concept presented in the previous section to members in 

compression sensitive to flexural and/or torsional buckling. Their method also finds its basis in 

section 5.3.2(11) of EN 1993-1-1. Aguero et al. (2015a) use the same assumptions as Chladný 

& Stujberová (2013). However, in this case, Aguero et al. (2015a) propose two different 

expressions for the initial imperfection for Class 2 and Class 3 cross-sections which are used to 

amplify the second order forces obtained from LBA.  
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݁௖ሺݔ௖௥ሻ ൌ ᪄ߣ൫ߙ െ ͲǤʹ൯
ͳ െ ͳ െ ᪄௠ߣ

ଶ߯
ெଵߛ

ͳ െ ᪄௠ߣ
ଶ߯

ͳ

ܧ ൬ ௭ܫ
௣௟ǡ௭ǡோௗܯ

ԢԢ௩ߟ ൅
௬ܫ

௣௟ǡ௬ǡோௗܯ
ԢԢ௪ߟ ൅ ௪ܫ

௣௟ǡ௪ǡோௗܯ
ԢԢఏ൰ߟ

 (2.85) 

where ߟԢԢ௩ǡ ԢԢ௪ǡߟ�  ԢԢఏ are the second derivatives of the mode shape translations in y, z directionsߟ

and twist rotation about x-axis. 

This method is also applied using an iterative procedure to find the critical location along the 

member for which the magnitude of the imperfection is calculated.  

2.7.3 Members in bending 

2.7.3.1 Tapered beams 

Similarly to the model for web-tapered columns, an Ayrton-Perry analytical model was built 

by Marques et al. (2013) for the verification of linearly web tapered beams. It is also based on 

an equivalent simply-supported segment between effective restraints. The verification format 

is based on a linear interaction between the first and second order bending moment utilizations, 

leading to a maximum utilization. The utilization ratio is given by: 

௖ூூሻݔሺߝ ൌ ߯௅்ሺݔ௖ூூሻ ൅
߯௅்ሺݔ௖ூூሻ

ͳ െ ᪄௅்ߣ
ଶሺݔ௖ூூሻ߯௅்ሺݔ௖ூூሻ

ൈ 

(2.86) 
ൈ ௖ூூሻݔ᪄௭ሺߣ௅்൫ߙ െ ͲǤʹ൯

᪄௅்ߣ
ଶሺݔ௖ூூሻ

᪄௭ߣ
ଶሺݔ௖ூூሻ

ߦ௖ூூሻ൯ݔ௖௥̶ሺߜ௖ூூሻ൫െݔ௭ሺܫܧ
௖ܰ௥ǡ௭ǡ்௔௣

ൈ 

ൈ
ͳ ൅ ௖ܰ௥ǡ௭ǡ்௔௣

௖௥ǡ்௔௣ܯ

݄ሺݔ௖ூூሻ
ʹ

ͳ ൅ ௖ܰ௥ǡ௭ǡ்௔௣
௖௥ǡ்௔௣ܯ

݄௠௜௡
ʹ

 

This theoretical utilization ratio was used for the calibration of “over-strength” factors as it was 

done for the columns. 
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2.7.3.2 Equivalent geometrical imperfection in steel structures sensitive to flexural 

and/or torsional buckling due to compression 

Aguero et al. (2015b) extended their concept presented in Aguero et al. (2015a) to members in 

bending sensitive to lateral-torsional buckling. Using the same assumptions as described in 

section 2.7.2.3, the amplitude of the imperfection is given by: 

݁ெሺݔ௖௥ሻ ൌ
᪄௅்ߣ௅்൫ߙ െ ᪄௅்ǡ଴൯ߣ

᪄௅்ߣ
ଶ

ͳ െ ͳ െ ᪄௅்ߣ
ଶ߯௅்

ெଵߛ

ͳ െ ᪄ߣߚ ௅்
ଶ߯௅்

ͳ

ܧ ൬ ௭ܫ
௣௟ǡ௭ǡோௗܯ

ԢԢ௩ߟ ൅
௪ܫ

௣௟ǡ௪ǡோௗܯ
ԢԢఏ൰ߟ

 (2.87) 

 

2.7.3.3 Lateral-torsional buckling of prismatic beams 

Badari & Papp (2015) proposed new buckling curves for lateral-torsional buckling based on 

the analytical derivation by Szalai & Papp (2010). The imperfection factors for the LT-curves 

were calibrated on the basis of advanced numerical simulations.  

They also propose a verification which is performed in terms of a reduction factor χ calculation 

for various locations along the beam by using the buckling mode and the actual load 

distribution. The normalized slenderness is calculated at location i along the beam as a ratio 

between the ultimate load multiplier for the section and the critical load multiplier:  

᪄௅்ǡ௜ߣ ൌ ඨ
௨௟௧ǡ௞ǡ௜ߙ
௖௥ߙ

 (2.88) 

and the generalized imperfection at each section is taken as a part of the maximum 

௅்ǡ௜ߟ ൌ ௅்ߟ
௜ݒ

௠௔௫ݒ
 (2.89) 

Then the bending moment resistance of each cross-section is obtained as: 

௕ǡோௗǡ௜ܯ ൌ ܹ௣௟ǡ௬ ௬݂
߯௅்
ெଵߛ

௬ǡாௗܯ

௬ǡாௗǡ௜ܯ
 (2.90) 
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2.7.4 Members in bending and compression 

2.7.4.1 Ayrton-Perry formulation for in-plane flexural buckling of beam-columns 

Taras (2010) proposed an Ayrton-Perry equation for in-plane flexural buckling on prismatic 

beam-columns. The verification format is derived in two alternative forms as a reduction factor 

applied to the axial force and taking into account the bending moment,  

ாܰௗ

߯௬ǡఎ଴ ோܰௗ
൑ ͳǤͲ (2.91) 

or as a global in-plane reduction factor which multiplies both axial force and bending moment 

aiming towards the definition of an overall concept for beam-columns.  

߯௜௣ ൌ
ܿ଴

߶௜௣ ൅ ට߶௜௣
ଶ െ ݇௡௜כ ܿ଴ߣ᪄௜௣

ଶ
൑ ͳǤͲ 

(2.92) 

߶௜௣ ൌ ͲǤͷ ቀ݇௡௜כ ൅ ௧௢௧ߟ ൅ ܿ଴ߣ᪄௜௣
ଶቁ (2.93) 

௧௢௧ߟ ൌ ݇௡௜כ ଴ߟ௠ௌܥ ൅  ௜௠௣ǡா஼ଷ (2.94)ߟ

The generalized imperfection, given by Eq.(2.94), has two terms - due to initial imperfection 

amplified by the axial force and by the second order bending moment. 

As mentioned earlier, the in-plane behaviour of beam-columns is highly influenced by plasticity 

at low slenderness, which led to the calibration of additional plasticity factors in the interaction 

formula, as described in Section 2.4.4. In the developed Ayrton-Perry equation, since it is based 

on a first yield criterion, it was also necessary to develop additional factors. They are given by 

Eq. (2.95) and (2.96). Taras (2010) adopted a “split” approach, a multiplier for the moment and 

the axial force. 

݇௡௜כ ൌ ݇௡௜ ൅ ሺͳ െ ݇௡௜ሻܥߩ௠ௌߣ᪄௜௣ ൑ ͳǤͲ (2.95) 

݇௠௜
כ ൌ ݇௡௜ ൅ ሺݓ െ ݇௡௜ሻܥߩ௠ௌߣ᪄௜௣ ൑  (2.96) ݓ

where  

݇௡ଵ ൌ ͳǤͲ   ݇௠ଵ ൌ ͳǤͲ െ ͲǤͷܽ ൒ ͲǤ͹ͷ   ߟௌ஼ଵ ൌ
଴Ǥ଼

ଵି଴Ǥ଼௞೘భ
 (2.97) 
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݇௡ଶ ൌ
଴Ǥଶ

ଵି଴Ǥ଼௞೘భ
   ݇௠ଶ ൌ ͳǤͲ   ߟௌ஼ଶ ൌ λ (2.98) 

Similar factors were calibrated for minor axis flexural buckling of I-sections, hollow circular 

and rectangular cross-sections. 

2.7.4.2 Tapered beam-columns 

In Marques et al. (2014) the design rules for tapered columns and beams developed by the same 

authors were used to propose a verification format for the stability verification of web-tapered 

beam-columns. The verification uses the Eurocode 3 interaction approach and adjusted values 

for kyy and kzy interaction factors. The interaction formula applied at the first order failure 

location (Eqs. (2.99) and (2.100)), with the reduction factors ߯ calibrated for tapered columns 

and beams; and the interaction factors according to Table 2.15. 

ாܰௗ൫ݔ௖ǡேூ ൯
߯௬൫ݔ௖ǡேூ ൯ ோܰௗ൫ݔ௖ǡேூ ൯

൅ ݇௬௬
௖ǡெூݔ௬ǡாௗ൫ܯ ൯

߯௅்൫ݔ௖ǡெூ ൯ܯ௬ǡோௗ൫ݔ௖ǡெூ ൯
൑ ͳǤͲ (2.99) 

ாܰௗ൫ݔ௖ǡேூ ൯
߯௭൫ݔ௖ǡேூ ൯ ோܰௗ൫ݔ௖ǡேூ ൯

൅ ݇௭௬
௖ǡெூݔ௬ǡாௗ൫ܯ ൯

߯௅்൫ݔ௖ǡெூ ൯ܯ௬ǡோௗ൫ݔ௖ǡெூ ൯
൑ ͳǤͲ (2.100) 

 

In Table 2.15, ny and nz are obtained using Eqs. (2.48) and (2.49) for the first order failure 

location. 

Table 2.15 - Method 2: Interaction factors for members susceptible to lateral-torsional buckling 

Int. 
factor 

Design assumption 

Plastic cross-sectional properties Class1 and 2 

kyy ܥ௠௬ൣͳ ൅ ൫ߣҧ௬൫ݔ௖ǡேூூ ൯ െ ͲǤʹ൯݊௬൧ ൑ ௠௬ൣͳܥ ൅ ͲǤͺ݊௬൧ 

kzy 

൤ͳ െ ଴Ǥଵఒഥ೥൫௫೎ǡಿ
಺಺ ൯

஼೘ಽ೅ି଴Ǥଶହ
݊௭൨ ൒ ቂͳ െ ଴Ǥଵ

஼೘ಽ೅ି଴Ǥଶହ
݊௭ቃ   Forߣҧ௭൫ݔ௖ǡேூூ ൯ ൏ ͲǤͶ 

݇௭௬ ൌ ͲǤ͸ ൅ ௖ǡேூூݔҧ௭൫ߣ ൯ ൑ ቈͳ െ
ͲǤͳߣҧ௭൫ݔ௖ǡேூூ ൯
௠௅்ܥ െ ͲǤʹͷ

݊௭቉ 
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2.7.4.3 Overall imperfection method 

Finally, Papp (2016) proposed an innovative general methodology for the calculation of the 

buckling resistances of columns, beams and beam-columns. The method avoids the iterations 

in the previous ones, it transforms the calculation to an equivalent simply-supported member.  

The procedure is applied in the following sequence:  

� LBA is performed to obtain the critical load multiplier αcr and the elastic buckling shape 

vcr(x) 

� In a second step, a second order stress analysis with vcr(x) as initial imperfection is 

carried out, which gives the defined reference location where the second order stress 

has maximum - xref 

� The amplitude of the imperfection is then calculated for the reference member, which 

has cross-section properties of the member at location xref and the length is calculated 

so that the reference member has the same critical forces as the designed member at the 

reference location. 

� Once the amplitude is obtained, a second order analysis with the calculated amplitude 

is carried out. 

� Finally, the verification is performed as a cross-section check of the designed member. 

 

2.7.5 Summary 

This section summarized the recent developments in the scope of the European stability design. 

New design methods based on an extension of the Ayrton-Perry concept were proposed, namely 

for flexural buckling of prismatic beam-columns by Taras (2010) and for web-tapered columns 

and beams by Marques (2012). These methods rely on the inevitable calibration of factors to 

account for the over-strength due to the variation of the failure location. 

The second group of methods, that would eventually avoid the additional calibration of factors 

accounting for the failure location, are the methods which establish the shape of the initial 

imperfection as the buckling shape of the member. Several developments were presented in this 

direction as well. Chladný & Stujberová (2013a,b) covered the flexural buckling of members 

and Aguero et al. (2015a,b) extended the concept to flexural-torsional and lateral-torsional 

buckling. In terms of practical application, the major drawback of these methods is the iterative 
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process in the determination of the critical location. The method by Papp (2016) resolves the 

issue with the critical location by setting a criterion for its evaluation. However, the 

determination of the amplitude of the initial imperfection is not found very practical (especially 

for application in a design office) since it requires a two-step procedure: i) second-order stress 

analysis with random amplitude of the buckling shape to determine the reference location and 

ii) transformation of the real member to an equivalent at this reference location.  

In the following chapters, as a part of the research objectives, it was aimed to develop a method 

that overcomes the mentioned issues, a method that is general, reliable and consistent with the 

existing rules.  
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3 EXPERIMENTAL BUCKLING 

BEHAVIOUR OF NON-UNIFORM 

STEEL MEMBERS 

3.1 Introduction 

The stability design rules for prismatic members presented in the previous chapter were 

developed on a sound analytical background, validated with experimental, numerical and 

statistical work. Due to the possible economic advantages, the buckling behaviour of non-

uniform members has attracted the interest of the researchers since the very beginning of the 

last century. Initially, the contributions were focused on analytical solutions for the elastic 

critical behaviour of non-uniform members. Timoshenko & Gere (1961) propose numerical 

solutions for the critical loads of stepped columns and bars with linearly varying cross-section. 

Lee et al. (1972) presented an equivalent member approach for the critical loads of linearly-

web-tapered columns. Hirt & Crisinel (2001) established an expression for the determination 

of an equivalent moment of inertia for tapered columns, which is used in the Euler formula for 

the calculation of the critical buckling force. Marques (2012) derived closed form expressions 

for the critical load of web-tapered columns based on the Rayleigh-Ritz method. Regarding 

lateral-torsional buckling, the first studies on the torsional behaviour of non-uniform members 

are found in Lee (1956) and Lee & Szabo (1967). Their developments were later used by 

Kitipornchai & Trahair (1972) who provided the theoretical basis for the lateral-torsional 

buckling of tapered beams. Later, Brown (1981) proposed solutions using finite differences for 

the determination of the critical loads for simply-supported beams and cantilevers with tapered 

sections. Other approaches for the elastic critical moment of web-tapered beams are available 
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by Gálea (1986) for non-uniform beam under constant bending moment and for web-tapered 

beams subject to a linear bending moment distributions and cantilevers by Andrade et al. 

(2007). 

Furthermore, using the finite element method, theoretical developments were performed by 

Yang & Yau (1987); Bradford & Cuk (1988) proposed a solution for mono-symmetric tapered 

beams; Bradford (1988) treated the behaviour of web-tapered beam-columns with restraints; 

Rajasekaran (1993a,b) developed a formulation for tapered thin-walled members with a generic 

section; Gupta et al. (1996) addressed on the behaviour of continuous tapered beams. Lei & 

Shu (2008) presented a new theoretical formulation that correctly accounts for the effects of 

tapering by incorporating second-order taper effects in the strain-displacement equations  

In most common structural applications, however, the real stability behaviour of steel members 

includes imperfections and nonlinear material behaviour. Accounting for these, design methods 

for tapered columns were proposed by Baptista & Muzeau (1998) adjusting the Eurocode 3 

design rule for flexural buckling of prismatic columns by adding a numerically calibrated 

coefficient k to account for the extra resistance. Raftoyiannis & Ermopoulos (2005) proposed a 

verification format based on a first yield criterion which was validated with numerical 

simulations. Kim (2010) adjusted the AISC (2010) expressions for prismatic columns and 

beams to tapered, using the equivalent member concept. As mentioned earlier, Marques (2012) 

developed Ayrton-Perry equations for tapered columns and beams. Unlike the design rules for 

prismatic members, these design methods were validated only numerically, and even though, 

nowadays, the laboratory experiments are often substituted with advanced numerical 

simulations, due to the added complexity the experimental evidence is essential in order to 

evaluate the member response in terms of characterization of the real behaviour and member 

imperfections. 

Therefore, the objective of the present chapter is to provide the experimental background for 

the development of design rules for non-uniform members. For that, firstly, the existing 

experimental tests on non-uniform columns, beams and beam-columns were collected. 

Furthermore, the results from an experimental programme carried-out at the University of 

Coimbra are presented. These results were then used in the validation of the numerical model 

in Chapter 4.  
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3.2 Experiments by others 

3.2.1 Experiments on tapered members 

There are a few experimental programmes carried out in the past and summarized hereby. Only 

a brief overview of each is given, in order to provide an idea of the scope of the existing 

experimental results. 

Krefeld et al. (1959) performed experimental tests on cantilevered I-section tapered steel beams, 

analysing the critical stress for different taper ratios and member lengths. The experimental 

programme consisted of 16 built-up I and C section beams. The maximum member length was 

about 5 m and the largest cross-section tested had about 450 mm height, flange width of 220 

mm, flange and web thicknesses of about 10 mm and 6 mm, respectively. Based on the results 

obtained, the authors proposed a method for estimation of the elastic bending stress for non-

uniform cantilevered beams, which is built on a comparison of the experimental results for 

tapered and uniform members and by setting up additional reduction factors depending on the 

cross-section dimensions, supports and taper angle.  

Butler & Anderson (1963) carried out experimental tests on the elastic stability of tapered I 

members loaded in compression and a combination of bending and compression. The 

experimental programme covered 14 different specimens, web and/or flange tapered. The 

maximum cross-section height was about 500 mm, flange width 120 mm and flange and web 

thicknesses of 8 and 6 mm respectively. The results obtained led to the conclusion that the pure 

compression tests are in excellent agreement with the analytical solution of the problem; the 

combined loading revealed interaction dependency on the taper ratio. 

Later Butler (1966), carried out experiments on elastic buckling of lateral and torsional bracing 

of beams. The tested specimens were tapered I steel tip-loaded cantilevers. The beam 

dimensions were chosen to be similar to the previous study Butler & Anderson (1963). The 

conclusions of the paper reveal that end bracing is most effective on the tension flange; the most 

efficient bracing configuration is tip and mid-span bracing at the tension and compression 

flanges, respectively. A tension bracing at mid-span would have no influence on the lateral-

torsional buckling capacity. 
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As a continuation of the work by Butler, Prawel et al. (1974) performed an experimental study 

where fifteen tapered I-section members were tested in bending and in a combination of bending 

and compression. The tested members were chosen to fail in the inelastic range. The 

experiments covered three beams and twelve beam-columns. The members had identical 

shallow sections (approximately 152x152x6x3 mm). The taper was varied using three different 

taper ratios (2, 2.67 and 3) and also covering prismatic members. The tapered members were 

fabricated by welding of the flanges to one side of the web. The study also assessed the effects 

of oxygen and shear cuts plates. The nominal yield stress was 42 ksi (approximately 290 MPa) 

and the yield stress determined from the experiments was 52 ksi (approximately 360 MPa). 

Based on the measurements carried out, the authors proposed a pattern of residual stresses. The 

maximum tensile stress in both flanges and web is set equal to the yield stress. The tension 

spreads over 1/3 of the flanges. Regarding the compressive stresses, in the flanges the maximum 

compression at the flange tips is suggested as 0.5fy which decreases to 0.3fy before the stress 

changes sign. 

Shiomi & Kurata (1980) report on an experimental programme on tapered beam-columns which 

aimed at the characterization of the structural behaviour of such members for the development 

of a design formulation. The experimental programme covered 24 full-scale beam-columns 

with and without lateral restraints and discrete measurements of the residual stresses for three 

members. The nominal yield stress of the steel was 235 MPa. Before testing the initial out-of-

straightness was measured for all members. It was found that for flanges and web taper 

members, a decrease of the residual compression stress of the flange and an increase in the 

residual compression stress of the web as the web depth and flange width decreased was noted. 

The authors also report that the constant width flanges did not exhibit any dependence on the 

change of the web height. 

Experiments and design method for tapered and haunched beams were reported by Horne et al. 

(1979), focussed on the development of plastic design rules for pitched-roof portal frames. 

Hence, to reflect the realistic case of inclined rafters under gravity loading, the test specimens 

were supported at intervals along the tension flange. The objective of the experimental 

programme was to verify their ability to undergo plastic deformation without major loss in the 

bending moment resistance. The experimental programme consisted of eight haunched beams 

subject to equal end bending moments and three tapered beams subject to moment gradient 

such that the plastic moment at the shallow end was achieved and the deeper end was close to 

yielding. The maximum height of the profiles considered was about 300 mm. The material 
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properties were characterized by tensile tests, the measured yield stress was around 300 MPa 

and the actual plastic bending moment resistance was obtained from two control tests. The 

resulting design procedure led to the definition of a stable length (Simões da Silva et al., 2014) 

but it was too specific for general application to tapered members. It was also emphasized that 

the compressive residual stresses induce premature yielding and local buckling of the 

compression flange.  

Salter et al. (1980) carried out tests on web-tapered steel columns. The specimens were loaded 

in axial compression and major axis bending moment. In total, eight tests were performed. In 

three of the tests, lateral restraint was provided to one flange at mid-height. The specimens were 

about half to one third of their full size. The shallow section dimensions were approximately 

hs=125 mm or hs=100 mm, the flange width and b=100 mm or b=90 mm; the flange thickness 

was tf=6.4 mm or tf=4.7 mm; and the web thickness was tw=4.7 mm. The members were 

designed using four different taper ratios: 2, 2.2, 2.4 and 2.5. The material properties were 

determined after testing of the main specimens. The measured yield stress varied between 315 

and 335 MPa. The initial out-of-straightness was measured only for the minor column axis. The 

imperfections were very high: only 1 of 8 measurements was lower than the tolerance of L/750 

in EN1090-2 (2011). The residual stresses were measured. However, the paper only reports 

only on the conclusions. Salter et al. (1980) have adopted the pattern proposed in Young & 

Robinson (1975). The test results were compared with numerical non-linear analyses for which 

good agreement was reported. Regarding the code estimations for the resistance of such 

columns, the authors conclude that they are safe sided with possibility for improvement.   

In the scope of the European project Lateral-torsional Buckling in Steel and Composite Beams 

(2002) on the lateral-torsional buckling of steel and composite beams, seven tests on web-

tapered steel beams were carried out. They have measured the sweep on both flanges of the 

tapered beams. The beams were executed by welding of steel plates in steel grade S355. The 

material properties were determined by tensile coupon tests for all members. The tested 

specimens had two tapering ratios 2 and 3, with the same shallow section, a built-up I 

300x180x10x8. The tests are well-documented and reported in the project deliverable. The 

experimental results were then used for the validation of design rules.  



STABILITY DESIGN OF STEEL COLUMNS, BEAMS AND BEAM-COLUMNS: 
BEHAVIOUR, GENERAL FORMULATION AND RELIABILITY 

 

 
 

56 |

3.2.2 Member imperfections 

In this section, similar studies on the member imperfections for welded prismatic members are 

summarized. 

Avent & Wells (1982) carried out an experimental programme on seven welded prismatic 

columns. The columns were tested under axial compression; prior to the main tests, residual 

stresses (seven measurements), initial geometrical imperfections and material properties were 

determined. The tested specimens ranged from 229 to 610 mm depths, the flange widths were 

127, 152 or 205 mm, the flange thicknesses were 5.6, 6.4 or 9.5 mm and the web thicknesses 

3.2 or 4.8 mm. The nominal yield stress was 50 ksi (345 MPa equivalent), with the tensile tests 

revealing a lower grade for the flanges of 2 columns. For the material imperfections, it is 

reported that the value of the flange tip compressive residual stress could be approximated with 

fy/2. It is also proposed that the change in the compressive region occurs approximately at 0.15 

of the flange width at fy/3, identical to the pattern proposed by Prawel et al. (1974). 

Fukumoto & Itoh (1981) summarized a statistical assessment of experiments performed on 

prismatic welded beams. The study aimed at the characterization of the lateral-torsional 

buckling stability of these beams as a follow-up to a similar study on rolled beams. It covered 

34 tests on residual stresses of welded beams with I cross-section (250x100x6x8 mm). The 

material properties were determined for the web and flanges separately for the steel with a 

nominal yield stress of 235 MPa, resulting in fyw,m=337.7 MPa and fyf,m=283.5 MPa, 

respectively. The results are reported as statistical indicators. They also performed a statistical 

characterization of the geometrical imperfection of 68 welded prismatic beams. Fukumoto & 

Itoh (1981) report only on statistical parameters and distribution, the individual results are not 

presented. The statistics are provided for both major and minor axis out-of-straightness as well 

as for the twist. The mean values obtained for the major and minor axis are 0.000125(1/8000) 

and 0.000296 (1/3378) respectively with coefficients of variation of 92% and 81%. The 

goodness-of-fit was verified by F2 and Kolmogorov-Smirnov for Weibull model are of close fit 

with the measured values by the authors.  

Chernenko & Kennedy (1991) carried out a numerical assessment on the buckling behaviour of 

welded wide flange columns. Their assessment was based on statistical data collected from 

earlier studies. They proposed a residual stress pattern which has the maximum tensile stress in 

the flange-to-web junction, varying from 80 % to 100 % of the yield stress while the tension at 

the flange tips varies from 50 % to 82 % of the yield stress. Regarding the compressive stresses, 
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their variation in the flanges is between 28 % and 40 %. The out-of-straightness is also 

discussed in the paper. Furthermore, Chernenko & Kennedy (1991) provide statistics on the 

out-of-straightness based on measurements collected during a site visit at Algoma Steel in Sault 

Site. Marie, Ontario and also from the company’s quality assurance files. Regarding the camber, 

the mean value was 0.00053 (1/1890) with coefficient of variation of 30.7%. They collected 

data on the sweep as well, total of 11 measurements with a mean value of 0.000293 (1/3413) 

and a coefficient of variation of 52.5%. Chernenko & Kennedy (1991) point out that no 

measurements below the tolerance of L/1000 are rarely recorded, because of the additional 

straightening of the members which develop excessive camber. The camber is reported to be 

more severe than the sweep of these columns. The large coefficient of variation of the samples 

is explained by the order of the imperfections (very small). The authors did not recommend 

suitable distribution that fits the measured data. 

3.3 Experimental programme 

3.3.1 Scope 

The experiments were performed in the framework of the research project TAPERSTEEL 

PTDC/ECM-EST/1970/2012. Its objective was to study the stability behaviour of non-uniform 

steel members. The experimental programme covered flexural buckling of columns under 

uniform compression, lateral-torsional buckling of non-uniform beams under linearly varying 

bending moment and lateral-torsional buckling of beam-columns loaded with major axis 

bending moment and uniform compressive force.  

All specimens were web-tapered, with different tapering ratios, and two different shape 

configurations were used: i) different inclination of each flange with respect to the centroid of 

the beam (shape L Figure 3.1a); ii) the equal flange inclination with respect to its centroidal 

axis (shape V Figure 3.1b). The nominal dimensions of the tested members are summarized in 

Table 3.1. The test specimens were fabricated by welding of hot-rolled steel plates fabricated 

according to EN 10025-2:2004. The steel grade of these steel plates is S355 and the steel quality 

is JR. The steel grade of all additional plates used to fabricate the hinges is the same or higher 

and the steel used for the pins and bolts (M30, Grade A, EN 15048-1 and EN ISO 4017) is high 

strength steel, class 8.8. The nuts and washers required for the bolts are also Grade A, in 

accordance with the standards EN ISO 4032 and EN ISO 7089, respectively. 
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Table 3.1. Experimental programme 

Member γh Shape hmin hmax b tw tf L 

- -  mm mm mm mm mm m 
C1 4 V 120 480 100 12 12 6 

C2 2 V 185 370 110 6 12 6 

C3 3 L 120 360 100 10 16 6 

B1 4 L 250 1000 200 15 16 4 

B2 4 L 250 1000 200 6 16 4 

BC 3 L 120 360 100 10 16 6 

 

 

Figure 3.1– a) “L”-shape tapered member; b) “V”-shape tapered member 

All member dimensions were measured prior to the tests. The material properties were 

determined by tensile coupon tests, six coupons were milled from each specimen. The 

geometrical imperfections (out-of straightness) were measured for all members, for B1 and B2 

advanced laser measurement was used, as for C1-C3 and BC the imperfections were measured 

manually. The residual stresses were measured for specimens C1, C2, C3 and BC using the 

sectioning method.  

The experimental part related to the beams was also part of the Master thesis of Rodrigues 

(2016). 

In the following sections, firstly the test set-ups by member type are presented, then the loading 

conditions are explained and finally a brief summary of the results recorded during each test is 

presented. 
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3.3.2 Column tests 

The column specimens were designed aiming for the assessment of their in-plane flexural 

buckling resistance; as a second objective, it was intended to study different variations of the 

cross-section class along the member length. Table 3.2 and Figure 3.4 summarize the variation 

of the cross-section class along the member length (L) for the three specimens. For C1 

approximately 18% of the member was in class 4, for C2 86% and 5% for C3, respectively.   

Table 3.2 Cross-section classification of column members. 
Cross-section class Column 1 Column 2 Column 3 

1 [0; 0.59L] - [0; 0.67L] 

 2 (0.59L; 0.71L] [0; 0.05L] (0.67L; 0.83L] 

3 (0.71L; 0.82L] (0.05L; 0.14L] (0.83L; 0.95L] 

4 (0.82L; L] (0.14L; L] (0.95L; L] 

 

 
Figure 3.2 - Test layout, Column 3 (and identical for the other columns) 
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The tested specimens had different taper ratios (2, 3 and 4, respectively), but the same length 

of 6 m. The three columns were tested using the layout shown in Figure 3.2. They were simply 

supported at both ends using pinned connections (Figure 3.3a), which allowed the free rotation 

in the plane of the column. At the point of load application, the vertical and transversal 

movements of the columns were restrained (Figure 3.3b). The global out-of-plane buckling was 

prevented by the implementation of lateral restraints at each meter length of the column (5 in 

total), Figure 3.3c. 

The lateral restraints along each member were implemented using vertical SHS 250x10 profiles 

rotated by 45º with the edge aligned with the members’ top and bottom flanges (Figure 3.3c). 

The SHS 250x10 profiles are connected at their bases to a horizontal profile attached to the 

strong floor and at their top welded to a plate connecting both sides. 

   

Pinned connection  b) Lateral bracing 
at support 

c) Lateral restraints  

Figure 3.3 Supports 

Strains were measured using strain-gauges type FLA-6-11 glued to the web and the flanges. On 

the web, they were positioned along vertical lines (3 or 4 at each cross-section), and three strain 

gauges on each flange (top and bottom). For the measurement of vertical and lateral 

displacements during the experiment, LVDTs (linear variable differential transducers) were 

installed at several locations along the columns, their position for the three column specimens 

is shown in Figure 3.4. The positions of measurement of vertical displacements are marked 

with V and the horizontal with H, respectively.  
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Figure 3.4 - Plan of LVDTs and strain gauges 

3.3.3 Beam tests 

Two beam tests were performed. Their shape was chosen to resemble part of a simply supported 

tapered beam, having the shorter flange in compression. Real examples are shown in Figure 

3.5.  

The test set-up is shown on Figure 3.6, where the tested non-uniform specimens were fabricated 

with an uniform cantilever segment, which served for load application. The bending moment at 

the deepest cross-section was achieved through a concentrated force applied at the end of the 

cantilever part (Figure 3.6). Hence, the beams were designed with variable cross-section in 

their first 4 meters of length and 1.8 meters of uniform cantilever section serving for the load 

application, Figure 3.6.  
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Bullring Shopping Centre, Birmingham 
http://www.newsteelconstruction.com/wp/the-new-bullring-

shopping-centre/ 

Tapered girder supporting steel decking  
http://www.steelconstruction.info/Long-span_beams 

Figure 3.5 – Web-tapered steel girders 

The two specimens have identical cross-section with respect to depth, flange widths and flange 

thickness. The web thickness varies from 15 mm for Beam 1 (B1) and 6 mm for Beam 2 (B2) 

(see Table 3.1). The ratio between the deep and shallow sections for both beams is defined by 

a taper ratio of yh=4. 

In addition, the cantilever uniform segment of B2 was reinforced with transverse web-stiffeners 

in order to avoid local cross-section effects in this part of the beam aimed exclusively for load 

application. 

 
Figure 3.6 - Beams’ test layout 

It was intended to test the beams as simply supported, according to the test layout shown in 

Figure 3.6. At the shallow section, the beams were supported with bi-directional pinned 

connections, which allowed the free rotation in- and out-of-plane. At the intermediate support, 

http://www.newsteelconstruction.com/wp/the-new-bullring-shopping-centre/
http://www.newsteelconstruction.com/wp/the-new-bullring-shopping-centre/
http://www.steelconstruction.info/Long-span_beams
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the vertical displacements were prevented as shown in Figure 3.7a). The beams were laterally 

restrained at the point of load application and the intermediate support. The lateral braces used 

were coupled to roller-bearings, perpendicular to the free end (one roller-bearing on each side) 

(Figure 3.7b) and parallel to the intermediate support elements (two roller-bearings on each 

side), preventing twisting of the beam (Figure 3.7c).  

   

Figure 3.7 - Support conditions beam tests: a) intermediate support; b) Lateral restraint  at the free end; 
c)Lateral restraint at the intermediate support 

The load was applied as a point load on the top flange of the beam 85 mm away from the end 

of the cantilever part.  

Strains were measured using strain-gauges type FLA-6-11 glued to the web and the flanges. On 

the web, they were positioned in a quadratic mesh, and three strain gauges on each flange (top 

and bottom) at axes B, F and I, as shown in Figure 3.6.  

For the measurement of vertical and lateral displacements during the experiment, LVDTs  were 

installed at several locations along the beams. The horizontal (out-of-plane) displacements were 

recorded on the centroidal beam axis designated as H3, H5, H7, H8 and H9 in Figure 3.6. In 

addition, on axis F, the out-of-plane displacements were measured at the top and bottom 

flanges. Additional measurements were obtained at the supports, in order to ensure the desired 

functionality of the implemented layout: at the intermediate support H2.1 and H2.2 measured 

the out-of-plane displacements for the top and bottom flanges, respectively and H1 was 

measured at the point of load application. 

The vertical displacements were also recorded at several locations. At the expected critical 

location (axis F) they were monitored on both flange tips for the top (in V11,l and V11,r) and 
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bottom (in V12,l and V12,r)  flanges, at the shallow section V13, l and V13,r. V10 measured the vertical 

displacement at the point of load application and V14 between the two pins. 

3.3.4 Beam-column test  

For the validation of the beam-column behaviour, the last test performed was on a member 

loaded in bending and compression. The specimen had the exact same dimensions as column 

C3. In this experiment, it was meant to validate the lateral-torsional buckling of a beam-column 

loaded with axial force and major axis bending moment. The load was applied with eccentricity 

(Figure 3.8), allowing for proportional increase of the bending moment and the axial force. The 

test layout is shown on Figure 3.9, where the member was restrained laterally at mid-span. At 

the shallow end, the specimen was connected to the reaction wall through a pinned connection, 

which allowed free rotation out-of-plane. At the deepest section where there was a welded 

cantilever section which served for the load application, it was vertically and laterally 

restrained. 

 
Figure 3.8 Point of load application 

The vertical and horizontal displacements were measured at each meter of length of the member 

(V1 to V5 and H2, H4, H7, H9). Additional measurements were obtained at the expected critical 

locations at axis B and E, where the horizontal displacements were measured at the level of the 

flanges as well. 
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Figure 3.9 Test layout 

3.3.5 Loading protocol 

For each specimen, the loading was divided into two stages: firstly, a cycle of loading and 

unloading (in the elastic range) was applied and, in the second stage, the columns were loaded 

until failure.  

Table 3.3 Loading protocol 

Specimen 
Load → Unload Cycles[kN] 1st phase 2nd phase 

1 2 3 4 kN/s mm/s 

C1 0 → 600 → 5 0.5  0.003 

C2 0 → 400 → 5 0.5 0.003 

B1 0→85→0 0→180→0 0→370→0 0→570→0 0.2  0.015 

B2 0→65→0 0→130→0 0→260→0 0→400→0 0.2  0.015  

C3 0 → 400 → 5 0.5  0.003 

BC 0 → 50 → 5 0.25  0.0025 

 

The first loading stage allowed for adjustments in the test layout (test specimen, hinges and 

reaction frame), and served for the elimination of initial gaps in the test layout. This initial stage 

also allowed to verify the functionality of the strain gauges, LVDT’s and data logger. 
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In the first stage, the loading was applied in force control and in the second in displacement 

control. The speeds used in each test are given in Table 3.3. 

For the beam tests four cycles of loading and unloading were performed. In the column tests, 

which were performed after the beam tests, it was considered sufficient to carry on only one 

cycle of loading and unloading. 

The magnitude of each peak load was chosen as a percentage of the initially estimated 

beam/column resistance (maximum of 60%).  

3.4 Experimental results 

3.4.1 Complementary tests 

3.4.1.1 Material properties 

The complete characterization of the experiments requires the determination of the actual 

material properties. For that, standard coupons were extracted from each specimen and tested 

in tension. A total of six coupons were milled from each specimen: three from flanges and three 

from the webs, according to EN ISO 377 and ISO 6892-1. The value of the yield stress fy is 

taken as the upper yield strength ReH and the tensile strength Rm. is used for the ultimate strength 

fu.  

Table 3.4 - Mechanical properties of steel from of coupons tests for C1, C2, C3 and BC  

Specimen C1 C2 C3 
Location - flange web flange web 

fy 376.7 371.3 362.1 385.5 450.8 

fu 570.3 571.0 507.4 535.4 595.3 

E 208.1 213.1 206.0 

 

The yield and ultimate stresses are reported for each specimen according to the plate thickness, 

i.e. for specimens having different thicknesses in the web and in the flanges, the results are 

reported separately. The Young’s modulus is calculated as an average from all tests performed 

per specimen. The results are summarized in Table 3.4. 
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Table 3.5 - Mechanical properties of steel from of coupons tests for B1 and B2 

Specimen B1 B2 BC 
Location flange web flange web flange web 

fy 421.4 422.7 405.3 388.4 391.9 443.1 

fu 552.9 543.7 551.1 526.7 540.4 588.8 

E 208.4 203.9 210.2 

 

3.4.1.2 Measurement of geometrical imperfections 

Geometrical imperfections are one of the most important features determining the global 

stability behaviour of beams and columns. They may be of different nature (Figure 3.10) and 

may have different impact on the buckling behaviour of steel members. For each member, the 

depths of the deep and shallow cross-sections were measured as well as the web and flange 

thicknesses at various locations along the member length.  

  

Figure 3.10 Geometrical imperfections 

The imperfections were measured for both beams using the advanced measurement system 

ROBOT Romer F-41800 Montoire, as shown in Figure 3.11. The measurement procedure gives 

a map where the local deviations from the nominal geometry can be clearly seen. 

The measurement on Beam 1 does not show any considerable local deformation in the web, 

besides the corner at the change of the cross-section with magnitudes of about 2.5 mm. 

However, this section falls in the zone of the support, and so it is not expected to influence the 

behaviour. 
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Figure 3.11 - Geometrical imperfections: a) Laser system used; b) 3D model 

The maps for both beams are presented in Figure 3.12.  

 
a) Test B1 

 
b) Test B2 

Figure 3.12 - Amplitudes of the geometric imperfections measured by the laser system 

Regarding the initial out-of-plane deformation of Beam 1, the upper flange has a global 

deformation with a maximum amplitude of about 3.75 mm; the measurements of the 

deformation of the bottom flange are inconclusive. The initial out-of-plane deformation of 

Beam 2 revealed high local deformations of 3.85 mm between axes C and D. The maximum 

global out-of-plane imperfection of the tension flange is approximately 3 mm and in the bottom 

flange it is found to be of a smaller magnitude of about 1.5mm. 

The columns measurement procedure involved a “low mass” nylon string which was tied to 

two nuts at the member’s extremities and it was stretched to its maximum. The distance of the 

string to the member was then measured at each 0.50 m length. To obtain the magnitude of the 

imperfection the nuts height was subtracted. The measurement was performed for three lines 
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along the member web and one for each flange. The magnitude of the geometrical imperfection 

was considered as an average of the measurements. 

Even though it is not an advanced measurement method, it allows for an initial idea of the 

magnitude the imperfections to be used in the numerical models. 

The average results obtained for all members are shown on Figure 3.13. 

  

Figure 3.13 Initial out-of-straightness 

3.4.1.1 Residual stresses 

In order to completely characterize the behaviour of the tested specimens, residual stress 

measurements were also carried out for C1, C2, C3 and BC. The measurements were made on 

test pieces with dimensions representing different regions of the tapered columns and beam-

columns corresponding to various taper ratios and depths (Figure 3.14). The approximate 

location of the column segments and the specimen dimensions are given in Figure 3.15. The 

length of the test pieces was chosen to be about 5 times the depth of the measurement cross-

section in order to avoid any possible boundary effects in the measurement. 

 
Figure 3.14 - Specimens after testing 
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Figure 3.16 shows the arrangement of strain gauges in each specimen. Electrical strain gauges 

(2x6 mm) manufactured by Tokyo Sokki Kenkyujo Co. Ltd. were used. Strain gauges were 

glued to both sides of the flanges and web of each specimen in order to calculate the average 

membrane stress afterwards. For specimens RS1 and RS5 strain gauges were glued also on the 

weld fillet. The test procedure followed the sectioning method Tebedge et al. (1973), which is 

a commonly adopted measurement procedure for structural engineering purposes Spoorenberg 

et al. (2010). The procedure involves longitudinal and transversal cuts which provoke the 

release of stresses locked in the test specimen, which in turn cause deformations. Then it is 

possible to record these deformations and transform them further into stresses using Hooke’s 

law Tebedge et al. (1973). 

 
Figure 3.15 Location of specimens for the residual stress measurements 

    

Figure 3.16 - Specimen dimensions and strain gauge arrangement 

The cutting was performed using an electric band saw, which was continuously cooled by 

compressed air in order to avoid temperature disturbance of the measurement. The cutting 

sequence involved two transversal cuts as shown in Figure 3.17 and then a series of longitudinal 

cuts, where the transverse cuts contributed to the largest part of the measured residual stresses. 

The data was continuously recorded during the experiment using data logger TML TDS 530 
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with extension box TML SSW-50D. The recording was terminated approximately 20 minutes 

after the last cut when no further fluctuations in the readings were noticed. 

   

Figure 3.17 - Transversal and longitudinal cuts 

The obtained measurements are given in Figure 3.18 and Figure 3.19. 

 

 

Figure 3.18 - Results for the welded specimens Column 2 and Beam-column in MPa 

The measurements are further transformed in a non-dimensional form in Figure 3.20. The stress 

distribution for each section was normalized to the yield stress obtained from the tensile coupon 

tests. Figure 3.20 shows that the peak tensile stress in the flanges varies from 0.3fy up to the 

yield stress. The compression in the flange exhibits a maximum of 40 % of the yield stress, 

RS
 

RS_6 
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although the majority of measurements it does not exceed 20 %. Furthermore, the variability of 

the residual stresses is assessed. For the tensile stresses, this assessment is based on the 

maximum values found in the flange-to-web junctions for both the flanges and the web. The 

residual compression is evaluated on the basis of an average compressive stress calculated by 

integration over the compression region for each outstand flange. 

 

  

Figure 3.19 – Measured residual stresses for Column 1 and Column 3 in MPa 

 

A histogram of the distribution of the compressive stress in the flanges is given in Figure 3.21a 

and the variation of the maximum tension is shown in Figure 3.21b. The statistical parameters 

are then summarized in Table 3.6. 

RS_1 RS_5 
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Figure 3.20 - Normalized residual stress distribution 

 

   

a) Average compression in the flanges b) Maximum tensile stress in the flanges 

Figure 3.21 - Histograms of the stress distributions in the flanges 
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Table 3.6 – Statistical parameters 

- Mean St. dev. C.o. V. Min. Max. 

Flange 

compression 
-0.15 0.09 0.62 -0.32 -0.01 

Flange tension 0.70 0.25 0.36 0.32 1.07 

Web 

compression 
-0.29 0.125 0.43 -0.43 -0.13 

Web tension 0.72 0.28 0.39 0.38 1.06 

 

In the flanges, the average value of the compression is -0.15fy with a coefficient of variation of 

62% and the average maximum tension is 0.7fy with a coefficient of variation of 36%. For the 

web, the average compression is -0.29fy and the coefficient of variation is 43%, while the 

corresponding values for the maximum tension in the web-to-flange junction are 0.72fy and 

39%. 

The mean value of the compression is about half of the ECCS pattern, even though there is a 

high variability. The residual tension in the flanges is also lower than the nominal value. In the 

web, the tension is slightly lower than the nominal and the compression is higher than the 

nominal. However, the residual stresses in the web are not as important for stability problems. 

3.4.2 Column tests 

3.4.2.1 Test C1 

In this section, the results recorded during test C1 are summarized. The final deformation of the 

specimen is shown in Figure 3.22. Despite the large number of lateral restraints, C1 still buckled 

out-of-plane in between the lateral restraints almost simultaneously as it reached its in-plane 

resistance. Also, even though test C1 had a slender cross-section (cross-section class is 4 for 

18% of its length), failure was driven by global rather than local instability phenomena.  

The column’s displacements and strains were monitored at several locations along the member 

length, aimed to facilitate the subsequent calibration of a numerical model and also to serve as 

control measurements in order to confirm the reliability of the results.  
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Figure 3.23 illustrates the load-displacement curve at the point of load application (H1 and H2). 

The maximum applied load during the experiment was 1397.6 kN. The loading was stopped 

when the applied force dropped to approximately P=1000kN. 

 
Figure 3.22 Column 1 after the test 

 
 

Figure 3.23 Load-displacement curves H1 and H2 for Column 1. 

It is worth analyzing the vertical displacements along the column. Figure 3.24 shows the 

evolution of the curvature at 200 kN intervals of loading at measurement points V6 to V11, V14 

and V15, until the maximum load Pult,Exp and after the maximum load was reached for two 

additional load steps. The amplification of the initially imperfect shape is clearly visible, which 
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is transformed at higher loads into the in-plane buckled shape. Yet, at the end of the experiment 

the out-of-plane deformations were more considerable than the in-plane ones. 

 

Figure 3.24 Variation of the vertical displacements along the length with increasing loading for test C1.  

  

a) Stresses in section A (h = 420mm). b) Stresses in section E (h = 195mm). 

Figure 3.25  Stress distribution at sections A and E for various load levels 

Furthermore, the stresses were also measured at several cross-sections along the member length. 

All strains were converted into stresses using the Young’s modulus from Table 3.4, and since 

all stresses were in compression, a positive sign is used to represent them. Whenever the strains 

exceeded εy, the respective stresses were set equal to the measured yield stress. 

The stress evolution for sections A and E are shown in Figure 3.25. Section A falls in the Class 
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limits given in Table 3.4. The other cross-section, at axis E, is in Class 1 and being smaller it 

was subject to higher stresses so that at the maximum load it was fully yielded. 

3.4.2.2 Test C2 

The second experiment, C2, was planned for an interaction between global and local buckling. 

In this case, similarly to C1, the column also buckled in between the lateral restraints.  Since 

more than 85% of the member was in Class 4, it was also possible to observe local buckles on 

the web towards the deeper cross-section. Figure 3.26 illustrates the failure of Column 2.  

 

 

Figure 3.26 Collapse of C2 

Figure 20 shows the load-displacement curve at the point of load application (H1 and H2). The 

maximum applied load during the experiment was 1313.6 kN. The loading was stopped when 

the applied force dropped to approximately P=1000 kN.  
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Figure 3.27 Load-displacement curves H1 and H2 for Column 2. 

 
Figure 3.28 Variation of the vertical displacements along the length with increasing loading for test C2. 
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a) Stresses in section B (h = 356mm). b) Stresses in section F (h = 278mm). 

Figure 3.29 Stress distribution at sections B and F for various load levels 

The stress evolution for sections B and F are shown in Figure 3.29. Section B falls in the Class 

4 region, and the local buckling can be seen in the stress distribution for the load levels 1200 

kN and the maximum 1313.6 kN. The other cross-section, at axis F, is also classified as Class 

4, however closer to the limit with Class 3, and no local deformation were recorded.  

3.4.2.3 Test C3 

In this section, the results recorded during the test C3 are summarized. The final deformation 

of the specimen is shown in Figure 3.30. In this experiment, it was possible to observe distinct 

in-plane flexural buckling. The test C3 has a stocky cross-section (cross-section class is 4 for 

5% of its length), failure was driven by global rather than local instability phenomena.  

 

Figure 3.30 Column 3 after the experiment 
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Figure 3.31 illustrates the load-displacement curve at the point of load application (H3 and H2). 

The maximum applied load during the experiment was 1460 kN. The loading was stopped after 

the column buckled in-plane, which corresponded to a drop of the load to 800 kN. 

 

 

Figure 3.31 Load-displacement curves H3 and H2 for Column 3 

Furthermore, Figure 3.32 and Figure 3.33 show the evolution of the curvature for various load 

levels, where Figure 3.33 illustrates the development of the in-plane displacements until the 

maximum load was recorded. It is very similar to Figure 3.24 and Figure 3.28, where for lower 

load levels the shape amplifies the initially imperfect one.  After the maximum load was 

achieved, at a force of approximately 1460 kN, C3 buckled in-plane exhibiting an instantaneous 

increase of the deformations, as shown in Figure 3.33. 

 

 
Figure 3.32 Variation of the vertical displacements along the length with increasing loading for test C1 
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Figure 3.33 Variation of the vertical displacements along the length beyond the maximum load for test 

C3 

The stress evolution for sections B and G are shown in Figure 3.34. Both cross-sections are in 

Class 1, no local buckling was registered neither observed during the experiment. However, in 

both cross-sections it is possible to observe the impact of the in-plane buckling behavior. For 

load levels up to the maximum load the member stresses are mostly in uniform compression; 

after the buckled position took place at 1427 kN the compressive stresses in the top flanges 

decrease and in Section G they even become tensile, due to the second order in-plane bending 

moment.  

  
a) Stresses in section B (h=260 mm) b) Stresses in section G (h=150 mm) 

Figure 3.34 Stress distribution at sections B and G for various load levels 
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3.4.3 Beam tests 

3.4.3.1 Test B1 

In this section, the results recorded during test B1 are presented. The final deformation of the 

specimen is shown in Figure 3.35; as expected, it collapsed in lateral-torsional buckling. Also, 

as test B1 has a stocky cross-section (cross-section class is 1 for almost 90% of its length), 

failure was driven by global rather than local instability phenomena.  

The beam’s displacements and strains were monitored at several locations along the member 

length, aimed to facilitate the subsequent calibration of a numerical model and also to serve as 

control measurements in order to confirm the reliability of the results.  

Figure 3.36 illustrates the load-displacement curve at the point of load application (V10). The 

maximum applied load during the experiment was 1205 kN. The loading was stopped when a 

20% drop in the applied force was approximately registered. After the maximum load was 

reached, for P=1113 kN, an abrupt load decrease caused by brittle failure of the weld at the top 

web-flange connection near to the intermediate support section was recorded. Hence, the 

experimental results are considered only until this load (see Figure 3.36). 

  

Figure 3.35 - Collapse mode of test B1 

The stresses at the cross-sections in axes A and F are plotted in Figure 3.37 for the initial load 

cycles. The resulting stresses are clearly below the yield strength of the beam and thus confirm 

that the initial assumption for the load cycles that were performed in the elastic range. 

Furthermore, the development of stresses is illustrated in Figure 3.38 for 0.7Pu,exp, 0.8Pu,exp and 

0.9Pu,exp (before collapse) and for Pu,exp. The deviation from a straight line is clear for both 

sections thus indicating the development of plastic strains at these sections. 
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Figure 3.36 – Load-displacement curve at V10, Beam 1  

  

a) Section A (h = 958mm). b) Section F (h = 691mm). 

Figure 3.37 - Longitudinal stresses at section A and F for test B1 at 1st load stage 
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 a) Section A (h = 958mm). b) Section F (h = 691mm). 

Figure 3.38 - Longitudinal stresses at section A and F for test B1 at 2nd load stage 

The out-of-plane displacements at the centroid of the cross section are plotted in Figure 3.39. 

The rapidly increasing out-of-plane displacement at the maximum load is clearly identified, as 

well as the post-maximum displacements. The maximum displacement observed during the 

experiment was around axis F, between the measurements of LVDTs H5 and H7, about 1700 

mm away from the deep end. This is also confirmed in Figure 3.39. 

 

Figure 3.39 Lateral displacements at H3, H5, H7, H8 and H9 for various load levels for test B1 
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were measured at the middle of both flanges and the middle of the web. Figure 3.40 illustrates 

the measured displacements for the maximum load.  

 

Figure 3.40 - Cross-section displacements at axis F (in mm) 

3.4.3.2 Test B2 

The failure mode of test B2 exhibited a buckled shape typical for a lateral torsional mode 

(Figure 3.41). Unlike test B1, local instability also occurred in the web between section C 

(cross-section class 4) and F (cross-section class 3), mostly visible in section E. It is highlighted 

that the local instability appears in a zone where the geometric imperfections present the highest 

values for the web, as shown in Figure 3.12.  

  

Figure 3.41 - Collapse mode of test B2  
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The load-displacement curve at the point of load application is plotted in Figure 3.42. The 

magnitudes of the initial load cycles are also identified on that figure. The maximum applied 

load was 845.5 kN and the test was stopped for an applied load of 552.5 kN. Similarly to B1, 

the stress levels obtained for the initial cycles are plotted in Figure 3.43, that also indicate that 

the stress distributions remained elastic for the 4 cycles. Furthermore, the development of 

stresses is illustrated in Figure 3.44 for 0.7Pu,exp, 0.8Pu,exp and 0.9Pu,exp (before collapse) and 

for Pu,exp. The deviation from a straight line is clear for both sections thus indicating the 

development of plastic strains at these sections. 

 
Figure 3.42 - Load-displacement curve at V10, Beam 2 

  

a) Section A (h = 958mm). b) Section F (h = 691mm). 

Figure 3.43 - Longitudinal stresses at section A and F for test B2 at 1st load stage 
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a) Section A (h = 958mm). b) Section F (h = 691mm). 

Figure 3.44 - Longitudinal stresses at section A and F for test B2 at 2nd load stage 

  

a) Section C (h = 865mm). b) Section D (h = 785mm). 

Figure 3.45 Longitudinal stresses at section C and D  for test B2 at 2nd load stage 

The out-of-plane displacements at measurement points H3, H5, H7, H8 and H9 are plotted in 

Figure 3.46 for different load levels.  
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Figure 3.46 – Lateral displacements at H3, H5, H7, H8 and H9 for various load levels B2 

The rapidly increasing out-of-plane displacement at the maximum load is clearly identified, 

which is even more pronounced at the end of the experiment. The maximum displacement 

observed during the experiment was between axes D and F, and between the measurements of 

LVDTs H3 and H5, about 1200 mm from the deep end. This is also shown in Figure 3.46. Figure 

3.47 illustrates the measured displacements at maximum load at cross-section F. 

 
Figure 3.47 - Cross-section displacements at axis F 

3.4.4 Beam-column test 

Finally, in this section the results from the beam-column test are summarized. The member had 

identical geometry as C3, but the axial force was applied with an eccentricity at the deep end 

of the member. 
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Figure 3.48 Deformation of the specimen after the test 

The final deformation of the specimen is shown in Figure 3.48. As expected, the specimen 

collapsed in a lateral-torsional buckling mode. Also, since BC has a stocky section in almost 

all of its length, failure was driven by global rather than local instability phenomena.  

Figure 3.49 illustrates the load-displacement curve at the point of load application (H1). The 

maximum applied load registered during the experiment was 379 kN corresponding to a 

bending moment equal to 163 kNm. The loading was stopped when the applied force dropped 

to approximately P=270 kN.   

Furthermore, Figure 3.50 and Figure 3.51 show the evolution of the curvature for various load 

levels. Figure 3.50 illustrates the development of the out-of-plane displacements and Figure 

3.51 the in-plane ones.  The dotted line is added to illustrate the expected measurement of the 



STABILITY DESIGN OF STEEL COLUMNS, BEAMS AND BEAM-COLUMNS: 
BEHAVIOUR, GENERAL FORMULATION AND RELIABILITY 

 

 
 

90 | 

LVDT’s at these points. Due to the large deformations the vertical and horizontal LVDT’s at 

this point stopped recording data after the maximum load was reached. 

The strains were also recorded at several locations. It is interesting to show the evolution of 

stresses for axis F (in the middle of the second span), Figure 3.52 shows the stress distribution 

for a few load levels. The resulting distribution at maximum load and after the maximum is 

typical for lateral-torsional buckling. 

 

 

Figure 3.49 Load-displacement curves H1 for BC 

 
Figure 3.50 Out-of-plane displacement 
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Figure 3.51 In-plane displacement 

   

Figure 3.52 Stress distribution in the flanges at axis F 

3.5 On the variation of the material and geometrical imperfections 

3.5.1 Introduction 

Finally, in this section, a discussion on the member imperfections for tapered columns, beams 

and beam-columns is presented. It is based on the measured imperfections from the 

experimental programme and on the collected data from the literature review in Section 3.2. 

3.5.2 Residual stresses 

The assessment of the residual stresses is based on stresses normalized to the yield stress 

obtained from coupon tests data points and their dispersion region along the section is 
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From all data sources, only the studies from Prawel et al. (1974) and Shiomi & Kurata (1980) 

report discrete results for the measured residual stresses on web-tapered members. The other 

sources are used for comparison and discussion. 

  

a) Flange compression b) Flange tension 

Figure 3.53 – Histograms: residual stresses 

The compressive stresses in the flanges are assessed as an average compressive stress in each 

outstand flange. The mean value of the compression in the flanges is -0.17fy which is below the 

nominal profile currently used (according to the ECCS nominal pattern), yet with a large 

coefficient of variation. The statistics for the tensile stresses in the flanges are based only on 

the maximum value registered in each flange. The mean value is lower than the specified 

nominal fy, with smaller variability in comparison to the flange compressive stress. The tension 

in the web is higher, in many cases approaching the yield stress. The web compression is found 

with high variability and a mean value higher than the recommended nominal. 

Figure 3.53 and Table 3.7 summarize the obtained statistics of the combination of results from 

the experimental programme and the measurements reported by Prawel et al. (1974) and Shiomi 

& Kurata (1980). 

Chernenko & Kennedy (1991) provide a summary of residual stresses measurements collected 

from the literature with a mean value of average compressive stress in the flanges of -0.25fy and 

a standard deviation of about 32 %. 

The mean value of the average compressive residual stress according to Fukumoto & Itoh 
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the experiments reported in the previous section, where the mean value was estimated to -0.15fy 

with a slightly higher coefficient of variation of 62 %. When all data was combined, the mean 

value of the average compressive stress in the flanges was found slightly higher but with a 

smaller coefficient of variation. Besides the high coefficient of variation, the histogram of the 

distribution in Figure 3.53 shows a trend towards smaller average compressive stress in the 

flanges. The residual tension in the flanges is represented by a more uniform-like distribution 

according to Figure 3.53 and it varies from 0.5fy up to the actual yield stress. The measurements 

performed by Prawel et al. (1974), Salter et al. (1980), Avent & Wells (1982), Fukumoto & Itoh 

(1981), Shiomi & Kurata (1980) report residual tension in the flanges approaching the yield 

stress. 

Table 3.7 - Statistical parameters: residual stresses 

- Mean St. dev. C.o.V. Min. Max. 

Flange compression -0.17 0.08 0.50 -0.37 -0.01 

Flange tension 0.70 0.27 0.38 0.15 1.07 

Web compression -0.38 0.25 0.66 -0.83 -0.11 

Web tension 0.88 0.24 0.28 0.38 1.14 

 

Most of these studies recommended residual stress patterns based on the measurements 

performed, where they suggest the yield stress as a maximum value for the tension in the 

flanges: Prawel et al. (1974) and Avent & Wells (1982) propose identical residual stress pattern, 

Salter et al. (1980) proposed similar to the ECCS pattern; for Chernenko & Kennedy (1991) 

the maximum tensile stress in the flange-to-web junction varies from 80% to 100% of the yield 

stress. These recommendations are safe-sided when compared to the test measurements. 

Regarding the average compressive stress in the flanges, Prawel et al. and Avent and Wells 

propose a maximum of 0.5fy which decreases to 0.3fy. Salter et al. again is comparable with the 

ECCS pattern 0.23 fy.  and for Chernenko and Kennedy it is between 0.28fy and 0.4fy. 
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3.5.3 Geometrical imperfections 

The initial out-of-straightness is usually assumed with the shape of the relevant buckling mode 

and amplitude of L/1000. In this assessment, particular attention is paid to the magnitude of the 

deviation from straight member and not the precise shape. Some of the experimental studies 

carried out measurements on the out-of-straightness (in and out-of-plane) and some studies 

report on the initial twist.  

For some of the collected test results, the measurement was performed for the minor axis 

deformation, for other according to the major axis and for some tests the measurement direction 

was not even specified. In this grouping, all data was considered together, and split according 

to in and out of-plane. The statistical parameters are given in Table 3.8 and the histogram is 

presented in Figure 3.54. It is highlighted that the majority of cases are web-tapered members 

(40 out of 48); Shiomi & Kurata (1980) report that the geometrical imperfection for tapered 

members tend to be higher due to the increased difficulty in fabrication.  

The statistics obtained for the initial out-of-straightness are quite different from those presented 

by Fukumoto & Itoh (1981), nevertheless the statistics presented are based on a larger sample 

which covered uniform members of the same size. This can explain the difference in the mean 

values between both studies; on the other hand, the coefficients of variation reported by 

Fukumoto & Itoh (1981) are considerably higher. The results obtained for welded members 

were also compared to a similar study (Fukumoto et al., 1980) on rolled beams that revealed a 

greater scatter for the welded beams and lower mean-to-nominal ratios. 

 

Figure 3.54 - Histogram of the distribution of the collected initial out-of-straightness 
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Further comparison with Chernenko & Kennedy (1991) shows closer fit for both indicators: 

mean and standard deviation, where the mean values lay between 1/2000 and 1/3500. Even 

though the coefficient of variation is about 40%, the mean values are at least twice less than the 

usually adopted imperfection of L/1000. The histogram in Figure 3.54 shows the trend that the 

majority of the population is concentrated around the mean value, the large coefficient of 

variation is somehow inevitable, since there always be imperfections laying closer to the 

tolerance. The minimum value of the collected sample is lying above the current execution 

tolerance of L/750 in EN 1090-2:2011. Chernenko & Kennedy (1991) also mention that 

according to their study, members with geometrical imperfection which does not satisfy the 

tolerance occur in less than 2% of the specimens and in such cases the beams are subject to 

straightening. 

Finally, if the results obtained are compared with the classical work on the development of the 

European buckling curves: the ECCS experimental programme by Sfitensco (1970); the 

theoretical basis by Beer & Schluz (1970) and the Monte Carlo simulation by Strating & Vos 

(1973). The out-of straightness used in by Strating & Vos (1973) based on the experiments 

Sfitensco (1970) has mean value of 0.00085L (L/1176.5) and c.o.v of 23.5%, which is the 

smaller than the one obtained in Table 3.8 (46.7%). However the mean value calculated for the 

collected sample is about two times smaller (L/2160). Even though the development of the 

buckling curves was based on hot-rolled members, the results are illustrative of the 

improvement of the production quality nowadays.  

Table 3.8 - Statistical parameters for the collected initial out-of-straightness 

Subset n Mean St. dev C.o.V. Min Max 

In 11 
0.000342 

(1/2924) 
0.000123 0.36 

0.00016 

(1/6250) 

0.000588 

(1/1700) 

Out 37 
0.000499 

(1/2004) 
0.000231 0.46 

0.00020 

(1/5000) 

0.00125 

(1/800) 

All 48 
0.000463 

(1/2160) 
0.00022 0.476 

0.00016 

(1/6250) 

0.00125 

(1/800) 
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3.6 Summary 

Chapter 3 was dedicated to the experimental background of the buckling behaviour of non-

uniform members. Firstly, available experiments by other researchers were collected and 

presented in a comprehensive literature review. This collection covered non-uniform members 

in compression, bending and combination of bending and compression. Most of the studies 

carried out were based on I-section members fabricated by welding of plates. For that it was 

considered useful to extend the collection to experiments on member imperfections for welded 

sections. 

This chapter also summarized six full-scale experimental tests on the stability behaviour of 

linearly web-tapered steel columns, beams and beam-column. The columns were tested under 

constant axial force aiming for the assessment of their in-plane flexural buckling resistance, the 

under linearly varying bending moment and one member was tested under bending and axial 

force. The material and geometrical properties of all members were characterized 

experimentally and detailed global results were reported. The test campaign also included 

residual stresses tests, where four specimens with different geometries were tested. The member 

geometrical properties were chosen to vary from stocky cross-sections to columns with slender 

(class 4) cross-sections, and therefore, they provide a good basis for their use as reference tests 

for the calibration and validation of numerical models. 

Finally, the collected data for member imperfections was combined with the results from the 

experiments: out-of-straightness and residual stresses. It was shown that despite of the high 

variation, the mean values of the member imperfections were lower that the assumed in the 

calibration of the buckling curves and thus opening a future discussion on the magnitude of the 

imperfection factors. 
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4 NUMERICAL MODEL 

4.1 Introduction 

Numerical results are a powerful tool for the validation of design rules. They are often chosen 

instead of experiments because they are cheaper and significant amount of cases can be very 

rapidly achieved. However, the model should be carefully validated before applying it to a large 

parametric study in order to ensure correct results. The numerical model used later in this thesis 

is adapted from previous research in the field, namely, work by Rebelo et al. (2009), Taras 

(2010), Marques (2012) among others. 

This chapter is dedicated to the numerical model used for the validation of design rules, related 

modelling assumptions and its validation with experimental results. Hence, in this chapter, 

firstly, the characteristics of the numerical model are described, providing details for the 

material modelling, boundary conditions and meshing; and then the assumptions for the 

member imperfections are presented. In a second step, the model validation with the 

experimental results presented in Chapter 3 is carried out.  

4.2 Numerical model 

4.2.1 General description 

Members affected by stability problems are highly sensitive to second order effects which are 

introduced by various imperfections. In order to ensure the highest accuracy, advanced analyses 

were performed using geometrical and material non-linearities with imperfections. This type of 

analysis, also known as GMNIA, takes into account the second order effects in the members 
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due to their imperfect nature. Therefore, the results are assumed to represent closely the real 

behaviour. 

In order to perform a GMNIA analysis, firstly a Linear Buckling Analysis (LBA) is performed 

to obtain the initial imperfection shape, which in this case is assumed to be the first buckling 

mode. 

The numerical results used in this thesis were obtained using the FE software Abaqus and its 

versions 6.12, 6.14 and 6.17. Each structural element is modelled with four-node linear shell 

elements (S4) with six degrees of freedom. 

The adopted mesh is 16 sub-divisions in the web and flanges and at least 100 divisions along 

10 m of length. 

4.2.2 Material properties 

The following constitutive assumptions are made: 

 Linear isotropic elastic response, characterized by the Young's modulus E=210 GPa and 

Poisson ratio =0.3; 

 von Mises yield criterion with uni-axial yield stress fy specified according to the 

provisions of the product standard EN 10025; 

  associated Levy-Saint-Venant flow rule; 

  no hardening (i.e. perfect plasticity) 

 

Figure 4.1  Material constitutive law 

4.2.3 Boundary conditions 

If not mentioned otherwise, the boundary conditions are implemented as end fork conditions in 

the shell model. The following restraints are used  vertical ( y) and transverse ( z) 
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displacements and rotation about x-x axis (θx) are prevented at supports. In addition, the 

longitudinal displacement (δx) is prevented in node 1 according to Figure 4.2 at one end of the 

element. End cross-sections are constrained to be plane, nevertheless allowing for the free 

warping of the end cross-sections, i.e. the flanges can move independently from the web. 

 

Figure 4.2 - Boundary conditions 

The fixed boundary condition was implemented by restraining all DOFs at the end cross-

section. The influence of slender webs was neglected by restraining them from local buckling 

and distortion. 

Intermediate lateral restraints equally spaced may be applied at the extremes of the flanges 

according to Figure 4.3a and partial restraints according to Figure 4.3b. 

 

Figure 4.3 - Location of the intermediate lateral restraints in the cross section 

4.2.4 Loading 

The load is applied using a load stepping routine, in which the increment size is chosen in order 

to meet the accuracy and convergence criteria. The equilibrium equations are solved for each 

increment using the Newton-Raphson iteration technique. 

The load is always applied at the centre of the doubly-symmetric section, as shown in Figure 

4.4 and with reference to the plastic resistance of the shallow cross-section. 
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Figure 4.4 - Load application 

4.2.5 Imperfections 

Geometrical imperfections were incorporated in the shell model with the shape of the first or 

other buckling modes considered relevant for the studied case. The magnitude of the 

imperfection amplitude was chosen according to the recommendations of ECCS pub. No.23, 

(1976), δ0=L/1000, see Figure 4.5. 

 
1000

)()()( 00
Lxexx crcr GGG    (4.1) 

 

 

Figure 4.5 - Initial geometrical imperfection in the shape of the buckling mode 

For members with partial restraints, L was adopted to be the length between the inflection points 

of the compressed flange. 

Local imperfections are not considered provided that only global instability failure modes are 

analyzed. Therefore, the numerical models are prevented from developing local buckling 

deformations in the cross sections. 

Material imperfection is introduced according to the recommendations of ECCS publication 

No. 33, (1984) shown on Figure 4.6. The residual stress patterns corresponding both to hot-

rolled (Figure 4.6) and welded cross-section were considered. 

L/1000
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(a) Hot-rolled, h/b<1.2 
 

(b) Hot-rolled, h/b>1.2 

 

 

(c) Welded 

Figure 4.6– Residual stresses (“+” Tension and “–“Compression) 

 

4.3 Comparison with experimental results 

4.3.1 Introduction 

The experiments presented in Chapter 3 had the objective of providing reliable data for the 

calibration of a numerical model, which is able to reproduce the real behaviour of web-tapered 

members. The numerical models were implemented using the same modelling assumptions and 

techniques as described in the previous section. However, in this case, since the objective is to 

accurately model the experiments, a few modifications in the ideal conditions were necessary 

since those are sometimes challenging to implement in the laboratory experiments. 

In the following paragraphs the modelling of the beams and columns are presented separately, 

due to the difference of the buckling phenomena and test layout. 

4.3.2 Columns 

Even though a few modifications in the described model were necessary, it was aimed to 

maintain the model as simple as possible for validation purposes. Firstly, the material properties 

introduced were according to the results obtained for the coupon tests in section 3.4.1.1, i.e. 

including strain-hardening. About 20 points were chosen from the yield point to the ultimate 

tensile stress, in the numerical model. Those were transformed and introduced as true stresses 

and logarithmic strains, separately for the flanges and the webs. 
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The residual stresses were also introduced according to the measurements performed in section 

3.4.1.1. The flanges were divided into 10 segments and the residual stresses were introduced as 

an average measured stress for each segment.  

The initial geometrical imperfections were modelled as a combination of buckling modes, 

which resembled the measurement of the geometrical imperfections (see section 3.4.1.2). For 

Column 1, the adopted imperfection was the combination of a global buckling in-plane mode 

(1.6 mm) (Figure 4.7a) with an out-of-plane mode (4.7 mm) including local effects (Figure 

4.7b).  

For Column 2, the adopted imperfection was the combination of a global buckling in-plane 

mode (Figure 4.8a) with an out-of-plane mode including local effects (Figure 4.8b) with 

nominal amplitude of L/1000 for the in-plane mode and 2 mm for the local mode. 

  

a) Column 1 in-plane mode b) Column 1 out-of-plane mode 

Figure 4.7 Buckling modes as initial imperfection C1 

  

a) Column 2 in-plane mode b) Column 2 out-of-plane mode 

Figure 4.8 Buckling modes as initial imperfection C2 

For Column 3, the adopted imperfection was the combination of a global buckling in-plane 

mode (2.4 mm) (Figure 4.9a) with an out-of-plane mode (4.5 mm) (Figure 4.9b). 
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a) Column 3 in-plane mode b) Column 3 out-of-plane mode 

Figure 4.9 Buckling modes as initial imperfection C3 

The boundary conditions were adopted in order to represent the experimental layout Figure 

4.10. Firstly, the actual buckling length of the members was longer than the actual member 

length due to the physical dimensions of the supports. To account for this, the boundary 

conditions were modelled outside of the member at a distance which coincides with the actual 

axis of rotation of the hinge. The out-of-plane rotations were restrained. The presence of small 

eccentricities in the layout were included by adding small rotations at the point of load 

application. 

Finally, the resulting load-displacement curves at the point of load application are shown in 

Figure 4.11. In each case, it was possible to achieve satisfactory agreement between the 

numerical and experimental results in both shape and magnitude. The obtained results and the 

respective difference between numerical and experimental results are given in Table 4.1. A 

comparison between the experimental and numerical deformations can be seen in Figure 4.12. 

Another important parameter for the design of non-uniform members is the critical cross-

section which governs the design. For that, these critical locations obtained from the numerical 

model and experimental tests are now compared. The experimental critical location was 

estimated approximately as the cross-section with maximum deformation after the test. The 

numerical critical location was chosen to correspond to the element with the highest strain at 

the maximum load. In Table 4.1, it is possible to compare the experimental and numerical 

results. Since this quantity is highly dependent on the member imperfections, an exact match 

can be hardly achieved. Nevertheless, the obtained results show very good agreement. 
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Figure 4.10 Column and beam-column models 

  
a) Column 1 b) Column 2 

  

c) Column 3 d) Beam-column 

Figure 4.11 Numerical and experimental results for each experiment 
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Table 4.1 Numerical and experimental results 

Test  Maximum load Δ 

 

Critical location x/L 

Experimental Numerical  Experimental Numerical 

- kN kN - - - 

C1 1397.6 1393.0 -0.3% 0.110 0.082 

C2 1313.6 1289.9 -1.8% - 0.250 

C3 1460.0 1449.4 -0.7% 0.125 0.153 

BC 379.0  386.9 +2% 0.708 0.773 

 

 
Figure 4.12 Column 3: numerical and experimental deformed shape 

 

4.3.3 Beams 

Firstly, the model simulated the complete beam, including the segment with uniform cross-

section. In fact, the option to include this segment for load application was specifically chosen 

to avoid uncertainties in the definition of the boundary conditions of the shell model at the deep 

end of the tapered beam in the numerical model. 

Secondly, the two pinned connections at the shallow end of the beam do not act as perfect 

hinges. Each of these connections has physical dimensions, which in turn means that the test 

specimens have two different buckling lengths in and out of the beam plane, Figure 4.14. In 

addition, even though the pins were treated with lubricant before each experiment, the friction 

between the pin and the plates is not fully eliminated and thus introduces some degree of 

restraint.  
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Figure 4.13 Numerical model 

Hence, it was decided to tackle this deviation from the intended behaviour by introducing a 

spring at the beams’ end, matching the behaviour directly obtained from the experiments. The 

spring was set to be fully rigid with respect to translation and rotation about the longitudinal 

beam axis (x-axis), it was free to rotate around the y and z axes, and the translations in y and z 

axes were calibrated to match the experimental results. 

 

Figure 4.14 Buckling lengths 

At the intermediate support, as the vertical and lateral displacements were restrained, the cross-

section was modelled to remain straight (with warping restrained) corresponding to the 

configuration of the experiment. At the point of load application, the section was also modelled 

Out-of-plane

In-plane
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to remain straight, its lateral displacement was restrained and the load was applied with 

displacement control.  

The material properties were considered as an average from the coupon tests carried out in 

Chapter 3. The geometrical imperfections were modelled as a combination of buckling modes, 

which resembled the measurement of the geometrical imperfections (see section 3.4.1.2). 

Several shapes were checked in order to obtain the best fit. For Beam 1, the adopted 

imperfection was the combination of the modes in Figure 4.15a and Figure 4.15b  

corresponding to global buckling of the top or bottom flanges.  

For Beam 2, it was chosen to have a similar configuration, a combination of the two global 

modes corresponding to buckling of the top or bottom flange Figure 4.16a) and b), and 

additional local mode Figure 4.16c) to account for the large local imperfection from the 

measurements as shown in Figure 3.11. 

In this experimental campaign, the residual stresses were not measured for the beams despite 

being a relevant parameter for the buckling resistance. For this reason, it was necessary to verify 

various options for their magnitude. Since all other relevant parameters were modelled as 

measured, the only “unknown” were the residual stresses.  

 

  

a) Mode 1 Beam 1 (3.75 mm) b) Mode 2 Beam 1 (2.5 mm) 

Figure 4.15Modes chosen as a shape of the initial geometrical imperfection: Beam 1 
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a) Mode 3 Beam 2 (3 mm) b) Mode 5 Beam 2 (1.5 mm) c) Mode 2 Beam 2 (3.85 mm)  

Figure 4.16 Modes chosen as a shape of the initial geometrical imperfection: Beam 2 

The adopted residual stresses corresponded to the two following assumptions about the residual 

tensile stress: fy=235 MPa or fy=355 MPa, which are further referred to as Pattern 235 and 

Pattern 355, respectively. In Table 4.2, it is possible to compare the results for the two different 

assumptions. It was found that Pattern 235 gives better agreement with the experimental result 

for both beams: for Beam 1, an 8% difference instead of 17%, and for Beam 2, a 2% difference 

instead of -6%. The change in the residual stresses magnitude for both beams leads to a similar 

drop in the resistance of about 8%. This difference is found acceptable, keeping in mind the 

typical large scatter of the residual stresses in magnitude and shape.  

The model behaviour was verified at various locations along the beam, to ensure a similar 

performance with respect to the experiments. The spring at the shallow beam end was calibrated 

exactly with the purpose of matching the readings during the experiments. Examples are given 

in Figure 4.17 and Figure 4.18, where the first one compares the for horizontal displacement 

H6 of Beam 1 and the second compares the vertical displacement at V12 of Beam 2. 

Table 4.2 Results for the different assumptions on the residual stresses 

Test Experimental Numerical 

Pattern 235 

Δ Numerical 

Pattern 355 

Δ 

- kNm kNm - kNm - 

B1 2066.6 1921.2 -8% 1768.5 -17% 

B2 1452.6  1488.1 +2% 1375.1 -6% 
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Figure 4.17 Horizontal displacement of Beam1 at H6 (axis F) 

 
 

Figure 4.18 Vertical displacement of Beam 2 at V12 (axis F) 

 

Finally, it can be concluded that if the numerical model adopted incorporates all relevant 

parameters, it accurately reproduces the behaviour of the tapered beams.  

4.4 Final remarks 

In this chapter the adopted numerical model was presented with all relevant modelling 

assumptions. It was also validated with experimental results on non-uniform columns, beams 

and beam-columns. It was seen that if the material and geometrical properties together with the 

correct measured imperfections are introduced in the model, a good agreement is achieved with 

the experimental results. 
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In the following chapters, if not mentioned otherwise, this numerical model is used for the 

parametric studies carried out and the validation of design rules. 
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5 SAFETY ASSESSMENT OF DESIGN 

RULES 

5.1 Introduction 

This chapter is dedicated to the assessment of the safety of Eurocode 3-1-1 stability design 

rules. As it was mentioned earlier, the main purpose of modern design codes is to provide design 

principles and application rules that lead to appropriate safety levels. However, because design 

codes combine a very large number of design rules that evolved over many decades of extensive 

research work, the safety level is not uniform across the various design rules and also within a 

single design rule. Eurocode 3 (2005) is no exception, despite the enormous work that was put 

in its development and the wide past proven experience that it incorporates. In addition, the 

development of new structural steels with largely improved mechanical and geometrical 

properties and dramatically improved quality control procedures, required a reassessment of 

the current safety levels of the stability design rules of EC3-1-1. For these reasons, a safety 

assessment of the available stability design rules in Eurocode 3 was carried out. Similar studies 

were done in the past and it is worth mentioning them. Project Partial safety factors for 

resistance of steel elements to EC3 and EC4. Calibration for various steels products and failure 

criteria (Chabrolin et al., 2002) provided a justification for the adoption 1.0 instead of 1.1 for 

γM0. The assessment was carried out using the ENV1993 (1992) Annex Z, which is the 

predecessor of the current Annex D of EN 1990. The first project objective was achieved by 

performing a collection of available data at the time for the material properties of steel grades 

S235 to S460 and a large variety of cross-sections. The second objective was to provide 

sufficient evidence considering various limit states in order to avoid different values for the 
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partial factor regarding the stability design of members γM1 in the national determined 

parameters. This objective was tackled by performing experimental tests and the collection of 

available data of experiments performed by others. Regarding γM1, it was concluded that 1.1 is 

quite satisfactory, besides the interaction between bending and axial force where lower factors 

were obtained. 

A similar assessment was carried by Muller (2003), on the basis of the ECCS tests (Figure 5.1). 

Taras (2010) carried out a Monte Carlo simulation assuming similar variability for the basic 

variables as in the ECCS tests. The conclusions of both were that the ENV 1993 version for the 

partial factor γM1 fits better the obtained results.  

 

Figure 5.1 – Assessment by Muller (2003) for flexural buckling of columns 

Later on, the research project PROQUA (2005), carried out a probabilistic assessment of the 

Eurocode design rules for steel and composite structures. The analysis included the load and 

the resistance sides. The results of the analyses revealed that the Eurocode rules have higher 

reliability than the requirements of EN 1990. The project gave recommendations for statistical 

data for the action and resistance sides including imperfections. The project conclusions state 

that the partial factors γM0 and γM1 would be equal to 1.0.  

The European project Optimizing the seismic performance of steel and steel-concrete structures 

by standardizing material quality control OPUS (2013) collected large number of coupon tests 

reflecting the current production in Europe. The project was aiming at giving recommendations 

for the over-strength of the yield stress in the context of seismic design of structures. The data, 

however, is valuable for assessment of any other steel design rule because it is an updated 

version of what exists. 

Finally, the SAFEBRICTILE project (Ref. Nº RFSR-CT-2013-00023) intended to contribute 

towards the harmonization of the reliability level of design rules for steel structures covering 

modes driven by ductility, stability and fracture. The project provided an objective and 
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consistent safety assessment procedure for the various failure modes that are relevant for steel 

structures. It also recommended statistical distributions of the relevant basic variables, which 

were collected continuously during the project in a database of steel properties. This chapter is 

a summary of the work carried out at the University of Coimbra covering the reliability 

assessment of the stability design rules. 

It is organized as follows: i) firstly, the possible ways of safety assessment are summarized; ii) 

the statistical distributions of the relevant basic variables are discussed; iii) the stability design 

rules for I-shaped hot-rolled steel columns, beams and beam-columns is carried out. 

5.2 Methods for safety assessment 

5.2.1 Structural reliability  

It is common to use the reliability index β as a measure of the structural safety. Its quantity is 

directly equivalent to the probability of failure.  

ߚ ൌ െȰିଵ൫ ௙ܲ൯ (5.1) 

In general, the probability of failure can be determined by exact analytical integration 

(whenever possible), numerical integration methods, approximate analytical methods such as 

first or second order reliability methods (FORM or SORM) and simulation methods. 

According to Annex C of EN 1990 “Design values should be based on the values of the basic 

variables at the FORM design point, which can be defined as the point on the failure surface 

(g() = 0) closest to the average point in the space of normalised variables.”  

The design is considered sufficient if the limit states are not reached when the design values are 

introduced into the analysis models, as given by: 

ௗܧ ൌ ሺܽௗଵǡܧ ܽௗଶǡ ǥ ǡ ௗଵǡܨ ௗଶǡܨ ǥ ǡ ௗଵǡߠ ௗଶǡߠ ǥ ሻ (5.2) 

ܴௗ ൌ ܴሺܽௗଵǡ ܽௗଶǡ ǥ ǡ ௗଵǡܨ ௗଶǡܨ ǥ ǡ ௗଵǡߠ ௗଶǡߠ ǥ ሻ (5.3) 

 

E is load action; R is the resistance; F is an action; X is a material property; a is a geometrical 

property; θ is a model uncertainty. 
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The design shall be based on the limit state function g(.), as the limiting condition is g=0 also 

referred as failure surface. FORM is used to find the failure surface, an increased accuracy can 

be achieved using SORM (Second Order Reliability Method), at the cost of higher 

computational effort.  

Since EN 1990 allows to split in the resistances and actions, (see Section 2.6), it is possible to 

obtain the “failure surface” based only on the resistance side as in Eq.(2.78). 

5.2.2 Design assisted by testing 

One of the main objectives of the SAFEBRICTILE project consisted in the improvement of 

existing and the development of new procedures for the reliability assessment of design rules 

for steel structures. For this purpose, the existing procedures for the safety assessment of design 

rules verified by testing, given in EN 1990 Annex D, were reanalysed, adapted and expanded 

for the purposes and applications of the project and beyond. The main, semi-probabilistic 

reliability approach adopted in EN 1990 was kept as a reference framework for the developed 

safety assessment procedure. The procedure retains the semi-probabilistic approach of the 

Eurocodes, i.e. the assumption that the resistance component of the total reliability level 

(expressed by the reliability index�E) has a fixed value. Recommendations on the reduction of 

the model variability were specified, namely, divisions into smaller groups, use of the tail 

approximation and weighting of different failure mores. The use of numerical experiments was 

also addressed and their compliance to physical tests in the laboratory, and requirements and 

limits for their application were developed. 

The application of the procedure is summarized in Figure 5.2. 
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Figure 5.2 Flow-chart for the test-based statistical evaluation procedure of EN 1990 Annex D 
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5.3 Statistical distributions of basic variables 

5.3.1 Introduction 

According to the procedure given in Figure 5.2, information about the scatter of the basic input 

parameters is required. Within the scope of the European project SAFEBRICTILE, data 

collection for material and geometrical properties was carried out. This collection aimed at 

providing reliable data for the application of the reliability assessment performed within the 

project. The data was collected in the European database provided by the project. It also 

collected data from previous collections in order to increase the data pool.  

The collection of data aimed to attract contributions coming from different industries. In 

particular, focus was given to steel profiles and plates in different steel grades fabricated in 

2013 and 2014. During the project, data was also collected from other sources such as, coupon 

tests performed at universities around Europe. These tests serve for independent comparison 

with the results which were supplied by the steel producers, as the steels tested at the university 

laboratories are supplied by random producers. Data was also collected from the literature: i) 

collection in Simões da Silva et al (2009) that comprised a large amount of tests (7454 coupon 

test results) tested between 1996 and 2007 for steel grades S235, S275, S355, S460 and S690; 

ii) data collected within the framework of the European project OPUS that comprises a large 

amount of data (25425 coupon test results) tested between 2007 and 2010 for steel grades S235, 

S275, S355, S460. 

Regarding the geometrical properties, the tolerances on shape and dimensions (Figure 5.3) for 

H and I sections are standardized and the profiles are produced according to EN 10034:1993. 

This implies that the dimensions are continuously measured and their variation is bounded by 

the standard. 

  

Figure 5.3 Measurements on H and I sections – cross - section 
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Data collection for geometrical properties of steel H and I profiles, according to the 

specifications of EN 10034:1993, was performed among several steel producers in Europe: 

ArcelorMittal, Dillinger, Salzgitter, Stahlwerk-Thueringen, TataSteel. The results were 

supplied only as statistical parameters. 

The geometrical and material imperfections, however, are not standardized and there are not 

many sources of information. In Chapter 3, a collection of results various from literature sources 

was carried out. The conclusions, however, revealed high variability which is based on only 

several dozens of results unlike the material and geometrical properties where the collected data 

were several thousands. The out-of-straightness and the residual stresses, despite of being very 

relevant parameters do not appear explicitly in the Eurocode 3 stability design rules, for that 

reason they were not considered as random variables in the reliability assessment summarized 

by this chapter. 

5.3.2 Material properties 

Based on the collected data, recommendations for the distributions of the material properties 

were specified. These were adopted also in the present assessment. The SAFEBRICTILE 

recommendations are given in Table 5.1. They were specified in a normalized manner in order 

to be easily applicable to the variation of the yield stress with thickness according to EN 10025. 

Table 5.1 Recommended distributions 

Steel fy,nom fym/fy,nom c.o.v. 

S235 235 1.25 5.5% 

S355 355 1.2 5% 

S460 460 1.15 4.5% 

 

Furthermore, the modulus of elasticity also being an important parameter for the stability 

behaviour is not a standardized property. The result of the measurement procedure is highly 

dependent on the party that performs it; hence for that reason, the available results are 

questionable. A recommendation for the distribution for the modulus of elasticity was adopted 

based on DNV (1995) that reports a mean value Em = Enom and a c.o.v. of 5%. Since the 

statistical characterization of the modulus of elasticity is not so strongly supported by 
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experimental evidence and the testing procedures are not often as reliable with respect to this 

property, a sensitivity study is carried out with respect to this property by also considering a 

c.o.v. of 3%. Furthermore, from theoretical and methodological point of view the Young’s 

modulus should not exhibit variability (Feldman, (2018)) 

5.3.3 Geometrical dimensions 

Table 5.2 summarizes the recommended distributions for the geometrical properties of H and I 

hot-rolled sections. 

Table 5.2 Recommended distributions 

Dimension b h tw tf 

mean/nom 1 1 1 0.975 

c.o.v 0.9% 0.9% 2.5% 2.5% 

 

They were based on more than 1000 collected data in the database and data supplied from steel 

producers in Europe. These statistics correlate well with that was reported in the past Alpsten, 

(1972) and results reported in Taras (2010), who reported statistics as given in Table 5.3. 

Table 5.3 – Distributions on geometrical distributions Alpsten, G. (1972)   

Dimension b h tw tf 

mean/nom 1 1 1.025 0.975 

c.o.v 0.9% 0.9% 4.0% 3.0% 

 

Although the reports by Alpsten. (1972) and Taras (2010) are not recent, the statistical 

characterization of the cross-section dimensions is in line with the statistical indicators for area, 

moment of inertia and bending modulus as given in the report from the research project 

PROQUA, where the area, section modulus and moment of inertia are reported with a mean 

value of 0.99 the nominal and c.o.v varying from 1 to 4%. 

Recently, as part of the Eurocode 3-1-1 revision, the final draft prEN 1993-1-1 (CEN/TC250, 

2017) specifies recommended distributions for the basic variables for the calibration of the 
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partial factors in its Annex E. The recommended distributions are based on the 

recommendations of SAFEBRICTILE. 

5.4 Safety level of the design rules 

5.4.1 Scope and assumptions 

The assessment encompasses the design rules for prismatic members in compression, bending 

and combination of bending and compression.  

The comparison is carried out on the basis of partial safety factor γM1
* calculated using the 

procedure from Section 5.2.2 with the statistical data for basic variables from 5.3. 

The buckling strength of the members is obtained using advanced numerical finite element 

simulations as described in Chapter 4. 

For each case (flexural and lateral-torsional buckling), a wide range of I-shaped cross sections 

covering several buckling curves were analyzed across a wide ranges of slenderness. The 

parametric studies are organized by buckling mode and they are defined in Section 5.4.3 for 

members in compression, bending and combined bending and compression. 

The safety assessment procedure was applied together with the following assumptions: 

� The variability of the input variables in the design model is not considered for the 

calculation of Vδ; the value is obtained from nominal properties since the “experimental” 

results are considered with nominal properties; 

� The coefficient of variation of the basic variables, Vrt, considers only the variability of 

cross section dimensions, yield stress and modulus of elasticity; for these parameters 

more information is known and documented with recent data; 

For the flexural buckling of columns, the yield stress, fy, is considered either according to the 

provisions of the product standard EN 10025, or from Table 3.1 of EC3-1-1. Since Table 3.1 of 

EC3-1-1 does not account for t>80 mm, for such cases, the same value of fy as in EN 10025 

was considered, see Figure 5.4. 
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Figure 5.4 – Variation of the yield stress with thickness 

For beams and beam-columns, the variation of the yield stress with thickness was assumed 

according to the product standard. 

For columns, the geometrical imperfections were modelled using an initial sinusoidal 

imperfection introduced in the weak or strong axis of the cross-section, with an amplitude 

e0=L/1000 at mid span. Residual stresses were considered according to Figure 5.5. The adopted 

value of fy* indicated in Figure 5.5 was fy,235=235 MPa. Nevertheless, for comparison, 

equivalent cases were included using the nominal value of the yield stress fy. 

 

 

(a) Hot-rolled, h/b<1.2          (b) Hot-rolled, h/b>1.2  
Figure 5.5 – Residual stresses (“+” Tension and “–“Compression) 

As the main purpose of this study is the assessment of existing rules for prismatic members in 

compression, bending and a combination of bending and compression from EC3-1-1, in order 

to cover all types of hot-rolled sections according to Table 6.2 of EC3-1-1, a wide range of I-

shaped cross-sections was selected so that flange thickness and the ratio h/b would vary. 
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In this section, firstly, the scope of the parametric study is introduced; subsequently, the 

methodology for assessment of results is given and finally, the results are discussed. 

5.4.2 Design resistance 

5.4.2.1 Members in compression 

For the evaluation of the flexural buckling resistance of steel columns, clause 6.3.1 in EC3-1-1 

is considered to represent the theoretical result, rti, in the safety assessment procedure. The 

design procedure is summarized in Section 2.3.1 for simply supported members of length L, 

whereas the imperfection factors are summarized in Table 2.2 for the cross section shapes 

covered by the parametric study. The imperfection factors are considered from Table 2.2 and 

imperfection factors by Snijder et al. (2014) for hot-rolled heavy cross-sections with tf>100 

mm and h/b>1.2. 

Table 5.4 - Imperfection factors and generalized imperfection limits for flexural buckling 

Fabrication Limits Axis 
EC3-1-1 (Snijder et al., 

2014) 
S235 
S355 

S460 S235 
S355 

S460 

Rolled 

h/
b>

1.
2 

tf≤40 mm 
y-y 

z-z 

0.21 

0.34 

0.13 

0.13 
- - 

40 mm<tf≤ 
100 mm 

y-y 

z-z 

0.34 

0.49 

0.21 

0.21 
- - 

tf>100 mm 
y-y 

z-z 
- - 

0.34 

0.49 

0.21 

0.34 

h/
b≤

1.
2 tf≤100 mm 

y-y 

z-z 

0.34 

0.49 

0.21 

0.21 
- - 

tf>100 mm 
y-y 

z-z 

0.76 

0.76 

0.49 

0.49 
- - 

 

5.4.2.2 Members in bending 

For the evaluation of the lateral-torsional buckling resistance, the methods described in Section 

2.3.2 were used. A similar assessment performed in 2009 (Rebelo et al., 2009) considered the 

General Case modified with the factor f from the Special Case. The method was included here 

for completeness. 
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5.4.2.3 Members in bending and compression 

The design resistance of members in bending and compression was evaluated using the 

interaction formula with interaction coefficients for Method 2/Annex B (see Section 2.3.3) since 

it was foreseen that only this method would remain in a future version of Eurocode 3. 

5.4.3 Parametric studies  

5.4.3.1 Flexural buckling of columns 

Table 5.6 summarizes the hot-rolled sections selected for the study, organized according to 

Table 6.2 of Eurocode 3 (2005). The selection also includes 2 (two) American profiles.  

The parametric study comprised 7332 numerical models, both for minor and major axis flexural 

buckling behaviour (3666 models for each mode). It includes several levels of slenderness, 

different steel grades, and two different levels of residual stresses (proportional to the yield 

stress or as a fraction of 235MPa), as given in Table 5.5. 

Table 5.5: Parametric study for columns: additional parameters 

Fabrication O  Material and 
standard for fy 

Material 
imperfections 

Rolled 

 

0.5; 0.6; 0.7; 0.8 

0.9; 1.0; 1.2; 1.4; 

1.5 

1.6; 1.8; 2.0; 2.5 

 

EN 10025: 
 

S235 
S355 
S460 

 
h/b≤1.2: 

fy,235 
fy 

 
h/b>1.2: 

fy,235 
fy 
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Table 5.6: Sections of the parametric study for columns 

Fabrication Limits Sections 
h/b tf  Profiles 

Rolled  

h/
b>

1.
2 

tf ≤ 40 mm 

1.22 40 HEM340 
1.3 19 HEA400 
1.7 40 HEM500 
1.92 6.9 IPE140 
2.19 40 HEM650 
1.74 5.2 IPE80 
1.82 5.7 IPE100 
1.33 24 HEB400 
1.67 28 HEB500 
1.95 7.4 IPE160 
1.41 40 HEM400 
1.50 24 HEB450 
1.28 40 HEM360 

40 mm<tf≤100 
mm 

2.28 55.9 HL920x588 
2.29 62 HL920x656 
2.35 99.1 HL920x1077 
3.36 64 HE1000x584 
2.31 73.9 HL920x787 
2.30 68.1 HL920x725 
3.08 65 W920x310x576 
2.56 70 HL1000x748 
2.05 69.1 W610x325x551 
2.06 54 HE600x399 
2.36 46 HE700x352 
2.69 54 HE800x444 
3.01 54 HE900x466 

tf>100 mm 

1.231 130 HD400x1202 
2.4 109 HL920x1194 

1.201 106 HD400x900 
1.23 115 HD400x990 
2.37 115.1 HL920x1269 
2.31 115.1 HL920x1377 
1.25 125 HD400x1086 
1.26 140 HD400x1299 

h/
b≤

1.
2 

tf≤100 mm 

1.2 22.5 HEB360 
1.17 97 HD400x818 
0.96 8 HEA100 
1.0 19 HEB300 
1.1 39 HEM300 
1.0 10 HEB100 
1.0 15 HEB200 
1.17 17.5 HE360A 
1.09 67.6 HD400x551 
1.12 77.1 HD400x634 
1.04 52.6 HD400x421 
1.10 72.30 HD400x592 
1.00 17 HEB240 

tf>100 mm No sections exist 



STABILITY DESIGN OF STEEL COLUMNS, BEAMS AND BEAM-COLUMNS: 
BEHAVIOUR, GENERAL FORMULATION AND RELIABILITY 

 

 
 

124 |

5.4.3.2 Lateral-torsional buckling of beams 

Table 5.7 summarizes the hot-rolled sections selected for the assessment of lateral-torsional 

buckling of prismatic beams.  

Table 5.7 - Sections of the parametric study for beams. 

Fabrication 
Limits Sections 

EC3-1-1 
Columns tf 

EC3-1-1 
Beams h/b tf 

[mm] Profiles 

Rolled 

h/
b>

1.
2 

tf≤40 mm 

h/b>2.0 
2.22 13.5 IPE400 
2.50 16 IPE500 
2.73 19 IPE600 

h/b ≤2.0 

1.82 5.7 IPE100 
2.00 8.5 IPE200 
2.00 9.8 IPE240 
2.00 10.7 IPE300 

40 mm<tf≤100 
mm 

h/b>2.0 

2.30 68.1 HL920x725 
2.56 70 HL1000x748 
2.31 73.9 HL920x787 
3.36 64 HE1000x584 
3.08 65 W920x310x576 
2.05 69.1 W610x325x551 

h/b ≤2.0 

1.41 40 HE400M 
1.71 40 HE500M 
1.30 19 HE400A 
1.33 24 HE400B 
2.0 30 HE600B 

2.52 41.9 HL1000x443 
2.52 46 HL1000x483 
2.27 51.1 HL920x537 

h/
b 

≤1
.2

 

tf≤100 mm - 

1.00 19 HE300B 
1.00 15 HE200B 
1.00 10 HE100B 
1.13 20 HE100M 
1.10 21 HE300M 
0.95 8 HE120A 
1.09 67.6 HD400x551 
1.10 72.3 HD400x592 
1.12 77.1 HD400x634 

 

The parametric study consists of 3523 numerical calculation runs. It includes several levels of 

slenderness and different steel grades (the ones currently included in EC3-1-1).  The parameters 

are summarized in Table 5.8. Due to the diversity of the cross-sections and in order to avoid 

unrealistic lengths, only beams with ratios L/h < 40, where L is the beam length and h is the 

cross-section depth, were considered in the parametric study. 
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Table 5.8 - Parametric study for beams: additional parameters 

Fabric
ation 

 ҧ௅் Material standardߣ
for fy 

Material 
imperfections Load 

Rolled 

0.2; 0.4; 0.6; 0.8; 

1.0; 1.1; 1.2; 1.3; 

1.4; 1.5; 1.6; 1.7; 

1.8; 2.0; 2.1 

EN 10025: 
 

S235 
S355 
S460 

 
h/b≤1.2: 

fy,235 
 

h/b>1.2: 
fy,235 

 

 

5.4.3.3 Beam-columns 

For the assessment of the members under bending and compression, numerical results by Ofner 

(1997) used in the calibration of the interaction formula, additional cases for lateral-torsional 

buckling under major axis bending moment and axial force performed in the scope of the 

Master's thesis by Anwar (2015) and additional cases carried out at UC were used. Table 5.9 

lists the selected hot-rolled sections and Table 5.10 summarizes the parameters which give a 

total of 11 345 cases. 

Table 5.9 - Sections of the parametric study for beam-columns. 

Fabrication Limits h/b tf 

[mm] Profiles Source 

Rolled 

h/
b 

>1
.2

 

tf≤40 mm 

1.82 5.7 IPE100 Anwar (2015) 
1.95 7.4 IPE160 Anwar (2015) 
2.00 8.5 IPE200 Ofner (1997) 
2.5 16 IPE500 Ofner (1997) 

1.98 8 IPE180 Anwar (2015) 
2.12 12.7 IPE360 Anwar (2015) 
1.30 19 HE400A Anwar (2015) 
1.67 28 HE500B Anwar (2015) 
2.17 21 HE650B Anwar (2015) 

40 mm<tf≤100 
mm 

2.04 46 HE600x337 Anwar (2015) 
2.28 55.9 HL920x588 UC (2018) 
3.36 64 HE1000x584 UC (2018) 
2.36 46 HE700x352 UC (2018) 
2.69 54 HE800x444 UC (2018) 
2.20 46 HE650x342 Anwar (2015) 

h/
b 

≤1
.2

 

tf≤100 mm 

1.0 19 HE300B Ofner (1997) 
0.97 14 HE300A Anwar (2015) 
1.01 43.7 HD400x347 Anwar (2015) 
1.05 29 HE300C Anwar (2015) 
1.13 21.5 HE340B Anwar (2015) 
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Table 5.10 - Parametric study for beam-columns: additional parameters 

Fabrication ߣҧ௭ I 
Material 
standard 

for fy 

Material 
imperfections Load 

Rolled 

 0.4; 0.5, 0.6; 

0.8; 1.0; 1.2; 

1.4; 1.5, 1.6; 

1.8;  

 

5.67, 2.74, 

1.73, 1.19 

0.83, 0.57 

0.36, 0.17 

0 

EN 
10025: 

 
S235 

 

 
h/b≤1.2: 

fy,235 
 

h/b>1.2: 
fy,235 

  

 

5.5 Columns 

5.5.1 Methodology  

In the subsequent sections, the results for minor and major axis flexural bucking of columns are 

detailed. The following main topics are discussed: 

� Influence of the specification of the minimum yield stress according to EN 10025 and 

Eurocode 3; 

� Influence of the magnitude of residual stresses used in the numerical analyses; 

� Influence of the imperfection factor α for steel grade S460; 

� Validation of the buckling curves for heavy sections; 

� Influence of the number of random variables; 

Throughout the following paragraphs, charts and tables, the following methodology is adopted: 

� The partial factors for different subsets are computed considering the procedure 

summarized in Figure 5.2. 

� Whenever a subset according to slenderness is analyzed, the following division is 

adopted: 

� Low slenderness – normalized slenderness ]8.0;5.0[�λ ; 

� Medium slenderness– normalized slenderness ]5.1;8.0(�λ ; 
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� High slenderness – normalized slenderness ]5.2;5.1(�λ ; 
 

� For the first 4 topics listed above, only the variability of the yield stress is considered, 

as a relative assessment is sufficient to establish the influence of each parameter; 

� In order to establish the influence of additional random variables, the following 

variables are considered: yield stress, geometrical dimensions of the cross-section and 

modulus of elasticity. 

Hereby the results for minor axis and major axis flexural buckling are presented and discussed. 

Firstly, the reference cases for hot-rolled cross sections are analyzed: the value of the yield 

stress both in re and rt is considered according to EN 10025 and the level of the residual stresses 

is proportional to 0.3(0.5) x 235 MPa for h/b>(≤1.2). Subsequently, the reference cases are 

analyzed considering the value of the yield stress and rt according to Table 3.1 of EC3-1-1, the 

experimental value re is computed according to the EN 10025, assuming it as the “reality”. 

Finally, the reference cases are analyzed considering the level of the residual stresses 

proportional to 0.3(0.5) x fy for h/b>(≤1.2); 

 

5.5.2 Results and discussion – Minor axis flexural buckling  

The parametric study was constructed aiming to cover all buckling curves for hot-rolled H and 

I sections and therefore, the sample includes members whose resistance is evaluated using 

different imperfection factors (α according to Table 2.2), different steel grades which are 

defined by different distributions, etc. Hence, further division into subsets is required, in order 

to avoid undesired bias of the results. 

Since the reduction factor is mainly a function of slenderness, results should be assessed and 

organized by subsets of the slenderness ranges, as shown in Figure 5.6. The subsets are adopted 

according to Low [0.5; 0.8]; Medium (0.8; 1.5]; and High (1.5; 2.5]. A larger partial safety 

factor is observed for S460 in Figure 5.6 when compared to the other steel grades for all 

slenderness ranges. A possible explanation for this value is that the imperfection factors 

currently adopted for steel grade S460 may not be appropriate. This was independently 

confirmed by Lindner (2015) and may thus require adjustment. 
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Figure 5.6 All results organized by slenderness for hot-rolled cross sections – fy according to EN 10025  

Figure 5.7 illustrates the results organized by the divisions given in Table 2.2, regardless of the 

slenderness range, thus allowing a direct comparison of the buckling curves in EC3-1-1. Firstly, 

it is clear that steel grade S355 leads to lower values of γM1. This is due to the relative amplitude 

of the residual stress with respect to the yield stress of the member when compared to S235 

steel. Figure 5.7 again confirms that the imperfection factors for S460 may not be adequate, 

except for h/b>1.2, tf>100 mm because they were recently proposed and calibrated as this range 

was not available in the code (Snijder et al., 2014). Finally, note that no cases with h/b≤1.2 and 

tf>100mm are included in the parametric study since no sections with these characteristics were 

found in catalogs. 

 
Figure 5.7 All results organized by buckling curve division for hot-rolled cross sections – fy according to 

EN 10025  

5.5.2.1 Influence of the variation of the yield stress with thickness  

The value of the yield stress in the theoretical value of the resistance rt is now considered 

according to EC3-1-1, Table 3.1 and the “experimental” resistance re is computed considering 

the sub-divisions according to EN 10025, and presented in relative terms with respect to the 

results of EN 10025 (Figure 5.8). Results of Figure 5.8 are better interpreted together with 

Figure 5.4. The second group for S235 and third group give the same values since the 

specifications of the yield stress in EN 10025 and EC3-1-1 are equal for the cross sections 

0.967 1.007 0.9770.931 0.921 0.935
1.040 1.111 1.053

0.0

0.5

1.0

1.5

Low Medium High

γ M
*

Flexural buckling, minor axis

S235 S355 S460

1.014 0.936 0.972 1.0550.963 0.915 0.936 0.984
1.109 1.028 0.974

1.109

0.0

0.5

1.0

1.5

h/b>1.2   tf<40mm h/b>1.2   tf(40;100)mm h/b>1.2   tf>100mm h/b≤1.2 tf<100mm

γ M
*

Flexural buckling, minor axis

S235 S355 S460
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considered in the parametric study. On the other hand, for the first and fourth groups as well as 

second group for S355 and S460, differences are noted, for sections with thicknesses falling in 

the ranges (16; 40) and (63; 80), since the specifications in EC3-1-1 and EN 10025 are different 

in those ranges. 

 
Figure 5.8 Percentage difference for normalized γM1 between yield stress calculated according to EC3-1-

1 and EN 10025 

The results in Figure 5.8 include thickness ranges that are different from the division according 

to EN 10025; hence, Figure 5.9 compares results between EN 10025 and EC3-1-1 for the 

intervals defined in EN 10025, highlighting maximum differences of about 8%. 

 
Figure 5.9 Percentage difference for normalized γM1 between yield stress calculated according to EC3-1-

1 and EN 10025 

5.5.2.2 Influence of the assumptions for the residual stress 

Figure 5.10 and Figure 5.11 present relative results for the partial factor similarly to Figure 

5.7, but assuming the conservative option that the level of the residual stresses is proportional 

to the yield stress 0.3(0.5) x fy for h/b>(≤1.2). Since a higher level of the residual stresses is 

now considered (more conservative), the partial safety factor is expected to increase. This is 

observed both for steels S355 and S460, see Figure 5.10 and Figure 5.11 respectively. For steel 

grade S235, the analysis is not relevant. 

6.30%

0.00% 0.00%

2.10%

3.94%

2.31%

0.00%

3.11%

6.90%

4.40%

0.00%

5.53%

0.0%

2.0%

4.0%

6.0%

8.0%

h/b>1.2   tf<40mm h/b>1.2   tf(40;100)mm h/b>1.2   tf>100mm h/b≤1.2 tf<100mm
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S235 S355 S460
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Figure 5.10 All results organized by buckling curve and slenderness division for hot-rolled cross sections 

and steel grade S355 – residual stress proportional to the actual value of fy (fy according to EN 10025)  

Figure 5.10 and Figure 5.11 represent the subsets by buckling curve, slenderness and steel 

grade. It is clearly seen that the influence of the residual stresses has higher impact in the 

medium slenderness range, as expected. Moreover, Figure 5.11 further shows that the adoption 

of residual stresses proportional to the yield stress 0.3(0.5) x fy is too conservative. 

 
Figure 5.11 All results organized by buckling curve and slenderness division for hot-rolled cross sections 

and steel grade S460 – residual stress proportional to the actual value of fy (fy according to EN 10025) 

5.5.2.3 Evaluation of the partial safety factor considering new imperfection 

factors for S460 

It was already seen that the results for steel grade S460 are significantly higher than those for 

the other steel grades. A possible improvement can be introduced by considering higher 

imperfection factors for minor axis flexural buckling as shown in Table 5.11 (values in bold). 

Figure 5.12 and Figure 5.13, similarly to Figure 5.6 and Figure 5.7 show the results according 

to slenderness and buckling curve division, respectively. The improvement of using higher 

imperfection factors for steel grade S460 is clear. 

 

3.07%
1.77% 1.30%
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Table 5.11 New imperfection factor for steel grade S460, minor axis 

Fabrication Limits Axis 
EC3-1-1 Snijder et al. 

(2014) 
S235 
S355 

S460 S235 
S355 

S460 

Rolled h/
b>

1.
2 

tf≤40 mm 
y-y 

z-z 

0.21 

0.34 

0.13 

0.21 
- - 

40 mm 
<tf≤100 mm 

y-y 

z-z 

0.34 

0.49 

0.21 

0.34 
- - 

tf>100 mm 
y-y 

z-z 
- - 

0.34 

0.49 

0.21 

0.34 

h/
b≤

 
1.

2 tf≤100 mm 
y-y 

z-z 

0.34 

0.49 

0.21 

0.34 
- - 

*h/b≤1.2 and tf>100 mm is not included in the table, because no cross-sections were 
found 
 

 
Figure 5.12 All results organized by slenderness for hot-rolled cross sections – fy according to EN 10025  

 
Figure 5.13 All results organized by buckling curve division for hot-rolled cross sections – fy according to 

EN 10025  

5.5.3 Results and discussion – Major axis flexural buckling  

Identically to minor axis flexural buckling, the safety assessment is computed considering the 

Annex D procedure and the variability of yield stress only. Firstly, the reference cases for hot-

rolled cross sections are analyzed: the yield stress both in re and rt is considered according to 
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EN 10025. Unlike minor axis flexural buckling, the relative values of the partial safety factor 

are more uniform for the different steel grades (Figure 5.14). 

 
Figure 5.14 All results organized by slenderness for hot-rolled cross sections – fy according to EN 10025  

Similarly to Figure 5.7 for minor axis flexural buckling, Figure 5.15 illustrates the results 

organized according to the divisions presented in Table 2.2, regardless of the slenderness range, 

thus allowing a direct comparison of the buckling curves specified in EC3-1-1. All cases fall 

within an acceptable range of variation of the partial safety factor. 

   
Figure 5.15 All results organized by buckling curve division for hot-rolled cross sections – fy according to 

EN 10025  

Furthermore, when the influence of the variation of the yield stress with increasing flange 

thickness was analysed, similar conclusions were drawn. Identical results were found when the 

residual stresses were assumed proportional to the yield stress as in Section 5.5.2.2.  

5.5.4 Influence of the number of random variables 

In the previous sub-sections, only fy was considered as a random variable. In reality, in the case 

on flexural buckling of columns, other basic variables also affect the behaviour of a column, 

such as the cross-section dimensions and the Young’s modulus. It is noted that geometrical and 

material imperfections such as initial curvature and residual stresses are not included as basic 
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random variables as they are included implicitly in the design model (Simões da Silva et al. 

2014). 

Hence, the following random variables are included in the analysis: 

� Yield stress – fy; 
� Geometrical dimensions – b, h, tw, tf ; 
� Young’s modulus – E;  

 

The distributions of the basic variables are considered as given in Section 5.3. The influence of 

the number of basic variables is accounted as their number is gradually increased. The following 

cases are considered: 

� Annex D (fy) – considers the yield stress as the only basic variable, the other parameters 

are assumed as deterministic quantities with no variability; 

� Annex D (fy+CS) – considers the yield stress and the geometrical dimensions of the 

cross-section as random variables; 

� Annex D (fy+CS+E) – considers the yield stress, the geometrical dimensions of the 

cross-section and the modulus of elasticity as random variables; 

 
γM1

* is calculated for both major and minor axis flexural buckling for all three cases. 

5.5.4.1 Minor axis flexural buckling 

Subsets of steel grade and slenderness are analysed in Figure 5.16 for Annex D (fy + CS + E), 

partial factors obtained for minor axis and considering the assumptions previously made. As 

expected, higher values of γM1
* are obtained, the rate of increase of γM1 rises with increasing 

slenderness as Young’s modulus and geometrical dimensions (moment of inertia) become more 

relevant in the medium and high slenderness ranges.  
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Figure 5.16 - All results organized by slenderness and steel grade – using fy, cross-section dimensions 

and modulus of elasticity as random variables  

Similarly, results split according to buckling curve and steel grade are given in Figure 5.17.  

 
Figure 5.17 - All results organized by buckling curve for hot-rolled cross sections – using fy, cross-

section dimensions and modulus of elasticity as random variables  

Finally, a comparison of different assumptions of the coefficient of variation of the Young’s 

modulus is illustrated in Figure 5.18, where the differences become more significant for high 

slenderness.  

 
Figure 5.18 - Assessment of different assumptions of the coefficient of variation of the modulus of 
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5.5.4.2 Major axis flexural buckling 

The same evaluation was performed for major axis of flexural buckling. The results are similar 

to the conclusions in the previous section, i.e. the presence of the modulus of elasticity leads to 

higher values for γM1 (Figure 5.19 and Figure 5.20). However, in general, the values of the γM1 

for major axis flexural buckling are lower than those for minor axis as presented in section 

5.5.4.1. 

 
Figure 5.19 - All results organized by slenderness and steel grade – using fy, cross-section dimensions 

and modulus of elasticity as random variables  

 
Figure 5.20 - All results organized by buckling curve for hot-rolled cross sections – using fy, cross-

section dimensions and modulus of elasticity as random variables 

5.5.5 Assessment of the partial factor 

The previous section analysed the design rules for the flexural buckling of columns in terms of 

the required value of the partial factors γM1
* to match the target probability of failure specified 

in EN 1990. The analysis was carried out relatively because the value of γM1
* is highly 

dependent on the quality of the design rules and scatters for the various subsets that are 

considered. It was shown that the design rules provide consistent results across the various 

possible subsets, with small scatter on the value of γM1
*.  
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In this section it is proposed to discuss the adoption of a single global γM1 for flexural buckling 

of columns that is in line with the failure probability in EN 1990 and incorporates all the 

viewpoints that support code drafting and the choice of safety factors. 

Table 5.12 summarizes the partial factors obtained for minor and major axis, now given as 

absolute values instead of normalized values.  

Table 5.12 - Values of γM1 obtained using different random variables for major and minor axes flexural 
buckling 

Limits Axis 

Annex D         

(fy) 

Annex D 

(fy+CS) 

Annex D 

(fy+CS+E) 

S235 

S355 
S460 

S235 

S355 
S460 

S235 

S355 
S460 

h/
b>

1.
2 

tf≤40 mm 
y-y 

z-z 

0.978 

0.989 

1.006 

1.015 

1.030 

1.055 

1.066 

1.077 

1.079 

1.098 

1.120 

1.118 

40 mm 

<tf≤100 mm 

y-y 

z-z 

0.935 

0.925 

0.973 

0.955 

0.973 

0.983 

1.018 

1.011 

1.011 

1.021 

1.063 

1.048 

tf>100 mm 
y-y 

z-z 

0.943 

0.954 

0.980 

0.974 

0.978 

1.008 

1.021 

1.032 

1.018 

1.043 

1.067 

1.070 

h/
b≤

 

1.
2 tf≤100 mm 

y-y 

z-z 

0.961 

1.020 

0.998 

1.019 

1.004 

1.079 

1.047 

1.075 

1.046 

1.115 

1.094 

1.109 

 

Table 5.13 - Average γM1 for minor and major axis flexural buckling, according to buckling curves and 
slenderness 

 Axis Annex D(fy) Annex D(fy+CS) Annex D(fy+CS+E) 

Mean 

value 

y-y 0.937 0.988 1.035 

z-z 0.936 1.002 1.041 

CoV 
y-y 3.8% 4.5% 6.4% 

z-z 4.1% 4.4% 5.6% 

 

Further division into subsets according to slenderness is performed in order to be able to 

compare the different slenderness ranges (Simões da Silva et al. (2016)). Even though finer 
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subsets into slenderness, steel grade and buckling curve are adopted, partial factors higher than 

unity are mostly only observed when the Young’s modulus is included. 

Table 5.13 summarizes the mean and standard deviation of γM1 for the three different sets of 

random variables that were considered. It is concluded that depending on the random variables 

included in the analysis (just fy; fy and cross-section geometry; or fy, cross-section geometry and 

modulus of elasticity E) the average value of γM1 varies from 0.936 to 1.041 with the c.o.v 

varying from 3.8% to 6.4%. The mean value is lower than 1.05 for the more unfavourable case 

and the c.o.v. is low. Additionally, in general, the values of the γM1 for major axis flexural 

buckling are similar to those for minor axis. 

Recalling that the currently recommended value of γM1 in Eurocode 3, part 1, is 1.0, and 

comparing with available data from the literature that led to the choice of γM1 = 1.0, the results 

presented in this report for γM1 are lower. In Muller (2003), a study on the flexural buckling 

resistance of hot-rolled sections was done and the corresponding partial safety factors were 

assessed, see Figure 5.1, corresponding to an average value of γM1 for minor axis flexural 

buckling of 1.097 (cf. 0.937 as these results only considered the variability of fy). 

It is interesting to note that the observed trend (also in Muller (2003)) of an increasing value of 

γM1 in the intermediate slenderness range disappears when variability in cross-section and 

Young’s modulus is included: in this case the value of γM1 increases monotonically with 

slenderness. It is noted that the higher value of γM1 for high slenderness is not so relevant 

because of practical reasons (practical range of column slenderness), as the parametric study 

included normalised slenderness (ߣҧ) up to 2.5. It is therefore recommended to keep γM1=1.0 for 

columns. This recommendation was taken in the final draft of prEN 1993-1-1 (CEN/TC250, 

2017). 

5.6 Beams 

5.6.1 Methodology 

In the following sections, the results for lateral-torsional buckling of beams are detailed. The 

main topics that are discussed are: 

� Comparison of the various design methodologies for the determination of the lateral-

torsional buckling resistance of hot-rolled I-beams with fork conditions; 
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� Influence of the bending moment distribution; 

� Assessment of the imperfection factors for the New EC3 method; 

� Influence of the number of random variables 

Throughout the following paragraphs, charts and tables, the following methodology is adopted: 

� The General Case is presented as the reference method for comparative purposes; 

� The partial factors for the different subsets are computed considering the Annex D 

procedure summarized in Figure 5.2; 

� A lower tail approximation is applied to all subsets; 

� Whenever a subset according to slenderness is analysed, the following division is 

adopted: 

� Low slenderness – normalized slenderness ߣҧ  ;[0.8 ;0.2) א

� Medium slenderness– normalized slenderness ߣҧ  ;[1.2 ;0.8) א

� High slenderness – normalized slenderness ߣҧ  ;[2.1 ;1.2) א

� For the first three topics listed above, only the variability of the yield stress is 

considered, as a relative assessment is sufficient to establish the influence of each 

parameter; 

� In order to establish the influence of additional random variables, the following 

variables are considered: yield stress, geometrical dimensions of the cross-section and 

modulus of elasticity. 

5.6.2 Overview 

Before applying the Annex D procedure for statistical evaluation, it is useful to examine the 

design model accuracy. In Figure 5.21 and Figure 5.22 scatterplots for all the methods are 

given. In the abscissa, the estimation of the advanced numerical simulations is plotted, while 

the ordinates correspond to one of the design methods.  

In order to give a quantitative measure of the model variations, the statistical parameters for the 

ratio experimental over theoretical values (re/rt) are given in Table 5.14, where ratios higher 

than unity indicate a safe-sided estimation, and on the contrary, ratios lower than 1.0 indicate 

unsafe results. The General Case and GC/f show a high variability of the results, with 

coefficients of variation of 8.8% and 7.7% respectively. The ratios re/rt vary from about 10% 

unsafe to about 40% safe. 
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Figure 5.21 Scatterplots General and Special Case 

  

Figure 5.22 Scatterplots General Case/f and Taras 

The other two methods, Special Case and New EC3 have lower coefficients of variation (4.9% 

and 4.5%, respectively) but the level of overestimation of the resistance by the Special Case is 

significantly higher than for the New EC3 method.  

These results confirm earlier studies on the lateral torsional buckling of beams Rebelo et al. 

(2009), Simões da Silva et al. (2009) and Taras (2010) whereby a high scatter of the LTB 
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resistances across the slenderness was also observed, from unsafe to very safe for the three first 

methods. 

Table 5.14 - Statistical parameters (>1.0 safe-sided) 

  nEC3 GC SC GC/f 
mean 1.03 1.13 1.01 1.08 
cov 4.5% 8.8% 4.9% 7.7% 
min 0.91 0.93 0.88 0.93 
max 1.30 1.44 1.21 1.43 

<0.97 144 20 625 73 
<1 719 214 1230 431 

 

5.6.3 Results and discussion: General Case 

In this section the reference cases considering the General Case are presented. In Figure 5.23 

the γM* results are divided according to slenderness and steel grade. It is observed that there is 

not a significant difference between the considered steel grades. The higher results in the low 

slenderness range occur for all steel grades, reflecting the more decisive role that fy plays for 

this slenderness range.  

 
Figure 5.23 - γM* organized by slenderness and steel  

Figure 5.24 and Figure 5.25 organize the results by buckling curve division. The first compares 

different steel grades, while the latter compares different slenderness ranges. Figure 5.24 shows 

that considering subsets organized by steel grade there is a trend of the γM* values to increase 

with the steel grade. This contrasts with the results of Figure 5.25, highlighting the importance 

of the consideration of subsets and the sensitivity of results to the choice of subsets Taras et al. 

(2017). Figure 5.25 shows that the safety level of the two buckling curves is not homogeneous. 
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Figure 5.24 – γM*organized by buckling curve and steel grade for General Case  

 
Figure 5.25 - γM*organized by buckling curve and slenderness for General Case  

5.6.4 Comparison of the design methods 

5.6.4.1 General results 

This section compares the four methods. In particular, the influence of the buckling curves and 

the shape of the bending moment are examined in detail.  

 
Figure 5.26 - γM*organized by slenderness  

Figure 5.26 compares the General Case, the Special Case, General Case/f and the New EC3 
method, according to the slenderness range based on all results available. The Special Case 
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exhibits lower safety, confirming the results of Table 5.14. The new EC3 method shows 

consistent safety across the various slenderness ranges, while the General case yields 

significantly higher safety for the Medium and High slenderness ranges. 

5.6.4.2 Influence of the buckling curve 

In order to verify the consistency according to the buckling curves, the respective subsets are 

considered. Figure 5.27 and Figure 5.28 compare the several methodologies organized by their 

respective buckling curve and slenderness divisions (General Case, Special Case and General 

Case/f are split for h/b>≤2, while for the New EC3 method the buckling curves are divided for 

h/b>≤1.2. This subdivision of the buckling curves presents the advantage of matching the 

subdivision of column buckling curves. The imperfection factors are adopted as given in Table 

2.4. 

 
Figure 5.27 γM*organized by buckling curve and slenderness 

 
Figure 5.28 γM* organized by buckling curve and slenderness  
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Unlike the buckling curve divisions for columns, the imperfection factors for beams are 

independent of the flange thickness. In order to verify the influence of the flange thickness, 

further subsets according to the divisions for buckling curves for the columns are considered. 

Figure 5.29, Figure 5.30 and Figure 5.31 summarize the results according to slenderness for 

each interval of the column buckling curves. The results for General Case, Special Case and 

General Case /f given in Figure 5.29 and Figure 5.30 are not very different than the ones in 

Figure 5.28, the Special Case showing results with higher safety factors with significant 

differences in the medium and high slenderness. Finally, for h/b ≤ 1.2 (Figure 5.31) all methods 

show similar results except the General Case in the intermediate slenderness range that is 

significantly more conservative. It is noted that, in this case, there are no cases in the high 

slenderness range because they would correspond to unrealistic long beams. 

 

 
Figure 5.29- γM* organized by buckling curve division for hot-rolled columns and slenderness  

 
Figure 5.30 γM*organized by buckling curve division for hot-rolled columns and slenderness  
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Figure 5.31 γM*organized by buckling curve division for hot-rolled columns and slenderness  

5.6.4.3 Influence of the shape of the bending moment 

The bending moment distribution is an important parameter, which influences the lateral-

torsional buckling behaviour of beams. Hence, in this section divisions according to load case 

and slenderness are presented for the various methods (Figure 5.32 to Figure 5.36). 

Firstly, it is clearly seen that the General Case is unable to capture the beneficial effect of non-

uniform bending moment distributions and thus severely underestimates the LTB resistance, 

(Figure 5.32 to Figure 5.36).  As discussed in Rebelo et al. (2009), the GC/f provides a good 

estimation of the resistance, despite the f factor being based on calibration to numerical results 

without any mechanical meaning Taras (2010). The New EC3 method provides relatively 

uniform partial factors for all load cases and across the various slenderness ranges. The Special 

Case exhibits considerably higher results mainly in the high slenderness range for all load cases. 

 
Figure 5.32 γM* organized by bending moment distribution – constant bending moment  

0.983
0.936

1.009 1.0000.999 0.972
1.002 0.985

0.700

0.800

0.900

1.000

1.100

1.200

Low slenderness Medium slenderness High slenderness

γ M
*

h / b ≤ 1.2 tf≤100mm 

General Case Special Case General Case / f new EC3

0.996 0.994
0.938

1.043 1.033
1.067

0.996 0.994
0.938

0.988 0.977
0.949

0.700

0.800

0.900

1.000

1.100

1.200

Low slenderness Medium slenderness High slenderness

γ M
*

ψ = 1.0

General Case Special Case General Case / f new EC3



5 SAFETY ASSESSMENT OF DESIGN RULES 
 

 

 
 

 

| 145 

 
Figure 5.33 γM* organized by bending moment distribution – triangular bending moment  

 
Figure 5.34 γM*organized by bending moment distribution – bi-triangular bending moment  

 
Figure 5.35 γM*organized by bending moment distribution – concentrated load  

 
Figure 5.36 γM*organized by bending moment distribution – distributed load 
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5.6.5 Buckling curves for the New EC3 method 

Originally, the buckling curves for the New EC3 method were proposed as shown in Table 5.15 

that differs from Table 2.4 for the range h/b>1.2, 40 mm<tf≤100 mm.  

Table 5.15 - Original imperfection factors for the New EC3 method 

Fabrication 

Limits Source and Method 

New EC3 EC3-1-1 
EC3-1-
1 GC; 
GC/f 

EC3-
1-1 SC 

nEC3 

Rolled 

h/
b>

1.
2 

tf≤40 mm 
h/b>2.0 

h/b≤2.0 

0.34 

0.21 

0.49 

0.34 
34.012.0

,

, d
elz

ely

W
W  

40 mm<tf≤100 

mm 

h/b>2.0 

h/b≤2.0 

0.34 

0.21 

0.49 

0.34 
34.012.0

,

, d
elz

ely

W
W  

h/
b≤

1.
2 tf≤100mm 

h/b>2.0 

h/b≤2.0 

0.34 

0.21 

0.49 

0.34 
49.016.0

,

, d
elz

ely

W
W

 

 

Figure 5.37 compares the values of γM* for the thickness range 40 mm to 100 mm for all 

methods using the original imperfections from Table 11 for the newEC3 method. It shows that 

the Taras method presents worse results than the SC for this thickness range. This reflects the 

fact that the method was calibrated for sections with flange thicknesses lower than 40 mm 

(Taras, 2010). 

 
Figure 5.37 γM*organized by buckling curve division for hot-rolled columns and slenderness(old 

imperfection factors) 
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showing a clear improvement by adopting the same buckling curve as for cross-sections with 

h/b > 1.2. 

 
Figure 5.38 γM* evaluated using old and recommended imperfection factors for New EC3 method 

5.6.6 Influence of the number of random variables 

In all previous comparisons, only the yield stress fy was considered as a random variable. In 
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behavior of a beam, such as the cross-section dimensions and the Young’s modulus. It is noted 
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not considered as basic random variables as they are included implicitly in the design model. 

Hence, in this section, the following basic variables are considered as random variables: yield 

stress – fy; geometrical dimensions – b, h, tw, tf; and Young’s modulus – E. Their statistical 

parameters were defined in Section 5.3. In order to highlight their influence, the following cases 

are considered: 

� Annex D (fy) – considers the yield stress as the only basic variable, the other parameters 

are assumed as deterministic quantities with no variability; 

� Annex D (fy+CS) – considers the yield stress and the geometrical dimensions of the 

cross-section as random variables; 

� Annex D (fy+CS+E) – considers the yield stress, the geometrical dimensions of the 

cross-section and the modulus of elasticity as random variables; 
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Figure 5.39 - γM* by slenderness and using different number of random variables: GC 

 
Figure 5.40 - γM* by slenderness and using different number of random variables: new EC3 

The General Case is presented as the reference case for this assessment. Figure 5.39 compares 

the results for the 3 cases defined above, according to slenderness range. Similarly, to the 

observations in Simões da Silva et al. (2016), the increased number of random variables leads 

to higher partial factors. This effect becomes more noticeable with increasing slenderness due 

to the increased influence of the geometrical properties and the modulus of elasticity. Similar 

results are obtained for the other methods. Figure 5.40 illustrates the corresponding results for 

the New EC3 method.  

5.6.7 Assessment of the value of the partial factor 

Table 5.16 and Table 5.17 summarizes the results for γM* for the three different sets of random 

variables that were considered and the four design methods, using a lower tail approximation 
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analysis (just fy; fy and cross-section geometry; or fy, cross-section geometry and modulus of 

elasticity E) the partial factor increases its magnitude.  

Table 5.16 Values of γM1* obtained using different combinations of basic variables for General Case and 
Special Case 

Limits 
Annex D (fy) 

Annex D 

(fy+CS) 

Annex D 

(fy+CS+E) 

GC SC GC SC GC SC 

h/
b>

1.
2 

tf≤40 mm 0.987 1.056 1.030 1.128 1.039 1.160 

40 mm<tf≤100 

mm 
0.983 1.032 1.017 1.082 1.020 1.094 

tf>100 mm - - - - - - 

h/
b≤

1.
2 

tf≤100 mm 0.983 1.010 1.018 1.050 1.018 1.052 

 

Table 5.17 Values of γM1* obtained using different combinations of basic variables for New EC3 method 
and General Case/f 

Limits 
Annex D (fy) 

Annex D 

(fy+CS) 

Annex D 

(fy+CS+E) 

nEC3 GC/f nEC3 GC/f nEC3 GC/f 

h/
b>

1.
2 

tf≤40 mm 1.003 1.004 1.058 1.056 1.069 1.072 

40 mm<tf≤100 

mm 
0.978 0.978 1.027 1.018 1.034 1.023 

tf>100 mm - - - - - - 

h/
b≤

1.
2 

tf≤100 mm 1.006 0.999 1.051 1.038 1.054 1.039 

 

Firstly, except for the Special Case, a good homogeneity of results is observed across the 

different buckling curves, with maximum variations of 0.05. Secondly, the Special Case 

systematically presents higher partial factors (0.05 higher on average) for most of the subsets 

(Simões da Silva et al. (2019)). The General Case presents the lowest partial factors. However, 

recalling Table 5.14, it is clearly over conservative, leading in many cases of practical relevance 
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to values of design resistance up to 40% lower than those obtained from advanced numerical 

simulations. 

Table 5.18 Partial factors for beams and columns (fy+CS+E) 

      Annex D (fy+CS+E) 

Limits Axis 
Flexural Buckling Lateral-torsional buckling 
S235 

S460 EC3  GC nEC3 
S355 

h/
b>

1.
2 

tf≤40 mm 
y-y 1.079 1.120 h/b>2.0 

1.039 1.069 
z-z 1.098 1.118 h/b≤2.0 

40mm<tf≤100 
mm 

y-y 1.011 1.063 h/b>2.0 
1.020 1.034 

z-z 1.021 1.048 h/b≤2.0 

tf>100 mm 
y-y 1.018 1.067 

- - - 
z-z 1.043 1.070 

h/
b≤

1.
2 tf≤100 mm 

y-y 1.046 1.094 
h/b≤2.0 1.018 1.054 

z-z 1.115 1.109 

tf>100 mm 
y-y 

- - - - - 
z-z 

 

Table 5.18 compares the γM* values for the General Case and the New EC3 method with the 

results obtained for the flexural buckling resistance of columns considering fy, cross-section 

geometry and E as random variables, using the same statistical characterization of the random 

variables. 

Furthermore, the γM* values for lateral-torsional buckling of beams were obtained using the 

lower-tail approximation, which takes into account only the worst results; for that reason further 

split as done for the columns Table 5.13 was not performed. Even though, the direct comparison 

between both buckling models reveals that the partial factors obtained for LTB of beams are 

generally lower than those obtained for flexural buckling of columns, giving a mean value of 

1.053 and c.o.v of 1.7%. Hence, it is recommended to keep γM1=1.0 for beams. This 

recommendation was taken in the final draft of prEN 1993-1-1 (CEN/TC250, 2017). 
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5.7 Beam-columns 

5.7.1 Methodology 

In the following sections, the results for members under bending and compression are 

discussed. The main topics that are discussed are: 

� Influence of the buckling mode: with and without lateral-torsional buckling; 

� Influence of the bending moment distribution; 

� Influence of the number of random variables 

Throughout the following paragraphs, charts and tables, the following methodology is adopted: 

� The partial factors for the different subsets are computed considering to the Annex D 

procedure summarized in Figure 5.2; 

� Whenever a subset according to slenderness is analysed, the following division is 

adopted: 

� Low slenderness – normalized slenderness ߣҧ  ;[0.6 ;0.4) א

� Medium slenderness– normalized slenderness ߣҧ  ;[1.2 ;0.6) א

� High slenderness – normalized slenderness ߣҧ  ;[3.0 ;1.2) א

Similarly to the other buckling modes, to establish the influence of additional random variables, 

the yield stress, geometrical dimensions of the cross-section and modulus of elasticity were 

considered. 

In this case the theoretical resistance was obtained using the interaction factors for 

Method2/Annex B and corresponding to proportional increase of the applied forces. The 

limiting cases of a column and a beam were not considered in this assessment, since they were 

already covered by the assessments carried out for columns and beams. The method was applied 

with the imperfection factors for lateral-torsional buckling according to the New EC3 method. 

In the assessment, all assumptions from Boissonnade et al. (2006) for the assessment of Method 

2 were kept, namely i) cases where the cross-section resistance governs were not considered; 

ii) cases where the normalized axial force is less than 0.1 were also not considered. 
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5.7.2 Results without LTB 

Figure 5.41 to Figure 5.43 summarize the results obtained for beam-columns in bi-axial 

bending which do not fail in lateral-torsional buckling. 

In case of beam-columns, similar conclusions to the columns and beams can be drawn: there is 

an increase of the partial factor with slenderness and the load cases with non-uniform bending 

distribution tend to be safe-sided. 

 
Figure 5.41 - γM* by slenderness and using different number of random variables: no LTB 

Figure 5.41 to Figure 5.43 show slight increase of the partial factor with slenderness, similar 

results within the different buckling curves. Regarding the different bending moment 

distributions, a small disturbance is found for bending moment distribution ψ=-1, which can be 

explained on the accuracy of the equivalent moment factors Cm for this load case. 

 
Figure 5.42 - γM* by buckling curve and using different number of random variables: no LTB 
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Figure 5.43 γM* for different bending moment distributions and using different number of random 

variables: no LTB 

5.7.3 Results with LTB 

In this section, the results regarding lateral-torsional buckling of prismatic hot-rolled beam-

columns are discussed. Figure 5.44 to Figure 5.46 show the partial factors obtained for subsets 

according to slenderness, buckling curve division and load case, respectively. 

 
Figure 5.44 - γM* by slenderness and using different number of random variables: LTB 

 
Figure 5.45 - γM* by buckling curve and using different number of random variables: LTB 
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The variation within the different buckling curves is not significant, despite the division of 

h/b>1.2 and flange thickness higher than 40 mm; however, in this subset, the number of data 

points is significantly lower than the other two. 

The results for beam-columns without lateral-torsional buckling are found very similar to the 

ones without lateral-torsional buckling and thus indicating a homogeneous reliability within 

both failure modes. 

 
Figure 5.46 - γM* for different bending moment distributions and using different number of random 

variables: LTB 

5.7.4 Influence of the number of basic variables 

Figure 5.43 to Figure 5.46 plot the results obtained for the different subsets considered, already 

including the variability of different number of basic variables. The same trend of increasing 

the partial factor with the increased number of variables considered is registered. However, in 

both cases with and without LTB, it is noted that the relative increase is not as big as it was 

found for columns and beams. This leads to the conclusion that the interaction factors are able 

to somehow “compensate” the variability of the random parameters.  

5.7.5 Assessment on the value of the partial factors 

The interaction formula from Eurocode 3 clause clause 6.3.3 for members in bending and 

compression with the interaction factors from Annex B was assessed. The assessment covered 

a large number of numerical simulations, covering various cross-section shapes, bending 

moment distributions, slenderness ranges. The obtained partial factors are summarized in Table 

5.19 for the various types of basic variables. 
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Table 5.19 Values of γM1* obtained using the interaction formula 

Limits 

Annex D         

(fy) 

Annex D 

(fy+CS) 

Annex D 

(fy+CS+E) 

No 

LTB 
LTB 

No 

LTB 
LTB 

No 

LTB 
LTB 

h/b>1.2 

tf≤40 mm 0.979 1.029 1.006 1.052 1.014 1.061 

40 mm<tf≤100 mm - 0.887 - 0.924 - 0.939 

tf>100 mm - - - - - - 

h/b≤1.2 tf≤100 mm 0.994 1.018 1.026 1.035 1.034 1.044 

 

It is seen that even when the modulus of elasticity is considered the partial factors do not diverge 

strongly from unity. Furthermore, the analysis in subsets of buckling curve and slenderness is 

carried out as in Table 5.13 for columns. The results obtained show low mean value of the 

partial factor with coefficients of variation comparable to the results for columns (Table 5.20). 

Table 5.20 - Average γM1 per buckling modes (with and without LTB), according to buckling curves and 
slenderness 

 Mode Annex D(fy) Annex D(fy+CS) Annex D(fy+CS+E) 

Mean value 
No LTB 0.974 1.002 1.009 

LTB 0.964 0.989 0.999 

Coefficient of 

variation 

No LTB 3.5% 3.8% 4.2% 

LTB 7.9% 7.2% 7.2% 

 

It is therefore recommended to keep γM1=1.0 for beam-columns. This recommendation was 

taken in the final draft of prEN 1993-1-1 (CEN/TC250, 2017). 

5.8 Summary 

In this chapter the safety assessment of the European stability design rules was summarized. It 

covered members in compression, bending and combination of bending and compression. 
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The safety assessment of EC3-1-1 rules for flexural buckling of columns with hot-rolled I-

shaped cross sections led to the following conclusions: 

� Influence of the adopted minimum yield stress using EN 10025 or Table 3.1 of Eurocode 

3: the level of the minimum yield stress was assessed for both minor and major axis of 

flexural buckling of hot-rolled columns. It was shown that in both cases the values 

proposed in EC3 can reach up to 10% non-conservative in certain cases.  

� Influence of the level of the residual stresses adopted in the numerical models: the 

buckling curves are currently calibrated for level of residual stresses proportional to the 

yield stress fy, which was shown to be conservative. When the results were divided into 

slenderness – in the medium slenderness range, where the residual stresses are actually 

important, high differences were obtained. These variations are relevant for the group 

of buckling curves S235-S420, with increasing difference as the steel grade increases; 

about 8% were noticed for S355.  

� Imperfection factor for flexural-buckling of columns about minor axis which are made 

of steel grade S460: it was shown that the imperfection factor currently prescribed for 

flexural buckling of steel columns made of S460 about the minor axis is not adequate. 

This change is already taken into consideration in the final draft of the new version 

Eurocode 3. 

The safety assessment of EC3-1-1 rules for lateral-torsional buckling of prismatic beams with 

hot-rolled I-shaped cross sections led to the following conclusions: 

� Similar conclusions as stated in for columns are also valid for beams concerning the 

influence of the adopted minimum yield stress using EN 10025 or Table 3.1 of Eurocode 

3. 

� The results highlight a strong sensitivity of JM1
* to the subsets that are considered in the 

calculation. This trend is also confirmed by comparing these results with the 

corresponding results from Rebelo et al. (2009) and Simões da Silva et al. (2009). This 

difference led to the consideration of a lower tail approximation that significantly 

improved the homogeneity of results. 

� Regarding the different design methods considered, the conservative nature of the 

General Case was confirmed, the Special Case systematically led to higher values of 

JM1
* for the majority of subsets and the accuracy of the New EC3 method was confirmed. 

Regarding this method, an adjustment of the imperfection factors is proposed for cross-
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sections with h/b >1.2 and flange thickness higher than 40 mm, because this geometric 

range was not considered in the original derivation of the imperfection factors.  

The safety assessment of EC3-1-1 rules for prismatic members in bending and compression 

with hot-rolled I-shaped cross sections led to the following conclusions: 

� Similar conclusions as stated in for columns and beams are also valid for beam-columns 

concerning the influence of the adopted minimum yield stress using EN 10025 or Table 

3.1 of Eurocode 3; 

� The results for the different buckling modes, with and without, lateral-torsional buckling 

were found very similar, showing that the interaction coefficients are calibrated with 

sufficient accuracy for both cases. 

� The results highlight lower JM1
* - values than the ones calculated for columns and beams 

separately and thus indicating that the interaction factors are providing sufficient safety; 

Table 5.21 Mean and c.o.v of γM1
*=1.0 for all modes 

 Columns Beams Beam-columns 
ALL 

 y-y z-z  No LTB LTB 

Weight 20% 20% 20% 20% 20%  

γM1*Mean 1.035 1.041 1.053 1.009 0.999 1.027 

γM1*c.o.v 6.4% 5.6% 1.7% 4.2% 7.2% 5.0% 

 

Finally, the value of the partial safety factor was discussed and an assessment of the average 

γM1
* obtained from all subsets and for all buckling modes was carried out (Table 5.21). With 

the proposed modifications, it is recommended to keep γM1=1.0 for columns, beams and beam-

columns. This recommendation was taken in the final draft of prEN 1993-1-1(2017). 
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6 A GENERAL FORMULATION FOR THE 

STABILITY DESIGN OF STEEL 

COLUMNS, BEAMS AND BEAM-

COLUMNS 
 

6.1 Introduction 

In the previous chapters, several aspects regarding the stability design of members were 

discussed. The behaviour of non-uniform members was tested with full-scale experiments, it 

was shown that advanced numerical simulations with material and geometrical imperfections 

can accurately predict the buckling behaviour of non-uniform members. It was also shown how 

the safety and reliability of design rules can be assessed and adjusted if required. This chapter 

is dedicated to the extension of the stability design verification of columns, beams and beam-

columns by developing a general formulation (GF), applicable to members with a generic non-

uniform cross-section along their length, and arbitrary support and loading conditions. 

Up to this point, the available possibilities for design of such non-standard cases are the General 

Method given in clause 6.3.4 of Eurocode 3 (2005) or advanced numerical simulations. The 

applicability of the general method, however, is limited and in some aspects inconsistent 

(Simões da Silva et al., 2010). In structures constructed using non-uniform members, the choice 

of imperfection factors is not straight-forward and their definition using standard procedures 
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may lead to either unsafe or over conservative solutions. As an alternative to the General 

Method, the stability of non-uniform members can be analysed using numerical GMNIA which, 

again, requires the definition of the correct imperfection shape and magnitude, but it is also a 

time-consuming procedure and the output is highly dependent on the experience of the user. 

It was already discussed that the European buckling curves have the flexibility of adjusting 

imperfection factors according to their sections, yield stress, steel type and other relevant 

parameters. On the other hand, their major drawback is the need of adjusting imperfection 

factors and/or calibrating over-strength factors to account for the variation of the failure 

location, as done by Taras (2010) and Marques (2012). 

In this chapter, a general formulation for the stability design of steel columns, beams and beam-

columns with variable geometry, loads and supports is proposed. The aim is to follow, as much 

as possible, the specifications for uniform columns, beams and beam-columns. In particular, 

the need to verify separately the resistance of beam-columns for two buckling modes (in-plane 

and out-of-plane) is maintained. The approach uses the buckling mode as the shape of the initial 

imperfection and an amplitude previously calibrated for the standard prismatic simply-

supported columns and beams in Eurocode 3. It avoids the calibration of additional factors 

because it is applied as an interaction equation and the first and second order contributions to 

the longitudinal stress utilization are added for each cross-section along the member length. Its 

organization follows the sequence: i) firstly, additional considerations from theoretical point of 

view are presented: torsion of non-uniform members and the Ayrton-Perry equation for beam-

column; ii) secondly, the general formulation for the design of steel members is presented in a 

universal format covering any buckling mode; iii) thirdly, the various buckling modes are 

discussed separately in order to highlight specific aspects of the member behaviour; iv) finally, 

validation of the general formulation is carried out to show its consistency and accuracy. 

6.2 Buckling of beam-columns: additional considerations 

6.2.1 Ayrton-Perry equation for beam-columns 

6.2.1.1 Scope 

Chapter 2 summarized the analytical background regarding uniform members and their relevant 

theoretical developments. It was shown that having calibrated and reliable imperfection factors 

for the prismatic member, the Ayrton-Perry equation can be extended to other types of buckling 
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or non-uniform members. However, for lateral-torsional buckling of beam-columns, there is no 

imperfection factor since the Eurocode 3 uses interaction formula. 

The following paragraphs summarize the derivation and calibration of an Ayrton-Perry 

equation for lateral-torsional buckling of beam-columns. It is performed assuming proportional 

loading, and it is applied with previously calibrated imperfection factors for the limit cases of 

columns and beams.  

6.2.1.2 Derivation 

The derivation is performed starting from the following assumptions: 

� All members are prismatic and simply supported; 

� The material is linear elastic until it reaches the yield stress fy; 

� The loads applied are: axial stress applied at the shear centre (N) and uniform 

bending moment (My); 

� In the equations apply the approximations for small displacements and rotations 

and the Bernoulli hypothesis; 

� The effect of pre-buckling deflections, namely i) the amplification due to the 

axial compressive force of the first order bending moments and deflections; ii) 

the effect of in-plane curvature on out-of-plane buckling, are neglected. 

The amplification relationship for the lateral-torsional buckling of beam-columns was derived 

in Chapter 2. The relation given by Eq. (2.16) is essential for the derivation of the Ayrton-Perry 

equation for beam-columns. The next step for establishing the Ayrton-Perry equation is the 

linear yield criterion at mid-span: 

ܰ
ܣ
൅
௬ܯ

௬ܹ
൅
௭ܯ

ூூ

௭ܹ
൅
௪ܯ

ூூ

௪ܹ
ൌ ௬݂ (6.1) 

in which the second order forces are  

௭ܯ
ூூ ൌ ҧ௧௢௧ߠ௬ǡாௗܯ ൅ ாܰௗݒҧ௧௢௧ ൌ ൫ܯ௬ǡாௗߠҧ଴ ൅ ாܰௗݒҧ଴൯

ͳ
ͳ െ ͳ ௖௥Τߙ  

(6.2) 

  

௪ܯ
ூூ ൌ ҧ௧௢௧ݒ௬ǡாௗܯ ൅ ଴ଶݎ ாܰௗߠҧ௧௢௧ െ ҧߠ௧ܫܩ ൌ (6.3) 
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Then, Eq. (6.1) becomes: 
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After a few straight-forward transformations, the equation is rearranged as: 
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For doubly symmetrical sections, there is a geometric relationship between the lateral 

displacement and the section rotation, as defined by Eq. (6.6) and Figure 6.1. This relation 

allows to express the initial imperfection of Eurocode 3, ҧ݁଴, for columns and beams as a 

function of the lateral displacement and the rotation of the section: 

 ҧ݁଴ ൌ ҧ଴ݒ ൅ ҧ଴ߠ
௛
ଶ
  (6.6) 

 

Figure 6.1 - Amplitude of the initial imperfection 

Then Eq.  (6.5) is transformed to 
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The above equation can be solved for the bending moment or the axial force. Here it is shown 

how the reduction factor is applied to the axial force. 
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With 
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where  
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ҧ௭ଶߣ
 (6.10)  

with a proposed interpolation between the imperfection factors for a column and a beam. 

The interpolation of the imperfection factor is defined as a function of the ratio between the 

applied axial force and the bending moment (߶): 

߶ ൌ
௣௟ܯ Τܯ

௣ܰ௟ ܰΤ
 (6.11) 

For high axial forces, it tends to the imperfection for flexural buckling of columns αz and for 

high bending moments it becomes αLT. 
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ͳ
ʹ߶
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ͳ
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൰ ǡ��������߶ ൒ ͳǤͲ��
 (6.12) 

The normalized slenderness is given by: 

ҧ஻஼ߣ ൌ ඨ
� ௬݂

ܰܯǡݎܿܰ
 (6.13)  
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The result of the verification shows an axial load level that can be resisted for a given ratio 

between the bending moment and axial force. In particular, if the applied axial force is equal to 

the flexural strength of the element, it will not be able to withstand any additional bending 

moment; if the axial stress equals zero, the resistance of the member is equal to the lateral-

torsional buckling one. The equation can be equivalently written for the bending moment, and 

even as a global out-of-plane reduction factor relevant to both moment and axial force: 

߯௢௣ ൌ
ܴ௕
ܴ௣௟

ൌ ߯஻஼ே ൬ͳ ൅
ͳ
߶
൰ ൌ

ͳ

߶௢௣ ൅ ට߶௢௣ଶ െ ҧ௢௣ଶߣ
 (6.14)  

with 

߶௢௣ ൌ ͲǤͷ൫ͳ ൅ ௢௣ߟ ൅ ҧ௢௣ଶߣ ൯ (6.15)  

and 

௢௣ߟ ൌ
௧௢௧ߟ

ͳ ൅ ͳ
߶

 (6.16)  

The normalized slenderness is given by: 

ҧ௢௣ߣ ൌ ඨ
ܴ௣௟
ݎܴܿ

ൌ ҧ஻஼ߣ
ͳ

ටͳ ൅ ͳ
߶

 (6.17)  

 

6.2.1.3 Assessment of the accuracy of the Ayrton-Perry equation for beam-columns 

A validation of the Ayrton-Perry equation for beam-columns is carried out to demonstrate its 

consistency and accuracy. It is compared to advanced numerical simulations (GMNIA). 

Numerical results are used from a parametric study carried out at the University of Coimbra in 

the scope of the Master's thesis by Anwar (2015). The main parameters included in the 

parametric study are given in Table 6.1. To cover the use of different buckling curves, several 

thicknesses tf of the section flanges and h/b ratios within the two groups > or ≤1.2 were 

considered. In addition, several ratios of the bending moment in the principal axes My,Ed and 

axial force NEd were also considered. 
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All sections considered are compact (Class 1 or 2), and their plastic resistance is used in the 

checks. 

The difference between theoretical and experimental resistance is used as a measure of the 

accuracy of the new formulation. The "theoretical" result obtained using the new formulation 

is the reduction factor χN
BC, which is calculated at the same ratio I as the numerical result. 

Likewise, the numerical results can be represented as a pair of N / Npl and M / Mpl. 

Table 6.1 – Parametric study for prismatic beam-columns 

Steel zO  I� Limit h/b tf Section 

S235 

0.4 

0.6 

0.8 

1.0 

1.2 

1.4 

1.6 

1.8 

∞ 5.67 

2.74 

1.73 

1.19 

0.83 

0.57 

0.36 

0.17 

0 

h/b >1.2 

1.82 

1.95 

1.98 

2.12 

5.7 

7.4 

8.0 

12.7 

IPE100 

IPE160 

IPE180 

IPE360 

1.30 

1.67 

2.04 

2.17 

2.20 

19 

28 

46 

31 

46 

HE400A 

HE500B 

HE600x337 

HE650B 

HE650x342 

h/b≤1.2 

0.97 

1.00 

1.01 

1.05 

1.13 

14 

19 

43.7 

29 

21.5 

HE300A 

HE300B 

HD400x347 

HE300C 

HE340B 

 
An illustration is given in Figure 6.2, where the plots are obtained using the new imperfection 

(Method), and the result of advanced numerical simulations (GMNIA). These are presented for 

two sections IPE360 and HE300A and for three levels of slenderness λz = 0.4; 1.0 and 1.6. 

It is also noted that these figures show a larger difference between the analytical and numerical 

estimates at low slenderness, which is explained by the fact that this formulation, and the 

Ayrton-Perry equations in general, use an elastic yield criterion. The latter results in more 

conservative estimates for the lower slenderness, as illustrated in Figure 6.2. 
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In Figure 6.3 they are demonstrated for various ratios of bending moment and axial force for 

the same profile and a reasonable range of normalized slenderness ratios. It shows the buckling 

reduction factors calculated using Eq. (6.8) and Eq.(6.14). 

 

  

Figure 6.2 - Comparison between the proposed method and numerical results 

The buckling curve representation helps for a better understanding of a global out-plane 

reduction factor; it develops in a normalized format which is somehow "independent" of the 

ratio of the bending moment to the axial force. Nevertheless, since the conversion is direct, both 

factors correspond to the same level of precision. 

In Table 6.2, the statistical parameters (mean value, coefficient of variation, minimum and 

maximum values, total number of cases, number of cases smaller than 1 and less than 0.97) are 

compared for the beam-column Ayrton-Perry equation and the Eurocode 3-1-1 interaction 

formula. 

Figure 6.4 shows the dispersion plots obtained for the Ayrton-Perry equation and the interaction 

formula, respectively. The mean value of re / rt for the new equation is 1.03 and the coefficient 

of variation is approximately 4.9%, which are slightly lower than the Interaction formula. The 

minimum values for both methods are very similar, however, most "unsafe" results are found 

between 0.97 and 1.0 with the Ayrton-Perry equation having a larger amount of points falling 

below 1.0. 
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Figure 6.3 – Different representations of the reduction factors for lateral-torsional buckling of beam-

columns 

Table 6.2 - Statistical parameters 

 
Mean 

value 
C.o.v 

Min 

value 

Max 

value 
N N<1 N<0.97 

χN
BC 1.03 4.9% 0.88 1.17 1120 400 111 

Interaction 

formula 
1.08 5.5% 0.95 1.24 1120 124 5 

 

  
Figure 6.4 - Scatter plots 

A similar derivation was performed in Tankova et al. (2017). However, it was based on fixed 

level of the axial force, which results in slightly different amplification relationship. The 
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method also included calibration for non-uniform bending moment distributions and 

corresponds to comparable safety levels. It is very suitable for hand calculation, but for the 

purposes of this chapter, the proportional increase of both bending moment and axial force is 

found more appropriate. 

6.2.2 Torsion of non-uniform members 

Due to their varying geometry and/or boundary and loading conditions, non-uniform members 

exhibit a different behaviour when compared to the uniform ones. As already stated in Chapter 

3, the first studies on the torsional behaviour of non-uniform members were found by Lee 

(1956) and Lee & Szabo (1967). Their developments were later used by Kitipornchai & Trahair 

(1972), where they provided the theoretical basis for the lateral-torsional buckling of tapered 

beams. In order to formulate the differential equations for the lateral-torsional buckling of 

tapered beams, it was necessary to establish the theoretical background for torsion of non-

uniform beams where the divergence in the behaviour between prismatic and tapered beams is 

found.  

Given the non-uniform beam subject to torsion shown in Figure 6.5, the uniform torsional 

moment component is given by: 

𝑇(𝑥) = 𝐺𝐼𝑡
𝑑𝜃(𝑥)

𝑑𝑥
 (6.18)  

  

(a) Deformations of the cross-section (b) Flange moment and shear 

Figure 6.5 Tapered beam subject to torsion 
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This term remains unchanged for non-uniform beams. The non-uniform torsional moment is 

given by 

𝑇𝑊(𝑥) = −𝐸𝐼𝑤
𝑑3𝜃(𝑥)

𝑑𝑥3 − 𝐸𝐼𝜓
𝑑𝜃(𝑥)

𝑑𝑥
 (6.19)  

In Eq.(6.19) an additional warping component appears relatively to the prismatic beam case 

due to the inclination of the flanges given by −2 (1
2

𝑑𝜃(𝑥)
𝑑𝑥

) 𝑀𝑠𝑢𝑝, see Figure 6.5(b). Combining 

both components, the torsional moment for non-uniform beams was established: 

𝑇𝑊(𝑥) = 𝐺𝐼𝑡
𝑑𝜃(𝑥)

𝑑𝑥
− 𝐸𝐼𝑤

𝑑3𝜃(𝑥)
𝑑𝑥3 − 𝐸𝐼𝜓

𝑑𝜃(𝑥)
𝑑𝑥

 (6.20)  

in which  𝐼𝜓 = (2
ℎ

𝑑ℎ
𝑑𝑥

)
2

𝐼𝑊. 

With the correct torsional expression for tapered beams, it was possible to derive the differential 

equation for the lateral-torsional buckling of simply-supported tapered beams.  

6.3 General formulation for the stability verification of steel 

members  

6.3.1 Overview 

In Chapter 2 it was shown how the member design rules in Eurocode 3 were derived for uniform 

members. The uniform loads and geometry present the advantage of a priori known failure 

location of the member, which permits the definition of the maximum utilization due to 

longitudinal stresses in the flanges as a simple sum of the stress components from the first and 

the second order forces. The imperfection factors were then calibrated to experimental and/or 

numerical results. The beneficial effect of variable loads is considered by calibration of 

additional factors which account for the difference in the location where the maximum of the 

first and second order forces occur.  

A similar approach was used for the extension of the Ayrton-Perry verification format to 

symmetrically web-tapered columns and beams (Marques et al., 2012, Marques et al., 2013). 
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The extension was achieved by calibration of the critical location, which does not occur at mid-

span, as shown in Figure 6.6, whereby the stress utilization in the most compressed fibre of a 

flange of a web-tapered column buckling about its major axis is a combination of a non-linear 

distribution of the first and second order stress components. However, this approach presents 

the drawback that it is only valid for symmetrically web-tapered columns and beams. Extension 

to other geometries, load cases or support conditions requires new derivations. 

 

Figure 6.6- Stress utilization 

The third objective of this research work, stated in Chapter 1, was to develop a procedure 

applicable to members with varying geometry, subject to arbitrary loading and boundary 

conditions.  

The proposed procedure adopts the Ayrton-Perry design philosophy, however in a “raw” format 

of an interaction equation, and not as reduction factor χ calculation as the well-known design 

equations for columns and beams, derived in Section 2.4.2 and 2.4.3.2. 

The interaction equation consists of linear stress utilization that includes: (i) normal stresses 

due to applied forces; (ii) normal stresses due to second order forces.  

This interaction between first and second order stresses is consistent with the Eurocode 3 

procedures where the reduction factors χ was also derived on the basis of a linear direct stress 

condition assuming that the shape of the initial imperfection follows the same shape as the 

buckling mode (Eq. (2.53)).  
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Hence, it is beneficial to assume that the relevant buckling mode and critical load factor can be 

obtained numerically by a Linear Buckling Analysis (LBA), which can be used to compute the 

direct stresses due to second order forces. The terms concerning the stress utilization due to 

second order forces are amplified by the imperfection according to the relevant buckling mode 

and thus, keeping consistency with the rules for prismatic members.  

The developed interaction equation needs to be applied for all potential failure modes. Hence, 

as in clause 6.3.3 of EN 1993-1-1, it is necessary to apply it twice, for failure induced either by 

in-plane instability or failure induced by out-of-plane instability. 

6.3.2 General formulation (GF) 

Consider the generic member of Figure 6.7, which has variable geometry and loading along its 

length and non-standard boundary conditions. 

 

Figure 6.7 – Non-uniform member subject to non-uniform loading 

with the following assumptions: 

� eigenmode and eigenvalue obtained from LBA are used to calculate the 2nd order 

forces in the member; 

� The effect of pre-buckling deflections, namely i) the amplification due to the 

axial compressive force of the first order bending moments and deflections; ii) 

the effect of in-plane curvature on out-of-plane buckling, are neglected for 

lateral-torsional buckling modes; 

� The material is linear elastic until it reaches the yield stress fy; 

� In the equations apply the approximations for small displacements and rotations 

and the Bernoulli hypothesis; 

� the imperfection factors are adopted for each second order component according 

to the corresponding buckling direction 
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The utilization ratio of this generic member may be expressed by equating the total longitudinal 

stress, V, due to first and second order forces, to the yield stress, fy, for each cross-section along 

its length: 

 ఙሺ௫ሻ
௙೤

ൌ ேሺ௫ሻ
஺ሺ௫ሻ௙೤

൅ ெ೤ሺ௫ሻ
ௐ೤ሺ௫ሻ௙೤

൅ ெ೥ሺ௫ሻ
ௐ೥ሺ௫ሻ௙೤

൅ ெ೤
಺಺ሺ௫ሻ

ௐ೤ሺ௫ሻ௙೤
൅ ெ೥

಺಺ሺ௫ሻ
ௐ೥ሺ௫ሻ௙೤

൅ ெೢ
಺಺ሺ௫ሻ

ௐೢ ሺ௫ሻ௙೤
 (6.21) 

where A(x) is the cross-section area, Wy (x) and Wz (x) are the section moduli relative to the y- 

and z axes, respectively, and Ww (x)=Iw(x)/wmax(x) is the warping modulus at location x along 

the member, with wmax(x)=hb/4 . 

Then, as long as the second order contributions can be determined, the buckling resistance may 

be verified for an appropriate number of locations along the member and checking if the 

inequality is satisfied: 

ܰሺݔሻ
ሻݔሺܣ ௬݂

൅
ሻݔ௬ሺܯ
௬ܹሺݔሻ ௬݂
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௭ܹሺݔሻ ௬݂
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௬ܯ

ூூሺݔሻ
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൅
௭ܯ

ூூሺݔሻ
௭ܹሺݔሻ ௬݂

൅
௪ܯ

ூூሺݔሻ
௪ܹሺݔሻ ௬݂

൑ ͳǤͲ 
(6.22) 

The second order bending moments are obtained from the buckling mode shape and critical 

load factor according to: 

௬ܯ
ூூሺݔሻ ൌ

െܫܧ௬ሺݔሻ̶ݓ௖௥ሺݔሻ
ݎܿߙ െ ͳ ݕഥͲǡߜ ൅

ܰሺݔሻݓெሺݔሻ
ݎܿߙ െ ͳ  

௭ܯ (6.23)
ூூሺݔሻ ൌ

െܫܧ௭ሺݔሻ̶ݒ௖௥ሺݔሻ
ݎܿߙ െ ͳ ݖഥͲǡߜ ൅

ܰሺݔሻݒெሺݔሻ
ݎܿߙ െ ͳ  

௪ܯ
ூூሺݔሻ ൌ

െܫܧ௪ሺݔሻ̶ߠ௖௥ሺݔሻ
ݎܿߙ െ ͳ  ഥͲǡ௪ߜ

where ߜҧ଴ǡ௬, ߜҧ଴ǡ௭, and ߜҧ଴ǡ௪ are the amplitudes of the initial in-plane, out-of-plane and torsional 

imperfections, respectively. 

The verification for any single member with variable geometry, boundary conditions and that 

is subject to arbitrary loading, may be done by verifying Eq. (6.22) at a sufficient number of 

locations along the member. At each position, the respective value of the first order axial force, 

N(x), bending moments My(x), Mz(x), second order contributions obtained from the relevant 

buckling mode and cross-section properties, A(x), Iz(x), etc. are to be used. A simple illustration 

is given in Figure 6.8, where the verification at cross-section i is performed with the cross-

sectional properties, normal force and mode shape at the same section i. It is noted that this 
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verification shall be performed for the global buckling modes which concern the behaviour of 

the studied member, for instance in and out-of-plane buckling. This means that for beam-

columns, eq. (6.22) must be applied, in turn, for in-plane buckling and out-of plane buckling. It 

is further noted that the requirement to check the cross section resistance at the extremities of 

the member is automatically included, as the member is checked for a sufficient number of 

cross-sections, including the end-sections, as explained above. 

This approach avoids the need of additional calibration of parameters such as the critical 

location and non-uniform bending moment factors, since it relies on the Ayrton-Perry equation 

in its “raw” format, i.e., as an interaction equation without the use of a reduction factor χ and 

any resistance buckling force or bending moment. 

 

Figure 6.8 – Verification illustration 

6.3.3 Buckling cases 

The solution of the differential equations for a perfect member describes its elastic buckling 

behaviour, resulting in the critical load (moment and/or force). In a standard configuration, as 

shown in Chapter 2, the applied load which triggers the buckling of a member has a maximum, 

its critical load, i.e. for minor axis flexural buckling of a column loaded with axial force, it is 

the critical force Ncr,z. The applied load may consist of several components (forces and 

moments), and not all of them may be relevant to the buckling behaviour. For instance, for a 
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column loaded with axial force and minor axis bending moment, the bending moment does not 

contribute to the critical force Ncr,z, but it only affects the utilization ratio. 

Hence, depending on the applied forces the resulting buckling modes may be active or passive. 

Table 6.3 gives a summary of the possible buckling modes for doubly-symmetric sections, 

indicating the corresponding critical load and critical mode shape component (in or out-of-plane 

displacement and/or twist rotation). It is pointed out that the in-plane buckling modes are clearly 

distinguished from the lateral and lateral-torsional buckling ones and they cannot occur 

simultaneously. 

Table 6.3 – Buckling cases 

Buckling mode Applied loads Critical loads Critical mode shape 

component 

FB y-y N Ncr,y wcr(x) 

N+My 

N+My+Mz
* 

FB z-z N Ncr,z vcr(x) 

N+My 

N+My+Mz
* 

LTB  My Mcr,N + Ncr,NM vcr(x) + θcr(x) 

N+My 

N+My+Mz
* 

TB (FTB) N Ncr,x θcr(x)(+ vcr(x)) 

* The case of bi-axial bending is not treated here 

In Chapter 2, it was shown for prismatic members that all these buckling cases are covered by 

the Eurocode 3 design rules by providing methodologies for the verification of the stability of 

isolated prismatic structural members and providing the necessary imperfection factors. The 

only condition is that the designer needs to choose the relevant buckling mode and the 

corresponding verification format. 
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The general formulation can be applied without the need of identifying explicitly the buckling 

mode beforehand. Each second order moment in Eq.(6.22) is obtained from the buckling mode 

in consideration using Eq. (6.23), amplified with the critical load multiplier Dcr and the 

amplitude of the initial imperfection, and since wcr(x), vcr(x) and θcr(x) cannot occur at the same 

time, the verification will fall in one of the buckling cases given in Table 6.3.  

In the following sections, the general formulation is detailed for the buckling modes of Table 

6.3 separately in order to show how it works for each of them and discuss specific aspects 

relevant to the buckling mode. This does not restrict the generality of the procedure but rather 

helps for its better understanding. 

6.4 Flexural buckling of columns 

6.4.1 Verification format 

In this section, focus is given to the simplest case of flexural buckling of a column subject to 

axial force. The general interaction equation Eq.(6.22) according to Table 6.3 is reduced to Eq. 

(2.52). Eq. (2.52) holds true for both in-plane and out-of-plane flexural buckling; henceforth, 

in the following equations, the index i is used to represent both buckling modes.  

ሻݔሺߪ
௬݂

ൌ
ܰሺݔሻ
ሻݔሺܣ ௬݂

൅
௜ܯ

ூூሺݔሻ
௜ܹሺݔሻ ௬݂

൑ ͳǤͲ 
(6.24)  

In Eq. (2.52), the second order bending moment is given by: 

௜ܯ
ூூሺݔሻ ൌ   ሻ (6.25)ݔԢԢሺߜሻݔ௜ሺܫܧ

where δ” is the curvature for the respective buckling mode. 

At each cross-section, the curvature can be calculated from the amplification relationship 

(Marques et al. (2012)): 

ሻݔᇱᇱሺߜ ൌ
ܰሺݔሻߜ଴

ᇱᇱሺݔሻ
ሻݔ௖௥ܰሺߙ െ ܰሺݔሻ

 
(6.26)  

as the initial imperfection, similarly to the derivation performed in Section 2.4.2, is assumed to 

have the same shape as the buckling mode: 
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଴ߜ
ᇱᇱሺݔሻ ൌ ௖௥ߜ

ᇱᇱሺݔሻߜҧ଴ (6.27)  

i.e., the initial imperfection is proportional to the buckling mode shape δcr”, and the amplitude 

is given by δ0. According to Chladný & Stujberová (2013), the amplitude of the imperfection 

of the equivalent member and the real member should be the same. This condition is expressed 

for the equivalent member by: 

௜ܯ
ூூሺݔ௠ሻ ൌ ாܰௗǡ௠௔௫ߜ௧௢௧ ൌ ாܰௗǡ௠௔௫ߜ଴

ͳ
ͳ െ ͳ ௖௥Τߙ ൌ

௖௥ߙ ாܰௗǡ௠௔௫ ҧ݁଴
௖௥ߙ െ ͳ

 (6.28)  

while the second order bending moment for the real member at the maximum of the deformed 

shape is  

௜ܯ
ூூሺݔሻ ൌ െܫܧ௜ሺݔሻߜ௖௥

ᇱᇱሺݔ௠ሻߜҧ଴
ͳ

௖௥ߙ െ ͳ
 (6.29)  

that results in the amplitude of the imperfection to be used in the verification: 

ҧ଴ߜ ൌ
௖௥ߙ ாܰௗǡ௠௔௫ ҧ݁଴

௖௥ߜ௠ሻหݔ௜ሺܫܧ
ᇱᇱሺݔ௠ሻห

ൌ ఎ݂ ҧ݁଴ (6.30)  

which is expressed in terms of the equivalent geometrical imperfection for the standard case of 

flexural buckling of uniform columns: 

ҧ݁଴ ൌ ሻݔҧሺߣ൫ߙ െ ͲǤʹ൯ ௜ܹሺݔሻ
ሻݔሺܣ

 (6.31)  

However, additional terms from the mode shape and the geometrical properties calculated at 

the location xm are also included. Ideally, xm should be chosen as the correct critical location, 

which was shown earlier. In order to avoid an iterative procedure, the location xm is adopted 

where the absolute value of δcr’’ has maximum.  

Let η be the amplitude of the generalized imperfection, which is finally given by:  

ሻݔሺכߟ ൌ ሻݔҧሺߣ൫ߙ െ ͲǤʹ൯ ఎ݂ሺݔሻȁߜ௖௥ሺݔሻȁ
௜ܹሺݔሻ

ሻݔሺܣ
 (6.32)  

where ߣҧ is the normalized slenderness calculated from: 
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ሻݔҧሺߣ ൌ ඨ
ሻݔሺܣ ௬݂

ሻݔ௖௥ܰሺߙ
 (6.33)  

The final verification equation is given by: 

ሻݔሺߝ ൌ ாܰௗሺݔሻ
ሻݔሺܣ ௬݂

൅
െܫܧ௜ሺݔሻߜ௖௥

ᇱᇱሺݔሻ
�ሺݔሻ ௬݂ߙ௖௥ െ ͳ

ሻݔҧሺߣ൫ߙ െ ͲǤʹ൯ ఎ݂ሺݔሻȁߜ௖௥ሺݔሻȁ ൑ ͳǤͲ 
(6.34) 

The verification can be seen as a verification of different “equivalent columns” with 

geometrical properties of the respective cross-section and critical load αcrN(x) (Figure 6.8) 

6.4.2 Design resistance 

The resistance is expressed as a load multiplier, similarly to the critical load αcr, but here it is 

called load multiplier leading to the member resistance, denoted as αb. The resistance can be 

obtained using the following equation: 

௕ߙ ாܰௗሺݔሻ
ሻݔሺܣ ௬݂

൅
െܫܧ௜ሺݔሻߜ௖௥

ᇱᇱሺݔሻߙ௕
�ሺݔሻ ௬݂ߙ௖௥ െ ௕ߙ

ሻݔҧሺߣ൫ߙ െ ͲǤʹ൯ ఎ݂ሺݔሻȁߜ௖௥ሺݔሻȁ ൌ ͳǤͲ 
(6.35) 

Eq. (6.35) is easily solved for αb at each location along the member, being a quadratic equation. 

The resistance is given by the load factor which leads to a maximum utilization for the whole 

member equal to 1.0, i.e., to the lowest αb for all locations. Alternatively, instead of solving Eq. 

(6.35) for αb, the design resistance may be obtained using an incremental procedure for αb. 

6.4.3 Consistency with Eurocode 3  

6.4.3.1 Flexural buckling of prismatic column 

If the column is uniform loaded with an uniform axial force, the verification leads to: 

ாܰௗሺݔሻ
ሻݔሺܣ ௬݂

൅
െܫܧ௜ሺݔሻߜ௖௥

ᇱᇱሺݔሻ
�ሺݔሻ ௬݂ሺߙ௖௥ െ ͳሻ

ሻݔҧሺߣ൫ߙ െ ͲǤʹ൯ ఎ݂ ௖ܰ௥ሺݔሻȁߜ௖௥ሺݔሻȁ ൌ ͳǤͲ ՞ 

(6.36) ாܰௗ

ܣ ௬݂
൅

ଶܮଶȀߨ௜ܫܧ

� ௬݂ሺߙ௖௥ െ ͳሻ
ҧߣ൫ߙ െ ͲǤʹ൯ ௖ܰ௥

ଶܮଶȀߨ௜ܫܧ
ൌ ͳǤͲ ՞ 

ாܰௗ

ܣ ௬݂
൅ ாܰௗ

� ௬݂ሺͳ െ ܰȀ ௖ܰ௥ሻ
ҧߣ൫ߙ െ ͲǤʹ൯ ൌ ͳǤͲ ՞ 
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߯ ൅
߯

ͳ െ ҧଶߣ߯
ҧߣ൫ߙ െ ͲǤʹ൯ ൌ ͳǤͲ 

which is the Ayrton-Perry equation for the flexural buckling of prismatic columns as given in 

Eq. (2.54). 

6.4.3.2 Discussion 

The general formulation relies on an interaction equation of linear stress utilization that 

includes: (i) normal stresses due to applied forces; (ii) normal stresses due to second order 

forces allowing the verification of members with varying geometry and loading conditions. It 

was shown that the approach has the same basis as the column buckling curves and it leads to 

the buckling curve equation for prismatic columns loaded with uniform axial force. 

 
Figure 6.9 - Utilization ratio for various load levels 

There is, however, an inevitable level of approximation in this generalization, since the equation 

is nonlinear but the value of the imperfection for any level of loading is fixed, even if the 

amplitude factor is still considered. In fact, this imperfection is valid when the equation is equal 

to 1 and not <1: the location of the critical cross section varies with increasing of load along the 

member since the relationship between first order and second order terms varies. For instance, 

in Figure 6.9, the method is applied to a tapered column with taper ratio γh=γb=3 (flange and 

web tapered) loaded with a uniformly distributed axial force. The load level is changed and the 

total utilization ratio is plotted along the column length. It can be seen that the critical position 

changes with the level of applied force due to the change of the amplification of the second 

order effects.  
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Furthermore, an example of application is presented to illustrate the benefit of using the GF. 

Consider a welded tapered column, which has restraints along the span with dimension 

100x100x10x10 at the shallow section and web-taper ratio of 3. The usual approach would be 

to verify the member in three segments, using the procedure from ECCS Publication No119; 

however, instead of calculating various segments, using the proposed procedure it is possible 

to verify the whole member at once. Firstly, a LBA is performed for the member.  

 

Figure 6.10 - Example 1: Tapered column with intermediate restraints 

The buckling mode shape is given in Figure 6.11. The normalized shape for δcr and its 

derivatives are given in Figure 6.12a, which is used to verify the interaction equation at the 

various locations along the member, as shown in Figure 6.12b; that also illustrates the variation 

of the first and second order utilization ratios showing excellent agreement. The maximum 

resistance was compared with GMNIA and the results are given in Table 6.4. 

 
Figure 6.11  Mode shape: column 

  

a) Mode shape b) Utilization ratio 

Figure 6.12 - Utilization ratio 
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Table 6.4 – Example tapered column 

Example Method GMNIA Difference 

Tapered column 413kN 406kN 2% 

 

6.5 Flexural buckling of beam-columns 

6.5.1 Verification format 

The case of flexural buckling of members loaded with bending moment and axial force is 

probably the most common in the engineering practice. The only difference with regard to 

members loaded with axial force only is the additional bending moment. In this case, it does 

not cause any additional buckling because it acts in the flexural buckling plane and the critical 

load factor will only depend on the applied axial force. However, the additional contribution 

from the bending moment should be added to the first and second order utilization. Then the 

stress, utilization becomes: 

ሻݔሺߪ
௬݂

ൌ
ܰሺݔሻ
ሻݔሺܣ ௬݂

൅
ሻݔ௜ሺܯ
௜ܹሺݔሻ ௬݂

൅
௜ܯ

ூூሺݔሻ
௜ܹሺݔሻ ௬݂

൑ ͳǤͲ (6.37)  

with 

௜ܯ
ூூሺݔሻ ൌ ሻݔᇱᇱሺߜሻݔ௜ሺܫܧ ൅ ௜ǡாௗܯ

ூூ �ሺݔሻǡ (6.38)  

Leading to the following interaction equation: 

ாܰௗሺݔሻ
ሻݔሺܣ ௬݂

൅
ሻݔ௬ሺܯ

௬ܹሺݔሻ ௬݂
൅

௖௥ߜሻݔ௜ሺܫܧ
ᇱᇱሺݔሻ

�ሺݔሻ ௬݂ሺߙ௖௥ െ ͳሻ
ሻݔҧሺߣ൫ߙ െ ͲǤʹ൯ ఎ݂ሺݔሻȁߜ௖௥ሺݔሻȁ ൅ 

(6.39) 

൅
ሻȁݔ௖௥ሺߜሻȁݔ௬ሺܯ

ሺߙ௖௥ െ ͳሻ ௬ܹሺݔሻ ௬݂
൑ ͳǤͲ 

The second order contribution from the applied bending moment is separated from the second 

order contribution due to the initial imperfection. In addition, it is assumed that the second order 

moment due to the bending moment can be approximated by: 
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௬ܯ
ூூሺݔሻ ൌ

ܰሺݔሻݓெሺݔሻ
ݎܿߙ െ ͳ ൎ

ሻȁݔሺݎܿߜሻȁݔሺݕܯ
ݎܿߙ െ ͳ  (6.40) 

6.5.2 On the beam-column behaviour 

According to Eurocode 3 (2005), the in-plane flexural buckling resistance of members loaded 

in bending and compression is performed using interaction formula. Its background was 

detailed in Chapter 2. The interaction factors were derived and calibrated in order to account 

for the various aspects that influence the beam-column behaviour. Regarding non-uniform 

bending moment distributions, both sets of interaction factors (Method 1 and Method 2) adopt 

the equivalent moment factor Cm in order to avoid the explicit consideration of the critical 

location. In contrast, the application of the general formulation does not require additional 

factors to account for the design location since the verification is performed at each cross-

section and the influence of the location is implicitly included in the verification. 

Furthermore, to take in the plasticity effects, the interaction factors for Method 1 include the 

plasticity factors Cii and Cij for cross-section Class 1 and 2. These factors account for the non-

linear interaction between bending moment and axial force in the low/medium slenderness 

ranges but also for the fact that the full-plastic moment may not be reached with the increase of 

the slenderness. The factors reduce to the cross-section check for rectangular cross-section 

when the slenderness tends to zero. Similar factors were proposed by Taras (2010) for the 

Ayrton-Perry formulation for in-plane resistance of beam-columns in mono-axial bending.  

The proposed general formulation, being applied a as linear interaction equation, is not able to 

capture the cross-section interaction at low slenderness. Therefore, there is a need of 

introducing a similar factor Cii in order to account for this. A preliminary verification was 

carried out by using the Cii factors taken from Method 1. The comparison was performed for 

three different profiles, three slenderness ratios and various ratios between the bending moment 

and axial force using numerical results from Ofner (1997). 

Figure 6.13 illustrates the comparison between the interaction formula Method 1 (M1), Method 

2 (M2), GMNIA and the general formulation for two sections at low slenderness. Furthermore, 

detailed results are given in Table 6.5. It is noted that the difference in applying Cii or not is not 

considerable: the results get slightly safer at low slenderness, but for high slenderness the mean 

value gets lower because Cii tends to the elastic moment and the general formulation is applied 
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with the plastic moment. However, this smaller difference is also due to the smaller shape factor 

for the sections considered (Wpl,y/Wel,y); if a minor axis flexural buckling is considered, the 

divergence would become higher. 

  

Figure 6.13 - Comparison between the different methods 

Table 6.5 - Statistical parameters  

 HEB 300 IPE 200 IPE 500 
λ n m Cov Min Max n m Cov Min Max n m Cov Min Max 

G
F 

w
ith

C
ii 

0.5 100 1.022 2.3% 0.977 1.077 94 1.034 3.2% 0.979 1.111 94 1.039 3.6% 0.981 1.120 

1.0 97 1.043 2.9% 0.991 1.104 101 1.042 3.7% 0.983 1.123 96 1.047 3.7% 0.985 1.131 

1.5 99 1.053 4.9% 0.982 1.178 95 1.050 5.3% 0.970 1.179 98 1.055 5.4% 0.967 1.183 

G
F 

w
ith

ou
t C

ii 0.5 100 1.047 2.3% 1.005 1.103 94 1.066 3.9% 0.997 1.160 94 1.072 4.3% 0.999 1.177 

1.0 97 1.040 3.3% 0.989 1.103 101 1.041 4.8% 0.977 1.160 96 1.046 4.9% 0.980 1.172 

1.5 99 1.033 5.7% 0.958 1.194 95 1.027 6.6% 0.951 1.200 98 1.031 6.6% 0.953 1.205 

IF
-M

1 

0.5 110 1.010 1.8% 0.985 1.069 104 1.023 2.5% 0.988 1.107 104 1.026 2.6% 0.991 1.114 

1.0 106 1.030 2.6% 0.985 1.092 110 1.035 2.9% 0.979 1.097 105 1.038 2.9% 0.976 1.102 

1.5 109 1.024 2.7% 0.985 1.092 104 1.034 2.9% 0.977 1.103 108 1.037 2.9% 0.977 1.107 

IF
-M

2 

0.5 60 1.030 1.1% 0.991 1.051 63 1.034 2.0% 0.984 1.076 52 1.044 1.9% 1.011 1.083 

1.0 73 1.082 3.6% 1.014 1.231 80 1.046 3.7% 0.974 1.172 71 1.055 3.8% 1.000 1.179 

1.5 77 1.106 7.2% 1.011 1.348 77 1.079 7.2% 0.997 1.299 78 1.084 7.2% 1.004 1.306 
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Figure 6.14 – Comparison for tapered member with shallow section 250x200x8x16 for different taper 
ratios and lengths 
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Furthermore, the factor Cii was applied to tapered members. Its application to members with 

variable cross-section required the following adjustments: i) firstly, the Cm factors as 

recommended by the interaction formula were not considered since they are calibrated for 

uniform members; ii) secondly, the level of the axial force NEd/Npl was considered constant as 

the ratio ߶. 

Figure 6.14 shows the results obtained for tapered members with γh=2 and for three different 

lengths. 

At low slenderness, the members tend to their cross-section resistance, in such case, the use of 

Cii helps to obtain resistances closer to GMNIA. However, for higher bending moments relative 

to the axial force, where the difference is larger, the improvements are minimal. At high 

slenderness, the results are closely approximated by GMNIA with and without the use of Cii 

since the effect of plasticity vanishes. 

The factor was calibrated for uniform members, and therefore, is not suitable for application 

with non-uniform members. Hence, this issue required further elaboration that is outside the 

scope of this thesis.  

6.5.3 Design resistance 

The design resistance is obtained as described for the flexural buckling of columns under axial 

force (Section 6.4.2) using the following equation: 

௕ߙ ாܰௗሺݔሻ
ሻݔሺܣ ௬݂

൅
ሻݔ௬ሺܯ௕ߙ
ሻݔሺܣ ௬݂

൅ 

(6.41) 
௖௥ߜሻݔ௜ሺܫܧ

ᇱᇱሺݔሻߙ௕
�ሺݔሻ ௬݂ሺߙ௖௥ െ ௕ሻߙ

ሻݔҧሺߣ൫ߙ െ ͲǤʹ൯ ఎ݂ሺݔሻȁߜ௖௥ሺݔሻȁ ൅
ሻȁݔ௖௥ሺߜሻȁݔ௬ሺܯ௕ଶߙ
ሺߙ௖௥ െ ௕ሻߙ ௬ܹሺݔሻ ௬݂

ൌ ͳǤͲ 

6.5.4 Consistency with Eurocode 3 

Even though the interaction formula of Eurocode 3 makes use of calibrated factors, it has its 

analytical background. It is shown in this section that the general formulation and the interaction 

formula are consistent for the case of flexural buckling of prismatic beam-columns. Considering 

Eq. (6.38) for a prismatic beam-column loaded with constant bending moment and axial force: 
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(6.42) 
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It can be seen that Eq. (6.42) coincides with the interaction equations in their raw format, before 

the calibration of the interaction coefficients and is therefore valid for both methods – Method 

1 and 2, as presented in the background document for its development, ECCS Pub. 119 

(Boissonnade et al., 2006). 

6.6 Lateral-torsional buckling of beams  

6.6.1 Verification format 

For lateral-torsional buckling of beams the general interaction equation Eq.(6.22) and 

considering Table 6.3, becomes: 

 
ఙሺ௫ሻ
௙೤

ൌ ெ೤ሺ௫ሻ
ௐ೤ሺ௫ሻ௙೤

൅ ெ೥
಺಺ሺ௫ሻ

ௐ೥ሺ௫ሻ௙೤
൅ ெೢ

಺಺ሺ௫ሻ
ௐೢ ሺ௫ሻ௙೤

  (6.43) 

where there are two second-order contributions, the out-of-plane bending moment depending 

on the lateral displacement:  

௭ܯ 
ூூሺݔሻ ൌ െܫܧ௭ሺݔሻ̶ݒሺݔሻ (6.44) 

and the bi-moment depending on the twist rotation:  

௪ܯ 
ூூሺݔሻ ൌ െܫܧ௪ሺݔሻ̶ߠሺݔሻ. (6.45) 
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For tapered beams, an additional warping component appears due to the inclination of the 

flanges (Kitipornchai and Trahair, 1972) leading to: 

௪ܯ 
ூூሺݔሻ ൌ െܫܧ௪ሺݔሻ ቀ̶ߠሺݔሻ ൅

ଶ
௛
 ሻ݄Ԣቁ (6.46)ݔԢሺߠ

For simply supported beams it was possible to obtain the amplitude by the coupling of the 

lateral displacement and twist rotation (Eq. (2.9)). In a more general configuration (variation of 

the geometry along the member, different boundary and loading conditions, etc.), this 

relationship may not be held. For that reason, it was chosen to use both components of the mode 

shape in the definition of the initial imperfection, assuming that they are multiplied by the same 

amplitude: 

ሻݔ଴ሺݒ  ൌ ҧ଴ǡ௅்஻ߜሻݔ௖௥ሺݒ
             

ሻݔ଴ሺߠ ൌ  ҧ଴ǡ௅்஻  (6.47)ߜሻݔ௖௥ሺߠ

The resulting amplification relationship for the displacement and rotation is given by: 

ሻݔሺݒ  ൌ ଵ
ఈ೎ೝିଵ

ሻݔ଴ሺݒ
 

(6.48) 

ሻݔሺߠ  ൌ ଵ
ఈ೎ೝିଵ

ሻݔ଴ሺߠ
 

(6.49) 

Similarly to a column, it is considered that the real beam should have the same resistance as an 

equivalent simply supported member. This equivalent beam has the same geometry as the real 

member at the critical cross-section and the same elastic critical moment. Hence, it is possible 

to obtain the required generalized imperfection by setting equal the second order utilization for 

the equivalent and real beam. The second order moments for a simply supported beam at mid-

span are given by:  

௭ܯ
ூூሺݔ௠ሻ ൌ ௧௢௧ߠ௬ǡாௗܯ ൌ ଴ߠ௬ǡாௗܯ

ͳ
ͳ െ ͳ ௖௥Τߙ ൌ

௬ǡாௗܯ௖௥ߙ ҧ݁଴ߠ௖௥ሺݔ௠ሻ
௖௥ߙ െ ͳ

 (6.50)

௪ܯ 
ூூሺݔ௠ሻ ൌ ௧௢௧ݒ௬ǡாௗܯ െ ߠ௧ܫܩ ൌ ଴ݒ௬ǡாௗܯ

ଵ
ଵିଵ ఈ೎ೝΤ െ ௧ܫܩ ቀߠ଴

ଵ
ଵିଵ ఈ೎ೝΤ െ ଴ቁߠ ൌ 

(6.51)

ൌ
௬ǡாௗܯ௖௥ߙ ҧ݁଴ߠ௖௥ሺݔ௠ሻ

௖௥ߙ െ ͳ
൬
଴ݒ
଴ߠ

െ
௧ܫܩ
௖௥ܯ

൰ǡ 

which when combined together form the second order utilization ratio for the equivalent 

member: 



6 A GENERAL FORMULATION FOR THE STABILITY DESIGN OF STEEL COLUMNS, BEAMS AND 
BEAM-COLUMNS 

 

 
 

 

| 187 

௠ሻݔெூூሺߝ ൌ
௭ܯ

ூூሺݔ௠ሻ

௭ܹሺݔ௠ሻ ௬݂
൅

௪ܯ
ூூሺݔ௠ሻ

௪ܹሺݔ௠ሻ ௬݂
ൌ 

(6.52) ൌ
௬ǡாௗܯ௖௥ߙ ҧ݁଴ߠ௖௥ሺݔ௠ሻ
௭ܹሺݔ௠ሻ ௬݂ሺߙ௖௥ െ ͳሻ

൬ͳ ൅
௠ሻݔ௖௥ሺݒ
௠ሻݔ௖௥ሺߠ

௭ܹሺݔ௠ሻ
௪ܹሺݔ௠ሻ

൅
௠ሻݔ௧ሺܫܩ
௖௥ܯ

௭ܹሺݔ௠ሻ
௪ܹሺݔ௠ሻ

൰ ൌ 

ൌ ௖ܰ௥ǡ௭ ҧ݁଴
௭ܹሺݔ௠ሻ ௬݂ሺߙ௖௥ െ ͳሻ

 

The second order utilization of the real beam at the location xm is given by:  

௠ሻݔெூூሺߝ ൌ
௭ܯ

ூூሺݔ௠ሻ

௭ܹሺݔ௠ሻ ௬݂
൅

௪ܯ
ூூሺݔ௠ሻ

௪ܹሺݔ௠ሻ ௬݂
ൌ 

(6.53) 

ൌ
௠ሻݔ௭ሺܫܧ ቀݒԢԢ௖௥ሺݔ௠ሻ ൅

݄
ʹ ௠ሻݔ௖௥ሺ̶ߠ ൅ ௠ሻ݄ᇱቁݔԢ௖௥ሺߠ ҧ଴ߜ

௭ܹሺݔ௠ሻ ௬݂ሺߙ௖௥ െ ͳሻ
 

Equalling Eqs. (6.52) and (6.53) leads to the following expression for the amplitude of the 

imperfection:  

ҧ଴ǡ௅்஻ߜ ൌ
௖ܰ௥ǡ௭ ҧ݁଴

௠ሻݔ௭ሺܫܧ ቀݒԢԢ௖௥ሺݔ௠ሻ ൅
݄
ʹ ௠ሻݔሺ̶ߠ ൅ ௠ሻ݄ᇱቁݔᇱሺߠ

ൌ ఎ݂ ҧ݁଴ (6.54) 

This amplitude is used with the proposed generalization. It contains the equivalent geometrical 

imperfection ҧ݁଴ but also additional terms ensuring the consistency with the Eurocode 3 design 

rules. Ideally, the location xm should be obtained in an iteration as the exact critical location of 

the beam; however, in order to avoid iterative process, xm is assumed at the location where ݒᇱᇱ௖௥ 

reaches a maximum.  

Finally, the generalized imperfection becomes: 

ሻݔሺכߟ ൌ ሻݔҧሺߣ൫ߙ െ ͲǤʹ൯ ఎ݂หߜ௙௟ሺݔሻห
௭ܹሺݔሻ
ሻݔሺܣ

 (6.55) 

ሻݔ௙௟ሺߜ ൌ ሻݔ௖௥ሺݒ ൅
݄ሺݔሻ
ʹ

 ሻ (6.56)ݔ௖௥ሺߠ
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ఎ݂ ൌ
௖ܰ௥ǡ௭

௠ሻݔ௭ሺܫܧ ቀݒԢԢ௖௥ሺݔ௠ሻ ൅
݄
ʹ ௠ሻݔሺ̶ߠ ൅ ௠ሻ݄ᇱቁݔᇱሺߠ

 (6.57) 

 

and the utilization ratio is given by: 

ሻݔெሺߝ ൌ
ሻݔ௬ǡாௗሺܯ

௬ܹሺݔሻ ௬݂
൅
ሻݔ௭ሺܫܧ ቀݒԢԢ௖௥ሺݔሻ ൅

݄
ሻݔ௖௥ሺ̶ߠʹ ൅ ሻ݄ᇱቁݔԢ௖௥ሺߠ

ሻݔሺܣ ௬݂ሺߙ௖௥ െ ͳሻ
ሻݔሺߟ� ൑ ͳǤͲ (6.58) 

with 

ሻݔሺߟ ൌ ሻݔҧሺߣ൫ߙ െ ͲǤʹ൯ ఎ݂หߜ௙௟ሺݔሻห (6.59) 

 

6.6.2 On the generalized imperfection factor 

In section 6.4.1, it was shown that the application of the method is directly used with the column 

buckling curves for prismatic members. This is only possible because of the assumption of 

correspondence with the equivalent prismatic member. In the previous paragraph, it was shown 

that the generalized imperfection can be written in a way accounting for this assumption. Hence 

it is ready to be used with α-factors calibrated for prismatic beams. There are two possibilities 

for the adoption of the imperfection factor, the adoption of the New EC3 method or the General 

Case.  

In Chapter 5, the safety assessment for prismatic beams showed that the New EC3 method for 

lateral-torsional buckling of prismatic beams gave the best results in terms of partial factors. 

This is due to its mechanical consistency and calibration of the imperfections in a consistent 

way. For that, this is the preferred method to be used for the calculation of the imperfection 

factor. 

The application of the New EC3 imperfections for lateral-torsional buckling uses the normalized 

slenderness ߣҧ௭. This brings a certain level of difficulty for the generalization to non-standard 

cases. For instance, let’s consider the four cases given in Figure 6.15 four beams with an IPE 

200 cross-section, with the same length of 6.0 m and loaded with an uniform bending moment. 

Case 1 the reference case for which the imperfections are calibrated: a simply supported beam 

loaded with uniform bending moment. In Case 2, the beam has out-of-plane restraints on both 
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flanges, in Case 3 it has a restraint on the compression flange and in Case 4 it has a restraint on 

the tension flange.  

 

Figure 6.15 – Example: uniform member in bending with restraints 

The critical moments and forces are given in Table 6.6 and the buckled shapes in Figure 6.16. 

Under constant bending moment Case 1, the beam buckles in a half sine wave; for Case 2 and 

3, the member buckles in two half-waves, since in both cases the compression flange which 

tends to buckle is the restrained one. In Case 4 the beam buckles in a half-wave, however, the 

value of the critical moment is slightly higher due to the presence of the restraint, although it is 

not as effective as doubling the critical moment, but still the critical moment benefits from its 

presence.  

The same member is considered loaded in compression, in order to obtain the corresponding 

minor axis critical force Ncr,z. Similarly to the beam case, in Case 1 it buckles in a half sine 

wave, while in Case 2 it buckles in two half-waves (Figure 6.17). Cases 3 and 4 are identical 

for the member loaded in compression, as in for this particular geometry it buckles in 2 half-

waves. For different geometrical arrangement, the member may even buckle in a torsional mode 

with a critical force between Ncr,z and 4Ncr,z. 

Table 6.6 – Critical forces and moments for all cases 

# 
Mcr,abq 

kNm 

Mcr,theo 

kNm 

Ncr,z,abq  

kN 

Ncr,theo   

kN 

Case 1 23.2 23.0 81.9 81.9 

Case 2 53.6 53.0 330.3 327.6 

Case 3 53.6 53.0 330.3 327.6 

Case 4 37.0 37.0 330.3 327.6 

Case 1

Case 2

Case 3

Case 4
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Case 1 Case 2 

  

Case 3 Case 4 

 

Figure 6.16 - Buckling modes: member loaded in bending 

This feature introduces to a discontinuity since the relative increase of the critical force does 

not follow the relative increase of the critical moment as in cases 1 to 3. 

  

Case 1 Case 2, 3 and 4 

Figure 6.17 – Buckling modes: member loaded in compression 
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To overcome this discontinuity, it was assumed that the imperfection can be calculated for an 

equivalent elastic critical force Ncr,z,eq. This force is “retrieved” from the buckling mode using 

the differential equation for flexural buckling: 

ሻݔሺݎԢԢܿݒሻݔሺݖܫܧ  ൅ ௖ܰ௥ǡ௭ݎܿݒሺݔሻ ൌ Ͳ. (6.60) 

Then, the equivalent force becomes: 

௖ܰ௥ǡ௭ǡ௘௤ ൌ
௠ሻȁݔԢԢ௖௥ሺݒ௠ሻȁݔ௭ሺܫܧ

ȁݒ௖௥ሺݔ௠ሻȁ
Ǥ (6.61)  

It is this force that is used for the calculation of the normalized slenderness: 

ሻݔҧሺߣ  ൌ ට
஺ሺ௫ሻ௙೤
ே೎ೝǡ೥ǡ೐೜

  (6.62) 

6.6.3 Design resistance 

Similarly to flexural buckling, the design resistance is given by the load multiplier ߙ௕,using Eq. 

(6.63): 

ሻݔ௬ǡாௗሺܯ௕ߙ

௬ܹሺݔሻ ௬݂
൅
ሻݔ௭ሺܫܧ ቀݒԢԢ௖௥ሺݔሻ ൅

݄
ሻݔ௖௥ሺ̶ߠʹ ൅ ሻ݄ᇱቁݔԢ௖௥ሺߠ ௕ߙ

ሻݔሺܣ ௬݂ሺߙ௖௥ െ ௕ሻߙ
ሻݔሺߟ� ൌ ͳǤͲ (6.63) 

 

6.6.4 Consistency with Eurocode 3 

6.6.4.1 Lateral-torsional buckling of prismatic beam 

The consistency of the GF with the existing rules for lateral-torsional buckling of prismatic 

beams is easily verified. For uniform members, the shape of the buckling mode is given by 

ሻݔ௖௥ሺݒ ൌ ሻݔ௖௥ሺߠ ൌ ���
ݔߨ
ܮ

 

and the utilization ratio is given by: 
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ሻ݉ݔ௬ǡாௗሺܯ
௬ܹሺ݉ݔሻ ௬݂

൅
ሻݔ௭ሺܫܧ ቆݒᇱᇱ௖௥ሺ݉ݔሻ ൅

݄
ʹ ሻቇ݉ݔǳ௖௥ሺߠ

ݎܿߙሺݕሻ݂݉ݔሺܣ െ ͳሻ
ሻ݉ݔҧሺߣ൫ߙ

െ ͲǤʹ൯
௖ܰ௥ǡ௭ ฬݎܿݒሺ݉ݔሻ ൅

݄
ሻฬ݉ݔሺߠʹ

ሻ݉ݔሺݖܫܧ ቀݒԢԢܿݎሺ݉ݔሻ ൅ ݄ ʹΤ ሻቁ݉ݔǳሺߠ
ൌ ͳǤͲ ՞ 

௬ǡாௗܯ (6.64)

௬ܹ ௬݂
൅

௖ܰ௥ǡ௭ ฬݎܿݒ ൅
݄
ሻฬ݉ݔሺߠʹ

ݎܿߙሺݕ݂ܣ െ ͳሻ
௬ǡாௗܯ

௬ǡாௗܯ

௬ܹ ௬݂

௬ܹ ௬݂
ҧߣ൫ߙ െ ͲǤʹ൯ ൌ ͳǤͲ� ՞ 

௬ǡாௗܯ

௬ܹ ௬݂
൅
௬ǡாௗܯ

௬ܹ ௬݂

ҧߣ൫ߙ െ ͲǤʹ൯

൬ͳ െ
௬ǡாௗܯ
௖௥ܯ

൰

ܶܮതߣ
ʹ

ݖതߣ
ʹ ൌ ͳǤͲ ՞ 

߯௅் ൅
߯௅்

ͳ െ ߯௅்ߣതܶܮ
ʹ
ܶܮതߣ
ʹ

ݖതߣ
ʹ ҧߣ൫ߙ െ ͲǤʹ൯ ൌ ͳǤͲ 

which is exactly Eq. (2.58).  

6.6.4.2 Discussion 

The theoretical summary presented briefly in Section 6.6.1 is based on the assumption of 

constant bending moment distribution. However, a constant bending moment distribution is 

rare and therefore other bending moment distributions should be accounted for. Typically, the 

existing methods for LTB verification make use of calibrated factors which take into 

consideration the increase in the critical moment and the difference relative to the adopted 

buckling mode shape. The proposed method does not require any additional factors because it 

is applied as a direct interaction of the first and second order forces leading to the maximum 

load factor at the location of the beam where the utilization has a maximum and not at a pre-

defined location such as mid-span. 

An illustration is given in Figure 6.18a, where the utilization ratio for a web-tapered beam with 

γh=3 and a shallow end section of 100x100x10x10 loaded with a triangular bending moment is 

shown. The total utilization ratio as well as the first and the second order contributions are 

plotted  Figure 6.18a. It shows that the failure location is found for a bending moment which 

is lower than the maximum applied moment. Furthermore, since both utilization ratios are non-

linear, it is practically impossible to “guess” the critical location along the member. The 
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resistance obtained with the GF compares very well to GMNIA as shown in Table 6.7. This 

trend is confirmed for various slenderness ratios as plotted in Figure 6.18b. 

Table 6.7 Comparison with GMNIA 

Example Method GMNIA Difference 

Tapered beam with non-uniform bending 

moment 

44.34 45.05kNm 1.6% 

 Tapered beam with restraint on the tension 

flange 

24.3kNm 23.56kNm 3% 

 

  

Example 2: web-tapered beam loaded with 
linearly varying bending moment 

Comparison with GMNIA across various 
slenderness  

Figure 6.18 Web-tapered beam γh =3 with ψ=0 

Another interesting application of the method is illustrated in Figure 6.19, a tapered beam with 

taper ratio of 2, loaded with a constant bending moment with a partial restraint on the tension 

flange. The tension flange restraints can contribute to higher lateral-torsional buckling 

resistance, but their efficiency depends on the geometry and loading of the beam. The buckling 

mode is shown in Figure 6.20. Critical shapes of the translation and twist rotation at the shear 

centre of the cross-section are shown in Figure 6.21a, which are used to compute the utilization 

ratio plotted in Figure 6.21b. At mid-span, it is observed that the second order utilization 

becomes close to zero due to the difference in the location of zero translation and twist rotation 

of the mode shape (Figure 6.21a). Table 6.7 shows the excellent agreement between the method 

and advanced numerical simulation. 
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Figure 6.19 Example 3: Tapered beam with partial restraint on the tension flange 

 

Figure 6.20 Mode shape 

  

a) Mode shape b) Utilization ratio 

Figure 6.21 Beam with partial restraints on the compression flange 

6.7 Lateral-torsional buckling of beam-columns 

6.7.1 Introduction 

The lateral torsional buckling of beam-columns is a joint case of the lateral-torsional buckling 

of beams and the flexural buckling of columns about their minor axis. It is also, the most 

complex buckling mode since its shape varies depending on the ratio between the applied 

bending moment and axial force. For high ratios of bending moment to axial force, the 

behaviour is more “beam-like” with a mixture of flexure and torsion, while for low ratios the 

behaviour is more “column-like” (Figure 6.22). 
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Figure 6.22 Beam-column behaviour for the variation between N and M 

In the previous sections, it was shown how the proposed method works for columns and beams, 

where the application of the method was only possible together with previously calibrated 

imperfection factors for the uniform and simply-supported case. For beam-columns, however, 

Eurocode 3 provides interaction formula for members loaded in bending and compression. The 

interaction formula makes use of the expressions for beams and columns combining them 

through interaction factors which account for the joint action of the forces, which makes them 

not appropriate for the design formulation presented here. This led to the need of deriving an 

Ayrton-Perry equation for uniform beam-columns, presented in Section 6.2. 

It is then used to derive the general verification format for lateral-torsional buckling of non-

uniform beam-columns with various support, geometrical and loading conditions.  

6.7.2 Verification format  

For lateral-torsional buckling of members loaded in bending and compression, the interaction 

equation is given by: 

 
ఙሺ௫ሻ
௙೤

ൌ ேሺ௫ሻ
஺ሺ௫ሻ௙೤

൅ ெ೤ሺ௫ሻ
ௐ೤ሺ௫ሻ௙೤

൅ ெ೥
಺಺ሺ௫ሻ

ௐ೥ሺ௫ሻ௙೤
൅ ெೢ

಺಺ሺ௫ሻ
ௐೢ ሺ௫ሻ௙೤

ǡ (6.65) 

where there are two second-order contributions, the out-of-plane bending moment:  

௭ܯ 
ூூሺݔሻ ൌ െܫܧ௭ሺݔሻ̶ݒሺݔሻ

 
(6.66) 

and the bi-moment:  

 
௪ܯ

ூூሺݔሻ ൌ െܫܧ௪ሺݔሻ ቀ̶ߠሺݔሻ ൅ ሻ݄ԢݔԢሺߠ ଶ
௛
ቁ
 

(6.67) 
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including the additional warping component appears due to the inclination of the flanges 

(Kitipornchai & Trahair, (1972)). 

Following the same assumptions as for lateral-torsional buckling of beams, it is considered that 

the initial lateral displacement and twist rotation follow the buckling shape and have the same 

amplitude: 

ሻݔ଴ሺݒ   ൌ ҧ଴ߜሻݔ௖௥ሺݒ
             

ሻݔ଴ሺߠ ൌ  ҧ଴  (6.68)ߜሻݔ௖௥ሺߠ

with the same amplification relationship:  

ሻݔሺݒ  ൌ ଵ
ఈ೎ೝିଵ

ሻݔ଴ሺݒ
 

(6.69) 

ሻݔሺߠ  ൌ ଵ
ఈ೎ೝିଵ

ሻݔ଴ሺߠ
 

 (6.70) 

Then the interaction equation becomes: 

ܰሺݔሻ
ሻݔሺܣ ௬݂

൅
ሻݔ௬ሺܯ
௬ܹሺݔሻ ௬݂

൅
ҧ଴ߜሻݔ௭ሺܫܧ

௭ܹሺݔሻ ௬݂
቎
ሻݔ௖௥ሺݒ ൅

݄
ሻݔ௖௥̶ሺߠʹ ൅ ሻ݄ᇱݔ௖௥ᇱሺߠ

௖௥ߙ െ ͳ
቏ ൑ ͳǤͲ (6.71) 

Adopting the same assumptions as for columns and beams, and using the second order 

contributions for the equivalent beam-column, which in this case are given by (6.2) and (6.3) 

for the weak axis bending moment and the bi-moment, respectively, it is possible to define the 

generalized imperfection as: 

ሻݔሺכߟ ൌ ሻݔҧሺߣ൫ߙ െ ͲǤʹ൯ ఎ݂ߜ௙௟ሺݔሻ
௭ܹሺݔሻ
ሻݔሺܣ

 (6.72) 

where ఎ݂ and ఎ݂ߜ௙௟ሺݔሻ are given by Eqs. (6.56) and (6.57), leading to the utilization ratio 

ሻݔெேሺߝ ൌ
ாܰௗሺݔሻ
�ሺݔሻ ௬݂

൅
ሻݔ௬ǡாௗሺܯ

௬ܹሺݔሻ ௬݂
൅
ሻݔ௭ሺܫܧ ቀݒԢԢ௖௥ሺݔሻ ൅

݄
ʹ ሻݔ௖௥ሺ̶ߠ ൅ ሻ݄ᇱቁݔԢ௖௥ሺߠ

ሻݔሺܣ ௬݂ሺߙ௖௥ െ ͳሻ
ሻݔሺߟ� ൑ ͳǤͲ (6.73) 

with  

ሻݔሺߟ ൌ ሻݔҧሺߣ൫ߙ െ ͲǤʹ൯ ఎ݂ߜ௙௟ሺݔሻ (6.74) 

The imperfection factor α is used as proposed in Section 6.2.1.2 and the normalized slenderness 

is used as in Section 6.6.2. 
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6.7.3 Beam-column buckling modes 

It was already mentioned earlier that complexity of the beam-column behaviour arises from the 

variation in the relative ratio between the bending moment and the axial force, as well as across 

the various slenderness ranges. Since it is possible to have “beam-like” modes and “column-

like”-modes, it was already ensured in the previous section that the imperfection magnitude 

varies from beam to column according to the applied loads. In this section, a discussion on the 

shape of the buckling mode is offered because it also varies according to the relative ratio of 

the bending moment and axial force, which is important for the application of the general 

formulation to ensure safe and economical design. 

To illustrate the problem, the following example is proposed. Consider an uniform welded 

member with a cross-section 350x175x12x8 with a restraint on the compression flange and 

length L=5m, as shown in Figure 6.23, is loaded with five different ratios of uniform bending 

moment to the axial force. 

 

Figure 6.23 – Example member loaded in bending and compression with restraint on the compression 
flange 

The buckling mode shapes are shown in Figure 6.24. For I� �0.2, 0.4 and 1.0, the behaviour is 

dominated by lateral-torsional buckling. In contrast, I� �2.4 and 5.0, the beam-column does not 

buckle in two half-waves but the bottom flange buckles in a single half-wave. This only shows 

that the compressive stress required to cause buckling of the bottom flange is lower than the 

compressive stress necessary to buckle the top flange in two half-waves. 
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a)�I� �0.0 b)�I� �0.2 

  

c)�I� �0.4 d)�I� �1.0 

  

e)�I� �2.4 f)�I� �5.0 

Figure 6.24 – Buckling modes for different ratios of bending moment and axial force 

The stresses that are present in the cross-section are shown in Figure 6.25. The buckling modes 

of Figure 6.24 for I� ���0.2, 0.4 and 1.0 lead to a stress configuration for which the maximum 

compressive stress is equal to the sum of the absolute values of each stress component.  
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Figure 6.25 - Stresses in member under bending and compression 

However, for the buckling modes of Figure 6.24 for I� �2.4 and 5.0, the twist rotation exhibits 

opposite sign and results in the stress distributions as shown in Figure 6.26. For such pattern, 

it is not clear which is the flange governing the design, and therefore, it is required to verify 

both flanges according to Eq.(6.75). 

 

Figure 6.26 - Stresses in member under bending and compression 
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 (6.75) 

6.7.4 Design resistance 

Similarly to flexural buckling, the design resistance is given by the load multiplier ߙ௕, 

according to Eq. (6.76): 
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6.7.5 Consistency with the uniform member 

Consistency with the existing rule for lateral-torsional buckling of prismatic beam is easily 

verified. In case of a prismatic steel beams with N=0, then Eq. (6.73) reduces to: 
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(6.77) 
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while My=0, then Eq. (6.73) reduces to: 
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(6.78) 



6 A GENERAL FORMULATION FOR THE STABILITY DESIGN OF STEEL COLUMNS, BEAMS AND 
BEAM-COLUMNS 

 

 
 

 

| 201 

ሻݔሺ݀ܧܰ
ሻݔሺܣ ௬݂

൅
െܫܧ௜ሺݔሻݒ௖௥ᇱᇱሺݔሻ
�ሺݔሻ ௬݂ሺߙ௖௥ െ ͳሻ

ሻݔҧሺߣ൫ߙ െ ͲǤʹ൯
ሻȁݔ௖௥ሺݒሻȁݔሺ݀ܧ௖௥ܰߙ
௠ሻȁݔ௖௥ᇱᇱሺݒ௠ሻȁݔ௜ሺܫܧ

ൌ ͳǤͲ ՞ 

ሻݔሺ݀ܧܰ
ܣ ௬݂

൅
ଶܮଶȀߨ௜ܫܧ

� ௬݂ሺߙ௖௥ െ ͳሻ
ҧߣ൫ߙ െ ͲǤʹ൯ ௖ܰ௥

ଶܮଶȀߨ௜ܫܧ
ൌ ͳǤͲ ՞ 

ሻݔሺ݀ܧܰ
ܣ ௬݂

൅
ሻݔሺ݀ܧܰ

� ௬݂ሺͳ െ ܰȀ ௖ܰ௥ሻ
ҧߣ൫ߙ െ ͲǤʹ൯ ൌ ͳǤͲ ՞ 

߯ ൅
߯

ͳ െ ҧଶߣ߯
ҧߣ൫ߙ െ ͲǤʹ൯ ൌ ͳǤͲ 

6.8 Validation 

6.8.1 Scope 

In this section, the general formulation is validated against GMNIA resulta. The numerical 

models were carried out in accordance with the previously described procedure in Chapter 4. 

In this validation, special attention was paid to the applicability of the GF to non-uniform 

columns, beams and beam-columns as well as for members with varying loads along their 

length and load application (top/bottom flanges or shear centre, members with restraints only 

at one flange (compression or tension) and members which are not simply supported. 

Firstly, the global parametric study is presented and its statistical assessment with respect to 

GMNIA results. Then the method is evaluated in comparison with existing methods for design 

of non-uniform members: the General method and the design methods for web-tapered columns 

and beams by Marques (2012). 

6.8.2 Methodology 

In order to have a common basis for comparison, the generalized reduction factors are 

considered at the first order failure location: χGMNIA(xc
I)=αb

GMNIA/αult,k
CS(xc

I) and 

χMethod(xc
I)=αb

Method/αult,k
CS(xc

I), in which αb
x is the resistance multiplier obtained numerically 

(x=GMNIA) or by the method (x=Method) and αult,k
CS is the cross section resistance multiplier. 

xc
I is the location along the member where the utilization due to applied (first order forces) is 

maximum and becomes: xc,N
I for a column; xc,M

I for a beam.  
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The imperfection factors were considered according to Table 6.2 from Eurocode 3 for flexural 

buckling and for lateral-torsional buckling according to the new EC3 method. For beam-

columns, the proposed interpolation in Section 6.2.1.2 was adopted. 

6.8.3 Parametric study 

The parametric study is summarized in Table 6.8. It covers several types of members, loading 

and support conditions, totalling 2213 cases. 

Figure 6.27 shows the cases #1 from Table 6.8, Tap D type of member – web tapered with 

different inclinations of both flanges, including restraint to the tension flange and a built-in end 

at the deep section. 

 

Figure 6.27 - Cases #1 Tap D member 

Figure 6.28 illustrates prismatic members (Cases #2 and #8 in Table 6.8). They were considered 

with one restraint either to the compression or the tension flanges and two restraints to the 

tension flange. 

 

Figure 6.28 - Cases #3 Uniform member 
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Cases #3 are shown in Figure 6.29. They consist of members with a parabolic variation of cross-

section whereby the deep section was takes as 1.5 times the shallow one. These members were 

also considered with no intermediate restraints, one restraint either to the compression or the 

tension flanges or two restraints to the tension flange. 

 

Figure 6.29 - Cases #3 Parabolic member 

Figure 6.30 illustrates cases #4 to #7 from Table 6.8, Taper S type of member, web-tapered 

with symmetrical inclination of both flanges, without any restraint, with a tension flange 

restraint or fixed at the deep end. A part of them, cases #5, #6 and #7, were considered 

fictitiously as “rolled” by modelling the residual stress pattern for rolled sections. This aimed 

for the assessment of the consistency with the imperfection factors for rolled sections. 

 

Figure 6.30 – Cases #4, #5, #6 Tap S member 

Finally, cases #9 that correspond to numerical simulations carried out by Ofner (1997), that 

were also used to extend the parametric study with independent results by other author. They 

consist of prismatic section, restrained from out-of-plane buckling, for various ratios of bending 

moment to axial force and different bending moment distributions. 
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Table 6.8 - Parametric study 

 

6.8.4 Statistical analysis 

The statistical evaluation of the GF is carried out on the basis of the ratios re/rt or χGMNIA/ χMethod. 

It covers all cases  from Table 6.8, totalling 2213 members. The statistical parameters for all 

results and relevant subsets are presented in Table 6.9 and Figure 6.31 shows scatterplots for 

the different types of members considered in the parametric study. 

# Member Section L γh γb Supports Restraints Load φ ψ N

hxbxtfxtw m

1 Taper D 250x200x16x8 5-12 2,3,4 1 SS-SS 1x tension My
0;0.2;0.4;

1;2.4,5
1 270

SS-Fix None My+N

2 Uniform 350x175x12x8 3-12 - - SS-SS 1x tension My
0;0.2;0.4;

1;2.4,5
1 223

250x200x16x8 2x tension My+N
500x200x16x8 1x compression

3 Parabolic 350x175x12x8 3-12 - - SS-SS 1x tension My
0;0.2;0.4;

1;2.4,5
1 350

250x200x16x8 2x tension My+N
500x200x16x8 1x compression

4 Taper S IPE240eq 3-12
1,2,3,
4,5

2,3,4 SS-SS Out N - - 207

HEA300eq

5 Taper S 100x100x10x10
1,2,3,
4,5

1,2,3,
4,5

SS-SS None N - 1,0 32

Out

6 Taper S 100x100x10x10 5-12 1, 
1.2, 

1 SS-SS None My - 1 60

3, 4, 
5, 6

7 Taper S 100x100x10x10 5-12
2, 3, 
4, 5, 

6
1 SS-SS None My -  0, 0.5 120

SS-Fix 1x tension Distributed
8 Uniform HEB200 3-12 - - SS-SS None My - 1, 0, -1 76

IPE300 1x tension
Dist (top, bot, 

center)
1x compression

9 IPE200 3-18 - - SS-SS Out My+N 0.08-10 1, 0, -1 875
HE300B Dist., Conc.
IPE500

2213

Uniform 
(Ofner)
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Figure 6.31: Scatter plot: All results 

The comparison is performed based on statistical parameters, obtained for the ratios re/rt, where 

re is the result from the numerical simulations and rt is the result from the general formulation. 

The ratio re/rt is higher (respectively lower) than unity when the “theoretical” result is a safe-

sided (respectively non-conservative) estimate. 

Table 6.9 and Figure 6.31 show very good agreement between numerical and theoretical results, 

considering that the parametric study consists of “non-standard” members (with restraints, fixed 

supports, varying geometry along the member length, etc.). For uniform members, the results 

present similar accuracy when compared to Method 1 and better than Method 2 (see Table 6.5) 
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Table 6.9 - Statistical parameters 

Subset n Average Cov Min Max N 

<0.95 

N 

>1.1 

All 2213 1.05 5.2 0.878 1.205 34 398 

Uniform 1174 1.04 5.2 0.878 1.205 20 170 

Taper D 270 1.08 4.98 0.966 1.188 - 118 

Taper S 419 1.03 4.8 0.933 1.185 5 46 

Parabolic 350 1.05 4.98 0.905 1.187 9 64 

Columns 239 1.03 5.1 0.946 1.177 1 35 

Beams 400 1.03 4.9 0.924 1.185 10 46 

Beam-

Columns 

1574 1.05 5.2 0.878 1.205 23 317 

Rolled 1163 1.04 4.95 0.929 1.205 6 138 

Welded 1050 1.05 5.4 0.878 1.188 28 260 

 

Table 6.9 and Figure 6.31 show that the welded cases have more cases in percentage to the total 

which fall higher than 1.1 or lower than 0.95. This safety issue is directly linked to the 

imperfection factors used for welded sections. In Marques (2012), it was shown that the 

Eurocode 3 imperfection factors are unsafe in the intermediate slenderness range for welded 

cross-sections and they become over conservative for members with normalized slenderness 

ratio higher than 1.0. 

6.8.5 Comparison with analytical methods from Marques (2012) 

6.8.5.1 Scope 

Furthermore, the method is compared with the theoretical method from Marques (2012) for 

flexural and lateral-torsional buckling of web-tapered columns and beams. The approach 

adopted by Marques (2012) relies on the exact critical location and the comparison is useful to 

evaluate the impact of the approximation for the critical location of the GF. 
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For the evaluation of results, the following methodologies are considered: 

x GMNIA – Results given by the numerical models (geometrically and materially 

nonlinear analysis with imperfections); 

x Application of proposed procedure for: 

� Flexural buckling of columns,  (Eq. (6.34) ) and the theoretical method from 

Marques et al. (2012) (LM) (Eq.(2.80)) 

� Lateral-torsional buckling of beams (Eq.) and the theoretical method from Marques 

et al. (2013) (LM) (Eq.(2.86)): 

6.8.5.2 Application of the method 

Firstly, the shape of the utilization ratio was studied for the general formulation in comparison 

with the theoretical derivation given in Marques (2012). An example is illustrated in Figure 

6.32 for a tapered column with taper ratio γh=γb=3 loaded with uniformly distributed axial force. 

The utilization ratio is plotted for the load multiplier αb along the column length. Both terms of 

the utilization ratio are separated, the utilization due to normal stresses due to applied forces 

(designated as εI) and normal stresses due to second order forces (designated as εII) and the sum 

of both – εtot.  

 

Figure 6.32: Utilization ratio 

Since the amplification relationship is slightly different, the expected deviation in the critical 

position is inevitable as shown in Figure 6.32, the second order utilization for both methods are 
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different. However, in terms of maximum load multiplier αb, both methods lead to similar 

predictions. 

These comparisons are carried out for the same cases used to calibrate the theoretical model of 

Marques et al. (2012) and (2013) for flexural buckling of web-tapered columns and lateral-

torsional buckling of web-tapered beams. These are the cases #5 and #6 from Table 6.8. 

6.8.5.3 Tapered members – comparison with cases from Marques et al. (2012) and 

(2013). 

The comparison is performed for the reduction factor χ (xc
I), where in Figure 6.33a, Figure 

6.34a and Figure 6.35a, the results for in plane, out-of-plane and lateral-torsional buckling are 

plotted.  

The results are presented as a buckling curve representation (Figure 6.33a, Figure 6.34a, 

Figure 6.35a) where the abscissa is set to the normalized slenderness for the smallest cross-

section so that, the predictions by the GF, GMNIA  and the theoretical method from Marques 

et al. (2012) and (2013), are compared for the same normalized slenderness. The GF compares 

well providing similar resistances to GMNIA and the theoretical method proposed in Marques 

et al. (2012) and (2013). 

 
(a) In plane buckling 

 
(b) Scatter plot 

Figure 6.33: Theoretical vs experimental resistance – major axis flexural buckling 
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(a) Out-of-plane buckling 

 
(b) Scatter plot 

Figure 6.34: Theoretical vs experimental resistance – minor axis flexural buckling 

Table 6.10 summarizes the statistical parameters for the two cases: flexural buckling and lateral-

torsional buckling. Regarding tapered members, the mean value of the ratios 

χGMNIA(xc
I)/χMethod(xc

I) is slightly higher than unity with small coefficient of variation, thus 

indicating a good precision of both methods. 

 
(a) Lateral-torsional buckling 

 
(b) Scatter plot 

Figure 6.35: Theoretical vs experimental resistance – lateral torsional buckling 

Figure 6.33b, Figure 6.34b and Figure 6.35b summarize the scatter plots for both methods and 

for the three buckling modes considered in this assessment, where the ordinate is the theoretical 

estimation αb,model and the abscissa is the αb,GMNIA.  
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Table 6.10: Statistical parameters αb,GMNIA/ αb,model 

Buckling mode In plane (y-y) Out-of-plane (z-z) LTB 

LM GF LM GF LM GF 

Mean 1.03 1.05 1.02 1.03 1.01 1.02 

C.o.V  5% 5% 5% 4% 2.2% 3.4% 

 

  

a) taper ratio γh=1.2 b) taper ratio γh=2 

  

c) taper ratio γh=3 c) taper ratio γh=5 

Figure 6.36 – Critical locations for lateral-torsional buckling of web-tapered beams 
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The critical location was also assessed the GF, GMNIA and the theoretical method from 

Marques et al. (2012) and (2013). Figure 6.36 shows the variation of the critical location with 

increase of the member slenderness for web-tapered members with taper ratios 1.2, 2, 3 and 5 

under constant bending moment. For the analysed cases, the critical location for the three 

methods was not found very different. 

6.8.6 Comparison with the General Method 

In this section comparison with the General Method given in clause 6.3.4 of Eurocode 3 (2005) 

is presented. The assessment was performed for a set of tapered members, Cases #1 from Table 

6.8, which are simply supported, or with one end fixed, or with restraints to the tension flange.  

The General Method was applied according to the recommendations of section 6.3.4, the in-

plane resistance was obtained by using GMNIA in-plane with magnitude of the initial 

imperfection L/1000. The buckling curve used is curve c welded section in flexural buckling 

out-of-plane or lateral-torsional buckling General Case (for the smallest cross-section). 

Figure 6.37 Scatterplot: Method vs General method 

The scatterplots for both methods are given in Figure 6.37, the numerical results are plotted on 

the abscissa and the calculated estimations by both methods are on the ordinate. Table 6.11 

summarizes the statistical parameters for the General formulation and the General Method. The 

direct comparison of both methods on the basis of the statistical parameters favours the 
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proposed method: lower scatter and mean value of the ratio re/rt much closer to unity than the 

General method.  

Table 6.11 – Statistical parameters 

 Subset Mean  C.o.v Min  Max  N N<1 N<0.97 

G
en

er
al

 fo
rm

ul
at

io
n 

All 1.08 4.98% 0.966 1.188 270 19 - 

SS-SS 1.08 4.2% 0.973 1.155 90 8 - 

Restraint 1.07 5.1% 0.966 1.169 90 5 1 

SS-Fix 1.09 5.5% 0.976 1.188 90 6 - 

G
en

er
al

 m
et

ho
d 

All 1.28 7.7% 1.079 1.567 270 - - 

SS-SS 1.25 8.1% 1.113 1.567 90 - - 

Restraint 1.31 6.5% 1.162 1.566 90 - - 

SS-Fix 1.27 7.9% 1.079 1.514 90 - - 

 

6.9 Example 

Finally, an illustrative example is proposed to demonstrate the application of the General 

formulation. For this purpose, consider the beam-column shown in Figure 6.38. The first 5 

meters of the member are with uniform cross-section 250x200x8x16, while the last 2.5 m web-

tapered section which has a depth at the deepest cross-section equal to 500 mm.   

The member is simply-supported at one end allowing for the longitudinal displacement and is 

fully-fixed at the other end. A discrete intermediate restraint at the bottom flange is added at 

the change of the cross-section. The applied loads are a concentrated axial force, a concentrated 

major axis bending moment at the left end and a uniformly distributed load along the member. 

In this example, the verification of the in-plane buckling mode is omitted because it is not 

critical.  
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The general application of the method is summarized in the flowchart of Figure 6.39, where 

firstly the user shall determine the eigenmode and the corresponding critical load factor Dcr by 

linear buckling analysis. It is noted that the critical load multiplier should be higher than unity 

so that the verification would make sense.  

 

Figure 6.38 – Design example: geometry and first-order internal forces 

 

Figure 6.39 - Application of the method 

In this case, the critical load factor corresponding to the applied forces is: 

௖௥ߙ ൌ ʹǤʹͶ ൒ ͳǤͲ (6.79) 

Cross-section

Calculate eigenmode 
and its derivatives

Calculate xm, Ncr,z,eq, fη
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Evaluate              ࡺࡹࢿ
ࡵ ࢞

Evaluate              ࡺࡹࢿ
ࡵࡵ ࢞

Evaluate              ࡺࡹࢿ ࢞

Check              ࡺࡹࢿ ࢞ ൑ ૚
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End.
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The mode shapes are shown in Figure 6.40 for the lateral displacement vcr(x) and the twist 

rotation Tcr(x). The discontinuity in the second derivative of the twist rotation is explained by 

the change of the cross-section and the torsional properties of the whole segment. The second 

derivatives, in this case, are obtained numerically using central finite differences, alternatively, 

they can be automatically supplied by the software.  

  

Figure 6.40 – Mode shapes 

They are used to compute the location where maximum amplitude of the imperfection is taken 

and its magnitude from Eq. (6.72). The location xm in this case is at 2.01m from the left beam 

end. Then the equivalent critical force Ncr,z,eq is calculated from Eq.(6.61) : 

௖ܰ௥ǡ௭ǡ௘௤ ൌ
௠ሻȁݔԢԢ௖௥ሺݒ௠ሻȁݔ௭ሺܫܧ

ȁݒ௖௥ሺݔ௠ሻȁ
ൌ
ʹͳͲͲͲͲ ൈ ͳͲଷ ൈ ͲǤͲʹͳ͵Ͷ ൈ ͳͲିଷ ൈ ȁെͲǤʹ͸ȁ

ͲǤ͸ʹ
 

௖ܰ௥ǡ௭ǡ௘௤ ൌ ͳͺ͹͸Ǥ͸݇ܰ 

(6.80) 

and the constant factor in Eq. (6.74) becomes: 

ఎ݂ ൌ
௖ܰ௥ǡ௭ǡ௘௤

௠ሻݔᇱᇱ௖௥ሺݒ௠ሻሺݔ௭ሺܫܧ ൅ ݄ሺݔ௠ሻ ʹΤ ௠ሻݔሺ̶ߠ ൅ ௠ሻሻݔ௠ሻ݄ᇱሺݔᇱሺߠ
ൌ 

ͳͺ͹͸Ǥ͸݇ܰ
ʹͳͲͲͲͲ ൈ ͳͲଷ ൈ ͲǤͲʹͳ͵Ͷ ൈ ͳͲିଷሺͲǤʹ͸ ൅ ͲǤͳʹͷ ൈ ͲǤͺͲʹ ൅ ͲǤ͹Ͷͷ ൈ Ͳሻ

ൌ ͳǤͳͷ 

(6.81) 

Finally, the utilization shall be verified at several locations along the member. For this, the 

member was divided into nCS=15 parts 0.5 m each, as shown in Figure 6.41. The verification 
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of the utilization ratio is performed at each of the 16 cross-sections with the member geometry 

and loading corresponding to the respective location.  

 

Figure 6.41 – Verification locations 

The values corresponding to the eigenmode are given in Table 6.12. 

Table 6.12 – Example: mode shape data 

 

The required geometrical properties are given in Table 6.13. 

The total utilization ration is calculated from Eq. (6.73), also given as: 

ሻݔெேሺߝ ൌ ெேߝ
ூ ሺݔሻ ൅ ெேߝ

ூூ ሺݔሻ ൑ ͳǤͲ (6.82) 

In all expressions where there is a quantity (x) it means that it varies along the member. 

nCS x h h' vcr v'' θcr θ'cr θ''cr d(x)
- m mm - - m-2 m-1 m-2 m-3 -

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
1 0.0 250 0.00 0.00 -0.001 0.00 1.68 0.00 0.00
2 0.5 250 0.00 0.22 -0.108 0.84 1.64 -0.26 0.32
3 1.0 250 0.00 0.41 -0.191 1.61 1.44 -0.55 0.61
4 1.5 250 0.00 0.55 -0.243 2.26 1.12 -0.73 0.83
5 2.0 250 0.00 0.629 -0.263 2.73 0.75 -0.80 0.97
6 2.5 250 0.00 0.65 -0.238 3.00 0.35 -0.80 1.02
7 3.0 250 0.00 0.60 -0.180 3.08 -0.02 -0.70 0.99
8 3.5 250 0.00 0.52 -0.100 2.98 -0.36 -0.68 0.89
9 4.0 250 0.00 0.41 -0.010 2.72 -0.68 -0.63 0.75

10 4.5 250 0.00 0.30 0.078 2.31 -0.97 -0.60 0.59
11 5.0 250 0.00 0.21 0.141 1.75 -1.26 0.00 0.42
12 5.5 300 0.10 0.11 0.140 1.15 -1.08 0.45 0.28
13 6.0 350 0.10 0.05 0.119 0.67 -0.85 0.48 0.16
14 6.5 400 0.10 0.01 0.084 0.31 -0.60 0.55 0.07
15 7.0 450 0.10 0.00 0.043 0.08 -0.31 0.60 0.02
16 7.5 500 0.00 0.00 -0.001 0.00 0.00 0.00 0.00
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The utilization due to first order forces ߝூሺݔሻ is determined for each cross-section using the diagrams 

Figure 6.38: 

ெேߝ
ூ ሺݔሻ ൌ ாܰௗሺݔሻ

�ሺݔሻ ௬݂
൅
ሻݔ௬ǡாௗሺܯ

௬ܹሺݔሻ ௬݂
 

(6.83) 

The obtained results are given by column (7) in Table 6.14. 

The second order utilization is calculated in column (8) of Table 6.14 by using the following 

expression: 

ሻݔூூሺߝ ൌ
ሻݔ௭ሺܫܧ ൬ݒԢԢ௖௥ሺݔሻ ൅

݄ሺݔሻ
ʹ ሻݔ௖௥ሺ̶ߠ ൅ ሻ൰ݔሻ݄ᇱሺݔԢ௖௥ሺߠ

ሻݔሺܣ ௬݂ሺߙ௖௥ െ ͳሻ
 ሻݔሺߟ�

(6.84) 

The generalized imperfection calculated according to Eq. (6.72): 

ሻݔሺߟ ൌ ሻݔҧሺߣሻ൫ݔሺߙ െ ͲǤʹ൯ߜሺݔሻ ఎ݂ ൌ ͳǤͳͷߙሺݔሻ൫ߣҧሺݔሻ െ ͲǤʹ൯ߜሺݔሻ (6.85) 

Table 6.13 – Example: cross-section properties 

 

with the mode shape at the compression flange (see column (10) of Table 6.12): 

ሻݔ௙௟ሺߜ ൌ ሻݔ௖௥ሺݒ ൅
݄ሺݔሻ
ʹ

 ሻ (6.86)ݔ௖௥ሺߠ

and the imperfection factor ߙሺݔሻ calculated as an interpolated value from Eq. (6.12): 

nCS x A Wy,pl Wy,el Wz,el Iz NRd My,Rd

- m mm2x102 mm3x103 mm3x103 mm3x103 mm4x104 kN kNm
(1) (2) (3) (4) (5) (6) (7) (8) (9)
1 0.0 81.440 843.8 757.2 213.43 2134.3 1913.8 198.3
2 0.5 81.440 843.8 757.2 213.43 2134.3 1913.8 198.3
3 1.0 81.440 843.8 757.2 213.43 2134.3 1913.8 198.3
4 1.5 81.440 843.8 757.2 213.43 2134.3 1913.8 198.3
5 2.0 81.440 843.8 757.2 213.43 2134.3 1913.8 198.3
6 2.5 81.440 843.8 757.2 213.43 2134.3 1913.8 198.3
7 3.0 81.440 843.8 757.2 213.43 2134.3 1913.8 198.3
8 3.5 81.440 843.8 757.2 213.43 2134.3 1913.8 198.3
9 4.0 81.440 843.8 757.2 213.43 2134.3 1913.8 198.3

10 4.5 81.440 843.8 757.2 213.43 2134.3 1913.8 198.3
11 5.0 81.440 843.8 757.2 213.43 2134.3 1913.8 198.3
12 5.5 85.440 1052.4 946.8 213.45 2134.5 2007.8 247.3
13 6.0 89.440 1271.0 1143.2 213.47 2134.7 2101.8 298.7
14 6.5 93.440 1499.6 1346.5 213.49 2134.9 2195.8 352.4
15 7.0 97.440 1738.2 1556.4 213.51 2135.1 2289.8 408.5
16 7.5 101.440 1986.8 1773.1 213.53 2135.3 2383.8 466.9
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ሻݔሺߙ ൌ ሻݔ௅்ሺߙ ൬ͳ െ
߶
ʹ
൰ ൅ ௭ߙ

߶
ʹ

 (6.87) 

with imperfection factor ߙ௭ ൌ ͲǤͶͻ according to Table 2.2 for welded prismatic columns, and 

 :௅் for welded prismatic beams from Table 2.6ߙ

ሻݔ௅்ሺߙ ൌ ͲǤʹͳඨ ௘ܹ௟ǡ௬ሺݔሻ
௘ܹ௟ǡ௭ሺݔሻ

൑ ͲǤ͸Ͷ (6.88) 

The ratio of the applied loads ߶ is taken at the most loaded cross-section with first order forces 

(in this case section 1): 

߶ ൌ
௬ǡ௣௟ܯ ௬ǡாௗΤܯ

௣ܰ௟ ாܰௗΤ ൌ
ͳͻͺǤ͵ ͺͻΤ

ͳͻͳ͵Ǥͺ ͺͷͻǤͶΤ ൌ
ʹǤʹʹͺ
ʹǤʹʹͺ

ൌ ͳǤͲ (6.89) 

Then Eq. (6.87) becomes: 

ሻݔሺߙ ൌ ͲǤͷߙ௅்ሺݔሻ ൅ ͲǤͶͻ ൈ ͲǤͷ ൌ ͲǤͷߙ௅்ሺݔሻ ൅ ͲǤʹͶͷ (6.90) 

The variation of the imperfection factor is given in column (3) of Table 6.14. 

Table 6.14 – Example: verification 

 

The obtained utilization ratio along the member is plotted in Figure 6.42. It reaches a maximum 

at the 2 m and the maximum utilization is 0.977. The actual maximum utilization, where 

ሻݔெேሺߝ ൌ ͳǤͲ, is found at 1.82 m. 

nCS x α MyEd NEd εI
MN εII

MN εMN
- m - - kNm kN - - -

(1) (2) (3) (4) (5) (6) (7) (8) (9)
1 0.0 0.443 1.01 89.0 859.4 0.90 0.00 0.90
2 0.5 0.443 1.01 81.7 859.4 0.86 0.03 0.89
3 1.0 0.443 1.01 73.3 859.4 0.82 0.12 0.93
4 1.5 0.443 1.01 63.8 859.4 0.77 0.20 0.975
5 2.0 0.443 1.01 53.1 859.4 0.72 0.26 0.977
6 2.5 0.443 1.01 41.3 859.4 0.66 0.25 0.91
7 3.0 0.443 1.01 28.4 859.4 0.59 0.20 0.79
8 3.5 0.443 1.01 14.3 859.4 0.52 0.12 0.64
9 4.0 0.443 1.01 0.8 859.4 0.45 0.05 0.50

10 4.5 0.443 1.01 17.1 859.4 0.54 0.07 0.60
11 5.0 0.443 1.01 34.5 859.4 0.62 0.04 0.67
12 5.5 0.466 1.03 33.7 859.4 0.56 0.04 0.60
13 6.0 0.488 1.06 32.9 859.4 0.52 0.01 0.53
14 6.5 0.509 1.08 32.0 859.4 0.48 0.01 0.49
15 7.0 0.528 1.10 31.2 859.4 0.45 0.00 0.45
16 7.5 0.548 1.13 30.4 859.4 0.43 0.00 0.43

ҧߣ
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In this example, the loading was chosen so that it corresponds to the member resistance; 

however, the verification is valid for lower loads as well. 

 

Figure 6.42 - Utilization ratio 

Furthermore, this verification is compared to GMNIA result. The geometrical imperfection was 

considered with an equivalent length of 5 m corresponding to the inflexion point of the 

deformation of the compression flange (see Figure 6.43). This leads to 5.8% higher resistance 

than the one obtained with the general formulation. 

 

Figure 6.43 – Eigenmode for the applied loading 

For comparison, the General Method is also applied. According to Eurocode 3, as summarized 

in Section 2.3.4. The critical load multiplier for the applied loads is given in Eq. (6.79). The 

ultimate load multiplier was obtained from in-plane GMNIA as: 
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௨௟௧ǡ௞ߙ ൌ ͳǤʹʹͶ (6.91) 

Hence, the normalized slenderness becomes: 

ҧ௢௣ߣ ൌ ඨ
௨௟௧ǡ௞ߙ
௖௥ǡ௢௣ߙ

ൌ ඨͳǤʹʹͶ
ʹǤʹͶ

ൌ ͲǤ͹͵ͻ (6.92) 

The buckling curve for minor axis flexural buckling of welded prismatic columns and lateral-

torsional buckling of prismatic beams (General Case) of the prismatic part is curve c, which 

gives an imperfection factor D=0.49: 

߶௢௣ ൌ ͲǤͷ ቀͳ ൅ ҧ௢௣ߣ൫ߙ െ ͲǤʹ൯ ൅ ҧ௢௣ߣ
ଶቁ ൌ ͲǤͷሺͳ ൅ ͲǤͶͻሺͲǤ͹͵ͻ െ ͲǤʹሻ ൅ ͲǤ͹͵ͻଶሻ

ൌ ͲǤͻͲʹ 
(6.93) 

The reduction factor is calculated from: 

߯௢௣ ൌ
ͳ

߶௢௣ ൅ ට߶௢௣
ଶ െ ҧ௢௣ߣ

ଶ
ൌ

ͳ
ͲǤͻͲʹ ൅ ξͲǤͻͲʹଶ െ ͲǤ͹͵ͻଶ

ൌ ͲǤ͹Ͳʹ (6.94) 

Finally, the verification is performed: 

߯௢௣ߙ௨௟௧ǡ௞
ெଵߛ

ൌ
ͲǤ͹Ͳʹ ൈ ͳǤʹʹͶ

ͳǤͲ
ൌ ͲǤͺ͸ ث ͳǤͲ (6.95) 

The verification according to the General Method is not satisfied and therefore a larger cross-

section should be used to resist the applied force. 

6.10  Summary 

In this chapter, a general formulation for the stability design of steel columns, beams and beam-

columns with variable geometry, loads and supports was presented. The approach uses the 

buckling mode as shape of the initial imperfection and amplitude previously calibrated for the 

standard prismatic simply-supported columns and beams according to Eurocode 3.  

The method was presented in its general form in a universal format covering any buckling 

mode. The various buckling modes are discussed separately, highlighting specific aspects of 

the member behaviour. 



STABILITY DESIGN OF STEEL COLUMNS, BEAMS AND BEAM-COLUMNS: 
BEHAVIOUR, GENERAL FORMULATION AND RELIABILITY 

 

 
 

220 |

It was demonstrated that the general approach is more flexible in comparison to a procedure 

that relies on unavoidable calibration for each possible effect that might cause difference form 

the uniform member, as non-uniform members, non-standard loading cases, or irregular 

distribution of restraints, etc.  

The method was thoroughly validated by comparison with a large number of advanced 

numerical simulations, yielding very good results with low scatter. Additionally, for standard 

prismatic members, its accuracy was similar to the results obtained with the code prescriptions 

of clauses 6.3.1, 6.3.2 and 6.3.3 of EC3-1-1. 
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7 CONCLUSIONS AND FUTURE 

RESEARCH 

7.1 Conclusions 

The goal of this thesis was to contribute towards safer yet economic stability design rules, which 

are general, but mechanically consistent. The goal was pursued by: i) data collection for basic 

variables relevant to the stability design in order to provide realistic estimations for their 

distributions; ii) safety assessment of the existing stability design rules to ensure that the 

existing imperfection factors correspond to the target reliability in the Eurocodes; and iii) the 

development of a general formulation for stability design of columns, beams and beam-

columns.  

Relatively to the first objective, the data collection for basic variables relevant to stability 

design rules, it was carried out in the scope of the European project SAFEBRICTILE. Data for 

material properties of steel were collected from: i) steel profiles and plates in different steel 

grades fabricated in 2013 and 2014; coupon tests performed at universities around Europe; iii) 

from the literature (collection in Simões da Silva et al., 2009) and data collected within the 

framework of the European project OPUS). Concerning the geometrical properties, data 

collection for geometrical properties of steel H and I profiles, according to the specifications of 

EN 10034:1993, was performed among several steel producers in Europe: ArcelorMittal, 

Dillinger, Salzgitter, Stahlwerk-Thueringen, TataSteel and also among the partners of the 

SAFEBRICTILE project. This collection allowed for the recommendation of normalized 

distributions about the material and geometrical properties of rolled steel profiles. These 
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recommendations were considered in the final draft of prEN 1993-1-1 (CEN/TC250, 2017) for 

calibration of partial factors in its Annex E.  

Furthermore, the data collection was extended to the member imperfections as a part of the 

experiments carried out on web-tapered members. The collection provided valuable 

information for the distributions of the imperfections for welded sections. The collected data 

for member imperfections was combined with the results from the experiments: out-of-

straightness and residual stresses. It was shown that despite the high variation, the mean values 

of the member imperfections were lower than those assumed in the calibration of the buckling 

curves (Strating & Vos, 1973; Beer & Schulz, 1970), in line with the values assumed in the 

AISC standard, which allows for further studies in this field and improvement of the accuracy 

of the Eurocode 3-1-1 design rules. 

Moreover, as a part of the second objective, safety assessment of the European stability 

design rules on members in compression, bending and combination of bending and 

compression. The results obtained led to the following main conclusions: the partial factor JM1 

for buckling resistance of columns, beams and beam-columns may be kept as JM1=1.0 for the 

current mix of steels that are sold in Europe (i.e., that match the standard characterization for 

the tensile properties of steel, cross-section geometry and Young’s modulus that are included 

in Annex E of EN 1993-1-1 (2017) and result from the SAFEBRICTILE project), provided that 

the yield stress of steel is taken from product standards (EN 10025-2:2004) and into account 

the modified specification of buckling curves in prEN1993-1-1(2017). Additionally, the 

following conclusions are also highlighted: 

� Influence of the adopted minimum yield stress using EN 10025 or Table 3.1 of Eurocode 

3: the level of the minimum yield stress was assessed for both minor and major axis of 

flexural buckling of hot-rolled columns. It was shown that in both cases the values 

proposed in EC3 can reach up to 10% non-conservative in certain cases. These 

conclusions are considered applicable for beams and beam-columns. 

� Imperfection factor for flexural-buckling of columns about minor axis which are made 

of steel grade S460: it was shown that the imperfection factor currently prescribed for 

flexural buckling of steel columns made of S460 about the minor axis is not adequate. 

This change is already taken into consideration in the final draft of the new version 

Eurocode 3. 
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� For beams, the results highlight a strong sensitivity of JM1
* to the subsets that are 

considered in the calculation. This trend is also confirmed by comparing these results 

with the corresponding results from Rebelo et al. (2009) and Simões da Silva et al. 

(2009). This difference led to the consideration of a lower tail approximation that 

significantly improved the homogeneity of results. 

� Regarding the different design methods for LTB considered, the conservative nature of 

the General Case was confirmed, the Special Case systematically led to higher values 

of JM1
* for the majority of subsets and the accuracy of the New EC3 method was 

confirmed. Concerning this method, an adjustment of the imperfection factors is 

proposed for cross-sections with h/b >1.2 and flange thickness higher than 40 mm, 

because this geometric range was not considered in the original derivation of the 

imperfection factors. This change is already implemented in the final draft of prEN 

1993-1-1; 

� Regarding beam-columns, the results for the different buckling modes, with and 

without, lateral-torsional buckling were found very similar, showing that the interaction 

coefficients are calibrated with sufficient accuracy for both cases. 

� The results highlight lower JM1
* - values than the ones calculated for columns and beams 

separately and thus indicating that the interaction factors are provide enhanced safety; 

Finally, a general formulation for the buckling resistance of single members built-up or 

not, uniform or not, with complex support conditions or not was developed in line with the 

third objective. It relies on the consistent identification of the second order contributions in 

accordance with the applied loading, amplified by the imperfection according to the critical 

buckling mode. The verification is implemented as a sequence of cross-section verifications 

along the member length. 

This general formulation is easily implemented as an additional cross-sectional verification or 

has a hand calculation procedure, provided the user can obtain the shape of the buckling mode 

and its derivatives. This is of enormous practical interest for the design of steel structures as it 

eliminates one of the major barriers in the stability verification of steel structures, as it greatly 

simplifies the implementation in structural design software. 

The method was thoroughly validated by comparison with a large number of advanced 

numerical simulations, yielding very good results with low scatter. Additionally, for standard 
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prismatic members, its accuracy was similar to the results obtained with the code prescriptions 

of clauses 6.3.1, 6.3.2 and 6.3.3 of EC3-1-1. 

7.2 Future research   

The work carried out in the scope of this thesis has its limitations. In the following paragraph, 

the aspects which are considered worth exploring in the future are summarized: 

� Reliability assessment of the stability design rules for welded sections. The 

reliability assessment of the stability design rules in Chapter 5 was carried out for hot-

rolled sections; it is important extending it to welded sections since these are frequently 

used in steel design practice and it is important to ensure that they retain the same level 

of safety. 

� The data collection on material and geometrical properties and imperfections shall be 

continued in order to provide a solid base for future assessments and calibration of new 

design rules. This can be easily achieved by maintaining the European database of steel 

properties developed in the scope of SAFEBRICTILE. 

� Imperfection factors for members in HSS. Nowadays, the use of high strength steels 

is continuously increasing. This requires the adjustment the stability design rules in 

order to incorporate the specific aspects related to the use of HSS, such as for example, 

more favourable residual stress distributions, enhanced material properties, different 

plastic behaviour, etc. 

� Plasticity effects at low slenderness. In the development of the general formulation it 

was noted that it requires an adjustment to account for plasticity effects in the low 

slenderness. Their incorporation shall be achieved in a transparent way so that it can be 

applied to various types of members, loading and support conditions. 

� Extend the scope of the validation. The general formulation was validated for I-

sections and various types of members, loading and supports. This validation should be 

extended to different types of cross-sections, slender cross-sections and bi-axial 

bending. 



7 CONCLUSIONS AND FUTURE RESEARCH 

 

 
 

 

| 225 

7.3 Publications 

The research carried out in the scope of this thesis has resulted in the following publications by 

the time of its submission. 

7.3.1 Publications in international journals (ISI) 

� Tankova T., Simões da Silva L., Marques L., Rebelo C., Taras A., (2014). Towards a 

standardized procedure for the safety assessment of stability design rules, In: Journal 

of Constructional Steel Research, 103, pp. 290-302. 

http://dx.doi.org/10.1016/j.jcsr.2014.09.010 

 

� Simões da Silva L., Tankova T., Marques L, Rebelo C., (2016). Safety assessment of 

Eurocode 3 stability design rules for the flexural buckling of columns, In: Advanced 

Steel Construction – an International Journal, 12(3), pp. 328-358. 

http://dx.doi.org/10.18057/IJASC.2016.12.3.7 

 

� Tankova T., Marques L., Simões da Silva L., Andrade A., (2017). A consistent 

methodology for the out-of-plane buckling resistance of prismatic beam-columns, In: 
Journal of Constructional Steel Research, 128, pp. 839-852. 

http://dx.doi.org/10.1016/j.jcsr.2016.10.009 

 

� Tankova T., Martins J. P., Simões da Silva L., Simões R., Craveiro H., (2018). 

Experimental Buckling Behaviour of Web Tapered I-Section Steel Columns. In: Journal 

of Constructional Steel Research, 147, pp. 293-312. 

https://doi.org/10.1016/j.jcsr.2018.04.015 

 

� Tankova T., Martins J. P., Simões da Silva L., Marques L., Craveiro H., Santiago A. 
Experimental Lateral-Torsional Buckling Behaviour of Web Tapered I-Section Steel 

Beams, In: Engineering Structures, 168, pp. 355-370 

https://doi.org/10.1016/j.engstruct.2018.04.084 

 

http://dx.doi.org/10.1016/j.jcsr.2014.09.010
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� Simões da Silva L., Tankova T., Marques L., Rebelo C., Taras A. (2019). Safety 

assessment of Eurocode 3 stability design rules for the lateral-torsional buckling of 

beams, In: Advanced Steel Construction – an International Journal, 15(1). 

 

� Tankova T., Simões da Silva L., Marques L. Stability verification of non-uniform steel 

members based on stress utilization: a general approach, Submitted to Journal of 

Constructional Steel Research 19 April 2018. 

 

7.3.2 Other journals 

� Simões da Silva L., Tankova T., Marques L., (2016). On the safety of European stability 

design rules for steel members, In: Structures, Invited paper for Special Edition 

dedicated to ICASS 2015, 8, 157-169. 

http://dx.doi.org/10.1016/j.istruc.2016.07.004  

 

� Tankova T., Marques L., Simões da Silva L., (2016). Método geral para a verificação 

da estabilidade de elementos estruturais metálicos, In: Revista da Estrutura de Aço, 

Centro Brasileiro da Construção em Aço, 5(3), pp 162-179.  

 

7.3.3 Publications in international conference proceedings 

� Tankova T., Marques L., Taras A., Simões da Silva L., Rebelo C., (2014). Development 

of a simplified probabilistic methodology for safety assessment of stability of steel 

structures, Eurosteel 2014, 7th European Conference on Steel and Composite 

Structures, Naples, Italy, September, 10-12.  

 

� Tankova T., Simões da Silva L., Marques L., Andrade A. (2015), Proposal of an Ayrton-

Perry design methodology for the verification of flexural and lateral-torsional buckling 

of prismatic beam-columns, In: Proc. Eight International Conference on Advances in 

Steel Structures, Lisbon, Portugal, July 22-24.  

 

� Simões da Silva L., Marques L., Tankova T. (2015), On the safety of stability design 
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NOTATIONS 
 

Lowercase Latin letters 

a0, a, b, c, d Class indexes for buckling curves according to EC3-1-1 

b Cross-section width/ Retrogression coefficient 

e0 Maximum amplitude of a member imperfection 

fy Yield stress 

h Cross-section height 

hmax Maximum cross section height 

hmin Minimum cross section height 

hxc
II

,lim Cross-section height at xc,lim
II 

kyy, kzy, kyz, kzz Interaction factors dependent of the phenomena of instability and plasticity 

involved 

n Number of cases 

r0 Polar radius of gyration 

re Experimental resistance 

rt Theoretical resistance 

tf Flange thickness 

tw Web thickness 
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v(x) Transverse displacement along z-axis 

v0(x) Initial transverse displacement along z-axis 

vcr(x) Transverse displacement component of the mode shape along z-axis 

w(x) Transverse displacement along y-axis 

w0(x) Initial transverse displacement along y-axis 

wcr(x) Transverse displacement component of the mode shape along y-axis  

xc,lim
II Second order failure cross section for a high slenderness level 

xc,N
i, xc,M

i, xc,MN
i Denomination of the failure cross section (to differentiate from the type of 

loading it refers to): N – do to axial force only; M – due to bending moment 

only; MN – due to the combined action of bending moment and axial force 

xc
I First order failure cross section 

xc
II Second order failure cross section 

xmin   Location corresponding to the smallest cross section 

x-x Axis along the member 

y-y Cross-section axis parallel to the flanges 

z-z Cross-section axis perpendicular to the flanges 

 

Uppercase Latin letters 

A Cross-section area 

Ag Gross cross-section area 

Amin Cross-section area of the smallest cross section in of a tapered member 

Cb  Lateral-torsional buckling modification factor 

Cm Equivalent moment factor according to clause 6.3.3 
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CmS Equivalent moment factor  

Cii,, Cji Plasticity factors according to clause 6.3.3 

Cw  Warping constant 

E Modulus of elasticity 

Ed  Design value of the actions 

Fe Elastic critical stress 

Fy  Specified minimum yield stress 

G Shear modulus 

It Torsional moment 

Iy Moment of inertia y-axis 

Iz Moment of inertia z-axis 

J  Torsional constant 

L Member length 

Lb Length between points that are either braced against lateral displacement of 

the compression flange or braced against twist of the cross section 

Lp  Limiting length 

Lr Limiting length 

M Bending moment 

Mb,Rd Design buckling resistance moment 

Mcr Elastic critical moment 

Mc,x Factored buckling strength about x-x axis 

Mc,y Factored buckling strength about y-y axis 

MEd Design bending moment 
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Mn  Nominal flexural strength 

Mp  Plastic bending moment 

Mr,x  Maximum bending moment design value about x-x axis 

Mr,x  Maximum bending moment design value about y-y axis 

Mpl,y,Rd Design value of the plastic resistance to bending moments about y-y axis 

My Bending moments, y-y axis  

My,Ed Design bending moment, y-y axis 

Mpl,z,Rd Design value of the plastic resistance to bending moments about z-z axis 

Mz Bending moments, z-z axis  

Mz,Ed Design bending moment, z-z axis 

N Normal force 

Ncr Elastic critical force  

Ncr,x Elastic critical force for torsional buckling 

Ncr,y Elastic critical force for in-plane buckling 

Ncr,z Elastic critical force for out-of-plane buckling 

NEd Design normal force 

Npl Plastic resistance to normal force at a given cross section 

Npl,Rd Design plastic resistance to normal forces of the gross cross section 

Pc Factored buckling strength 

Pf  Probability of failure 

Pn Nominal buckling strength 

Pr  Maximum axial design values acting on the member 

Rd  Design value of the resistance 



NOTATIONS 
 

 

 
 

 

| 247 

Sx  Elastic section modulus about the x-axis 

Ww Elastic warping modulus  

Wy,el Elastic section modulus y-y axis 

Wy,pl Plastic section modulus y-y axis 

Wz,el Elastic section modulus z-z axis 

Wz,pl Plastic section modulus z-z axis 

Zx  Plastic section modulus about the x-axis 

 

Uppercase Greek letters 

Φ  Cumulative distribution function (CDF) for the standard normal distribution 

 

Lowercase Greek letters 

α Angle of taper 

αE  FORM (First Order Reliability Method) sensitivity factor for effects of 

actions 

αR  FORM (First Order Reliability Method) sensitivity factor for resistance 

α, αEC3 Imperfection factor according to EC3-1-1 

αb
(Method)  Load multiplier which leads to the resistance for a given method 

αcr Load multiplier which leads to the elastic critical resistance 

αcr,op Minimum amplifier for the in-plane design loads to reach the elastic critical 

resistance with regard to lateral or lateral-torsional buckling 

αpl
M Load amplifier defined with respect to the plastic cross section bending 

Moment 
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αpl
N Load amplifier defined with respect to the plastic cross section axial force 

αult,k Minimum load amplifier of the design loads to reach the characteristic 

resistance of the most critical cross section 

β Reliability index 

γM0 Partial factor for resistance associated with cross-section checks 

γM1 Partial factor for resistance of members to instability assessed by member 

checks 

γF Partial factor for actions, also accounting for model uncertainties and 

dimensional variations 

γf Partial factor for actions, which takes account of the possibility of unfavorable 

deviations of the action values from the representative values 

γSd Partial factor associated with the uncertainty of the action and/or action effect 

model 

γM Partial safety factor for a material property also accounting for model 

uncertainties and model variations 

γm Partial factor for a material property 

γRd Partial factor associated with the uncertainty of the resistance model; 

δ0  General displacement of the imperfect shape 

δcr  General displacement of the critical mode 

ε Utilization ratio at a given cross section 

εM
I  Utilization ratio regarding first order bending moment M 

εM
II Utilization ratio regarding the second order bending moment 

εN Utilization ratio regarding the axial force N 

η Generalized imperfection 

ηLT Generalized imperfection for lateral-torsional buckling 
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ηtot Total generalized imperfection  

ηy Generalized imperfection for flexural buckling, y-y axis 

ηz Generalized imperfection for flexural buckling, z-z axis 

opO  Global non-dimensional slenderness of a structural component for out-of-

plane buckling according to the general method of clause 6.3.4 

O  Non-dimensional slenderness  

)x(O  Non-dimensional slenderness at a given position 

ipO  Non-dimensional slenderness for in-plane flexural buckling 

yO  Non-dimensional slenderness for flexural buckling, y-y axis 

zO  Non-dimensional slenderness for flexural buckling, z-z axis 

LTO  Non-dimensional slenderness for lateral-torsional buckling 

0,LTO  Plateau length of the lateral torsional buckling curves for rolled sections 

0O  Plateau relative slenderness 

φ Over-strength factor 

ϕ Ratio between αpl
M and αpl

N 

ρ Cross-section factor 

σ  Standard deviation 

θ(x)  Twist rotation 

θ0(x) Initial twist rotation  

θcr(x) Twist rotation component of the mode shape  

χ Reduction factor 
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χLT Reduction factor due to lateral-torsional buckling 

χnum Reduction factor (numerical) 

χop Reduction factor for the non-dimensional slenderness opO  

χy Reduction factor due to flexural buckling, y-y axis 

χz Reduction factor due to flexural buckling, z-z axis 

ψ Ratio between the maximum and minimum bending moment, for a linear 

bending moment distribution  
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ACRONYMS AND ABBREVIATIONS 
 

CoV Coefficient of variation 

FB Flexural buckling 

FB y-y Flexural buckling about the major axis 

FB z-z Flexural buckling about the minor axis 

FEM Finite Element Method 

FORM First Order Reliability Method 

FTB Flexural-torsional buckling 

GF General formulation 

GM General Method 

GMNIA Geometrical and Material Non-linear Analysis with Imperfections 

LBA Linear Buckling Analysis 

LTB Lateral Torsional-Buckling 

SORM  Second Order Reliability Method 

TB Torsional buckling 

UDL Uniformly distributed loading 

 


