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Abstract. We study uniformities and quasi-uniformities (unifor-
mities without the symmetry axiom) in the common language of
entourages. The techniques developed allow for a general theory in
which uniformities are the symmetric part. In particular, we have
a natural notion of Cauchy map independent of symmetry and a
very simple general completion procedure (perhaps more transpar-
ent and simpler than the usual symmetric one).

Introduction

For the description of (symmetric) uniformity in the point-free con-
text one typically uses the geometrically very natural Tukey type ap-
proach of a specific system of covers. For the non-symmetric case (al-
though also here an approach using a specific system of pairs of covers
is possible), it is natural to adopt an alternative definition using en-
tourages (modelling the system of neighborhoods of the diagonal in
the product X × X from the classical Weyl definition). It is not im-
mediately clear that the two approaches are equivalent: the point-free
(localic) products are not conservative, that is, the square L × L of
locales does not quite correspond to the square X × X of topological
spaces (see e.g. [15, 24]). But they are ([20, 21]). This fact is somewhat
surprising; it is deeper than the classical equivalence, and can be used
to advantage (see e.g. the solution of an open problem in [23]).

As the title suggests, one of the topics of our paper is the concept of
entourages. It is an ideal background for treating uniformities in (not
necessary symmetric) generality (with the symmetric uniformity as a
– simpler – special case). It provides an expedient common language
enabling us, in particular, to present a natural theory of completeness
not dependent on symmetry. We discuss this technique in more detail
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than necessary just for this purpose, believing that some of its aspects
are interesting in themselves.

Density of uniform sublocales is crucial for understanding complete-
ness. It also has some features that have not been discussed in the
literature (in particular, in the non-symmetric case, with entourages).
Therefore we give it a somewhat more extensive treatment.

As for the completeness questions, the reader is probably aware of
a rich literature concerning this topic. To name just a few: there is
the pioneering Isbell paper [14], then Kř́ıž [17], Banaschewski [2, 3],
Banaschewski and Pultr [6, 7, 8], Pultr and Tozzi [25], Banaschewski,
Hong and Pultr [4], Hong and Kim [13]. Extending the topic to the
non-symmetric case opened new vistas and brought more understand-
ing to some of the aspects (Frith and Hunsaker [11], Frith, Hunsaker
and Walters-Wayland [12], Kim [16]). The perspectives differ: there is
Isbell’s theory of feet, another one using the idea of Samuel compacti-
fication, yet another focusing on the behavior of uniform dense embed-
dings; in the non-symmetric case one uses the technique of biframes.
Our approach is closest to that of the uniform dense embeddings, but
the perspective is different. The central point here is the notion of
Cauchy map. The natural construction of a largest frame in which a
uniform frame is still densely embedded has a feature which has so far
not been exploited, it provides a universal Cauchy map. Focusing on
this we obtain a simple and more transparent completion procedure.
Moreover, universality does not dependent on symmetry so that this
approach to completion automatically yields the desired general result
(with the symmetric one as a special case).

The paper is organized as follows. After Preliminaries we concen-
trate in Section 2 on the technique of entourages. This is then used
throughout the rest of the paper. In particular it is consequently ap-
plied in Section 3 for introducing uniformities and quasi-uniformities
and their basic properties. Next, in Section 4 we discuss density in
uniform and quasi-uniform contexts; as in the whole of the paper we
use, whenever it is of advantage, the localic technique. Section 5 is de-
voted to the pivot of our approach to completeness, namely to Cauchy
maps (it should be noted that it was B. Banaschewski who proposed
to view Cauchy maps as generalized Cauchy points, see e.g. [3]). It
turns out that the construction used so far to produce a minimal dense
superlocale in fact produces a universal Cauchy map (the proof of this
is very easy, easier than the original minimal density one, probably be-
cause the Cauchy context is somewhat more natural). Then, in Section
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6, we obtain what we want to have about completeness and comple-
tion as simple applications. In Section 7 we add a few remarks on the
non-symmetric case and its relation with the symmetric one.

1. Preliminaries

1.1. Frames and locales. Recall that a frame is a complete lattice L
satisfying the distributive law

a ∧ (
∨
B) =

∨
{a ∧ b | b ∈ B} (dist)

for all a ∈ L and all subsetsB ⊆ L. A frame homomorphism h : L→M
preserves all joins (including the void one, the bottom 0) and all fi-
nite meets (including the top 1). The resulting category will be de-
noted by Frm. A typical frame is the lattice Ω(X) of all open sets
of a topological space X; if f : X → Y is a continuous map then
Ω(f) = (U 7→ f−1[U ]) : Ω(Y ) → Ω(X) is a frame homomorphism.
Thus one has a contravariant functor Ω: Top → Frm (where Top is
the category of topological spaces). Setting Loc = Frmop one ob-
tains the category of locales. Then Ω becomes a covariant functor
Top→ Loc; furthermore, restricted to the subcategory of sober spaces
it is a full embedding. Thus one can think of locales as a generalization
of (sober) topological spaces.

1.1.1. It is of advantage to view Loc as a concrete category with the
arrow opposite to a frame homomorphism h : L → M represented by
its right Galois adjoint f = h∗ : M → L (uniquely determined by the
fact that h preserves all joins). Such f ’s will be referred to as localic
maps.

1.1.2. By (dist), if L is a frame and a ∈ L, the map a ∧ (·) : L → L
preserves arbitrary joins and thus has a right adjoint a → (·) : L → L
determined by c ≤ a→ b iff a∧ c ≤ b. Hence, every frame is a Heyting
algebra (note, however, that a frame homomorphism is not necessarily
a Heyting one).

The pseudocomplement of a ∈ L is a∗ = a → 0. We will use the
standard facts like a ≤ b⇒ b∗ ≤ a∗, a ≤ a∗∗ or a∗∗∗ = a∗.

1.1.3. Localic maps are just the infima preserving maps f : L → M
(with left adjoint f ∗) such that

f [Lr {1}] ⊆M r {1} and f(f ∗(a)→ b) = a→ f(b)

for every a ∈M and b ∈ L ([22]).
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1.1.4. We set a ≺ b for a∗ ∨ b = 1. One speaks of a regular frame (or
locale) if a =

∨
{x | x ≺ a} for every a.

Further, let ≺≺ be the largest interpolative relation (i.e. such that
a ≺≺ b ⇒ ∃c ∈ L : a ≺≺ c ≺≺ b) contained in ≺. One speaks of a
completely regular frame (or locale) if a =

∨
{x | x ≺≺ a} for every a.

1.2. Down-set frame. The down-set frame DL of a frame L is the
frame {U ⊆ L | ∅ 6= U = ↓U} (where ↓U = {x | x ≤ a ∈ U}, as usual)
with meets and joins given respectively by intersections and unions.
The mapping

λ′ = (a 7→ ↓a) : L→ DL

is a localic map (it is the right adjoint to v = (U 7→
∨
U) : DL → L).

Note that for any meet homomorphism φ : L → M there is a unique
frame homomorphism g : DL→M such that gλ′ = φ, given by g(U) =∨
{φ(u) | u ∈ U}.

1.3. Taking quotients of a frame (saturation). For a relation R ⊆
L×L on a frame L, call an s ∈ L saturated (more precisely, R-saturated)
if

aRb ⇒ ∀c, a ∧ c ≤ s iff b ∧ c ≤ s.

As any meet of saturated elements is saturated, we have a monotone
mapping κ = (x 7→ κ(x)) =

∧
{s | x ≤ s, s saturated} satisfying

x ≤ κ(x), κκ(x) = κ(x) and, moreover, κ(x ∧ y) = κ(x) ∧ κ(y) (the
nucleus of R), and if we set

L/R = {x | x = κ(x)}

we obtain a frame homomorphism κ′ = (x 7→ κ(x)) : L → L/R such
that

(1.3.1) xRy ⇒ κ′(x) = κ′(y), and
(1.3.2) if for a frame homomorphism h : L → K one has xRy ⇒

h(x) = h(y) then there is precisely one frame homomorphism
h : L/R → K such that h · κ′ = h; moreover, for x ∈ L/R,
h(x) = h(x)

(see e.g. [22]).

1.4. Sublocales. Subentities of locales (viewed as “generalized sub-
spaces”) are represented by sublocales. A subset S of a frame L is a
sublocale of L if, for any A ⊆ S, x ∈ L and a ∈ S, we have

∧
A ∈ S

(in particular, 1 ∈ S) and x → a ∈ S. Sublocales are precisely such
subsets for which the embedding map j : S → L is a (one-to-one) lo-
calic map (recall 1.1.1 and 1.1.3) — in fact, extremal monomorphisms
in Loc.
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The set S(L) of all sublocales of L forms a coframe (i.e., a complete
lattice satisfying the dual of (dist)) under inclusion, in which arbitrary
infima coincide with intersections, {1} is the bottom element and L is
the top element. When S is a sublocale of L we also say that L is a
superlocale of S.

For more about frames and locales see e.g. [15, 22].

2. Technique of entourages

2.1. Coproduct ideals. For any frame L, take the Cartesian product
L×L as a poset and consider the frame D(L×L). Call U ∈ D(L×L)
a coproduct ideal (shortly, a cp-ideal) if

(2.1.1) for any A ⊆ L and b ∈ L, if A × {b} ⊆ U then (
∨
A, b) ∈ U ,

and
(2.1.2) for any a ∈ L and B ⊆ L, if {a} ×B ⊆ U then (a,

∨
B) ∈ U .

Note that cp-ideals are precisely the elements in D(L × L) saturated
with respect to the relation

R = {(
⋃
x∈A
↓(x, b), ↓(

∨
A, b)), (

⋃
y∈B
↓(a, y), ↓(a,

∨
B)) | A,B ⊆ L, a, b ∈ L}.

The sets A and B in (2.1.1)-(2.1.2) can be void; hence, in particular,
each cp-ideal contains as a subset n = {(0, b), (a, 0) | a, b ∈ L}. It is
easy to check that for each (a, b) ∈ L× L,

a⊕ b = ↓(a, b) ∪ n

is a cp-ideal.
Intersections of cp-ideals are obviously cp-ideals and thus we have

a complete lattice, which is indeed a frame; however, unions of cp-
ideals are not necessarily cp-ideals and their suprema in this frame are
typically bigger.

2.2. Binary products. Let L be a frame. Recall (see e.g. [15, 22];
it should be noted that the first construction of frame coproducts ap-
peared in [9]) that the coproduct L ⊕ L in Frm (product in Loc) is
just the frame

L⊕ L = {U ∈ D(L× L) | U is a cp-ideal}

with coproduct injections

ι1 = (a 7→ a⊕ 1) : L→ L⊕ L, ι2 = (b 7→ 1⊕ b) : L→ L⊕ L.

Note that for each U ∈ L⊕ L,

U =
∨
{a⊕ b | (a, b) ∈ U} =

⋃
{a⊕ b | (a, b) ∈ U}.
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Notation. Using the symbol L×L when speaking of L⊕L as a product
in the category Loc would probably obscure the matter. Therefore, we
will keep the notation L⊕L also in Loc. We only have to keep in mind
that then the injections ι1, ι2 become projections p1, p2 : L⊕ L→ L.

2.3. Composition of decreasing binary relations. For any U ∈
D(L× L) let

κ0(U) = {(
∨
A, b), (a,

∨
B) | A× {b} ⊆ U, {a} ×B ⊆ U}

and let 〈U〉 =
∨
{a ⊕ b | (a, b) ∈ U} be the cp-ideal generated by U .

Of course, U is a cp-ideal iff 〈U〉 = U iff κ0(U) = U .
For any U, V ∈ D(L× L), the composite U ◦ V is the cp-ideal

U ◦ V =
∨
{a⊕ b | ∃c 6= 0, (a, c) ∈ U and (c, b) ∈ V },

that is, the cp-ideal generated by the down-set

U · V = {(a, b) | ∃c 6= 0, (a, c) ∈ U and (c, b) ∈ V }.

It is easy to check that

κ0(U) · V ⊆ κ0(U · V ) (∗)

(and, by symmetry, we also have U · κ0(V ) ⊆ κ0(U · V )).
The following technical lemma plays an important role in the en-

tourage approach to frame uniformities (cf. [19, Lemma 3.1]).

2.3.1. Lemma. For any U, V ∈ D(L× L), 〈U〉 ◦ 〈V 〉 = U ◦ V .

Proof. It suffices to show that 〈U〉 · 〈V 〉 ⊆ 〈U · V 〉. For that, consider
the non-empty set

D = {S ∈ D(L× L) | U ⊆ S ⊆ 〈U〉, S · V ⊆ 〈U · V 〉}.

By (∗), S ∈ D implies κ0(S) ∈ D. On the other hand, for any non-void
subset of D, its union is also in D and thus D has a largest element D.
But κ0(D) ∈ D soD = κ0(D), i.e., D is a cp-ideal. Hence 〈U〉 = D ∈ D,
that is, 〈U〉 · V ⊆ 〈U · V 〉, and by symmetry, U · 〈V 〉 ⊆ 〈U · V 〉. Then
the inclusion 〈U〉 · 〈V 〉 ⊆ 〈U · V 〉 follows since 〈·〉 is an idempotent
operator. �

2.4. Entourages. An entourage in a frame L is an element E ∈ L⊕L
such that ∨

{u | (u, u) ∈ E} = 1.

2.4.1. Lemma. If E is an entourage then E ≤ E ◦ E.
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Proof. Let (a, b) ∈ E with b 6= 0. We have

b =
∨
{b ∧ u | (u, u) ∈ E} =

∨
{b ∧ u | (u, u) ∈ E, u ∧ b 6= 0}.

Now we have, for b∧ u 6= 0, a⊕ (b∧ u) ≤ E and (b∧ u)⊕ (b∧ u) ≤ E.
Hence a⊕ (b ∧ u) ≤ E ◦ E and, finally,

a⊕b = a⊕
∨
{b∧u | (u, u) ∈ E} =

∨
{a⊕ (b∧u) | (u, u) ∈ E} ≤ E ◦E.

�

2.5. For each x ∈ L and E ∈ L⊕ L, let

E1x =
∨
{a ∈ L | (a, b) ∈ E, b ∧ x 6= 0},

E2x =
∨
{b ∈ L | (a, b) ∈ E, a ∧ x 6= 0}

and

Ex =
∨
{a ∈ L | (a, a) ∈ E, a ∧ x 6= 0}.

The following formulas are easy to check (for details see [19, 21]):

(2.5.1) F1(E1x) ≤ (F ◦ E)1x and F2(E2x) ≤ (E ◦ F )2x.
(2.5.2) If E is an entourage then x ≤ Ex ≤ E1x ∧ E2x.
(2.5.3) 〈E〉ix = Eix (i = 1, 2).

2.5.1. Lemma. For each entourage E, we have:

(a) Ex∗∗ = Ex and Eix
∗∗ = Eix (i = 1, 2).

(b) (Ex,Ex) ∈ E3 for any (x, x) ∈ E.
(c) (E1x,E2y) ∈ E3 for any (x, y) ∈ E.

Proof. (a) Follows immediately from the fact that y∧x = 0 iff y∧x∗∗ =
0.

(b) If (y, y), (x, x), (z, z) ∈ E with y ∧ x 6= 0 and x ∧ z 6= 0, then
(y, z) ∈ E3.

(c) If (a, b), (x, y), (c, d) ∈ E with b ∧ x 6= 0 and y ∧ c 6= 0, then
(a, d) ∈ E3. �

2.6. For an entourage E set

Ẽ =
∨
{x∗∗ ⊕ y∗∗ | (x, y) ∈ E}.

Fact. This is clearly an entourage of L and Ẽ ≤ E3.

Indeed, by (a) and (c) above we have, for any (x, y) ∈ E,

(x∗∗, y∗∗) ≤ (E1x
∗∗, E2y

∗∗) = (E1x,E2y) ∈ E3.
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3. Uniformities and quasi-uniformities

3.1. Entourage uniformities. For an entourage E (resp. a set of
entourages E) write

b CE a if E ◦ (b⊕ b) ≤ a⊕ a, and b CE a if ∃E ∈ E , b CE a.

A system of entourages E is said to be admissible if

∀a ∈ L, a =
∨
{b | b CE a}. (3.1.1)

Further, for an entourage E set

E−1 = {(a, b) | (b, a) ∈ E}

(which is obviously an entourage again).

3.1.1. Definition. A (entourage) uniformity [19] on a frame L is an
admissible system of entourages E such that

(E1) E ∈ E and E ≤ F ⇒ F ∈ E ,
(E2) E,F ∈ E ⇒ E ∩ F ∈ E ,
(E3) for every E ∈ E there is an F ∈ E such that F ◦ F ≤ E, and
(E4) E ∈ E ⇒ E−1 ∈ E .

A uniform frame (or locale) is a pair (L, E) where E is a uniformity
on L. In particular, the admissibility condition (3.1.1) implies that L
is always regular (in fact, completely regular).

A basis B of a uniformity is an admissible system of entourages sat-
isfying (E3), (E4) and

(E2’) E,F ∈ B ⇒ ∃G ∈ B, G ≤ E ∩ F .

A uniformity is then generated by taking all the F ≥ E with E ∈ B.

3.2. Non-symmetric uniformities. For a system E of entourages
define, first, E as the filter of entourages generated by E∪{E−1 | E ∈ E}
(of course, if E is a uniformity, E = E). If E satisfies (E1), (E2) and (E3)
and E is admissible we speak of E as of a quasi-uniformity and of (L, E)
as of a quasi-uniform frame ([20, 21]). A basis B of a quasi-uniformity
is a system satisfying (E2’) and (E3) such that B is admissible.

Because of the lack of symmetry condition (E4), the system E un-
modified induces two distinct order relations:

x�1
E y ≡ ∃E ∈ E , E ◦ (x⊕ x) ≤ y ⊕ y,

x�2
E y ≡ ∃E ∈ E , (x⊕ x) ◦ E ≤ y ⊕ y.

Note that x�i
E y iff Eix ≤ y for some E ∈ E (i = 1, 2).
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3.2.1. Notes. (1) Let E be a quasi-uniformity on a frame L. Then
E−1 = {E−1 | E ∈ E} is also a quasi-uniformity (the conjugate quasi-
uniformity on L) and E is the coarsest uniformity containing E .
(2) The two relations �1

E and �2
E yield two subframes of L, namely

Li(E) = {x ∈ L | x =
∨
{y ∈ L | y�i

E x}} (i = 1, 2).

(3) Recall that a biframe is a triple (L,L1, L2) of frames where L1 and
L2 are subframes of L and

∀a ∈ L, a =
∨
{a1 ∧ a2 | ai ∈ Li, a1 ∧ a2 ≤ a}.

Biframes are the pointfree counterpart of bitopological spaces ([5]).
The admissibility condition on a quasi-uniform frame (L, E) means

precisely that the triple (L,L1(E), L2(E)) is a (completely regular)
biframe (see [20, Remark 3.4]). Thus every quasi-uniformity on a frame
L induces a natural biframe structure on L, in the same way as every
quasi-uniformity on a set X endows X with a bitopological structure
([10]).

3.3. Proposition. Let E be a quasi-uniformity on a frame L. If b1�
1
Ea1

and b2 �
2
E a2 then (b1 ∧ b2) �E (a1 ∧ a2).

Proof. If E ◦ (b1 ⊕ b1) ≤ a1 ⊕ a1 and (b2 ⊕ b2) ◦ F ≤ a2 ⊕ a2 then
F−1 ◦ (b2 ⊕ b2) ≤ a2 ⊕ a2. Hence (E ∩ F )−1 ◦ (b1 ∧ b2 ⊕ b1 ∧ b2) ≤
a1 ∧ a2 ⊕ a1 ∧ a2. �

3.4. Let E be a quasi-uniformity on L. For E ∈ E set

E� =
∨
{x⊕ y | x�1

Ea, y�
2
Eb, (a, b) ∈ E} ≤ E.

3.4.1. Proposition. For any F such that F 3 ≤ E, F ≤ E�. Hence
E� ∈ E and {E� | E ∈ E} is a basis for E.

Proof. Let (x, y) ∈ F . By 2.5(c), (F1x, F2y) ∈ F 3 ≤ E, and, of course,
x�1
EF1x as well as y�2

EF2y. �

3.5. The fact in 2.6 provides an alternative basis for E :

3.5.1. Proposition. Let E be a quasi-uniformity on L. Then {Ẽ |
E ∈ E} is a basis of E. �

3.6. Product maps. By the universal property of products, for each
localic map f : L→M there is the (unique) localic map

f × f : L⊕ L→M ⊕M
such that pi(f × f) = fpi for i = 1, 2. Its left adjoint (f × f)∗ in Frm
is the unique frame homomorphism

h⊕ h : M ⊕M → L⊕ L
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such that (h⊕ h)ιi = ιih (where h = f ∗). Clearly,

(h⊕ h)(E) =
∨

(a,b)∈E
(h(a)⊕ h(b)). (3.6.1)

Furthermore, for every E ∈ L⊕ L,

(h⊕ h)(E−1) = (h⊕ h)(E)−1. (3.6.2)

Indeed, we have (h⊕ h)(E−1) =
∨
{h(a)⊕ h(b) | (b, a) ∈ E} while

(h⊕ h)(E)−1 =
∨
{x⊕ y | (y, x) ∈ (h⊕ h)(E)}

and, clearly, (h ⊕ h)(E−1) ≤ (h ⊕ h)(E)−1. Regarding the reverse
inclusion, it is equivalent to

(h⊕ h)(E) ≤ (h⊕ h)(E−1)−1

and this follows immediately from the obvious⋃
(a,b)∈E

(h(a)⊕ h(b)) ≤ (h⊕ h)(E−1)−1.

3.6.1. Uniform maps. If (L, E) and (M,F) are quasi-uniform locales
and f : L→M is a localic map satisfying

∀F ∈ F , (f × f)∗(F ) ∈ E .
then we speak of a uniform map f : (L, E) → (M,F) (and the cor-
responding left adjoint h = f ∗ : (M,F) → (L, E) is called a uniform
frame homomorphism). We then have the category QULoc of quasi-
uniform locales and uniform maps and its full subcategory ULoc of
uniform locales.

3.6.2. Uniform embeddings. Let j : L → M be an embedding in
Loc with adjoint onto frame homomorphism h = j∗ : M → L. Since
regular monomorphisms are preserved by products, j × j is also one-
to-one.

By a uniform embedding j : (L, E) → (M,F) we mean a one-to-one
uniform map such that

E = {(j × j)∗(F ) | F ∈ F}.

4. Dense uniform embeddings

4.1. Dense maps and dense sublocales. Recall that a frame ho-
momorphism h : L→M is dense if

h(x) = 0 ⇒ x = 0,

and that a sublocale S ⊆ L is dense if

S = L, that is, 0 ∈ S.
Consider the localic map f = h∗ : M → L associated with h.
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4.1.1. Proposition. The following are equivalent:

(i) h is dense.
(ii) f(0) = 0.

(iii) f [M ] is dense in L.

Proof. (a)⇔(b): x ≤ 0 iff h(x) ≤ 0 iff x ≤ f(0) makes f(0) = 0.
(b)⇔(c) is trivial. �

4.1.2. Regarding uniform maps f : (L, E) → (M,F) we will use the
fact that f is epic if it is dense, a consequence of the regularity of the
frames involved ([22, §V.6.5]).

4.2. Proposition (Banaschewski [2]). Let S ⊆ L be a dense sublocale
of a regular locale. Then S join-generates L.

In particular, if for a, b ∈ L, {x | x ∈ S, x ≤ a} = {x | x ∈ S, x ≤ b},
then a = b.

Proof. Since x ≺ a implies x∗∗ ≺ a (1 = x∗ ∨ a = x∗∗∗ ∨ a), a regular
frame is generated by its Booleanization BL = {x∗∗ | x ∈ L}, contained
in every dense sublocale by Isbell’s density theorem ([22, §III.8.3]. �

4.3. From now on we will consider an embedding j : L → M with
adjoint onto frame homomorphism h = j∗ : M → L. Since j is one-
to-one, we infer from jhj = j that hj = id. In case j is dense (by
the density we mean, of course, that h is dense, that is, by 4.1.1, that
j(0) = 0) then j(x) = 0 iff x = 0.

4.3.1. Proposition. For each E ∈ L⊕ L,

(j × j)(E) =
∨
{j(a)⊕j(b) | (a, b) ∈ E}.

Proof. Let E ∈ L⊕ L. We have

(j × j)(E) =
∨
{F ∈M ⊕M | (h⊕ h)(F ) ≤ E}.

The latter is equal to
∨
{j(a)⊕j(b) | (a, b) ∈ E}. Indeed:

≥:

(h⊕ h)(
∨

(a,b)∈E
(j(a)⊕j(b)) =

∨
(a,b)∈E

(hj(a)⊕hj(b)) =
∨

(a,b)∈E
(a⊕b) = E

since hj = id.

≤: (h⊕ h)(F ) ≤ E iff
∨

(x,y)∈F (h(x)⊕h(y)) ≤ E and the latter clearly

implies that F ≤
∨

(a,b)∈E(j(a)⊕j(b)) since

(x, y) ∈ F ⇒ (h(x), h(y)) ∈ E ⇒ (jh(x), jh(y)) ∈
∨

(a,b)∈E
(j(a)⊕j(b))

and (x, y) ≤ (jh(x), jh(y)). �
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Since hj = id, we have immediately:

4.3.2. Corollary. For each E ∈ L⊕ L, (h⊕ h)(j × j)(E) = E. �

4.4. If j is moreover dense, then jh(x) ≤ x∗∗ (for h(jh(x) ∧ x∗) =
h(x) ∧ h(x∗) = h(0) = 0 implies jh(x) ∧ x∗ = 0), and therefore⋃

(a,b)∈E
(jh(a)⊕jh(b)) ≤ Ẽ.

Hence:

4.4.1. Corollary. Let j : L → M be a dense embedding. For each

F ∈M ⊕M , F ≤ (j × j)(h⊕ h)(F ) ≤ F̃ . �

4.5. Proposition. Let j : (L, E)→ (M,F) be a uniform map with left
adjoint h = j∗. Then j is a dense uniform embedding if and only if

{(j × j)(E) | E ∈ E} is a basis of F (1)

and

(h⊕ h)(j × j)(E) = E for every E ∈ L⊕ L. (2)

Proof. ⇒: By definition of a uniform embedding,

E = {(j × j)∗(F ) = (h⊕ h)(F ) | F ∈ F}
and hence (j × j)(E) = (j × j)(h⊕ h)(F ) ≥ F for some F ∈ F , which
shows that every (j× j)(E) is an entourage in F . Now for each F ∈ F
take G ∈ F such that G̃ ≤ F (recall Proposition 2.2). By 4.4.1,

G ≤ (j × j)(h⊕ h)(G) ≤ G̃ ≤ F.

This proves condition (1) while (2) was already proved in 4.3.2.

⇐: We need to show that E = {(h ⊕ h)(F ) | F ∈ F}. If E ∈ E
then E = (h ⊕ h)(j × j)(E) by (2), and (j × j)(E) ∈ F by (1).
Conversely, condition (1) ensures that each (h ⊕ h)(F ) contains some
(h⊕ h)(j × j)(E) = E ∈ E . �

4.6. Proposition. Let j : (L, E)→ (M,F) be a dense uniform embed-
ding with left adjoint h : M → L. Then, for every x ∈ L and y ∈M :

(1) h(y)�i
Ex iff y�i

Fj(x) (i = 1, 2).
(2) h(y)�Ex iff y�Fj(x).

Proof. (1)⇒: If h(y)�1
Ex then there is some E ∈ E such that E1h(y) ≤

x (recall 2.5). Take F = (j× j)(E) ∈ F (by the previous proposition).
By (2.5.3),

F1y =
∨
{a | (a, b) ∈

⋃
(a′,b′)∈E

(j(a′)⊕j(b′)), b ∧ y 6= 0}
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and therefore for each such (a, b) we have (a, b) ≤ (j(a′), j(b′)) for some
(a′, b′) ∈ E. Then 0 6= b ∧ y ≤ j(b′) ∧ jh(y) = j(b′ ∧ h(y)) implies
b′ ∧ h(y) 6= 0 and thus a′ ≤ E1h(y) ≤ x and hence a ≤ j(a′) ≤ j(x). In
conclusion, F1y ≤ j(x).

⇐: If y�1
Fj(x) apply the preceding proposition to get some E ∈ E

such that

((j × j)(E))iy ≤ j(x).

Then, if (a, b) ∈ E with b∧h(y) 6= 0, that is, hj(b)∧h(y) 6= 0, we have
(j(a), j(b)) ∈ (j× j)(E) and j(b)∧y 6= 0. Hence j(a) ≤ j(x), and since
j is an embedding, a ≤ x. Hence h(y)�1

Ex.

(2) can be proved similarly. �

4.7. Let j : L→M be a dense embedding. Using the formula in 4.3.1,
a proof similar to the one for frame homomorphisms in (3.6.2) gives us
the analogous property for j × j:

for every E ∈ L⊕ L, (j × j)(E−1) = (j × j)(E)−1.

It follows that for any dense uniform embedding j : (L, E)→ (M,F),

(j × j)(E1 ∩ E−12 ) = (j × j)(E1) ∩ (j × j)(E2)
−1 (4.7.1)

and thus that

(j × j)(E) ∈ F for every E ∈ E . (4.7.2)

Furthermore,

F ◦ F ≤ E ⇒ (j × j)(F ) ◦ (j × j)(F ) ≤ (j × j)(E). (4.7.3)

Indeed, by 2.3, (j × j)(F ) ◦ (j × j)(F ) is equal to⋃
{j(a)⊕ j(b) | (a, b) ∈ F} ◦

⋃
{j(a)⊕ j(b) | (a, b) ∈ F}.

If (a, b), (c, d) ∈ F with j(b) ∧ j(c) 6= 0, then b ∧ c 6= 0 (since j(0) = 0
by density) and therefore (a, d) ∈ F ◦ F ≤ E. Hence (j(a), j(d)) ∈
(j × j)(E).

4.7.1. Proposition. Let (L, E) and (M,F) be quasi-uniform frames.
If j : (L, E)→ (M,F) is a dense uniform embedding, then j : (L, E)→
(M,F) is a dense uniform embedding.

Proof. We need to show that for h = j∗,

{(h⊕ h)(F ) | F ∈ F} = E .

⊆: For each F ∈ F let G1, G2 ∈ F such that G1 ∩ G−12 ⊆ F . Then,
using (3.6.2), we get

(h⊕ h)(F ) ⊇ (h⊕ h)(G1 ∩G−12 ) = (h⊕ h)(G1) ∩ (h⊕ h)(G2)
−1 ∈ E .
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⊇: Let E ∈ E . By 4.3.2, E = (h⊕ h)(j × j)(E), where (j × j)(E) ∈ F
by (4.7.2). �

4.7.2. Proposition. Let (L, E) be a quasi-uniform frame. If

j : (L, E)→ (M,F)

is a dense uniform embedding between uniform frames, then

B = {(j × j)(E) | E ∈ E}

is a basis for a quasi-uniformity in M .

Proof. Let E,F ∈ E . By (4.7.1),

(j × j)(E) ∩ (j × j)(F ) = (j × j)(E ∩ F ) ∈ B.

Furthermore, for (j×j)(E) ∈ B, consider F ∈ E such that F ◦F ≤ E.
By (4.7.3),

(j × j)(F ) ◦ (j × j)(F ) ≤ (j × j)(E).

Finally, regarding admissibility, we need to show that

b =
∨
{y ∈M | y �B b}

for every b ∈M . Of course, by the admissibility of F in M , it suffices
to check that y�F b implies y�B b. Let F ∈ F such that F ◦ (y⊕ y) ≤
b ⊕ b and apply 3.5.1 to get some G ∈ F such that G̃ ≤ F . Then
(h ⊕ h)(G) ∈ E , that is, (h ⊕ h)(G) ≥ E ∩ E−1 for some E ∈ E . By
(4.7.1),

(j × j)(E ∩ E−1) = (j × j)(E) ∩ (j × j)(E)−1 ∈ B.

Moreover, by 4.4.1,

(j × j)(E ∩ E−1) ◦ (y ⊕ y) ≤ (j × j)(h⊕ h)(G) ◦ (y ⊕ y)

≤ G̃ ◦ (y ⊕ y) ≤ F ◦ (y ⊕ y) ≤ b⊕ b. �

5. Cauchy maps, and a universal one

5.1. Cauchy and weak Cauchy maps. Let (L, E) be a quasi-uniform
frame (or, more particularly, a uniform frame) and let M be a frame.
A Cauchy map φ : (L, E) → M is a bounded meet homomorphism
φ : L→M such that

(C1) for all E ∈ E ,
∨
{φ(a) | (a, a) ∈ E} = 1, and

(C2) for each a ∈ L, φ(a) =
∨
{φ(b) | b�E a}.

If we do not require (C2) we speak of a weak Cauchy map.
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5.1.1. Notes. (1) Recall the Cauchy points from classical completions
of uniform spaces (X, E), that is, filters F in L = Ω(X) such that
F ∩ {a | (a, a) ∈ E} 6= ∅ 1, for all E ∈ E , and for every a ∈ F there is
a b ∈ F such that b CE a.

Taking their characteristic maps we have Cauchy points represented
as bounded meet semilattice homomorphisms φ : (L, E) → 2 = {0, 1}
such that

• for all E ∈ E ,
∨
{φ(a) | (a, a) ∈ E} = 1, and

• for every a ∈ L, φ(a) =
∨
{φ(b) | b�E a}.

Thus, Cauchy maps are Cauchy points with a general frame M instead
of 2.
(2) In the standard terminology one speaks of regular Cauchy maps,
and the term “Cauchy map” is preserved for what we call “weak Cauchy
map”. We have decided to simplify the terminology using the shorter
expression for the fundamental concept, and the longer one for the
technical modification.

5.2. Observations. (1) If φ is Cauchy and h a frame homomorphism
then hφ is Cauchy.
(2) If φ is weakly Cauchy and h a uniform frame homomorphism then
φh is weakly Cauchy.

5.2.1. Note. The statement (2) does not hold for Cauchy maps. An
example will be given in 6.5.2.

5.3. C(L, E) and the mapping λ : (L, E) → C(L, E). Recall the
mapping λ′ = (a 7→ ↓a) : L → D(L) and the fact that a meet ho-
momorphism φ : L → M is uniquely extendable to a frame homomor-
phism g : D(L) → M such that gλ′ = φ, namely the one given by
g(U) =

∨
{φ(u) | u ∈ U}.

Defining on D(L) the relation

RE = {(
⋃
{↓a | (a, a) ∈ E}, L), (

⋃
{↓x | x�E y}, ↓y) | E ∈ E , y ∈ L}

we obtain a frame
C(L, E) = D(L)/RE .

It is easy to check that the saturated sets constituting this frame (they
will be referred to as Cauchy ideals in (L, E)) are the U ∈ D(L) such
that

(R1) if for some E ∈ E , E ∧ {x} = {a ∧ x | (a, a) ∈ E} ⊆ U , then
x ∈ U , and

1Recall 2.4; the sets {a ∈ L | (a, a) ∈ E} are the covers replacing entourages in
the covering description of a uniformity, see e.g. [21].
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(R2) if {x | x�E y} ⊆ U then y ∈ U .

The composite of λ′ with the frame homomorphism D(L)→ C(L, E)
will be denoted by λ(L,E).

5.3.1. Note. C(L, E) was used in several texts (e.g., [3, 2, 4, 22])
(typically for the cover uniformities) as an underlying frame of the
completion of (L, E).

In fact it is a special case of a general construction of a frame ex-
tension of a site (see [1]). A site is a meet semilattice (here a frame)
together with a covering, a subset v of L × D(L); (x, U) ∈ v means
that we want to force x to become a supremum of U . In our case the
covering is constituted by the couples

(L, {↓a | (a, a) ∈ E}), E ∈ E , and (↓y, {↓x | x�E y}), y ∈ L.
This site covering makes in a canonical way λ : (L, E) → C(L, E) a
Cauchy map, and the following very easy theorem comes as no surprise.
In the next section we will then show that a completion procedure,
symmetric or not, can be obtained as an easy consequence.

5.4. Theorem. λ(L,E) is a Cauchy map and it is a universal Cauchy
map in the sense that for every Cauchy map φ : (L, E) → M there
is precisely one frame homomorphism h : C(L, E) → M such that the
diagram

(L, E)

φ

$$

λ(L,E) // C(L, E)

h

��
M

commutes.

Proof. λ(L,E) is obviously Cauchy by the definition of the relation RE
above.

Now let φ : (L, E)→M be Cauchy. It is a bounded meet homomor-
phism and hence we have the frame homomorphism g : D(L)→ M as
in 5.3. We have

g(
⋃
{↓a | (a, a) ∈ E}) =

∨
{φ(a) | (a, a) ∈ E} = 1, for E ∈ E , and

g(
⋃
{↓x | x�E y}) =

∨
{φ(x) | x�E y} = φ(y) = g(↓y),

hence g respects the relation RE and restricts to a frame homomorphism
h : C(L, E)→M . �

5.5. Proposition. Each dense uniform embedding j : (L, E) ⊆ (M,F)
is a Cauchy map.
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Proof. (C1) is obvious. For (C2) take an arbitrary a in L. We need
to show that j(a) =

∨
{j(x) | x �E a}. By the admissibility of F ,

j(a) =
∨
{b ∈ M | b �F j(a)}. Let h = j∗ : M → L. Then, by 4.6,

j(a) =
∨
{b ∈ M | h(b) �E a}, and this supremum is clearly equal to∨

{j(x) | x�E a} since b ≤ jh(b), for every b ∈ M , and hj(x) = x, for
every x ∈ L. �

6. Applications: Completion

6.1. Completions. A (quasi-)uniform locale (L, E) is said to be com-
plete if every dense uniform embedding with domain (L, E) is an iso-
morphism.

Let (L, E) and (M,F) be (quasi-)uniform locales with (M,F) com-
plete. Then (M,F) is a completion of (L, E) provided that there is a
dense uniform embedding

j : (L, E)→ (M,F).

6.2. (Quasi-)Uniform structure on C(L, E). Entourages will allow
us to construct the completion for uniform frames and quasi-uniform
frames at once.

For a Cauchy map φ : (L, E) → M define φ × φ : L ⊕ L → M ⊕M
by setting

(φ× φ)(E) =
∨
{φ(a)⊕ φ(b) | (a, b) ∈ E}.

We shall say that the Cauchy map φ is strict when its image generates
M . The case of λ(L,E), where M = C(L, E), is obviously of this type.

6.2.1. Proposition. Let φ : (L, E)→M be a strict Cauchy map. If E
is a quasi-uniformity (resp. uniformity), then

{(φ× φ)(E) | E ∈ E}

is a basis for a quasi-uniformity (resp. uniformity) F on M .

Proof. The fact that each (φ×φ)(E) is an entourage of M follows from
(C1). Condition (E2’) follows easily from the fact that φ is a meet
homomorphism and, in the symmetric case, (E4) is a consequence of
the obvious formula ((φ× φ)(E))−1 = (φ× φ)(E−1). In order to check
condition (E3) it suffices to prove the following:

F ◦ F ≤ E ⇒ (φ× φ)(F ) ◦ (φ× φ)(F ) ≤ (φ× φ)(E). (∗)

This can be proved exactly as in (4.7.3) with φ in place of j (since φ
preserves binary meets and φ(0) = 0).
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Finally, the admissibility condition follows from (C2). Indeed, for
each b ∈M , b =

∨
i∈I φ(ai) and therefore, by (C2),

b =
∨
i∈I

∨
{φ(x) | x�E ai}.

But, by (∗), E ◦ (x⊕ x) ≤ ai ⊕ ai implies

(φ× φ)(E) ◦ (φ× φ)(x⊕ x) ≤ (φ× φ)(ai ⊕ ai),
that is, (φ × φ)(E) ◦ (φ(x) ⊕ φ(x)) ≤ φ(ai) ⊕ φ(ai). This shows that
x�E ai implies φ(x) �F φ(ai) ≤ b. Hence,

b =
∨
i∈I

∨
{φ(x) | x�E ai} ≤

∨
{y | y �F b} ≤ b

and F is admissible. �

The frame C(L, E) will be endowed with the quasi-uniformity (resp.
uniformity) C(E) induced by E via λ(L,E), using the preceding result.

6.3. Theorem. Let (L, E), (M,F) be quasi-uniform (resp. uniform)
locales. For every dense uniform embedding j : (L, E) → (M,F) there
is a dense quasi-uniform (resp. uniform) sublocale

d : S(M,F) ⊆ C(L, E)

and an isomorphism α : (M,F) ∼= S(M,F) such that λ(L,E) = dαj.

Proof. By 5.4 and 5.5 we have a frame homomorphism h : C(L, E)→M
such that hλ = j. By 4.2, M is join-generated by L. Hence we have,
for an arbitrary y ∈M , y =

∨
{x ∈ L | x ≤ y} so that

y = h(
∨
{↓x | x ∈ L, x ≤ y},

that is, h is onto. Consequently the right adjoint f = h∗ is one-to-one,
it is a dense embedding and we can set S(M,F) = f [M ] and endow it
with the (quasi-)uniformity transferred from M . �

6.3.1. Remark: The coframe of dense embeddings. Note that
if two dense uniform embeddings ji : (L, E) → (Mi,Fi) are equivalent,
that is, if there is an isomorphism ι : M1 → M2 such that ιj1 = j2,
then S(M1,F1) = S(M2,F2). Furthermore, there is the smallest dense
uniform embedding of (L, E), namely the identity, and each embedding
λ[L] ⊆ S with S a sublocale of C(L, E) is dense. Thus, the construction
S(−) provides a one-to-one correspondence between the system of all
(equivalence classes of) uniform embeddings j : (L, E) → (M,F) and
the lattice of all sublocales of C(L, E) containing λ[L].

Consequently, the system of all (equivalence classes of) uniform dense
embeddings of a fixed uniform frame (L, E) naturally constitutes a sub-
coframe of C(L, E).
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To have the statement quite correct, we have to complete the theorem
above by the following simple observation that shows that the sublocale
S(M,F) is uniquely determined. Consider the following diagram in
Loc

S1

j1=⊆

&&
α

��

S

k1=⊆
88

k2=⊆ &&

L

S2

j2=⊆

88β

OO

with ji, ki dense embeddings, α, β mutually inverse isomorphisms, k2α =
k1, and k1β = k2. Then j1βk2 = j1k1 = j2k2 and since k2, being dense,
is an epimorphism in Loc, j1β = j2 is an actual embedding, we have
β an actual embedding, and similarly for α; hence α, β are identities,
and S1 = S2.

6.4. Proposition. Let (L, E) be a quasi-uniform frame, resp. a uni-
form frame. In each case, C(L, E) is complete, and hence a completion
of (L, E).

Proof. Let k : C(L, E)→ (M,F) be a dense uniform embedding. Con-
sider the diagram

(L, E)

j

))λ(L,E) // C(L, E)
k // (M,F)

α

yy
S(M,F)

d

OO

with j = kλ(L,E) and α and d given by 6.3. Then λ = λ(L,E) = dαj =
dαkλ. Since λ and k are epimorphisms, this yields dαk = idC(L,E)
which makes k an isomorphism. �

6.5. Theorem. Let (L, E) be a quasi-uniform frame, resp. a uniform
frame. Then (L, E) is complete iff each Cauchy map (L, E) → M is a
frame homomorphism.

Proof. If (L, E) is complete then λ is an isomorphism, and hence we
have φ = hλ a homomorphism. On the other hand, if each Cauchy map
(L, E)→M is a frame homomorphism, then in particular λ : (L, E)→
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C(L, E) is one. For the v = v(L,E) we have vλ = id and since v,
being dense, is a monomorphism, we also have λv = id, and λ is an
isomorphism. �

6.5.1. Remark. The cover uniformity analogue of the symmetric case
in the previous result is due to B. Banaschewski ([2, 3]).

6.5.2. Example. Let L = (L, E) be a complete uniform frame which
is not Boolean, and let B = B(L, E) be its Booleanization endowed
with the uniformity induced by E . Since the right adjoint of the frame
homomorphism h = (a 7→ a∗∗) : L → B is a uniform dense embedding
and not an isomorphism, B is not complete. Hence there exists a
Cauchy map φ : B → M which is not a homomorphism. Then φ · h is
not Cauchy, because it is not a homomorphism (L is complete) — if it
were, φ would be one as well, as h is onto.

6.6. Lemma. Let (L, E) be a quasi-uniform frame. For a weakly
Cauchy map φ : (L, E)→M define

φ◦ : (L, E)→M

by setting φ◦(a) =
∨
{φ(b) | b�E a}. Then φ◦ is a Cauchy map.

Proof. If E ∈ E consider the E� from 3.4. Then∨
{φ◦(a) | (a, a) ∈ E} =

∨
{φ(b) | b�E a, (a, a) ∈ E}

and, using the property in 3.3,∨
{φ(b) | b�E a, (a, a) ∈ E} ≥

∨
{φ(b) | (b, b) ∈ E�} = 1

(indeed, for any (b, b) ∈ E� with b �1
E x, b �2

E y and (x, y) ∈ E, 3.3
yields b�E x ∧ y and, of course, (x ∧ y, x ∧ y) ∈ E).

Next,∨
{φ◦(b) | b�E a} =

∨
{φ(c) | c�E b�E a} =

∨
{φ(c) | c�E a} = φ◦(a)

since �E interpolates. �

In particular, when (L, E) is a uniform frame, the Cauchy map φ◦ is
given by

φ◦(a) =
∨
{φ(b) | b�E a}.

6.7. Theorem. The completion C is functorial in both, the symmetric
and the non-symmetric, cases.

Proof. For a uniform frame homomorphism h : (L, E) → (M,F) con-
sider the weak Cauchy map λ · h : (L, E) → C(M,F) and the Cauchy
map (λ · h)◦ : (L, E) → C(M,F). Then, we have the frame homomor-
phism g : C(L, E)→ C(M,F) defined by

g(U) =
∨
{(λh)◦(u) | u ∈ U} =

∨
{↓h(x) | x�E u ∈ U}.
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Denoting this g by C(h) we obtain that

v(M,F) ·C(h) =
∨
{v(↓h(x)) | x�E u ∈ U} =

=
∨
{h(x) | x�E u ∈ U} =

=
∨
{h(u) | u ∈ U} =

= h(
∨
{u | u ∈ U}) = h · v(L,E).

Since the homomorphisms v(L,E) are dense and hence monomorphic in
our category, it immediately follows that C(h1h2) = C(h1)C(h2).

Checking that C(h) = g is uniform is straightforward. �

7. More on the asymmetric case

7.1. Let (L, E) be a quasi-uniform frame. Consider the associated uni-
formity E on L and the corresponding completion

λ = λ(L,E) : (L, E)→ (C(L, E),C(E)).

By 6.2.1,

{(λ× λ)(E) | E ∈ E}
forms a basis for a quasi-uniformity C(E) on C(L, E) and thus we have
a quasi-uniform frame

(C(L, E),C(E))

also defined in the sublocale C(L, E) of DL.

7.1.1. Proposition. C(E) = C(E).

Proof. C(E) ⊆ C(E) follows from the fact that C(E) is a uniformity
and C(E) ⊆ C(E) (since {(λ × λ)(E) | E ∈ E} is a basis of C(E), by
4.5).

On the other hand, by the characterization in 4.5,

λ : (L, E)→ ((C(L, E),C(E))

is clearly a dense uniform embedding. Hence, by 4.7.1,

λ : (L, E)→ (C(L, E),C(E))

is a dense uniform embedding. Since (C(L, E),C(E)) is the completion

of (L, E), this implies immediately that C(E) = C(E). �

7.2. Proposition. Let (L, E) be a quasi-uniform frame. Then (L, E)
is complete iff it is bicomplete (i.e. (L, E) is complete).
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Proof. ⇐: Let j : (L, E)→ (M,F) be a dense uniform embedding. By
4.7.1, j : (L, E)→ (M,F) is a dense uniform embedding and thus it is
an isomorphism.

⇒: Let j : (L, E) → (M,F) be a dense uniform embedding. By 4.7.2,
{(j × j)(E) | E ∈ E} is a basis for a quasi-uniformity G in M , and
by 4.5, j : (L, E) → (M,G) is a dense uniform embedding hence an
isomorphism. �

7.3. Theorem. (C(L, E),C(E)) is the completion of (L, E).

Proof. (C(L, E),C(E)) is complete by the two preceding propositions
and

λ : (L, E)→ ((C(L, E),C(E))

is a dense uniform embedding by 4.5. �

7.4. Corollary. If the given (L, E) is a uniform frame, then the quasi-
uniform completion (C(L, E),C(E)) is the uniform completion of (L, E).

�
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19-34.

[18] W. F. Lindgren and P. Fletcher, A construction of the pair completion of a
quasi-uniform space, Canad. Math. Bull. 21 (1978) 53-59.

[19] J. Picado, Weil uniformities for frames, Comment. Math. Univ. Carolinae 36
(1995) 357-370.

[20] J. Picado, Frame quasi-uniformities by entourages, in: Symposium on Catego-
rical Topology, pp. 161-175, Univ. Cape Town, Rondebosch, 1999.

[21] J. Picado, Structured frames by Weil entourages, Appl. Categ. Struct. 8 (2000)
351-366.

[22] J. Picado and A. Pultr, Frames and locales: Topology without points, Frontiers
in Mathematics, vol. 28, Springer, Basel (2012).

[23] J. Picado and A. Pultr, Entourages, covers and localic groups, Appl. Categ.
Struct. 21 (2013) 49-66.

[24] J. Picado and A. Pultr, Notes on the product of locales, Math. Slovaca 65
(2015) 247-264.

[25] A. Pultr and A. Tozzi, Completion and coproducts of nearness frames, in: Sym-
posium on Categorical Topology, pp. 177-186, Univ. Cape Town, Rondebosch,
1999.

CMUC, Department of Mathematics, University of Coimbra, 3001-501
Coimbra, PORTUGAL

Email address: picado@mat.uc.pt

Department of Applied Mathematics and ITI, MFF, Charles Univer-
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