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Resumo

Nesta tese, lidamos o problema de estimar a estrutura 3D de superfı́cies não rı́gidas que

sofrem deformação natural. Nós investigamos o problema com o objetivo de propormos

idéias e soluções inovadoras que nos permitam relatarmos conclusões que contribuem para

a área relevante. Portanto, o nosso foco está no desenvolvimento de algoritmos eficientes

baseadas em formulações de problema que levam a modelos menos complexos e simul-

taneamente a resultados mais precisos. Enquanto a tese está concentrada em algoritmos

especializadas para a reconstrução de superfı́cies não extensı́veis ou extensı́veis, no en-

tanto, desenvolvemos o nosso trabalho para formulações generalizadas para que possa ser

obtida uma modelagem consistente de ambos os tipos de deformação.

Todo o trabalho é um esforço organizado para realizar os objetivos da tese num pro-

grama de investigação de três tarefas, onde cada tarefa é dedicada a lidar com o problema

de reconstrução com base numa nova idéia, usada para criar certos modelos de otimização

em conformidade. O problema de reconstrução difere ligeiramente de cada tarefa para o

próximo, dependendo de elementos como o tipo de câmera, o tipo de deformação, o modelo

de deformação, a representação superficial, etc. Como resultado, três idéias gerais foram

propostas para permitir reconstruções de superfı́cie precisas.

Em resumo, cada idéia é fundado numa base particular, respectivamente, o uso da

câmera de Tempo de Voo, combinação de restrições de deformação, modelagem de deformação

a partir de transformações de superfı́cie e buscamos estabelecer comparações confiáveis en-
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tre as três idéias com respeito a desempenho e aplicabilidade, avaliando os pontos fortes

e fracos de suas algoritmos correspondentes. Para esse fim, um conjunto compreensivo

de avaliações são realizadas tanto em sequências de vı́deo reais e sintéticas que capturam

diversas variantes de superfı́cies não rı́gidas.

Palavras-chave: Reconstrução, Superfı́cies Deformáveis, Técnicas de Otimização.



Abstract

In this thesis, we address the problem of estimating the 3D structure of non-rigid surfaces

that undergo natural deformation. We thoroughly investigate the problem with the goal

of proposing innovative ideas and solutions letting us report findings and conclusions that

contribute to the relevant field. Therefore, our focus is on the development of efficient ap-

proaches based on problem formulations that lead to less complex models and simultane-

ously to more accurate results. While the thesis is concentrated on specialized approaches

for the reconstruction of inextensible or extensible surfaces, we however develop our work

toward generalized formulations so that consistent modeling of both deformation types can

be derived.

The entire work is an organized effort to accomplish the thesis objectives in a 3-task

research program where each task is dedicated to dealing with the reconstruction problem

based on a novel idea, used to design certain optimization models accordingly. From each

task to the next the reconstruction problem slightly differs depending on such elements as

the camera type, deformation type, deformation model, the surface representation, etc. As

a result, three general ideas have been proposed so as to enable accurate surface reconstruc-

tions by means of optimization.

In brief, each idea relies on a particular basis, respectively, the use of Time-of-Flight

camera, combination of deformation constraints, deformation modeling from surface trans-

formations and we seek to draw reliable comparisons between the three ideas with respect

iii
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to performance and applicability, by evaluating the strengths and weaknesses of their cor-

responding approaches. For this purpose, a comprehensive set of experiments and evalua-

tions is carried out on both real and synthetic video sequences capturing several variants of

non-rigid surfaces.

Keywords: Reconstruction, Deformable Surfaces, Optimization-Based Techniques.
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2 CHAPTER 1. INTRODUCTION

In computer vision and computer graphics, 3D reconstruction is the process of capturing

the shape and appearance of real objects. This process can be accomplished either by active

or passive methods. If the model is allowed to change its shape in time, this is referred

to as non-rigid or spatio-temporal reconstruction. The research of 3D reconstruction has

always been a focus and difficulty. Using 3D reconstruction one can determine any object’s

3D profile, as well as knowing the 3D coordinate of any point on the profile. The 3D

reconstruction of objects is a generally scientific problem and core technology of a wide

variety of fields, such as Computer Aided Geometric Design(CAGD), Computer Graphics,

Computer Animation, Computer Vision, medical imaging, computational science, Virtual

Reality, digital media, etc. For instance, the lesion information of the patients can be

presented in 3D on the computer, which offers a new and accurate approach in diagnosis

and thus has vital clinical value.

1.1 Motion Classification

The definitions of the different motion classes are briefly described as follows: Rigid mo-

tion is usually defined as a motion with no bending which preserves all distances and angles

and has no associated non-rigidity. Articulated motion is piecewise rigid motion. It occurs

in situations where individual rigid parts of an object move independently of one another.

In this case, the motion of each constituent part is rigid, but the motion of the whole object

is non-rigid. The rigid parts conform to the rigid motion constraints, but the overall motion

is not rigid. We usually categorize it as articulated motion which has been a popular sub-

ject. Elastic motion is non-rigid motion whose only constraint is some degree of continuity

or smoothness such as the motion of a heart, the waving of a cloth, or the bending of a

metal sheet, where the shape of the object deforms under certain constraints. Fluid motion

violates the continuity assumption. It may involve topological variations and turbulent de-

formations. Homothetic motion is motion with a uniform expansion or contraction of the
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surface. Conformal motion is non-rigid motion which preserves the angles between the

curves on the surface, but not the distances. Quasi-rigid motion restricts the deformation to

a small amount. A general motion is quasi- rigid when viewed in a sufficiently short inter-

val of time, e.g. between image frames when the sampling rate is high enough. Isometric

motion is defined as a motion which preserves distances along the surface as well as angles

between curves on the surface. It can be described as a motion which preserves Gaussian

but not mean curvature. The most well-known and simplest example of such motion is the

bending of a plane surface into cylindrical shape. It is clear that any rigid motion is an

isometric motion.

1.2 Single-View Reconstruction

The reconstruction of objects from a single image is under-constrained, meaning that the

recovery of 3D shape is an inherently ambiguous problem. The case of non-rigid objects

is even more complex and difficult [1, 2]. Given a specific configuration of points on the

image plane, different 3D non-rigid shapes and camera motions can be found that fit the

measurements.

Reconstruction approaches proposed over the past years can be categorized in two ma-

jor types: those involving physics-based models [3, 4, 5, 6] and those relying on non- rigid

structure-from-motion (NRSfM) approaches [7, 8, 9, 10, 11, 12, 13, 14]. In most cases,

the former type ends up designing a complex objective function to be minimized over the

solution space. The latter, on the other hand, takes advantage of prior knowledge on the

shape and motion, to constrain the solution so that the inherent ambiguity can be tackled,

and it performs effectively provided that the 2D point tracks are accurate and reliable. For

example, Aanaes et al. [15] impose the prior knowledge that the reconstructed shape does

not vary much from frame to frame while Del Bue et al. [16] impose the constraint that

some of the points on the object be rigid.
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1.3 Non-Rigid Structure From Motion

During the last years, several works have presented extensions of the Tomasi and Kanade’s

rigid structure from motion algorithm [17] - developed in the eraly 90’ - to deal with the

reconstruction of non-rigid objects [8, 18, 19, 20, 16, 21] - see Figure 1.1. These meth-

ods are based on the fact that any configuration of the shape can be described as a linear

combination of basis shapes that define the principal modes of deformation of the object.

In their pioneering work, Tomasi and Kanade have proposed the so-called factorization

method for the 3D reconstruction. The key idea of this algorithm is the use of rank con-

straints to express the geometric invariants present in the data. This allows the factorization

of a measurement matrix which contains the image coordinates of a set of features tracks

into its shape and motion components. In the case of non-rigid factorization methods [11,

1, 2, 10, 7] which have been all originated from their rigid equivalent, the 3D shape re-

covered by the algorithms is represented as a linear combination of a number of detected

modes of deformation. These models can be subsequently used as compact representations

of the objects suitable for use in tracking [11], animation or other analysis. Bregler et al.

[8] were the first to use a factorization method for the recovery of non-rigid structure and

motion. His key insight was to use a low-rank shape model to represent a deforming shape

as a linear combination of k basis shapes which encode the main modes of deformation

of the object. Based on this model, they proposed a non-rigid factorization method for an

affine camera that exploited the rank constraint on the measurement matrix and enforced

orthonormality constraints on camera rotations to recover the motion and the non-rigid 3D

shape. Different iterative optimization schemes were later introduced by Torresani et al.

[21] and Brand [22] to improve the computation of the metric upgrade.

As an alternative to shape basis representation, Ijaz Akhter et al [23] propose a dual

approach to describe the evolving 3D structure in trajectory space by a linear combination

of basis trajectories. They describe a dual relationship between the two models (shape basis
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Figure 1.1: Structure from Motion.

and trajectory basis), showing that they both have equal power for representing 3D struc-

ture. Furthermore, they demonstrate that the principal advantage of expressing deforming

3D structure in trajectory space is that, in contrast to basis shapes, basis trajectories are

object independent. This results in a significant reduction in unknowns, and correspond-

ing stability in estimation. They propose the use of the Discrete Cosine Transform (DCT)

as the object independent basis and empirically demonstrate that it approaches Principal

Component Analysis (PCA) for natural motions. They report the performance of the pro-

posed method, quantitatively using motion capture data, and qualitatively on several video

sequences exhibiting nonrigid motions including piecewise rigid motion, partially nonrigid

motion (such as a facial expressions), and highly nonrigid motion (such as a person walking

or dancing).

Most NRSfM methods perform under affine projection. However, these algorithms fail

to give reliable 3D shape estimates when the overall rigid motion of the sequence is small.

To cope with this limitation, Xavier Lladó [24] propose a RANSAC-based approach for the

3D Euclidean reconstruction of deformable objects observed by an uncalibrated stereo rig.

They prove that using a stereo setup drastically improves the 3D model estimation when
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the observed 3D shape is mostly deforming without undergoing strong rigid motion. Also,

they consider the case where images are acquired at closer distances, with a wide field of

view or the scene is large in space. Also, there are NRSfM algorithms that work under

the full perspective camera case [11, 7, 25, 26]. The main constraint of these algorithms is

that a reliable model can only be extracted if the image sequence includes a large rotation

component.

The use of the dimensionality of the subspace in which the image trajectories lie, has

been commonly considered to perform motion segmentation [27, 28]. However, all these

methods focus either on the segmentation of independently moving objects or on the seg-

mentation of objects of different nature (rigid, non-rigid), but none of them can deal effi-

ciently with the segmentation of rigid and non-rigid points on a single deformable object.

Moreover, most of these methods assume an affine camera model Del Bue et al. [29] eval-

uate a method that performs the automatic segmentation of a set of rigidly moving points

within a deformable object given a set of 2D image measurements and study a full perspec-

tive camera case. Their work is the first attempt to obtain a reliable segmentation of rigid

points from non-rigid bodies.

1.4 Priors and Constraints

Although the low-rank shape model has proved to be a successful representation, however

the non-rigid structure from motion problem is under-constrained. Xiao et al. [12] proved

that the orthogonality constraints were insufficient to disambiguate rigid motion and de-

formations. They identified a new set of constraints on the shape bases which, when used

in addition to the rotation constraints, provide a closed form solution to the problem of

non-rigid structure from motion. However, their solution requires that there be K frames

(where K is the number of basis shapes) in which the shapes are known to be independent.

Non-linear optimization schemes that minimize image reprojection error have also been
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proposed to refine an initial solution [30]. The advantage of these methods is that they pro-

vide a maximum likelihood estimate in the presence of Gaussian noise and prior knowledge

on any of the model parameters can be easily incorporated into the cost function in the form

of penalty terms. The need for incorporating prior information on the motion or shape pa-

rameters to avoid the ambiguities inherent to non-rigid shape estimation is also recognized

by Torresani et.al. [21, 19] who propose an algorithm that learns the time-varying shape

of a non-rigid 3D object from uncalibrated 2D tracking data. Temporal smoothness in the

object shape can be imposed within their framework which can also handle missing data.

Aanaes et al. [15] impose the prior knowledge that the reconstructed shape does not vary

much from frame to frame, while Del Bue et al. [16] impose the constraint that some of

the points on the object are rigid. Both approaches use bundle adjustment to refine all the

parameters of the model together. Bartoli et al. [20] on the other hand, use a coarse to fine

shape model where new deformation modes are added iteratively to capture as much of the

variance left unexplained by previous modes as possible.

The priors can be divided in two main categories: the statistical and physical priors.

For instance, the methods relying on the low-rank factorization paradigm [15, 16] can be

classified as statistical approaches. Learning approaches such as [31, 32, 33] also belong

to the statistical approaches. Physical constraints include spatial and temporal priors on the

surface to be reconstructed [34, 35].

1.5 Deformable Surface Reconstruction

Monocular reconstruction of deformable surfaces has been extensively studied in the last

few years [36, 37]. Strictly-speaking, isometric reconstruction from perspective camera

views has attracted much of the attention. A physical prior of particular interest in this case

is the hypothesis of having an inextensible (i.e. isometric) surface [38, 39, 40, 41]. This

hypothesis means that the length of the geodesics between every two points on the surface
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should not change across time, which makes sense for many types of material such as paper

and some types of fabric.

The reconstruction of deformable surfaces is becoming increasingly important and this

can be visible considering its practical applications. Physics has inspired early approaches.

These approaches amount to a minimization based on the physical behaviour of the surface

[3, 42, 43]. Although it makes sense that we integrate physical laws into our algorithms,

the final framework will be affected by two major shortcomings:

• The material parameters, which are typically unknown, have to be determined.

• In order to estimate the parameters accurately, in the presence of large deformations,

we need to build a complex cost functional (which is hard to optimize).

Methods that learn models from training data were introduced to overcome these lim-

itations. In this case, surface deformations are expressed as linear combinations of de-

formation modes which are obtained from training data. NRSfM methods built on this

principle recover simultaneously the shape and the modes from image sequences [11, 21,

7]. Although this is a very attractive idea, practical implementations are not easy since they

require points to be tracked across the entire sequence. Moreover, they are only effective

for relatively small deformations. There have also been a number of attempts at perform-

ing 3D surface reconstruction without using a deformation model. One approach is to

use lighting information in addition to texture clues to constrain the reconstruction process

[44, 45], which has only been demonstrated under very restrictive assumptions on light-

ing conditions and is therefore not generally applicable. The algorithms for reconstructing

deformable surfaces can be classified by the type of the surface model (or representation)

used: Point-wise methods only reconstruct the 3D position of a relatively small number of

feature points, resulting in a sparse reconstruction of the 3D surface [39]. Physics-based

models such as superquadrics [43], triangular meshes [40] or Thin-Plate Splines (TPS) [39]
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Figure 1.2: Upper-bound model.

have been also utilized in other algorithms. In TPS, the 3D surface is represented as a para-

metric 2D-3D map between the template image space and the 3D space. Then, a parametric

model is fit to a sparse set of reconstructed 3D points in order to obtain a smooth surface

which is not actually used in the 3D reconstruction process.

Having an isometric surface means that the length of the geodesics between pairs of

points remains unchanged when the surface deforms and the deformed surface can be ob-

tained by applying an isometric transformation (map) to a template surface. In many cases,

computation of the geodesics is not trivial and involves the application of differential geom-

etry. Instead, the Euclidean distance, which is much easier to estimate, has been regarded as

a good approximation to the geodesic distance, on condition that it does not drop too much

below the geodesics. Euclidean approximation is better when there are a large number of

points. Although it can work well in some cases, it gives poor results when creases appear

in the 3D surface. In this case, the Euclidean distance between two points on the surface

can shrink. For this reason, the ‘upper bound approach’ has been proposed which relies on

the fact that the Euclidean distance between 2 random points on a plane is necessarily less

than (or equal to) the corresponding geodesics, which is known as inextensibility constraint.

As a result, early approaches relax the non-convex isometric constraints to inextensibility

with the so-called maximum depth heuristic [39, 37, 46]. The idea is to maximize point

depths so that the Euclidean distance between every pair of points is upper bounded by

its geodesic distance, computed in the template [33, 40]. This constraint is called upper-
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bound model - see Figure 2.2. In these papers, a convex cost function combining the depth

of the reconstructed points and the negative of the reprojection error is maximized while

enforcing the inequality constraints arising from the surface inextensibility. The resulting

formulation can be easily turned into a SOCP problem. This problem is convex and gives

accurate reconstructions. A similar approach is explored in [38]. The approach of [39]

is a point-wise method. The approaches of [33, 40, 38] use a triangular mesh as surface

model, and the inextensibility constraints are applied to the vertices of the mesh. Recently,

analytical solutions for isometric and conformal deformations have been provided by pos-

ing them as a system of Partial Differential Equations [47, 48, 49]. The approach was

developed under weak-perspective projection and requires complex differential models. A

SLAM method for elastic surfaces was developed, using fixed boundary conditions [50].

In [51], the authors formulate the reconstruction problem of a generic surface in terms of

the minimization of stretching energy and impose a set of fixed boundary 3D points to con-

strain the solution. This approach deals with a general group of elastic surfaces without

applying any constraints explicitly associated with conformal deformation.

1.6 Publications

Most of the thesis is based on the following publications and achievements:

1.6.1 Peer-reviewed journal articles

• S. Jafar Hosseini, Helder Araújo: From D-RGB Based Reconstruction Toward a

Mesh Deformation Model for Monocular Reconstruction of Isometric Surfaces, EURASIP

Journal on Image and Video processing, 2016(1), 1-11, (doi:10.1186/s13640-0160114-

9).

• S. Jafar Hosseini, Helder Araújo: SDP-Based Approach to Monocular Reconstruc-
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• S. Jafar Hosseini, Helder Araújo: Patch-Based Reconstruction of Surfaces Undergo-

ing Different Types of Deformations, Journal of Signal, Image and Video Processing,

March 2017, 1–8, (doi:10.1007/s11760-017-1079-6).

1.6.2 Peer-reviewed international conference papers
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Figure 2.1: Inextensible Deformation.

3D reconstruction is a classic computer vision topic which has been explored carefully

over the years. Traditionally, this topic coupled with camera calibration forms the core of

numerous practical applications ranging from security surveillance to medical inspections.

Therefore, 3D reconstruction systems are treated as visual perception tools that replace

human eyes specially when speed and accuracy are crucial factors in some application.

3D reconstruction deals with the recovery of structures which could be either still or in

motion. Rotational or translational motion does not alter the shape of an object, whereas

other types of motion involve a change in relative positions of parts of the object surface.

In the latter case, such a change is called deformation.

Deformations vary according to how points on the object move in relation to one an-

other. They fall into two general groups: when a deforming structure undergoes no exten-

sions or contractions, the deformation is referred to as inextensible or isometric (see Figure

2.1) but in case of extensions or contractions, it is called extensible (see Figure 2.2). We

address both types of deformations in this dissertation.

The entire work carried out till the completion of the expected experiments is split
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Figure 2.2: Extensible Deformation.

into three major tasks depending on the basic elements that determine the input to the

reconstruction problem. Examples of these elements are the camera type, deformation type,

deformation model and the model considered to represent the surface. In other words, here

the reconstruction problem can take several inputs but comes with a particular unknown

output (that is 3D structure) and we attempt to solve for the same unknown in different

ways. The main goal of this work is to make significant contributions to the context of

deformable surface reconstruction. For this purpose, we closely investigate the problem and

propose innovative ideas and solutions. More precisely stated, we tackle the reconstruction

problem aiming to obtain and report findings and conclusions that positively affect the

relevant field. In the following, we give a brief description of the three tasks. The details

of these tasks will be later discussed and presented in a separate chapter for each task.
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2.1 D-RGB Based Reconstruction: Mesh Representation

The advent of active range cameras has introduced a new research direction in 3D per-

ception, resulting in highly efficient reconstruction systems. Although the accuracy of 3D

measurements produced by early range cameras was not promising, however the evolving

technology of such cameras has been in rapid progress in the last decade and today the

emergence of such cameras as Kinect has fundamentally influenced applications that make

use of 3D data.

Time-of-Flight (ToF) cameras are a common sort of range cameras which deliver a

depth map of the scene in real time - see Figure 2.3. Most ToF cameras perform with

relatively acceptable accuracy. However errors might occur due to the conditions under

which these cameras operate. We also find it interesting to test a ToF camera and try to

use it for deformable surface reconstruction. For this purpose, we define a reconstruction

problem and develop an appropriate algorithm to solve it using the ToF camera.

2.1.1 Motivation and Problem Statement

Linear deformation model is commonly applied when estimating isometric deformations

as a 3D mesh. In order to learn this model, it is necessary that prior data of a sufficient

variety of possible isometric deformations of the mesh be available in advance. Because of

its material, flexibility and other physical properties, every object that undergoes isometric

deformation might show a limited class of deformations, meaning that it is possible that

two isometric surfaces of different material do not share alike deformations. Therefore, the

linear deformation model is object-specific and should be learned for each different object

independently of others. The objective of this task is to complete the linear deformation

model given the following elements:
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Figure 2.3: ToF sensor principle.

• Surface representation: a triangular mesh is assumed to cover the surface. This mesh

consists of edges and vertices.

• Primary output: the coefficients of the linear deformation model.

• Secondary output (i.e. 3D structure): the 3D positions of the vertices at a single

frame.

• Available data: a flat 3D template of the mesh and 2D images of a set of feature

points distributed over the mesh and tracked on a single RGB image.

• Deformation type: isometric.

• Camera setup: a ToF camera is applied along with a conventional camera.

2.1.2 Solution Summary

After applying registration between the two cameras, the depth of the feature points is

computed. Next step is to estimate the depth of the vertices. For this, a linear programming

(LP) problem is defined based on the available depth of the feature points. The x and y



18 CHAPTER 2. MOTIVATIONS, BASIC IDEAS AND CONCEPTS

coordinates of the vertices are still unknown and remain to be determined. Hence, a second

order cone programming problem (SOCP) is designed to obtain the 3D positions of the

vertices. This optimization is based on an adaptation of the upper-bound model which

actually serves as a constraint imposed by the type of deformation under consideration. At

this point, the 3D structure of the mesh (our secondary output) becomes available. This

algorithm is used with several different deformations in order to acquire the data required

to learn the deformation model. In the end, Principal Component Analysis is applied to this

data to complete the deformation model by calculating its coefficients.

Beside, we will examine the complete deformation model by employing one of the

traditional methods for the reconstruction of isometric surfaces.

2.2 Monocular Reconstruction: Combination of Deformation Constraints

In order to formulate a reconstruction problem for a deformable surface, the type of de-

formation considered for reconstruction should be expressed using standard mathematics.

As a result, each deformation type is characterized by a specific mathematical constraint.

Therefore, extensible and inextensible deformations differ according to their deformation

constraint. The deformation constraints that have already been defined for inextensible

surfaces include those based on the upper-bound model and those derived from the differ-

ential properties of such surfaces. Other than inextensible surfaces, in this task we also deal

with a particular class of extensible deformations, that is conformal deformation. The two

sets of constraints mentioned above shall be slightly different for conformal surfaces. For

example, an extended form of the upper-bound model may apply to these surfaces.

In addition to linear deformation model, interpolation is a means of modeling deforma-

tions based on an initial fixed set of feature points. Generally speaking, warping functions

such as Free Form Deformations (FFD) enables mapping from image space to 3D space
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i.e. image points to 3D points on the surface, thereby leading to smooth reconstructions.

Such mapping approximately covers every natural deformation and facilitates the use of

constraints associated with differential properties.

2.2.1 Motivation and Problem Statement

To the best of my knowledge, no previous work has addressed the joint application of an

upper-bound model-based constraint and a differential-based constraint. It is quite obvious

that the simultaneous use of both constraints will lead to improved results compared with

the use of either of them alone. The goal of this task is to reformulate these constraints in

a unique way so that they can be integrated into a single reconstruction problem which is

made up of the following elements:

• Surface representation: Instead of using the mesh representation, here the surface is

represented as a distribution of a number of feature points across the surface. As a

matter of fact, the smooth 3D shape of the surface is identified by these feature points

accompanied by an extremely large number of points interpolated by the use of FFD.

• Output (i.e. 3D structure): the 3D positions of the feature points.

• Available data: a flat 3D template of the surface with the positions of the feature

points available. Also their image points tracked on a single image are given.

• Deformation type: isometric, conformal.

• Deformation model: a FFD warp is employed to model the deformations.

• Camera setup: a perspective camera.



20 CHAPTER 2. MOTIVATIONS, BASIC IDEAS AND CONCEPTS

Figure 2.4: Surface transformation.

2.2.2 Solution Summary

In case of inextensible surfaces, we formulate the reconstruction problem as a semi-definite

programming (SDP) problem where a combination of the upper-bound model and a differential-

based constraint is used as deformation constraints.

In case of conformal surfaces, a sequential second-order cone programming is defined

in order to estimate the 3D positions of the feature points. A modified upper-bound model

together with some sort of differential-based constraints constitutes deformation constraints

in this case.

In both cases, the 3D template is used for setting the parameters of the deformation

constraints.

2.3 Monocular Reconstruction: Surface Transformations

As illustrated in Figure 2.4, the surface shape undergoes a smooth change as the surface

deforms. The change of shape between two instants can provide an insight into how to
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model the deformation regardless of its type. One possibility is to attempt to express this

physical change as a mathematical transformation that relates the initial and the deformed

shape.

Note that this transformation acts on a set of points spread on the surface and allows

the computation of their positions on the deformed shape, given their initial positions.

Thus, the surface representation in this case is point-wise. Also depending on the type

of deformation, such a transformation may take various forms.

2.3.1 Motivation and Problem Statement

In the context of deformable surface reconstruction, the use of a surface transformation to

model deformations has not received great attention knowing that it is potentially helpful.

In this work, that strategy has been of particular interest so that efficient reconstruction

methodologies might be devised. Therefore, the main goal of this task is to propose an

algorithm based on a generalized transformation that is applicable to a wide range of de-

formations, including inextensible and extensible ones. This algorithm should perform

effectively for any natural deformation type. In this case, the reconstruction problem is as

follows:

• Surface representation: The surface is represented as a distribution of a number of

feature points across the surface. In fact, we use a point-wise representation.

• Primary output (i.e. 3D structure): the 3D positions of the feature points.

• Secondary output: the parameters of the transformation.

• Available data: a 3D initial shape of the surface with the positions of the feature

points available. Also their image points tracked on a single image are given.

• Deformation type: isometric, extensible.
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• Deformation model: a surface transformation between the initial and the deformed

shapes.

• Camera setup: a perspective camera.

2.3.2 Solution Summary

The observation that any natural deformable surface shows piece-wise homogeneous de-

formation has been ignored in the respective area. This observation implies that the total

deformation of a natural surface is composed of local homogeneous deformations. There-

fore, the probability that a surface part undergoes such deformation is in inverse relation-

ship with its size, meaning that smaller surface parts are more likely to show homogeneous

deformation. For this reason, the surface is divided into several patches that do not overlap

but together cover the entire area of the surface.

Homogeneous deformation is simply characterized by a linear surface transformation

between the initial shape and the deformed shape of the surface. To determine the param-

eters of this transformation, we define an optimization scheme which is applied to each

patch separately. Once known, the transformation can be used to estimate the 3D positions

of the points on the deformed patch.

Since the transformation depends on the initial shape to be given before, we also pro-

pose a rigid reconstruction technique based on Homography in order to obtain the 3D po-

sitions of the points on the initial shape.

The algorithm described above can be used for both extensible and inextensible defor-

mations. However, we also propose a separate algorithm for extensible surfaces by address-

ing a specific type of extensible deformation called homothetic. This refers to uniformly

extensible deformation. Considering that any extensible deformation comprises local ho-

mothetic deformations, again we propose a patch-based reconstruction method by means of
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a surface transformation between the initial and the deformed shape. Note that this second

algorithm is only intended to reconstruct extensible surfaces. Since homothetic deforma-

tion is a particular subset of homogeneous deformation, the homothetic transformation is a

subspace of the homogeneous transformation.
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3.1 Introduction

In this chapter, I deal with the first task in detail and study 3D reconstruction of surfaces

deforming isometrically. Given that an isometric surface is represented by means of a tri-

angular mesh and that feature/point correspondences on an image are available, the goal

is to estimate the 3D positions of the mesh vertices. To perform such monocular recon-

struction, a common practice is to adopt linear deformation model. I also integrate this

model into a least-squares optimization. However, this model is obtained through a learn-

ing process requiring an adequate data set of possible mesh deformations. Providing this

prior data is the primary goal of this work and therefore a novel reconstruction technique

is proposed for a mesh overlaid across a typical isometric surface. This technique consists

in the use of a range camera accompanied by a conventional camera and implements the

path from the depth of the feature points to the 3D positions of the vertices through con-

vex programming. The idea is to use the high-resolution images from the RGB camera in

combination with the low-resolution depth map to enhance mesh deformation estimation.

With this approach, multiple deformations of the mesh are recovered with the possibility

that the resulting deformation model is simply extended to any other isometric surfaces for

monocular reconstruction. Experimental results show that the proposed approach is robust

to noise and generates accurate reconstructions.

3.1.1 Problem Formulation

We aim at the reconstruction of surfaces that undergo isometric deformations. Assuming

that a triangular mesh is used to represent an isometric surface and that a set of feature/point

correspondences on an image of the surface have been provided, the objective is to deter-

mine the 3D positions of the mesh vertices. To carry out this monocular reconstruction,

we formulate a nonlinear least squares optimization that integrates the linear deformation
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model, deformation-based constraints which we call isometric constraints and the projec-

tion equations in order to solve for 3D positions of the mesh vertices.

Main Contribution: Several reconstruction methods have previously relied on the lin-

ear deformation model as a crucial element that can reduce the ambiguity of infinite solu-

tions. This model is specially useful when using the mesh representation. It is typically

obtained from prior training data that corresponds to various possible deformations of the

mesh. As a result, it is required to reconstruct these mesh deformations beforehand, which

is challenging without some sort of supporting 3D information. Furthermore, the precision

of the training data is important and must be ensured. For this purpose I propose an innova-

tive technique to acquiring such data with high accuracy. This technique aims to estimate a

regular 3D mesh overlaid across a generic isometric surface and is used to recover several

different deformations of the mesh in a way that makes it possible to extend the computed

deformation model to other isometric surfaces for monocular reconstruction. In developing

this approach, I use a conventional RGB camera aided by a range camera. My emphasis

is, in fact, on the use of a Time-of-Flight (ToF) camera in conjunction with the RGB cam-

era. Most RGB cameras provide high-resolution images. With these cameras, one can

use efficient algorithms to calculate the depth of the scene, recover object shape or reveal

structure, but at a high computational cost. ToF cameras deliver a depth map of the scene

in real-time but with insufficient resolution for some applications. So, a combination of a

conventional camera and a ToF camera can exploit the capabilities of both. We assume that

the fields of view of both cameras mostly overlap. From the depth map, the depth of the

feature points can be extracted by adopting a registration technique for the camera combi-

nation. This allows the depth of the mesh vertices to be subsequently computed using either

a linear system of equations or a linear programming problem. Given the mesh depth data,

the complete 3D positions of the vertices can be recovered through a second-order cone

programming (SOCP) problem. Applying the approach just described to a variety of mesh

deformations leads to the required data, thereby computing the deformation model.
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Organization of this chapter: This chapter is organized as follows: the first section

discusses the background of my work, including the mesh representation and the linear de-

formation model. Next, the monocular reconstruction is explained. The following section

is assigned to a detailed description of my D-RGB based reconstruction. Then, experimen-

tal results and quantitative evaluations are presented, demonstrating the efficiency of my

reconstruction schemes. Finally, I discuss conclusions.

3.2 Background

3.2.1 Mesh Representation

Assume that a set of 3D feature points pre f =

{
pre f

1 , · · · , pre f
N

}
on a template with

a known shape (usually a flat surface), and a set of 2D image points q =

{
q1, · · · , qN}

tracked on the RGB input image of the same surface, but with a different and unknown

deformation are given. As already stated, we represent the surface as a triangular 3D mesh

with nv vertices vi (and ntr triangles) concatenated in a vector s =
[

vT
1 , · · · , vT

nv

]T
,

and denote by sre f the template mesh, and s the mesh we seek to estimate - see Figure 3.1.

Let pi be a feature point on the mesh s corresponding to the point pre f
i in the template. We

can express pi in terms of the barycentric coordinates of the triangle it belongs to:

pi =
3
∑
j=1

ai jv
[i]
j (3.1)

where the ai j are the barycentric coordinates and v[i]j are the vertices of the triangle con-

taining the point pi. Mesh representation has the advantage of simplifying reconstruc-

tions in view of the fact that the isometric type of deformation imposes the constraint

that the length of the edges of a mesh with a dense distribution of vertices stay nearly

the same, as the surface deforms. As a result, we may treat the mesh triangles as rigid,
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Figure 3.1: A regular triangular mesh and barycentric coordinates.

allowing us to consider that the barycentric coordinates remain constant for each point.

These coordinates are easily computed from points pre f
i and the mesh sre f . Let us denote

by A =

{
a1, · · · , aN

}
the set of barycentric coordinates associated with the feature

points, where ai =

[
ai1, ai2, ai3

]
.

3.2.2 Linear Deformation Model

The space of possible deformed shapes of the surface is constrained by applying a defor-

mation model. This model adequately fills in the missing information while being flexible

enough to allow reconstruction of complex deformations [32]. A mesh deformation is thus

modelled as a linear combination of a mean shape s0 and nm basis shapes (deformation

modes) S = [s1, ...,snm ]:

s = s0 +
nm
∑

k=1
wksk = s0 +Sw (3.2)

These modes can be obtained by applying Principal Component Analysis (PCA) to a

plenary set of training deformations. In my work, this training data is acquired using a

high-resolution image combined with the knowledge of the depth of a set of feature points.
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3.3 Monocular Reconstruction from a Single View

Given that the linear deformation model has been computed, the objective is to proceed with

an efficient algorithm which is intended to demonstrate the use of the linear deformation

model in monocular reconstruction of mesh deformations. For this purpose, I introduce

an algorithm that falls within a particular class of methods which follow the same basic

principle, namely, mesh representation along with linear deformation model [32, 33, 37,

40]. My algorithm is slightly different, which is composed of two non-linear constraints. It

is capable of performing such reconstruction that the shape of any isometrically deformed

surface is estimated by using only a conventional camera.

Isometric Constraint: This constraint is the difference between the observed and the

predicted length of an edge. We formulate a non-linear constraint as:

eiso =
ne
∑
i=1

(
Li−

∥∥∥∥s[i]1 − s[i]2

∥∥∥∥)2
(3.3)

where Li is the length of the edge i, computed on the template. s[i]1 and s[i]2 denote the two

entries of the mesh that account for the ending vertices of the edge i.

Reprojection Error: In addition, there are also reprojection errors, that is, errors on

the image position of the feature points. We should thus account for the reprojection error

by adding a term to the function to be optimized. By combining Equations 3.1 and 3.2, we

will have:

pi =
3
∑
j=1

ai js
[i]
j =

3
∑
j=1

(
s[i]0 j +S[i]j

)
(3.4)

where s[i]0 j and S[i]j are the subvector of s0 and the submatrix of S (respectively), corre-
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sponding to the vertex j of the triangle in which the feature point i resides. The term

corresponding to the reprojection error can be obtained as indicated below.

ere =
N
∑
i=1

∥∥∥∥∥∥∥˘i

 qi

1

−[K◦rgb.pi
]∥∥∥∥∥∥∥

2

(3.5)

where N is the number of feature points. The λi add extra unknowns to the optimization

problem. Therefore, it is advantageous to reformulate the above equations so that the λi

can be eliminated. Consider the equation below:

λi

 qi

1

= K◦rgb

 3
∑
j=1

ai js
[i]
j

 (3.6)

After some simple algebraic manipulation, we obtain:

[
ai1Ai ai2Ai ai3Ai

]
2×9


s[i]1

s[i]2

s[i]3


9×1

=

 e1,i

e2,i


2×1

= 0 where Ai = K◦(1:2)
rgb −qiK

◦(3)
rgb (3.7)

This equation provides 2 linear constraints as: e1,i = 0 and e2,i = 0. Thus, the modified

ere takes a form where the λi does not exist, as follows:

emre =
N
∑
i=1

((
e1,i
)2 + (e2,i

)2) (3.8)

where emre denotes the modified ere.
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Objective Function: We have now derived two constraints, described as two separate

non-linear expressions. However, I intend to integrate both constraints into a single ob-

jective function so that they are taken into account at one time, while estimating all the

parameters. To do so, we minimize the weighted summation of them in such a way that the

reprojection error term is assigned a weight m that accounts for its relative influence within

the combined objective function.

minw etot = (eiso +m.emre) (3.9)

The above optimization scheme is a non-linear least-squares minimization problem,

typically solved using an iterative algorithm such as Levenberg-Marquardt.

3.4 Reconstruction Using a D-RGB Camera Setup

In order to build an adequate data set of mesh deformations for learning the deformation

model, I propose a reconstruction approach for a typical surface based on a D-RGB camera

setup. The completed deformation model can be then extended for monocular reconstruc-

tion of any other surfaces that undergo isometric deformations. Using the result of the

registration described below, we can obtain an estimate for the depth of the feature points.

The idea behind my D-RGB based reconstruction is to determine the 3D positions of the

mesh vertices, given this depth data. This is done in 2 steps: first the depth of the vertices

is estimated and then their xy-coordinates.

Registration Between Depth and RGB Images: The resolutions of the depth and

RGB images are different. A major issue that directly arises from the difference in resolu-

tion is that a pixel-to-pixel correspondence between the two images can not be established

even if the FOVs fully overlap. Therefore the two images have to be registered so that a

mapping between the pixels in the depth image and in the RGB image can be established.
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The depth images provided by the ToF camera are sparse and affected by errors. Several

methods can be used to improve their resolution [52, 53, 54, 55], allowing the estimation of

dense depth images. However, to estimate depth for all the pixels of the RGB image, based

on the depth map given by the ToF camera, simple linear procedures are used as follows:

Figure 3.2: ToF/RGB camera setup.

I use a pinhole camera model for both cameras and assume that they are calibrated

internally and that also the relative pose between both cameras, specified by the rotation

matrix R
′

and translation vector t
′

has been estimated. Let pto f and prgb represent the 3D

positions of a point in the coordinate system of the Tof and the RGB cameras, respectively.

pto f is obtained directly from the calibrated ToF camera. Thus prgb can be easily calcu-

lated by: prgb = R
′
pto f + t

′
- see Figure 3.2. For each feature point on the RGB image,

we select the 4 closest neighbours whose depth was obtained from the depth image. Then,

a bilinear interpolation is performed. Another possibility could be to select the 3 closest

neighboring pixels (therefore, defining a triangle) and assume that the corresponding 3D

points define a plane. An estimate for the depth of the feature point could be then obtained

by intersecting its projecting ray with the 3D plane defined by the three 3D points. As a

result, the depth of the N feature points is computed accurately and we indicate by pz,k the

depth of the feature point k.
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3.4.1 Step 1: Recovery of the depth of the vertices

Given pz,k for all ks, the goal is to estimate the depth of the vertices. Let zi and rz j denote

the depth of the vertex i and the relative depth of the edge j, respectively. The vertices are

numbered and sorted according to a particular ordering. The same goes for the set of all

relative depths. In addition, a relative depth needs to conform to either of the two directions

along its edge, i.e. rz25 = z16−z7 or vice-versa. So, a pre-defined set of selected directions

is applied to all edges. As a matter of fact, the rigidity of a closed triangle enforces the fact

that the sum of the depth differences between every 2 vertices concatenated around the

triangle, be zero. This can be expressed with relative depths and gives us ntr equations

which, in conjunction with the equations associating the relative depths with the depth of

vertices, add up to ntr+ne (the number of triangles + the number of edges) linear equations.

We augment this linear system with the depth of the feature points. From Equation 3.1, we

can derive pz,i = ai1z[i]1 + ai2z[i]2 + ai3z[i]3 . Having this equation for every feature point

results in N linear independent equations. Putting together all the equations available, we

end up with ntot = ntr + ne +N linear equations where the only unknowns are the depth

of vertices and of the edges (i.e. nv + ne unknowns), which means that the resulting linear

system is overdetermined. We denote this linear system as Mx =

 0

pz

. I now propose

two algorithms for determining the depth of the mesh vertices below.

Algorithm 1: Solving A Linear System of Equations: The linear system above has

ne +N independent equations out of ntot and this is not yet enough to find the right single

solution because there are still an infinitude of solutions that satisfy this linear system. One

possible alternative to handle this is to fit an initial mesh using polynomial interpolation,

to the data. This fitting consists in xy-coordinates of the feature points on the template as

input and their z-coordinates on the input deformation as output. Once the parameters of

the interpolant have been found, we can obtain initial estimates for depth of the vertices,
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with their xy-coordinates on the template as input. Let z
′
i be the interpolated depth of the

vertex i. By adding this result as an extra equation to the linear system described earlier,

we obtain the modified linear system Mmodx = b, which has most likely full column-

rank. So, the number of independent equations out of ntot + nv will be ne + nv. Since

the number of independent equations is equal to that of unknowns, there must be a unique

solution which can be computed via the normal equations. In general, the use of least-

squares minimization leads to better results.

Algorithm 2: A Linear Programming Problem: An LP can be also defined to esti-

mate the depth of the vertices. The linear system Mx =

 0

pz

 is used as a set of con-

straints in this LP. However, it is essentially useful to have additional estimates for the depth

of the mesh vertices in order to ensure accurate results. For this purpose, we use again the

output of the polynomial interpolation. From this, additional constraints on the depth of

the vertices can be defined as z
′
i−σ ≤ zi ≤ z

′
i +σ . σ is set to a small value (e.g. 0.5 cm)

depending on the object’s deformations. Apart from these constraints, we need to define

an objective function that is best suited to our particular problem. This objective function

is defined as: summation over all relative depths, which is equal to a linear expression g in

terms of the depth of the vertices (with coefficients -1, 0 or +1), depending on the direction

of the edges. For example, using my conventional directions for a 9× 9 mesh, we would

have ∑
ne
j=1 rz j = g = z73− z9. As a result, the error ez to be minimized will be:

ez =
ne
∑
j=1

rz j−g (3.10)

However, this error must be close to zero but strictly positive. Therefore, we need to

specify ez ≥ 0. Finally the depth of all vertices can be estimated via the linear program

expressed as:
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minz ez such that

ez =
ne
∑
j=1

rz j−g, ez ≥ 0, z
′
i−σ ≤ zi ≤ z

′
i +σ

Mx =

 0

pz

 , zi ≥ 0, ∀i ∈
{

1, · · · , nv

}
(3.11)

where M is a (ntr + ne +N)× (ne + nv) matrix containing the coefficients of the linear

system, x represents the vector comprising zi and rz j for all is and js and pz indicates

the set of all pz,is. This LP problem provides accurate estimates, as will be shown in the

experimental results.

3.4.2 Step 2: Estimation of the xy-Coordinates of the Vertices

Assuming that K◦rgb is the calibration matrix of the RGB camera, an optimization proce-

dure is formulated to estimate the variables q◦v,i (q◦v,i = ziqv,i =

[
u◦i v◦i

]T
) of vertex i.

I call these variables un-normalized image coordinates. Such estimation is based on what

I call un-normalized projected lengths and is performed by means of second-order cone

programming (SOCP), consequently determining the full 3D positions of the vertices. This

SOCP includes a linear objective function and a set of linear and conic constraints.

Unnormalized Projected Length: Let us represent v1 and v2 as v1 =
[

x1 y1 z1

]T

and v2 =
[

x2 y2 z2

]T
, respectively . We can derive the difference between the corre-

sponding unnormalized image points (q◦v,1 =
[

z1u1 z1v1

]T
and q◦v,2 =

[
z2u2 z2v2

]T
) as

follows: z1u1− z2u2 = f (x1− x2), z1v1− z2v2 = f (y1− y2) . By squaring and subsequently com-



3.4. RECONSTRUCTION USING A D-RGB CAMERA SETUP 37

puting the sum of these two equations, we obtain this:

(z1u1− z2u2)
2 +(z1v1− z2v2)

2 = f 2
[
(x1− x2)

2 +(y1− y2)
2
]

(3.12)

Note that the 3D length of an edge can be expressed as:

L2 = (x1− x2)
2 +(y1− y2)

2 +(z1− z2)
2 (3.13)

For isometric deformations, the geodesics between any two points on the surface is

constrained to a constant value. The Euclidean distance between these two points can be

assumed to equal the corresponding geodesics when the edge connecting them is generally

short-length and the deformations do not cause sharp creases along this edge. Therefore,

let us assume that L does not change and can be pre-computed from the template. Note that

z1 and z2 have been already determined. With these results Equation 3.13 can be rewritten

as: L2− (z1− z2)2 = (x1− x2)2 +(y1− y2)2 . Thus, the right-hand side of Equation 3.12 can be

easily calculated with the equation above. We define as the unnormalized projected length

the square root of the left-hand side of Equation 3.12

l =
√
(z1u1− z2u2)

2 +(z1v1− z2v2)
2 (3.14)

SOCP Optimization: Equation 3.14 introduces a quadratic constraint. Such a con-

straint may not be satisfied if folds between mesh vertices occur. To deal with this issue,

we replace the above constraint by a variation that allows the vertices to move closer. So,

it can be relaxed into a conic constraint as:
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√
(u◦i,1−u◦i,2)

2 +(v◦i,1− v◦i,2)
2 ≤ l (3.15)

where i ∈
{

1, · · · , ne

}
. The above conic constraint is applied to each edge of the

mesh. According to Equation 3.1, the unnormalized image coordinates of feature point k

(i.e. q◦k = pz,kqk =

[
u◦f ,k v◦f ,k

]T
) can be represented as

u◦f ,k = ak1u◦1 + ak2u◦2 + ak3u◦3,

v◦f ,k = ak1v◦1 + ak2v◦2 + ak3v◦3, (3.16)

where k ∈
{

1, · · · , N

}
. The linear equations above hold for all the feature points. In

these equations the left-hand side represents the observed un-normalized image coordinates

of the feature points, while the right-hand side represents the estimated coordinates. The

cost function being minimized is the geometric distance between these two terms. How-

ever, in formulating our optimization as a SOCP, this error is not used as the objective

function but as a conic constraint:

 N
∑

k=1

∥∥∥∥∥∥∥∥
 u◦f ,k

v◦f ,k

− 3
∑
j=1

ak j

 u◦j

v◦j


[k]
∥∥∥∥∥∥∥∥

2
1
2

≤ σuv (3.17)

Finally, the appropriate SOCP is formulated like this: minq◦v œuv such that Equations

3.15 and 3.17 are satisfied. When applied to a number of different mesh deformations of a

generic isometric surface, the approach detailed in this section results in the training data

set required to reconstruct other isometric surfaces by the use of only a normal camera and



3.5. EXPERIMENTS AND RESULTS 39

from a single view, as discussed in the previous section.

3.5 Experiments and Results

3.5.1 Synthetic Data

With synthetic data that exactly simulates and conforms to various deformations of a 9×9

mesh, I have evaluated both reconstruction schemes proposed, in order to validate their

efficiency. The evaluation comprised a number of experiments, conducted with a set of

feature points (N = 60) well distributed over the mesh triangles. From the planar template

mesh, the barycentric coordinates can be computed - see Figure 3.3. The virtual RGB

camera model is defined such that the focal length is f = 268 pixels. With this model,

point correspondences across the simulated deformations were projected onto the virtual

RGB image plane, assuming that the simulated mesh is placed 50 cm in front of the camera

(along the optical axis). To perform the quantitative evaluation it is necessary to define

some numerical metrics as follows:

Figure 3.3: Top - Some simulated deformations. Bottom - Left: A 9× 9 template mesh
with feature points - radius = 20 cm. Right: Metric coordinates in cm - overlap between
the ground-truth shape (blue) and the estimated shape (red).
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• To evaluate the results from mesh depth recovery, obtained by linear programming

the following criterion is adopted:

DepthAccuracy = 1
nv ∑

nv
i=1

[∥∥zv,i− ˆzv,i
∥∥2 /

∥∥ ˆzv,i
∥∥2
]

Mesh depth estimates are strongly affected by errors mainly due to the errors on the

depth estimates of the feature points - see Figure 3.4.

• Point reconstruction error (PRE): the normalized Euclidean distance between the

observed (p̂i) and estimated (pi) feature points:

PRE = 1
N ∑

N
i=1

[
‖pi− p̂i‖2 /‖p̂i‖2

]
• Mesh reconstruction error (MRE): The normalized Euclidean distance between the

observed (v̂i) and estimated (vi) 3D vertices of the mesh, computed as:

MRE = 1
nv ∑

nv
i=1

[
‖vi− v̂i‖2 /‖v̂i‖2

]
• The re-projection error of the feature points is also another measure of precision:

ReprErr = 1
N ∑

N
i=1

[
‖qi− q̂i‖2 /‖q̂i‖2

]

• The standard deviation of the errors on the estimates of 3D positions of the mesh

vertices: the standard deviation of the global error in each coordinate of the mesh

vertices estimated with the monocular optimization algorithm (calculated separately

for each coordinate).

Note that all quantitative results represent an average obtained from five deformations

randomly selected. By performing 500 trials for each deformation, each average value was

acquired from 2500 trials.

Experiments on D-RGB Based Reconstruction: I obtained results in a set of experi-

ments where Gaussian random noise with five different standard deviation values added to

the depth of the synthetic feature points. Noise levels with standard deviations greater than

0.3 cm prevent the LP from giving good results, as shown in Figure 3.4. Since image points
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Figure 3.4: D-RGB based reconstruction-based - Left: The error on the depth estimates of
the mesh vertices, computed via LP. Right: The std of the global error on the estimates of
the positions of the mesh vertices.

are also used in the 3D reconstruction, the effect of the noise in the image points was evalu-

ated. To do so, Gaussian noise was also added to the image points (with standard deviation

in increments of 0.5 pixels). Figure 3.6 shows how the reconstruction accuracy behaves as

a function of noise level. In the left-hand plot, a zero-mean Gaussian noise with 0.1− cm

std in the depth estimates of the feature points was also considered in all the relevant tests.

In the right-hand plot, on the other hand, a zero-mean Gaussian noise with 1-pixel standard

deviation in image points was also considered in all the relevant tests. Two of the recovered

deformations and their equivalent ground-truth are illustrated in Figure 3.3.

Experiments on Monocular Reconstruction: To perform such experiments a defor-

mation model has to be estimated. This model was directly obtained by applying PCA to

a comprehensive set of synthetic mesh deformations. In these experiments Gaussian noise

was also added to the image points (with standard deviation in increments of 0.5 pixels).

Figure 3.7 shows how the reconstruction accuracy behaves towards noise.

Comparative Evaluation: In the literature there are several approaches for 3D re-

construction of deformable surfaces. To compare against the approaches described in this

chapter I chose the approach presented in [32]. The main reason for selecting this work is
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because the authors have used both the linear deformation model and the mesh representa-

tion and this enables us to make reliable comparisons. They also propose a SOCP problem

for the reconstruction and their approach is known to be robust and efficient, in which a

linear local deformation model is used to combine local patches into a global surface. I ob-

tain results from this approach and the proposed reconstruction schemes in the absence of

noise. The linear deformation model for the approach being compared and my monocular

reconstruction was computed from the results of the D-RGB based reconstruction of the

synthetic mesh deformations. Two different cases have been examined: 1- simple defor-

mations with small, moderate creases 2- complex deformations with large, sharp creases.

Accordingly, the comparative results are divided in two cases, as shown in Figure 3.5. The

charts reveal that the monocular reconstruction outperforms the other two approaches in the

case of simple deformations but its performance declines significantly in the case of com-

plex deformations, while the D-RGB based reconstruction maintains satisfactorily stable

performance under different situations (i.e. the results do not vary dramatically).

Figure 3.5: Left-hand chart: the case of simple deformations; Right-hand chart: the case of
complex deformations. Approaches 1, 2 and 3 refer to my monocular reconstruction, the
approach presented in [32] and the D-RGB based reconstruction, respectively.

3.5.2 Real Data

For qualitative assessment, the reconstruction schemes have been tested with real data. A

camera setup made up of a high-quality ToF camera and a high-resolution RGB camera
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Figure 3.6: D-RGB based reconstruction - Left: Average PRE and average MRE with
respect to the increasing noise in image points. Right: Average PRE and average MRE
with respect to the increasing noise in depth data.

Figure 3.7: Monocular reconstruction - Metrics as a function of the noise in image points.
Left: Average PRE and average MRE. Right: Average reprojection error.

was prepared for D-RGB based reconstruction. The two cameras were calibrated both in-

ternally and externally. In the experiments I used a piece of cardboard flexible enough to

allow creating as many different deformations as possible so that the deformation model

learned from the reconstruction results could be generalized to other surfaces of different

material. The camera setup was located 60 cm in front of the surface being reconstructed,

guaranteeing that the FOV of the ToF camera was completely covered by the RGB camera.

A regular 9× 9 mesh was again used to represent the surface, with the positions of the

feature points available in relation to the positions of the vertices on the planar template.
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Such positioning data enabled the calculation of the barycentric coordinates for the feature

points. Correspondence of these points across the image sequence was established with

respect to the template. The depth of the points, given by the ToF image, was registered

with respect to the RGB image. The rest of the implementation was just the same as in

the experiments with synthetic data. After having applied the D-RGB based reconstruc-

tion to multiple deformations of the cardboard, the training data necessary to estimate the

deformation model was acquired, as shown in Figure 3.8. In the case of monocular recon-

struction, this deformation model was then employed to reconstruct the same mesh overlaid

across such isometric surfaces as those given in Figure 3.9, by using only the RGB cam-

era. The qualitative results have shown that this reconstruction scheme yields good results

(although no quantitative assessment was possible because of lack of the ground truth). It

is worth mentioning that the left and right surfaces in Figure 3.9 resemble the cardboard

in Figure 3.8 in terms of flexibility in particular, whereas the middle surface was made

with a different material. However I reached the conclusion that while the results for the

left and right surfaces appeared slightly better than those for the middle surface, a readily

deformable cardboard is a proper choice for deriving the linear deformation model.

3.6 Conclusions

We dealt with reconstruction of isometric surfaces. To perform such monocular reconstruc-

tion, an algorithm based on the linear deformation model and consisting of a non-linear

least squares optimization was proposed. To find the proper deformation model, prior train-

ing data should be used. I therefore provided this prior data by proposing a novel approach

for the reconstruction of a typical surface so that the computed deformation model can be

also extended to other isometric surfaces. This approach was founded on a range camera

along with a conventional camera and its goal is to estimate the 3D positions of the mesh

vertices from the depth of the feature points. By applying this approach to multiple mesh
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Figure 3.8: Real deformations; A 20× 20-cm square was selected from the intermediate
part of the cardboard and then reconstructed.

Figure 3.9: Isometric surfaces: Real deformations. Courtesy of [33].

deformations I acquired the training data required. Experimental results showed that both

the proposed reconstruction schemes are efficient and result in accurate reconstructions.
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4.1 Introduction

This chapter discusses the second task in detail and addresses two reconstruction schemes,

each in one subtask. Both schemes are developed on a similar basis which is the joint use of

deformation constraints based on the upper-bound model and on the differential properties.

The first scheme is assigned to monocular reconstruction of surfaces that deform iso-

metrically, from points tracked on a single image. To tackle this problem, a flat 3D shape

of the surface and its image are used as template. Such deformations involve certain ge-

ometric constraints. To reconstruct them, these constraints should be properly exploited.

Therefore we propose an algebraic formula that aims at the joint expression of the ge-

ometric constraints formerly introduced in this context, namely based on the differential

model and on the upper-bound model. This expression is the result of integrating these

two types of constraints and leads to the intended reconstructions, even when the surface is

not strictly isometric. The template shape is used to set the parameters of this expression,

which is then used along with the projection equations in order to define a semi-definite

programming problem to enable the estimation of 3D positions of the points throughout

the surface. However, for implementation purposes, this optimization is applied separately

to patches which, together, make up the whole surface. The experimental results show that

the proposed approach improves the results from other methods in terms of accuracy.

We also study monocular reconstruction of extensible surfaces undergoing conformal

deformation and propose a reconstruction scheme for this sort of surfaces. Given a 3D tem-

plate, its image and a set of point correspondences from a specific image of the deformed

surface, the objective is to determine the 3D positions of the points as well as the stretching

factor at each point. To perform such reconstruction, I define an optimization procedure that

makes use of the re-projection error, so-called upper-bound model, constraints associated

with conformal deformation, and those resulting from the assumption that the motion am-
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plitude of boundary points is restricted. These points lie on the surface border which varies

by the camera viewpoint. The upper-bound model is used in a variational form where the

bound on the Euclidean distance of point pairs decreases in a sequence of optimizations,

from which the best reconstruction is selected. My experimental study revealed that this

approach achieves accurate results.

Isometric Surface Reconstruction

4.2 Model and Approach

In this subtask, I address the reconstruction of inextensible deformable surfaces, also known

as isometric, from a single image. The prior data consists of a flat 3D shape of the surface

and its image. These are used as a template. Given a set of 2D point/feature correspon-

dences between an image and the template image, the objective is to estimate their 3D

positions. My algorithm uses a specific representation of the differential models that al-

lows the reconstruction to be performed with reduced computational cost. Furthermore, I

combine the upper-bound model with the differential model in order to obtain improved re-

construction accuracy, when the surface is not perfectly isometric. Although I also employ

a mapping for the differential model, its parameters will be estimated after the computation

of the 3D positions, whereas in the case of the approaches [56, 57], the mapping param-

eters are estimated first. That fact enables us to obtain more precise estimates of the 3D

positions of the feature points. In addition, it is also possible to interpolate the 3D coor-

dinates of other points through the mapping, which results in a smooth reconstruction of

the surface. Those estimates might not be as accurate as those obtained by means of the

approaches attempting to recover the shape of a deformed surface as a whole (indepen-

dently of any points lying on that surface). However, the problem addressed here refers to

point-wise reconstruction and, in what concerns that type of reconstruction, the proposed



50 CHAPTER 4. DEFORMATION CONSTRAINTS

approach performs well.

The approach proposed here assumes that an image of the deformed surface is avail-

able and that feature/point correspondences between this image and the template image are

obtained. The combination of the constraints resulting from the differential and from the

upper-bound models is represented analytically by quadratic equations. The template shape

is used to estimate the parameters of the deformation constraints. The re-projection error

is formulated as a quadratic error. The deformation constraints and the reprojection error

make up the core formulation of my algorithm. The differential model requires a 3D warp

whose role is to map the template image onto the deformed 3D surface. In my work, this

3D warp is described parameterically by the use of Free-Form Deformations (FFD). The

optimization is formulated as a Semi-Definite Program. My approach is built on a patch-

based strategy, in the sense that the surface is divided into several patches that, together,

cover the entire surface, and the method is applied to each one of them separately. This

is done to circumvent limitations that occur during the computation. As a matter of fact,

surface patching allows to reduce the implementation complexity (due to the scale of the

problem) so that the computational cost can be handled efficiently. It also facilitates the use

of FFD, as detailed in the next section. In addition, it provides a convenient way to identify

subregions with a uniform point distribution in case the overall surface is represented by

non-uniformly distributed points. As a result of recovering the 3D positions of the feature

points, the parameters of the mapping can be estimated, thereby allowing the estimation

of the 3D positions of points other than those corresponding to the point correspondences.

This leads to a 3D dense reconstruction of the surface.

Organization of this subtask: First, I discuss the constraints in detail, namely, the de-

formations constraints and the reprojection error. The next section presents the SDP opti-

mization formulation. Then, the experiments and their results are described, followed by

conclusions at the end.
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4.3 Proposed Approach: Constraints

I propose a reconstruction method for surfaces whose deformation complies with the spec-

ified deformations constraints. Those constraints are derived from the combination of both

the upper-bound model and the differential formulation of the deformation.

4.3.1 Deformation Constraints: Differential Model

Consider a surface S⊂R3 with the following parametric representation:

p
(

u, v

)
=

(
x
(

u, v

)
, y

(
u, v

)
, z

(
u, v

) )
(4.1)

in some domain in R2. The coefficients of the First Fundamental Form (FFF) of the

surface in R3 can then be arranged in a symmetric matrix as:

M =

 E F

F G

 (4.2)

Theorem: A surface is isometric if and only if the coefficients of FFF are the same,

i.e., M = M∗. Two surfaces are said to be isometric if there exists an isometry between

them. All possible deformations of an isometric surface have the same Gaussian curvature

at corresponding pairs of points (since Gaussian curvature depends only on the FFF). The

3D template enables the calculation of the FFF of the surface at every point. Hence, M

is known in advance. Let us assume that M represents the FFF coefficients for the 3D

template, and that M
′

represents the FFF coefficients for the deformed surface S to be
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reconstructed. Assuming the following equation

x1 =
δx
δu

, x2 =
δx
δv

, y1 =
δy
δu

, y2 =
δy
δv

, z1 =
δ z
δu

, z2 =
δ z
δv

(4.3)

for the surface S, then for point i we will have:

E
′
i = x2

i,1 + y2
i,1 + z2

i,1 = E

G
′
i = x2

i,2 + y2
i,2 + z2

i,2 = G

F
′
i = xi,1.xi,2 + yi,1.yi,2 + zi,1.zi,2 = F (4.4)

As a result, the expressions for E
′
i and G

′
i are quadratic with respect to the partial deriva-

tives. We also exploit a quadratic equation for the F
′
i , implying that F

′
i can be replaced by

the expression for H
′
i , which is also quadratic, similarly to E

′
i and G

′
i . This expression can

be easily derived by representing each cross-term of partial derivatives with respect to the

squared sum of the two derivatives involved.

H
′
i = (xi,1 + xi,2)

2 +(yi,1 + yi,2)
2 +(zi,1 + zi,2)

2 = Ei +Gi + 2.Fi = Hi (4.5)

Representation of E
′
i , G
′
i and H

′
i in terms of the point set p:

As mentioned earlier, the coordinates of the 3D points can be computed as the output

of a 3D warp. The use of the 3D warp allows the derivation of the differential model.
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3D warping can be also regarded as a method of 3D reconstruction, in which a template

image is mapped onto the 3D object, a surface for instance [58, 59]. Regular surface

reconstruction procedures involve a minimization over all possible variations of the surface

in space. However, the application of a 3D warp is a common approach to reducing the

optimization search space so that the search can be performed efficiently. This reduction

is achieved by using a parametric representation of the surface (e.g. by means of a 3D

warp). It is possible to model a 3D warp using a triangular mesh, which is a usual choice

in deformable surface reconstruction [32, 40, 60, 61]. Frequent 3D warps found in the

literature are FFD warps. My approach also uses a FFD-based 3D warp, to model the

mapping from the template image onto the 3D surface S. With this mapping, the surface

points p corresponding to the points q =

(
u, v

)
on the template image are given by:

p(q) =
n
∑
i=0

m
∑
j=0

bi, jNi,k(u)M j,l(v) (4.6)

where Ni,k(u) and M j,l(v) are B-spline basis functions of degree k and l, respectively. bi, j

act as a set of nb = (n+1)× (m+1) control points which, as in Bézier surfaces, is usually

referred to as the control net. For a point on the template image, the product Ni,k(u)M j,l(v)

will be constant, which could be regarded as a coefficient. As a result of computing this

product for each i j, the corresponding surface point can be represented as a linear combina-

tion of all bi, j, according to Equation 4.6. Therefore, the set resulting from putting together

the linear expressions for np points is rewritten as a linear system of equations: p = Acb

where p is the set of all surface points, Ac denotes the 3np× 3nb collocation matrix ob-

tained from all products Ni,kM j,l and b is the vector formed by concatenating all bi, j. A

single solution is obtained when the number of linearly independent equations is equal to

that of the unknowns. Each point removes a degree of freedom, thus adding an independent

equation to the linear system. Therefore, we need as many as nb points in order for this

system to have a single solution, which can be determined by least squares minimization
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provided that A has full column rank (as is usually the case with our particular problem).

So, the solution of the linear system can be obtained from:

b =
(

AT
c Ac

)−1
AT

c p (4.7)

This solution probably will not be valid for other points on the surface and there might

be errors. Note that an overdetermined linear system has no exact solution. In addition, a

square full-rank linear system admits of a strictly exact solution that only fits the measure-

ments included in the linear system. One possibility of obtaining a more general solution is

to use an undetermined system of equations, with additional degrees of freedom. However

it should be mentioned that, depending on the surface to be reconstructed, the number of

control points is usually limited in order to avoid complex control nets. For example, a

typical control net contains 5× 5 control points. On the other hand, a smooth reconstruc-

tion of the surface requires that numerous feature points be distributed across the surface.

However, by dividing the entire surface into small square-like patches as an alternative

technique, we can balance the limited set of control points against the large number of

feature points.

Using this method, the reconstruction is carried out as follows: a. np < nb feature

points exist on each patch; b. a distinct linear system p = Acb is defined for each patch; c.

Each patch is reconstructed separately. In this case, b will be approximated by

(
AT

cbAcb

)−1
AT

cbAbp (4.8)

where Acb = AT
c Ac +Ab and Ab denotes the bending matrix which, as defined in [56],

is a nb× nb symmetric, positive semi-definite matrix which can be computed from the

second derivatives of the B-spline basis functions. For simplicity’s sake, we substitute A◦
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for
(

AT
cbAcb

)−1
AT

cbAb, leading to b = A◦p.

The partial derivatives associated with the coefficients E
′
i , G
′
i and H

′
i can be obtained

using Equation 4.6, thereby expressing them as a linear combination of the control points b.

In addition, we have b = A◦.p, so these partial derivatives can be also represented linearly

in terms of p. Our goal is to estimate vector p, containing all the points. Therefore the

coefficients E
′
i , G
′
i and H

′
i can be expressed in terms of p. Consequently, for point i, we

have:

E
′
i = pT WE,ip, G

′
i = pT WG,ip, H

′
i = pT WH,ip (4.9)

where WE,i, WF ,i and WG,i are sparse constant matrices, associated with point i.

4.3.2 Deformation Constraints: Upper-Bound Model

This model is basically applied to the reconstruction of isometric surfaces and formulated

taking into account that the inextensibility constraint
∥∥∥p j−pk

∥∥∥ ≤ d j,k must be satisfied

by any pair of points (p j,pk) lying on the surface. Note that d jk is the geodesic distance,

which is equal to the Euclidean distance on the planar 3D template. In practice, the selected

point pairs are often reduced to take into account only those connecting close points. Such

points can be found by limiting the distance between every two points on the template to a

given threshold. This constraint is usually known as the the upper-bound model. A second

constraint has been introduced in the literature along with this model, in order to allow for

the reconstructions. This constraint results from a heuristic and imposes the maximization

of the depth of the 3D points to be reconstructed. In this case, the reconstruction approach

combines the upper-bound model and the second constraint, also with the data re-projection

error. The optimization is formulated as a second-order-cone program (SOCP) [32].
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The upper-bound model
∥∥∥p j−pk

∥∥∥≤ d j,k can be rewritten as:

pT C j,kp≤ d2
j,k (4.10)

where C j,k is a sparse constant matrix, associated with the point pair j,k.

4.3.3 Reprojection Error

For point i, the re-projection error is computed as eui =
(

f .px,i−u
′
i .pz,i

)2
and evi =(

f .py,i− v
′
i .pz,i

)2
, which will be then represented as follows:

eui = pT Ru,ip = 0, evi = pT Rv,ip = 0 (4.11)

where Ru,i, Rv,i are sparse constant matrices, associated with the point i.

4.3.4 Proposed Approach: SDP Optimization Scheme

As described earlier, we aim at estimating the 3D positions of the points p. To do so, we

develop an optimization procedure based on SDP, which has proved to be efficient when the

problem under consideration is subject to quadratic constraints. Such constraints basically

render the whole problem intractable (non-convex). Most interior-point methods for linear

programming have been generalized to semidefinite programs. As in linear programming,

these methods have polynomial worst-case complexity, and perform very well in practice at

an acceptable computational cost. The constraints in Equations 4.9 and 4.11 are equivalent

to the following matrix traces:

Tr
(

WE,ippT
)
= Ei, Tr

(
WG,ippT

)
= Gi, Tr

(
WH,ippT

)
= Hi
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Tr
(

Ru,ippT
)
= 0, Tr

(
Rv,ippT

)
= 0 (4.12)

This is a homogeneous system of quadratic equations on the unknowns p. However it

can be relaxed to a convex program. The quadratic equality constraints are non-convex. To

make the problem convex, an auxiliary square matrix D = ppT is introduced. A constraint

that restricts the matrix D to a positive semi-definite matrix (D ≥ 0) should then be added

by the use of a SDP. This procedure is commonly applied to many problems [62]. As a

result, the above system becomes a constrained optimization problem linear in D, and also

subject to a rank constraint in D. The rank constraint is non-convex too. To deal with the

rank-1 condition of D, a common practice is to simply drop it. However, my preliminary

experiments demonstrated that an optimization based on such an approach yields matrices

D with small eigenvalues. It is also obvious that minimizing rank (D) is a weak relaxation

and converges to trivial solutions. Instead, maximizing rank (D) is a preferred choice in

such cases and leads to the desired convex program. To approximate rank, we use its

nuclear norm, i.e. ‖D‖∗, which in my case reduces to trace since D is positive semi-definite.

More precisely stated, maximizing the nuclear norm of D can be found to be equivalent to

the depth maximization introduced in the subsection describing upper-bound model.

It is quite possible that a real deformation is not strictly isometric and slightly deviates

from the isometry constraints. Such deformations can be called near-isometric. In that

case, we need to account for the deviations. For this purpose, a near-isometric deformation

is approximated by a more flexible one (in some particular cases, a conformal one) by

adding the condition that stretching of the surface at each point can occur, implying that Ei,

Gi, and Hi at point i are limited to a range of values corresponding to a slight stretching of

the template. Assuming that Ei,min = Ei−λE,i, Gi,min = Gi−λG,i, Hi,min = Hi−λF ,i,

Ei,max = Ei+λE,i, Gi,max = Gi+λG,i and Fi,max = Hi+λF ,i, the optimization problem

can be formulated as follows:
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maxD Tr (D) , subject to

Ei,min ≤ Tr
(
WE,iD

)
≤ Ei,max,

Gi,min ≤ Tr
(
WG,iD

)
≤ Gi,max,

Hi,min ≤ Tr
(
WF,iD

)
≤ Hi,max,

Tr
(
Ru,iD

)
= 0, Tr

(
Rv,iD

)
= 0,

D≥ 0, Tr (CkD) ≤ d2
k (4.13)

where i ∈ (1, . . . ,np) and k ∈ (1, . . . , l). l is the number of edges linking two close points. λE,i,

λG,i and λF ,i are set empirically. Vector p can be determined up to a sign ambiguity using

SVD to find a rank-1 factorization of D. As for the missing points, we could fill them in by

using estimates obtained with Equation 4.6.

When the deformation is completely isometric, the following optimization leads to im-

proved results:

maxD Tr (D) , subject to
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Tr
(
WE,iD

)
= Ei, Tr

(
WG,iD

)
= Gi, Tr

(
WH,iD

)
= Hi

Tr
(
Ru,iD

)
= 0, Tr

(
Rv,iD

)
= 0,

D≥ 0, (4.14)

The first SDP differs from the above SDP in that it is mainly implemented using the

differential isometric constraints rather than the inextensibility constraints. The SOCP op-

timization described in the subsection assigned to the upper-bound model. is a formulation

of the maximum-depth heuristic. Without the differential near-isometric constraints, the

SDP optimization given in Equation 4.13 would be equivalent to this SOCP in terms of the

constraints considered, and with no loss of generality it can be said that the SDP that re-

sults from excluding the differential constraints is an alternative way of implementing the

maximum-depth heuristic. As shown by my preliminary experiments, such SDP obtains

essentially the same results as the SOCP.

Figure 4.1: Pictures of the paper-sheet, T-shirt and the cardboard, respectively. The paper-
sheet is modeled using 5 patches, T-shirt using 4 patches and the cardboard using 3 patches
(courtesy of [33])
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Figure 4.2: The points marked with ’+’ and those marked with ’o’ illustrate the estimated
and the ground-truth points on a single patch of the cardboard, respectively. The ground-
truth was acquired using a motion capture device.

4.4 Experimental Results

In this section, I characterize the performance of my approach for different deformations of

isometric surfaces. In all the experiments, only the optimization in Equation 4.13 has been

considered and analyzed.

4.4.1 Experiments with Synthetic Data

To evaluate my approach quantitatively, a set of experiments with synthetic data was per-

formed. However, the 3D data used in these experiments was not obtained through simula-

tion. Rather, it was acquired from real surfaces expected to undergo isometric deformation.

The reason for using such data is that I aimed at assessing my approach with real defor-

mations, including near-isometry. This data includes the 3D positions of several non-rigid

points located on surfaces such as paper-sheets, T-shirts and card-boards, which are likely

to undergo inextensible deformations, and can be seen as proper examples of isometric sur-

faces. In fact, a set of nc point correspondences has been acquired by a motion capturing

device or a Kinect camera from these surfaces. There is only a subtle difference relative
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Figure 4.3: Reconstruction error for increasing levels of noise computed for my approach
and for the SOCP optimization described in the subsection detailing the upper-bound model

Approach Reconstruction Error
My Approach 9.2752e-06

Approach in [56] 5.3346e-05
Approach in [32] 7.3317e-05

Table 4.1: A comparison between three approaches: my approach, the approach of [56]
and the approach of [32].

to my experiments with real data in that, in this case, a virtual camera was considered to

obtain the 2D projections. Therefore, the synthetic image points were obtained by using

a virtual camera. Photos of the surfaces are shown in Figure 4.1. The accuracy of the re-

sults is reported in terms of reconstruction error which is the normalized Euclidean distance

between the observed (p̂i) and the estimated (pi) world points:

RE =
1
N

N
∑
i=1

[
‖pi− p̂i‖2 /‖p̂i‖2

]
(4.15)

It is assumed that an average of 30 points lies on each patch with a control net of 6×6,
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Figure 4.4: Reconstruction error for different camera setups. In the case of my approach
×10−2 indicates that the errors correspond to the associated columns scaled by ×10−2.

with a varying number of patches, depending on the surface to be reconstructed. The re-

construction is performed under the assumption that there is a relatively uniform density

distribution of the feature points on each patch. In addition to creating a balance between

feature and control points, surface patching is used for two major purposes: first, matrix

Di will be of moderate size (which would otherwise be extremely large), thus limiting the

computational cost. Second, if in some case the overall surface has a non-uniform point

distribution, surface patching helps to identify subregions with a close-to-uniform point dis-

tribution, and subsequently consider them as patches to be reconstructed separately. These

patches are assumed to be non-overlapping and each one of them is treated like a whole sur-

face. Hence, the feature points on each patch are recovered independently of other patches,

which is followed by interpolation of additional points using FFD, and therefore a dense

point distribution can be obtained. At the end, a global smooth surface can be fit to the

large number of points available from every patch.
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4.4.2 Comparative Study

To validate my approach I compared its performance against two other approaches. One of

them makes use of the upper-bound model and the other uses the differential model:

1. The SOCP-based algorithm proposed in [32], in which the authors use a triangu-

lar mesh together with a-priori datasets for learning the deformations. The deformation

constraints are expressed using the upper-bound model.

2. The approach of [56], where the authors used a differential model to represent the

deformation constraints, and applied an optimization method to this model.

In a previous approach [63], I have proposed the use of a ToF-camera in combination

with a conventional camera in order to enhance the reconstruction when there is a limited

number of tracked points. However, my new approach enhances the results of the previous

approach when a large number of points are available. Table 4.1 shows that my approach

gives good results and outperforms both other approaches, although the improvement is

not significant (the numerical errors were calculated with respect to the ground-truth data).

The improvement comes from the fact that the other approaches require the deformation to

be very close to inextensible, whereas in my approach near-isometric deformations can be

handled.

Camera Setup and Noise

: In all experiments, the 3D data is projected onto the images using 4 different camera

setups, designed by varying the distance from the object to the camera and also the focal

length, so that increasing levels of perspective distortion (Setup 1: z = 200, f = 1000;

Setup 2: z = 150, f = 1000; Setup 3: z = 100, f = 800; Setup 4: z = 50, f = 500)

can be obtained. I also show results for increasing levels of Gaussian noise added to the
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Figure 4.5: Sample real images with points in a random pattern. The points marked with
’*’ and those marked with ’o’ show the estimated and the ground-truth points on the paper-
sheet, respectively. The ground-truth was acquired using Kinect. The absolute reconstruc-
tion errors (REabs =

1
N ∑

N
i=1 ‖pi− p̂i‖2) from the left to the right are 0.51, 0.42, 0.38 in

cm.

coordinates of the image points, with the noise standard deviation varied from 0 to 3 pix-

els with 0.25 pixels increments. The reconstruction error can be seen in Figures 4.3 and

4.4, where the results correspond to averages obtained from 100 deformations, randomly

selected. After having performed 10 trials for each deformation, each average value was

acquired from 1000 trials. The estimated 3D positions, and their equivalent ground-truth

from some frames of the cardboard, marked with ’+’ and ’o’ respectively, are shown in

Figure 4.2.

4.4.3 Experiments with Real Data

The algorithms used in the experiments with synthetic data were also applied to real data.

This data consists of 2D point tracks from a sequence of images, recorded using a calibrated

camera. Various objects, including the paper-sheet shown in Figure 4.1, were selected for

tests with real data. A large number of inextensible deformations were created. Some of

them and their reconstructed 3D points are illustrated in Figure 4.5, with the points being
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Figure 4.6: Top: The first image from the left is the template. Horizontal axis is the x-axis,
vertical axis is the y-axis. Bottom: The reconstructed shapes of the above deformations.

in no fixed pattern. To show the quality and effectiveness of the approach under normal

measurement conditions, we carried out a quantitative evaluation on the paper-sheet, given

that its ground-truth is available. A total of five 6×6 patches were used. Obviously, the 2D

tracks come with an unknown level of noise. In this case, the reconstruction error, obtained

from 25 deformations, has been calculated to be 1.58e-04. More examples of deformations

can be seen in Figure 4.6. The efficiency of the approach is visible from the recovered

shapes.

4.5 Conclusions

In this subtask, monocular reconstruction of deformable, inextensible surfaces using one

image was addressed. To perform this reconstruction, an SDP optimization was formu-

lated by imposing constraints corresponding to the type of deformation i.e. deformation

constraints. These constraints were defined using a differential model of the deformation,

and also the upper-bound model. The application of the differential model requires that a

parametric mapping between the template and the 3D surface be defined. I used a Free-
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Form Deformation for this purpose. Both types of constraints were then combined in a

SDP optimization program. The optimization estimated the 3D positions of the points on

the deformed surface. The experimental results show and characterize the performance of

the proposed approach.

Conformal Surface Reconstruction

4.6 Problem Statement

In addition to inextensible surfaces, here I address monocular reconstruction of surfaces

that undergo extensions while being distorted by tools with a sharp point, as shown in Fig-

ure 4.9. Examples of such surfaces include plastic balloons, sports balls, abdominal tissues

in laparoscopic surgery, etc. These extensions can be generally described by the deforma-

tion type called conformal, which is distinguishable from isometric deformation in that it

preserves the angles between the curves on the surface, but not the distances. The exist-

ing solutions involve complex algorithms that usually have practical limitations rendering

the implementation of these algorithms difficult. An analytical approach was developed

for isometric and conformal deformations using Partial Differential Equations [47]. The

approach was developed for weak-perspective projection and requires complex differential

models. A SLAM method for elastic surfaces was developed, using fixed boundary condi-

tions [50]. In [51], the authors formulate the reconstruction problem of a generic surface

in terms of the minimization of stretching energy and impose a set of fixed boundary 3D

points to constrain the solution. This approach deals with a general group of elastic sur-

faces without applying any constraints explicitly associated with conformal deformation. I

aim at the development of simple and accurate models while emphasizing their feasibility

in practice. Prior data consists of a 3D template, its image and np point correspondences

(contained in vector p) from a given image of the surface. The 3D template, in this case,
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is equivalent to the largest expanded shape considered for reconstruction. The goal is to

compute the 3D positions of points p and their stretching factors. The deformed surface

is represented by a parametric function based on Free-Form Deformations (FFD). This

function maps the template onto the surface and it is used to analytically express what we

call conformal constraints. These constraints correspond to the nature of conformal defor-

mation. My approach is built on the assumption that the surface boundary undergoes no

motion or short-range motion. In other words, as in [51], the positions of boundary points

do not change significantly from image to image. Such points are determined depending

on the camera viewpoint, as illustrated in Figure 4.9. To perform the reconstruction, we

take into account four groups of constraints, namely, the reprojection error, upper-bound

model, conformal constraints, and also those associated with the boundary points. All these

constraints are integrated into a unified optimization procedure which is executed multiple

times, with the upper-bound model being updated after each optimization. The updating

implies that the bound on the Euclidean distance of pairs of points decreases. As a result,

the optimization is repeated with the different bounds considered. The optimal reconstruc-

tion is finally determined by selecting the one that minimizes a specific set of criteria. The

final results include estimates of the 3D positions of the points and a value for the stretching

factor at each point.

Organization of this subtask: First, I describe the proposed approach, including all types

of constraints employed in the optimization procedure. The optimization itself is described

in detail in the next section. The experimental results are presented next. The last section

contains conclusions.

4.7 Proposed Approach: Constraints

Modified Upper-Bound Model: In general, upper-bound model is adopted for the recon-

struction of surfaces that deform isometrically and it is used in an optimization, along with
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the maximum depth heuristic and the minimization of the reprojection error, to estimate

the 3D positions of points on the isometric surfaces. This optimization is implemented by

means of a second-order-cone programme (SOCP) [33, 40].

Compared with the reconstruction of isometric surfaces, the reconstruction of con-

formal surfaces involves additional ambiguity/uncertainty, arising from extra unknowns,

namely, the stretching factors. These factors have to be estimated apart from the positions

of points p. Therefore further information and/or constraints must be considered so that

all unknowns, including the stretching factors, can be determined. To cope with the added

ambiguity, a variational form of the upper-bound model that allows for a wider variety of

deformations, extensible for example, will be constructed. In this case, the modified ex-

tensibility constraint
∥∥∥p j−pk

∥∥∥ ≤ λ .d jk is used. This constraint varies depending on the

parameter λ which, as will be shown later, decreases (at small regular intervals specified in

advance). This variational formulation leads to the estimation of a set of possible surface

deformations.

Conformal Constraints:

Theorem: A surface S is conformal or angle-preserving if and only if the coefficients

of First Fundamental Form (FFF) are proportional, i.e., I = η

(
u, v

)
I∗ for some scalar

function η 6= 0, referred to as stretching factor. As shown earlier, for isometric surfaces,

the above proportional equation is simplified to I = I∗.

The 3D template enables the calculation of the FFF of the surface at every point. Hence,

I is known in advance. As stated earlier, the coefficients of I
′

can be expressed in terms of

p - refer to Equation 4.4. The goal is to estimate vector p, containing all the points. As a

result, for the point i, we have:

E
′
i (pi) = ηi.Ei, G

′
i(pi) = ηi.Gi, F

′
i (pi) = ηi.Fi (4.16)
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Again, as in Equation 4.5, we derive another quadratic expression so that F
′

can be

replaced by the subsidiary function H
′
, which is quadratic, similarly to E

′
and G

′
:

H
′
i (pi) = ηi. (Ei +Gi + 2.Fi) = ηi.Hi (4.17)

Constraints from Boundary Points: These constraints are defined as quadratic cones:

∥∥ps,x− p◦s,x
∥∥≤ εx,

∥∥∥ps,y− p◦s,y

∥∥∥≤ εy,
∥∥ps,z− p◦s,z

∥∥≤ εz (4.18)

where s ∈
(

1, . . . ,n f

)
and n f indicates the number of boundary points, restricted to a

motion within a range defined by εx, εy, εz as well as p◦s,x, p◦s,y p◦s,z, which specify the x, y

and z coordinates of the boundary point s on the template. The boundary points are included

in the vector p as part of the points considered for reconstruction. Also, we exclude any

point pairs linking only boundary points.

Reprojection Error: Consider that K is a known calibration matrix with focal length

f and that q
′
= ( u

′
, v
′
) denotes the image points - corresponding to p - detected on

the image of the deformed surface. For point i, the projection equations are defined as

f .px,i−u
′
i .pz,i = 0 and f .py,i− v

′
i .pz,i = 0.

4.8 Proposed Approach: Optimization

The four types of constraints discussed above are joined in definition of an optimization

procedure aimed at computing both the 3D positions of points p and the stretching factors

ηi. The 3D template, as previously described, denotes the most expanded size of the surface

to be reconstructed. In this case, the coefficients of FFF have the biggest values, while the

values of these coefficients for the other sizes of the surface will be, in general, smaller.
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Therefore, it follows that the values for ηi will be within the range 0 to 1.

The equalities in Equations 4.16 and 4.17 can not be treated as a regular constraint in

view of the fact that a. Either side of them should be constant, which is not valid due to

the variables ηi; b. They are non-convex and inconsistent with the other constraints. In-

stead, we define quadratic cones, as shown in Equation 4.19, and later propose an effective

technique for dealing with these equalities. The new set of quadratic cones is defined as

follows:

(
E
′
i (pi)

)1
2 ≤ E

1
2
i ,
(

G
′
i(pi)

)1
2 ≤ G

1
2
i ,
(

H
′
i (pi)

)1
2 ≤ H

1
2
i (4.19)

Let us express the re-projection error as: ek,u = f .px,k− u
′
k.pz,k and ek,v = f .py,k−

u
′
k.pz,k and assume that pz,k denotes the depth of the points. Then, an optimization proce-

dure that allows the reconstruction of the surface can be formulated, using SOCP, as:

minp
np

∑
i=1

(
−pz,i +w.

((
ei,u
)2 + (ei,v

)2)) , subject to

Constraints in Equations 4.18 and 4.19,

∥∥∥p j−pk

∥∥∥≤ λ .d jk for every selected pair j,k (4.20)

where s ∈
(

1, . . . ,n f

)
and w is a scalar used to specify a weighted summation and is tuned

empirically. The above optimization is repeated, with the value for λ decreasing each time

(the maximum value is 1.). After each iteration, both the reprojection error and the values

for
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ηi,E = E
′
i (pi)/Ei, ηi,G = G

′
i(pi)/Gi, ηi,H = H

′
i (pi)/Hi

eη =
1

np

np

∑
i=1

[(
ηi,E −ηi,G

)2 + (ηi,E −ηi,H
)2] (4.21)

are recorded. The iterations stop when λ reaches a pre-defined value (which is near

zero.). The results corresponding to the optimization where the smallest value for the sum

of the two error criteria (reprojection error and eη ) has been obtained are selected as the

best reconstruction. The stretching factors are then computed as:

ηi =
(
ηi,E +ηi,G +ηi,H

)
/3 (4.22)

Figure 4.7: Reconstruction error for increasing levels of noise.
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4.9 Experimental Results

Synthetic Data: To validate the efficiency of the proposed approach it was evaluated by

conducting several experiments. This evaluation requires the availability of data from sur-

faces that deform conformally. The ground-truth synthetic data to be used in the experi-

ments must also correspond to a conformal deformation. To generate this data I used a 3D

graphics software. Two samples of such deformations are shown in Figure 4.8, which also

meet the requirements for having boundary points not moving or deforming. These points

can be specified by marking the margin surrounding the deformed part. In Figure 4.8, they

correspond to the upper part of the first top layer of the 2 shapes, given that the camera

is viewing the surface from below and with the optical axis aligned with the Z axis. The

boundary points of an object depend on the camera viewpoint. Point correspondences were

determined between the images of the deformed shapes and the template image. We con-

sider an extended shape as the template. To calculate the geodesics between any selected

pair of points, the template is flattened out by the use of conformal flattening. Each input

image is computed by projecting the 3D points on the deformed surface onto an image

plane, taking into account a virtual camera defined by a specific calibration matrix.

I show results for increasing levels of Gaussian noise added to the coordinates of image

points. The standard deviation of the noise was varied from 0 to 3 pixels with 0.25-pixel

increments. The accuracy of the results is characterized by means of a reconstruction error

which is defined as the normalized Euclidean distance between the observed (p̂i) and the

estimated (pi) world points defined as RE = 1
N ∑

N
i=1

[
‖pi− p̂i‖2 /‖p̂i‖2

]
. The reconstruc-

tion error is shown in Figure 4.7, whose values correspond to averages obtained from 10

deformations randomly generated. Since 50 repetitions were performed for each deforma-

tion, each average value was obtained from the values of from 250 trials. The quantitative

results demonstrate that the approach performs efficiently even in the presence of noise.

See Figure 4.8 for some qualitative results.
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Figure 4.8: Top: a surface that extends while its boundary points have small or no motion. These
points are on the margin of the upper part of the surface, and are defined by considering the camera
viewpoint. The left deformation corresponds to a higher degree of stretching than the right one. The
virtual camera is located under the surface. Bottom: reconstruction of the deformations displayed
on top; The points marked with ’+’ and those marked with ’o’ illustrate the computed and the
ground-truth points, respectively.

I also made performance comparisons between my approach and the one proposed in

[51]. I attempted to implement the general structure of this approach. My approach is

similar to this approach in that I use also constraints on the motion of the boundary points.

However, in my case, we explicitly consider constraints resulting from conformal defor-

mations. My approach performs better in case of larger extensions. The other approach

addresses the reconstruction problem using Mechanics-based modeling and uses a con-

straint based on the stretching energy of the surface. It does not consider conformal-related

constraints and yields good results in case of smaller extensions. In the experiments that I

performed I obtained an overall reconstruction error 0f 0.002 with my approach, whereas
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the other approach had a reconstruction error of 0.006 in 3D distance measurements.

Figure 4.9: A ball with approximately conformal deformation. The red circular line indicates the
location of the boundary points. The right-hand image is the reconstructed model of the deformed
ball.

Real Data: Since the approach described in this subtask deals with the reconstruction

of surfaces undergoing conformal deformation, to obtain real data we needed an object that

deforms (at least approximately) according to the conditions of conformal deformation. For

that purpose, we chose balls and plastic balloons as objects necessary to acquire the data.

The algorithms used with synthetic data were applied to images acquired by a calibrated

camera. An example image is given in Figure 4.9. As shown in this figure, the bound-

ary points nearly do not move. However, the deformation does not seem to comply with

the conditions of a strictly conformal deformation. Features were obtained manually or

semi-automatically with SIFT, that is, using interactive point selection with initial matches

from SIFT. The sample result shows that the presented method results in fairly accurate

reconstructions.

4.10 Conclusions

The preceding work was an investigation of conformal deformation reconstruction, aiming

to propose an easy-to-implement methodology that still attains accurate reconstructions.
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The results show that the approach is reasonably efficient. Assuming that the bound-

aries/contours of the surface undergo negligible motion, a set of estimates was obtained

for the 3D positions of points on the surface using a modified, variational formulation of

the upper-bound model and The best estimate was then selected based on some criteria.
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5.1 Introduction

In this chapter, I tackle the third task and investigate the use of surface transformations for

reconstruction purposes. This task comprises two subtasks.

The first subtask is to deal with the reconstruction of surfaces that deform under a va-

riety of conditions. The deformation can range from no extension to a certain degree of

extensibility. To perform the reconstruction, I use a single image and a 3D reference im-

age of the surface, which can correspond to its undeformed state. The 3D reference image

can be computed by any appropriate method. In particular, and in my case, I use homo-

graphies defined from two views of the surface. To proceed with the 3D reconstruction

of the deformed surface I assume that the deformations are locally homogeneous and that

the overall surface deformation can be obtained by combining the local deformations. For

that purpose the surface is split into small patches. For each patch a mapping between the

undeformed and the deformed shape is computed. The mapping is specified by using the

quadratic deformation model [64]. As a result, given the undeformed shape, I define an

optimization procedure whose goal is to estimate the 3D positions of deformed points in

each image. The optimization operates on each patch, independently of the others. The

experimental results show that this approach allows the precise reconstruction of a wide

class of real deformations.

In the second subtask, I only deal with the monocular reconstruction of extensible sur-

faces by proposing a novel approach for the determination of the 3D positions of a set of

points on images of a deformed surface. Given a 3D template, this approach is applied

to each image independently of the others. To proceed with the reconstruction, the sur-

face is divided into small patches that overlap in chain-like form. I model these surface

patches as being uniformly extensible. Using a linear mapping from the template onto a

patch, the variation of the patch shape is split into a rigid body transformation and a pure
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deformation. To estimate the pure deformation, I use an optimization procedure that mini-

mizes the reprojection error along with the error over a constraint associated with uniform

expansion. Having estimated the pure deformation, the rigid body transformation can be

determined by decomposing the essential matrix between the current image and the virtual

image that results from projecting the 3D positions that correspond to pure deformation of

the template. This enables complete estimation of the linear mapping, thereby obtaining

the 3D positions of the surface patch up to scale. To define a common scale, the surface

smoothness is enforced by considering that the overlapping points of the patches are the

same. The experimental results show the feasibility of the approach and that the accuracy

of the reconstruction is good.

Figure 5.1: Transformation between the undeformed and the deformed shape.

Reconstructions Based on Homogeneous Deformation

5.2 Problem Statement and Model

In this subtask, I deal with the problem of reconstructing deformable surfaces from a single

view. The type of deformations I take into account is not limited to inextensible surfaces

but covers a larger group of surfaces that can undergo extension and/or compression. I

assume that the surface to be reconstructed tends to change shape gently over time and is

represented by a specific number of points/features lying on it. Given a set of feature/point
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correspondences from images acquired by a camera, we aim at estimating the 3D positions

of the points through a general approach that is capable of handling a wide range of de-

formations, whether they are inextensible or not. In fact, this approach should permit the

reconstruction results to be comparable to those of approaches intended for a specific defor-

mation type, such as inextensible, conformal or elastic. To achieve this, the problem needs

to be constrained adequately according to the deformation behaviour of the surface, in ad-

dition to imposing other conditions, namely the projection model. To this end, inspired by

kinematics of deformable solids, we make use of the observation that the manner in which

any natural surface deforms smoothly can be described by a combination of locally homo-

geneous deformations. However, it is not clear which subregions of the surface conform

to such a deformation. Therefore, the subregions with purely homogeneous deformation

and their borders are not known. In addition, a determination of these sub-regions requires

segmentation, which is beyond the scope of this work. Consequently, we divide the sur-

face into approximately equal patches, that are small enough to allow the assumption that

they undergo near-homogeneous behaviour. To reconstruct each patch, we exploit the fact

that a homogeneous deformation can be represented by means of a linear transformation

between an undeformed and the deformed shape. Since the patches are approximately ho-

mogeneous, a more general mapping that is able to characterize a variety of deformation

types is applied. This mapping consists in the quadratic deformation model, proposed in

[64]. Figure 5.1 illustrates how the surface undergoes a change of shape, which can be

described by this model. For each patch, the parameters related to the linear component of

this quadratic transformation are dominant with respect to the other parameters. For this

reason, I propose a constraint whose effect in the estimation is to approximate the quadratic

transformation by a linear transformation that forces the linearization of the quadratic trans-

formation. To compute the undeformed shape several methods could be used. In this case,

I use an approach based on local homographies. Finally, by combining the data reprojec-

tion error with the constraints associated with homogeneous deformation, we arrive at an
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optimization scheme to determine the 3D positions of the points, thereby recovering the

deformed shape.

Organization of this subtask: In the first section, I present an overview of the defor-

mation gradient, the quadratic deformation model as well as the homogeneous deforma-

tion. Then, I discuss in detail the proposed approach, whose constituent parts include:

a homography-based rigid reconstruction for computing the undeformed shape, the con-

straints derived from homogeneous deformation behavior, and an optimization scheme to

determine the deformed shape. Next, I describe the experiments performed and demon-

strate the results. The last section presents conclusions.

5.3 Background

Deformation Gradient: A deformation can be quantified and specified by the point-to-

point mapping function pi = M
(
p◦i
)

from the undeformed shape S◦ onto the deformed

shape S, as shown in Figure 5.1. The deformation gradient is the fundamental measure

of deformation in continuum mechanics. It is the second order tensor which maps line

elements on S◦ into line elements (consisting of the same material particles) on S. Let a

point i on S◦ be defined as p◦i =

[
x◦i y◦i z◦i

]T
and the corresponding point on S as

pi =

[
xi yi zi

]T
, the deformation gradient F is then:

F =


δxi
δx◦i

δxi
δy◦i

δxi
δ z◦i

δyi
δx◦i

δyi
δy◦i

δyi
δ z◦i

δ zi
δx◦i

δ zi
δy◦i

δ zi
δ z◦i

 (5.1)

Quadratic Deformation Model: According to [64], the quadratic deformation model

for non-rigid bodies, which is composed of the rigid shape matrix and quadratic and cross-
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term components, can account for any deformations of the object. In fact, it provides a

general representation of deformation. For point i, this model is defined by pi = M1 (p◦) =

Q.si + c where c is a 3×1 translation vector and

Q =

[
Q1 Q2 Q3

]
3×9

, si =

[
x◦i y◦i z◦i x◦

2
i y◦

2
i z◦

2
i x◦i y◦i y◦i z◦i z◦i x◦i

]T

(5.2)

Q1, Q2 and Q3 are 3×3 transformation matrices associated respectively with the linear,

quadratic and cross-term deformations at a given frame. Applying the quadratic transfor-

mation to the shape matrix i we obtain the 3D position of point pi at the frame.

Homogeneous Deformation: A homogeneous deformation is one where the deforma-

tion gradient is uniform, i.e. independent of the coordinates. The respective transformation

is then defined as:

p̂i = M2 (p
◦) = Q1.p◦i + c (5.3)

where c is a 3× 1 vector that denotes the rigid body translation. This transformation is

viewed as a special case of the quadratic deformation model.

5.4 Proposed Approach

As stated earlier, this work is aimed at developing a generalized model to describe and

estimate the deformation of a variety of deforming surfaces without considering a special-

ized algorithm for each particular type of deformation. For this purpose, in view of the

fact that any smooth deformation can be made up of some smaller homogeneous defor-

mations, we partition a typical surface into patches whose deformation is approximately
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homogeneous. The goal is to ensure that they show such deformation, independently of

one another. This could be represented mathematically by what we call homogeneous de-

formation constraints. These constraints serve to force M1(.) to be close to M2(.) such that

the linear parameters make up the major component of M1(.). Deriving such constraints

requires the 3D positions of the points p◦i to be known. A rigid reconstruction method is

thus described in order to recover the undeformed shape. By combining the deformation

constraints with the data reprojection error, an optimization procedure is then formulated

for determining the 3D positions of the deformed points pi.

Computation of the Undeformed Shape: The underformed shape or reference shape

can be computed by a variety of methods. In particular I adopt a practical method based

on homographies which requires two images of the surface without deformation, as repre-

sented in Algorithm 1. The following is a detailed description of this rigid reconstruction.

Assuming that the surface is not in motion and remains in the undeformed state for

a while, the camera starts capturing the scene and surface while moving. A selection of

frames that cover different fields of view is then made. One of them is adopted as base

image. We compose image pairs, each consisting of the base image plus another from the

frame selection, called support image. In addition, the points p◦i are randomly grouped

into distinct sets, each of which includes 3 points and can share no points with other sets.

An estimate of the undeformed shape could be found per image pair through the following

2-view rigid reconstruction algorithm:

Step 1- The essential matrix between the base image and the support image is deter-

mined by using the image points in one image and the corresponding points in the other.

Step 2- By decomposing the essential matrix, we can compute the rotation R and a

scaled translation t̄ between the 2 views. As indicated in [65], the decomposition yields

four combinations of R and t̄, one of which is feasible. Positive depth constraint is then

used to disambiguate the physically impossible solutions. Let us assume that R and t̄
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Figure 5.2: Homography between the base and support views

contain the correct values.

Step 3- Each 3-point set constitutes a plane, for which an scaled Homography can be

determined according to Figure 5.2:

H = R− t̄.nT

d
(5.4)

where n and d denotes the normal to the plane and the distance from the origin, respectively.

As a consequence, in order to define the equation of the plane and eventually estimate the

3D positions of the 3 points, n and d should be known. d can be, however, eliminated

by setting it to 1. This way leads to an extra re-scaling of the positions without loss of

generality. We now build a linear system of 3 equations (one for each point), by which we

may achieve a correct analytical solution using the normal equation, thus estimating the

normal vector n, which consists in nT =

[
nx ny nz

]
. Consider that for one of the 3

points, q◦b and q◦s are 3-vectors corresponding to its homogeneous image points on the base

and the support image, respectively. We will therefore have

λ .q◦s = H.q◦b (5.5)

where λ is the ratio of the point depth from support view to that from base image. The 3
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rows of the Equation 5.5 are linearly dependent. However, we just need one equation per

point that is only a linear function of nx, ny and nz. Such an equation could be derived by

simply replacing λ in either the first or second row by the last row. The same procedure can

apply to the other 2 points, thereby resulting in a 3-equation linear system, where the only

unknowns are nx, ny and nz. This system has a single exact solution that can be obtained

via the normal equation. Having estimated the normal vector, it is trivial to calculate the

3D positions of the points in the coordinate system of base view by joining the projection

model with the plane equation.

Step 4- The step 4 is performed for all the 3-point sets of the image pair to determine

all the 3D positions.

Step 5- The steps 1 to 5 are repeated with the other image pairs to make additional 3D

estimates.

Step 6- Finally, we compute the average of all the estimates from all image pairs to

attain a reliable 3D structure for the undeformed shape with respect to the local referential

of base view. Note that, this is just a scaling of the true structure.

Homogeneous Deformation Constraints: Given that the undeformed shape has been

computed, and considering an image of the deformed surface, the objective is to determine

the 3D positions of the points.

The set of deformation constraints is defined so that, in the case of near-homogeneous

deformations, the linear parameters Q1 determine the mapping M1(.), i.e. they are more

significant than the quadratic and cross-term parameters Q2 and Q3. These constraints

are composed of the following: 1- the gradient of the transformation M1(.) at each point

pi with respect to p◦i should be approximately the same. 2- Conic constraints are used to

constrain the positions of the points p to a specified region around the points p̂. As a result,

the deformation constraints for point i, are defined as:
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Algorithm 1: Rigid Reconstruction
Input: q◦b and q◦s , Output: p◦.
* The surface remains still. A rotating camera captures its image.
* Make a selection of 2 frames covering different fields of view. Call either of these two
frames base image and the other support image
* Arrange points p◦i randomly into distinct sets, each of which includes 3 points.
Preferably these sets do not have any points in common.
while There are still 3-point sets to be processed do

* Pick out one of the sets.
* Compute the essential matrix between the base image and the support image
* Decompose the essential matrix to estimate the rotation R and a scaled translation t̄
between the 2 views.
* Define a Homography for the plane passing through the 3-point set as:

H = R− t̄.nT
d where d is a scalar as the distance and n. the plane normal

* Compose a 3-equation linear system from the following formula such that its
unknown is the normal vector: λ .q◦s = H.q◦b
* Estimate the normal vector and then calculate the 3D positions of the 3 points in the
coordinate system of base view by combining the projection model with the plane
equation.

end while

Fi(M1(.)) ∼= constant, 1≤ i≤ n

∥∥pi,x− p̂i,x
∥∥≤ δx,

∥∥∥pi,y− p̂i,y

∥∥∥≤ δy,
∥∥pi,z− p̂i,x

∥∥≤ δz, 1≤ i≤ n (5.6)

where n is the number of points on the patch and Fi denotes the gradient associated with

point i. Subscripts x, y, and z denote the x, y, z-coordinates and δx, δy, δz are thresholds to

constrain the positions of the estimated points.

Estimation of the Deformed Shape: The constraints described above are used in an

optimization procedure designed to minimize the regular data fitting residuals, namely the

reprojection error. The goal of this minimization is to obtain an accurate estimate of the

transformation matrix Q and of c, therefore allowing the estimation of the 3D positions of

the points pi lying on the patch, by means of the application of the quadratic deformation
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model M1
(
p◦i
)
= Q.si. The image projection model considered is weak-perspective. The

use of the weak-perspective model leads to a simpler and more efficient formulation of

reprojection error. Consider that qi =

[
ui vi

]T
are the image points corresponding to

pi, the optimization problem can be expressed as a second-order cone program:

minQ, c
n
∑
i=1

[(
Zave.ui− f .M1

(
p◦i
)[1])2

+
(

Zave.vi− f .M1
(
p◦i
)[2])2

+

w. (F1(M1(.))−Fi(M1(.)))
2
]

, subject to

∥∥pi,x− p̂i,x
∥∥≤ δx,

∥∥∥pi,y− p̂i,y

∥∥∥≤ δy,
∥∥pi,z− p̂i,x

∥∥≤ δz, 1≤ i≤ n

∥∥∥pi,x−p◦i,x
∥∥∥≤ ηx,

∥∥∥pi,y−p◦i,y
∥∥∥≤ ηy,

∥∥∥pi,z−p◦i,x
∥∥∥≤ ηz, 1≤ i≤ n (5.7)

where superscripts [1] and [2] indicate the first and second entry of the 3-vector M1
(
p◦i
)
,

respectively. f is the focal length and Zave the average depth of the points on the patch,

specified by the mapping M1. w is a factor to create a weighted sum of reprojection error

plus a regularization term.

For deformations in which the deviation from the undeformed state is small, the latter

set of conic constraints restricts the extent of position variation of the points with respect

to the undeformed shape. Those constraints are specified by the thresholds ηx, ηy, ηz

which are empirically estimated and which are, in general, bigger than δx, δy, δz. Refer

to Algorithm 2 for an algorithmic representation of the non-rigid reconstruction described

above.
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Algorithm 2: Non-rigid Reconstruction
Input: p◦, Output: p.
* The undeformed shape was estimated. Consider an image of the deformed surface.
* Divide the surface into patches.
while there are still patches to reconstruct in the current frame do

* Draw a random patch from the remaining ones.
* Solve the optimization problem expressed in Equation 5.7 to minimize the error
over deformation constraints along with the reprojection error.
* Substitute the output of the optimization Q and c into the pi = M1 (p◦) = Q.si + c.
At this point, the deformed positions are calculated.

end while

5.5 Experiments and Results

We have conducted several experiments with both synthetic and real data in order to imple-

ment and analyse the proposed reconstruction procedure.

Synthetic Data: The synthetic data consists in several 3D points distributed across the

surface of an analytical 3D shape. The data is generated so that different types of defor-

mation can be applied to the surface. These deformations can be inextensible or undergo

expansions/contractions.

In the case of inextensible deformations, I use a 3D cloth simulator- see Figure 5.3.

I also consider shapes that can be modeled analytically namely cylinders, ellipsoids and

spheres-see Figure 5.4. Their analytical models can be used to generate the set of n point

correspondences required. For example, the sphere is expanded/contracted uniformly by

changing its radius. Although these volumetric shapes are simple surfaces, they are how-

ever adequate for synthetic testing so that I can evaluate our approach quantitatively. Points

p are assumed to be visible.

The synthetic data corresponds to images acquired by a camera located 50 cm away

from the surface, with a focal length of 500 pixels. In case of the undeformed/reference

shape, the 3D data is rotated and translated with known values. In case of the deformed
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Figure 5.3: Inextensible Surface: Simulated deformations.

Figure 5.4: Synthetic extensible surfaces - Top: from left to right: ellipsoid, deformed
cylinder, sphere. Bottom: synthetic extensible surface, the left image represents a patch of
the sphere. The right image shows the points. The reconstructed and ground-truth points
have been marked with ’+’ and ’o’, respectively.

shape, the image is split into approximately identical patches. In my case I considered a

maximum of 12 patches. Reconstruction was also performed separately for divisions with

a smaller number of patches, The accuracy of the approach is evaluated by using the 3D

reconstruction error, which is defined by the equation below.

RE =
1
N

N
∑
i=1

[
‖pi− p̂i‖2 /‖p̂i‖2

]
. (5.8)

This equation corresponds to the normalized Euclidean distance between the observed
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Figure 5.5: Comparison of reconstruction error between my approach and other meth-
ods. Two inextensible-case methods (Left) and one extensible-case method (Right), re-
spectively. The results of my method correspond to the combined results for both defor-
mation types. ×103 and ×104 indicate that the values are rescaled by ×103 and ×103,
respectively.

Figure 5.6: Left: Reconstruction error relative to the number of patches. Right: Recon-
struction error relative to the noise in image points.

(p̂i) and the estimated (pi) coordinates of the world points, with N being the total number

of points- the average N in my case is 90. Note that the results correspond to average values

obtained by iterating the optimization 100 times for each of the 10 deformations considered.

Taking into account that the reconstruction is performed up to a scale factor, an estimate for

the scale factor has to be computed. The left-hand plot of Figure 5.6 shows the variation of

the reconstruction error as a function of the number of patches. In addition to the case of

data without noise I also performed the 3D reconstruction in cases where Gaussian noise

(with varying standard deviation) was added to the coordinates of the image points–the
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results are presented in the right-hand plot of Figure 5.6.

Figure 5.7: Inextensible surface: Real deformations. Courtesy of [33]

Comparative Study: In addition to the evaluation of my procedure, I compare my

approach with other approaches in the literature. The approaches considered were:

Method 1: Inextensible - the SOCP-based algorithm proposed in [32], in which the

authors use a triangular mesh together with a-priori datasets for learning the deformations.

The deformation constraints are expressed using the upper-bound model.

Method 2: Inextensible - The approach of [56] where the authors used differential

models to represent the deformation constraints and applied an optimization scheme based

on these models.

Method 3: Extensible - The work of [51] in which the authors formulate the recon-

struction problem of a generic surface in terms of the minimization of stretching energy

and impose a set of fixed boundary 3D points to constrain the solution.

As presented in the left-hand chart in Figure 5.5, the methods 1 and 2 are affected by

significant errors in the case of extensible deformation, whereas my method performs sat-

isfactorily for both deformation types. The right-hand chart in Figure 5.5 shows that results

obtained with method 3 display significant errors in the case of inextensible deformation

even though results for extensible deformatins have small errors.

Real Data: I also applied my reconstruction procedure to images of real deformations

acquired by a camera. The datasets contain 2D image points and their corresponding posi-
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Figure 5.8: Top: Sample deformations (Courtesy of [33, 56]). Bottom: The reconstructed
points of the deformations above. The points marked with ’*’ and those marked with ’o’
show the estimated and the ground-truth points on the paper-sheet, respectively.

tions in the reference image (undeformed shape). The test objects include a paper-sheet, a

cushion, and a piece of fabric, etc for the inextensible case, as shown in Figures 5.7. Fig-

ure 5.8 shows 2 deformations and the corresponding reconstructed shapes. In this Figure,

the left-hand surface has an irregular point distribution, whereas the right-hand surface is

represented by points in a fixed pattern. Also, I use beach and football balls for the case

of extensible deformations, as shown in Figure 5.9. In this case, the desired deformations

are obtained by inflating/deflating these objects and 8 points per patch are considered. For

extensible deformations I use a random shape as the reference shape. The 3D positions of

the points have been obtained with acceptable accuracy.
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Figure 5.9: Top: Extensible deformations using beach and football balls.

5.6 Conclusions

We presented an approach to reconstruct deformable surfaces using a single image. The

deformations can range from inextensible to extensible, with the latter undergoing expan-

sion/contraction. To perform this reconstruction, a reference 3D shape was used. On the

other hand, I employed the observation that a real surface usually displays local homo-

geneous deformations which together create a more general deformations of the surface.

To compute the deformartion and perform the 3D reconstruction, the surface was divided

into patches. Given the undeformed shape, this was formulated as an optimization scheme,

intended to estimate the 3D positions of the deformed points from one image. The opti-

mization acts on each patch separately. The experimental results show that this approach

can perform 3D reconstructions of several types of deformations with acceptable precision.
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Reconstructions Based on Homothetic Deformation

5.7 Problem Statement

In this subtask, I tackle the problem of reconstructing extensible surfaces, specially those

that may extend or be enlarged in volume and take the form of volumetric shapes similar

to the sphere, cylinder and the ellipsoid. Examples are plastic balloons, hearts, balls - see

Figure 5.10. Such objects undergo a continuous, relatively uniform expansion over any

small patch of the surface. This expansion usually occurs along a certain axis. Given a 3D

template consisting of known 3D points and its image, the objective is to determine the 3D

positions of a set of points in any image, from a video sequence acquired with a calibrated

camera. Correspondences are established with their positions in the template image. In my

formulation of the reconstruction problem, I assume that the whole surface deformation is

locally homothetic i.e. homothetic deformation implies uniform expansion. As a result,

the surface is treated as being built from patches connected together, with the deformation

of each patch being considered homothetic. This kind of deformation can be represented

by a linear function that transforms the 3D template into a deformed patch. This function

is decoupled into a pure deformation and a rigid body transformation. My approach is

developed in such a way that we start by estimating the pure deformation first. Therefore

an optimization procedure is defined so that only the pure deformation is estimated. The

rigid body transformation can be then estimated. This is done by decomposing the essential

matrix between the current image and the virtual image that corresponds to the projection of

the deformed points following the application of the pure deformation. Finally, as the result

of the estimation of the linear mapping, we can compute the 3D positions of the points for

each surface patch, separately, up to a scaling factor. Each patch is assumed to overlap only

up to two neighboring patches. That assumption allows a smooth reconstruction up to a

global scale, by enforcing the smoothness of the surface.
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Figure 5.10: Test objects that can be expanded by inflation.

Organization of this subtask: First, I describe the decomposition of the linear mapping.

The optimization itself is explained in detail in the following section. Next. the experimen-

tal results are presented, followed by conclusions.

5.8 Proposed Approach: Deformation Model

As disscussed earlier, the deformation gradient F is expressed as:

F =


δxi
δx◦i

δxi
δy◦i

δxi
δ z◦i

δyi
δx◦i

δyi
δy◦i

δyi
δ z◦i

δ zi
δx◦i

δ zi
δy◦i

δ zi
δ z◦i

 (5.9)

F can be written as either R.U or V.R through a polar decomposition. In each case,

R is the rotation matrix, and U and V are symmetric matrices describing stress and strain,

which contribute to deformations.

Uniformly extensible deformations are homothetic. These deformations are character-

ized by having the same gradient at every point, with the gradient being a special case of

the gradient for homogeneous deformation. As a result, the mapping from the undeformed
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shape, which is chosen as the template, onto the deformed surface can be formulated as:

pi = F.p◦i + c (5.10)

where c is a 3× 1 vector that denotes the rigid body translation. We refer to this linear

mapping as deformation model. Every surface patch is then represented separately by

means of this mapping. Let us denote F as R.U. I propose an algorithm for calculating the

rigid body transformation depending on the deformation matrix U to be given in advance.

The algorithm below shows how to perform the calculation:

For a surface patch, the 3D positions that result from the equation p̂i = U.p◦i are on a

virtual patch that can be viewed as intermediate between the template and the real deformed

patch. The corresponding points on both the virtual and the real patch are related as follows:

pi = R.p̂i + c (5.11)

This equation basically defines a transformation between 2 coordinate systems. How-

ever, in our case, R and c specifies a transformation between p̂i and pi in the same coor-

dinate system (i.e. camera coordinates). To deal with this transformation, we consider it

differently, in the sense that, with no loss of generality, we can assume that R and c indi-

cate the transformation between the current image and a virtual image - see Figure 5.11.

This is a dual configuration of the real problem under consideration. The virtual image, in

fact, represents only 2D image points obtained by projecting the intermediate patch onto

the image plane with the calibration matrix. As a result, we now have one rigid surface

patch projected onto two separate images that are related by R and c. By decomposing

the essential matrix, R and c are then estimated. To do so, the following procedure can be

followed:
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Figure 5.11: Left-side image: the real problem. Right-side image: the dual problem. S0,
SV and S indicate the template, the intermediate patch and the real deformed patch respec-
tively.

1-Estimate the essential matrix between the two images by using the corresponding

image points for the patch.

2-Decompose the essential matrix into rotation and translation.

3- This decomposition yields 4 possible solutions [65]. To find the one that is feasible

in our problem, the positive depth constraint can be applied.

Having estimated R and c, the deformed surface can be reconstructed up to scale. How-

ever, the algorithm just described depends on our knowledge of the deformation matrix U.

Since this matrix is unknown, we have to determine it. For this purpose, we formulate an

optimization procedure in which U is the unknown. Such optimization requires an initial

estimate of U. The 3-step algorithm above forms the core of my optimization procedure.

For simplicity’s sake, I call it pose estimation algorithm.
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5.9 Proposed Approach: Optimization

Consider that K is a known calibration matrix with focal length f and that q = ( u, v )

denotes the image points - corresponding to p - projected in the image of the deformed

surface. For point i, the projection equations are defined by f .px,i − ui.pz,i = 0 and

f .py,i− vi.pz,i = 0. These equations are used to define the reprojection error to be mini-

mized. I also define a second constraint, intended to ensure that the deformation is approxi-

mately homothetic. This is equivalent to saying that the off-diagonal entries of U should be

approximately zero. This results from the fact that the diagonal entries of the deformation

matrix U are dominant for a homothethic surface, compared with the off-diagonal ones.

The optimization procedure includes the pose estimation algorithm, reprojection error and

the constraint for homothetic deformation. Algorithm 1 details the different steps of the

optimization procedure.

Algorithm 3: Optimization procedure to estimate U0.
Initialization of U0.
while the total error is not lower than a specified threshold do

Update U0.[
R0, U

]
= PolarDecom (U0)

Pose estimation with U as input.
Minimization of the total error including reprojection error and the other constraint
error.

end while
The iteration is stopped and the current value for U0 is used.

Next I describe this algorithm in detail:

Step 1: U0 is a 3× 3 matrix that is to be estimated as the result of the optimization.

This matrix is initialized with random values.

Step 2: U0 is factorized by a polar decomposition into a deformation matrix U, which

is symmetric, positive semi-definite and a rotation matrix R0 which is not used.

Step 3: U, is used in the pose estimation algorithm. At this point, R and c are deter-
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mined.

Step 4: After having estimated all the parameters of the deformation model, approx-

imate 3D positions can be computed using Equation 5.10. Then, the following error is

minimized with respect to U0:

minU0

n
∑
i=1

[(
f .px,i−ui.pz,i

)2 +( f .py,i− vi.pz,i
)2
]
+w.∑OffDiagonalEntries (U)2

(5.12)

where the latter term indicates the sum of squares of off-diagonal entries of U and w is a

weighting factor which is set empirically. n is the number of points.

Figure 5.12: The chain-like form of patches

The above optimization is a non-linear sum of squares problem that can be solved using

the Levenberg-Marquardt algorithm.

Step 5: If the step error (that is, the size of the change in the location where the objective

function was evaluated) is not lower than a specified threshold, the optimization is iterated
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starting with a new random value for U0.

Step 6: Once the value for matrix U0 is estimated, we can solve for all the parameters of

the deformation model by using steps 2 and 3. As a result, the 3D positions of the points are

determined up to a scaling factor. This factor is due to the fact that translation c is estimated

only up to a scale factor. The whole approach proposed so far is applied separately to all

surface patches. Consequently, each will be reconstructed on a possibly different scale. In

order to obtain a common scale, surface smoothness is enforced by considering the points

where the patches overlap. Assume that the patches are labeled and that there are a total

of na patches. Every 2 successive patches overlap in chain-like form, as shown in Figure

5.12. The smoothness enforcement is accomplished with this formula:

scale =
1
nc

nc
∑
i=1

1
3

3
∑
j=1

pi, j,l/pi, j,k

 (5.13)

Figure 5.13: Synthetic extensible surfaces.Top: from left to right: ellipsoid, deformed
cylinder, sphere. Bottom: Left image shows a patch of the sphere, while the Right image
shows the points on the surface. The estimated and the ground-truth points are marked with
’+’ and ’o’, respectively.
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Figure 5.14: Left: Reconstruction error with respect to noise added to image points. Right:
A comparison of reconstruction error between my approach and the approach of [51].

where nc is the number of common points belonging to patches l and k. Subscript j denotes

the x, y and z coordinates. Patch 1 is selected to be the scaling reference and all the patches

will be rescaled with respect to it. Equation 5.13 is employed for every 2 overlapping

patches, sequentially, up to patch na.

5.10 Experimental Results

In this section, I validate the proposed approach by conducting a set of experiments on

data that conforms to the type of deformation I am addressing. For that purpose I consider

simple examples, namely the cylinder, ellipsoid and the sphere- see Figure 5.13. Their

mathematical models can be used to generate the set of n point correspondences required.

For example, the sphere is expanded/contracted uniformly by changing its radius. Although

these volumetric shapes are simple surfaces, they constitute adequate models for the tests

with synthetic data, so that the efficiency of the approach can be evaluated quantitatively.

Points p are assumed to be visible from the virtual camera, as illustrated in Figure 5.13.

There are a total of 185 points which are divided into 10 patches, each of which has the

same number of points. This is done by considering 5 common points between any two
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overlapping patches and so we have 25 points per patch. The accuracy of the approach is

evaluated using the 3D reconstruction error which is defined by:

Figure 5.15: Top: Real extensible deformations using plastic baloons with the recon-
structed points indicated by dots. Bottom: The surface fit to the points.

RE =
1
n

n
∑
i=1

[
‖pi− p̂i‖2 /‖p̂i‖2

]
(5.14)

This error corresponds to the normalized Euclidean distance between the observed (p̂i)

and the estimated (pi) world points where n is the total number of points. Taking into

consideration that the reconstruction estimates the 3D coordinates up to scale with respect

to the ground-truth data, an estimate of the scaling factor is used in the calculation of the

reconstruction error. In addition to the case of synthetic data without noise, I also estimate

the reconstruction error by adding noise to the coordinates of the 2D image points (Fig. 5).
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The results shown in the left-side plot correspond to average values obtained by repeating

the estimation 100 times for each one of 15 different random deformations used. Five

different random deformations were considered for each synthetic surface. As expected,

the number of iterations required for the optimization to converge increases with noise. In

the absence of noise the average number of iterations required for convergence is 150.

The experiments with real images were performed using a plastic baloon. The desired

deformations are obtained by inflating this object. 3D ground-truth data corresponding to

a template shape is also computed- see Figure 5.15. The image of the deformed surface

is acquired by a calibrated camera. The surface includes a total of 80 points which are

grouped into 7 patches with 3 points on each overlapping area. Each patch has 14 points.

The input data contains 2D point correspondences matched to the template image.

I compare the performance of the proposed approach with the approach proposed in

[51], where the authors formulate the reconstruction of a generic surface in terms of the

minimization of stretching energy while imposing a set of fixed boundary 3D points to

constrain the solution - see Figure 5.14. The results given on the right-side plot show the

averages obtained by repeating the estimation 100 times for each of 10 deformations of the

plastic baloon.

5.11 Conclusions

In this subtask, I have proposed a reconstruction method for elastic surfaces that can expand

freely. This approach is based on the assumption that the deformation is locally homothetic

(i.e. uniformly extensible), and reconstructs the surface by splitting it into overlapping

patches. Each local deformation was then modeled by a linear mapping between the image

and a known 3D template. The mapping is defined by a combination of a pure deformation

and a rigid-body transformation. The deformation and rigid transformation were estimated
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by means of an optimization procedure. As a result, estimates of the 3D coordinates (up to

scale) of the points on each patch are obtained. A global scale factor for all the patches is

obtained by enforcing the smoothness of the reconstruction. The results demonstrated the

efficiency of the approach.



CHAPTER 6

CONCLUSIONS AND DISCUSSIONS

105



106 CHAPTER 6. CONCLUSIONS AND DISCUSSIONS

6.1 Thesis Summary

In this dissertation, we took into full consideration the problem of reconstructing surfaces

that deform in a natural way. The deformation could take two general forms, namely in-

extensible and extensible. Each of these deformation types has been carefully studied by

reviewing key concepts to sophisticated theories and then efficient approaches have been

proposed accordingly after going through elementary solutions to advanced methodologies.

The whole work carried out was an organized effort to accomplish the thesis objectives

in a 3-stage research program. Each stage was allocated to one task and we dealt with

the reconstruction problem in various ways. To be precise, in each task certain algorithms

have been designed in accordance with the elements defined in the reconstruction problem.

Therefore, three general ideas have been proposed in order to perform the surface recon-

struction. Below, we discuss these ideas and compare them with respect to advantages and

disadvantages.

6.2 Depth Camera Combined with a Monocular Camera

Strength: a ToF camera capable of supplying relatively accurate depth measurements can be

regarded as an auxiliary tool to assist 3D technology in creating highly precise applications,

specially when the need for prior data or knowledge is essential to the performance of a

reconstruction system. Likewise, because having prior learning data is an indispensable

requirement for surface reconstructions based on a mesh representation, we employed a

ToF camera calibrated relative to an RGB camera in order to acquire this data. This is an

evident benefit of depth cameras.

Summary of the first task: we dealt with reconstruction of isometric surfaces. To per-

form such monocular reconstruction, an algorithm based on the linear deformation model
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and consisting of a non-linear least squares optimization was proposed. To find the proper

deformation model, prior training data should be used. We therefore provided this prior

data by proposing a novel approach for the reconstruction of a typical surface so that the

computed deformation model can be also extended to other isometric surfaces. This ap-

proach was founded on a range camera along with a conventional camera and its goal is to

estimate the 3D positions of the mesh vertices from the depth of the feature points. By ap-

plying this approach to multiple mesh deformations we acquired the training data required.

Experimental results showed that both the proposed reconstruction schemes are efficient

and result in accurate reconstructions.

Weakness: the results achieved with this camera configuration were found to be excel-

lent in comparison with those obtained from the other two ideas. However, since a system

equipped with a depth camera is costly and also limited to particular operating situations,

the necessity of such cameras should be justified when an equally efficient system exists

that only relies on a conventional camera. This implies that minimal hardware in cases like

this is an issue to consider. Consequently, the two approaches discussed next makes use of

a monocular camera.

6.3 Joint Use of Deformation Constraints

Strength: in the absence of depth cameras, surface reconstruction becomes more compli-

cated. In order to reduce that complexity, an obvious idea is to highly constrain the problem

with the help of physical requirements imposed by the type of deformation (i.e. deforma-

tion constraints). As a result, the two sets of deformation constraints already introduced in

the context (upper-bound model and differential model) have been reformulated in a way

that facilitates the joint use of these, thus leading to a well-constrained problem, solved

by means of a semi-definite programming problem for the reconstruction of inextensible

surfaces. The results of this approach were shown to be comparable to those of the pre-
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vious approach. Although it is not able to perform as effectively, however this one offers

the advantage of using only a conventional camera over the other. Also, in line with this

idea, a second-order cone programming problem has been defined for the reconstruction of

conformal surfaces separately.

Summary of the second task: this task was made up of two subtasks. In the first sub-

task, monocular reconstruction of deformable, inextensible surfaces using one image was

addressed. To perform this reconstruction, an SDP optimization was formulated by im-

posing constraints corresponding to the type of deformation i.e. deformation constraints.

These constraints were defined using a differential model of the deformation, and also the

upper-bound model. The application of the differential model requires that a paramet-

ric mapping between the template and the 3D surface be defined. We used a Free-Form

Deformation for this purpose. Both types of constraints were then combined in a SDP

optimization program. The optimization estimated the 3D positions of the points on the

deformed surface. The experimental results show and characterize the performance of the

proposed approach. The second subtask was an investigation of conformal deformation re-

construction, aiming to propose an easy-to-implement methodology that still attains accu-

rate reconstructions. The results show that the approach is reasonably efficient. Assuming

that the boundaries/contours of the surface undergo negligible motion, a set of estimates

was obtained for the 3D positions of points on the surface using a modified, variational

formulation of the upper-bound model and The best estimate was then selected based on

some criteria.

Weakness: a primary issue with a reconstruction algorithm based on deformation con-

straints is that it only performs well when applied to deformations classified as having a

particular type of deformation. Therefore, such an approach fails to give accurate results if

the deformation deviates from the deformation type specified in the problem, as the defor-

mation constraints will not be satisfied as expected.
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6.4 Deformation Model Based on Surface Transformations

Strength: deformation constraints are specially necessary when a specific deformation type

is to be reconstructed, meaning that these are not applicable if the surface undergoes de-

formation with unknown degrees of freedom. In this case, surface transformations provide

a convenient way to model the deformation and allow for the reconstruction of surfaces

showing a broad class of deformations. On the assumption that a natural surface displays

local homogeneous deformations, we proposed a patch-based algorithm based on a linear

deformation model in order to reconstruct surfaces regardless of their deformation types.

This approach is point-wise and gives satisfactory results.

Summary of the third task: this task also contained two subtasks. In the first subtask,

we presented an approach to reconstruct deformable surfaces using a single image. The

deformations can range from inextensible to extensible, with the latter undergoing expan-

sion/contraction. To perform this reconstruction, a reference 3D shape was used. On the

other hand, we employed the observation that a real surface usually displays local homo-

geneous deformations which together create a more general deformations of the surface.

To compute the deformartion and perform the 3D reconstruction, the surface was divided

into patches. Given the undeformed shape, this was formulated as an optimization scheme,

intended to estimate the 3D positions of the deformed points from one image. The opti-

mization acts on each patch separately. The experimental results show that this approach

can perform 3D reconstructions of several types of deformations with acceptable precision.

In the second subtask, we have proposed a reconstruction method for elastic surfaces that

can expand freely. This approach is based on the assumption that the deformation is locally

homothetic (i.e. uniformly extensible), and reconstructs the surface by splitting it into over-

lapping patches. Each local deformation was then modeled by a linear mapping between

the image and a known 3D template. The mapping is defined by a combination of a pure

deformation and a rigid-body transformation. The deformation and rigid transformation
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were estimated by means of an optimization procedure. As a result, estimates of the 3D

coordinates (up to scale) of the points on each patch are obtained. A global scale factor for

all the patches is obtained by enforcing the smoothness of the reconstruction. The results

demonstrated the efficiency of the approach.

Weakness: Compared with the other two approaches, this approach shows a lower level

of accuracy. However, that deficiency is compensated at the cost of a more general recon-

struction scheme.

The research conducted for this thesis is a starting point for more remarkable contribu-

tions in the future.
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Throughout this thesis, we use the convention listed below as mathematical symbols.

Matrices are represented as bold capital letters (A ∈ Rn×m, n rows and m columns).

Vectors are represented as bold lower-case letters (a∈Rn, n elements). By default, a vector

is considered a column. Lower-case letters ( a) represent one dimensional elements. By

default, the jth column vector of A is specified as a j. The jth element of a vector a is

written as a j. The element of A in the row i and column j is represented as ai,j. A(1:2)

indicates the first 2 rows of A. A(3) denotes the third row of A. Regular capital letters ( A)

indicate one dimensional constants. We use R after a vector or matrix to denote that it is

represented up to a scale factor.
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