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Abstract. More precisely, we are analyzing some of Simmons,

Niefield and Rosenthal results concerning sublocales induced by

subspaces. Simmons was concerned with the question when the

coframe of sublocales is Boolean; he recognized the role of the

axiom TD for the relation of certain degrees of scatteredness but

did not emphasize its role in the relation between sublocales and

subspaces. Niefield and Rosenthal just mention this axiom in a

remark about Simmons’ result. In this paper we show that the role

of TD in this question is crucial. Concentration on the properties

of TD-spaces and technique of sublocales in this context allows

us to present a simple, transparent and choice-free proof of the

scatteredness theorem.

Introduction

A topological space X, more precisely its associated frame Ω(X) of

open sets, has typically more natural subobjects (sublocales) than sub-

spaces. The first result concerning the question when every sublocale

is (induced by) a subspace was presented by Simmons in [?]. More

precisely, Simmons proved a necessary and sufficient condition for the

lattice of sublocales being Boolean which is slightly different: if sublo-

cales are in a one-to-one correspondence with subspaces (subsets) they
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do form a Boolean algebra, while the other implication does not hold.

Later, Niefield and Rosenthal in [?] treated more directly the question

of every sublocale being spatial and gave a characterization of the re-

spective frames. In both cases, however, the question of the one-to-one

correspondence between subspaces and sublocales is somehow circum-

vented. While, as we have already pointed out, typically one has more

sublocales than subspaces, there are already cases where there are fewer

sublocales than subspaces. Namely, it turns out that unless the space

in question satisfies a certain very weak separation condition TD, repre-

sentation of subspaces of X by sublocales of Ω(X) is imperfect: distinct

subspaces can induce the same sublocale (it should be noted that in [?],

TD does appear – under the name of TB – in the discussion of “degrees

of scatteredness”; in [?] it is mentioned in page 267, in a remark about

Simmons’ paper).

In this paper we present a proof of the fact that for a TD-space X,

the sublocales are in a one-to-one correspondence with subspaces iff X

is scattered (without TD it cannot be). Consequent use of properties

of TD-spaces and the sublocale technique makes the proof simpler, and

we think more transparent, than those in [?, ?]. Also, since we do not

need the concept of a minimal prime (and that of an essential one) we

can do without a choice principle.

1. Preliminaries

1.1. Notation. A join (supremum) of a subset A ⊆ (X,≤), if it exists,

will be denoted by
∨
A, and we write a ∨ b for

∨
{a, b}; similarly we

write
∧
A and a ∧ b for meets (infima).

The smallest element of a poset (the supremum
∨
∅), if it exists, will

be denoted by 0, and the largest one (the infimum
∧
∅) will be denoted

by 1.

An element p ∈ X is prime if a ∧ b = p implies a = p or b = p (in a

distributive lattice this is equivalent with a ∧ b ≤ p implying a ≤ p or

b ≤ p).
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1.1.1. Adjoint maps. If X, Y are posets we say that monotone maps

f : X → Y and g : Y → X are adjoint, f to the left and g to the right,

if

f(x) ≤ y ⇔ x ≤ g(y).

Recall that this is characterized by the pair of inequalities fg(y) ≤ y

and x ≤ gf(x), and that f resp. g preserves all the existing suprema

resp. infima. Furthermore, if X and Y are complete lattices then a

monotone map f : X → Y preserves all suprema iff it is a left adjoint,

and a monotone map g : Y → X preserves all infima iff it is a right

adjoint.

1.2. The category of frames. Recall that a frame is a complete

lattice L satisfying the distributivity rule

(
∨
A) ∧ b =

∨
{a ∧ b | a ∈ A} (frm)

for all A ⊆ L and b ∈ L, and that a frame homomorphism h : L →
M preserves all joins and all finite meets. The resulting category is

denoted by Frm.

A coframe satisfies (??) with the roles of joins and meets reversed.

1.2.1. The equality (??) states, in other words, that for every b ∈ L
the mapping −∧b = (x 7→ x∧b) : L→ L preserves all joins (suprema).

Hence every − ∧ b has a right Galois adjoint resulting in a Heyting

operation → with

a ∧ b ≤ c ⇔ a ≤ b→c.

Thus, each frame is a Heyting algebra (note that, however, the frame

homomorphisms do not coincide with the Heyting ones so that Frm

differs from the category of complete Heyting algebras). The operation

→ and some of its basic properties (e.g. a→a = 1, a→b = 1 iff a ≤ b,

1→ a = a, and a→ (b → c) = (a ∧ b)→ c) will be used in the sequel

(see [?, Appendix 1] for more information).

1.3. The concrete category Loc. The functor Ω: Top→ Frm from

the category of topological spaces and continuous maps into that of

frames (Ω(f) sending an open set U ⊆ Y to f−1[U ] for a continuous
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map f : X → Y in Top) is a full embedding on an important and

substantial part of Top, the subcategory of sober spaces. This justi-

fies to regard frames as a natural generalization of spaces. Since Ω is

contravariant, one introduces the category of locales Loc as the dual

of the category of frames. Often one just considers the formal Frmop

but it is of advantage to represent it as a concrete category with spe-

cific maps as morphisms. For this purpose one defines a localic map

f : L → M as the (unique) right Galois adjoint of a frame homomor-

phism h = f ∗ : M → L. This can be done since frame homomorphisms

preserve suprema; but of course not every mapping preserving infima is

a localic one. We refer to [?] for more information about the category

of locales.

1.4. Sublocales. A sublocale of a frame L is a subset S ⊆ L such that

(1) M ⊆ S implies
∧
M ∈ S, and

(2) if a ∈ L and s ∈ S then a→ s ∈ S.

The system

S(L)

of all sublocales of L is a co-frame, with the lattice operations∧
i∈J

Si =
⋂
i∈J

Si and
∨
i∈J

Si = {
∧
A | A ⊆

⋃
i∈J

Si}.

The top element of S(L) is L and the bottom is the least sublocale

O = {1}.

1.4.1. Sublocales just defined are a natural representation of subob-

jects in the category of locales (indeed S is a sublocale of L iff the

imbedding map j : S ⊆ L is an extremal monomorphism in the cate-

gory Loc). Equivalently we can represent subobjects of frames (locales)

as frame congruences E on L (the sublocale as above is then the ad-

joint to the quotient frame homomorphism L → L/E); yet another

representation is that by nuclei (see e.g. [?, ?]).

1.4.2. Important special sublocales. For any a ∈ L we have a

sublocale

b(a) = {x→a | x ∈ L}.
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From the standard properties of the Heyting operation we immediately

see that it is really a sublocale; and obviously it is the smallest sublocale

containing a. One has that (see e.g. [?, III.10])

the b(a)’s are precisely the Boolean sublocales of L.

Other sublocales we will work with are the points

p̃ = {p, 1}

with p prime elements of L. These are precisely the sublocales with

exactly two elements (with exactly one non-trivial element).

Remark. Typical points of a frame Ω(X) are the X r {x}. Note that

there may be others (a space is sober if there are only these), but they

suffice for the representations in Section 2.

1.5. Proposition. Let L be a distributive lattice and let a ∈ L be

complemented. Then, for any supremum
∨
xi, we have a ∧

∨
xi =∨

(a ∧ xi), and for any infimum
∧
xi we have a ∨

∧
xi =

∧
(a ∨ xi).

In particular, in any co-frame we have, for any complemented a,

a ∧
∨
xi =

∨
(a ∧ xi)

although this (frame) distributivity does not generally hold.

Proof. If a′ is the complement of a we easily check that a ∧ x ≤ b iff

x ≤ a′ ∨ b. Thus for any complemented a, (x 7→ a ∧ x) is a left adjoint

and (x 7→ a ∨ x) is a right adjoint. Use ??. �

1.6. The axiom TD. In [?] the authors studied separation axioms

between T0 and T1. In among them, particular importance gained the

TD: for every x ∈ X there is an open set U 3 x such that U r {x}
is still open

(and hence U r {x} = U r {x}). This is equivalent to saying that

points are locally closed, that is, for every x ∈ X, there is an open set

U 3 x such that {x} = U ∩ {x}.
We will need the following two facts from [?].

1.6.1. Lemma. Let X satisfy TD. Then every (Xr{x})∪{x} is open.
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Proof. Choose an open U 3 x such that {x} = U ∩ {x}. Then, clearly,

(X r {x}) ∪ {x} = (X r {x}) ∪ U. �

1.6.2. Proposition. Let X satisfy TD. Then the primes p = X r {x}
are covered, that is, if p =

∧
i∈J Ui then p = Uk for some k ∈ J , not

only for finite J but for arbitrary ones (cf. [?]).

Proof. Let p = X r {x} ( U for an open U . Then there is a y ∈
U r (X r {x}), hence y ∈ U and y ∈ {x} so that x ∈ U and (X r
{x}) ∪ {x} ⊆ U . Hence either X r {x} = Ui for some i or all the Ui

contain the open (X r {x}) ∪ {x} and hence
∧

i∈J Ui = int(
⋂

i∈J Ui) is

not p. �

Concerning terminology, it should be pointed out that the elements

p such that p =
∧

i∈J xi implies p = xi for some i ∈ J were referred

to in [?] as completely prime. That term, however, is generally taken

to mean that p ≥
∧

i∈J xi implies p ≥ xi for some i ∈ J . Note that

in an arbitrary space X, a prime X r {x} is of the latter type iff

x ∈
∧
{U | U ∈ Ω(X), x ∈ U}. In particular, if x is isolated (that is,

{x} is open) then X r {x} is always completely prime.

Regarding the relationship between these two notions, any com-

pletely prime p is clearly a covered prime, but not conversely: in the

topology of a T1-space X, any X r {x}, x ∈ X, is obviously a cov-

ered prime but the complete primes are only the Xr{x} with isolated

x ∈ X ([?, Remark 1]).

1.7. Scattered and weakly scattered spaces. A space X is said

to be scattered if for every non-empty closed set A there is an isolated

point a ∈ A, that is, there is an a ∈ A and an open U 3 a such that

U ∩ A = {a}.

It is weakly scattered (or corrupted [?]), if for every non-empty closed

set A there is an a ∈ A and an open U 3 a such that

U ∩ A ⊆ {a}.

1.7.1. Observation. A TD-space is scattered iff it is weakly scattered.
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Proof. Consider an a ∈ A and an open U 3 a such that U ∩ A ⊆ {a}.
By TD, {a} = V ∩ {a} for some open V . Then {a} ⊆ V ∩ (U ∩ A) ⊆
V ∩ {a} = {a}. �

2. Induced sublocales

2.1. Consider a space X and a subspace Y ⊆ X. then the embedding

j : Y ⊆ X is represented by the frame homomorphism

Ω(j) = (U 7→ U ∩ Y ) : Ω(X)→ Ω(Y )

and hence the frame congruence associated with Y is given by

ΘY = {(U, V ) | U ∩ Y = V ∩ Y }.

It is easy to see that the localic map adjoint to Ω(j) is given by

k(V ) = int((X r Y ) ∪ V )

(since U ∩ Y ⊆ V iff U ⊆ (X r Y ) ∩ V and U is open). Hence the

sublocale induced by Y is

SY = k[Ω(Y )] = {int((X r Y ) ∪ V ) | V open in Y } =

= {int((X r Y ) ∪ (U ∩ Y )) | U ∈ Ω(X)}.

The sublocale SY is said to be induced by Y .

2.2. One thinks of frames (locales) as of generalized spaces and this

view is basically right; at least for the so called sober spaces the frame

Ω(X) contains all the information about X. One can surmise that

this concerns also the structure of induced sublocales as above, that

is, that when thinking of the locale Ω(X) as of (a representation of)

X, the induced sublocales can be thought of as (a representation of)

the subspaces (we are not speaking of the fact that there may be also

new entities, the non-induced sublocales; they enrich the theory and

are very useful). But it is not in general so. Take, e.g., a non-TD space

X and an x ∈ X such that no U r {x} with U 3 x is open. Then

U ∩ (Xr{x}) = V ∩ (Xr{x}) only if U = V and hence SXr{x} = SX .
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We say that the representation Y 7→ SY of subspaces is precise if

it constitutes a one-to-one correspondence between subspaces and in-

duced sublocales. One has the following (see e.g. [?, ?, ?]):

2.2.1. Proposition. Induced sublocales constitute a precise represen-

tation of subspaces of X iff X is TD.

Note. A mechanism of this fact useful for our purposes will be appar-

ent in ?? below.

2.3. Representations of points. Denote by pX,x (briefly px) the

prime X r {x} in Ω(X).

2.3.1. Lemma. Let Y be a subspace of X. We have k(pY,y) = pX,y.

Proof. We immediately see that for {y}
Y

, the closure in Y ,

Y r {y}
Y

= Y r ({y} ∩ Y ) = Y r {y}.

Obviously (X r Y ) ∪ (Y r {y}) ⊇ X r {y} and if for an open U ,

U ⊆ (X r Y ) ∪ (Y r {y}) then U ⊆ X r {y} (otherwise there were a

z ∈ U with z ∈ {y}, but then y ∈ U and y is neither in X r Y nor in

Y r {y}). �

2.4. Proposition. Let Y be a subspace of X. Then

SY =
∨
{p̃X,y | y ∈ Y }.

Proof. Recall the formula for the joins of sublocales from ??. The

elements of the right hand side are the meets

U =
∧
{X r {y} | y ∈ A,A ⊆ Y } = int

⋂
{X r {y} | y ∈ A,A ⊆ Y }.

Now if U is the interior as above we have, first, for every y ∈ A also

U ⊆ X r {y}, which is the same as y /∈ U , and, hence, whatever the A

was, U is also the interior of
⋂
{X r {y} | y /∈ U}. Now we have⋂

{X r {y} | y /∈ U} ⊆
⋂
{X r {y} | y /∈ U}
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but for an open V we have V ⊆ X r {y} iff V ⊆ X r {y} and hence

int
⋂
{X r {y} | y ∈ Y r U} = int

⋂
{X r {y} | y ∈ Y r U} =

= int(X r (Y r U)) = int((X r Y ) ∪ (Y ∩ U)).

Compare this with the formula for k in ??. �

2.5. Now from ?? and ?? we can conclude that

A sublocale S of Ω(X) is induced iff S =
∨
{p̃X,x | pX,x∈ S}.

3. The main theorem

3.1. Recall the notation px = X r {x} from ?? (the X in pX,x will

be always the same and hence we can use the shorter notation), and p̃

from ??. Also recall from ?? that if X is TD then every px is a covered

prime element.

3.2. Definition. A prime p in a frame L is a-regular if p = (p→a)→a.

3.2.1. Proposition. The following are equivalent for L = Ω(X) with

X a TD-space:

(1) S(L) is Boolean.

(2) Each Boolean (that is, minimal) sublocale is complemented.

(3) For every a 6= 1, there is an a-regular element of the form px.

(4) All sublocales S are induced, i.e., S =
∨
{p̃x | px ∈ S}, and precisely

represent subspaces of X.

(5) The map µ : S(L) → P(X), given by µ(S) = {x | px ∈ S}, is a

poset isomorphism, with inverse γ : P(X)→ S(L) given by γ(Y ) =∨
{p̃y | y ∈ Y }.

Proof. (1)⇒(2) and (5)⇒(1) are clear.

(2)⇒(3): Each b(a) (recall ??) is complemented hence, by ??,

b(a) = b(a) ∩
∨
{p̃x | px ∈ L} =

∨
{p̃x | px ∈ b(a)}.

Since a ∈ b(a), we conclude that a is a meet of a-regular elements, and

since a 6= 1, this meet is non-void.
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(3)⇒(4): Let S ⊆ L be an arbitrary sublocale. For an a ∈ S set

a′ =
∧
{px | a ≤ px ∈ S}.

We have to prove that a = a′ (then S =
∨
{p̃x | px ∈ S} holds).

If not, we have a < a′ and b = a′→a 6= 1, and there exists a b-regular

element p. Since a ∈ b(a), b = a′→a ∈ b(a) and as p ∈ b(b) ⊆ b(a) we

have a ≤ p and by the definition of a′, a′ ≤ p. Thus,

p→b = p→(a′→a) = (p ∧ a′)→a = a′→a = b,

and p = (p→b)→b = b→b = 1, a contradiction.

Finally, the fact that the representation is precise follows from ??.

(4)⇒(5): First, γ(µ(S)) = S is in the equality S =
∨
{p̃x | px ∈ S}.

Next, obviously Y ⊆ µ(γ(Y )); on the other hand, if px ∈ γ(Y ) =∨
{p̃y | y ∈ Y } then px =

∧
y∈A py for some A ⊆ Y and therefore there

is an y ∈ A ⊆ Y such that px = py. �

3.2.2. Lemma. The following are equivalent for a space X:

(1) X is weakly scattered.

(2) For U 6= X in Ω(X) and A = X r U , there is an x ∈ A such that

x ∈ X r Ar {x}.

(3) For U 6= X in Ω(X), there is a U-regular element X r {x}.

Proof. (1)⇒(2): LetX be weakly scattered and let ∅ 6= A ⊆ X. Choose

an open V such that x ∈ V ∩ A ⊆ {x}. Then we have

∅ = V ∩ A ∩ (X r {x}) = V ∩ (Ar {x}),

and hence x ∈ (X r Ar {x}) ∩ A.

(2)⇒(1): If x ∈ (X r Ar {x}) ∩ A for a non-empty closed A set

V = X r Ar {x} to obtain x ∈ V ∩ A ⊆ {x}.

(2)⇒(3): Let U 6= X in Ω(X) and A = X r U . We need an x such

that

U ⊆ X r {x} and ((X r {x})→U)→U ⊆ X r {x}
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(the latter is the essential inclusion from the equality). In other words,

x /∈ U that is, x ∈ A and x /∈ ((X r {x})→U)→U. (∗)

We have V → U = int((X r V ) ∪ U), hence (X r {x}) → U =

int({x} ∪ U) and

((X r {x})→U)→U = int({x} ∪ U)→U =

= int((X r int({x} ∪ U) ∪ U) =

= int
(
X r ({x} ∪ U) ∪ U

)
=

= int
(

(X r {x}) ∩ (X r U) ∪ U
)

=

= int
(
Ar {x} ∪ (X r A)

)
.

Thus, (∗) transforms to stating that there is an x ∈ A such that

x /∈ int
(
Ar {x} ∪ (X r A)

)
,

that is,

x ∈ (X r Ar {x}) ∩ A,
which is guaranteed by the hypothesis.

(3)⇒(2): By the proof of the previous implication, we know that there

is an x ∈ A such that

x ∈ (X r Ar {x}) ∩ A.

We will show now that the x is in fact in the set under closure. First,

observe that

(X r Ar {x}) ∩ A ⊆ {x}.

Indeed, if a ∈ (X r Ar {x}) then a /∈ Ar {x} and hence a /∈ (A r
{x}), that is, a ∈ {x} (and A is closed). Now denote for a moment

V = X r Ar {x}. We have V ∩ A 6= ∅ (since it has a non-empty

closure); and hence x /∈ V makes {x} ∩ V = ∅ and a contradiction

∅ 6= A ∩ V ⊆ {x} ⊆ X r V . �

3.3. Theorem. The following are equivalent for a TD-space X:

(1) S(Ω(X)) is Boolean.
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(2) All sublocales of Ω(X) are induced and precisely represent subspaces

of X.

(3) X is scattered.

(4) Each Boolean (that is, minimal) sublocale is complemented.

Proof. Follows directly from ??, ?? and ??. �

3.3.1. Note. Since TD is a necessary condition for the precise repre-

sentation, the preceding theorem can be reformulated to a (perhaps

more elegant) statement that

All sublocales of Ω(X) are induced and precisely repre-

sent subspaces of X if and only if X is TD and scattered.

The results of [?] and [?] concern the booleanness even for the non-

TD case and the not necessarily precise representation of subspaces by

sublocales. Thus, the scope is broader while, on the other hand, the

nature of the representation of subspaces by sublocales is not quite

specified. If we wish to have this precise, TD is a condition sine qua

non. Furthermore, however, having to assume this axiom makes the

situation much simpler because of the covered primeness of the Xr{x}.
Let us point out that the importance of the axiom TD in point-free

topology, in particular in fitting together spatial and point-free facts,

is sometimes underestimated. It appeared, first, in [?], in a technical

context. But in the same year, in [?], one of the authors proved that

under this condition the lattice of open sets determined the space (one

of the first results of this kind). It can be claimed that the importance

of TD is in the rank of that of sobriety. The two properties are closely

related, in fact they are, in a sense, dual to each other (see [?, ?] and

also the exercise in [?, II.1.7]): while sobriety states that one cannot

add a point without changing the topology, TD asserts that one cannot

subtract a point. And the fact crucial in this paper, namely that TD is

equivalent with precise representation of subspaces by sublocales can

be viewed in the general setting as similarly important as the sobriety

standing for precise representation of continuous maps by localic ones

([?, ?]).
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Note. While working on the present paper we learned the sad news

that Harold Simmons, the author of the fundamental theorem discussed

here, passed away. He was a great and resourceful mathematician, and

a very nice person. Since we are working, mostly, in point-free topol-

ogy, we would like to mention, besides the scatteredness theorems, and

among his many other achievements, also his role in the development

of separation theory, notably in subfitness (“conjunctivity” [?]). He

will be missed.
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