
Serhiy Boychenko

A Distributed Analysis Framework for

Heterogeneous Data Processing in HEP Environments

Tese de doutoramento
 do Programa de Doutoramento em Ciências e Tecnologias da Informação

orientada pelo Professor Doutor Mário Alberto da Costa Zenha Rela e Doutor Markus Zerlauth
e apresentada ao Departamento de Engenharia Informática

da Faculdade de Ciências e Tecnologia da Universidade de Coimbra

Agosto de 2017

A Distributed Analysis Framework for Heterogeneous
Data Processing in HEP1 Environments

Author:
Serhiy Boychenko

Department of Informatics Engineering,
University of Coimbra (UC)

UC Supervisor:
Prof. Mário Zenha-Rela

Department of Informatics Engineering,
University of Coimbra (UC)

CERN Supervisor:
Dr. Markus Zerlauth

Machine Protection and Electrical Integrity Group,
Centre Européen pour la Recherche Nucléaire (CERN)

February 22, 2018

1High Energy Physics

This research has been developed as part of the requirements of the Doctoral Program
in Information Science and Technology of the Faculty of Sciences and Technology of the
University of Coimbra. This work was conducted in the domain of large-scale distributed
data storage and processing systems, joining the Machine Protection and Electrical Integrity
group (Technology department), within the Doctoral Student program at the European
Organisation for Nuclear Research (CERN).

This work has been supervised by Professor Mário Alberto da Costa Zenha Rela,
Assistant Professor of the Department of Informatics Engineering of the Faculty of Sci-
ences and Technology of the University of Coimbra and Doctor Markus Zerlauth, Deputy
Group Leader of the Machine Protection and Electrical Integrity Group of the Technology
Department at CERN.

Abstract

During the last extended maintenance period, CERNs Large Hadron Collider
(LHC) and most of its equipment systems were upgraded to collide particles at an
energy level almost twice higher compared to previous operational limits, significantly
increasing the damage potential to accelerator components in case of equipment mal-
functioning. System upgrades and the increased machine energy pose new challenges
for the analysis of transient data recordings, which have to be both dependable and
fast to maintain the required safety level of the deployed machine protection systems
while at the same time maximizing the accelerator performance. With the LHC hav-
ing operated for many years already, statistical and trend analysis across the collected
data sets is an additional, growing requirement.

The currently deployed accelerator transient data recording and analysis systems
will equally require significant upgrades, as the developed architectures - state-of-art
at the time of their initial development - are already working well beyond the initially
provisioned capacities. Despite the fact that modern data storage and processing
systems, are capable of solving multiple shortcomings of the present solution, the
operation of the world’s biggest scientific experiment creates a set of unique challenges
which require additional effort to be overcome. Among others, the dynamicity and
heterogeneity of the data sources and executed workloads pose a significant challenge
for the modern distributed data analysis solutions to achieve its optimal efficiency.

In this thesis, a novel workload-aware approach for distributed file system stor-
age and processing solutions - a Mixed Partitioning Scheme Replication - is proposed.
Taking into consideration the experience of other researchers in the field and the most
popular large dataset analysis architectures, the developed solution takes advantage
of both, replication and partitioning in order to improve the efficiency of the under-
lying engine. The fundamental concept of the proposed approach is the multi-criteria
partitioning, optimized for different workload categories observed on the target sys-
tem. Unlike in traditional solutions, the repository replicates the data copies with a
different structure instead of distributing the exact same representation of the data
through the cluster nodes. This approach is expected to be more efficient and flexi-
ble in comparison to the generically optimized partitioning schemes. Additionally,the
partitioning and replication criteria can by dynamically altered in case significant
workload changes with respect to the initial assumptions are developing with time.

The performance of the presented technique was initially assessed recurring to
simulations. A specific model which recreated the behavior of the proposed approach

and the original Hadoop system was developed. The main assumption, which allowed
to describe the system’s behavior for different configurations, is based on the fact
that the application execution time is linearly related with its input size, observed
during initial assessment of the distributed data storage and processing solutions.
The results of the simulations allowed to identify the profile of use cases for which
the Mixed Partitioning Scheme Replication was more efficient in comparison to the
traditional approaches and allowed quantifying the expected gains.

Additionally, a prototype incorporating the core features of the proposed technique
was developed and integrated into the Hadoop source code. The implementation was
deployed on clusters with different characteristics and in-depth performance evalua-
tion experiments were conducted. The workload was generated by a specifically devel-
oped and highly configurable application, which in addition monitors the application
execution and collects a large set of execution- and infrastructure-related metrics.
The obtained results allowed to study the efficiency of the proposed solution on the
actual physical cluster, using genuine accelerator device data and user requests. In
comparison to the traditional approach, the Mixed Partitioning Scheme Replication
was considerably decreasing the application execution time and the queue size, while
being slightly more inefficient when concerning aspects of failure tolerance and system
scalability.

The analysis of the collected measurements has proven the superiority of the Mixed
Partitioning Scheme Replication when compared to the performance of generically
optimized partitioning schemes. Despite the fact that only a limited subset of config-
urations was assessed during the performance evaluation phase, the results, validated
the simulation observations, allowing to use the model for further estimations and
extrapolations towards the requirements of a full scale infrastructure.

Keywords: data processing distribution; data partitioning; data replication

Resumo

O Grande Colisor de Hadrões, constrúıdo e operado pelo CERN, é considerado o
maior instrumento cient́ıfico jamais criado pela humanidade. Durante a última pa-
ragem para manutenção geral, a maioria dos sistemas deste acelerador de part́ıculas
foi atualizada para conseguir duplicar as energias de colisão. Este incremento implica
contudo um maior risco para os componentes do acelerador em caso de avaria. Esta
actualização dos sistemas e a maior energia dos feixes cria também novos desafios
para os sistemas de análise dos dados de diagnóstico. Estes têm de produzir resulta-
dos absolutamente fiáveis e em tempo real para manter o elevado ńıvel de segurança
dos sistemas responsáveis pela integridade do colisor sem limitar ao seu desempenho.

Os sistemas informáticos actualmente existentes para a análise dos dados de di-
agnóstico também têm de ser actualizados, dado que a sua arquitectura foi definida
na década passada e já não consegue acompanhar os novos requisitos, quer de escrita,
quer de extração de dados. Apesar das modernas soluções de armazenamento e pro-
cessamento de dados darem resposta à maioria das necessidades da implementação
actual, esta actualização cria um conjunto de desafios novos e únicos. Entre outros,
o dinamismo e heterogeneidade das fontes de dados, bem como os novos tipos de pe-
didos submetidos para análise pelos investigadores, que criam múltiplos de problemas
para os sistemas actuais impedindo-os de alcançar a sua máxima eficácia.

Nesta tese é proposta uma abordagem inovadora, designada por Mixed Partitio-
ning Scheme Replication, que se adapta às cargas de trabalho deste tipo de sistemas
distribúıdos para a análise de gigantescas quantidades de dados. Tendo em conta a
experiência de outros investigadores da área e as soluções de processamento de dados
em larga escala mais conhecidos, o método proposto usa as técnicas de particiona-
mento e replicação de dados para conseguir melhorar o desempenho da aplicação onde
é integrado. O conceito fundamental da abordagem proposta consiste em particionar
os dados, utilizando múltiplos critérios constrúıdos a partir das observações da carga
de trabalho no sistema que se pretende optimizar. Ao contrário das soluções tradici-
onais, nesta solução os dados são replicados com uma estrutura diferente nas várias
máquinas do cluster, em vez de se propagar sempre a mesma cópia. Adicionalmente,
os critérios de particionamento e replicação podem ser alterados dinamicamente no
caso de se observarem alterações dos padrões inicialmente observados nos pedidos de
utilizadores submetidos ao sistema. A abordagem proposta deverá superar significa-
tivamente o desempenho do sistema actual e ser mais flex́ıvel em comparação com
os sistemas que usam um único critério de particionamento de dados.

Os valores preliminares de desempenho da abordagem proposta foram obtidos com
recurso a simulação. Foi desenvolvido de ráız um modelo computacional que recriou o
comportamento do sistema proposto e da plataforma Hadoop. O pressuposto de base
que suportava a modelação do comportamento do novo sistema para configurações
distintas foi o facto do tempo de execução de uma aplicação ter uma dependência
linear com o tamanho do respectivo input, comportamento este que se observou du-
rante o estudo do actual sistema distribúıdo de armazenamento e processamento de
dados. O resultado das simulações permitiu também identificar o perfil dos casos
de uso para os quais a Mixed Partitioning Scheme Replication foi mais eficiente
quando comparada com as abordagens tradicionais, permitindo-nos ainda quantificar
os ganhos de desempenho expectáveis.

Foi posteriormente desenvolvido e integrado dentro do código fonte do Hadoop
o protótipo que incorporou as funcionalidades chave da técnica proposta. A nossa
implementação foi instalada em clusters com diversas configurações permitindo-nos
assim executar testes sintéticos de forma exaustiva. As cargas de trabalho foram
geradas por uma aplicação especificamente desenvolvida para esse fim, que para além
de submeter os pedidos também recolheu as métricas relevantes de funcionamento do
sistema. Os resultados obtidos permitiram-nos analisar em detalhe o desempenho da
solução proposta em ambiente muito semelhante ao real.

A análise dos resultados obtidos provou a superioridade da Mixed Partitioning
Scheme Replication quando comparada com sistemas que usam o particionamento
com único critério genericamente optimizado para qualquer tipo de cargas de trabalho.
Foi observada uma redução significativa do tempo de execução das aplicações, bem
como do tamanho da fila de pedidos pendentes, a despeito de algumas limitações em
termos de escalabilidade e tolerância a falhas.

Apesar de só ter sido posśıvel realizar as experiências num conjunto limitado de
configurações, os resultados obtidos validaram as observações por simulação, abrindo
assim a possibilidade de utilizar o modelo para estimar as caracteŕısticas e requisitos
deste sistema em escalas ainda maiores.

Palavras-chave: distribuição de processamento de dados; particionamento de da-
dos; replicação de dados

To my family
To my beloved wife Violetta

To my wonderful children Nikolay and Vladimir
To my father Viktor and mother Lyubov

Acknowledgments

First of all, I would like to express my endless gratitude to the two people who were closely
accompanying me during this long ”marathon”, sharing their knowledge and wisdom, guid-
ing and teaching the research methodology and continuously supporting me in any of the
undertaken tasks - my thesis supervisors Doctor Markus Zerlauth and Professor Mário
Zenha Rela. Without their support, dedication and patience, completing this endeavour

would have been significantly more difficult.

I would equally like to acknowledge and thank the following people who made
significant contribution to this work:

Jean-Christophe Garnier for the exchange of ideas, discussions and great sup-
port during many presentations and meetings.

Andriy Boychenko for his patience, support and many discussions during the
whole duration of this work.

Konstantinos Stamos, whose initial feedback and discussions had a consider-
able impact on some of the ideas presented in this work.

Tiago Martins Ribeiro and Matei Dan Dragu for helping me to configure
the infrastructure deployment scripts.

Antonio Romero Marin and Kacper Surdy for providing and maintaining
the required infrastructure for the prototyping phase.

Faris Cakaric for helping me with the implementation of the data migration
tools.

Nuno Miguel Mota Gonçalves for helping with the implementation of the
performance emulation application.

Kamil Henryk Krol for the great help with debugging code and environment
configuration.

Jakub Wozniak and Chris Roderick for the many discussions about large-
scale distributed data processing solutions.

The Powerlifting Club at CERN for the brief moments of distraction from the
research activities.

Contents

1 The LHC Accelerator Transient Data Analysis Framework 1
1.1 CERN and the Large Hadron Collider 2
1.2 LHC Protection Challenges . 5
1.3 Diagnostics LHC Data Storage and Processing Infrastructure 6
1.4 Second Generation Data Analysis Framework 9
1.5 Contributions . 11

2 State of the Art 15
2.1 Distributed Architecture for Performance Improvements 18

2.1.1 Processing Layer . 18
2.1.2 Resource Management Layer 19
2.1.3 Storage Layer . 21
2.1.4 Comparison With Existing Solutions 24

2.2 Summary . 32

3 Mixed Partitioning Scheme Replication 35
3.1 A novel architecture . 36

3.1.1 Homogeneous MPSR . 41
3.1.2 Heterogeneous MPSR . 43

3.2 MPSR Characteristics and Use Cases 45
3.3 Experimental Study . 47

3.3.1 Model Definition . 48
3.3.2 Discussion of Results . 52

3.4 Summary . 64

4 Mixed Partitioning Scheme Replication Implementation 65
4.1 Apache Hadoop . 66

4.1.1 MapReduce Programming Model 66
4.1.2 Hadoop Distributed File System 68

i

4.1.3 Hadoop Resource Management 70
4.2 Architecture . 71
4.3 Prototype Implementation . 76
4.4 Performance Study . 79

4.4.1 Workload Analysis and Definition 79
4.4.2 Benchmarking Definition . 87

4.5 Summary . 94

5 Performance Evaluation 95
5.1 Average Query Execution Time Analysis 95
5.2 Average Queue Size Analysis . 100
5.3 Namenode Memory Overhead . 101
5.4 Partitioning Overhead Study . 107
5.5 Write Operation Overhead . 108
5.6 Scalability . 110
5.7 Failure Tolerance . 113
5.8 Model Validation . 116

5.8.1 Comparative Analysis . 116
5.8.2 Experimental Analysis . 118

5.9 Summary . 125

6 Future Work 127

7 Conclusions 131

A Future Analysis Framework Use Cases 135

Bibliography 137

ii

List of Figures

1.1 CERN’s Accelerator Complex . 4

1.2 The typical intensity decay of both LHC beams during the nominal
operation cycle, with the removal of the beams at the end of the
physics run. 5

1.3 Post Mortem framework and its interaction with LHC. 8

1.4 CERN Accelerator framework and its interaction with LHC. 8

2.1 Horizontal(left) and Vertical(right) Partitioning. 23

3.1 The data ingestion pipeline. 40

3.2 The data processing pipeline. 41

3.3 The homogeneous Mixed Partitioning Scheme Replication. 42

3.4 The heterogeneous Mixed Partitioning Scheme Replication. 44

3.5 The simulation engine architecture. 49

3.6 Arrival rate on average queue size impact analysis: the proportion of
the variable combinations where MPSR approach outperforms con-
ventional solution. 53

3.7 Arrival rate on average query waiting time impact analysis: the pro-
portion of the variable combinations where MPSR approach outper-
forms conventional solution. 55

3.8 Request size on average queue size impact analysis: the proportion
of the variable combinations where MPSR approach outperforms con-
ventional solution. 56

3.9 Request size on average query waiting time impact analysis: the pro-
portion of the variable combinations where MPSR approach outper-
forms conventional solution. 57

3.10 Request variation impact analysis: the average queue size. 58

3.11 Request variation impact analysis: the average query execution time. 59

3.12 Request variation impact analysis: the average query waiting time. . 60

iii

3.13 Processing speed coefficients on average queue size impact analysis:
the edge of the variable combination where MPSR still outperforms
the conventional solution. 61

3.14 Processing speed coefficients on average query execution time impact
analysis: the edge of the variable combination where MPSR still out-
performs the conventional solution. 62

4.1 The example MapReduce application execution. 68
4.2 The Hadoop Distributed File System structure. 69
4.3 The Mixed Partitioning Scheme Replication architecture. 72
4.4 The Mixed Partitioning Scheme Replication prototype architecture. . 77
4.5 The average number of data extraction requests served by CALS daily. 82
4.6 CERN Accelerator Logging Service workload characteristics. 83
4.7 The Post Mortem system analysis use cases. 85
4.8 Signal attributes relation with identified use cases. 87
4.9 The CALS data extraction infrastructure. 89
4.10 Example partitioning schemes (TCLA, BLMQI and DCBA hereby

represent different devices types installed in the LHC, namely a colli-
mator, a beam loss monitor and a superconducting bus bar segment). 90

5.1 Average application execution time comparison. 96
5.2 Average application input size comparison. 97
5.3 Average application processing rate comparison. 98
5.4 CPU IO Wait comparison. 99
5.5 Input size impact on average processing rate. 100
5.6 Average queue size comparison. 101
5.7 fsimage file size. 102
5.8 Number of the in-memory namespace objects. 103
5.9 Size of the in-memory namespace objects. 103
5.10 Write operation overhead study: MPSR prototype cluster I/O rates. . 109
5.11 Write operation overhead study: the MPSR prototype performance

evaluation. 109
5.12 Scalability analysis: average execution time estimation. 111
5.13 Scalability analysis: MPSR cluster throughput estimation. 112
5.14 Scalability analysis: file-system representation estimations. 113
5.15 Model validation: request arrival rate impact on the average execution

time comparison. 120
5.16 Model validation: request arrival rate impact on the average queue

size comparison. 121

iv

5.17 Model validation: application input size impact on the average execu-
tion time comparison. 122

5.18 Model validation: application input size impact on the average queue
size comparison. 122

5.19 Model validation: request type variation impact on the average exe-
cution time comparison. 123

5.20 Model validation: request type variation impact on the average queue
size comparison. 124

5.21 Model validation: processing speed coefficients impact study. 125

v

List of Tables

3.1 Base simulator variable configuration. 53
3.2 Arrival rate impact analysis: average query execution time improve-

ment coefficient in relation to the conventional solution. 54
3.3 Request size impact analysis: average query execution time improve-

ment coefficient in relation to the conventional solution. 57
3.4 Variable Relation Study: Strongest correlation with corresponding

coefficients. 63

4.1 The principal LHC operation phases. 81
4.2 The Hadoop infrastructure nodes specification. 93
4.3 The Hadoop infrastructure configuration for performance evaluation

tests. 93

vii

Abbreviations

ALICE A Large Ion Collider Experiment

API Application Programming Interface

ATLAS A Toroidal LHC ApparatuS

BLM Beam Loss Monitor

CALS CERN Accelerator Logging Service

CERN Conseil Européen pour la Recherche Nucléaire

CMS Compact Muon Solenoid

CPU Central Processing Unit

CRUSH Controlled Replication Under Scalable Hashing

CSV Comma-Separated Values

DAG Directed Acyclic Graph

ERMS Elastic Replica Management System

FIFO First In First Out

FPGA Field-Programmable Gate Array

GFS Google File System

HAIL Hadoop Aggressive Indexing Library

HDD Hard Disk Drive

HDFS Hadoop Distributed File System

IoT Internet of Things

JMX Java Management Extensions

JSON JavaScript Object Notation

JVM Java Virtual Machine

ix

LDB Logging DataBase

LHC Large Hadron Collider

LHCb Large Hadron Collider beauty

MDB Measurement DataBase

MIC Maximal Information Coefficient

MPSR Mixed Partitioning Scheme Replication

NTFS New Technology File System

OLTP OnLine Transaction Processing

PAX Partition Attributes Across

PM Post Mortem

QPS Quench Protection System

RAID Redundant Array of Independent Disks

RAM Random Access Memory

RDBMS Relational DataBase Management System

RPC Remote Procedure Call

SPSQC Super Proton Synchrotron Quality Check

UFO Unidentified Flying Object

XPOC eXternal Post Operational Check

YARN Yet Another Resource Negotiator

YCSB Yahoo! Cloud Service Benchmark

x

Chapter 1

The LHC Accelerator Transient
Data Analysis Framework

Since the earliest days of humanity, capacity of problem solving and learning was one
of the characteristics, which distinguished us from animals. The natural curiosity and
endeavour to understand the surrounding environment allowed us to progressively
increase our knowledge, transfer it through the generations, make it available for the
modern society. The most significant efforts to organize the intelligence acquired
through many thousands of years of humanity were made by the first civilizations,
with invention of the writing and reading. In ancient cultures archaeological findings
suggest the existence of defined classification of the knowledge into the sciences like:
medicine, mathematics and astrology.

Similarly to other elder sciences, Physics is believed to be first defined as a dis-
cipline by Greek philosophers. The name comes from the ancient Hellenic word ph-
ysis which means nature, contextualizing the science as natural philosophy. Among
the fundamental reasons which allowed the Physics to establish as an independent
discipline was the unwillingness of the philosophers to accept the explanations for
different phenomena provided by ancient religions and myths. The early studies
were directed to provide a methodical explanation (supported by provable facts) for
different events occurring in the surrounding world. The early experiments therefore
focused on gaining knowledge and providing evidence about the most fundamen-
tal principles like the time and the composition of matter. It is Democritus in the
5th century BC who developed the theory of the atomism, which was claiming that
everything is composed from very tiny, invisible elements called atoms.

During many centuries thereafter the definition atomism remained unstudied,
gaining the new insights during the middle ages. Despite no significant advances

1

were made at the time, the works of scientists like Giordano Bruno, Thomas Hobbes
and Galileo Galilei supported the dissemination of the idea into contemporaneous
scientific communities. In the late 18th century, the advances of the scientific instru-
ments allowed the supporters of the atomism to prove the philosophical assumptions
with experimental results. However, with the discovery of the electron during the
beginning of the 19th century, it became clear that atoms are not fundamental par-
ticles, but are composed themselves of even smaller particles. Through the past
century the particle discoveries allowed us to explain numerous phenomena, cre-
ate new technologies and provide the basis for the appearance of new theories like
the Standard Model (Oerter, 2006), known as the main theory about fundamental
particles and interactions between them. Still, many questions remain unanswered
today and mankind will continue striving to expand the frontiers of knowledge to
understand the laws of physics governing the world we live in.

1.1 CERN and the Large Hadron Collider

Among the particle physics research laboratories dedicated to study the nature of
the universe, European Organization for Nuclear Research (CERN) is the largest
facility, bringing together some 15000 scientists to build and operate particle accel-
erators and detectors in an attempt to unravel the mysteries of the universe. Since
its establishment in 1954, it continues to be in the vanguard of science, successfully
achieving the mission defined by the organization founders. During its operation
several highly important discoveries were made. Among them, the weak force dis-
covery in 1983 (The Discovery of the W Vector Bosson., n.d.), which is responsible
for particle decays (unlike the other three of the fundamental forces which do keep
particles together: gravity, electromagnetism and strong force) and is a primary ex-
planation for a Sun’s radiance. Another very anticipated discovery was made public
by CERN in 2012, where the scientists were able to observe a particle with a mass
consistent with the sought-after Higgs Boson (Aad et al., 2012) (Chatrchyan et al.,
2012), named after Peter Higgs who predicted its existence in 1964. This discovery
allows physicists to explain why the particles do have mass and greatly increases the
veracity of the Standard Model, which is currently the fundamental theoretical model
to explain most of the phenomena observed in the universe. Despite Physics being
the primary focus at CERN, one of the most important inventions greatly contribut-
ing to expansion of the human knowledge, the World Wide Web, was developed at
CERN when scientists were searching for the ways to exchange results in an efficient
and a fast way. Even nowadays, to push the frontiers of science, CERN continues to
be the place where cutting edge technologies are being designed and brought to life.

2

Figure 1.1: CERN’s Accelerator Complex

One of the most ambitious and significant projects ever undertaken at CERN is
the Large Hadron Collider (LHC), currently detaining the title of the biggest scien-
tific instrument ever built in the world. An effort of several hundred of universities,
more than 10000 engineers and scientists from more than 100 countries was required
to bring the project to life. The LHC is located in the tunnel at approximately 175
meters beneath the surface, reaching almost 27 kilometres in circumference. The
flagship of CERNs accelerator complex is composed of more than 10000 supercon-
ducting magnets, which allow to guide the two counter rotating beams of particles
around the circumference while reaching 99.9999% of the speed of light. To achieve
and maintain their superconducting state, magnets are cooled to 1.9 Kelvins, using
the world’s largest liquid Helium cryogenics systems. The superconducting state is
required to achieve the strong (8.3 Tesla) and stable electromagnetic fields allowing
for the precise measurements at these unprecedented high beam energy. In order to
operate the accelerator at the nominal energy (currently 7 Tera electron Volts for
hadrons and 1.38 Tera electron Volts beam energy for lead ions), the beams must
be injected into LHC with very well defined parameters from the respective injector

3

chain, which is depicted in Figure 1.1.

There are four major particle collision detectors installed along the circumference
of the Large Hadron Collider: ATLAS, CMS, ALICE and LHCb. At the four collision
points, the beams are directed towards each other at determined angle to maximize
the impact and probability of collisions to occur. Upon the impact, thousands of
sensors installed on each detector are tracking the trajectory and the interaction with
different forces of the produced sub-atomic particles. The collected measurements
are further transferred to the first tier computing data centre, where the utility
of collision is evaluated. The most interesting results potentially representing new
physics (around 5% of data) are being pushed towards to the next computing resource
tiers, which do search for specific phenomenon. When fully operational, the LHC is
capable of producing around 1 billion collisions per second.

Figure 1.2: The typical intensity decay of both LHC beams during the nominal
operation cycle, with the removal of the beams at the end of the physics run.

After the number of particle collisions in an experiment drops below a certain
threshold, determined by the intensity of the beam and the beam size at the location
of the experiment, the remaining particles are being extracted from the machine (see
Figure 1.2). The energy stored in the superconducting magnets is extracted and
returned into the grid. The extraction is done through the complex beam dump-
ing system, which was specifically developed to safely deviate the beams onto a 10

4

meters long graphite target and as such prevent equipment damage of accelerator
components. The same system is also used to empty the LHC when an equipment
failure is detected prior to the planned termination of a physics fill. In this case
the delay between fills is more significant, since the cause of the problem must be
investigated by hardware experts and LHC operators, who determine if it is safe to
operate the accelerator, otherwise preventive maintenance of the equipment installed
in the tunnel is performed.

1.2 LHC Protection Challenges

The huge investment in both, manpower and the cost of the components which were
required for the construction of the Large Hadron Collider, is one of the main reasons
why considerable efforts have to be undertaken to maintain the machine safe under
any operational conditions. The cutting edge technology systems installed in the
tunnel, besides operating in extreme conditions (like high radiation or extremely low
temperature), have to cope with unprecedented amounts of stored energies in the
LHC magnet system (10 Gigajoules) and the two particle beams (365 Megajoules).
These energies, for example, are capable of warming up and melting more than 2
tons of copper, therefore representing a considerable risk to the unique accelerator
components installed along the beam lines. The extreme conditions which some of
the components are exposed to, might not even be reproduced in large scale simu-
lations in laboratories. The environment which is being created in the tunnel is a
real exploratory process and the scientists do discover determined properties only
when the designed component is installed in the accelerator ecosystem and exposed
to proton beams. Besides accelerator components, there are tens of thousands of cus-
tom manufactured devices which need to be properly maintained, to avoid machine
downtimes due to internal component failures. The LHC diagnostic data require
powerful networks of computing devices to ensure that the collection and analysis of
the reported measurements are performed in-line with restrictive requirements.

The amount and diversity of the accelerator components installed in the different
points of the accelerator infrastructure is among the primary sources of the failure
source heterogeneity. According to the report (Premature Dumps in 2011., n.d.)
produced by the Machine Protection Performance and Evaluation section in 2011,
there were 482 incidental beam dumps (the process of particles extraction from the
accelerator beam lines), which resulted into a total of 64 days of LHC downtime.
While most of the problems are solved within a timeframe of a few hours, more
serious interventions such as a magnet exchange in the tunnel may require up to
several months due to the time-consuming warm-up and re-cooling processes. The

5

main sources of the issues which contributed to the machine downtime in 2011 were:
cryogenics, powering systems, beam-machine interactions, radio-frequency cavities,
vacuum, among others.

The consolidation and machinery upgrades during the recent extended mainte-
nance period (long shutdown), have significantly increased the beam energy, currently
measuring the 13 Tera electron Volts (TeV), meaning that the damage potential, in
case of the serious failure, is much higher in comparison to the previous experi-
ence and estimations. The systems which protect the LHC have similarly undergone
major improvements based on the experience collected during the first operational
run between 2010 and 2013. In addition to the significantly increased number of
machine protection devices installed in the tunnel, the amount of data which they
produce also increased. However, the data storage and processing infrastructure,
which is currently being used for the accelerator monitoring, failure source discovery
and continuous performance surveillance, requires a major upgrade to keep up with
the LHC expansion.

1.3 Diagnostics LHC Data Storage and Process-

ing Infrastructure

There are two major sources of LHC diagnostic data: Post Mortem (PM) framework
(Zerlauth et al., 2009) and CERN Accelerator Logging Service (CALS) (Roderick,
Hoibian, Peryt, Billen, & Gourber Pace, 2011). Despite the fact that in most cases
both solutions acquire and store the measurements collected from the same equip-
ment there are fundamental differences in the covered use cases. Among the main
differences between the two frameworks is the rate of acquisition and the precision of
collected data. The Post Mortem system aims to collect the data around interesting
events, such as the beam extraction from the machine, by retrieving high precision
measurements from the internal buffer of the monitored hardware. Internal device
buffers record the data with very high frequency (up to nanosecond precision), allow-
ing to reconstruct very precisely the accelerator and equipment system state right
before the beam extraction. Given the amount of the devices and produced data
size it is impossible to store all this information with the same acquisition frequency
during LHC operation. On the other hand, the data collected within higher time in-
tervals, might provide broader overview on the problem sources. This requirement is
satisfied by the CALS, which is responsible for retrieving the data with a maximum
frequency of a few Hertz. The collected information is used not only for identifying
and understanding the failure sources, but also to conduct the long-term performance

6

analysis of the LHC.
The Post Mortem framework (see Figure 1.3) consists of multiple redundant high

performance servers with configured RAID 0 + 1 hard disk storage. The underlying
architecture makes strict separation between data collection and data consumption
processes. The data collection tier consists of the two physical nodes, with individual
storage, providing to the clients a fallback mechanism when some of the machines is
unreachable. The data is acquired through the exposed Application Programming
Interface (API) which allows the respective clients to submit the data when an event
of interest occurs. The data submission might take up to 20 minutes for a given
event, as some devices, before transferring the data to the PM storage, internally
aggregate the information from multiple sub-systems. After receiving the data the
PM framework persists the measurements into the binary files using a specifically de-
signed compression and structuring file format. The files are organized according to
the system type and the date when the device reported the measurement. Addition-
ally the journal file, currently used as an indexing mechanism, updated every time
the system persists the new measurements. Further, the data consumption layer is
notified. The servers in this group are responsible for managing subscriptions from
external applications (which are subscribed for the changes from determined devices
or device types) and propagating the information further to registered consumers.

Automatic
Analysis

Ad-hoc
Analysis

Collimators

Radio-Frequency
Monitors

Large Hadron Collider

Beam dump
event

Temporary
Storage

Permanent
Storage

notify

write

notify

read

read

write

Beam-Loss
Monitors

report

Back-end Servers Front-end Servers

Figure 1.3: Post Mortem framework and its interaction with LHC.

CERN Accelerator Logging Service (see Figure 1.4) consists of two Oracle databases
installed on the dedicated high-performance server machines, capable of handling the
high loads which the service is exposed to. Unlike the Post Mortem framework which
provides an API for data submission, CALS performs subscriptions for pre-configured
list of devices and retrieves the data according to defined thresholds (either on value
change or continuously with pre-defined interval). The measured signal values are

7

first being stored into a Measurement Database (MDB). The information remains
in the MDB for a few weeks before being filtered, made read only and moved to
the Logging Database (LDB). This approach allows to perform the queries the fresh
data more efficiently, since the size of the MDB is two orders of magnitude smaller
in comparison to LDB. Currently CALS monitors around 5 × 105 variables, which
in the worst case scenario can generate approximately 4.23 × 1010 updates per day,
at the same time serving 5 × 106 daily data access requests. CALS is an operation
critical service, therefore some significant restrictions are applied on its usage. Be-
sides the development team, no other user is granted direct access to the database.
Service users have access to the API which provides a set of predefined operations
with optimized queries with some per-query restrictions implemented (for example
the maximum amount of data which can be retrieved for any request executed from
the API is 250 Megabytes).

Collimators

Radio-Frequency
Monitors

Large Hadron Collider

Beam-Loss
Monitors

Subscription-based
Data Collection

Service

Logging Database

Measurement
Database

CALS API

Automatic
Analysis

Ad-hoc
Queries

notify

readquery results

query results

writeread

aggregate

Figure 1.4: CERN Accelerator framework and its interaction with LHC.

Each of the major data repositories has its own data extraction and analysis
tools. There is currently no easy way to correlate the data, unless explicitly develop-
ing dedicated tools using the provided interfaces. Thus, a sophisticated data analysis
is tightly limited by available operations, depending on the personal capacities and
manual effort of each operator to be able to join the data from different sources.
Besides the mentioned limitations, developers must also take care of the data nor-
malization, since the meta-data and data formats vary across different APIs. Further,
after having the data appropriately merged, it is necessary to make signal transfor-
mations, since some formulas require input from either combined signals or modified
signals (for example when a retrieved unit does not correspond to the required one).
Currently deployed data correlation modules are maintained separately by the teams
which originally performed the development. In the majority of cases those modules
are not reused when another team requires to perform similar calculations, because

8

of the lack of a centralized repository which would take care to describe what is the
purpose of the available code.

Another significant obstacle which limits the experts to work efficiently with the
stored data is its current data retrieval throughput. Despite the fact that PM frame-
work is relatively fast to provide the data, CALS is not optimized for reading large
amounts of data. As a result, for some LHC performance evaluation use cases it
would take several weeks for the relevant data to be extracted from the database.
As a solution to this problem, many teams at CERN develop their own databases
to monitor the limited number of the desired device types. Although the solution
generally works for specific groups interested in particular information, it results
also in the unnecessary information and code replication, resulting in the consider-
able maintenance overheads and additional personnel and equipment costs. Finally,
the APIs which the aforementioned services provide to access the data require pro-
gramming knowledge. Users who might only have a very basic software development
background are forced to use the provided tools, limiting in the end their possibilities
of working efficiently with the data.

1.4 Second Generation Data Analysis Framework

The synthesis of the shortcomings in the current process of the accelerator data
analysis indicates that there is a strong call for a novel, centralized data analy-
sis framework (Fuchsberger, Garnier, Gorzawski, & Motesnitsalis, 2013), capable of
serving different purposes simultaneously. The experience acquired during the first
LHC commissioning and operational periods, indicates a high level of heterogeneity
in the workload to be handled efficiently by the new solution. When the accelerator
systems are undergoing a series of commissioning steps before an operational period,
the data of interest is retrieved for a period ranging from tens of minutes to a maxi-
mum of a few days after the performed hardware test. The most relevant attributes
for processing of the data are hereby the device location, device type or accelerator
status. When the machine is in the standard beam operation the paradigm changes
significantly, and monitoring data related to the most recent physics fills often is
compared to data from the past few months to perform trend, performance analysis
and optimisations over extended period of time. During the long shutdown phase,
typically more extensive analysis of the overall performance of the LHC related to the
the past operational period is conducted, to detect the most common failure sources
or to study the efficiency of the machine operation and the resulting physics output.
These latter use cases typically require the extraction of data for large period of time,
ranging from a few months to a couple of years.

9

The analysis of the shortcomings of the currently deployed data storage frame-
works suggests that the new system, besides being capable of retrieving the data
efficiently from underlying storage, should also be flexible enough to perform calcu-
lations close to the data source. This approach will allow to reduce significantly the
data transfer overheads and the number of failures due to possible network problems.
It is very common that an expert is interested only in a small fraction of data result-
ing from simple aggregation operations, but the limitations of the current systems
impose the transfer of the whole dataset in order to perform the required calcula-
tion on the user’s infrastructure. The data transfer and further processing could
additionally optimized through the efficient caching mechanisms integrated into the
future infrastructure.

The importance of keeping the machine operational and to detect possible causes
of failures at an early stage, imposes another very important requirement - the ability
of the proposed system to handle failing nodes without a major deterioration of
the quality of service. Ideally, the solution should be automatically recovering from
crashes and support further replication to maximize the data availability. Since there
are time-critical user requests to be executed on the data storage infrastructure, the
system should minimize the computation overhead during the node failures. Finally
the system should be horizontally scalable, so the new nodes can be connected to the
cluster when required to further improve the performance of the data storage and
processing solution.

Among the main constraints which prevents the efficient exploitation of today’s
system and application of the further improvements is the performance of the data
retrieval from the underlying storage layer. The limited access the hardware experts
and accelerator operations have to the resources, prevents the implementation of
the optimizations which would allow the analysis framework to satisfy many of the
aforementioned requirements. Despite the fact that there are multiple tools and
techniques which could improve significantly the current system performance, the
lack of the flexibility for heterogeneous workloads and environments will inevitably
uncover the limitations of the new infrastructure based on the such storage and
processing solutions. As a response to the challenges presented above and as a
call to substantially improve the performance of the data storage and processing
system being developed for transient accelerator data, a new technique - the Mixed
Partitioning Scheme Replication (MPSR) approach is proposed.

The main goal of this thesis it therefore to determine whether data
replication which uses a multi-criteria partitioning can replace generi-
cally optimized data structuring schemes and improve the performance

10

of data storage and processing systems operating in highly dynamic and
heterogeneous environments.

The diagnostic accelerator data which is currently being collected by multiple
data storage and processing solutions has predominantly time-series nature. The
frameworks which are storing the information take into account only the time di-
mension, and completely neglect other dimensions like device type, location, accel-
erator state and events which occur at the time when data collection takes place.
The information related to the other data dimensions is either stored as meta-data
or simply discarded, leaving the responsibility to make correct assumptions entirely
to the users. The neglection of data characteristics and specificities in the currently
deployed infrastructure creates an opportunity to explore the potential gains from
different data replication and partitioning techniques. It is important to mention,
that in the current state the meta-data stored along with the collected signals, does
not really provide the means to unambiguously understand what a given variable is
representing (besides using description fields which are not optimized for machine
processing). The formulas which are used to correlate some of the signals into the
corresponding variables are being applied before data is persisted and the information
how this value was calculated is not exposed to the experts. Additionally, different
storage systems might use different denominators and units for the same physical
signal, resulting in additional calculations to be performed when the analysis of the
respective variables is performed.

1.5 Contributions

The research activities which were undertaken during the development of this thesis
were aiming to design an efficient, yet flexible solution for the large-scale distributed
data storage and processing solutions, which integrate well into the dynamic envi-
ronments as they are predominant for the operation of CERN’s accelerator complex.
The main outcomes of the endeavor can be summarised into the list of the contribu-
tions presented below:

• The conceptualization of a novel approach, based on replication of a multi-
criteria partitioned data representation, for large-scale distributed data storage
and processing solutions.

• The formalization of the proposed solution, Mixed Partitioning Scheme Repli-
cation, and the development of a simulation engine capable of estimating pos-
sible performance gains in relation to the traditionally applied approaches.

11

• A detailed analysis of the simulation results and the definition of the efficiency
boundaries of the proposed solution, which can be used by other users to de-
termine whether their use cases are compatible with the Mixed Partitioning
Scheme Replication approach.

• The definition of the comprehensible and flexible Mixed Partitioning Scheme
Replication architecture solution for further integration with modern data stor-
age and processing solutions.

• The development of a functional prototype for assessing the performance char-
acteristics and validating the predictions of the proposed approach. The sources
were integrated for this prototype with the Hadoop source code.

• The validation of the model based on the replication of the multi-scheme data
representation by comparing it with already existing, accurate estimation meth-
ods as well as through a set of specifically designed experiments.

• A detailed performance evaluation, scalability and failure tolerance analysis of
the proposed approach for different possible scenarios and use cases.

Outlines

The remainder of the document is organized as follows: chapter 2 provides a detailed
review of the literature related to similar data partitioning and replication techniques.
In chapter 3 the proposed solution is formalized, and initial performance assessments,
based on the simulation results, are conducted. Chapter 4 advances the definition
if the proposed architecture and its integration into a modern data storage and
processing framework. In the same chapter the description of the proposed prototype
approach is detailed, as well as defining the performance evaluation scenario and
infrastructure configuration. In chapter 5, the performance assessment and model
validation tasks are undertaken. The results of a detailed study of the efficiency and
the main characteristics of the proposed solution are provided. The final chapters
outline the future work and summarize the document with the main conclusions and
findings of the conducted research.

12

Chapter 2

State of the Art

The performance optimization of data storage and processing solutions is a problem
which, despite being an active area of research for more than half a century, con-
tinues to attract and inspire researchers from all over the world. This research field
has gained significant relevance and attention with the introduction of Relational
Database Management Systems (RDBMS) (Astrahan et al., 1976), encouraging ven-
dors of database engines to invest significant resources and compete with each other
to provide the best possible solution to their clients. Despite the fact that in the
turning point of the millennium (Abiteboul et al., 2005) the field was very mature,
the introduction of user-centred services (also known as Web 2.0) has started a new
era of data storage and processing solutions, with numerous new performance opti-
mization domains to be explored (R. Agrawal et al., 2008). Not only modern Web
applications have to deal with unprecedented data set sizes: scientific experiments
have also significantly increased the amount of information which is required to col-
lect and analyse, well beyond the order of magnitude where traditional solutions
based on RDBMS or conventional file systems have proven feasible in the past. The
expansion of applications which meet the requirements of Big Data use cases creates
a high demand for specialized solutions, targeting specific systems with particular
characteristics. Nowadays, the research in the area of performance optimizations of
the relevant systems is very active and – given the rate of appearance of the new
problems and solutions – will certainly continue to be so in the near future (Nasser
& Tariq, 2015) (Sivarajah, Kamal, Irani, & Weerakkody, 2017) (Wang, Xu, Fujita,
& Liu, 2016).

There are several possible ways of improving the performance of data storage and
processing solutions. In many cases, a viable option was and continues to be improv-
ing the hardware where the system is installed. This can be achieved either by adding

13

additional resources to the existing machine(s) or by upgrading system components
with more efficient ones. Despite the fact that custom, hardware-based optimizations
can bring significant performance improvements to the database storage and process-
ing solutions (multiple Field-Programmable Gate Array (FPGA)-based approaches
have been proposed by different authors (Casper & Olukotun, 2014) (Sukhwani et
al., 2012)), the most viable and popular option within the community continues to
be resource scaling. The performance of the applications which were designed to
store and process data on a single node can be improved by upgrading the respec-
tive machine (vertical scaling). On the other hand, the architectures which allow
the distribution of the load amongst multiple interconnected computing nodes, be-
come more powerful after cluster enlargements (horizontal scaling). The monolithic
architecture of transient accelerator data storage and processing solutions currently
deployed at CERN does not allow a straightforward and efficient scaling of the Post
Mortem and CERN Accelerator Logging Service systems. Therefore, at this moment
in time, the only viable option of performance improvement for both is an upgrade
of the underlying hardware. In both systems, the components responsible for storing
the data, query scheduling and execution are tightly coupled and cannot be separated
into independent distributed modules. Through the past years of operation, the PM
and CALS systems have undergone several costly hardware upgrade interventions
which, according to previous experience, will require increasingly large investments
to achieve further performance improvements.

Significant improvements of the data storage solution performance can be achieved
by optimizing the underlying system for specific use cases by means of more effi-
cient techniques like indexing or partitioning. Besides data related optimizations,
the RDBMSs provide the specialists with a variety of different configurations which
determine the way queries will be handled by the system (constraints, locking mech-
anisms, etc). In most cases an efficient caching solution can bring significant per-
formance gains, which is notably the case for read-intensive workloads. In case of
the data storage solutions presently in use at CERN for the analysis of the tran-
sient accelerator data, the performance tuning process is a continuous effort as the
workloads executed on the systems have drastically changed over the first decade of
operation.

In addition to the previously mentioned performance optimization techniques, the
CALS development team was forced to introduce data retrieval size limitations in
order to guarantee the allocation of the certain amount of the resources for perform-
ing the ingestion of the newly reported LHC device measurements into the system.
Furthermore, a short-term storage layer was implemented in order for the most re-
cent data (which in general is accessed more frequently by the users) to be retrieved

14

faster and to allow aggregation of the signal measurements into permanent storage
without losing precision. In the case of the PM system, the storage was also split
into multiple tiers, whereas the first layer is used for persisting the data as fast as
possible, while the second layer is used to enhance the collected information with
additional meta-data and persist the files into a redundant disk array. Although
there are still many possible performance optimizations which could be implemented
on both systems, they are not considered sufficiently satisfactory nor scalable in view
of the desired mid- and long-term evolutions of the system.

Finally, to improve the performance of the systems deployed at CERN, one could
consider switching to a modern, fully distributed data storage and processing solu-
tion. Many companies and scientific organizations which faced similar challenges,
reported that the migration of their applications to distributed architectures like
Hadoop (White, 2012) has enabled the users to work with very large data sets much
more efficiently in comparison to RDBMSs or related technologies. The initial proof
of distributed data storage and processing solutions to efficiently deal with such
large datasets was reported by Google in MapReduce (Dean & Ghemawat, 2008)
and Google File System (Ghemawat, Gobioff, & Leung, 2003) papers. The authors
present a simple, yet powerful distributed programming paradigm, which requires the
user to define in two phases how the data will be processed while the framework will
take care of the actual execution (including the task distribution, failure recovery,
etc). The solution presented by Google marked a considerable breakthrough for many
companies facing Big Data problems. Consequently, sites like Facebook (Borthakur
et al., 2011), LinkedIn (Sumbaly, Kreps, & Shah, 2013) and Yahoo (Boulon et al.,
2008) have successfully implemented architectures based on MapReduce and GFS
models to overcome the limitations of traditional RDBMSs and improve the perfor-
mance of their data intensive applications. Following this, researchers from all over
the world started to analyse if the proposed approach could also be suitable for dif-
ferent scientific applications. Many papers and reports from these efforts are proof of
the successful identification of considerable performance improvements for many of
the studied use cases (Ekanayake, Pallickara, & Fox, 2008) (Taylor, 2010) (Loebman
et al., 2009). One of the most important advantages of large-scale data storage and
processing engines based on Google’s reports (like Hadoop), is their capability of
scaling almost linearly, even if implemented on heterogeneous hardware. This is an
extremely important issue for organizations such as CERN which maintain clusters
with thousands of (often very distinct) nodes, since horizontal scaling is much more
cost-efficient in comparison to solutions relying on vertical scaling techniques. Ac-
cording to the report presented internally at CERN (Evolution of the Logging Service:
Hadoop and CALS 2.0., n.d.) the new Hadoop-based infrastructure would cost more

15

than 3 times cheaper in comparison to the currently deployed solution.

2.1 Distributed Architecture for Performance Im-

provements

At this moment in time, the distributed storage and processing research field is flour-
ishing. Currently, users have an abundant choice of tools which can be adapted to a
large variety of use cases. Among the most common tendencies in the architecture de-
sign of modern distributed storage and processing solutions is is component coupling
loosening which increases the independence between their core components: storage,
resource management and processing layers. Besides leading to easily achievable
performance gains using horizontal scaling, the independence of the system compo-
nents allows – with a simple change in configuration – to replace specific application
module with more efficient solution. However, the storage layer always requires a
data migration, as each engine features its own storage format and data distribution
strategy. Despite the fact that in some cases the architecture combines the resource
management and the processing layers, in this work these aspects will be consid-
ered separately, as they both have a unique set of performance optimizations worth
analysing in more depth.

2.1.1 Processing Layer

The data processing layer plays a fundamental role in the performance of distributed
storage and processing solutions for large data sets. Multiple factors must be consid-
ered before adopting the most adequate tools for a specific use case. First of all, the
workload heterogeneity should be considered, as most of the tools are optimized for
analytic workloads, while in case of the LHC data storage and processing solutions,
the operational queries are likely to remain predominant. Moreover, the requirements
for a next generation solution at CERN suggest that the system should deal effi-
ciently with iterative workloads as well (mainly for the Machine Learning use cases).
Amongst the most popular solutions used in the past was MapReduce approach,
which was integrated as a core component into the Hadoop eco-system to enable
the processing of the large data sets. The execution is split into two programmable
phases and a predefined intermediate phase: map-shuffle-reduce. The mapphase im-
plementation allows users to define the process of data filtering and grouping, while
the reduce phase allows the definition of operations over the grouped data sets. Addi-
tionally, there is a shuffle phase which is an intermediary, non-programmable, stage

16

which merges the mappers output (possibly stored across different nodes of the clus-
ter), sorts and transfers the data to the reducers’ locations (the mapper outputs serve
as the input for reducers). The transitional data produced by the mappers is stored
on the processing machines Hard Disk Drives, being one of the greatest strengths
but also weakness of the MapReduce paradigm. This mechanism allows Hadoop to
recover from failures quite fast, as the data can be read back from the disk and
applications can be restarted from an intermediary state. On the other hand, the
random writes to the disk, resulting from the shuffling phase, can significantly slow
down any job being executed on the same node due to multiple concurrent accesses
to the disk.

Some researchers have found that in-memory processing of intermediary data
could be used to improve the performance of the processing layer. Amongst the most
popular solutions which enhance the performance of MapReduce with in-memory
processing are Spark (Zaharia et al., 2016) and Flink (Carbone et al., 2015). Both
propose unique memory management mechanisms which in the case of Spark are
in general specified by the user, while Flink, to overcome the Java Virtual Machine
(JVM) memory management limitations automatically executes the native memory
management. Both tools provide intermediary checkpoint mechanisms which allow
the user to control if and when the data should be persisted to the disk. There-
fore, computations can be restarted from that point after the system recovers from a
failure. Additionally, Spark and Flink allow for caching of intermediate results, be-
coming extremely efficient for iterative processing, which is very common e.g. when
using Machine Learning algorithms. Finally, both tools are flexible enough to allow
the integration with different distributed file system solutions and resource manage-
ment applications. Currently, Spark and Flink are being studied by researchers at
CERN to determine which of the two solutions provides the best feature set for the
LHC transient data analysis use cases.

2.1.2 Resource Management Layer

The resource management layer has a significant impact on the efficiency and per-
formance of modern distributed storage and processing solutions. This layer is re-
sponsible for managing the computing resources, allowing the nodes to be connected
or decommissioned from an existing infrastructure. Additionally, one of the core
responsibilities of the resource manager is the scheduling of the incoming request
execution taking into consideration the current state of the cluster. Amongst the
most popular solutions integrated into the infrastructures which require processing
the large data sets is Yet Another Resource Negotiator (YARN)(Vavilapalli et al.,

17

2013). YARN was developed to become a core resource management component of
the Hadoop eco-system, as its predecessor in earlier Hadoop versions revealed signif-
icant performance and scalability issues. One of the major breakthroughs of the new
implementation was the decoupling from the MapReduce programming paradigm,
which resulted in a wide adoption of YARN with all kinds of data storage and pro-
cessing tools created for large data set analysis. One of the major advantages of this
resource management solution is locality awareness: by performing the task execu-
tion close to the data YARN significantly reduces the probability of overloading the
network with unnecessary information exchange between the cluster nodes, which
results in addition in much lower latency. YARN also features different types of
schedulers, which can either equally share the available resources amongst the sub-
mitted applications or dedicate more computational slots to specific, high-priority
tasks.

Besides YARN, there are several other alternatives for the implementation of the
resource management layer which are being actively integrated into different infras-
tructures by the respective developers. First of all, many of the modern distributed
data processing applications come with dedicated solutions, specifically developed
for optimizing the performance of the respective tool. In case of Spark, for example,
the standalone scheduler has been designed for an easy and quick deployment, but is
not recommended for production environments, as it lacks security-related features
and does not allow the cluster to run anything else but Spark applications. Resource
management solutions like Apache Mesos (Hindman et al., 2011) could be considered
as an alternative to YARN for the data storage and processing solution being built
at CERN. Mesos unlike YARN is a non-monolithic scheduler. After identifying the
available resources for a determined user request, the framework allows the applica-
tion to determine whether the execution should proceed on the available resources
or should wait for an occasion when the cluster is less heavily used. Furthermore,
Mesos allows to schedule the tasks based on the Central Processing Unit (CPU)
requirements and availability, in contrast to the memory-only scheduling provided
by YARN, being an advantage for CPU intensive applications. Despite being very
flexible and providing more control over the scheduling process to the users, Mesos
has several shortcomings which support the decision of favouring YARN in the next
generation CERN data analysis infrastructure. First, Mesos does not respect data
locality, which greatly impacts the system performance in case of many data inten-
sive jobs. Secondly, Mesos does not allow to spawn multiple executors per node,
which is not a resource efficient approach for operational workloads dominated by
large amounts of small jobs (those which process small amounts of data).

18

2.1.3 Storage Layer

In modern data analysis infrastructures, the storage of data is a fundamental com-
ponent of any Big Data solution. Being at the lowest level of the architecture it can
provide the largest performance improvement with the smallest effort, and conversely
can have a significant detrimental impact on any system when designed improperly.
The design of the data storage architecture is a complex process and requires a cus-
tomized approach for choosing the appropriate storage solutions. Amongst the most
reliable and popular solutions for storing the data in distributed environments we
can find the Hadoop Distributed File System (HDFS) (Shvachko, Kuang, Radia, &
Chansler, 2010). Two components are the main building-blocks of the HDFS archi-
tecture: the Namenode, which maintains the file system structure and meta-data, and
the Datanode which stores the data arranged in blocks. The master-slave approach
employed by HDFS in its current implementation has significant shortcomings, espe-
cially for high-availability use cases, since the Namenode cannot be fully replicated
and shuts down the operation of the entire cluster in case of failures. A different
class of solutions with a decentralized meta-data management approach has been
recently gaining popularity in the large scale distributed computing community, Dis-
tributed file-systems like CEPH (Weil, Brandt, Miller, Long, & Maltzahn, 2006) and
GlusterFS (Davies & Orsaria, 2013). Despite having some very distinct characteris-
tics, both allow distribution of the master responsibilities among multiple nodes of
the cluster. While CEPH delegates the indexing operations to the Metadata servers
using the Controlled Replication Under Scalable Hashing (CRUSH) (Weil, Brandt,
Miller, & Maltzahn, 2006) algorithm, GlusterFS makes use of the custom implemen-
tation of the Elastic Hashing Algorithm which allows the respective storage nodes –
without communicating with any meta-data management service – to determine the
location of the data.

Multiple studies of the aforementioned distributed file systems have been con-
ducted by different researchers (Yang, Lien, Shen, & Leu, 2015) (Depardon, Le Ma-
hec, & Séguin, 2013) (Donvito, Marzulli, & Diacono, 2014). According to these
authors, GlusterFS has shown the best I/O throughput when under heavy load,
and Hadoop the best reliability results. According to the CEPH study performed
at CERN (Van Der Ster & Rousseau, 2015) some scalability and availability issues
were detected related to the addition of new cluster resources, while the authors of
(Donvito et al., 2014) were experiencing issues with rebalancing on large clusters.
The reliability of HDFS was a determining factor for choosing it as a storage tech-
nology for the new CERN transient accelerator data recording system, as it is of
utmost importance for the performance of CERNs accelerator complex to provide a
reliable and continuous service for data storage and extraction throughout the whole

19

lifetime of the accelerators.

After assessing multiple optimizations of the data storage and processing tech-
niques, the interaction points with the proposed novel approach - Mixed Partitioning
Scheme Replication - were identified and following state-of-the-art studies were fo-
cused on the specific solutions for further storage layer optimizations applicable to
the accelerator analysis system use case challenges.

Partitioning

Data partitioning is amongst the front-line techniques used to optimize data manip-
ulation operations in data storage systems. The first research works on this subject
(Casey, 1972) (Eisner & Severance, 1976) appeared when different file systems were
still being designed and gained the interest of additional researchers when the first
Relational Database Management Systems emerged. The main underlying principle
behind any data partitioning solution is the splitting of information into multiple in-
dependent parts to be stored on different physical locations. The most basic schema
includes the master (or index) structure, which has sufficient meta-data to route
incoming requests to specific locations containing the required fraction of the infor-
mation. More complex systems are based on algorithms which tag the stored data
structures with custom designed/computed key orders. Whenever a new request is
received, the algorithm is able to determine the data location without recurring to a
centralized indexing service.

Despite the fact that there is an ample choice of the strategies for determining the
data division points and the final layout on the storage device, the data partitioning
techniques presented by the scientific community can be categorized into two broad
categories: horizontal and vertical partitioning (see Figure 2.1). Independently of the
underlying algorithm’s design options, the data is either split into a set of data objects
which maintain the integrity of the original schema (horizontal partitioning) or the
schema is split into multiple independent sub-schemas, allowing to maintain the data
objects together (vertical partitioning). Independently of the chosen partitioning
type, partitioning algorithms can be adapted to any storage node topology (master-
slave or completely decentralized group) and use any of the aforementioned data
division criteria (Hevner & Rao, 1988) (S. Agrawal, Narasayya, & Yang, 2004).

During the last decades different types of partitioning techniques were emerging,
driven by a variety of studies related to the needs of application and system architec-
tures. The simplest concept of delimiting information division boundaries is range
partitioning (Range partitioning., n.d.). Data object attributes are used to determine
the relevant interval with corresponding start and termination points which define the

20

Figure 2.1: Horizontal(left) and Vertical(right) Partitioning.

boundaries of the corresponding partition. The main challenge for range partitioning
is to achieve an equal balancing of the data. The initially defined division criteria
which provides an even data distribution at the moment when there is a significant
skew in the data might underperform, resulting in a completely unbalanced storage
structure. A similar concept is used in the list partitioning (List partitioning., n.d.)
technique, where instead of relying on large intervals, the data division is driven by a
set of entries in a list. The entries of the list correspond to the values of the specific
and relevant data object attributes and are used to determine the partition which a
certain data object belongs to. Similarly to the previously described criteria, the so-
lutions which employ the range partitioning suffer from the data skew effect, but are
at the same time more flexible to redefine data division points. Furthermore, there is
a wide range of hash partitioning techniques, which are more efficient in terms of data
balancing in comparison to the previously described strategies (Hash partitioning.,
n.d.). The hash is calculated based on data attributes, allowing different types of the
data objects to reside on the same node. Modern data storage solutions, like Oracle
database system, implement balancing algorithms which determine the optimal data
division strategies automatically, and take care of the re-partitioning when the data
distribution becomes unbalanced. Finally, there are hybrid solutions which include
the best characteristics of each approach and incorporate them into the same system
(Taniar, Jiang, Liu, & Leung, 2000) (Furtado, Lima, Pacitti, Valduriez, & Mattoso,
2008).

Replication

The evolution of the Internet in the last few decades has led to an exponential growth
of the amount of information which is being stored by countless servers across the
world. While data replication was not a new concept at the time, an increased de-

21

mand for data processing and availability were among the main drivers for researchers
to focus on finding more efficient ways of data replication. The main principle be-
hind replication is to store multiple copies of the same data on different physical ma-
chines. Aided by load balancing techniques, replicated systems support an even load
distribution between the nodes, therefore reducing the request response times and
increasing availability. Different topologies and synchronization methods (Wiesmann
& Schiper, 2005) (Kemme & Alonso, 1998) can be applied to the distributed nodes
to ensure data consistency, which – together with additional concurrency - becomes
a major concern for many systems. Globally distributed services use world-wide
replicated content delivery networks to enhance the user experience and guarantee
low response times for their customers, independently of their geographical location
(Dilley et al., 2002).

Replication can be performed synchronously or asynchronously. Synchronous (or
eager) replication uses sophisticated synchronization mechanisms to prevent data in-
consistencies (Muñoz-Escóı, Irún-Briz, & Decker, 2005). The main principle behind
techniques of this category is to use the algorithms which guarantee that updates,
when they arrive, are successfully propagated throughout all of the nodes participat-
ing in replication process. On the other hand, asynchronous (or lazy) replication does
not guarantee immediate consistency of the data. The information stored on different
nodes may diverge at a given point in time, provided that the update propagation
is done eventually or on demand. Generally, the synchronous approach is prone
to suffer from data scalability problems while the second, asynchronous approach,
features temporary data inconsistency. Therefore, semi-synchronous replication solu-
tions have been implemented to mitigate some of the shortcomings of both solutions
(Chang, 2005). They allow the system to scale well through the integration of the
storage management orchestrating mechanisms –which perform background data in-
tegrity checks– and ensure –through consensus algorithms– that the user is reading
the latest version of the stored information.

2.1.4 Comparison With Existing Solutions

The adoption of data organization techniques for optimizing the performance of data
store and processing solutions has been widely studied in the context of the Online
Transaction Processing (OLTP) workloads in RDBMSs. One of the most common
solutions used to improve the efficiency of databases is indexing (Bertino, 1991).
This technique relies on structuring the data in a way that queries executed on the
system are processing sub-sets of the data rather than analysing every row of the
table (known as full scan operation). Generally, database systems allow the creation

22

of several indexes on the same table which can be composed of multiple entity at-
tributes. Most storage engines automatically determine amongst the indexes created
by the users the one which potentially yields the most significant performance gain
for a determined query before proceeding to the data processing. Furthermore, when
database tables are becoming very large, the system architect can opt for splitting the
table into smaller segments through a process known as partitioning. Consequently,
the storage engine is able to manage Partitioned Tables independently, meaning that
operations like data loading, index management and backup/recovery processes can
be performed in considerably smaller amounts of time in comparison to single table
architectures (Herodotou, Borisov, & Babu, 2011). Additionally, Partitioned Ta-
bles can be replicated throughout the cluster to increase the overall availability and
I/O throughput of the system. Several authors (Quamar, Kumar, & Deshpande,
2013) (Curino, Jones, Zhang, & Madden, 2010) reported significant performance im-
provements when applying the aforementioned solutions in large data warehouses.
Nevertheless, despite significant optimizations observed in different configurations,
the usage of the developed frameworks for the LHC accelerator transient data stor-
age is questionable, since the amount of stored information has grown well beyond
the scale where RDBMSs have proven to provide optimal performance.

Further research presented in the following sections focus on solutions compati-
ble with modern distributed storage and processing frameworks. The basic versions
of the tools suitable for the analysis of Petabyte-scale data sets (like Hadoop) are
already offering features which allow achieving higher throughputs, better scalabil-
ity and fault tolerance characteristics in comparison to relational databases (Yu &
Wang, 2012) (Hu, Wen, Chua, & Li, 2014). Nowadays, several user and development
communities around the world are actively developing multiple open source Big Data
projects (McKenna et al., 2010) (Wiley et al., 2011) (Ekanayake et al., 2008), which
is a clear indication of the reliability and robustness of the provided solutions. The
popularity and wide adoption of large scale data storage and processing solutions
implies the development effort to be focused on major issues rather than creating
highly specialized tools for limited set of use cases. This allows many research com-
munities (Buck et al., 2011) (Karun & Chitharanjan, 2013) to take advantage of
this solid code base to develop new compatible modules which provide specific opti-
mizations for dedicated applications. The new solution for the LHC transient data
recording will likely benefit from an “out-of-the-box” migration to Hadoop, but the
performance and quality of service can be further improved by implementing more
sophisticated and targeted optimizations. The most crucial part in this new system
design is at the data storage level, as optimizations at the lowest level of the new
infrastructure are likely to have a significant influence in higher-level components

23

in the analysis pipeline, and lead to higher performance gains. Therefore, we con-
ducted a detailed study of possible improvements at this level. Based on the findings,
a new data storage model, optimized for the workloads observed in the operational
environment of the accelerator chain, is proposed by this thesis.

Data Placement Strategy Optimization

A detailed analysis of the literature in the domain of large scale scientific data analysis
has revealed multiple solutions which could be applied to improve the performance
of the systems being developed at CERN. Despite having similar objectives, the
implementations which have been studied primarily achieve their goals by perform-
ing upgrades to different components of the data storage systems. We started by
analysing solutions which focus on data placement strategies optimization, since in
most situations the largest performance gains can be achieved simply by correctly
structuring the data. The fundamental concept used for this type of solutions is par-
titioning. Partitioning in the context of distributed file systems is slightly different
in comparison to partitioning in a relational database, but the basic idea remains
the same – splitting the data into small segments to avoid reading the whole data set
when processing the user requests. Partitioning techniques are applied to determine
the optimal directory structure or file scheme in relation to particular workloads and
efficiently distribute the data across the cluster nodes to balance the usage of the
available resources.

The CoHadoop (Eltabakh et al., 2011) authors have developed a lightweight
Hadoop’s extension which allows user applications to control the data placement. In
combination with the directory structure, this solution provides the means to define
the co-location of data blocks to reduce the overhead of the data transfers, which oc-
cur mostly during the shuffle phase (known to be a significant issue for join operations
for example). Co-location is hereby achieved by introducing a new file-level property,
the locator, which maintains 1-to-N file relations, which is used by the modified data
placement algorithm to determine the node which will store grouped assets. The
management of the locator information and co-located files is done through mapping
in the locator table integrated into the Namenode sources. The map structure is
maintained in memory to speed up the incoming requests. Additionally, the loca-
tor table is persisted to the disk in background, for it to be easily restored after a
Namenode failure. The results presented by the authors suggest that for the join
operations, CoHadoop was approximately 2.2-2.5 times faster in comparison to the
traditional solution. This improvement comes at the cost of cluster storage unbal-
ancing, ranging from 8.2% to 12.9% (larger block sizes leads to higher unbalance).

24

In case of the LHC transient data recording and analysis system, CoHadoop could
significantly improve the performance of the particular workload types, namely the
time-based join operations. However, other existing query categories performing
joins on different attributes have not improved or even be penalized, as a result of
the introduced imbalances in the cluster resource usage. Additionally, CoHadoop is
not resilient to workload changes, since modifications – once the storage strategy is
implemented - cannot be reverted or modified. Finally, the CoHadoop project is not
production ready and seems inactive, as the implementation was only available in
very early Hadoop versions and no information of further migration to future releases
is available.

The Elastic Replica Management System (ERMS) (Cheng et al., 2012) has been
developed to take advantage of replication as the primary source of the performance
optimization for Hadoop infrastructures. This solution introduces the active/standby
storage model which automatically allocates or de-allocates the replicas to specific
data segments, based on their popularity and observed access patterns. The infras-
tructure is continuously monitored by the Data Judge Module which, in order to
obtain real-time data classifications, defines Complex Event Processing (Buchmann
& Koldehofe, 2009) queries to be executed when new entries are written into the
HDFS log files. Based on pre-defined metrics, the classifier assigns the following
categories to stored data segments: hot, cooled, normal and cold data. Furthermore,
the Replication Manager component determines whether it is necessary or beneficial
to create additional replicas for applications to take advantage of a higher data exe-
cution container number, or to deallocate machines storing information which is no
longer frequently requested. To reduce the number of machines storing cold data, the
authors of ERMS have implemented the Erasure Coding module. The Replication
Manager, while allocating the new replicas, examines the Datanode resource usage,
in order to determine the underused nodes and performs a new load balancing of the
cluster. The benchmarks executed by the authors show that ERMS is able to per-
form more efficiently in comparison to standard Hadoop deployments. The reading
throughput results determine that the developed solution was 50-100% faster when
using a First In First Out (FIFO) scheduler and 40-100% faster using a Fair scheduler
when compared to traditional installations. Additionally, the observations demon-
strated that ERMS manages to schedule more jobs which respect the data locality
principle. When analysing a possible integration of the described framework within
the new data storage and processing solution under development at CERN, several
shortcomings have been identified. First of all, ERMS requires the availability of sig-
nificant resources for replica creation, since the machines which belong to persistent
storage category will need to allocate their computing resources for transferring the

25

data to temporary replicas (like distcp operation does when data is copied in Hadoop
clusters). Upon execution, the data copy operation initiates multiple mapper jobs
on the cluster, using the execution slots which could be assigned for data processing
requests. Furthermore, the de-allocation of the replicas triggers the erasure coding
process which, despite being more efficient in terms of saving storage space (in com-
parison to replication), is CPU-intensive for both constructing and recovering from
encoded data. The authors did not provide any details on how ERMS is handling
frequent short-term workload changes, as those could potentially trigger numerous
resource re-balancing operations. Finally, the analysed solution does not address the
join operations which, despite having a large number of data-local executions, would
create significant I/O and network overhead during the shuffling phase, since the
intermediary data needs to be merged at some point of the application execution.

File Format Optimizations

File format optimizations are amongst the solutions which have been steadily gaining
ground in modern data storage and processing architectures. The main principle
behind these techniques is to determine the best way of organizing (or partitioning)
the data inside the files. The file format optimization techniques can be split into two
broad categories, row-based and column-based, which differ in the way the data is
handled when collected and stored. Row-based solutions generally do not introduce
many changes while loading data into the system, which allows to maintain low data
ingestion latencies. Therefore, the space reduction gains and the data retrieval rates
are lower in comparison to column-based solutions.

Apache Avro (Avro is a remote procedure call and data serialization framework
developed within Apache’s Hadoop project., n.d.), a row-based solution, has been
initially developed as part of the Hadoop project for data serialization and trans-
portation between cluster nodes. The Avro file format requires from the applications
to define the schema of objects which are going to be persisted, meaning that the data
must be structured. The schema is used to describe the object attributes with their
respective data types, which can either be a pre-defined primitive or programmable
complex types. Furthermore, the data can be encoded using different formats, either
JSON or binary. While the first one is generally used for debugging, the second one is
suitable for production environments as it is able to significantly reduce the required
storage space. The binary encoding makes use of sophisticated encoding techniques,
which minimize the number of bits required for storing the objects. Since sorting
is considered to be a frequent operation in analytical workloads, Avro allows the
data to be sorted inside the file according to configurable criteria. Accessing al-

26

ready sorted data significantly decreases the amount of resources required for this
operation, since retrieving correctly ordered data does not require much CPU cycles.
Finally, information can be compressed using per-block compression algorithms like
bzip2 (Seward, 1996) or LZO (LZO real-time data compression library., n.d.).

The RCFile (He et al., 2011) has been a popular choice for distributed data stor-
age performance optimization in many modern columnar-store architectures. This
solution organizes HDFS block data into fixed-size row groups. The row group is
hereby composed of the following three sections: the sync marker used to define the
group limits, the meta-data header describing the table columns and the data itself
written in the column-based format. The columns of each section are compressed
individually to enable partial file reads, as only those columns which are absolutely
required for the query processing are decompressed. The RCFile does not allow ar-
bitrary writes, only appending operations are supported. When the file is initially
requested by the mapper, only the meta-data is loaded into the memory. Then, the
columns required for processing are loaded and decompressed lazily, allowing to re-
duce the resource usage of the executed tasks. The authors have conducted a detailed
performance study of the RCFile and compared the results with the raw files stored
in HDFS and other file format optimization solutions. The obtained measurements
show that RCFile required 2.2 times less storage than in a pure HDFS approach
and was taking 1.1-1.3 less space in comparison to similar approaches. As for the
data loading performance results, RCFile was slightly slower in comparison to the
row-based solutions, but clearly outperforming other column-based file optimization
formats. Additionally, it was performing the best for executing short running queries
and had comparably high performance for the remaining analysed workloads.

For the solution proposed in this thesis and the second-generation infrastructure
under development at CERN, file format optimization techniques are considered as
a complementary performance optimization option. MPSR partitions the informa-
tion on the directory level of the file system maintaining the HDFS data loading
pipeline unmodified. This allows any file format optimization technique, compati-
ble with Hadoop, to integrate with the proposed approach. Multiple solutions have
been already evaluated by researchers at CERN and the detailed report of perfor-
mance evaluation has been presented (Baranowski, Toebbicke, Canali, Barberis, &
Hrivnac, 2017). According to this report, amongst the available and studied file for-
mat based solutions, Parquet (Apache Parquet is a columnar storage format available
to any project in the Hadoop ecosystem, regardless of the choice of data processing
framework, data model or programming language., n.d.) (a column based solution
very similar to the RCFile) was the most efficient in the execution of the analytical
workloads.

27

Dedicated Columnar-Stores

Finally, dedicated solutions which introduce significant changes to the data storage
layer were considered. These solutions have the drawback of requiring the imple-
mentation of additional changes in the resource management and data processing
components. Generally, these solutions provide the best performance improvement
results, but they drastically change the underlying solution and introduce significant
cluster resource requirements (especially in terms of CPU and memory).

The Hadoop Aggressive Indexing Library (HAIL) (Dittrich et al., 2012) is the
solution which has the most similarities in comparison to MPSR. The main idea of
HAIL is to maintain the replicas of the HDFS blocks using different sort orders and
with different clustered indexes. Since the default replication factor of the Hadoop
systems is three, the authors have determined that using multiple data representa-
tions for each of the replicas will increase the likelihood of particular query types to
find appropriately organized data. Hereby indexes are built by a modified data load-
ing pipeline. The file, which is staged for writing in HDFS, is pre-processed taking
into account the system configuration, the content and respective meta-data which
are written to the corresponding Partition Attributes Across (PAX) (Ailamaki, De-
Witt, Hill, & Skounakis, 2001) binary representations. Additionally, before being
persisted to the disk, the data blocks are sorted according to the defined strategies
and enriched with additional server-side index meta-data. After processing and per-
sisting the information, the Datanode notifies the Namenode to update the block
mapping. In order to allow the scheduling algorithms to pick the correct indexes
(rather than the random ones) the new module was integrated into the Namenode
sources. This component maintains detailed information about existing per-replica
indexes. In addition to simple indexes, HAIL allows to create clustered ones. There-
fore, when the number of the attributes to be indexed exceeds the replication factor,
the user can define an index on multiple object attributes. The data reading pipeline
has been equally modified by introducing a new splitting strategy and a new record
reader implementation which –in the background– aggregates the determined data
blocks. This strategy has proven extremely efficient to reduce the number of mappers
required for data processing, since the number of splits can be drastically reduced.
Additionally, the splitting technique ensures that an appropriate replica is being
picked to increase the data locality in job executions. Whenever no appropriate in-
dex can be found, HAIL chooses the Datanodes which would allow to execute the
calculations close to the data. The benchmarks performed by these authors have
shown that HAIL performs much faster in comparison to traditional Hadoop both
for writing and reading the data. According to their observed measurements, HAIL
was executing the jobs in average 39 times faster in comparison to Hadoop. In ad-

28

dition, a 60% improvement of the data loading times was identified. Despite these
very promising results, several issues were identified when analysing a possible inte-
gration of HAIL within the future accelerator data storage and processing solutions
at CERN. First, the proposed approach requires significant amounts of memory al-
located for the data uploading pipeline. The currently deployed systems for LHCs
transient data recording are constantly under heavy I/O load, hence both writes and
reads will be constantly and concurrently executed on the system. Given the amount
of the input sources, HAIL would not only require significant amounts of memory to
be reserved for creating the files on the data collectors side, but also for sorting and
indexing on the Datanodes. Since the authors do not present any studies of the be-
haviour of their system with mixed workloads, it is impossible to determine whether
HAIL will be efficient and scale accordingly for the workloads observed at CERN.
Second, as today’s implementation requires significant changes to the data storage
format, upload and retrieval pipelines, the integration of dedicated data collection
and processing tools, like Kafka (Kreps, Narkhede, Rao, et al., 2011) and Spark,
would require significant effort. Consequently, the scope of the use cases covered by
the new data storage and processing solution would be significantly limited (mostly
the Machine Learning libraries (Meng et al., 2016) integrated with Spark). Finally,
these authors do not present any strategies for re-balancing the infrastructure in
case of addition or removal of the indexes, which might be required when adapting
to further workload changes which will inevitably occur during the coming years of
LHC operation.

HBase (Vora, 2011) is another columnar-store based on HDFS, which is widely
adopted in many applications requiring random real-time queries on extremely large
data sets. Since Hadoop is a batch processing system, the developers have re-
implemented the data processing and scheduling components, using techniques suit-
able for on-line analysis. Moreover the storage layer was built on top of the HDFS,
mainly due to its robustness, flexibility and lack of the shortcomings which would
prevent the system from executing the real-time queries. The core of the HBase solu-
tion is the HFile, which is very similar to the MapFile - the default key-value solution
provided along with Hadoop deployments. The major advantage of the HFile is due
to the advanced meta-data and indexing features, which allow fast data lookups.
The data inside the file is split into in-line blocks with individual indexes and Bloom
filters. To build an efficient index, the information needs to be sorted, hence the
data collection process maintains everything at first in memory. Once the maximum
buffer size is reached, the data is structured, encoded and flushed to the persistent
storage. Whenever data is requested for the execution, the specific block with the
respective meta-data is loaded into the memory. The cluster resources are managed

29

by the HMaster module, which is also responsible for providing the interface for
creating, deleting and updating the tables. The nodes are constantly monitored for
load balancing and provide failure recovery. A special structure, the so-called HBase
Meta Table, is used to keep track of all regions which are the segments of the hori-
zontally partitioned tables. The Region Servers are running on the HDFS Datanodes
and provide additional features for write-read caching and recovery of the informa-
tion which was not yet persisted to the permanent storage. Additionally, there is a
background component running on the Region Server, which occasionally performs
the data compaction so that small files can be merged into larger ones, overcom-
ing a well-known HDFS problem (Shvachko et al., 2010). The performance of HBase
was evaluated with the Yahoo Cloud Service Benchmark YCSB (Cooper, Silberstein,
Tam, Ramakrishnan, & Sears, 2010) tool by corporation’s researchers. The results
presented by these authors indicate that HBase is extremely efficient in comparison
to similar columnar storage solutions. This is particularly true for update-heavy
workloads both for write and read operations, while performing slightly worse for
the read operations in read-heavy benchmarks. The integration of HBase within the
new LHC transient data recording solution has been studied in detail. One of the
major shortcomings which prevents the usage of HBase as the primary solution for
the entire data set are the resource requirements, since efficient caching can only
be achieved on high-end servers with extremely high amounts of memory available,
which is unrealistic for the data sizes to be ingested continuously by the services.
In addition, it was demonstrated that the occasional file compaction executed on
the infrastructure can introduce significant delays in the request execution (Ahmad
& Kemme, 2015), which is a problem for the mission-critical service availability,
in particular for analysis services requiring a deterministic response time such as
the eXternal Post Operational Check (XPOC) of the LHC beam dumping system.
Currently, HBase is considered for the short-term sliding-window storage solution
integrated within the subset Hadoop infrastructure, dedicated to the most recent
and most requested data so that it can be accessed with even lower latencies.

2.2 Summary

In this chapter, a detailed study of possible performance optimizations and upgrades
of today’s LHC transient data recording and analysis systems was conducted. The
initial research was targeting optimizations which would not require the replace-
ment of the currently deployed architectures. Despite the fact that multiple possible
enhancements could be identified , the efforts required for implementing further opti-
mizations of the existing CALS and PM were in no relation to the possibly obtainable

30

gains. It was therefore decided to study in more depth modern data storage and pro-
cessing solutions, specifically created to operate on large datasets as it is the case of
the current accelerator data repositories.

The complexity of such Big Data analysis solutions required an independent anal-
ysis of each of its major components to assess and further improve their behaviour for
heterogeneous workloads as they arise in the daily operation of an accelerator such
as the Large Hadron Collider. The analysis of the most popular architectures, like
Apache Hadoop, allowed to identify three distinct inter-changeable modules, applied
in different phases of the data life-cycle within the system. First of all, the solutions
applied for data processing tasks were studied. The MapReduce paradigm still re-
mains a valid choice for many use cases, however, more recent systems, like Flink or
Spark are featuring large developer and user communities and implement features
which significantly improve the performance of large dataset analysis. Secondly, so-
lutions related to the cluster resource management and allocation were studied. The
Hadoop YARN, a second generation resource manager, is the system of choice for
many infrastructures, mainly due its reliability, security and efficiency. Nevertheless,
several valid alternatives were identified, namely Mesos, which provides additional
control of the scheduling process to the users and implements different resource al-
location policies (CPU-based scheduling for example). Finally, solutions capable of
efficiently managing large amounts of data were studied in detail. The analysed
distributed storage systems were mostly solving the challenges of primarily static en-
vironments, while not being optimized for more dynamic use cases, like it is required
for the second generation LHC data analysis framework. The described shortcoming
motivated further research into the topic of the distributed storage solutions to find
an appropriate response for the defined requirements.

Multiple solutions, capable of withstanding the data storage and analysis chal-
lenges for operation of the world’s largest scientific instrument were meticulously
studied. The most promising approaches were divided into several categories. Solu-
tions of the first category consist of altering the most basic mechanisms, like data
partitioning and replication, to improve the performance of the analysis frameworks.
The data layout is generally determined based on the observed system workload. The
second category consists of approaches which introduce changes at the file-level, in-
corporating indexing techniques and modifying therefore the respective file format.
Instead of immediately persisting the data to the disk, these solutions collect the
data until the input buffer is full and in the following transform the data structure
in order to decrease the size of the repository and reduce the amount of data the
applications need to process. Finally, dedicated large-scale real-time storage and
processing frameworks were assessed, as one of the possible ways of optimizing the

31

storage layer. Despite their proven performance, these systems require significant ad-
ditional cluster resources to operate efficiently, and thus cannot can only be applied
to very large repositories with large overheads in terms of hardware costs. None of
the existing storage solutions was found to provide satisfactory answers to the chal-
lenges at hand, thus in the following a novel approach is presented, being compatible
with the observed heterogeneous and dynamic environments but yet flexible enough
to allow further optimizations to take place throughout the lifetime of the deployed
framework.

32

Chapter 3

Mixed Partitioning Scheme
Replication

The integration of Petabyte-scale data storage and processing applications as part
of the next generation LHC transient data recording solution will have a noticeable
impact on its efficiency and therefore significantly reduce the infrastructure costs.
However, further optimizations are possible with the deployment of highly special-
ized workload-aware systems, developed in response to emerging Hadoop system
issues identified over the past years of its operation in production systems. The
Parquet file format optimization has been widely studied and will be integrated into
the final solution for improving the system’s data throughput and significantly re-
ducing required storage space. The processing pipeline will be enhanced with Spark,
allowing the applications to take advantage of more efficient, in-memory processing
techniques. The real-time random-access to the data will be assured by HBase, which
is used as a transient storage for the most recently collected device measurements.
A series of alternative solutions which operate on the data partitioning and repli-
cations layers were identified, but those were found not to harmonize well with the
new data storage and processing framework mainly due to integration problems with
the aforementioned system. In this chapter we present the extensive study we per-
formed to define and optimize the new approach, which will take advantage of both
partitioning and replication optimization techniques while still being flexible enough
to ensure the compatibility with the remaining components of the infrastructure.

33

3.1 A novel architecture

The recent development efforts towards a second generation storage solution is mo-
tivated by several factors. On one hand, issues primarily related to the efficient
ingestion and extraction of data, that operation crews and hardware experts of the
accelerator complex experienced while working with currently deployed storage ser-
vices. On the other hand, we addressed a large number of diverse requirements that
cannot be satisfied by today’s Post Mortem and CERN Accelerator Logging Ser-
vice. The migration to a more modern data storage and processing solution must
solve most of the known shortcomings and allow to execute very efficiently a broad
range of existing and new analysis use cases. Several of the identified issues require
a customized approach as they are not covered by the functionalities of the standard
solutions designed for very large datasets. This section will focus on the characteriza-
tion of this novel approach, which will allow to overcome the remaining shortcomings
and further improve the performance of the next generation architecture.

A detailed analysis of the Post Mortem and CERN Accelerator Logging Service
(PM and CALS) usage statistics suggests that the presently predominating work-
loads are highly heterogeneous. Both systems ingest and provide data back to
users and applications on a continuous basis. Initially the Post Mortem system was
designed as a purely event-based storage. The success of the system in handling the
LHC use cases has however given rise to additional applications in machines of the
injector complex which are based on shorter cycle times. Such shorter cycles, for
some machines are in the range of a few seconds only, resulting in a quasi-continuous
write load on the system. In parallel to the data ingestion processes, data extraction
queries are continuously being executed, as both the Logging and the Post Mortem
systems are used in the operational cycle of the accelerators to assess critical events,
monitor and enhance the performance of the machines. Depending on the analy-
sis use-case, a significant variation with respect to the amounts of data requested
by different users can be observed. While relatively short-running queries are cur-
rently predominant in the observed workloads, many applications have decided to
implement additional logic to extract – prior to the execution of the analysis - the
data over long periods of time, as the implemented restrictions and read through-
put does not allow a single query to work efficiently with large datasets. The time
constraints for specific query categories have to be carefully considered, since for
off-line, data intensive analytical workloads, the response time is a secondary factor.
For analysis cases being part of the operational cycle of the accelerators however,
additional delays impact the availability of the accelerator infrastructure for physics
production. Additionally, multiple query profiles were identified to perform complex

34

join operations on different attributes of the collected signals, such as measurement
time, accelerator state, device type and equipment location. The systems currently
deployed CERN partition and index the entire dataset solely using time and device
type attributes, and therefore are potentially hampering the performance of a sig-
nificant part of the executed user requests based on different attributes. Finally, the
workload analysis survey we performed revealed the existence of seasonality in the
profiles of executed queries. The requests processed during the operational phase
of the accelerator complex are significantly different from those which are executed
during periods when accelerator complex is undergoing commissioning activities or
during periods of extended maintenance.

The continuous effort of upgrading the LHC and its related accelerator systems
(La Rocca & Riggi, 2014) in an effort to increase the reliability and performance
of the equipment impose another important requirement for the next generation
storage and processing solution, namely the need of resilience against workload
changes. Along with the installation of completely new equipment in the tunnel
during upgrades or consolidation programs, obsolete hardware is eventually entirely
removed from the tunnel. The upgrade of components or entire systems often alter
completely the amount, precision and even the format of the data and measure-
ments made available for long-term storage and data processing. According to the
report presented by CALS developers (CERN Accelerator Logging Service Evolution
Towards Hadoop Storage., n.d.), the LHC accelerator systems have significantly in-
creased their data acquisition rates and the amount of collected metrics during the
first extended LHC maintenance phase. During this period, many hardware systems
were consolidated based on the experience of the first 3 years of LHC operation,
increasing the data ingestion from 150 Gigabytes to 600 Gigabytes of uncompressed
data written per day. The number of data extraction requests similarly increased
during this period of time. Ignoring the fact that data sources in a highly dynamic
and heterogeneous environment change over time, will quickly turn a once efficient
solution into an inefficient, obsolete storage system.

Another important requirement for the next generation LHC transient data record-
ing and analysis system is the flexibility for the introduction of new data types.
The specialization and dispersion of storage solutions for transient accelerator data
introduces a considerable overhead for processes used during accelerator operation.
Amongst the multitude of isolated analysis modules, one can find many applications
which retrieve data from multiple sources using different APIs and object schemes.
Dedicated analytical tools available for the hardware experts also extract the data
from individual storage systems, but provide very limited support for statistical anal-
ysis. In order to execute ad-hoc queries which require the data from multiple sources,

35

the operators are therefore forced to develop their own applications, which is both
time consuming and requires an extensive domain knowledge of the storage systems
and data extraction APIs. This additional overhead often results in a distraction
from the main interest of the user, which is the definition and efficient execution
of the analysis logic. For these reasons, a thorough understanding of the specifici-
ties of each of the storage solutions is considered vital in the effort of designing an
architecture capable of unifying the data access interface and at the same time pro-
viding a powerful, yet comprehensible analytical tool set for the hardware experts
and accelerator operation crews alike.

The aforementioned shortcomings are the core challenges for the novel approach
presented in this thesis – the Mixed Partitioning Scheme Replication. The proposed
solution introduces optimizations on the file system level without modifying the ser-
vice endpoints, therefore being completely transparent to the user. The fundamental
principle of the designed technique consists of creating multiple data partitioning
schemes, optimized for a pre-determined set of workload categories, and performing
the replication of individual representations. Unlike traditional replication solutions
which maintain exact copies of the stored data, the MPSR structures the data man-
aged by distinct replica groups differently. Implementing the workload-awareness re-
quires an initial study of the system and the definition of data placement algorithms
according to the identified query profiles. Replications can be managed elastically,
therefore specific data sets which are frequently accessed by the applications can
be distributed over additional cluster resources. This strategy aims to increase the
number of local data executions, to improve job performance both due to faster disk
access and reduced network overheads. Having implemented the aforementioned data
placement algorithms and replication schemes brings an added benefit. It becomes
possible to modify both when the need arises, being therefore possible to adapt to
changes of data sources and/or user behaviour while maintaining the initial efficiency
of the overall infrastructure without requiring additional resources.

Example 3.1.1. Consider the existence of a service for tracking the operations
of different Internet of Things (IoT) agents, installed in public locations. There
are multiple attributes which characterize the agents and the data they reported
(with their corresponding cardinality indicated between parentheses): time (daily),
agent category (1000), agent state (5), operation type (25), location (28) and service
operator (4000). There are 1 ∗ 107 agents, each reporting 100 Megabytes of data per
day. The measurements are distributed evenly inside the scheme when belonging
to the same attribute (there are 10000 agents for each category for example). The
distributed storage solution replicates the data three times for performance and -
even more important - for failure tolerance reasons. There are several requests which

36

are being submitted to the system with the same frequency:

(R1) determine the average number of category agents operating in given country

(R2) calculate the number of operations executed daily by a determined agent cat-
egory

(R3) determine the device which had the most malfunctions during the day for a
given service operator

The standard solution partitioning scheme will be <time, agent category, loca-
tion>. Since the data distribution is uniform, the lowest level directory size in each
case will be 35.71 Gigabytes. The request R1 would require to process a single direc-
tory to provide an answer to the query, thus the input size will be 35.71 Gigabytes.
The request R2 will require to process multiple location directories for the agent
category in question, thus the input size will be 1 Terabytes of data. Finally, the
request R3 will need to perform a full scan operation and analyse the whole daily
data set, corresponding to a total amount of 953.67 Terabytes.

The integration of the MPSR solution will allow to store several data copies, op-
timized for different workload categories without introducing an overhead in terms of
total storage volume of the system architecture. In this case, the partitioning criteria
could for example be defined as i) <time, agent category, location>; ii) <time, agent
category, operation type>; and iii) <time, service operator, agent state>. Conse-
quently, the terminal directory size will be 35.71, 40 and 50 Gigabytes respectively.
The request R1 will still require the processing of 35.71 Gigabytes of data for its
completion. The R2 input size will be reduced to the processing of 40 Gigabytes,
since there is a partitioning criteria matching the filters. Finally, the request R3, for
the same reason, will need to process only 50 Gigabytes of data.

�

The MPSR architecture can be split into two main yet independent components:
data ingestion and data processing. The specificities of the data collection pipeline
are presented in Figure 3.1. Depending on the architectural point of the data stor-
age and processing system at which the data ingestion procedure is integrated, the
whole process can be split into two interconnected, yet separately managed compo-
nents. The first one is primarily responsible for retrieving data from the data sources,
performing the pre-processing and preparing the data for writing it to the physical
storage. The second component manages the communication process with the data
storage and processing solution. The separation of the data ingestion pipeline is
driven by the MPSR flexibility requirements. Integrating the data acquisition and

37

Data
Source 1

Data
Source 2

Data
Source 3

Data
Collector 1

Data
Collector 2

Data
Collector 3Data

Source 4

Pre-processor 1

Pre-processor 2

Pre-processor 3

Storage
Node 1

Storage
Node 3

Storage
Node 3

Aggregator
File-system

Meta
Service

Figure 3.1: The data ingestion pipeline.

pre-processing mechanisms directly into the server application for data storage and
processing solution will break its compatibility with dedicated data collection frame-
works and therefore require additional efforts to ensure failure tolerance and scala-
bility. Furthermore, the delegation of the data preparation and aggregation tasks to
the server components which are deployed on the data persistence layer will result
in permanent resource allocations for the data ingestion process, since CERNs data
storage systems have to ingest data on a continuous basis even if the accelerators
are not operational. The solution which is commonly adopted by applications fac-
ing similar issues (Sumbaly et al., 2013) (Toshniwal et al., 2014) is the integration
of a dedicated data collection system, like Kafka. Since a similar development is
foreseen for the next generation storage architecture at CERN, the design choice for
the MPSR was to delegate the data pre-processing tasks to such an external tool.
After the input is prepared for writing, the remote server is notified. Taking into ac-
count the user request, the configured partitioning criteria and the cluster resource
usage, the master recurs to the MPSR module to determine the node which will
permanently persist the collected data. Finally, the transport protocols ensure that
the data is correctly uploaded from the external data ingestion application to the
identified cluster node.

The data processing pipeline (see Figure 3.2), in relation to the underling solu-
tion implementation, remains mostly untouched with the exception of the compo-
nent which determines the input files for the submitted job. Upon arrival of the
data processing request, the associated meta-data is initially inspected. Most of the
meta-data analysis operations are still handled by the original data storage and pro-
cessing solution. While decoding and building an appropriate query representation,
the MPSR module is invoked in order to determine the partitioning criteria which
will be the most efficient in providing data for a particular user request. Based
on the current cluster usage, the resources which maximize the rate of local execu-

38

Request
Submission

Endpoint

Request 1

Request
Interpreter

Resource
Manager

Cluster
Monitor

Execution
Node

Scheduler

File-system
Meta

Service

Execution
Node

Execution
Node

Request 2

Request 3

Request 4

Figure 3.2: The data processing pipeline.

tions are allocated. Finally, the tasks are scheduled for execution on the previously
selected machines. The entire process is transparent to the user, as the MPSR com-
ponents which calculate the input splits and allocate the computing resources are
implemented on the server-side. For this reason, no modifications are required on
the application endpoints.

In the MPSR approach both the data collection and processing pipelines share
a common module, which is responsible for maintaining the logic associated to the
structure of the stored data. On the lower level, two different strategies for organizing
the information across the available storage resources are presented and analysed in
terms of their strengths and weaknesses.

3.1.1 Homogeneous MPSR

The homogeneous Mixed Partitioning Scheme Replication was the initially devel-
oped, simplistic approach which embodies the main characteristics of the proposed
solution. The main principle is to dedicate entire nodes to a determined partitioning
criteria, thus each of the cluster machines remain allocated to a single replica. When-
ever the number of the available resources exceeds the configured replication factor,
the segmentation process is triggered with the objective of rebalancing the structure
of the replication group storage. The rebalancing operation relocates certain parts
of the stored data to the newly connected node and ensures that duplicated infor-
mation is purged from the source. Once the process is completed, both machines
maintain the individual data parts partitioned by the same criteria. The resource
allocation process is controlled through the scoring system, which can be configured
to prioritize certain workload categories by assigning more machines to a given par-

39

titioning criteria. When scheduling the execution of submitted jobs the proposed
technique prioritizes the allocation of resources optimized for matching query types.
Nevertheless, non-optimized resources can be used for processing in case the system
is saturated with workload requests of a single category.

Figure 3.3 presents a very simple example of the four-machine cluster integrated
with the described homogeneous Mixed Partitioning Scheme Replication. In this
particular case, the replication factor of the underlying storage solution is three.
This value was chosen since it is the recommended configuration for HDFS clusters,
and in addition it corresponds to the number of different partitioning schemes em-
ployed by the system. The outer shapes in the illustration identify the nodes of the
cluster, while the inner shapes represent the data storage. Each of the colours of the
inner shapes represent a specific partitioning criteria. Since the number of physical
machines in the cluster is larger than the replication factor, one of the replica groups
has its data split across multiple nodes. The data – previously structured accord-
ing to pre-determined partitioning criteria - gets appended to its respective replica.
Whenever the execution of the query associated with a particular workload category
is scheduled, the highest priority is given to the entire execution of this query on the
optimized resources.

DATA

Node 1

Data

Node 2 Node 3 Node 4

½Data½DataData

Figure 3.3: The homogeneous Mixed Partitioning Scheme Replication.

The major advantage of this solution is the relative simplicity of the architecture
when compared to the second approach described in the next section. This simplicity
allows for the implementation of a system fully compliant with the Mixed Partitioning

40

Scheme Replication principles, while requiring a very limited development effort.
First, the data distribution across the cluster is predictable, since only two variables
are taken into account: the number of available nodes and the algorithm which
defines the segmentation points. Secondly, the meta-data service does not require
neither complex resource balancing algorithms, nor memory intensive data structures
to maintain the file system representation. This allows the homogeneous MPSR to
inherit most of the underlying storage solution scalability properties. Furthermore,
this data organization approach is very flexible as it does not depend neither on the
specific data partitioning criteria nor on the partitioning technique, thus allowing
each application to use the most effective partitioning solution to its specific needs.
On the downside, homogeneous MPSR suffers from load balancing problems. In case
of frequent changes in the profiles of the executed data queries, resources storing
less frequently accessed data will be underused, while other machines will be under
heavy load. Moreover, in case of long-term workload deviations like those that will
happened during seasonal changes, the cluster will remain in an unbalanced state for
extensive periods of time which may result in an increased probability of hardware
failures appearing primarily on the nodes storing highly requested data.

3.1.2 Heterogeneous MPSR

The principles applied in the heterogeneous Mixed Partitioning Scheme Replication
are similar to the previously presented approach, but adding an additional dimension
for the replication process. The new technique does not reserve an entire node for an
individual partitioning scheme, instead multiple data representations can co-exist on
the same machine simultaneously. Taking into account the workload characteristics,
the storage resources of each of the cluster nodes are organized into segments. As a
further step, each segment is connected to the replication group pool, which defines
the set of rules for the routing of incoming data to the appropriate location. The
cluster resource usage and workload metrics are collected and analysed continuously.
Based on these metrics, whenever the cluster is upgraded with additional nodes,
the rebalancing process can determine which segments should be further divided to
maximize the performance of the system. Maintaining the data in smaller subsets
allows multiple workload categories to benefit from the addition of new nodes to
the cluster. However, the process of data distribution becomes more complex, since
the segmentation algorithm must ensure that the same node does not store all the
available data copies. Otherwise, in case of a permanent node failure, there is no
way to recover the data stored on that node unless an independent backup process
is implemented. For these reasons, resource allocation and job scheduling techniques

41

have to take into consideration that different workload category requests can compete
for the same node. Nevertheless, more fine-grained control of the data structure and
organization on the disk results in a more efficient mitigation of periodic workload
deviations.

One of the possible Heterogeneous MPSR usage scenarios is presented in Fig-
ure 3.4. In this example, the cluster is composed of four nodes with a pre-configured
replication factor of three. Like in the previous example, the outer shapes identify
the physical machines, while the smaller, inner shapes represent the data segments.
The colouring of the inner shapes corresponds to different partitioning criteria. The
input data is continuously analysed by the data placement module and the concep-
tual division is performed in order to prevent situations of permanent data losses
due to an improper distribution (as described above). Based on the pre-defined set
of rules, the data is then routed to the its storage segment. Additional resources are
used to split the segments which are most frequently accessed by the users. Priority
is hereby given to the execution of data-local jobs. The non-optimized resources are
used for processing the queries only in the situations where the queue is saturated
with single workload category requests.

DATA

A B C

Node 1

½A

B

C

Node 2

½C

A

½B

Node 3

B

C

A

Node 4

½A

½C

½B

Figure 3.4: The heterogeneous Mixed Partitioning Scheme Replication.

When compared to the homogeneous approach, a major advantage of the hetero-
geneous MPSR is the additional control and flexibility of data placement across the
available cluster nodes. Managing smaller data sets results in a more controlled load

42

distribution across the cluster nodes and allows the system to adapt better to any
workload deviations. Furthermore, more evenly distributed data allows to predict
with much higher precision the query execution time and queue behaviour during a
normal operation, as well as when the system is experiencing occasional workload
bursts. This approach enables a more efficient elastic replica management, since
the segment size can be optimized for frequent, periodic data transfers. Finally, in
case of occurring hardware failures it is still likely that parts of the query will be
executed efficiently on the remaining segments, while the missing (optimised) ones
are being reconstructed. On the other hand, a major challenge is introduced in the
infrastructure maintenance process: depending on the complexity of the integrated
algorithms, any manual intervention will become very tedious if not impossible at all.
It should also be mentioned that the meta-data service will be constantly monitor-
ing the incoming data to ensure a resilient data placement. This results in a higher
memory consumption on the master node, which can affect the overall scalability and
availability of the service. Consequently, the reliability of the heterogeneous MPSR
leads to a much higher dependency on the algorithm choice for specific operations
and will hence require more changes to the underlying storage solution.

3.2 MPSR Characteristics and Use Cases

The initial overview of the Mixed Partitioning Scheme Replication benefits and lim-
itations of the proposed solution was performed according to the CAP theorem
(Brewer, 2000). This theorem defines three properties: consistency, availability and
partitioning tolerance, out of which any distributed system can only achieve – i.e.
be optimised – for at most two. According to the definition, partitioning tolerance
must be supported by any distributed application, since in case of arbitrary network
message losses, the other two remaining characteristics will be impacted. The pro-
posed approach is appropriate for systems which target CP properties (consistency
and partitioning tolerance), as several of the functionalities constrain the availability
property defined by the CAP theorem. First, the data ingestion process performs
the pre-processing of the inputs, thus the data is not immediately available for in-
coming user queries. Furthermore, a specific data structure can only be stored on
the cluster node with the related partitioning criteria. In case the machine is not
available at a given moment in time, the data is retained in the data ingestion layer,
until an appropriate resource is available. The prioritization of consistency was also
greatly influenced by the fact that most of the studied data storage and processing
solutions are designed for CP (Tormasov, Lysov, & Mazur, 2015), while availability
can only be optimised as much as possible within the given constraints (Gilbert &

43

Lynch, 2012).
Further analysis was conducted in order to identify the characteristics of appli-

cations which could benefit most from the integration of the proposed solution. The
full potential of the MPSR efficiency can be achieved by systems featuring more of
the set of properties described below:

• The workload of the system can be highly heterogeneous, however the solu-
tion will be the most efficient when future requests can be at least partially
predicted. Workload predictability is useful to define the data organization
strategies which minimize the number of the concurrent requests competing for
same resources. In addition, data access patterns can be exploited by elastic
replica management algorithms to prepare beforehand for incoming workload
bursts.

• Systems which aggregate structured data from multiple sources. The MPSR,
in order to determine the data partitioning and replication strategy, requires
parsable meta-data based on the input object attributes to be available. With
this condition fulfilled, the proposed solution supports individual data source
storage scheme configurations with targeted optimizations.

• Solutions which integrate the possibility for multiple optimizations at different
architectural layers. The Mixed Partitioning Scheme Replication technique is
flexible and does not introduce modifications to the underlying storage solu-
tion endpoints, thus allowing to inherit the original systems compatibility with
external applications.

• The systems employing a ”write once read many” approach on the data stor-
age layer. Since the MPSR approach employs multiple schemes for storing
the data, altering or eliminating a file belonging to one partitioning criteria
can trigger an expensive operation on representations which belong to other
replication groups. Data modification operations require additional logic, both
to determine the information to be updated and for ensuring that in case of
failure the file system is not left in an inconsistent state.

The beneficial properties listed above led us to a complementary list of charac-
teristics which would urge against the implementation of the proposed architecture,
as it would result in an inefficient storage solution:

• Systems with frequent workload changes. Constantly shifting query profile
deviations will result in the invalidation of the initial storage optimization,

44

including partitioning and replication strategies. The problem can be mitigated
with cluster re-balancing, but it is a resource-intensive and time consuming
operation, thus it should not be executed too frequently but instead should be
carefully planned.

• Solutions operating on data with limited access to the object attributes (media
or raw text files for example). Although some meta-data and structures can be
extracted from such assets, the specificities of the analysis performed on media
content for example, makes it virtually impossible for MPSR to identify the
appropriate storage strategy.

• Systems which require the collected data to be available immediately. The
proposed approach requires the data to be pre-processed and aggregated, since
the storage solutions which MPSR is appropriate for are mostly optimized for
batch processing. Large amounts of small files in such systems is recognized to
be a serious constraint.

• Applications which require fast random access to the stored data. The cate-
gory of data storage and processing solutions which MPSR targets are tuned
for large file processing. Unless external optimizations are applied, indexing
mechanisms are not supported, thus each query requires a full scan to be per-
formed to extract the requested data. Worse, the distribution over the network
introduces additional delays due to frequent data transfer operations, resulting
in a slowdown of the data access.

3.3 Experimental Study

The definition and applications of the Mixed Partitioning Scheme Replication are - up
to this point - merely based on assumptions of performance benefits introduced with
the described data storage strategies. To further develop the proposed approach it is
therefore necessary to study its characteristics in depth and – as the following step –
design and present the result of benchmarking experiments which allow to quantify
the expected performance gains. The primary step of this study is to determine
through simulations whether MPSR can effectively be more efficient in comparison
to traditional storage organization techniques, and to identify the factors ceiling
the maximum achievable performance improvements. Furthermore, the designed
experiments should help us to identify the variables having the strongest influence
on the behaviour of the MPSR, and which therefore must be considered as a priority
focus when integrating the MPSR with an existing infrastructure.

45

For the initial modelling approach, a formal mathematic model has been devel-
oped (Boychenko et al., 2016) (Boychenko et al., 2015), which - based on the provided
variable values - allows to calculate the average query execution time for the MPSR
solution. The maintenance and further extension of the designed model has shown
to be a very time-consuming task, leading to the decision of implementing a ded-
icated simulator. The developed simulation engine - in addition to the previously
collected metrics - allowed us to study the job queue status as well as to introduce
additional variables into the model. Additionally, complex scheduling techniques
could be integrated into the system, which were then used to study the impact of
different resource allocation prioritization strategies on the MPSR performance. Fi-
nally, the simulation engine supported the integration of different (statistic) variable
distribution models, thus allowing the experiments to be approximated with very
high accuracy to the real-world systems.

3.3.1 Model Definition

The main goal when designing and developing the simulator was the maximization
of its similarity with the real-world scenario. For this reason, the number of assump-
tions was decreased to the strict minimum, while maintaining the number of the
free variables sufficiently high in order to study all relevant aspect of the solution.
Another important consideration was the simulation engine modularity, since we
were aiming to integrate and study different request scheduling techniques (ideally
without modifying the source code of the engine core). The resulting architecture is
presented in Figure 3.5.

The simulation application designed can be split into two main components:
the scheduler and the simulation engine module. As a first step, the simulation
engine performs the configuration parsing and argument validation. Based on the
user inputs, the request pool is generated and the infrastructure is prepared. The
execution manager is responsible for the simulation flow and for maintaining the
simulation logic. The requests are scheduled in advance and are injected into the
simulation process when their planned deadline is reached. In addition, the scheduler
module grabs incoming queries and places them into the queue, taking into account
its particular resource allocation strategy. Whenever execution slots are available, the
request in the head of the queue is pushed for execution, during which the execution
manager locks the respective resources for performing the processing. After the job
execution is completed, the workload statistics (metrics) are updated accordingly.

Several abstractions were made in the simulation engine regarding time, job in-
put size and resource processing capabilities. Since the results will be presented in

46

Simulation Engine

Scheduler

Configuration Parser

Request Pool

Cluster Manager

Execution Manager

Statistics

Queue
Manager

execute job

get status

inject request

generate
requests

generate
cluster

configuration

update
resource

usage

update
statistics

Figure 3.5: The simulation engine architecture.

abstract units, it is important to state and apprehend the magnitude of the scale
and the relation between them, which can be described by the following sentence:

One cycle is the time required for one executor to process one ab-
stract size unit (asu) on a generically optimized node.

Parameters

The simulation of the desired behaviour required the introduction of multiple pa-
rameters, which can be split into two categories, request-related and infrastructure
configuration. The arguments belonging to the request-related category are mainly
used to configure the workload characteristics. The list below summarizes the pa-
rameters which belong to this category:

• The request arrival rate: controls the pressure that incoming requests create
on the query queue.

• The request size: defines the amount of the resources required for the processing
of the query input.

47

• The request variation factor: controls the probability of a determined workload
category to be assigned to an incoming request.

The second category of the simulator parameters define the configuration of the
infrastructure:

• The processing speed coefficients: control the request execution time, both on
the optimized or non-optimized cluster resources.

• The number of the machines: determines the amount of the cluster resources
assigned to each replication group.

• The number of the execution slots: controls the quantity of the size units which
can be processed by a single node per cycle.

Schedulers

The implementation started with the conventional scheduler, which provides the
baseline results for the later comparison with the MPSR solution. The implementa-
tion reassembles closely the behaviour of Hadoop’s Capacity Scheduler with a single
queue configuration. The simulations with the conventional scheduler do not take
advantage from the MPSR processing speed coefficients and assume that the data is
replicated across the cluster using the same partitioning scheme, equally optimized
for all of the queries executed on the system (like it generally happens in Hadoop
infrastructures). Arriving requests are placed into the queue and executed whenever
computing resources become available. The number of jobs executed concurrently is
limited.

At first, for MPSR simulations, a very simple scheduler (referred to as S1) has
been developed. The main principle of this implementation is to ensure that any
incoming request will be executed strictly on the optimized resources. This scheduler
ignores the fact that non-optimized machines for a determined job category might
be underused.

To increase the balancing of the cluster resource usage, a different policy has
been implemented (S2). In this scheduling scenario, the arrival time and query
category are taken into consideration, though the main objective is to finish the
execution of the job which arrived first as soon as possible. In case the queue is
getting saturated by requests of the same type, the outsourcing to non-optimized
resources is performed. Once scheduled, the application is executed entirely on the
same allocated partitioning scheme.

48

Considering that none of the previous schedulers fully follows the FIFO approach,
a third scheduling policy, prioritizing solely the arrival time of the job, was developed
(S3). To process a given request as soon as possible, it is split across the whole cluster
(both on optimized and non-optimized nodes) in a such way that all of the sub-parts
finish the execution approximately at the same time.

Finally, a scheduling policy with dynamic queue management was developed (S4).
This implementation features a two-level queuing system where - besides the usual
partitioning type-based queue - a small portion of requests is placed into the structure
where the requests can be re-ordered. The re-ordering process is triggered when
computing resources are non-optimized for executing the first request in the short-
term queue, but are optimized for subsequent ones.

Performance Metrics

The simulator’s execution manager will collect – upon the cycle and request com-
pletion – the metrics which are used for further performance analysis. The collected
statistics allow for a detailed analysis of the characteristics of the schedulers and to
conduct meaningful result comparisons.

• The average queue size is computed by dividing the accumulated number of
requests present in the queue at the end of each cycle by the total number of
cycles.

• The average query execution time is calculated based on the interval between
the job execution start time and its completion (in case multiple replicas are
executing the request the time is aggregated).

• The average query waiting time is calculated based on the interval between the
job submission into the system and the start of its processing.

Assumptions and Limitations

Due to the complexity of the schedulers and the amount of already existing parame-
ters some assumptions were introduced. The main purpose of simplifying the model
is to reduce the possible sources of uncertainties in the final results.

• Network latency, job staging time and concurrency factors are neglected, since
those factors will be equally present in any solution as long as the schedulers
are integrated into the same infrastructure.

49

• The system does not integrate any caching mechanisms, since in this case a
whole new set of variables in different stages of the data processing pipeline
must be added into equation.

• The query execution and waiting times can be estimated.

Besides these assumptions, the following limitations of the simulation engine were
identified:

• Concurrent job execution within the same node is not supported, meaning that
all the available executors are generally reserved for the same job.

• Requests cannot be interrupted when already in execution, making it impossi-
ble to stop the execution of a determined job to schedule another one.

• The scheduler S4, can only perform the simulations with a maximum replication
factor of three (which is the recommended value for high availability in modern
distributed file systems).

3.3.2 Discussion of Results

One of the main objectives of this study was to provide a baseline to compare the
performance of the MPSR schedulers with traditional solutions (represented by S1,
the conventional scheduler). In case the proposed approach outperforms the classic
Hadoop applications, the parameters which have the greatest impact on the perfor-
mance can be identified and systematized to quantify the possible gains. Initially,
a detailed study of the individual variables’ impact on the simulated environment
was conducted. In addition, a sensitivity analysis for the most relevant variables was
performed as input to the next simulation phase, a complex multi-variable study.

Multiple variable configurations were probed to define and setup an environ-
ment where the conventional scheduler would be under moderate stress (the baseline
variable configuration is presented in the Table 3.1). Then, during the initial exper-
iments, one single simulation parameter was altered at a time. Each of the variables
was sampled according to a pre-defined variable probability distribution. The simu-
lation results were collected and automatically processed by R scripts triggered after
the completion of each model simulation experiment.

50

Request Arrival Lower Limit 5 cycles
Request Arrival Upper Limit 10 cycles
Request Size Mean 225 asu
Request Size Standard Deviation 50 asu
Request Type Variation 0.333
Speed Up Factor 0.5
Slow Down Factor 1.5

Table 3.1: Base simulator variable configuration.

Request Arrival Rate

The first experiment focused on the request arrival rate. The possible value range is
bounded by the lower and upper request arrival limits. When analysing the work-
load of CERNs accelerator storage, it was observed that during LHC operation the
requests were arriving according to a uniform distribution, thus the samples were
generated accordingly.

After an initial review of the collected measurements, the results were split into
three categories based on the queue size. The results which are aggregated into the

 0

 20

 40

 60

 80

 100

S1 S2 S3 S4

Pr
op

or
tio

n
of

 V
ar

ia
bl

e
Co

m
bi

na
tio

ns
 (

%
)

Evaluated MPSR Schedulers

Light Load
Moderate Load

Figure 3.6: Arrival rate on average queue size impact analysis: the proportion of the
variable combinations where MPSR approach outperforms conventional solution.

51

Light Load Moderate Load
Scheduler S1 2.04 2.09
Scheduler S2 1.95 1.51
Scheduler S3 0.98 0.96
Scheduler S4 1.64 1.43

Table 3.2: Arrival rate impact analysis: average query execution time improvement
coefficient in relation to the conventional solution.

first category, designated as a light load, could be characterized by having a very low
average queue size, where at most one request is waiting for its execution. Moderate
load combined the simulation results where the queue size ranged from one request
to the amount representing the sojourn time which exceed the execution time by at
most a factor of 5. Finally, heavy load gathered observations where the queue size
grew beyond acceptable performance limits, thus the configuration was considered as
not promising for more detailed analysis. The relation of load category proportions
in respect to the total amount of simulated configurations (9000 different variable
combinations were tested) was of 35-45% for light loads and 5-22% for moderate
loads.

The impact of the arrival rate on the average queue size metric was initiated with
the identification of the workload configuration proportions where the MPSR sched-
ulers were performing better than the conventional one (see Figure 3.6). Whenever
the system is under light load, the classical approach manages the queue better than
the proposed solution in most cases, and neither of the MPSR schedulers can be
considered efficient in this case. The situation is different however when the system
is under moderate load. In this case S2 and S4 consistently outperform the con-
ventional solution for most of the use cases, while the efficiency of S1 and S3 is
questionable.

The average query execution time metric was also addressed. The results revealed
that all the schedulers except S3, were able to outperform the classical approach,
suggesting that there is an interest to compare the MPSR schedulers amongst them-
selves. The improvement coefficients in relation to the non-discriminative solution
are aggregated in Table 3.2. According to the summarized results, S1 was presenting
the lowest job execution times in comparison to the rest of the analysed techniques.
S3 was performing worse than the rest of the schedulers, including the conventional
one. Finally, the average query execution times of S2 and S4 were similar, only
providing moderate performance gains when compared to other approaches.

As expected, the analysis of the average query waiting time (see Figure 3.7) has

52

 0

 20

 40

 60

 80

 100

S1 S2 S3 S4

Pr
op

or
tio

n
of

 V
ar

ia
bl

e
Co

m
bi

na
tio

ns
 (

%
)

Evaluated MPSR Schedulers

Light Load
Moderate Load

Figure 3.7: Arrival rate on average query waiting time impact analysis: the propor-
tion of the variable combinations where MPSR approach outperforms conventional
solution.

shown very consistent results with the results obtained during the study of the arrival
rate impact on the queue size. The main reasons for this are the constant cluster
processing capacity and the unchanged request size. Once again, the proportion
of the workload configurations where the MPSR schedulers were outperforming the
classical solution was insignificant for the light loads. According to the moderate load
results, the improvements introduced by S2 and S4 could be observed on almost the
whole range of workload configurations.

Despite the fact that scheduler S1 is able to ensure a much faster query execution
in comparison to other MPSR schedulers, its resource management policy results in a
very poor queue management strategy and unbalanced load distribution. Scheduler
S3 did not present any considerable improvements over the conventional scheduler,
in most cases performing much worse than the classical approach. The combined
performance metric analysis of S2 and S4 on the other hand, has shown that both
schedulers are capable of outperforming the classical approach.

53

Request Size

As a next step, the impact of the request size on the MPSR schedulers performance
was studied. In line with the previous analysis, the results were aggregated into
the three different groups, based on the number of requests in the queue. In total
for every scheduler, around 60000 workload configurations were simulated and the
load category proportions were 6-17% for the light and 6-29% for moderate loads,
respectively.

Then, the impact of the request size on the average queue size metric was stud-
ied. The proportions of workload configurations where the MPSR schedulers are
outperforming the traditional solutions are presented in Figure 3.8. Unlike in the
previous analysis, the conventional scheduler is more efficient in managing the queue
for light loads with the exception of the S2, which under certain circumstances was
performing better. The observations regarding moderate loads confirmed once again
the efficiency of the queue management strategy implemented in the schedulers S2
and S4. Results for the scheduler S3 however continue suggesting that a strict FIFO
approach is not compatible with the proposed partitioning and replication technique.

The impact of the request size on the average query execution time was also
addressed. The observations allowed us to conclude that with the exception of the

 0

 20

 40

 60

 80

 100

S1 S2 S3 S4

Pr
op

or
tio

n
of

 V
ar

ia
bl

e
Co

m
bi

na
tio

ns
 (

%
)

Evaluated MPSR Schedulers

Light Load
Moderate Load

Figure 3.8: Request size on average queue size impact analysis: the proportion of the
variable combinations where MPSR approach outperforms conventional solution.

54

Light Load Moderate Load
Scheduler S1 2.07 2.06
Scheduler S2 1.82 1.49
Scheduler S3 0.97 0.96
Scheduler S4 1.61 1.38

Table 3.3: Request size impact analysis: average query execution time improvement
coefficient in relation to the conventional solution.

scheduler S3, the integration of the MPSR schedulers into the data storage and
processing solution is beneficial, allowing to significantly reduce the data process-
ing time. The following Table 3.3 presents the normalized, average execution time
comparison between the MPSR schedulers. Once again, the scheduler S1 allows the
system to process the data much faster than other techniques, while S2 and S4 still
proportionate moderate performance gains. Solely scheduler S3 performs slightly
worse than the conventional approach.

A more in-depth analysis of the average query waiting time (see Figure 3.9 sug-

 0

 20

 40

 60

 80

 100

S1 S2 S3 S4

Pr
op

or
tio

n
of

 V
ar

ia
bl

e
Co

m
bi

na
tio

ns
 (

%
)

Evaluated MPSR Schedulers

Light Load
Moderate Load

Figure 3.9: Request size on average query waiting time impact analysis: the propor-
tion of the variable combinations where MPSR approach outperforms conventional
solution.

55

gested that this behaviour is once again very similar to the results for the average
queue size metric. Despite the fact that the request size parameter is variable, the
processing capacity of the cluster remains roughly the same and the arrival time is
constant. For this reason, the measured values are proportional to the number of
the jobs in the queue. As it can be derived from the observed results, S1 and S3
do show once again an inefficiency of the underlying scheduling policies in managing
the jobs’ queue. On the other hand, schedulers S2 and S4 have clearly outperform
traditional solutions for systems experiencing moderate loads.

Request Type Variation

The request type variation impact analysis performed, would a-priori exclude any
influence on the performance of the conventional use case, since in the classical
approach the resources are equally optimized for all queries. Hereby the objective
was not to simulate the injection of unknown query types into the system, but
rather to vary the proportions of already existing request categories. For the MPSR
schedulers, this variable was therefore modified in the interval from 1

3
to 1. The

initial value was hereby tightly related to the number of different request classes
which the system was optimized for, since the variable would be further representing
the likelihood of a determined request class to be assigned for the arriving query.

 0

 200

 400

 600

 800

 1000

 0.4 0.5 0.6 0.7 0.8 0.9 1

Q
ue

ue
 S

iz
e

Convergence Factor

Conventional
S1
S2
S3
S4

Figure 3.10: Request variation impact analysis: the average queue size.

56

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0.4 0.5 0.6 0.7 0.8 0.9 1

Ex
ec

ut
io

n
Ti

m
e

(c
yc

le
s)

Convergence Factor

Conventional
S1
S2
S3
S4

Figure 3.11: Request variation impact analysis: the average query execution time.

Value sampling was done using a linear distribution which, based on the provided
parameter, increased the probability of a determined event to occur, while linearly
decreasing the probability of others.

As a first step, the impact of the request variation on the average queue size metric
was studied (as depicted in Figure 3.10). When analysing the simulation results, one
can conclude that scheduler S3 was less efficient than the conventional solution for
all of the simulated configurations. S1 on the other hand, coped efficiently with
queues of relatively balanced workloads. One can observe however a turnover point,
namely when requests of the same type start to dominate the incoming queries, in
which case the queue size increased rapidly. The most workload variation tolerant
schedulers were S2 and S4, with S2 slightly outperforming S4.

When analysing results from average query execution time metric (see Figure 3.11)
one can observe that the results of scheduler S1 results were constant. This is ex-
pected, since the request type does not have any impact on the job execution process.
Scheduler S3 was less efficient than the conventional solution in the whole parameter
range, whereby its performance is increasing towards higher request variation rates.
The causes of the observed behaviour were studied with the conclusion that this is
caused by a tiny delay introduced by the way the resources are assigned when finaliz-
ing the previous requests’ execution. The average query execution time of scheduler
S4 was found to be nearly constant, which can be explained by the fact that this algo-

57

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ai

tin
g

Ti
m

e
(c

yc
le

s)

Convergence Factor

Conventional
S1
S2
S3
S4

Figure 3.12: Request variation impact analysis: the average query waiting time.

rithm starts adapting to the new workload, by splitting the requests when there is no
benefit in executing the queries entirely on other, non-optimized resources. Finally,
the execution time of scheduler S2 was growing as expected, since the convergence
of the requests towards the same request type resulted in an increasing number of
requests to be executed on non-optimized resources.

The results of the convergence factor impact on the average query waiting un-
covered very similar trends, as has been previously observed during the queue size
metric analysis (see Figure 3.12). These observations point out the fact that there is
a strong relation between the two metrics, which is likely to be due to the way the
input arguments are interpreted by the simulation engine (which according to the
Little’s Law (Simchi-Levi & Trick, 2011) is an expected behaviour).

Processing Speed Coefficients

As the final part of the individual variable studies, an analysis of the impact of the
processing speed coefficients was conducted. Two independent parameters define the
workload characteristics: the speed up and the slow down factors. The assigned val-
ues are represented by a multiplier applied to the time it takes for the conventional
solution to process the query. The representation of the collected results defines the
boundary zone, immediately before the point where the classical scheduler starts out-

58

performing the MPSR schedulers. Similarly to the previous study, the conventional
solution is not affected by the processing speed coefficients as it is equally optimized
for each of the workload categories.

First, the impact that processing speed coefficients have on the system’s average
queue size was studied (see Figure 3.13). Scheduler S1 was not dependent on the slow
down factor, as expected, and outperformed the conventional solution consistently
until reaching a speed up factor of 0.52. S3 in comparison to other schedulers
managed the queue in the most inefficient way as can be observed from the results,
even in cases when the system was able to execute requests significantly faster on
the optimized resources. The most efficient solution was scheduler S2, being able
to cover a broad range of speed up factors, and efficiently deal with environments
where non-optimized machines were executing queries more slowly. Scheduler S4
was presenting worse results in comparison with scheduler S2, almost for the entire
whole range of the analysed configurations.

The study of the average query execution time (see Figure 3.14) confirmed once
again the superior performance of scheduler S1 over traditional implementations.
The decaying efficiency of scheduler S3 was very similar to the measurements ob-
served during the average queue size analysis, once again placing this scheduler as the

 2

 3

 4

 5

 6

 7

 8

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sl
ow

 D
ow

n
Fa

ct
or

Speed Up Factor

S1
S2
S3
S4

Figure 3.13: Processing speed coefficients on average queue size impact analysis: the
edge of the variable combination where MPSR still outperforms the conventional
solution.

59

 2

 3

 4

 5

 6

 7

 8

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sl
ow

 D
ow

n
Fa

ct
or

Speed Up Factor

S1
S2
S3
S4

Figure 3.14: Processing speed coefficients on average query execution time impact
analysis: the edge of the variable combination where MPSR still outperforms the
conventional solution.

worst option among the MPSR solutions. On the other hand, scheduler S2 presented
the most consistent and satisfactory results, covering the widest range of simulated
workload configurations.

Finally, the average query waiting time metric evolution was found identical to
the one presented for the average queue size impact study, thus a detailed analysis
was omitted for this case.

Variable Dependencies

Finally, after studying the impact of all individual variables on the efficiency and
the behaviour of different schedulers, a detailed study of variable dependencies could
be conducted. The main goal of this multi-variable simulation was to determine
the variable combinations which have the largest impact on the performance of the
proposed schedulers. For this purpose, variations of all variables were introduced
simultaneously, limiting the changes however to a smaller range and at the same
time using a larger step size to reduce the simulation time. The interval of the
variable values was defined, based on the previously conducted studies, and had to
satisfy the following two conditions: i) the region should include the turnover point

60

Avg. Queue Size (X) Avg. Exec. Time(Y) Avg. Wait Time(Z)
S1 ρ(X,RV) = 0.79 ρ(Y, PR) = 0.95 ρ(Z,RV) = 0.77
S2 ρ(X,AR) = -0.69 ρ(Y, PR) = 0.79 ρ(Z,AR) = -0.6
S3 ρ(X,AR) = -0.55 ρ(Y, PR) = 0.67 ρ(Z,AR) = -0.57
S4 ρ(X,AR) = -0.7 ρ(Y, PR) = 0.81 ρ(Z,AR) = -0.6

RV - request variation AR - request arrival rate PR - processing rate

Table 3.4: Variable Relation Study: Strongest correlation with corresponding coeffi-
cients.

where a very small difference between the proposed schedulers and the conventional
solution can be observed; ii) the results should be within reasonable performance
limits (i.e. excluding the variable configurations which generate heavy load).

From the results analysis, the variables having the strongest influence on the av-
erage queue size, were average query execution time and waiting time. Since it would
be difficult to represent and study graphical simulation results, statistical methods
have been used instead. First, the correlation between the defined variables and met-
rics was calculated. Although in the previous study only linear associations between
the variables were assumed, the possibility validating the observation was taken into
account in the current analysis. One of the limitations of the correlation calculation
is that it is only able to determine the representative coefficient for linear relations.
Thus, to identify possible non-linear relations, the Maximal Information Coefficient
(MIC) (Reshef et al., 2011) was used. When comparing the coefficients calculated
with both methods, no case which could suggest non-linear variable relations was
detected, hence confirming the validity of the only-linear correlation assumption.

To summarize, the largest absolute coefficients1 for the proposed MPSR sched-
ulers were identified. The variables with the largest correlation coefficients are the
ones which influence most the performance of the proposed solution, and therefore
have to be ranked higher in user concerns when applying the MPSR (as shown in
Table 3.4). From the collected data, we can conclude that the speed up factor was
the most influential variable on the average query execution time for all of the imple-
mented schedulers. On the other hand, the request variation had the largest impact
on scheduler S1 for the average queue size metric. The performance of the remaining
schedulers for the same metric relied heavily on the upper limit of the request arrival
variable.

1MIC only produces positive values, while correlation can have negative ones

61

3.4 Summary

In this chapter the Mixed Partitioning Scheme Replication, a novel approach for
performing optimizations on modern data storage and processing solutions, was de-
fined and studied in detail. The identification of the strengths and weaknesses of
the MPSR suggested that the proposed technique can be efficiently adopted by a
wide range of the applications which require analysis of Petabyte-scale data sets.
Unlike similar solutions, the novel approach does not impact the compatibility of the
underlying storage and processing solution to achieve the desired performance gains,
hence additional optimizations can be implemented on top of the deployed MPSR
infrastructure. Despite the fact that relatively simple data placement and meta-data
management approaches were described in this chapter, MPSR is flexible enough to
accommodate highly specialized partitioning and replication techniques, enabling for
further use case specific optimizations to be implemented.

Additionally, a study of the efficiency of the proposed solution by means of a
simulation engine has been conducted, whereby a model which resembles as close
as possible the real-world scenario has been developed. The simulations provided
valuable information and insights about possible performance gains which can be
achieved when integrating the MPSR into the storage and processing solution. The
observed results revealed the importance of choosing and implementing an appropri-
ate scheduling strategy to maximize the possible performance gains. The variable
combinations having the biggest impact on the efficiency of the proposed solution
were found to be the processing speed coefficients and the request arrival rates. Even
though the model has been reviewed by the experts in the field (Boychenko, Zerlauth,
Garnier, & Zenha-Rela, 2018) it still requires further validation through experimental
studies, which will be described in the following sections.

62

Chapter 4

Mixed Partitioning Scheme
Replication Implementation

The improvements observed from the MPSR simulation results allowed the research
to proceed to the implementation stages of this work (Boychenko, Marc-Antoine,
Jean-Christophe, Markus, & Zenha, 2017) (Boychenko et al., 2018). In this chapter,
the architecture of the proposed approach and its integration with Hadoop system is
described in detail. Taking into account the specificities of the underlying storage and
processing framework, several options were considered while developing our MPSR
prototype. In the first option, widely adopted in the research communities (most of
the tools referred in the state-of-the-art of this thesis), the solution would involve the
actual integration of the changes into the source code of the relevant Hadoop system
components. The alternative, much less popular, would be the integration of the
new file system module through the plug-in mechanisms supported by the Apache
MapReduce framework implementation. Both options were considered and analysed
in detail, after which we concluded that to achieve a functional prototype the direct
integration into Hadoop source code would require much less effort. Nevertheless,
the final version will be implemented as a Namenode plug-in, since maintaining the
MPSR solution logic in a separate module is more practical in the long term (for
example, when the Hadoop infrastructure is migrated into the new version only
minor changes will be required in case the new release breaks some of the MPSR
module’s functionalities). Our implementation of the prototype focused on the most
fundamental features of the proposed solution, including the mechanisms which allow
the individual cluster machines to store the data assigned to specific partitioning
criteria and route correctly the user requests. The dataset for the performance
evaluation studies was determined based on the currently deployed storage solutions

63

workload analysis, and extracted from the respective repositories, i.e. it is as close
as it can be to the actual dataset when in production mode.

4.1 Apache Hadoop

The selection of the foundation for the design and development of the Mixed Par-
titioning Scheme Replication architecture was made through the identification and
comparison of different data storage and processing solutions considered suitable for
very large dataset analysis. Amongst the different possibilities, the Apache Hadoop
was selected for its flexibility, reliability and integrity. First, the Hadoop architec-
ture provides the flexibility to integrate the new modules independently, without
modification of the original sources, which is a significant advantage in terms of the
service maintainability and compatibility with the future releases. Furthermore, the
popularity of the Apache MapReduce implementation generated a large community
of users around the project, leading to a constant improvement of the features and
the quality of the solution. Finally, the integrity of the Hadoop system (as the dis-
tribution already provides the required set of components to implement and manage
the entire data storage and processing pipelines) allows focusing the efforts on the
developments, rather than dedicating time for solving compatibility and integration
issues.

The implementation of the Mixed Partitioning Scheme Replication solution ar-
chitecture, presented in the following sections, requires a good understanding of the
Hadoop system. Therefore, we start by describing the MapReduce programming
model, the fundamental concept of the storage and processing framework. Then,
the Hadoop Distributed File System architecture and some of the implementation
details are presented. Finally, the resource management process and job execution
mechanisms are described in detail.

4.1.1 MapReduce Programming Model

The fundamental concept which defines the architecture of the Hadoop system com-
ponents is the MapReduce programming model. MapReduce applications are built
using the map and reduce functions. The map function is hereby used for structuring
and filtering the raw inputs, while the reduce function operates on the pre-processed
datasets which has been previously aggregated by using pre-determined criteria. As
long as the input data is divisible, the constraints imposed on the map and reduce
processing stages allow the underlying implementation to automatically distribute

64

the load throughout the cluster nodes. While being processed on the remote ma-
chines, the map tasks generate intermediary data, which –in the execution phase
named shuffling–, is sorted, merged and transferred to the cluster resources which
were allocated for the reduce tasks. Unlike the other two phases which allow the
user to define the processing logic, the shuffling is not programmable. The sort-
ing and merging operations are based on the implementation of the hashCode (),
equals () and compareTo () methods of respective job input and output classes.
The following example explains in detail the execution of a specific use case on the
Hadoop cluster.

Example 4.1.1. Consider that a hardware expert, working at CERN, wants to cal-
culate the average signal value for specific device measurements collected during the
last hour. The person knows that the data storage solution persists the data into files
using the CSV format and containing the following columns: Signal Name, Reported
Value and Measurement Timestamp. The file system is organized into directories
which aggregate daily input for all of the monitored devices. To perform the initial
dataset filtering the hardware expert implements the following map function.

Listing 4.1: map and reduce functions example

map(String key, String data):

for each entry in data:

tokens[] = Tokenize(entry, ’,’)

if List("signal_a","signal_b").contains(tokens[0]) And

IsLastHour(ParseDate(tokens[2])):

WriteIntermediateResults(tokens[0], tokens[1])

reduce(String key, Iterator values):

sum = 0

for each entry in values:

sum += ParseDouble(entry)

WriteResults(key, Length(values) > 0 ? sum/Length(values) : 0)

Since the directory contains the relevant data for an entire day, each line of the
input file(s) must be accessed and verified in order to determine if the signal value
was measured during the last hour (the timestamp must match the criteria defined
in the IsLastHour () method). Additionally, the hardware expert is interested in
specific signals, thus each line has to be verified to match the respective filter as well.
Whenever the input passes all defined filters, an entry into the intermediate result file
is written with a signal name being a key and a reported measurement being a value.
Further, the intermediate data from multiple nodes is sorted (based on signal name

65

File 1

File 2

signal_a,2.7,1201056070
signal_b,3.6,1201056070
signal_a,3.3,1201153302

signal_b,0.04,1201153303
signal_a,1.5,1201153306
signal_c,0.13,1201153307

signal_a,2.1,1201153303
signal_b,0.5,1201153304
signal_a,1.0,1201153305

signal_a,2.7,1201056070
signal_b,3.6,1201056070
signal_a,3.3,1201153302

signal_b,0.04
signal_a,1.5

signal_a,3.3

signal_a,2.1
signal_b,0.5
signal_a,1.0

signal_a,2.1,1201153303
signal_b,0.5,1201153304
signal_a,1.0,1201153305

signal_b,0.04,1201153303
signal_a,1.5,1201153306
signal_c,0.13,1201153307

signal_b,0.5
signal_b,0.04

signal_b,0.27

signal_a,1.975
signal_b,0.27

signal_a,3.3
signal_a,2.1
signal_a,1.0
singal_a,1.5

signal_a,1.975

Input Input Splits Map Shuffle Reduce Final Results

Figure 4.1: The example MapReduce application execution.

alphabetical order), aggregated by the key attribute (each merged file will contain
only the data for an individual variable) and transferred to the machine which will
be performing the reduce operation. For calculating the average signal values, the
hardware expert also developed the reduce function. The implementation hereby
calculates the average value of the already aggregated by signal name measurements
and writes the final results into the directory accessible by the users. The entire
process of this MapReduce application execution on Hadoop system is depicted in
the Figure 4.1.

�

4.1.2 Hadoop Distributed File System

The representation and some of the concepts adopted by the Hadoop Distributed File
System are very similar to ones of used by traditional, non-distributed file systems,
however the similarities end there. Unlike non-distributed namespaces, the HDFS
implementation allows it to operate on multi-node clusters and uses remote communi-
cation protocols for transferring the data from the original repositories. Additionally,
the architecture was optimized for maximizing the data throughput for large scale
analysis, thus the most basic building blocks are represented on a completely differ-
ent scale when compared to traditional file systems. HDFS is based entirely on the
software layer to store the data, relying completely on the node-specific file system
implementations to communicate with the disks.

The most basic component of the HDFS structure is Block(see Figure 4.2).
This element represents the remotely stored part of the data which belongs to the
determined File instance. The HDFS Block object is an abstraction made by
the software layer, rather than a physical representation, and is therefore capable of

66

Namenode

root 2016

2017 Jan

Feb 01

02

BLM

DCBA

TCLA

File 2

File 3

File 4

File 1

Datanode

Blk_1

Blk_5

Blk_2

Blk_6

Datanode

Blk_3

Blk_8

Blk_7

Blk_10

Datanode

Blk_4

Blk_11

Blk_9

Blk_12

Figure 4.2: The Hadoop Distributed File System structure.

operating on top of the cluster node-local file systems (like ext3, ext4 or NTFS). This
component, when persisted to the disk, is represented by several files: the large ones
contain the data and much smaller ones contain the meta-data. Unlike in traditional
file systems the, HDFS Block does not allocate unused space. Thus the data input
rates and the block size configuration are crucial for the performance of MapReduce
applications. Whenever the data is written in one batch which fits the entire block
space, there is a high chance that information will be recorded on adjacent disk
segments. In this case, the retrieval throughput will be much better when compared
to the partial writes, which significantly increase the probability of scattered segments
to be assigned for storing the data. The Block instances are always assigned to a
singleINodeFile object, which corresponds to the file concept adopted in traditional
file systems. Furthermore, the INodeFile objects are organized into the tree data
structure using the INodeDirectory instances. Both classes inherit the INode

attributes, which allows managing the relations between the file system components
(through the child-parent relation model) and handling the pre-determined user-
defined attributes, like ownership and permissions information.

The Hadoop architecture delegates the file system related responsibilities amongst
the Namenode and the Datanode modules. The Namenode is the file system - master
- service, which manages the namespace and performs the meta-data-related oper-
ations. In order to be able to efficiently process the meta-data requests, the whole

67

data representation is maintained in memory by an instance of the FSDirectory

object. At the same time and in an effort to prevent losses of meta data of the file
system in case of a failure, the FSNamesystem instance simultaneously persists the
performed operations onto the disk. The actions are first written into the temporary
edit files, which are further aggregated into the main journal file - the fsimage. Be-
sides the INode objects, the namespace audit system is used for storing the block
mapping, managed by the BlockManager instance. In addition to the file system
structure, the Namenode manages the replication of the HDFS data. The resources
are constantly monitored and whenever an under-replicated block is detected (for
example in case of a cluster machine failure) the relevant data is moved from the
existing location to the newly allocated resources. The responsibility of the data
storage is assigned to the Datanode - slave - instances. The Datanode implemen-
tation maintains the Block objects with the respective meta-data on the cluster
node-local disks, while being completely unaware of the details and structure of the
underlying file system implementation. Whenever the data needs to be written or
read from HDFS, the Block location is first determined by querying the Namenode
and only in a second step the Datanode is requested to provide the data (for this, a
direct data stream is opened between the client and the corresponding Datanode).

4.1.3 Hadoop Resource Management

The computing resources of the Hadoop cluster are managed by the YARN service.
The master component of the cluster management process is the ResourceManager,
which communicates with several instances of machine managers, namely Node-
Managers (one instance for each node) and ApplicationMasters (one instance per
application). The responsibilities of the NodeManager include the management of
the individual machine resources, reporting the current CPU and memory state to
the master service and managing the execution container life-cycle. The Applica-
tionMaster communicates with the ResourceManager to negotiate the allocation of
computing resources, further handled by the individual nodes of the cluster connected
to the YARN infrastructure. The resource allocation is performed by configurable
schedulers, like the CapacityScheduler or the FairScheduler , which define
the policy to distribute and allocate the available execution slots amongst multiple
queues or applications. The application submission in a Hadoop system is performed
through the ResourceManager, which allocates a container for each of the user re-
quests and requests the related NodeManager to launch its execution. The container
executes the ApplicationMaster, which in turn requests additional containers for the
execution of the map and reduce tasks. The ApplicationMaster is framework depen-

68

dent, thus different processing engines, including MapReduce, need to provide their
own implementation of this component. In case of MapReduce, a specific script is ex-
ecuted, which starts the new JVM for each of the tasks and performs the execution
on the isolated instances. Finally, the MapReduce application results are written
into HDFS and the logs are passed to the HistoryServer service instance. After
the execution completion, the NodeManager releases the containers and notifies the
ResourceManager.

4.2 Architecture

The integration of the Mixed Partitioning Scheme Replication with the Hadoop
system requires the implementation of specific interfaces, which subsequently are
integrated into the infrastructure through the framework configurations. The com-
munication layer is enhanced through the ServicePlugin , which allows to expose
both the Datanode and Namenode service functionalities using pre-defined remote
procedure call (RPC) protocols. According to the documentation, the plugins are
instantiated by the service instance and life-cycle events are communicated through
stop() and start() methods. The main use of the ServicePlugin is likely to
be limited to the server-side communications, since the HDFS client protocols will
remain unmodified in comparison to traditional Hadoop systems.

The storage behaviour can be altered through the implementation and integra-
tion of the FileSystem component. This instance is responsible for performing all
operations that both client and server modules can execute on the underlying file
system solution. The FileSystem implementation must be integrated into the Na-
menode classpath. The Namenode recognizes the specific requests by analysing the
file system scheme, represented by the prefix in the provided paths (for example in
hdfs://localhost/directory/file.txt path the hdfs prefix corresponds to the file system
scheme). Additional daemon processes can be configured inside the initilize ()

method which is automatically instantiated when the service is started. This mod-
ule allows the proposed approach to be integrated into the Hadoop systems without
losing the compatibility with external services and inherit its failure tolerance prop-
erties.

The detailed overview of the Mixed Partitioning Scheme Replication solution
architecture is presented in the Figure 4.3. The modules specific to the proposed
approach are integrated with the Namenode component (the new elements are rep-
resented by shapes with dashed-line borders). Besides the regular file system image
storage, the MPSR solution persists system usage data for optimizing the storage
layout in case of significant usage changes are developing over time. Additional

69

MPSR
File System

MPSR
Statistics
Service

MPSR
Data Service

Storage and Processing Resources

MPSR
Meta Service

Diagnostic Data
Repository

Metadata Repository

system usage logsedit files fsimage

HDFS data blocks

Users

NamenodeRcpServer

MPSRMetaServicePlugin

Hadoop
CLI

Map
Reduce

Spark Flink

client side

server side

Figure 4.3: The Mixed Partitioning Scheme Replication architecture.

commands are exposed to the cluster administrator for managing the data sources
and the partitioning criteria. The results of the infrastructure components remain
unmodified, as all required operations are performed directly on the Namenode.

MPSRFileSystem

The core component of the proposed architecture is the MPSRFileSystem object.
This object is responsible for building the file system representation and maintaining
the data consistency and integrity. The namespace is organized into the classical,
general tree structure. In case of shared predicate dependencies (when multiple
partitioning criteria share the same object attributes for defining the storage scheme),
it performs the duplication of the inodes. An implementation based on a Directed
Acyclic Graph (DAG) was considered for mitigating these issues. It was however
proven to be impossible since in specific situations the combination of the graph
nodes will result in undesired data merging (as shown in the Example 4.2.1).

Example 4.2.1. Consider that there were two partitioning criteria configured on
the storage system. The first one structures the data according to the {A,B,C},
while the second one uses the {B,C} object attributes. The DAG representation for
the described use case would connect the root instance to both A and B nodes.

70

root A B C

The final file destination for data belonging to the two different partitioning
criteria will be the same. Consequently, the system will not be able to differentiate
between the stored objects, making it impossible for user requests to determine
which replica group the file belongs to. Furthermore, applications operating in such
directories will process the same data multiple times, reporting incorrect analysis
results.

�

For each of the configured data sources, the MPSRFileSystem instantiates an
individual root object to protect the data consistency by avoiding possible predicate
collisions. Similar to the original Hadoop implementation, this component maintains
the entire file system image in Random Access Memory (RAM) to reduce the I/O
load on the underlying storage hardware and to reduce the resulting request process-
ing latency. Moreover, for failure tolerance reasons the namespace representation
and operations are mirrored to the persistent repository. Finally, the file system
audit information collected from the processed user requests is forwarded to the
MPSRStatisticsService .

The file system tree representation is composed of the MPSRINode objects as the
tree structure branches and the traditional Hadoop Block objects as leaves. The
MPSRINode instances will inherit most of their attributes and functionalities from
the original INode implementation, including the object identification details, per-
missions and ownership features. On the other hand, this class limits the components
which can compose the file system structure to the MPSR representations, allowing
parent-child relations only between specific instances. The MPSRINode implemen-
tations are the MPSRDirectory and MPSRFile classes, which correspond to the
directories and files respectively. The MPSRDirectory objects are used for defining
the organization inside the managed namespace, while the MPSRFile maintains a
link between the file system representation and the physical (remote) data storage
through Block objects.

MPSRMetaService

The only component which does not have a corresponding counterpart in the Namen-
ode architecture is the MPSRMetaService . The main purpose of this module is to

71

render Hadoop workload-aware, and make it therefore capable of operating efficiently
with multiple partitioning criteria. The service exposes an administration interface,
which allows the infrastructure administrator to configure the data sources and the
management of the related partitioning schemes. The configured scenarios are main-
tained in memory and persisted to the disk for the reasons which were explained in
detail in the previous section.

The MPSRDataSource object represents the input data sources. Whenever mul-
tiple input origins deliberately share the same partitioning criteria - and when merg-
ing does not break the consistency of the data storage - the same MPSRDataSource

instances can be reused. Otherwise, a new object must be configured for individ-
ual data sources. All of the MPSRDataSource instances maintain the originally
defined replication factor configuration, the predicate sorting order and the list of
the corresponding MPSRPartitioningCriteria objects. The predicates repre-
sent the object attributes which characterize the input data and further used for
the definition of the partitioning schemes. The MPSRPartitioningCriteria in-
stances manage the sorted multi-key map of the predicates with their associated
MPSRPartitioningAlgorithm objects. Thus, unless the user request specifies ex-
plicitly the data source for retrieving desired stored values, the MPSRMetaService

automatically determines the most appropriate partitioning scheme for executing the
query. In this case, all of the MPSRDataSource instances are evaluated and the best
matching data source is determined by analysing each of the configured partitioning
criteria. Whenever there are multiple results with the same score the system selects
the one which at the current moment is less loaded with user requests.

Additionally, the MPSRMetaService instantiates and controls the single in-
stance of the MPSRResourceMonitor object. This component manages the cluster
resource relation with the chosen replication and partitioning strategies. Taking
into account the configuration, the nodes are initially divided into two categories,
elastic or permanent. Based on the replication preferences: the first group is pri-
marily used for temporary storage of frequently accessed (or ‘hot’) datasets, while
the machines which belong to the later category assure the persistent storage of the
whole repository. The cluster resource classification and allocation is performed by
the MPSRScoringAlgorithm which, according to the implemented logic, performs
re-balancing of the cluster whenever new nodes are connected and in case nodes
are disconnected from the infrastructure (including the manual machine decommis-
sioning). This component makes extensive use of the MPSRStatisticsService in
order to determine the optimum configuration for the observed workload partitioning
and replication scheme. Since the original Hadoop implementation does not allow di-
rect subscriptions to the DatanodeManager , the MPSRResourceMonitor instance

72

is a daemon process, which performs periodic checks of the cluster status and invokes
the MPSRScoringAlgorithm when an event of interest occurs. After performing the
required re-balancing calculations, the associated data operations module is notified
in order to execute the revised data structuring plan.

MPSRDataService

The MPSRDataManager is the module responsible for executing and controlling all
data-related operations. This component communicates with MPSRMetaService

and occasionally receives notifications which contain the instructions for the storage
node allocations and the required data transfer operations. The request is assigned a
priority based on its type and scheduled for execution taking into consideration the
ongoing operations of the MPSRDataManager . The action types supported by this
module are: elastic replica management, resource rebalancing and failure recovery.

The operation with the highest priority is failure recovery. The main reason for
that is that an insufficient replication can compromise the data integrity, since the
combined probability of unrecoverable loss of stored information in this case signifi-
cantly increases. Additionally, a permanent loss of one or several nodes could result
in a considerable performance deterioration for some workload categories, affecting
not only the execution of the user requests, but also all elastic replication manage-
ment operations. Finally, the temporary storage can still maintain a partial copy of
the data lost on the permanent node, in which case the recovery process would be
completed much faster in comparison to a case where the missing dataset requires
full reconstruction. The data recovery process starts by inspecting the extent of the
data loss. First, the elastic replicas are checked for possible partial dataset copies,
which - in case of a positive outcome - are transferred to the permanent storage using
efficient commands like distcp(). If no copy can be found, the MPSRMetaService is
invoked in order to determine the closest matching partitioning scheme (i.e. the one
which will allow to migrate the data with the least possible effort). Based on the data
retrieved from the elastic replicas and the determined loss boundaries, a MapReduce
application will be generated and executed to automatically transform data from an
existing partitioning criteria to the scheme which has missing information. Finally,
the re-constructed scheme is sorted according to the specific configuration of the
partitioning criteria, followed by the data filtering to remove the duplicate entries.

The intermediate priority operation is the elastic replica management, since it
does not require the transfer of large amounts of data but rather take advantage
from the possibility that some of the use cases can retrieve data from the more per-
formant temporary storage layer. Periodically, the data is classified according to the

73

pre-determined metrics (data access frequency for example) and transitionally over-
replicated to the cluster nodes specifically allocated for such operations. Whenever
the resource re-allocation procedure is executed, previously stored information blocks
are purged from temporary storage and the new assets are written to the disks of
elastic replicas. The data transfer operation is performed using efficient commands
such as distcp(). The periodicity of the elastic replication is controlled according
to a user defined threshold, as a constant data transfers across the cluster might
significantly harm the performance of the system.

Finally, the cluster re-balancing operation is allocated the lowest priority, since
it requires the transfer of large amounts of data between the nodes. The defined
partitioning scheme is at first inspected to determine the delimitation which would
allow to maintain a balanced resource distribution. This information is then corre-
lated with the cluster resource usage statistics from the MPSRStatisticsService

and the re-balancing plan is defined based on the combination of both factors. Since
the data is transferred across segments belonging to the same partitioning scheme,
the distcp() command is used for executing the operation. After the information is
successfully uploaded to the new location, the segment which contains the previous
copy is de-allocated and can be reused for storing and other, fresh content.

MPSRStatisticsService

The MPSRStatisticsService is used to collect all relevant system usage data.
The measurements are forwarded to the pre-defined metric processors, which, besides
immediately flushing the raw values to the disk, allow to define additional logic for
information pre-processing and enhancement. In-memory buffering is not supported
by the MPSRStatisticsService for scalability reasons of the Namenode, which
itself already maintains the whole file system representation in RAM. Since the oper-
ations which handle the collected cluster usage statistics are not time critical, minor
additional delays are considered acceptable. The user-defined threshold determines
the periodicity of the log aggregation to avoid filling the Namenode storage space
with diagnostic data. This allows to preserve less-detailed diagnostic data for long
term optimizations, without compromising the service availability.

4.3 Prototype Implementation

The prototype implementation of the Mixed Partitioning Scheme solution was mainly
driven by the need to validate the simulation results of the model described in the
previous chapter. Additionally, the developed application should allow to study the

74

fundamental characteristics of our proposed approach, before the final, full-scale im-
plementation. Therefore, only the core features of the Mixed Partitioning Scheme
Replication technique were addressed in the prototype design and development. The
implementation was integrated directly into the Hadoop source code, which allowed
to maximize the use of the existing file system and cluster management mechanisms,
thus reducing for this first stage the significant effort that the development of an
independent plug-in to support the desired functionalities would require. The Ho-
mogeneous MPSR paradigm was chosen for the implementation, mainly because of
the simplicity of its architecture and the predictability of the executed operations.

Namenode
FSNamesystem FSDirectory

MPSR File System
Disk Management

Module

MPSRINode
MPSRDirectory

MPSRFile

MPSRMeta
Service

BlockManager
Node Allocation

Module

MPSR File System
In-Memory

Management
Module

root
2016
2017

January
February
March

01
02

TCLA
BLMQI
DCBA

root
2016
2017

January
February
March

01
02

TCLA
BLMQI
DCBA

edit filesfs image

Datanode mapping

Datanode Datanode Datanode

Local Storage

Blk_1 Blk_5

Blk_8

Blk_2 Blk_7 Blk_3 Blk_4

Blk_6

0011010011 001110

1100111101 110111

0111101110 111011

1101110111 101110

1101110111 000101

1001110110 011101

RAM

0110111000 011011

1001100001 101101

1101110111 011110

Figure 4.4: The Mixed Partitioning Scheme Replication prototype architecture.

The major modifications were introduced in the Hadoop objects FSDirectory

and FSNamesystem (see as well Figure 4.4). These changes were integrated into the
source code without impacting the original system functionalities, since there was
no intention of implementing additional features that would require managing the
staging and intermediary data produced by the MapReduce applications. The new
methods that were integrated into the FSDirectory sources are inspired by the
original implementations, but adapted for operating on the MPSRINode instances.
The prototype supports the minimal feature set required for achieving the experiment
goals, namely operations like directory creation, file creation, appending and status
retrieval. The operations required for handling the namespace representation on the
persistent storage were integrated into the FSNamesystem instance. The changes -
once again - were based on the original implementation, but the source code was ex-
tended to support the reconstruction of the MPSR file system representation through
the edits and fsimage files. Additional changes for storing the namespace represen-
tation were introduced into the fsimage.proto file, which defines the scheme used

75

by the Protocol Buffers (Protocol buffers are a language-neutral, platform-neutral
extensible mechanism for serializing structured data., n.d.) for writing and reading
the namespace image to and from the disk.

Only the introduction of workload-awareness into the Hadoop system required
the definition and implementation of a completely new module for the management
of meta-data. In the MPSR prototype, the MPSRMetaService was integrated di-
rectly into the Namenode sources. The main responsibility of this new module is the
management of partitioning criteria relations with the individual Datanodes. First,
the administrator has the possibility to define the replica groups, characterized by an
ordered list of the predicates. The relation between the predicates and the concrete
partitioning scheme are defined through an interface which supports both simple and
complex mapping (for example multi-predicate hash). As a second step, once the
service is started the cluster nodes are allocated to individual partitioning criteria
using the Round-Robin algorithm (Rasch, 1970). The allocations are stored into the
meta-data file since after a potential system failure or restart the machines which al-
ready store MPSR data need to be assigned to the correct replication group. Finally,
managed associations are exposed to the rest of the Namenode services, in order for
the user requests to be routed to the appropriate data sources.

The application execution is scheduled using the default implementation of the
CapacityScheduler . According to its definition, this scheduler is very similar to
the S2 approach described in the previous chapter. Very much like the simulated
component, the CapacityScheduler prioritizes data-local executions (i.e. the
execution of jobs on optimized resources). In case the size of the input is too large
or cluster resource usage is out of balance, the processing is distributed across the
entire infrastructure (and the data is transferred to remote machines from the original
source). The user requests are associated to individual queues and are processed in
a per-queue FIFO order.

The data management process is very similar to the traditional approach applied
on Hadoop systems. The main difference lies in the block storage and replication
mechanisms. Unlike in the original implementation, after being stored the files are
not automatically replicated throughout the cluster unless the replication factor is
larger than the number of the configured partitioning criteria. For the reasons ex-
plained in Section 3.1, the replication process control is partially granted to the exter-
nal data ingestion tools. Additionally, the mechanism which detects under-replicated
blocks was modified in order to exclude the MPSR file system from operations which
ensure the HDFS data distribution. Unlike in the traditional Hadoop systems, addi-
tional knowledge has to be used in the MPSR prototype to determine the most ap-
propriate candidates for storing the data blocks. The list of predicates, passed along

76

with the collected information allows the modified version of the BlockManager to
build the list of the excludedNodes and favoredNodes to control in the following
the data placement on the specialized resources. The list of excludedNodes con-
tains machines which were assigned a partitioning criteria which is different from the
one associated with the input data. On the other hand, the list of favoredNodes

contains the nodes which are suitable for storing data of the respective structure and
the target destination is therefore picked randomly from the available options.

4.4 Performance Study

This section describes the details of the developed prototype performance evaluation
which was performed to evaluate the characteristics of the Mixed Partitioning Scheme
Replication integrated into the Hadoop solution. First, the partitioning schemes and
related use cases were defined. The configuration of the initial experiment setup
is very important for the execution of the appropriate benchmarks, as it needs to
conform with the simulation environment and provide a good approximation of the
storage and processing solution currently deployed at CERN. A detailed overview of
the developed benchmarking application used for injecting different workload config-
urations is presented. Finally, the metrics used for evaluating the performance of the
MPSR solution are described along with the obtained results and the related model
validation analysis.

4.4.1 Workload Analysis and Definition

The identification of the workloads, which the next generation LHC transient data
recording and analysis solution will be serving, was performed in two phases. First,
the queries executed on the initial versions of the CERN Accelerator Logging Service
(CALS) and Post Mortem (PM) systems were studied. The analysis was performed
over an extensive period of time to be representative of the different modes of ac-
celerator operation and therefore to identify possible, periodic workload deviations.
Afterwards, a survey of the current and future needs of hardware experts and accel-
erator operators was conducted to determine future use cases which might not yet
be covered by the current system workload analysis. The main motivation for this
later study was that there are today numerous constraints imposed by the deployed
storage solutions. Besides the limitations on the retrievable data size, both archi-
tectures ignore the signal attributes which can be used for querying the data in the
future if the means are available.

77

CERN Accelerator Logging Service Workload Study

The CERN Accelerator Logging Service (CALS) provides the possibility to retrieve
data stored through an API, which was additionally instrumented for controlling
and monitoring the service availability. The data extraction interface tracks every
remote method invocation and stores the audit information into CSV formatted log
files. The log file repository is periodically cleaned to preserve the available storage
space. The reported metrics include the information about i) the invoked method
and respective arguments, ii) the query execution start timestamp and duration,
iii) the number of retrieved rows and iv) the application which performed the data
extraction, along with the user of the application. Despite the fact that most of
the collected information followed the same pattern, for unknown reasons in some of
the entries the API method argument names was missing. Consequently, additional
logic needed to be applied to the log files in order to normalize the entries before
further analysis. Finally, in the current system architecture multiple distributed API
instances are operating simultaneously, writing the audit information to different
locations and therefore this scattered data had to be merged prior to the analysis.

The preliminary analysis of the CALS workload was performed using a specifi-
cally developed application. The parametrization allows to define the desired time
range and data sources for filtering the measurements. During the data process-
ing stage additional attributes which were obtained from the external services were
added to the observations (e.g device location). The architecture allowed us to plug-
in different counting interfaces, which were calculating the frequency of a given event
for a particular metrics (e.g the frequency of the method invocations). The results
were stored into an individual per-metric files and structured using the CSV format.
To determine possible workload deviations and (distinct) operation modes, the re-
sults were aggregated according to the different modes of accelerator operation (see
Table 4.1).

The following Figure 4.5 represents the average number of user requests per day,
which were performed by users on the storage system during the different accelerator
phases. As expected, during a period of shutdown, most (automatic) analysis mod-
ules are not running, since the majority of the devices are powered off. The hardware
commissioning phase is characterized by occasional workload outbreaks, related to
the execution of the previously mentioned test sequences. During this phase, the
queries primarily target devices of a specific type (related to the powering of the
magnet circuits of the accelerator), within a well-defined location or measurements
obtained during a particular beam state (for example when the beam is being in-
jected through the accelerator complex into the LHC). The full storage load can be
observed as early as during the beam commissioning phase, when the full integration

78

Shutdown Regular stops of the accelerator, where the accelera-
tor and its equipment systems are undergoing major
consolidation works and upgrades. Many devices are
being installed, upgraded or replaced to further opti-
mise the performance or as a measure of preventive
maintenance. There are no beams in the machine and
no powering of equipment is taking place.

Hardware Commissioning Following a long(er) shoutdown, the accelerator and
its equipment systems are being prepared for the fol-
lowing operational period. The installed devices are
being tested in a controlled environment and with well
determined test sequences. There are no beams in the
machine, but powering of equipment takes place.

Beam Commissioning The accelerator is preparing for operation with par-
ticle beams. The installed devices are being tested
under realistic conditions with continuously increased
beam intensities and energies. There are low intensity
beams in the machine.

Operation The accelerator is fully operational. The device mea-
surements are used for beam corrections, performance
optimisations, failure detection and machine safety
tasks. There are high intensity and energy beams cir-
culating in the accelerator.

Table 4.1: The principal LHC operation phases.

of systems is being tested and the accelerator is prepared for the upcoming physics
runs. The observed workloads are very similar to the audit data collected during the
operational mode, during which the primary objective of the accelerator complex is
the continuous collision of particles to maximize the physics output of the machines.

A more detailed result analysis allowed us to extract the workload profiles ob-
served on the CERN Accelerator Logging Service (see Figure 4.6). Due to the simi-
larities observed between the measurements collected for different accelerator phases,
the following study presents only the outcomes of the operational period (which also
represents the longest phase during a calendar year). It was evident that 92.8% of
the executed queries target data which was written during the previous 24 hours.
This can be explained by the fact that many applications simply extract the data
from CALS into external storage solutions, used for enabling additional (off-system)

79

 0

 1x106

 2x106

 3x106

 4x106

 5x106

 6x106

 7x106

Shudown Hardware
Commissioning

Beam
Commissioning

Operation

N
um

be
r

of
 R

eq
ue

st
s

Accelerator Phases

CALS Average Number of Data Extraction Requests per Day

Avg. Number of Daily Requests

Figure 4.5: The average number of data extraction requests served by CALS daily.

data processing operations. This tendency is mostly driven by the current limitation
of the storage, lacking the possibilities for a more efficient data extraction or pos-
sibilities for the processing of data close to the persistence layer. This assumption
was confirmed by further result analysis, which identified that the getDataSet ()

method, used solely for extracting the raw datasets, was dominating the executed
user requests, maintaining the major share of approximately 89.5% for referred ac-
celerator phase. The main filters applied in the executed queries were the variable
name and the extraction start and end timestamps. The periodicity of the interval
defined by the two timestamps was mostly dominated by the queries retrieving the
values in time ranges of an hour (45.5%) and a minute (44.1%). The most queried
variables types were the collimators (devices responsible for absorbing high energy
particles that start to deviate from the ideal trajectory inside the vacuum chamber).
The largest number of requests was extracting data from the LHC points 2 and 8,
which corresponds to the locations where particle beams are injected into the LHC,
after having travelled down 3 Kilometer long transfer lines from the machines into
the so-called injector complex.

Despite the collected results provide a quite clear overview of the executed work-
loads, our conclusions are prone do discussion. The main reason for the controversy
is the way the API was initially implemented by the CALS development team. De-

80

 0

 20

 40

 60

 80

 100

GetDataset GetLastData GetVariables GetVectorData GetParams Others

N
or

m
al

iz
ed

 N
um

be
r

of
 R

eq
ue

st
s(

%
)

Invoked Methods

(a) API method invocation frequency.

 0

 20

 40

 60

 80

 100

Variable StartTime EndTime VariableNames

N
or

m
al

iz
ed

 N
um

be
r

of
 R

eq
ue

st
s(

%
)

Method Paramaters

(b) Data filter application frequency.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

MSEC SEC MIN DAY WEEK MO YEAR

N
or

m
al

iz
ed

 N
um

be
r

of
 R

eq
ue

st
s(

%
)

Time Filter Intervals

(c) Most frequently queried time intervals.

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

P1 P2 P3 P4 P5 P6 P7 P8

N
or

m
al

iz
ed

 N
um

be
r

of
 R

eq
ue

st
s(

%
)

Accessed Variable Location

(d) Device location access patterns.

 0

 5

 10

 15

 20

 25

 30

TCSG TCLA TCL TCP TCTPV TCTPH TCDIV TCDIH LHC TCLIB TCLIA TCSP BLMEI BLMQI QRLBA

N
or

m
al

iz
ed

 N
um

be
r

of
 R

eq
ue

st
s(

%
)

Variable Name Filter(aggregated by device type)

(e) Most frequently queried device types.

Figure 4.6: CERN Accelerator Logging Service workload characteristics.

spite the fact that it might have been the appropriate solution at the time to achieve
and maintain stable service in operation, its constraints might have a very significant
impact on the system usage profiles. The workload study allowed us to identify that

81

the system is mostly used for monotonous data extractions, since the middleware
only provides the most basic statistical functions, like min(), max() and avg().
Even though some use cases could profit from the already available simple analysis
features, the lack of aggregation, join and sort operators make it impossible for many
hardware experts to take advantage of their existence. Furthermore, the upper bound
on the query output size (250Megabytes) has a direct impact on the data intervals
extracted by the users. For example, one device which reports the data with 1Hz
frequency might produce up to 100Megabytes of uncompressed data per day, whilst
a common analysis generally involves hundreds or even thousands of variables. This
constraint makes the statistical functions mostly unusable, as even for one week of
data per variable the calculations must be split, and the final statistic calculation
result might be incorrect. Finally, the lack of appropriate analytical features results
in the continuous data extractions performed by multiple hardware teams (to per-
form more performant and complex off-line analysis of data on local machines). It
is therefore very likely that the distribution of the pre-dominant device types in the
observed workloads is affected by this shortcoming. Consequently, the next gener-
ation solution must be able to preserve the quality of service and be prepared for
handling similar requests more efficiently than the previous data storage application.
Nevertheless, the observed query profiles and workload characteristics were adopted
by the performance analysis application.

Post Mortem Workload Study

The Post Mortem (PM) system does not provide a dedicated workload monitoring
component, as the data extraction is not routed through a dedicated API but done
via direct file accesses to the data storage. The identification of the query profiles is
therefore mostly based on the characteristics of the implemented analysis modules.
The analysis modules presented in the following Figure 4.7 are triggered by specific
events occurring in the accelerators, resulting in the triggering and simultaneous
transmission of many thousands of files to the central storage and therefore periodic
workload outbreaks. The data acquisition rates (or event frequencies) in the Post
Mortem system are considerably lower in comparison to the CERN Accelerator Log-
ging Service. These result in a file system representation with a significant amount
of the considerably small files (1 Kilobyte - 12.7 Megabytes of compressed data),
leading to an average of 100.000 files per day. The size and acquisition frequency of
the generated input data (further referred as a ’dump’) changes significantly amongst
the different events occurring within the accelerators. The largest dataset analysis
is conducted when a Global event occurs (which is triggered by the complete ex-

82

traction of particle beams from the LHC). Such a global event requires thousands
of signal measurements to be processed in order to detect the root cause of the pre-
mature beam dump and/or to determine the safety of the machine to proceed to
the following physics run. Still, in comparison to more frequent events, like when
data is acquired by the Quality Check for beam extractions from the Super Proton
Synchrotron (SPSQC), and therefore have to process the event data several times
every minute, the frequency of global events in the LHC is comparably low (typically
occurring only a few times per day). It should also not be ignored that the system is
simultaneously used for ad-hoc analysis performed by the hardware experts, however
the lack of monitoring tools makes it impossible to determine the characteristics of
such user requests.

1 sec

1 min

1 hour

1 day

100KB 1MB 10MB 100MB 1GB

An
al

ys
is

 F
re

qu
en

cy

Dump data size

Post Mortem Analysis Use Cases

GlobalPowering

XPOCIQC

SPSQC

Figure 4.7: The Post Mortem system analysis use cases.

Future Use Case Analysis

The survey conducted in collaboration with CERN’s hardware experts with the aim
of identifying possible future use cases was motivated by the limitations of the cur-
rently deployed storage solutions and the scarcity of relevant workload monitoring

83

data. The study aimed at identifying the potential query profiles to be executed by
the current data users on the next generation data storage system. This was done
assuming that the future infrastructure provides and increased efficiency in terms
of data processing and does not impose significant restrictions on the submitted
requests. Based on the description of the collected use cases, the list of the most
relevant signal attributes was extracted. As a following step, a two-dimensional ma-
trix was constructed, where the rows corresponded to the identified queries and the
columns to the extracted data dimensions. Finally, for each of the table entries, the
importance factors were estimated. The value of the importance factor can be trans-
lated to the potential performance gain obtained when a determined user request
is executed on the system which partitions the data according to the corresponding
object attribute. For example, if many user requests filter the data based on variable
name, it will be beneficial to partition the entities using the device type dimension.
Several categories of scoring could be assigned for the query-attribute combination,
ranging from zero (no performance gains) to three (major performance gains). Each
use case could be assigned a limited number of points, to enforce deeper reflection
on the importance of the data dimensions. The following figure 4.8 summarises the
results of the survey.

The denominations U1. . . U9 around the plotted area refer to the identified use
cases (for a detailed description of use cases check Appendix A), whilst the values
along the axis (0. . . 3), represent the importance of the specific object attribute for
each of the possible workloads. According to the observed results, the attribute
time is considered the most critical for the large majority of the query profiles (its
area is the largest in comparison to other plots). The attribute device type is not
that highly solicited as the time attribute, but is considered crucial for some of the
use cases, while still having considerable importance for others. The beam status,
which conceptually can be considered as an abstract time measurement unit, was
extremely favourable for some of the identified queries. This can be characterized by
a common need of analysing the data strictly during specific periods of the accelerator
operation (for example a representative noise analysis can only be performed when
there is no beam in the accelerator). Finally, the location attribute can be considered
not to bring significant benefits for a large number of the possible user requests. For
specific operations however it was considered critical for analysis performance (a
very common requirement is the analysis of multi-device data in the accelerator
transfer lines). The results of the conducted survey confirm the assumption that the
limitations introduced in the currently deployed storage systems have a great impact
on the framework usage patterns. Consequently, during the benchmark configuration
and execution the workload heterogeneity is taken into consideration.

84

 0 1 2 3

U1

U2

U3

U4

U5U6

U7

U8

U9

(a) Time relation with use cases.

0 1 2 3

U1

U2

U3

U4

U5U6

U7

U8

U9

(b) Beam mode relation with use cases.

0 1 2 3

U1

U2

U3

U4

U5U6

U7

U8

U9

(c) Location relation with use cases.

0 1 2 3

U1

U2

U3

U4

U5U6

U7

U8

U9

(d) Device type relation with use cases.

Figure 4.8: Signal attributes relation with identified use cases.

4.4.2 Benchmarking Definition

The results of the workload analysis for the transient LHC data recording system
significantly contributed to the definition of the benchmarking environment. Sev-

85

eral factors were considered in order to tailor the infrastructure and performance
evaluation tests to the observed scenarios. First, the results were used to define
the experimental storage data source and the resulting data layout. Based on the
workload observations of the transient data recording system and the expert input,
multiple queries with different processing requirements were developed. The emula-
tion of the workload was assured by a highly configurable custom-built benchmarking
tool which, besides the execution of the jobs, collected a very wide range of the rel-
evant performance metrics. Finally, for automating the infrastructure deployment
process, multiple automatic cluster deployment scripts were developed.

Data Layout

While any of the storage solutions current deployed at CERN could be used as a
potential data source for the performance evaluations, several reasons favoured the
decision of choosing CALS. First of all, in case both storage systems are merged
into a common solution in the future, the amount of the Post Mortem data in the
whole repository will correspond to a share of solely 1.25%, meaning that most of
the queries will be inevitably executed on the remaining data. Additionally, the
continuous amount of data collected by CALS system provides a broad overview on
the signal behaviour without containing large gaps between the stored measurements
as it is the case for the event based Post Mortem data. Finally, most of the use cases
provided by the hardware experts rely on the long-term analysis of continuously
acquired values.

The data extraction from CALS was performed using a dedicated data transport
service, the Apache Flume(Flume is a distributed, reliable, and available service for
efficiently collecting, aggregating, and moving large amounts of log data., n.d.) (see
Figure 4.9). To retrieve the signal values, a custom data Source was implemented.
The developed module can be parametrized with the variable name and the extrac-
tion time range arguments. Since it was impossible to predict the data size for each
of the executed extraction requests and due to the previously mentioned CALS API
limitations, the source implementation relied on the divide-and-conquer strategy for
retrieving the measurements. Whenever the currently deployed storage was report-
ing the violation of the data size constraint, the CalsSource was dividing the time
interval into two parts and continue performing the operation, until requests were
able to perform the execution successfully. Further, for failure tolerance reasons,
the AvroChannel was configured to transport the collected values to the specific
component responsible for writing data into HDFS. Since the HdfsSink module was
included in the default Flume installation, it was required to provide the minimal

86

Flume Agent

HDFS
Sink

CALS
Source

Flume Agent

HDFS
Sink

CALS
Source

Flume Agent

HDFS
Sink

CALS
Source

Avro Channel

CERN Accelerator
Logging Service

Test HDFS
Cluster

Avro Channel

Avro Channel

Figure 4.9: The CALS data extraction infrastructure.

configuration for being able to flush the extracted data into the cluster. Multiple
distributed agents were spawn in order to reduce the time required for transferring
the signal measurements.

The amount of data to be extracted to the test cluster was constrained by the
available disk space on the cluster nodes. Each of the machines was configured with
two 1 Terabyte Hard Disk Drives (HDD). One of the storage devices was assigned
for persisting the CALS data, while the second one was used for maintaining the
intermediary job execution results, as for large analytical queries the space require-
ments are significant. The disk device allocated to the HDFS storage must retain
some available space for staging, the job execution result and history data, thus
only 60% of the total capacity were reserved for the signal measurements repository.
Since 600 Gigabytes of storage allowed us to persist only a very limited dataset, the
data for the performance evaluation tests was selected very carefully. Based on the
most common time intervals observed in the executed query profiles and the speci-
ficities of the data partitioning strategies currently employed by the storage systems,
it was decided to extract a single – yet representative - day of data. According to
the estimations, it was still impossible to fit the selected dataset on the available
storage, thus additional filtering was performed on the device type attribute. The
variables were selected once again based on the workload analysis (the ones observed
to be queried the most) and according to the future use case definition. Despite the

87

fact that less frequently queried devices were excluded, the benchmarks executed on
the major data sources will be a good representation of the final system behaviour,
as long as the real performance characteristics will be similar to the ones observed
during the MPSR model simulations.

root

2016

2017

January

February

March

01

02

TCLA

BLMQI

DCBA

(a) Time and device type
driven partitioning.

root

#1000

#1001

#1002

NO BEAM

INJECTION

RAMP

STABLE

TCLA

BLMQI

DCBA

(b) Fill number, beam
mode and device type
driven partitioning.

root

#1000

#1001

NO BEAMS

INJECTION

STABLE

Z1

Z2

TCLA

BLMQI

DCBA

(c) Fill number, beam
mode, location and device
type driven partitioning.

Figure 4.10: Example partitioning schemes (TCLA, BLMQI and DCBA hereby rep-
resent different devices types installed in the LHC, namely a collimator, a beam loss
monitor and a superconducting bus bar segment).

Considering the workload observations and the data organization strategies of
the current system the most promising partitioning schemes were defined. The de-
fault partitioning criteria was based on the combination of the time and device type
attributes (as depicted in Figure 4.10a). Despite the fact that this data organization
strategy is not equally optimized for every possible user request, it is an efficient and
generic representation for the majority of queries currently executed on the system.
When applying the time and device type partitioning to the previously extracted
CALS dataset the emerging file system was resulting into a properly balanced rep-
resentation, with the exception of a few objects which required larger directories to
accommodate the collected measurements. This partitioning approach was therefore
considered as a baseline for comparison with the MPSR solution.

In order to determine the MPSR partitioning schemes, the observed query profiles
and the identified future use cases were than split into several workload categories.
The first query profile depends on the same signal attributes as used for the defini-
tion of the default partitioning strategy, thus the representation remains the same

88

as the one depicted in Figure 4.10a. The second category is composed by queries
which would mostly benefit from fill number1, device type and beam mode attributes
(see Figure 4.10b). This approach results in a more imbalanced directory structure,
since the duration of each of the LHC cycles varies significantly. Finally, the third
partitioning scheme is similar to the one previously described, while an additional
attribute is added to the data organization strategy, the device location (see Fig-
ure 4.10c). Like in the previous approach, this partitioning scheme suffers from
unbalanced directory sizes due to the location skewness and the variable duration of
the operational phases of the accelerator.

Workload Emulation

Several existing workload emulation tools, like YCSB (Cooper et al., 2010) or Big
Data Benchmark (Big Data Benchmark., n.d.), were studied before the decision of
developing a dedicated performance evaluation application was taken. A detailed
analysis of the existing benchmarking packages features suggested that most of the
tools do not provide the support for the generation of classical Hadoop workloads
and would therefore require significant efforts for the implementation of such features.
Furthermore, existing performance evaluation applications focus on generically de-
fined metrics, common for most of the supported systems, without providing the
desired detailed insights into the benchmarked data storage and processing solution.
These factors forced us to implement a custom Hadoop performance evaluation tool,
flexible enough to be applied to MPSR benchmarks requirements while providing the
detailed metrics required for the comparison of the two approaches.

The most basic components of the developed performance evaluation application
are the workload query objects, which consist of different Mapper and Reducer

implementations, compiled into the MapReduce application (providing both, simple
connections and task chaining). The cluster configuration is shared amongst the dif-
ferent implementations, but specific signal attribute filters can be configured through
the individual processing stage parameters. Additionally, the filters are used for con-
structing the path to the desired dataset and for discarding measurements which do
not match the implemented criteria. All of the developed use cases allow to define the
custom input and output key-value formats, thus allowing for the possibility of ex-
tracting specific columns rather than the entire set of the object attributes. Finally,
it provides a possibility of storing the result data in a customized format to allow
for an easier interpretation. The current version of the benchmarking application
supports several workload query types:

1a fill number uniquely identifies an operational cycle of the LHC

89

• Variable Filtering - a query which returns solely the raw data which matches
the configured filters.

• Variable Statistics - a query which calculates simple statistics for the measure-
ments matching the configured filters.

• Exponential Decay Time Constant Calculation - a query which determines
the existence of exponential decay(s) and calculates their time constants for
measurements matching the configured filters.

The implemented query profiles are combined into the workload scenarios, man-
aged by the benchmarking ExecutionController instance. The execution flow
of the performance evaluation application consists of multiple simple steps. First,
the arguments are parsed to determine the number of requests to be generated and
the probability of occurrence of a given query type. The user request generation is
in addition based either on the filters provided along with the remaining application
arguments or the values are randomly assigned from the pre-defined list of vari-
ables and time intervals. Depending on the specificities of the performance study,
the request submission is scheduled either using the ExecutorService using a
fixed-size thread pool (hence allowing the application to control the arrival rate of
the user requests) or the ScheduledExecutorService , which injects queries at a
pre-configured rate, allowing the cluster to manage the queue using its own mech-
anisms. Diagnostic data is collected both during the query execution and after its
completion. In the first case, the daemon process periodically collects data from the
Java Management Extensions (JMX) interface. This endpoint is useful for extract-
ing metrics which are independent from the workload characteristics, describing the
cluster resource usage at a determined point in time. Additionally, after the com-
pletion of each job, workload related information and individual Hadoop per-query
metrics are collected. The extracted measurements following the completion of the
application describe the interaction of particular queries with the cluster resources.

Infrastructure Configuration

The cluster configuration used for the evaluation of the MPSR performance consisted
of ten nodes, nine of which were allocated for the Datanode service (used for data
storage and processing), while the remaining was running the Namenode instance.
The cluster machine specifications are presented in the following Table 4.2.

The standard Hadoop performance metrics were collected on the Hadoop dis-
tribution (version 2.6.0) installed from the Cloudera repository (Cloudera’s Apache

90

CPU 8 Core Intel(R) Xeon(R) E5420 2.50GHz
RAM 8 Gigabyte DDR2 667MHz
Disk 2x1TB SATA 7200 rpm

Table 4.2: The Hadoop infrastructure nodes specification.

Hadoop Open-Source Ecosystem, n.d.). The MPSR benchmarking tests were con-
ducted on the same Hadoop version, compiled from the modified sources extracted
from the official project repository. The operating system configurations (network-
ing interfaces, disk partitioning, etc.) were identical in both experiments. The data
used for processing the user requests was extracted from CERNs Accelerator Logging
System and stored in plain text using the CSV file format. Each signal is hereby
characterized by the variable name (some devices can report multiple variables), the
observed value and the acquisition timestamp. The total size of a single data copy
stored on the same node was 592.26 Gigabytes.

dfs.blocksize 128m
dfs.replication 3
mapreduce.map.cpu.vcores 1
mapreduce.map.memory.mb 1024
mapreduce.reduce.cpu.vcores 1
mapreduce.reduce.memory.mb 1024
yarn.nodemanager.resource.memory-mb 8192
yarn.resourcemanager.scheduler.class CapacityScheduler
yarn.scheduler.minimum-allocation-mb 1024

Table 4.3: The Hadoop infrastructure configuration for performance evaluation tests.

The Hadoop system configurations were the same for both performance evaluation
tests - the original Hadoop installation and the MPSR. The most relevant properties
are described in Table 4.3. The cluster was operating with a replication factor
of three, which is the recommended value according to the HDFS documentation
(The Hadoop Distributed File System: Architecture and Design., n.d.). Based on
the workload analysis and the estimations of the input size per variable, the block
size was set to the 128 Megabytes. An assessment of the block size efficiency has
shown that the selected configuration ensures high block fill rates, while, according
to different performance studies (Jiang, Ooi, Shi, & Wu, 2010) (Wu et al., 2013), still
remaining in the range of the configurations allowing for optimized query execution

91

times. The memory and CPU management was configured based on the capacity
of the cluster nodes. Each machine could assign up to 8 Gigabytes of memory to
incoming user requests, handling up to 8 containers simultaneously. The map and
reduce tasks were allowed a maximum of 1 virtual core and 1 Gigabyte of memory
per executor (allowing up to 8 tasks to be executed at the same time on the same
machine). As previously stated, the CapacityScheduler was used throughout the
benchmarking tests for managing the allocation of cluster resources.

4.5 Summary

In this chapter, a detailed architecture of the Mixed Partitioning Scheme Replication
solution was presented. Since it was decided that the proposed approach will be
integrated with the Hadoop system, the required components were designed and
implemented according to the specificities of the underlying architecture. Despite
the fact that the complete system could be developed as a Namenode plug-in, the
respective prototype was integrated directly into the Hadoop source code. This
decision allowed to reuse some of the existing Hadoop functionalities and therefore
to reduce the time required for the implementation of the entirely fresh solution. The
developed prototype was able to recreate successfully the behaviour of the MPSR
solution, even if only the most basic features were implemented.

Furthermore, in the same chapter, the benchmarking environment was defined.
A detailed study of the workloads observed on the CALS and PM systems was
conducted. The results were used to identify the origin of the data and to define
appropriate partitioning criteria to be implemented for the performance evaluation
tests of the MPSR prototype. Taking into account workload profiles, a specific tool
used for submitting and monitoring user requests on the system was developed. Fi-
nally, the cluster which was used for the benchmark execution is described along with
the Hadoop configurations used throughout the tests. The performance evaluation
tests of the MPSR prototype which were executed on the configured infrastructure
is described in the following chapter.

92

Chapter 5

Performance Evaluation

This sections describes in detail the observations from the performance evaluation
study and model validation benchmarks. The initial discussion focuses on the com-
parison between the original Hadoop system with the MPSR approach for different
scenarios and use cases. The primary benchmarks are executed to determine the
efficiency and basic behaviour of the solution we developed. Furthermore, through
the isolation of the individual variables and estimations, the main properties related
to the failure tolerance, scalability and infrastructure resource usage of the MPSR
are analysed. Finally, targeted performance evaluations are executed to validate the
model against the simulation results, which were previously obtained and summa-
rized in the previous chapters.

5.1 Average Query Execution Time Analysis

We started by conducting benchmarks for studying and comparing the average query
execution time of the traditional Hadoop deployments and the MPSR prototype.
This metric is absolutely critical for assessing the usefulness of the proposed ap-
proach, since the most fundamental objective of the MPSR is to improve the through-
put of user request processing on the same cluster configuration, while at the same
time minimize detrimental impacts on other characteristics of the system. The work-
load generation and submission application were configured appropriately in order
to ensure that we provide the same conditions both for the performance evaluation
of the original Hadoop installation and to our prototype. Every cluster configuration
changes were performed in the same way for both scenarios, always featuring an indi-
vidual machine with an instance of the Namenode service and multiple nodes hosting
the Datanode service. There were multiple tests with the exact same configuration

93

but different random seeds executed on each of the cluster setup (Test#1, Test#2
and Test#3 respectively in the figures presented below).

 0

 20

 40

 60

 80

 100

4-nodes 7-nodes 10-nodes

Av
er

ag
e

Ap
pl

ic
at

io
n

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Cluster Configuration

Test#1
Test#2
Test#3

(a) Traditional Hadoop.

 0

 20

 40

 60

 80

 100

4-nodes 7-nodes 10-nodes

Av
er

ag
e

Ap
pl

ic
at

io
n

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Cluster Configuration

Test#1
Test#2
Test#3

(b) MPSR prototype.

Figure 5.1: Average application execution time comparison.

We started this study by evaluating the actual processing time. The obtained
results suggest that different application categories submitted through the workload
simulation tool, do not differ much from the observed average values, thus this rep-
resentation will be used in further analysis. The benchmarking tests, depicted in
Figure 5.1, shared an identical variable configuration, while the variable name and
time interval filters were applied individually (which explains the difference in ob-
served values). Figure 5.1a illustrates the average application execution time of the
traditional Hadoop system deployed on different cluster sizes. As expected, a larger
infrastructure allows for a faster data processing. The same tendency can be observed
on the benchmarks executed with the MPSR prototype (see Figure 5.1b). The com-
parison between the systems allowed to conclude that the proposed approach was
more efficient than the traditional solution in all of the tested configurations. It
was also observed that the performance gains of the MPSR prototype were higher in
larger clusters, leading to a reduction in the average execution time by 21− 42% on
a 10-node infrastructure, respectively 19 − 35% on 7-node and 15 − 34% on 4-node
infrastructures.

According to the preliminary analysis of the Hadoop systems and during the
initial phases of the MPSR model definition, it was shown that the application input
size has a strong relation with the request processing time. This characteristic was
further adopted as a core assumption when the respective simulation engine was built
and it continues to be the core feature of the MPSR for further improvements of the
data processing throughput of the infrastructure. Once more it could be shown, that
the correlation between the application execution time and the input size remained

94

 0

 1000

 2000

 3000

 4000

 5000

 6000

4-nodes 7-nodes 10-nodes

Av
er

ag
e

In
pu

t
Si

ze
 (

M
eg

ab
yt

es
)

Cluster Configuration

Test#1
Test#2
Test#3

(a) Traditional Hadoop.

 0

 1000

 2000

 3000

 4000

 5000

 6000

4-nodes 7-nodes 10-nodes

Av
er

ag
e

In
pu

t
Si

ze
 (

M
eg

ab
yt

es
)

Cluster Configuration

Test#1
Test#2
Test#3

(b) MPSR prototype.

Figure 5.2: Average application input size comparison.

very high (85− 99%), while it decreases to slightly lower values (68− 92%) on larger
infrastructures. Nevertheless, this parameter continues to be a predominant factor
which characterizes the processing time. The average input size for the evaluation
of both system performance is presented in Figure 5.2. The observed results confirm
that the partitioning criteria applied in the MPSR solution significantly reduce the
amount of data the application is required to process in comparison to the execution
on the original Hadoop architecture. Despite the fact that one of the partitioning
schemes is equivalent to the conventional data representation, the compensation of
other data organization strategies allows to achieve impressive reduction rates. The
results of the executed benchmarks revealed that the input size was reduced by a
factor of 1.8 up to a factor 3.6 in the most favourable cases.

Moreover, the execution time and input size of the MPSR application does scale
proportionally in comparison to the conventional solution. The improvement rates
obtained during the analysis of the first metric are much lower with respect to the
reduction rates of the application input size. In order to understand the root cause
of this observation, the data processing throughput was studied in more detail (see
Figure 5.3). First of all and before comparing the two approaches, it was important to
understand the reason for the 4-node traditional Hadoop system being faster than the
7-node configuration (see Figure 5.3a). If compared with other metrics, the average
data processing rate was higher, but the applications were still executed slower. The
reason for the observed behaviour is the input data size, which was in average higher
during the 4-node benchmarks, allowing Hadoop to achieve higher base processing
rates (an effect which is explained in more detail in the following sections). The main
analysis and result comparisons suggest that the MPSR prototype was less efficient
in handling the application inputs in comparison to the original Hadoop architecture.

95

 0

 10

 20

 30

 40

 50

 60

 70

 80

4-nodes 7-nodes 10-nodes

Av
er

ag
e

Pr
oc

es
si

ng
 R

at
e

(M
eg

ab
yt

es
/s

ec
on

d)

Cluster Configuration

Test#1
Test#2
Test#3

(a) Traditional Hadoop.

 0

 10

 20

 30

 40

 50

 60

 70

 80

4-nodes 7-nodes 10-nodes

Av
er

ag
e

Pr
oc

es
si

ng
 R

at
e

(M
eg

ab
yt

es
/s

ec
on

d)

Cluster Configuration

Test#1
Test#2
Test#3

(b) MPSR prototype.

Figure 5.3: Average application processing rate comparison.

A detailed study of the observed behaviour suggested that there are multiple factors
which could impact the processing rate of the proposed approach.

The first factor which significantly impacts the processing rate of the MPSR
approach is the distribution of the data copies across the cluster. Unlike in the
original Hadoop system, where every replica uses the same partitioning scheme which
allows any application to read the same data from multiple locations, the proposed
approach can - in case of highly unbalanced workload distributions - overload cluster
nodes with user requests. For example, when multiple applications which belong to
the same workload category are successively submitted, the MPSR approach will in
the worst case retrieve the data entirely from a single machine, introducing high I/O
loads on its disks. In this case, the performance is likely to suffer additionally from
the network overhead, as the same machine cannot accommodate the execution of all
jobs on the available resources. This behaviour was studied in detail by the authors
of (Tandon, Cafarella, & Wenisch, 2013), who claim that high CPU I/O waiting time,
induced by concurrent data retrievals from a single node, has a significant impact
on the data retrieval and processing rate of this machine. The normalized execution
time observed by the authors increases proportionally with the number of concurrent
users. The MPSR approach is therefore expected to be affected by the same issue.
To confirm this assumption, the cluster was monitored for the symptoms described
by the authors. Figure 5.4 provides the details of the cluster node CPU I/O waiting
time of a given machine during the execution of the benchmark tests on both systems
(whereas a very similar behaviour can be observed on other nodes). Figure 5.4a
presents the measurements obtained during the execution of the traditional Hadoop
performance evaluation test. The respective CPU I/O waiting time does not present
any regions of significant deviations, with only a very few noticeable outliers. On

96

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000 12000

CP
U

 I
O

 W
ai

t

Time from Experiment Start (seconds)

Traditional Hadoop

(a) Traditional Hadoop.

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000 12000

CP
U

 I
O

 W
ai

t

Time from Experiment Start (seconds)

MPSR Prototype

(b) MPSR prototype.

Figure 5.4: CPU IO Wait comparison.

the other hand, the MPSR prototype behaviour displayed in Figure 5.4b is more
unstable, representing multiple periods of heavy usage of storage resources, while
sometimes being notoriously underused. The average CPU I/O waiting time of the
traditional solution during this experiment on the same cluster node was 4.43, while
for the MPSR approach it was 10.5.

The second important factor is data-local execution. While being related to the
data distribution, it is mostly influenced by the application processing layer, more
specifically by the scheduling algorithm. For the traditional solution, in a 4-node
configuration (with replication factor three), executions were as expected entirely
data-local. When executed on the same cluster, the MPSR results have shown to be
significantly lower - namely around 37%. However, the difference becomes smaller
on larger infrastructures, corresponding on a 10-node cluster to 96% and 45% on
7-node configuration respectively.

One particularly interesting observation made during the analysis of the process-
ing rate was a non-linear relation between this metric and the application input
size. After aggregating the results, similar values were filtered out and combined
into the representation displayed in Figure 5.5a and Figure 5.5b. In the following,
the observations were fit to an exponential decay function which is also displayed
in the aforementioned figures. With a very few exceptions, the measured processing
rates align well to the proposed fit. There are two main reasons which will allow an
application to achieve higher processing rates despite the higher input size. Firstly,
devices with higher data acquisition rates have an increased probability for the HDFS
data to be written on adjacent disk segments, allowing sequential reads of large files.
Secondly, the larger the input size is, the lower is the overhead of the staging and
container creation during the application execution (generally this requires around

97

 0

 50

 100

 150

 200

 250

 300

 350

 0 50 100 150 200

Av
er

ag
e

Pr
oc

es
si

ng
 R

at
e

(M
eg

ab
yt

es
/s

ec
on

d)

Input Size (Gigabytes)

Traditional Hadoop
Exponential decay fit: f(x) = -231.37 * exp(-x/245.17) + 15.98

(a) Traditional Hadoop.

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60

Av
er

ag
e

Pr
oc

es
si

ng
 R

at
e

(M
eg

ab
yt

es
/s

ec
on

d)

Input Size (Gigabytes)

MPSR Prototype
Exponential decay fit: f(x) = -74.57 * exp(-x/75.21) + 2.80

(b) MPSR prototype.

Figure 5.5: Input size impact on average processing rate.

40% of the execution time for a directory with a single file).

5.2 Average Queue Size Analysis

As a next step, the queue behaviour for both systems was studied (see Figure 5.6).
Despite the fact that the average execution time is a good criterion to determine
the performance of the system, the queue size cannot be neglected, as the request
pile-up can render the infrastructure unusable at some point and therefore severely
impact the application waiting time (like in case of the S1 scheduler behaviour
described in 3.3.2). The cluster configuration was identical for the performance
evaluation of the two systems and the same user request arrival rate was applied. The
obtained results (see Figure 5.6 confirm that the MPSR prototype was notably more
efficient than the standard Hadoop installation in managing the queue. The MPSR
approach was able to maintain the queue size close to zero throughout the entire
runtime of the experiment, with the exception of a successive submission of a few
applications with large input size. Nevertheless, after some time the measurements
decayed back to their original values. On the other hand, the traditional Hadoop
approach results show that the queue size started to increase from the very beginning
of the experiment. This increment was mostly constant, with the exception of a
short period during which the infrastructure managed to recover slightly. Similar
observations were already observed in other benchmarks we have executed.

98

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120 140 160

N
um

be
r

of
 t

he
 R

eq
ue

st
s

in
 t

he
 Q

ue
ue

Submitted Applications

Traditional Hadoop
MPSR Prototype

Figure 5.6: Average queue size comparison.

5.3 Namenode Memory Overhead

The in-memory file system representation managed by the Namenode service is a
known limitation of the Hadoop system. Large infrastructures, like the one being
built at CERN, require a detailed analysis of the data characteristics in order to
correctly estimate the hardware requirements of the system. The impact of this
issue on the MPSR solution might however be even higher when compared to the
standard implementation due to the larger amount of namespace objects required to
represent the data.

Two strategies were developed for collecting the required measurements. The
first approach was to analyse the size of the fsimage file during the migration of
the data into the cluster (see Figure 5.7). Since edit files, besides the actual data
structure, maintain the log of the user operations, the checkpoint operation (edit
file merging) was executed every time before the fsimage file size was measured.
Despite the fact that this approximation is mostly suitable for assessing the impact
of the namespace representation on the persistent storage, it can also provide us
with a rough approximation of the memory requirements. The downside of this
measurement method is the fact that the data is stored in binary format. Besides
the file system structure nodes, additional meta-data is written into the same file,
thus the approximations might differ depending on multiple factors related to the

99

 0

 5

 10

 15

 20

 0 100 200 300 400 500

fs
im

ag
e

fil
e

si
ze

 (
M

eg
ab

yt
es

)

HDFS Stored Data Size (Gigabytes)

(a) MPSR fsimage file size evolution while
storage is being filled.

 0

 5

 10

 15

 20

592 Gigabytes

fs
im

ag
e

fil
e

si
ze

 (
M

eg
ab

yt
es

)

HDFS Stored Data Size

Traditional Hadoop
MPSR Prototype

(b) fsimage size comparison when storage
is full.

Figure 5.7: fsimage file size.

properties of the stored information.

The second approach relied on already known object approximations presented
by one of the HDFS architects (Shvachko et al., 2010), for which a more detailed
version of the estimations is reported in the Apache Hadoop repository (Namenode
memory size estimates and optimization proposal., n.d.-a). Despite the fact that the
calculations were performed for an older version of Hadoop, the recent releases did
not bring any significant improvements to the management process of the file system.
For this reason, these claims are considered to be still accurate and valid. In order
to determine the number of objects maintained by the Namenode, the heap memory
of the service was inspected after each data migration operation. Furthermore, the
object size was calculated based on the estimations presented above and compared
with the conventional solution as depicted in Figure 5.8 and Figure 5.9.

The analysis of the heap memory revealed that the final data scheme of the stan-
dard Hadoop installation was represented by a total of 5342 files, requiring 5512
files to store its actual contents. The structure of the respective partitioning criteria
required 183 directory objects. On the other hand, the MPSR prototype namespace
is represented by 18577 files, which require 25128 blocks to store the contents. The
number of directory objects in this case was 934. The analysis of the individual parti-
tioning criteria file, directory and block number suggested that the same scheme used
in the traditional Hadoop infrastructure required the same amount of corresponding
objects. The criteria based on the device type and beam status dimensions required
6230 file objects to accommodate its data copy, while the final scheme (which uses
the location attribute besides the previous two predicates) required 7005 files. The
block object number was 8427 and 11189 respectively. Further analysis of the file-

100

 0

 5000

 10000

 15000

 20000

 25000

 0 100 200 300 400 500

N
um

be
r

of
 O

bj
ec

ts

HDFS Stored Data Size (Gigabytes)

File Objects

0

4506

8420

10377

12632

14829

17009

18577

Block Objects

0

6857

12913

15954

19293

21753

23848

25128

Directory Objects

2 136 140 153 579 633 667 934

(a) Number of namespace objects evolution
while storage is being filled.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

Traditional Hadoop MPSR Prototype

To
ta

l N
um

be
r

of
 N

am
es

pa
ce

 O
bj

ec
ts

Files
Blocks

Directories

(b) Total number of namespace objects
comparison when storage is full.

Figure 5.8: Number of the in-memory namespace objects.

 0

 1000

 2000

 3000

 4000

 5000

Traditional Hadoop MPSR Prototype

Si
ze

 (
Ki

lo
by

te
s)

Files
Blocks

Directories

(a) Total size of the namespace objects in-
memory.

 0

 20

 40

 60

 80

 100

Traditional Hadoop MPSR Prototype

Sh
ar

e
of

 T
ot

al
 N

am
es

pa
ce

 S
iz

e
(%

)
Files

Blocks
Directories

(b) Proportions of the namespace objects
size in-memory.

Figure 5.9: Size of the in-memory namespace objects.

block relations in the MPSR prototype has uncovered a tiny miscalculation, which
under certain conditions would pass over the configured block size and spill the data
over additional blocks (used merely for storing the sub-part of the last processed
entry). It is assumed that improving this functionality of the data migration tool
would further align the number of blocks to the number of file objects required for
storing the data.

The observed non-uniform directory creation rate is explained by the fact that
the migration was performed in multiple phases. During each phase, the data be-
longing to the same device category is split into multiple segments, as the memory of
temporary machines used for this operation did not allow to fit the entire datasets.
Thus, in the moment when the first segment belonging to a given device category

101

was migrated, the number of the created directories was larger.
The number of files shows a different tendency, consistent with the size of the

input data. The same behaviour is observed in relation to the data blocks. The
number of blocks, files and directories created for the MPSR representation is - as
expected - not directly proportional to the same measurements for the conventional
solution. The reason for this behaviour is the difference between the partitioning
schemes, which require more constituents to represent the same information.

The size calculations of the namespace (see Figure 5.9) were based on the number
of corresponding objects and the formulas presented below. According to the estima-
tions described in the Apache Hadoop repository (Namenode memory size estimates
and optimization proposal., n.d.-a), the file size (in Bytes) on the 64-bit system is
calculated using the Equation 5.1. The first constant is obtained by adding up the
size (152bytes) of an empty INodeFile object, which represents the file, an entry
in the children TreeMap of the parent directory (64 bytes), and the back-reference
to the parent object (8 bytes). The length of the file name is multiplied by 2, since
the String represents each character using 2 bytes.

size(file) = 224 + 2 ∗ length(file name) (5.1)

The total size of the files in the Hadoop namespace is calculated by multiplying
the total number of the corresponding objects by their previously determined average
size:

size(files) = size(file) ∗ count(file objects) (5.2)

According to the authors, the directory object size is estimated using the following
Equation 5.3. Like in the previous case, the first constant is determined by calculating
the sum of an empty INodeDirectory object size (192 bytes); an entry in the
children TreeMap of the parent directory (64 bytes); and the back-reference to the
parent object (8 bytes). As before,the directory name length is multiplied by 2, since
the String represents each character using 2 bytes.

The directory size is calculated using the following estimation:

size(directory) = 264 + 2 ∗ length(directory name) (5.3)

The total size of the directories in the representation of the Hadoop file-system
is determined by multiplying the total number of the directories with the previously
estimated average value:

size(directories) = size(directory) ∗ count(directory objects) (5.4)

102

Finally, the block object size is estimated using the Equation 5.5. The constants
are calculated by adding the size of the Block object (32 bytes); the size of the re-
spective BlockInfo object (64+8∗replication bytes), the reference from respective
INodeFile entry (8 bytes), the corresponding reference in the BlocksMap instance
(48 bytes) and the references from all of the DatanodeDescriptor (64∗replication
bytes).

size(block) = 152 + 72 ∗ replication factor (5.5)

Like in the previous cases, the total size of the blocks in the Hadoop namespace
is calculated by multiplying the total number of the corresponding objects by the
previously estimated average value:

size(blocks) = size(block) ∗ count(block objects) (5.6)

In order to calculate the resulting size of the file-system representation on the
Hadoop system, the average file and directory name lengths were determined. The
file name is assigned a number in ascending order, which increases every time the
associated block is filled. The average file name length in this case was approxi-
mately 2 characters. Besides the initial partitioning date criteria, the directories are
assigned a device type property with an average length of 3 characters. Finally, the
configured replication factor, used in the block object size calculation was 3 for the
given infrastructure configuration.

Using the Equation 5.1 and Equation 5.2, the total object size for the traditional
Hadoop namespace representation was determined as follows:

size(directoryconvetional) = 264 + 2 ∗ 2.5 = 269

size(directoriesconvetional) = 269 ∗ 183 = 49227

Next, Equation 5.3 and Equation 5.4 were used for estimating the total directory
objects size:

size(fileconvetional) = 224 + 2 ∗ 2 = 228

size(filesconvetional) = 228 ∗ 5342 = 1217976

The total size of the block namespace objects was calculated using the Equa-
tion 5.5 and Equation 5.6:

size(blockconvetional) = 152 + 72 ∗ 3 = 368

size(blocksconvetional) = 368 ∗ 5512 = 2028416

103

Finally, the sum of the previously estimates allows r to calculate the total size of
the file-system representation on the standard Hadoop installation:

size(namespaceconvetional) = 1217976 + 49227 + 2028416 = 3295619

For estimating the size of the namespace objects in the MPSR prototype file-
system representation, similar operations were performed. First of all, the length of
the file name has changed in comparison to the previous calculations, mainly due to
a more balanced distribution of the files across the directories, measuring in average
1.5 characters. The directory name length, due to the inclusion of the predicate
name prefix has increased to 6 characters in average. Finally the replication factor
required for the block size calculation decreased to 1, since in the MPSR prototype
the blocks are not replicated in its traditional form, instead a different copy of the
data is stored on another machine.

Using the equations to estimate the file object size (Equation 5.1 and Equa-
tion 5.2) the following calculations were performed:

size(fileMPSR) = 224 + 2 ∗ 1.5 = 227

size(filesMPSR) = 227 ∗ 18577 = 4216979

The total size of the directory namespace objects was calculated using the Equa-
tion 5.3 and Equation 5.4:

size(directoryMPSR) = 264 + 2 ∗ 6 = 276

size(directoriesMPSR) = 276 ∗ 934 = 257784

Next, Equation 5.5 and Equation 5.6 were used for estimating the total size of
the block objects:

size(blockMPSR) = 152 + 72 ∗ 1 = 224

size(blocksMPSR) = 224 ∗ 25128 = 5628672

Finally, the total size of the namespace representation is calculated by determin-
ing the sum of the previously obtained values:

size(namespaceMPSR) = 4216979 + 257784 + 5628672 = 10103435

According to the above estimates, the scaling factor for the size of the namespace
representation, is not directly proportional neither to the number of the files, nor to
the number of block objects maintained by the Namenode service. In comparison to

104

the traditional approach, the MPSR prototype required 3.47 times more file objects
and 4.56 times more block objects to represent the same amount of data. However,
the size of the respective file-system representation was 3.07 times greater. This
behaviour is considered beneficial for the MPSR approach, since at larger scale the
total size of the namespace will grow slightly slower for an increased amount of
maintained objects. The factors which contributed to the observed scaling are the
file name length and mainly the replication factor reductions.

5.4 Partitioning Overhead Study

The namespace representation was also studied to determine the overhead of the
different partitioning criteria on the storage nodes of the modified Hadoop system.
We started with a detailed study of the block fill factor. For the standard Hadoop
installation, an average block size of 109.98 Megabytes was calculated based on the
data size and the number of the previously determined block objects. This would
be filling the disk representations on average to 85% of its configured size. Due to
the previously described shortcoming of the data migration tool and the increase of
created directories, the fill factor of the MPSR prototype namespace was consider-
ably lower. This is a result of the additional partitioning criteria attributes which
will in most cases result in a higher number of directories required for structuring
the file-system. In average, the blocks were containing 72.37 Megabytes of data, cor-
responding to the observed 56% fill factor. Nevertheless, the increase of directories,
even in the best case (where each file requires exactly one block to store its data) the
fill factor would be much lower in comparison to the conventional solution, measured
to be approximately 66%.

As a final step, the impact of the block meta-data on the Datanode service storage
was also studied. Each block object persisted on any of the cluster machines has an
associated meta-data file. This meta-file is mainly used for maintaining the stored
data checksums. They are required to perform the periodic data consistency checks,
measuring approximately 1 Megabyte. In case of the traditional Hadoop installation,
the additional overhead of the block meta-file storage for a 592 Gigabytes repository
amounts to a total of 16.128 Gigabytes, since each of the replicas storing a copy of
the data block (in this case there are three of them) will require its own instance of
a block meta file. The MPSR on the other hand will require 24.539 Gigabytes for
representing the same amount of data, since the system maintains different copies of
the same data, replicated only once.

105

5.5 Write Operation Overhead

The impact of the concurrent write operations on the execution performance of the
application was analysed in order to determine the behaviour of the MPSR prototype
in an operational environment. The previously executed benchmarks were studying
the different properties of the proposed approach on the static data, which is not
the case for the MPSR transient data storage and processing solutions. Both the
CALS and PM systems, with different acquisition rates, are constantly persisting new
variable measurements and data write operations during the user request processing
are constantly happening in the background.

The respective benchmarks were executed on the four node cluster, since it was
easier to generate a significant writing load in such a configuration. Three of the ma-
chines were running the Datanode service while the Namenode module was deployed
on the fourth node. Most of the variables which would introduce uncertainties on
the results were removed. Consequently, the arrival rate, the input size (the same
variable filter and queried time range were used for different submissions), workload
variation and processing speed coefficients were kept constant throughout the bench-
mark. The data write requests were submitted from remote machines, using Hadoop
operations, which during the time of the experiment were assigned solely to the gen-
eration of the write workload. Similarly to CERN’s second generation data storage
and processing solution, the nodes were transferring large files (of approximately 100
Megabytes), randomly picked from pre-generated samples.

To confirm the resource usage of the MPSR prototype clusters, the average I/O
rates were extracted from the available monitoring tools (see Figure 5.10). Despite
the fact that the metric sampling interval was chosen to be five minutes, it was
possible to accurately track the corresponding measurements. All of the machines
behaved in a similar way, showing a constant read and stepwise increasing write
throughputs, confirming that the load was distributed evenly across the cluster.

Furthermore, the average execution time and queue size measurements were in-
spected (see Figure 5.11). Despite the considerable increment in the amount of the
data written to the MPSR cluster, the behaviour of the system remained unchanged.
Some minor fluctuations were observed, mostly due to the fact that three query
categories were submitted, using different partitioning criteria and thus resulting in
small differences in the overall processed data size. The average execution time, like
the queue size, were almost identical during different write load experiments.

Despite having observed that the configured scenario was highly resilient to con-
stantly increasing write workloads, several factors can change the observed behaviour.
The variable and respective time intervals chosen for the experiment were not push-

106

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

I/
O

 T
hr

ou
gh

pu
t

(M
eg

ab
yt

es
/s

ec
on

d)

Benchmark Time (minutes)

Read Throughput
Write Throughput

(a) Datanode #1.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

I/
O

 T
hr

ou
gh

pu
t

(M
eg

ab
yt

es
/s

ec
on

d)

Benchmark Time (minutes)

Read Throughput
Write Throughput

(b) Datanode #2.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

I/
O

 T
hr

ou
gh

pu
t

(M
eg

ab
yt

es
/s

ec
on

d)

Benchmark Time (minutes)

Read Throughput
Write Throughput

(c) Datanode #3.

Figure 5.10: Write operation overhead study: MPSR prototype cluster I/O rates.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

0 1 2 3 4 5

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Machines Writing Concurrently

(a) The average execution time during dif-
ferent write workload configurations.

 0

 0.5

 1

 1.5

 2

 2.5

 3

0 1 2 3 4 5

Av
er

ag
e

Q
ue

ue
 S

iz
e

Number of Machines Writing Concurrently

(b) The average queue size during write
workload configurations.

Figure 5.11: Write operation overhead study: the MPSR prototype performance
evaluation.

107

ing the cluster to its limits. Data intensive applications requiring a large number of
disk accesses both during the initial data extraction and shuffling phase, can at some
point throttle the disks. Adding the write requests at this point will definitely aggra-
vate the situation. Furthermore, in case the most common sequential I/O operations
will be overwhelmed by the random data accesses, the throughput of the cluster will
decrease, anticipating once again the situation when an additional load will make
the situation even worse. This is a possible scenario, when either data appending is
done in very small intermittent batches (the file pointer and the streams are closed
after each small operation) or when the system is used as a repository for very small
files. Nevertheless, for the evaluated configuration, the MPSR prototype has shown
its efficiency even for the larger write workloads.

5.6 Scalability

In a further effort of assessing the quality of the MPSR solution for a potential
use in very large-scale infrastructures like the one currently being built at CERN, a
scalability study was conducted. Despite the fact that the modifications of the core
Hadoop features were kept to a minimum while integrating the MPSR prototype, the
system had inevitably to be modified, as the data storage strategy was different in
comparison to the traditional approach. Nevertheless, the main assumptions, as can
be concluded from the discussions above, remain mostly unaffected. This allows us
to use the observations of other researchers to estimate the behaviour of the MPSR
solution since it is much more complex to perform the benchmarks on a larger cluster.

First, the average execution time metric of the application was inspected. When
compared to a traditional Hadoop installation, the MPSR prototype was in most
cases more efficient, resulting in lower processing times due to the smaller input size
(see Figure 5.1). However, the collected results (see Figure 5.1b) do not allow an
extrapolation with acceptable error margins for larger clusters, as there are many
possible fit functions which can be applied in this case. On the other hand, the
behaviour of the MPSR prototype is very similar to the original Hadoop version.
The relation between the application input size and the corresponding execution
time remains high, thus allowing us to use the observations of other researchers
to make the extrapolation to larger cluster sizes. As part of their research, the
authors of (Lee & Lee, 2012) conducted a detailed analysis of the impact of the
infrastructure size on the cluster processing throughput and average execution time
of the application. According to their study, the number of machines in the cluster
has a linear correlation with respect to the available processing capacity. On the
other hand and as expected, the processing time does not scale linearly with the

108

 30

 40

 50

 60

 70

 80

 5 10 15 20 25 30 35 40 45 50

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Number of Machines

MPSR Prototype Average Execution Time
Exponential decay fit: f(x) = 60.88 * exp(-x/30.35) + 6.65

Figure 5.12: Scalability analysis: average execution time estimation.

infrastructure size, since for each application with a limited input size there is always
a maximum degree of parallelism. In addition, the concurrency in larger clusters has
a considerable impact on the execution time (Zaharia et al., 2009). Despite the
fact that the authors do not mention the nature of the affinity between the last two
metrics, mathematical methods allowed us to determine that the reported values
follow an exponential decay function. Based on the observations, the estimation
presented in Figure 5.12 was derived.

Next, based on the facts presented in the previous paragraph, the processing rate
of the cluster with the MPSR solution was derived (see Figure 5.13). The observed
measurements were used as input for the linear fit function.

The average execution time and cluster throughput estimations will remain valid
as long as the computing resources, the stored data structure and executed workloads
remain similar to the tested configurations (a more detailed description can be found
in previous Section 4.4.2 and Section 5.1). However, a behaviour modification is
inevitable in case the original system parameters will be significantly changed. In
large infrastructures, like the second generation data storage and processing solution
being built at CERN, the data and workloads are heterogeneous, introducing many
possible factors which can impact the provisioned behaviour. The data acquisition
rates can change, meaning that the block fill factor might be altered. In this case, the
files will become smaller in size, consequently requiring more map tasks to process the

109

 20

 40

 60

 80

 100

 120

 5 10 15 20 25 30 35 40 45 50

Cl
us

te
r

Th
ro

ug
hp

ut
 (

M
eg

ab
yt

es
/s

ec
on

d)

Number of Machines

MPSR Prototype Cluster Throughput
Linear fit: f(x) = 1.89 * x + 23.28

Figure 5.13: Scalability analysis: MPSR cluster throughput estimation.

same amount of data, which in turn can result into the scanario when the execution
time is no longer dependent on the input size, being dominated by the container
management overheads. This issue is known as the ”small files” problem (Tan et al.,
2013), which does not only impact the memory requirements of the Namenode to
represent the namespace, but also introduces significant overhead when processing
the data. Furthermore, in larger systems it is expected that the concurrency will
be higher, meaning that the competition for the available resources will be more
significant. Despite the fact that Figure 5.5 shows that the throughput eventually
stabilizes, this will only happen when the cluster is capable of dealing efficiently with
the workload concurrency (the queue does not build-up). In case of a large number of
parallel executions, the containers tend to be shared amongst the submitted requests,
meaning that more slots will be reserved for reducers and each job will be allocated
only a portion of the computing resources (map related operations, like sorting and
merging will take much longer).

Finally, in order to complete the full picture of the scalability study, the impact
of the MPSR namespace representation on the Namenode memory size was stud-
ied. The estimations were based on the previously obtained analysis results of the
file-system object and the related size calculation equations (see Figure 5.14). Provi-
sioning for the long-term application of the MPSR approach as a fundamental part of
the next generation storage and processing solution for CERNs LHC was performed

110

 0

 5x107

 1x108

 1.5x108

 2x108

 2.5x108

 3x108

 3.5x108

 4x108

 4.5x108

592GB 1TB 10TB 100TB 1PB 10PB

N
um

be
r

of
 N

am
es

pa
ce

 O
bj

ec
ts

Total MPSR Storage Size (logarithmic scale)

Files
Blocks

Directories

(a) Number of file system objects.

 0

 20

 40

 60

 80

 100

 120

 140

 160

592GB 1TB 10TB 100TB 1PB 10PB

Ag
gr

eg
at

ed
 S

iz
e

of
 N

am
es

pa
ce

 O
bj

ec
ts

 (
G

ig
ab

yt
es

)

Total MPSR Storage Size (logarithmic scale)

(b) File system size.

Figure 5.14: Scalability analysis: file-system representation estimations.

based on the current data acquisition rate, which is roughly 600 Terabytes/year.This
allowed defining the hardware requirements for the next decades of accelerator ex-
ploitation. Despite the fact that for a 10 Petabyte storage the corresponding memory
requirements are considerably high (rounding the 160 Gigabytes), current hardware
architectures can easily cope with the issue. For example the Xeon E7 V2 machine
(Namenode memory size estimates and optimization proposal., n.d.-b) is capable of
supporting up to 12 Terabytes of RAM in an eight socket platform. Nevertheless, the
estimations will remain valid for any configuration which is similar to the one used
during the performance evaluation tests. The partitioning criteria with much higher
cardinality can result in rapid file-system object expansion, requiring not only more
directories, but also file and block objects to represent the namespace. Additionally,
the data acquisition rates can increase, meaning that more data will be collected
by the system for the same time period, resulting in a larger number of namespace
objects to be created and maintained by the Namenode service.

5.7 Failure Tolerance

The study of the MPSR solution failure tolerance was performed to determine the
possible sources of system unavailability, describe the mitigation strategies and com-
pare the behaviour with the original Hadoop system. While the prototype does not
allow to study the recovery times in detail, the previously observed results make
it possible to make a speculation about the operations the system will undergo in
case of a partial system or hardware failure. Taking into consideration that Hadoop
was built to operate on unreliable hardware and that hardware problems are not
that uncommon in large clusters (Schroeder & Gibson, 2010), the MPSR solution

111

architecture was designed to minimize changes to the original failure tolerance mech-
anisms. Nevertheless, a completely different data storage approach introduces addi-
tional complexity and delays into the failure recovery processes. The issues which
the Hadoop and MPSR systems might have to deal with can be split into several
categories: Namenode, Datanode and TaskTracker failures (Dinu & Ng, 2011).

Service failures of the Namenode are amongst the most critical ones, since this
component manages the whole file-system representation. In case of such failur
occurs, the user requests cannot resolve the components of the namespace and de-
termine the data location, making it impossible to perform any data processing.
The secondary Namenode service, provided with the standard Hadoop distributions,
does not solve the problem, since it is neither a backup solution, nor the fail-over
component. The main purpose of the additional meta-data module is to reduce the
primary service start up time after it was rebooted (Ghazi & Gangodkar, 2015). The
master-slave approach adopted by Hadoop engineers results in the Namenode being
the system’s single point of failure. Without having failure mitigation strategies de-
fined, such issues generally require a manual intervention to repair the problem. In
case of a hardware-related loss, a replacement of the respective components and a
backup recovery operation must be performed, allowing the disk contents to be re-
stored from the latest available system image. Whenever there is a software problem,
the system administrator must intervene to apply the fix and restart operation.

Outages of the Datanode service are automatically treated by the Hadoop sys-
tem. Permanent data losses, which can occur for example due to the disk failures,
are mitigated through the data replication. The ReplicationManager module,
which performs periodic Datanode inspections, detects the blocks which are under-
replicated and immediately executes the repair process, copying the concerned data
structures from the still available nodes to the new locations in order to match the
configured replication factor. The MPSR recovery process, on the other hand, is
more complex since in most cases, due to different organized partitions, a simple
data copy operation cannot be performed. Whenever a loss of information is de-
tected, the elastic replicas are first inspected to determine whether any exact copies
of the data exist in temporary repositories. Next, the data recovery plan is con-
structed, requiring a coordination between the meta-service and the machines which
store the data using different partitioning criteria. The data re-construction is fur-
ther executed by scheduling the highest-priority MapReduce jobs, which perform the
translation of the closest data representation and store the reconstructed segments
into the assigned target nodes. Afterwards, upon completion of the data re-assembly
operation, the newly stored dataset is sorted according to the order defined by the
meta-data service. The re-constructed and adjacent blocks which were not lost dur-

112

ing the respective Datanode failure, are inspected for possible duplicates and the
new structures are cleaned, based on the inspection results. Finally, the meta-data
service is updated with the new location of the reassembled data segments. The
whole process of failure recovery within the MPSR solution is more time consuming
in comparison to the standard Hadoop scenario, since instead of executing single-
stage data copying operation, it requires a multi-phase data transformation, sorting
and de-duplication procedures to be performed. Time-wise, due to the sorting al-
gorithm (Quicksort (Hoare, 1962)), it is foreseen to require in the worst case O(n2)
and in average case O(n × log(n)) operations, where n is the size of the originally
lost data, unless the amount of data to be processed to reconstruct the segments is
exceptionally large.

Finally, there are TaskTracker or application execution flow related failures,
which occur due to crashes of the node or the related software. The JobTracker ,
the central job execution coordination service, detects a TaskTracker failure when
the periodic heartbeat is not received during a configurable threshold period. The
mitigation strategies applied further depend on the application process status reached
at the point. Whenever the execution is in the mapping phase, the intermediary data
produced on the failed node is considered unreachable and the entire set of jobs exe-
cuted on the failing machine is rescheduled on new targets. Despite the fact, that the
MPSR solution tackles the problem in a similar way, there are some substantial dif-
ferences to be noted in the failure recovery pipeline. Due to the differently structured
data copies, the exact same input splits cannot be applied to the same application,
since there is a very high chance that the adaptation process of other partitioning
criteria will result in the processing of duplicated data. Whenever a TaskTracker

failure is detected, the splits are generated again (on a non-optimized partitioning
scheme) and the entire process is restarted from the beginning. This issue can be
catastrophic for long-running applications, thus it is required to find a more reliable
solution for mitigating this problem. On the other hand, it is possible to pause the
execution until the re-construction of the lost node is performed, therefore only part
of tasks have to be rescheduled. In this case the behaviour is very similar to the
original Hadoop pipeline, but with extra time required for the rebuilding of datasets.
A TaskTracker failure during the reduce phase has more severe consequences on
both systems. The Reducer is declared faulty in case it consistently fails to retrieve
the Mapper outputs, in case the shuffle operation is failing or the processing is in a
slate status. In this case, the application must be submitted a second time, both in
the standard Hadoop and MPSR approach as no strategies exist to mitigate problems
in this execution phase.

113

5.8 Model Validation

The validation of the proposed MPSR model remained one of the most important
challenges to be achieved by this research. Despite the fact that the observations
prove the efficiency of MPSR prototype, the configurations used throughout the per-
formance evaluation were limited and influenced by multiple sources of uncertainties.
Consequently, the behaviour of the proposed approach in different scenarios can be
estimated only through the simulations. In order to increase the credibility of the
observations and obtained results, two strategies were developed for validating the
MPSR model: a comparison with existing formulations and isolated, individual vari-
able benchmarks.

5.8.1 Comparative Analysis

We started by conducting a comparative analysis between the MPSR model and
existing solutions. Amongst others, the following work (Lin, Meng, Xu, & Wang,
2012) presents a very detailed, step-by-step, description of the Hadoop computational
pipeline for both map and reduce tasks. According to the authors, their method
resulted in a very good approximation, deviating in most cases by not more than 5%
in comparison to the actual application execution times. For validating the MPSR
model, the map task processing characteristics were inspected and compared first.
The map execution time is represented as a vector of ten sequential, parallel or
overlapping steps, further combined into several phases.

• The initialization phase consists of the user request interpretation and an
application-specific delay for pre-loading the file into memory. In case of the
MPSR model, the time which these steps require are constant, since the clus-
ter configuration remains the same, as well as the application submitted for
processing.

• The data processing phase consists of multiple step combinations, executed
sequentially and in parallel. The first one is the initial (and in most cases
sequential) retrieval of input data, followed by the data transfer to the target
processing machine (the cost is zero in case it is a data-local execution). The
last operation consists in the data parsing and processing steps, executed one
after another. The cost of executing the final phase is chosen based on the
maximum value between the three steps. In case of the MPSR solution, the
most time consuming tasks are considered to be the data parsing and process-
ing, both tightly related to the size of the application input data (the authors

114

affirm that the map task execution until this phase is almost linearly related
to the total input size).

• The sorting step is performed in isolation from other tasks. During this phase,
the individual map task outputs are sorted according to the programmed order.
The average complexity of this operation is estimated to be O(n × log(n)),
where n is the size of the generated output. In the MPSR model, this step
is still considered to be overwhelmed by the size of the respective input. The
assumption is correct for the observed workloads on the CERN accelerator
storage and processing solution, but can introduce considerable error, when
the application generates large amounts of intermediary data.

• The merging phase consists of two steps performed in parallel (since there are
many mappers executed at the same time), the data reading and corresponding
merging, which once again depend on the data size of the generated map task
output . For the same reasons explained above, the MPSR model might suffer
from incorrect estimations when the intermediate data size is extremely large.

• The final, disk spilling phase, consists of two parallel steps which perform the
merged data serialization and writing. In any case, the time required to perform
these operations has a very low impact on the execution time of the total map
task.

Like in the previous case, the reduce task execution time is represented as a
vector of the different steps, combined into multiple phases.

• The initialization phase consists of the staging operation delay, introduced by
the Hadoop system required to execute the reducer tasks. In the MPSR model,
this time is considered to be a constant, since the cluster configuration remains
the same for multiple simulations.

• The transfer phase of the mapper output consists of transferring the files from
remote locations to the node(s) which will execute the reduce task. The exe-
cution cost is determined by the data reading and transferring times. Like in
the original Hadoop approach, the time required to perform this operation in
the MPSR solution is considerably low in comparison to other phases.

• The shuffling phase involves the sorting of the entire reduce task input dataset,
merging and writing it back to the disk. Since the data is already arriving in
a partially sorted state from the map tasks, the sorting time is much lower in

115

comparison to the original time complexity. The merging step is also much less
time consuming when compared to the similar operation performed during the
map task, since the retrieved results are already aggregated by the respective
criteria. Given the fact that the merging phase has a logarithmic relation with
the number of mappers, rather than the reduce task input size, it is possible to
assume that besides the relation with the mapper output size, the input size
has an influence on the execution time of this phase.

• The final phase consists of the actual reduce task data processing, serialization
and writing the results to the disk. In this case, the estimations are entirely
based upon the reducer input and output sizes.

The comparison with such an accurate and detailed model has revealed one sig-
nificant weakness of the MPSR simulation engine. Whenever we deal with use cases
which generate considerably high amounts of intermediate data, the relation of the
execution time can be significantly influenced by the complexity of the map task
sorting and merging steps. Despite the fact that the observed workloads did not
result in such a scenario, it is reasonable to assume that such requests will be sub-
mitted into the system sooner or later, introducing considerably higher errors in the
estimations. Additionally, for the applicability of the proposed approach to a wider
audiences, it is absolutely mandatory to foresee such scenarios. For the majority of
the remaining phases, the MPSR model with the assumption of a linear dependence
between the application input size and the respective execution time, will accurately
predict the outcomes.

5.8.2 Experimental Analysis

Another method used for validating the MPSR model was the experimental analy-
sis. Based on the extracted dataset and the MPSR prototype, an additional set of
benchmarks was developed with the objective of isolating the same variables assessed
during the simulation phase. This variable isolation allows to reduce the uncertain-
ties and the influence of other system properties on the specific test results. Similarly
to the analysis conducted with simulated data, the impact of each of the variables is
then compared with their associated metrics.

The scenario parameters for each of these benchmarks were carefully selected
in order to approximate the configurations to the simulated scenario. However
many factors, which still might introduce divergences in the measured results re-
main present to some extend. First of all, the processing speed coefficients were
less beneficial for the MPSR prototype, than the ones used during the simulations.

116

Additionally, the processing gain factor for each of the evaluated data objects was
different, due to the discrepancies in the device reporting rates originating the un-
balanced directory structures. Furthermore, it was sometimes impossible to select
the configuration for a desired variable value, since the data structure would simply
not contain the sample re-assembling the exact required characteristics. Therefore,
the main focus of this study is to determine the major tendencies in the obtained
results and compare the observations with the simulated scenarios.

The ScheduledExecutorService was used for submitting user requests to
the cluster, allowing the infrastructure to handle the queue. The benchmark tests
executed for particular variables were parametrized with dedicated signal name and
time range query filters, kept the same for the performance evaluations of both,
Hadoop and MPSR. The input size experiment was an exception. In this case the
pool of signal names was used in both infrastructure configurations, allowing to
extract directories with different amounts of splits. For each of the benchmark cat-
egories, at most one variable was changed during its whole execution. Only the
scheduler S2 was presented in the results, as it was the best approximation to the
CapacityScheduler used in the MPSR prototype.

Request Arrival Rate

During the execution of the request arrival rate benchmark, the only parameter which
was modified for both the original Hadoop and MPSR prototype was their associated
arrival rate variable. Depending on the provided argument, the ScheduledExecutorService

was submitting the applications to the cluster with varying speeds. Based on the
observations, the maximum rate of the cluster processing throughput (at first for
the conventional solution) was determined for all of the executions, and the results
were plotted based on this generic representation. First, the impact of the average
execution time was analysed. According to the MPSR model simulations presented
in Figure 5.15a, the scheduler S2 consistently outperforms the conventional solution.
With less competition for the available resources (when the arrival rate is low), it
prioritizes the allocation of optimized nodes for processing the user requests, with-
out taking into consideration the overall cluster load. The CapacityScheduler ,
on the other hand, takes into account multiple factors when the resource allocation
is determined. For this reason, the execution time of the MPSR prototype (see Fig-
ure 5.15b), outperforms the traditional Hadoop approach, but does not quite follow
the same tendency as in the simulated scenario. In case of the benchmarks executed
on the real data, the execution time has a noticeable variation due the fact that for
each experiment the query category combination is different from the previous one.

117

 0

 5

 10

 15

 20

 25

 30

 35

 40

 70 80 90 100 110 120 130 140 150 160

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

(c
yc

le
s)

Request Arrival Rate to Maximum Cluster Throughput Relation (%)

Conventional Solution
Scheduler S2

(a) MSPR model simulation results.

 40

 50

 60

 70

 80

 90

 100

 60 80 100 120 140 160

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Request Arrival Rate to Maximum Cluster Throughput Relation (%)

Traditional Hadoop
MPSR Prototype

(b) Real systems results.

Figure 5.15: Model validation: request arrival rate impact on the average execution
time comparison.

The request arrival rate, as expected, does not introduce any significant effect on the
application execution time.

Next the impact of the request arrival rate on the average queue size was stud-
ied. According to the simulation results (see Figure 5.16a), the conventional solution
was starting to accumulate the requests as soon as the maximum cluster throughput
was achieved and the observed growth was very fast. Additionally, for lower request
arrival rates, the classic solution representation was managing the queue better than
the S2 scheduler, which on the other hand, was delaying the queue pile-up mo-
ment, eventually also giving in at a certain moment. The results of the benchmarks
executed on real data, presented in Figure 5.16b, show noticeably similar tenden-
cies. Although the requests start to accumulate much later for the MPSR prototype
(and in both cases the growth is more controlled), the proposed solution consistently
outperformed the traditional Hadoop solution. Taking into account the previously
conducted comparative analysis, the main factor which could influence the observed
differences in the queue managing behaviour is the configuration used for the scenario
approximation.

Request Size

During the request size model validation benchmarks, the only parameter modified
was the device signal name of the LHC equipment. The remaining configuration
was optimized to allow the cluster to process small requests without accumulating
much tasks in the queue, while in case of the scenarios with a larger input size
the respective queue throttling point was inevitably achieved. Like in the previous
case, the maximum cluster throughput rate was determined in order to present a

118

 0

 5

 10

 15

 20

 25

 30

 35

 40

 70 75 80 85 90 95 100 105 110

Q
ue

ue
 S

iz
e

Request Arrival Rate to Maximum Cluster Throughput Relation (%)

Conventional Solution
Scheduler S2

(a) MSPR model simulation results.

 0

 5

 10

 15

 20

 25

 60 80 100 120 140 160

Q
ue

ue
 S

iz
e

Request Arrival Rate to Maximum Cluster Throughput Relation (%)

Traditional Hadoop
MPSR Prototype

(b) Real systems results.

Figure 5.16: Model validation: request arrival rate impact on the average queue size
comparison.

generic representation, rather than using the one which would require additional ef-
fort for mapping results between the simulations and experiments on the accelerator
data. First of all, the results of the input size on the average execution time were
compared. According to Figure 5.17a the S2 scheduler was capable of consistently
outperforming the conventional solution for the whole range of the analysed configu-
rations. The results of the benchmark performed on the real data, on the other hand,
show a slightly different picture (see Figure 5.17b). Initially, for smaller input size
applications, the class Hadoop one was able to process the user requests faster. For
the remaining analysed configurations the difference between the traditional Hadoop
solution and the MPSR prototype is much smaller, when compared to the simulation
results, but at this point MPSR is more efficient that classic approach. Based on the
main assumption of the proposed solution, the main factor which can explain the
observed behaviour is the insufficient processing speed coefficient gain provided by
the employed partitioning schemes. Nevertheless, in both experiments it is possible
to observe that the request size has a significant impact on the average processing
time.

Next, the impact of the input size on the queue size was assessed. The S2 sched-
uler was able to manage the queue more efficiently than the conventional solution
(see Figure 5.18a), significantly delaying the moment when the requests started to
accumulate. Despite the fact that the growth rate of the queue was different in the
benchmarks executed on real data, a very similar behaviour was observed when com-
paring the original Hadoop solution with the MPSR prototype (see Figure 5.18b).
For a lower input size, the queue was managed efficiently by both solutions, while for
larger configurations the proposed approach was capable of dealing with the incoming

119

 5

 10

 15

 20

 25

 30

 80 90 100 110 120 130

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

(c
yc

le
s)

Request Size to Maximum Cluster Throughput Relation (%)

Conventional Solution
Scheduler S2

(a) MSPR model simulation results.

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Request Size to Maximum Cluster Throughput Relation (%)

Traditional Hadoop
MPSR Prototype

(b) Real systems results.

Figure 5.17: Model validation: application input size impact on the average execution
time comparison.

 0

 20

 40

 60

 80

 100

 80 90 100 110 120 130

Q
ue

ue
 S

iz
e

Request Size to Maximum Cluster Throughput Relation (%)

Conventional Solution
Scheduler S2

(a) MSPR model simulation results.

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200

Q
ue

ue
 S

iz
e

Request Size to Maximum Cluster Throughput Relation (%)

Traditional Hadoop
MPSR Prototype

(b) Real systems results.

Figure 5.18: Model validation: application input size impact on the average queue
size comparison.

requests much more efficiently.

Request Type Variation

Further request type variation tests were performed. Similarly to the previous bench-
marks, a single - request type - variable was altered. The remainder of the config-
urations were optimized for introducing considerably low load on the underlying
infrastructure. First of all, the impact of the request type variation was studied
(see Figure 5.19a). The simulation results show that the S2 scheduler was consis-
tently outperforming the conventional solution. However, the difference in execu-
tion time was gradually reducing towards higher values of the convergence factor.

120

 0

 5

 10

 15

 20

 25

 0.4 0.5 0.6 0.7 0.8 0.9 1

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

(c
yc

le
s)

Convergence Factor

Conventional Solution
Scheduler S2

(a) MSPR model simulation results.

 20

 25

 30

 35

 40

 45

 0.4 0.5 0.6 0.7 0.8 0.9 1

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Convergence Factor

Traditional Hadoop
MPSR Prototype

(b) Real systems results.

Figure 5.19: Model validation: request type variation impact on the average execu-
tion time comparison.

This behaviour is explained by the fact that workloads which are dominated by re-
quests of the same type will force the scheduler to execute the respective queries on
non-optimizes resources, thus it will be required to process larger amounts of the
input data. The benchmarks executed on the Hadoop and MPSR systems (see Fig-
ure 5.19b) show a similar tendency, however at a certain point, the Hadoop solution
manages to execute the applications faster than the proposed MPSR solution. One
of the possible explanations for the observed behaviour is a considerably low input
data size gain ratio achieved by the partitioning criteria of the MPSR solution for
the respective scenario configuration. Nevertheless, the results show that the pro-
posed approach is resilient to possible workload deviations, responding well until the
moment when around 85% of the queries submitted to the cluster belong to the same
category.

Like in the previous studies, the impact of the request type variation on the
queue size was assessed. Despite the large difference observed in the result compar-
ison between the conventional solution and the traditional Hadoop installation (see
Figure 5.20a and Figure 5.20b), the behaviour of the S2 and MPSR prototype look
quite consistent. Although the queue size was not large enough to make full-scale
predictions, it was reacting to the changes in the executed workload profiles, slightly
increasing with the respective convergence factor.

Processing Speed Coefficient

Taking into account the characteristics of the extracted data set, the number of the
existing object attributes and time required to migrate the data, a complete recre-
ation of the respective simulation environment has proven to be a very challenging

121

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0.4 0.5 0.6 0.7 0.8 0.9 1

Q
ue

ue
 S

iz
e

Convergence Factor

Conventional Solution
Scheduler S2

(a) MSPR model simulation results.

 0

 0.05

 0.1

 0.15

 0.2

 0.4 0.5 0.6 0.7 0.8 0.9 1

Q
ue

ue
 S

iz
e

Convergence Factor

Traditional Hadoop
MPSR Prototype

(b) Real systems results.

Figure 5.20: Model validation: request type variation impact on the average queue
size comparison.

or even impossible task. Therefore, performance evaluation experiments which were
targeting only specific configurations - applicable for comparison with simulation
results were designed and executed. During the tests of the processing speed coef-
ficients, the partitioning scheme criteria was altered in order to modify the amount
of the input size it was necessary for MPSR prototype applications to process. The
results of the original partitioning scheme (used in all other experiments) and the
traditional Hadoop system were compared to the configurations, which either were
storing relatively smaller files or the ones which required the processing of the exact
same amount of data as the traditional Hadoop approach. First of all, the aver-
age execution time was evaluated (see Figure 5.21a). As expected, the application
with the smallest input size was executing the same request much faster than other
configurations. The original approach was, as expected, still outperforming the con-
ventional solution while the configuration which required processing the exact same
amount of data as the traditional Hadoop, was performing much worse. Based on
the data presented in Figure 3.14 and the reduction of the input size ratio in com-
parison to the traditional Hadoop benchmark, the MPSR infrastructures behaved as
expected. It is important to note, that for the configuration which required to pro-
cess the lowest amount of data, the execution time was dominated by the application
staging overhead. The queue, similarly to the execution time, was managed more
efficiently by configurations which required to process the least amount of input data
(see Figure 5.21b). The measurements once again fall under the scale depicted in
Figure 3.13.

Two important observations can be derived from this experiment. First, that
the lower cluster processing rate, in case of MPSR, was the factor which allowed the

122

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

100 0.5 72.3 100

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Application Input Data Size Relation with Traditional Hadoop Scenario (%)

Traditional Hadoop
MPSR Prototype

(a) Average execution time.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

100 0.5 72.3 100

Q
ue

ue
 S

iz
e

Application Input Data Size Relation with Traditional Hadoop Scenario (%)

Traditional Hadoop
MPSR Prototype

(b) Average queue size.

Figure 5.21: Model validation: processing speed coefficients impact study.

traditional Hadoop to outperform the correspondingMPSR configuration (in terms
of its input size). Secondly, that the most efficient scheme had a great impact on the
Namenode service, due to the the larger number of the namespace objects required
to represent the data. In comparison to the traditional Hadoop, the size of the file
system structure representation was approximately 15 times larger.

5.9 Summary

In this chapter the Mixed Partitioning Scheme Replication prototype was evaluated
and compared to the original Hadoop system. A detailed analysis of its character-
istics suggest that the proposed approach represented a considerable improvement
in respect to the traditional solutions. Despite the fact that the MPSR prototype
decreased the cluster data processing throughput, the reduction of the application
input size obtained through multi-criteria partitioning has proven to be a significant
advantage of the proposed approach. Despite the fact that the improvements of the
processing speed coefficient were considerably low for the evaluated configuration,
the proposed approach was consistently outperforming the traditional solution, both
in terms of execution time and queue size management. On the other hand, the
namespace representation and failure tolerance studies uncovered the weaknesses of
the MPSR prototype. The novel approach, in its current configuration triplicates
the Namenode memory requirements and introduces significant delays in the failure
recovery process, related to the re-construction of the lost data segments.

Additionally, the MPSR model was validated using different strategies. First,
the developed solution was compared to a detailed and accurate model used for es-
timations of the execution time in Hadoop systems. Despite the fact that the main

123

assumption of linear relation between the application input size and processing time
was appropriate for the configured scenario, the study has revealed several use cases
which can introduce considerable errors in the MPSR model estimations. Further-
more, individual variable studies were performed on the original Hadoop and MPSR
systems and compared with the simulation results. Most of the observed tendencies
matched very well the simulation results, confirming its credibility. Despite the fact
that the prototype was only partially implementing the features of the MPSR archi-
tecture, the functionalities allowed to determine the efficiency and applicability of
the introduced technique.

124

Chapter 6

Future Work

Along this thesis we have shown through extensive performance evaluations that a
replication technique based on multi-criteria partitioning can provide a more efficient
service to the user in comparison with the traditional Hadoop approach. A dedicated
simulation engine and a first prototype have been implemented, allowing us to iden-
tify the core strengths and weaknesses of the Mixed Partitioning Scheme Replication,
studying its scalability and failure tolerance. We also analysed its applicability for
use cases different than the more common, expected ones. Nevertheless, some issues
still remain open, offering several opportunities to further widen the scope of this
work and improve the proposed solution.

Model Improvements

Several issues were identified while the validation of the MPSR model was under-
taken. The main assumptions used for estimating the application execution time are
solely based on the input size, which is only partially correct. The observed tendency
remains valid for systems which do not produce large amounts of intermediate data,
i.e. in cases the time complexity measurement O(n× log(n)) (where n is the size of
the map task output) does not exceed O(m) (where m is the size of the map task
input). Despite the fact that in the simulator both the conventional and the MPSR
schedulers are affected by this issue, the predictions for this workload category will
produce estimations with considerably higher error margins. Besides this interme-
diary data issue, the input from other researchers working on this topic (Lin et al.,
2012) can be included in future model improvements, which will allow to predict the
execution time more accurately.

125

Implementation

The performance evaluation of the MPSR prototype uncovered the important per-
formance improvement potential of the proposed approach. However, the features
employed by the current implementation are for the time being quite basic, non-
optimized and directly embedded into the Hadoop source code. In its current shape,
the MPSR prototype is not yet ready for a deployment in production environments.
The existing features and related logic should be extracted into a separate module,
suitable for integration with the Hadoop system through a dedicated plug-in inter-
face. Additionally, some missing functionalities, (e.g. directory listing), should be
implemented to facilitate data maintenance operations.

In addition to such file system operations which are currently not yet imple-
mented, several high-level features are still to be added to the current MPSR proto-
type. A detailed investigation of the meta-data management techniques is amongst
the tasks to be conducted with highest priority, since the efficiency of the MPSR
operations is very much related to the performance of this service. The solution
must be able to correctly identify the locations of the information block and make
an appropriate distinction between the partitioning schemes. In case of a failure
recovery, elastic replica allocation or cluster re-balancing, the MPSR solution must
determine the data migration plan which minimizes the impact of the operation on
the available cluster resources.

The executed performance evaluations demonstrated that Hadoop schedulers are
perfectly capable of working with the MPSR prototype, however there were several
factors which could be improved by implementing a dedicated solution. The default
resource allocation policies employed by the original schedulers, besides consider-
ing data locality when allocating the task execution slots, take multiple factors into
consideration. While this approach is acceptable for an infrastructure which stores
multiple identically structured data copies, the same strategy can be further improved
for the MPSR use cases, where unique data representations impose a significant chal-
lenge for maximizing the cluster data processing throughput. Such techniques can,
amongst others, introduce a slight delay for resource allocation when multiple user
requests are in the queue in order to maximize the data-local map task executions.

Improvement of Shortcomings

The analysis of the MPSR prototype characteristics also uncovered some of its weak-
nesses in relation to the original Hadoop implementation. One of the major draw-
backs of the proposed solution is the considerably higher memory requirements of

126

the Namenode for managing the multi-criteria file system representation. Indepen-
dently of the stored entity attribute cardinality, the number of the required file and
directory objects will always be higher in comparison to a generically optimized par-
titioning scheme. Despite the fact that modern hardware architectures are capable of
supporting large amounts of RPC, this issue can considerably impact the scalability
of the service.

Another weak point of the proposed approach is its failure recovery mechanism.
The data re-construction process has considerably high time complexity due to the
required sorting operation on a large amount of the intermediate data. Despite the
fact that – in the specific case of the next generation storage and processing solution
built at CERN - the data from any of the partitioning schemes is likely to be already
sorted by the measurement timestamp attribute, the secondary sorting predicates
will still impact the duration of the re-construction process. Furthermore, systems
which do not use the same property for sorting, might suffer from even larger delays.

Finally, the current MPSR implementation distributes data blocks randomly
across the available resources. This approach does not really take into considera-
tion the workload, and might be sub-optimal for large join operations. In order to
maximize the cluster throughput for particular workloads, additional research should
be devoted to identify mechanisms, which would allow minimizing the query span
and optimize the placement of data segments. The resource allocation policies for
application execution should be adapted for specific data distribution algorithms for
improving the previously observed data locality factor.

Integration Assessment

Amongst the initially identified advantages of the MPSR approach over the similar
works was its flexibility towards the integration of external performance optimiza-
tion solutions. The architecture described in the previous chapters focuses on the
modification of the low-level file system representation for minimizing the alterations
of the respective communication interfaces. This principle allows the MPSR to in-
herit the flexibility of the Hadoop system and integrate with external tools on any
of the levels. Nevertheless, the flexibility of the proposed approach was not assessed
within the scope of this thesis. Amongst the highest priority is the assessment of the
compatibility of the developed solution with file optimization formats, like Parquet
or Avro. Besides bringing additional efficiency in retrieving the data, such solu-
tions significantly reduce the size of the repository and the number of the associated
namespace representation objects to be maintained by the Namenode service. In the
previous sections it was mentioned that the MPSR solution will outsource the data

127

pre-processing to dedicated data ingestion systems, like Kafka, while compatibility
tests were not yet performed at this level. Despite the fact that the same file system
operations were used in the data migration tool, it is not guaranteed that there will
be no issues when both systems will be integrated. Finally, it should be confirmed
whether dedicated and efficient data processing solutions such as Spark or Flink are
capable of executing the queries on the MPSR architecture. Since the MapReduce
paradigm is considered inefficient for a certain range of use cases, it is crucial to assess
the compatibility of MPSR with the currently most popular data analysis engines
for a future integration of the proposed approach into production environments.

128

Chapter 7

Conclusions

The main driver of the reserach performed along this thesis was the research question
defined in the first chapter: can the system which makes user of the replica-
tion with a multi-criteria partitioning replace generically optimized data
structuring schemes and improve the performance of the data storage
and processing systems operating in highly dynamic and heterogeneous
environments.

We started our study knowing that in modern, distributed large-scale data anal-
ysis solutions, the information repository distributes multiple identical copies of the
data across the available system nodes to improve the system performance and its
failure tolerance. User requests, despite of their functional and contextual differences
are forced to process unnecessarily large amounts of data, consequently resulting in
a significantly decreased throughput of the overall infrastructure. The partitioning
scheme generalization techniques allow to improve this situation, however even minor
changes to the profile of the executed queries can render once efficient data structure
into an obsolete and counter-productive scheme.

In the second chapter, a detailed study of the distributed data storage and pro-
cessing solutions is conducted. The performance improvement techniques which can
be integrated into different stages of the analysis process are assessed. The research
is hereby focused on data storage optimizations, since developments and improve-
ments at this layer have the potential of a significant performance impact on modern
architectures. Despite the fact that multiple references report significant perfor-
mance improvements in comparison to traditional approaches, multiple issues were
identified during this investigations, preventing the proposed solutions from being in-
tegrated into existing modern data analysis architectures such as CERN’s accelerator
complex.

129

In the third chapter, a novel distributed storage technique - the Mixed Parti-
tioning Scheme Replication - is presented. Along with the issues which are generally
addressed by the most popular data storage and processing solutions, additional chal-
lenges of the accelerator operation environment are studied in detail in the context
of the proposed approach. The MPSR fundamental concepts and characteristics are
formalized to allow identifying the main data processing workflows and defining a
comprehensible high-level architecture. At the same time, the proposed approach
was classified in order to determine the scenarios where a multi-schema replication
could bring considerable performance improvements.

In the same chapter, and in an effort to determine the efficiency of the proposed
approach, a model which re-creates the behaviour of the MPSR was designed and
a representative simulation engine was developed. Taking into consideration the
observations of the initial study of the modern distributed data analysis solutions,
the set of parameters, metrics and assumptions having the highest impact on the
performance of the proposed approach were defined. Using different configurations,
an initial assessment of the main properties of the MPSR approach was conducted
through simulations. During the first phase, individual variables were altered for
each of the evaluations and compared with measurements of the conventional solu-
tion. The results allowed us to conclude that the proposed approach is more efficient
for a wide range of the configurations when compared to the traditional solution.
During the second phase of the simulations, all of the variables were altered simulta-
neously, in order to determine the impact of the parameters on the efficiency of the
MPSR system. The queue management was found to be mostly influenced by the
request arrival rate, while the execution time was dominated by the expected gains
on processing rate on the optimized nodes.

In the fourth chapter, an integration of the proposed approach with the Hadoop
system was implemented and investigated in detail. First, a comprehensive Hadoop
architecture review was performed. The mechanisms and techniques which allow the
integration of external modules were identified. Taking into consideration possible
integration endpoints, the MPSR solution architecture was developed and discussed.
However, for the initial performance evaluation study of the proposed approach and
due to the complexity of this task, only the core features were selected for a first
implementation of the prototype. The partitioning schemes for the respective deploy-
ment were defined based on the actual LHC signal measurements and the workload
analysis of the currently deployed data storage and processing solutions. The infras-
tructure was configured and the accelerator device measurements were persisted on
the storage nodes.

In chapter five, the experiments used for studying the MPSR performance and

130

validate the model are described in detailed. First, using a specifically developed
request submission and management application, extensive performance evaluation
tests were executed on the different cluster configurations. The comparison of the
collected results allowed us to determine that the proposed approach, in spite of lower
cluster processing throughput, was able to outperform the original Hadoop version,
mainly due to the considerably lower application input size. Additionally, based on
the collected measurements and the results of different researchers, the scalability of
the MPSR approach was studied and provisioning was done for larger infrastructures.
The failure tolerance characteristics were analysed, allowing to uncover the additional
challenges arising for the proposed approach.

In the same chapter, the MPSR model was validated using two different ap-
proaches. Based on the similarities with the original Hadoop version, a comparative
study of the developed method using a very detailed and accurate performance esti-
mation system was conducted. The observations allow to conclude that the proposed
model predictions are in general accurate, with the exception of use cases where the
MapReduce applications produce very large amounts of intermediary data in com-
parison to the original input size. However, this issue would affect both estimations
for the conventional solution and MPSR schedulers in the same way, still allowing
to determine whether a given configuration is sufficient for the proposed solution to
be more efficient than the original one. Furthermore, benchmarks of the individual
variables were executed and compared with the simulation results. Despite the fact
that the final values showed to be very different, the observed tendencies remain
very similar, once again proving that the MPSR solution model employs the correct
assumptions.

To conclude, the initially defined research question, which motivated the whole
set of activities performed within this thesis can be finally answered. The proposed,
replication through the multi-scheme partitioning, technique can be considered as a
very promising alternative to the generic storage optimization method. The Mixed
Partitioning Scheme Replication characteristics and efficiency, observed during the
extensive performance evaluation tests, allowed to confirm the superiority of the
proposed solution in dynamic environments and accentuate its adaptability to the
heterogeneous workloads predominantly present in the operational environment of
CERN’s accelerator complex. The obtained results prove the efficiency and the
applicability of the developed solution in large-scale data storage and processing
solutions for a large range of use cases, including the second generation framework
developed for the LHC - the largest scientific instrument built by mankind to date.

131

Appendix A

Future Analysis Framework Use
Cases

1. Integrated radiation dose analysis (radiation-damage-to-equipment estimations).
The analysis is used for locating the radiation-critical locations in the LHC and
estimate the dose of ionising radiation accumulated by sensitive electronic com-
ponents. Approximately 5× 109 values have to be extracted daily).

2. Beam Loss Monitor (BLM) loss map analysis (for collimation team). The
analysis is dedicated to the validation of collimator settings through checking
the particle escape rates in different locations of the LHC. Approximately 3×
109 − 1× 1010 values have to be extracted daily.

3. So-called, Unidentified Flying Object (UFO) search (for machine protection
experts and operation crews). This analysis is used for matching the patterns
which allow to identify the dust particles which occasionally get into the trajec-
tory of the beams. Performed during periods when there are beams circulating
in the LHC. Approximately 1× 1010 values have to be extracted per each fill.

4. Injection losses and magnet quench (loss of superconducting state state of the
LHC magnets) analysis (for machine protection and magnet experts). These
studies allow to identify and analyse quench events which follow erroneous
particle injections. The data from 100-200 devices needs to extracted for typical
time intervals of a few minutes.

5. Beam Loss Monitor noise and offset analysis. This analysis is used for deter-
mining the precision and possible interruption of the respective measurement

133

equipment. The data is queried some time period after there are no beams in
the machine and during long LHC maintenance periods.

6–7. BLM, Vacuum and Cryogenics equipment threshold validation. This analysis
is performed to compare possible new (optimised) thresholds with previously
observed measurements, in order to determined whether the new settings would
trigger a beam dump event or enhance the machine performance. The data is
processed for periods where there were beams in the LHC.

8. On-line analysis. This analysis is used mostly for monitoring the behaviour of
the systems in real-time. Preconfigured queries will be continuously monitoring
the signals from Quench Protection System (QPS) and power converters for a
time window of the last 10 minutes.

9. Hardware commissioning evaluation. This analysis will be executed in order to
compare different campaigns, allowing to identify the efficiency and long-term
issues of powering equipment which might develop over hardware commission-
ing periods.

134

Bibliography

Aad, G., et al. (2012). Observation of a new particle in the search for the Standard
Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett., B716 ,
1-29. doi: 10.1016/j.physletb.2012.08.020

Abiteboul, S., Agrawal, R., Bernstein, P., Carey, M., Ceri, S., Croft, B., . . .
Zdonik, S. (2005, May). The lowell database research self-assessment. Com-
mun. ACM , 48 (5), 111–118. Retrieved from http://doi.acm.org/10.1145/

1060710.1060718 doi: 10.1145/1060710.1060718
Agrawal, R., Ailamaki, A., Bernstein, P. A., Brewer, E. A., Carey, M. J., Chaudhuri,

S., . . . Weikum, G. (2008, September). The claremont report on database
research. SIGMOD Rec., 37 (3), 9–19. Retrieved from http://doi.acm.org/

10.1145/1462571.1462573 doi: 10.1145/1462571.1462573
Agrawal, S., Narasayya, V., & Yang, B. (2004). Integrating vertical and horizontal

partitioning into automated physical database design. In Proceedings of the
2004 acm sigmod international conference on management of data (pp. 359–
370).

Ahmad, M. Y., & Kemme, B. (2015, April). Compaction management in distributed
key-value datastores. Proc. VLDB Endow., 8 (8), 850–861. Retrieved from
http://dx.doi.org/10.14778/2757807.2757810 doi: 10.14778/2757807
.2757810

Ailamaki, A., DeWitt, D. J., Hill, M. D., & Skounakis, M. (2001). Weaving relations
for cache performance. In Vldb (Vol. 1, pp. 169–180).

Apache parquet is a columnar storage format available to any project in the hadoop
ecosystem, regardless of the choice of data processing framework, data model
or programming language. (n.d.). https://parquet.apache.org/. (Accessed:
2017-08-28)

Astrahan, M. M., Blasgen, M. W., Chamberlin, D. D., Eswaran, K. P., Gray, J.,
Griffiths, P. P., . . . others (1976). System r: relational approach to database
management. ACM Transactions on Database Systems (TODS), 1 (2), 97–137.

Avro is a remote procedure call and data serialization framework developed within

135

apache’s hadoop project. (n.d.). https://avro.apache.org/. (Accessed: 2017-
08-28)

Baranowski, Z., Toebbicke, R., Canali, L., Barberis, D., & Hrivnac, J. (2017). A
study of data representation in hadoop to optimise data storage and search
performance for the atlas eventindex (Tech. Rep.). ATL-COM-SOFT-2016-
149.

Bertino, E. (1991). A survey of indexing techniques for object-oriented database
management systems. Morgan Kaufmann.

Big data benchmark. (n.d.). https://amplab.cs.berkeley.edu/benchmark/. (Ac-
cessed: 2017-08-28)

Borthakur, D., Gray, J., Sarma, J. S., Muthukkaruppan, K., Spiegelberg, N., Kuang,
H., . . . Aiyer, A. (2011). Apache hadoop goes realtime at facebook. In Pro-
ceedings of the 2011 acm sigmod international conference on management of
data (pp. 1071–1080). New York, NY, USA: ACM. Retrieved from http://

doi.acm.org/10.1145/1989323.1989438 doi: 10.1145/1989323.1989438

Boulon, J., Konwinski, A., Qi, R., Rabkin, A., Yang, E., & Yang, M. (2008). Chukwa,
a large-scale monitoring system. In Proceedings of cca (Vol. 8, pp. 1–5).

Boychenko, S., Aguilera-Padilla, C., Galilée, M.-A., Garnier, J.-C., Gorzawski, A.,
Krol, K., . . . others (2016). Second generation lhc analysis framework:
Workload-based and user-oriented solution. In 7th international particle ac-
celerator conference (ipac’16), busan, korea, may 8-13, 2016 (pp. 2784–2787).

Boychenko, S., Marc-Antoine, G., Jean-Christophe, G., Markus, Z., & Zenha, R. M.
(2017). Multi-criteria partitioning on distributed file systems for efficient ac-
celerator data analysis and performance optimization. In Icalepcs2017.

Boychenko, S., et al. (2015). Towards a Second Generation Data Analysis
Framework for LHC Transient Data Recording. In Proceedings, 15th In-
ternational Conference on Accelerator and Large Experimental Physics Con-
trol Systems (ICALEPCS 2015): Melbourne, Australia, October 17-23, 2015
(p. WEPGF046). Retrieved from http://jacow.org/icalepcs2015/papers/

wepgf046.pdf doi: 10.18429/JACoW-ICALEPCS2015-WEPGF046

Boychenko, S., Zerlauth, M., Garnier, J.-C., & Zenha-Rela, M. (2018). Optimizing
distributed file storage and processing engines for cern’s large hadron collider
using multi criteria partitioned replication. In Proceedings of the 19th interna-
tional conference on distributed computing and networking (p. 17).

Brewer, E. A. (2000). Towards robust distributed systems. In Podc (Vol. 7).

Buchmann, A., & Koldehofe, B. (2009). Complex event processing. IT-Information
Technology Methoden und innovative Anwendungen der Informatik und Infor-
mationstechnik , 51 (5), 241–242.

136

Buck, J. B., Watkins, N., LeFevre, J., Ioannidou, K., Maltzahn, C., Polyzotis, N.,
& Brandt, S. (2011). Scihadoop: array-based query processing in hadoop.
In High performance computing, networking, storage and analysis (sc), 2011
international conference for (pp. 1–11).

Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., & Tzoumas, K.
(2015). Apache flink: Stream and batch processing in a single engine. Bul-
letin of the IEEE Computer Society Technical Committee on Data Engineering ,
36 (4).

Casey, R. G. (1972). Allocation of copies of a file in an information network. In
Proceedings of the may 16-18, 1972, spring joint computer conference (pp.
617–625). New York, NY, USA: ACM. Retrieved from http://doi.acm.org/

10.1145/1478873.1478955 doi: 10.1145/1478873.1478955

Casper, J., & Olukotun, K. (2014). Hardware acceleration of database opera-
tions. In Proceedings of the 2014 acm/sigda international symposium on field-
programmable gate arrays (pp. 151–160). New York, NY, USA: ACM. Re-
trieved from http://doi.acm.org/10.1145/2554688.2554787 doi: 10.1145/
2554688.2554787

Cern accelerator logging service evolution towards hadoop storage. (n.d.). https://
indico.cern.ch/event/595534/. (Accessed: 2017-08-28)

Chang, C.-Y. (2005). A survey of data protection technologies. In Electro information
technology, 2005 ieee international conference on (pp. 6–pp).

Chatrchyan, S., et al. (2012). Observation of a new boson at a mass of 125 GeV
with the CMS experiment at the LHC. Phys. Lett., B716 , 30-61. doi: 10.1016/
j.physletb.2012.08.021

Cheng, Z., Luan, Z., Meng, Y., Xu, Y., Qian, D., Roy, A., . . . Guan, G. (2012).
Erms: An elastic replication management system for hdfs. In Cluster computing
workshops (cluster workshops), 2012 ieee international conference on (pp. 32–
40).

Cloudera’s apache hadoop open-source ecosystem. (n.d.). https://www.cloudera

.com/products/open-source/apache-hadoop.html. (Accessed: 2017-08-28)

Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., & Sears, R. (2010).
Benchmarking cloud serving systems with ycsb. In Proceedings of the 1st acm
symposium on cloud computing (pp. 143–154). New York, NY, USA: ACM.
Retrieved from http://doi.acm.org/10.1145/1807128.1807152 doi: 10
.1145/1807128.1807152

Curino, C., Jones, E., Zhang, Y., & Madden, S. (2010, September). Schism:
A workload-driven approach to database replication and partitioning. Proc.
VLDB Endow., 3 (1-2), 48–57. Retrieved from http://dx.doi.org/10.14778/

137

1920841.1920853 doi: 10.14778/1920841.1920853

Davies, A., & Orsaria, A. (2013, November). Scale out with glusterfs. Linux J.,
2013 (235). Retrieved from http://dl.acm.org/citation.cfm?id=2555789

.2555790

Dean, J., & Ghemawat, S. (2008, January). Mapreduce: Simplified data processing
on large clusters. Commun. ACM , 51 (1), 107–113. Retrieved from http://

doi.acm.org/10.1145/1327452.1327492 doi: 10.1145/1327452.1327492

Depardon, B., Le Mahec, G., & Séguin, C. (2013, February). Analysis of Six Dis-
tributed File Systems (Research Report). Retrieved from https://hal.inria

.fr/hal-00789086

Dilley, J., Maggs, B., Parikh, J., Prokop, H., Sitaraman, R., & Weihl, B. (2002).
Globally distributed content delivery. IEEE Internet Computing , 6 (5), 50–58.

Dinu, F., & Ng, T. (2011). Analysis of hadoop’s performance under failures (Tech.
Rep.).

The discovery of the w vector bosson. (n.d.). http://cds.cern.ch/record/854078/
files/CM-P00053948.pdf. (Accessed: 2017-08-28)

Dittrich, J., Quiané-Ruiz, J.-A., Richter, S., Schuh, S., Jindal, A., & Schad, J.
(2012). Only aggressive elephants are fast elephants. Proceedings of the VLDB
Endowment , 5 (11), 1591–1602.

Donvito, G., Marzulli, G., & Diacono, D. (2014). Testing of several distributed file-
systems (hdfs, ceph and glusterfs) for supporting the hep experiments analysis.
In Journal of physics: Conference series (Vol. 513, p. 042014).

Eisner, M. J., & Severance, D. G. (1976, October). Mathematical techniques for
efficient record segmentation in large shared databases. J. ACM , 23 (4), 619–
635. Retrieved from http://doi.acm.org/10.1145/321978.321982 doi: 10
.1145/321978.321982

Ekanayake, J., Pallickara, S., & Fox, G. (2008). Mapreduce for data intensive
scientific analyses. In escience, 2008. escience’08. ieee fourth international
conference on (pp. 277–284).

Eltabakh, M. Y., Tian, Y., Özcan, F., Gemulla, R., Krettek, A., & McPherson,
J. (2011, June). Cohadoop: Flexible data placement and its exploitation
in hadoop. Proc. VLDB Endow., 4 (9), 575–585. Retrieved from http://

dx.doi.org/10.14778/2002938.2002943 doi: 10.14778/2002938.2002943

Evolution of the logging service: Hadoop and cals 2.0. (n.d.). https://indico.cern
.ch/event/533926/. (Accessed: 2017-08-28)

Flume is a distributed, reliable, and available service for efficiently collecting, aggre-
gating, and moving large amounts of log data. (n.d.). https://flume.apache
.org/. (Accessed: 2017-08-28)

138

Fuchsberger, K., Garnier, J., Gorzawski, A., & Motesnitsalis, E. (2013). Concept
and prototype for a distributed analysis framework for lhc machine data. In
proc. of icalepcs.

Furtado, C., Lima, A. A., Pacitti, E., Valduriez, P., & Mattoso, M. (2008). Adaptive
hybrid partitioning for olap query processing in a database cluster. Interna-
tional journal of high performance computing and networking , 5 (4), 251–262.

Ghazi, M. R., & Gangodkar, D. (2015). Hadoop, mapreduce and hdfs: a developers
perspective. Procedia Computer Science, 48 , 45–50.

Ghemawat, S., Gobioff, H., & Leung, S.-T. (2003, October). The google file system.
SIGOPS Oper. Syst. Rev., 37 (5), 29–43. Retrieved from http://doi.acm.org/

10.1145/1165389.945450 doi: 10.1145/1165389.945450

Gilbert, S., & Lynch, N. (2012). Perspectives on the cap theorem. Computer , 45 (2),
30–36.

The hadoop distributed file system: Architecture and design. (n.d.). https://

svn.eu.apache.org/repos/asf/hadoop/common/tags/release-0.16.3/

docs/hdfs design.pdf. (Accessed: 2017-08-28)

Hash partitioning. (n.d.). https://dev.mysql.com/doc/refman/5.7/en/

partitioning-hash.html. (Accessed: 2017-08-28)

He, Y., Lee, R., Huai, Y., Shao, Z., Jain, N., Zhang, X., & Xu, Z. (2011). Rc-
file: A fast and space-efficient data placement structure in mapreduce-based
warehouse systems. In Data engineering (icde), 2011 ieee 27th international
conference on (pp. 1199–1208).

Herodotou, H., Borisov, N., & Babu, S. (2011). Query optimization techniques
for partitioned tables. In Proceedings of the 2011 acm sigmod international
conference on management of data (pp. 49–60).

Hevner, A. R., & Rao, A. (1988). Distributed data allocation strategies. Advances
in Computers , 27 , 121–155.

Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A. D., Katz, R. H.,
. . . Stoica, I. (2011). Mesos: A platform for fine-grained resource sharing in
the data center. In Nsdi (Vol. 11, pp. 22–22).

Hoare, C. A. (1962). Quicksort. The Computer Journal , 5 (1), 10–16.

Hu, H., Wen, Y., Chua, T.-S., & Li, X. (2014). Toward scalable systems for big data
analytics: A technology tutorial. IEEE access , 2 , 652–687.

Jiang, D., Ooi, B. C., Shi, L., & Wu, S. (2010, September). The performance
of mapreduce: An in-depth study. Proc. VLDB Endow., 3 (1-2), 472–483.
Retrieved from http://dx.doi.org/10.14778/1920841.1920903 doi: 10
.14778/1920841.1920903

Karun, A. K., & Chitharanjan, K. (2013). A review on hadoop—hdfs infrastruc-

139

ture extensions. In Information & communication technologies (ict), 2013 ieee
conference on (pp. 132–137).

Kemme, B., & Alonso, G. (1998). A suite of database replication protocols based
on group communication primitives. In Distributed computing systems, 1998.
proceedings. 18th international conference on (pp. 156–163).

Kreps, J., Narkhede, N., Rao, J., et al. (2011). Kafka: A distributed messaging
system for log processing. In Proceedings of the netdb (pp. 1–7).

La Rocca, P., & Riggi, F. (2014). The upgrade programme of the major experiments
at the large hadron collider. In Journal of physics: Conference series (Vol. 515,
p. 012012).

Lee, Y., & Lee, Y. (2012, January). Toward scalable internet traffic measurement
and analysis with hadoop. SIGCOMM Comput. Commun. Rev., 43 (1), 5–
13. Retrieved from http://doi.acm.org/10.1145/2427036.2427038 doi:
10.1145/2427036.2427038

Lin, X., Meng, Z., Xu, C., & Wang, M. (2012). A practical performance model for
hadoop mapreduce. In Cluster computing workshops (cluster workshops), 2012
ieee international conference on (pp. 231–239).

List partitioning. (n.d.). https://dev.mysql.com/doc/refman/5.7/en/

partitioning-list.html. (Accessed: 2017-08-28)

Loebman, S., Nunley, D., Kwon, Y., Howe, B., Balazinska, M., & Gardner, J. P.
(2009). Analyzing massive astrophysical datasets: Can pig/hadoop or a rela-
tional dbms help? In Cluster computing and workshops, 2009. cluster’09. ieee
international conference on (pp. 1–10).

Lzo real-time data compression library. (n.d.). http://www.oberhumer.com/

opensource/lzo/. (Accessed: 2017-08-28)

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky,
A., . . . others (2010). The genome analysis toolkit: a mapreduce framework
for analyzing next-generation dna sequencing data. Genome research, 20 (9),
1297–1303.

Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S., Liu, D., . . . others
(2016). Mllib: Machine learning in apache spark. The Journal of Machine
Learning Research, 17 (1), 1235–1241.

Muñoz-Escóı, F. D., Irún-Briz, L., & Decker, H. (2005). Database replication proto-
cols. In Encyclopedia of database technologies and applications (pp. 153–157).
IGI Global.

Namenode memory size estimates and optimization proposal. (n.d.-a). https://

issues.apache.org/jira/browse/HADOOP-1687. (Accessed: 2017-08-28)

Namenode memory size estimates and optimization proposal. (n.d.-b).

140

https://www.intel.com/content/dam/www/public/us/en/documents/

product-briefs/xeon-e7-v2-family-brief.pdf. (Accessed: 2017-08-28)

Nasser, T., & Tariq, R. (2015). Big data challenges. J Comput Eng Inf Technol 4:
3. doi: http://dx. doi. org/10.4172/2324 , 9307 (2).

Oerter, R. (2006). The theory of almost everything: The standard model, the unsung
triumph of modern physics. Penguin.

Premature dumps in 2011. (n.d.). http://indico.cern.ch/getFile.py/access

?contribId=2&sessionId=0&resId=0&materialId=slides&confId=155520.
(Accessed: 2017-08-28)

Protocol buffers are a language-neutral, platform-neutral extensible mechanism for se-
rializing structured data. (n.d.). https://developers.google.com/protocol
-buffers/. (Accessed: 2017-08-28)

Quamar, A., Kumar, K. A., & Deshpande, A. (2013). Sword: Scalable workload-
aware data placement for transactional workloads. In Proceedings of the
16th international conference on extending database technology (pp. 430–441).
New York, NY, USA: ACM. Retrieved from http://doi.acm.org/10.1145/

2452376.2452427 doi: 10.1145/2452376.2452427

Range partitioning. (n.d.). https://dev.mysql.com/doc/refman/5.7/en/

partitioning-range.html. (Accessed: 2017-08-28)

Rasch, P. J. (1970, January). A queueing theory study of round-robin scheduling
of time-shared computer systems. J. ACM , 17 (1), 131–145. Retrieved from
http://doi.acm.org/10.1145/321556.321569 doi: 10.1145/321556.321569

Reshef, D. N., Reshef, Y. A., Finucane, H. K., Grossman, S. R., McVean, G., Turn-
baugh, P. J., . . . Sabeti, P. C. (2011). Detecting novel associations in large
data sets. science, 334 (6062), 1518–1524.

Roderick, C., Hoibian, N., Peryt, M., Billen, R., & Gourber Pace, M. (2011). The
cern accelerator measurement database: On the road to federation. In Conf.
proc. (Vol. 111010, p. MOPKN009).

Schroeder, B., & Gibson, G. (2010). A large-scale study of failures in high-
performance computing systems. IEEE Transactions on Dependable and Secure
Computing , 7 (4), 337–350.

Seward, J. (1996). bzip2 and libbzip2. avaliable at http://www. bzip. org .

Shvachko, K., Kuang, H., Radia, S., & Chansler, R. (2010). The hadoop distributed
file system. In Mass storage systems and technologies (msst), 2010 ieee 26th
symposium on (pp. 1–10).

Simchi-Levi, D., & Trick, M. A. (2011, May). Introduction to “little’s law as viewed
on its 50th anniversary”. Oper. Res., 59 (3), 535–535. Retrieved from http://

dx.doi.org/10.1287/opre.1110.0941 doi: 10.1287/opre.1110.0941

141

Sivarajah, U., Kamal, M. M., Irani, Z., & Weerakkody, V. (2017). Critical analysis
of big data challenges and analytical methods. Journal of Business Research,
70 , 263–286.

Sukhwani, B., Min, H., Thoennes, M., Dube, P., Iyer, B., Brezzo, B., . . . Asaad, S.
(2012). Database analytics acceleration using fpgas. In Proceedings of the 21st
international conference on parallel architectures and compilation techniques
(pp. 411–420). New York, NY, USA: ACM. Retrieved from http://doi.acm

.org/10.1145/2370816.2370874 doi: 10.1145/2370816.2370874

Sumbaly, R., Kreps, J., & Shah, S. (2013). The big data ecosystem at linkedin. In
Proceedings of the 2013 acm sigmod international conference on management
of data (pp. 1125–1134). New York, NY, USA: ACM. Retrieved from http://

doi.acm.org/10.1145/2463676.2463707 doi: 10.1145/2463676.2463707

Tan, Y. S., Tan, J., Chng, E. S., Lee, B.-S., Li, J., Chak, H. P., . . . others (2013).
Hadoop framework: impact of data organization on performance. Software:
Practice and Experience, 43 (11), 1241–1260.

Tandon, P., Cafarella, M. J., & Wenisch, T. F. (2013). Minimizing remote accesses
in mapreduce clusters. In Parallel and distributed processing symposium work-
shops & phd forum (ipdpsw), 2013 ieee 27th international (pp. 1928–1936).

Taniar, D., Jiang, Y., Liu, K., & Leung, C. H. (2000). Aggregate-join query pro-
cessing in parallel database systems. In High performance computing in the
asia-pacific region, 2000. proceedings. the fourth international conference/exhi-
bition on (Vol. 2, pp. 824–829).

Taylor, R. C. (2010). An overview of the hadoop/mapreduce/hbase framework and
its current applications in bioinformatics. BMC bioinformatics , 11 (12), S1.

Tormasov, A., Lysov, A., & Mazur, E. (2015). Distributed data storage systems:
analysis, classification and choice. Proceedings of the Institute for System Pro-
gramming of the RAS , 27 (6), 225–252.

Toshniwal, A., Taneja, S., Shukla, A., Ramasamy, K., Patel, J. M., Kulkarni,
S., . . . Ryaboy, D. (2014). Storm@twitter. In Proceedings of the 2014
acm sigmod international conference on management of data (pp. 147–156).
New York, NY, USA: ACM. Retrieved from http://doi.acm.org/10.1145/

2588555.2595641 doi: 10.1145/2588555.2595641

Van Der Ster, D., & Rousseau, H. (2015). Ceph 30pb test report (Tech. Rep.).

Vavilapalli, V. K., Murthy, A. C., Douglas, C., Agarwal, S., Konar, M., Evans, R.,
. . . Baldeschwieler, E. (2013). Apache hadoop yarn: Yet another resource
negotiator. In Proceedings of the 4th annual symposium on cloud computing
(pp. 5:1–5:16). New York, NY, USA: ACM. Retrieved from http://doi.acm

.org/10.1145/2523616.2523633 doi: 10.1145/2523616.2523633

142

Vora, M. N. (2011). Hadoop-hbase for large-scale data. In Computer science and
network technology (iccsnt), 2011 international conference on (Vol. 1, pp. 601–
605).

Wang, H., Xu, Z., Fujita, H., & Liu, S. (2016). Towards felicitous decision making:
An overview on challenges and trends of big data. Information Sciences , 367 ,
747–765.

Weil, S. A., Brandt, S. A., Miller, E. L., Long, D. D., & Maltzahn, C. (2006). Ceph:
A scalable, high-performance distributed file system. In Proceedings of the 7th
symposium on operating systems design and implementation (pp. 307–320).

Weil, S. A., Brandt, S. A., Miller, E. L., & Maltzahn, C. (2006). Crush: Controlled,
scalable, decentralized placement of replicated data. In Proceedings of the 2006
acm/ieee conference on supercomputing (p. 122).

White, T. (2012). Hadoop: The definitive guide. O’Reilly Media, Inc.

Wiesmann, M., & Schiper, A. (2005). Comparison of database replication techniques
based on total order broadcast. IEEE Transactions on Knowledge and Data
Engineering , 17 (4), 551–566.

Wiley, K., Connolly, A., Krughoff, S., Gardner, J., Balazinska, M., Howe, B., . . . Bu,
Y. (2011). Astronomical image processing with hadoop. In Astronomical data
analysis software and systems xx (Vol. 442, p. 93).

Wu, D., Luo, W., Xie, W., Ji, X., He, J., & Wu, D. (2013). Understanding the
impacts of solid-state storage on the hadoop performance. In Advanced cloud
and big data (cbd), 2013 international conference on (pp. 125–130).

Yang, C.-T., Lien, W.-H., Shen, Y.-C., & Leu, F.-Y. (2015). Implementation of
a software-defined storage service with heterogeneous storage technologies. In
Advanced information networking and applications workshops (waina), 2015
ieee 29th international conference on (pp. 102–107).

Yu, H., & Wang, D. (2012). Research and implementation of massive health care data
management and analysis based on hadoop. In Computational and information
sciences (iccis), 2012 fourth international conference on (pp. 514–517).

Zaharia, M., Borthakur, D., Sarma, J. S., Elmeleegy, K., Shenker, S., & Stoica, I.
(2009). Job scheduling for multi-user mapreduce clusters (Tech. Rep.). Techni-
cal Report UCB/EECS-2009-55, EECS Department, University of California,
Berkeley.

Zaharia, M., Xin, R. S., Wendell, P., Das, T., Armbrust, M., Dave, A., . . . Stoica, I.
(2016, October). Apache spark: A unified engine for big data processing. Com-
mun. ACM , 59 (11), 56–65. Retrieved from http://doi.acm.org/10.1145/

2934664 doi: 10.1145/2934664

Zerlauth, M., Andreassen, O. O., Baggiolini, V., Castaneda, A., Gorbonosov, R.,

143

Khasbulatov, D., . . . Trofimov, N. (2009). The lhc post mortem analysis
framework. Proceedings of ICALEPCS 2009 .

144

Un
ive

rsi
da

de
 d

e
Co

im
br
a

Ser
hiy

 B
oy
ch
en

ko
A

Dis
tri
bu

ted
 A
na

lys
is

Fra
me

wo
rk
 fo

r
 H

ete
rog

en
eo
us
 D

ata
 P

ro
ces

sin
g
in

HE
P

En
vir

on
me

nts

