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Abstract: In some application areas in telecommunication and transportation networks, there
are problems requiring the determination of pairs of paths, aiming at minimizing the number of
links, or link groups, which they share, and their total cost. In this paper it is proposed a new
bicriteria algorithm to deal with this problem. The algorithm is based on ranking pairs of paths
by order of the total cost, using an adaptation of a path ranking algorithm, after a suitable
modification of the network topology. Non-dominated solutions are then filtered by means
of a dominance test. Firstly, computational experiments are reported in order to assess the
efficiency of the algorithm to calculate the whole set of non-nominated pairs of paths. Secondly,
we present computational results focused on the non-dominated solutions close to the maximal
disjoint pair (i.e. quasi-disjoint pairs only, for a predefined admissible relaxation value), because
in some application problems, like shared risk link group pairs of paths, only those solutions
have practical relevance.
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1 Introduction

Many engineering problems, such as telecommunication and transportation network design prob-
lems, can be modeled as network shortest path problems [1], and in many situations due to reli-
ability requirements it is advisable to choose a pair of disjoint paths (the so called “active path”
and a “backup path” which can be used in case a failure occurs along the active path). It must be
remarked that, in some cases, the determination of k disjoint paths (with k > 2) is advisable and
that the required pairs can be node disjoint pairs, arc disjoint pairs, or both. Although the method
proposed in this paper is dedicated to k = 2 and to arc disjoint paths, it can be easily extended
to other cases. A review of these and other disjoint path problems can be found in [11]. In many
practical situations instead of just protecting links, it is necessary to consider the so called shared
risk link groups (SRLG’s), such that a SRLG is a group of links sharing a common risk. Moreover,
note that a link can belong to several SRLG’s. In this case it is necessary to find disjoint pairs
of paths regarding the SRLG’s in order to avoid an interruption of service due to a single failure
scenario. Of course, in some situations disjoint paths do not exist and, so, we search for maximally
∗Corresponding author



disjoint pairs of paths. This type of problems is very common in optical networks, e.g. concern-
ing Multi-Protocol Label Switching (MPLS) and Wavelength-Division Multiplexer (WDM) network
problems. These type of formulations are also relevant in other related problems, as for example
correlated congestion problems in transportation networks and in wireless multimedia sensor net-
works (WMSN) and in models involving cascading failures of power grid networks [5, 11, 12, 16, 19].
It can be noted that the arc disjoint case can be seen as a particular case of the group disjoint
case, if one assigns a different group to every network arc. In [10], it is proved that the problem of
computing a pair of paths, with the least number of groups in common, is NP-complete. Several
heuristics and parallel processing procedures have been proposed for dealing with these problems,
for instance, [15, 16, 17, 18, 19]. In many situations, such as in MPLS networks, it is also advisable
to minimize a cost function (being a min-sum function, very commonly). However, for instance in
cases of MPLS design problems, this is a secondary goal. So, it is justifiable the use of a lexico-
graphic formulation regarding the two criteria, having the number of common groups as the first
objective and the total cost as the second one, whenever there is a priority for the first objective
in the first. For instance, in [8] two heuristics are presented for handling this type of problems and
an exact approach is proposed in [6]. Besides the two above referred to functions, it is common the
introduction of an upper bound to the total number of arcs of the pair of paths and, in some cases,
it is justifiable aiming at minimizing this number of arcs. In the method proposed in this paper
it is very simple to introduce such a constraint. Finally, in some application cases, for instance in
some transportation problems, it is of practical interest to consider the whole set of non-dominated
solutions for the above referred to problem, or, at least, to find all the non-dominated solutions
until a fixed upper bound to the cost function.

In this paper we address the determination of pairs of paths between two network nodes, with
two goals:

• the minimization of the cost of the two paths,

• the minimization of the number of groups that they both have in common,

and we also propose a method for finding the set of the non-dominated solutions of the problem.
Computational results are presented and discussed for finding the set of non-dominated solutions.

Secondly, we present computational results focused on the non-dominated solutions close to the
maximal disjoint pair (i.e. quasi-disjoint pairs only, for a predefined admissible relaxation value),
because, in some application problems, those solutions may have special practical relevance. Thirdly,
the study is repeated by replacing the minimization of the cost function by the minimization of the
total number of arcs of the pair of paths.

The rest of this text is organized into four parts. In Section 2 notation and the problem definition
are introduced. The following sections are dedicated to the proposed solution method and to the
presentation of computational tests for assessing its performance under the scenarios described
before. Finally, conclusions are drawn in Section 5.
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2 The shortest - maximally label disjoint pairs of paths problem

Let us consider the following definitions. Let G = (N,A) denote a network, where N is the set
of n nodes and A ⊆ N × N is the set of m arcs. Let p = 〈v1, . . . , vr〉, where (vi, vi+1) ∈ A for
i = 1, . . . , r − 1, be a path from v1 to vr in G. Given s, t ∈ N , the source and the terminal nodes,
and P denotes the set of paths in G from s to t.

Let L be the set of network groups, also called labels, and (i, j) ∈ A be an arc. Then, two values
are associated with the arc (i, j):

• cij ∈ R+
0 , which represents the cost for using the arc (i, j), and

• lij ∈ L, which represents the label of the arc (i, j).

For a path p ∈ P , its cost and the set of its arc labels are defined by

c(p) =
∑

(i,j)∈p

cij and l(p) = ∪(i,j)∈p{lij},

respectively. Such notions can be extended to pairs of paths in P . Given (p, q) ∈ P × P ,

• the pair’s cost is given by c(p, q) = c(p) + c(q), and

• the number of labels which are common to both paths is given by l(p, q) = |l(p) ∩ l(q)|.

The shortest and maximally label disjoint pairs of path (SMLPP) problem can be modeled as a
biobjective problem that aims at finding pairs of paths which optimize the cost and the number of
common labels previously defined, that is,

min c(p, q)
min l(p, q)
such that p, q ∈ P

In general these two objective functions are conflituous, therefore there is no pair of paths which
optimizes both simultaneously. Instead, the solutions for the SMLPP problem are non-dominated
pairs of paths from s to t, defined as follows. A pair of paths (p, q) is said to be non-dominated if
and only if there is no other pair of paths (p′, q′) ∈ P × P that dominates it, that is, such that{

c(p′, q′) ≤ c(p, q)
l(p′, q′) ≤ l(p, q)

with c(p′, q′) 6= c(p, q) and/or l(p′, q′) 6= l(p, q). Thus, the goal of the SMLPP problem is to find the
set of non-dominated pairs of paths in P . A review on multicriteria path problems can be found in
[4].
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3 Solution method

The method proposed in the following, for finding the set of non-dominated solutions for the SMLPP
problem results from answering to two main questions: how to find pairs of paths from s to t, and how
to handle the functions c and l from a biobjective perspective. The first of these points is addressed
by adapting a modification of the graph G, proposed in [3]. The second is an adaptation of the
ranking method introduced in [2] for the biobjective shortest path problem. The two procedures
are now briefly outlined.

The first step of our algorithm consists of transforming the given network into another one that
allows representing a pair of paths between two nodes as a single path. Then, the given network,
G = (N,A), is transformed into a new network, G′ = (N ′, A′), such that

• each node i ∈ N is duplicated as the node i′,

• each arc (i, j) is duplicated as the arc (i′, j′), and

• a new arc is added that links node t to node s′, the arc (t, s′).

Thus, the new sets of nodes and arcs are

N ′ = N ∪ {i′ : i ∈ N}

and
A′ = A ∪ {(i′, j′) : (i, j) ∈ A} ∪ {(t, s′)}.

The initial node of network G′ is the former initial node, s, whereas the new terminal node is node
t′.

The values associated with the arcs of G are extended naturally, in order to maintain the cost
and the labels of the paths in the original network representation. Thus, arc costs and the labels of
the former network, G, are maintained. Moreover, the costs and labels for the duplicated arcs are

ci′j′ = cij and li′j′ = lij ,

for any (i, j) ∈ A. Furthermore, cts′ = 0 and lts′ = x, where x is an extra label, such that x 6∈ L.
These operations are summarized in Algorithm 1.

Algorithm 1: Duplicate the network G = (N,A)

1 N ′ ← N ∪ {i′ : i ∈ N}
2 A′ ← A ∪ {(i′, j′) : (i, j) ∈ A} ∪ {(t, s′)}
3 s← s; t← t′

4 for (i, j) ∈ A do ci′j′ ← cij ; li′j′ ← lij
5 cts′ ← 0; lts′ ← x, for some x 6∈ L

The new network G′ has 2n nodes and 2m+ 1 arcs. In practice the duplication of the arcs can
be avoided because their information is still stored in the original network. Thus, it is enough to
store 2n nodes and m+ 1 arcs only.
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Assume that the symbol � stands for the concatenation of two paths. That is, given a path q
with the same terminal node as the initial node of another path r, then q � r is the path that results
from following the sequence r, q. The next result follows directly from the definitions above.

Lemma 1 Any path p from s to t′ in the network G′ has the form: p = q � 〈t, s′〉 � r′, with q a path
from s to t and r′ a path from s′ to t′. Moreover,

c(p) = c(q) + c(r′) and l(p) = |l(q) ∩ l(r′)|.

Lemma 1 shows that every path from s to t′ in G′ corresponds to a pair of paths from s to t in
G, q and r, where r is the path obtained from r′ by replacing any node i′ by its original node i.

The duplication of the network G allows to represent pairs of paths from s to t in G as paths
from s to t′ in G′, which transforms the SMLPP problem into a biobjective path problem with c
and l as the objective functions.

[2] introduced an algorithm for finding the non-dominated solutions of the biobjective shortest
path problem. Their method is based on ranking paths by non-decreasing order of one of the
two objective functions, say c1 or c2. This originates a sequence of solutions from which the non-
dominated ones can be selected, {pi}i=1,...,k. Assuming that the solutions are ranked by order of c1,
then the subsequence of non-dominated solutions is non-decreasing in c1 but non-increasing in c2.
That is, {

c1(pi) < c1(pi+1)
c2(pi) > c2(pi+1)

or
{
c1(pi) = c1(pi+1)
c2(pi) = c2(pi+1)

(1)

In fact, when ranking paths according to c1, either c1(pi) < c1(pi+1) or c1(pi) = c1(pi+1). In the
first case, if c2(pi) ≤ c2(pi+1) then pi dominates pi+1. In the second, pi+1 dominates pi if and only if
c2(pi) > c2(pi+1). Thus, the conditions (1) follow from the fact that pi is non-dominated. The first
and the last elements of the sequence are obtained by solving the shortest path problem with respect
to c1 and to c2, respectively. In cases where there are multiple optimal solutions with respect to
c1, the first one may be dominated. Then, the ranking method computes the alternative solutions
and the dominance test discards the first one, provided that one that dominates it is found. This
is also not a problem for the last solution. Let c∗2 be the best value, for c2, that a pair of paths
in G can have. Then, the last solution to be considered is the shortest for c1 that has a c2 value
of c∗2, therefore it is not dominated. The remaining elements are calculated by means of a ranking
shortest path algorithm, applied to function c1.

Contrary to the standard biobjective shortest path problem, while the objective function c in
the SMLPP problem is an additive cost function, however, the function l is more difficult to handle,
as shown by [10]. Still, a ranking algorithm can be applied for finding paths in G′, according to c,
and the result below follows easily, using the reasoning above.

Lemma 2 Let {pi}i≥1 be the sequence of non-dominated paths from s to t′ in G′ with respect to
(c, l). Then, these paths can be arranged in a way that satisfies{

c(pi) < c(pi+1)
l(pi) > l(pi+1)

or
{
c(pi) = c(pi+1)
l(pi) = l(pi+1)
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As a consequence, paths in G′, that is, pairs of paths in G, can be ranked by order of c, and
the dominance test proposed by Clímaco and Martins can prune those which are dominated. The
dominance test consists of comparing the objective function values of each current solution with
the objective function values of the latest non-dominated solution candidate. At a given step of the
method, say step k, let mc denote the greatest cost of the last path computed in G′ until step k

and let Ml denote the smallest number of common labels of the pairs of paths computed until step
k. Because paths are ranked according to c, their costs never decrease. Then, given a new path p
in G′, the algorithm proceeds as follows:

• If c(p) = mc and l(p) = Ml, then p is added to the set of candidates to non-dominated
solutions.

• If c(p) = mc and l(p) < Ml, then the candidate solutions are dominated. The path p is a new
candidate to non-dominated solution.

• If c(p) = mc and l(p) > Ml, then the path p is dominated. The set of candidates to non-
dominated solutions remains unchanged.

• If c(p) > mc and l(p) = Ml, then the path p is dominated and the current solutions, in the
set of candidates, are non-dominated.

• If c(p) > mc and l(p) < Ml, then the current solutions, in the set of candidates, are non-
dominated. The path p is a new candidate to non-dominated solution.

• If c(p) > mc and l(p) > Ml, then the current solutions, in the set of candidates, are non-
dominated. The path p is also dominated.

Additionally, the values of mc and Ml need to be updated during the process, whenever c(p) < mc

or l(p) < Ml.
The algorithm starts by computing the shortest path in G′ with respect to c, say p, which is

then used to initialize mc and Ml (mc = c(p), Ml = l(p)). Afterwards, the algorithm continues and
other paths in G′ are ranked by order of c. The non-dominated solutions are filtered as paths are
ranked, using the test outlined above.

The halting condition of the former algorithm is the following: the algorithm stops when during
the ranking, the cost (c1) of the current path is greater than the cost (c1) of the path which optimizes
the second function (c2). If there are alternative optima concerning c2, it will be considered the
minimal cost (c1) corresponding to these alternative optima. This procedure cannot be repeated
in the case of the SMLPP problem, given the hardness of that particular subproblem. Instead, the
paths are ranked until all solutions have been computed or an acceptable pair of paths with respect
to the number of shared labels, has been found. In this respect it can be noted that in applications
to telecommunications it may be considered reasonable to use solutions that are either label disjoint
or have few common labels, for instance up to 2 (0 common labels means that the two paths are
label disjoint).
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Finally, any algorithm for ranking shortest paths can be used for generating solutions of the
SMLPP problem, for instance [7, 13, 14]. In our implementation we have used the MPS algorithm,
a deviation algorithm proposed by Martins, Pascoal and Santos in [13].

The proposed method is outlined in Algorithm 2. The sequence of paths generated by the
ranking algorithm is denoted by {pk} and satisfies c(pk) ≤ c(pk+1), for k ≥ 1. Moreover, the
algorithm uses two auxiliary sets, set PX and set PN . The first is used to store paths in G′ that are
temporary candidates to non-dominated paths. The latter is a set that stores the non-dominated
paths in G′, that is, pairs of paths in G.

Algorithm 2: Finding the non-dominated SMLPPs
1 G′ ← Duplicate the network G // Network modification
2 p∗c ← shortest pair of paths from s to t′ with respect to c in G′

3 mc ← c(p∗c); Ml ← l(p∗c)
4 k ← 0
5 PN ← ∅; PX ← {p∗c}
6 while there are paths left to rank and a stopping condition is not met do
7 k ← k + 1
8 pk ← k-th shortest path from s to t′ with respect to c in G′

9 // Dominance test
10 if c(pk) = mc then
11 if l(pk) = Ml then PX ← PX ∪ {pk}
12 if l(pk) < Ml then
13 Ml ← l(pk)
14 PX ← {pk}

15 else
16 if l(pk) < Ml then
17 mc ← c(pk); Ml ← l(pk)
18 PN ← PN ∪ PX ; PX ← {pk}

The implementation of Algorithm 2 will be denoted by SMLPP. Three other versions of this
method were considered, as described next.

Version SMLPP1 Every two paths from s to t in G, say q and r, correspond to two pairs of paths,
(q, r) and (r, q). A condition was imposed in this new version of the algorithm to prevent the
calculation of the two pairs of paths, which forces them to satisfy c(q) ≤ c(r). Therefore, a path
q � 〈t, s′〉 � r′ in G′ is discarded before being stored whenever

c(q) > c(r′).

It should be remarked that this measure does not fully avoid path pair repetitions, given that cases
such that c(q) = c(r) can still occur. However, such a filter would be more demanding in terms of
operations.
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Version SMLPP2 Assume that mc and Ml have been updated at some step of Algorithm 2, and let
p = q � 〈t, s′〉 � r′ be a path selected after that update. By definition c(p) ≥ mc, therefore l(p) > Ml

implies that p is dominated. When using a deviation algorithm [13] the generation of a new path
can be avoided as long as it contains a partial path that has more than Ml common labels.

Version HMLPP The proposed SMLPP method can be used to solve an application, where the min-
imization of the hops (number of arcs) between the given nodes is sought [9]. This problem will be
designated as the bicriteria minimum hop-maximally label-disjoint path pairs (HMLPP) problem.
This will be treated as a particular case of the previous problem, where the arc costs are cij = 1,
for any (i, j) ∈ A.

4 Computational experiments

The methods presented earlier, SMLPP, SMLPP1, SMLPP2 and HMLPP, were coded in C language and
were tested on an Intel R© i7-6700 Quad core, with 8Mb of cache, a 3.4 GHz processor and 16 Gb of
RAM. The codes ran over openSUSE Leap 42.2

As mentioned earlier, the MPS algorithm [13] is used in order to rank the pairs of paths in G.
This is a ranking deviation algorithm, which uses an auxiliary set X of candidates to the next best
solution, pk, for some k ≥ 1. The set X is initialized with the path p1. Afterwards, the path pk is
selected as the shortest path in X, and is scanned in order to generate new candidate paths. These
candidates deviate from pk at one of its nodes and are selected so that they have the smallest possible
cost. The new candidate paths are stored in set X, and the process is repeated while necessary. A
bound of 7 000 000 pairs of paths was imposed as the maximum number of candidates generated by
the algorithm for the experiments reported below. This value can be increased (decreased), which
results in an increase (decrease) of the run times and of the number of problems solved until the
end, as explained in the following.

Three sets of experiments were performed. One for assessing and comparing the codes SMLPP,
SMLPP1, SMLPP2 for the SMLPP problem, and another for studying the behavior of the codes when
the sought pairs of paths are allowed to have at most ∆ = 2 labels in common. The last set of tests
is dedicated to the case where the number of hops replaces the cost objective function, the HMLPP
problem.

The instances are randomly generated for a given number of nodes n and a given number
of arcs m. The initial and terminal nodes are s = 1 and t = n, respectively. First a set of
arcs linking the n nodes is created, (1, 2), (2, 3), . . . , (n − 1, n), in order to ensure the existence
of at least one path from s to t. The extreme nodes of the remaining m − n arcs are then ran-
domly selected. Both the arc costs and the arc labels are uniformly obtained within intervals
defined by the user. The generator used in the experiments was adapted from the code available at
http://mat.uc.pt/∼eqvm/cientificos/fortran/Codigos/spantree.f.Z. The new version associates two
values with each arc, its cost and its label, rather than just one.
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Test set I The first set of experiments is divided in two randomly generated instances of the
SMLPP problem.

• The first part, Set I.A, consists of networks with n = 1 000, 2 000, 5 000 nodes, average degree
δ = m/n, with δ = 2, 5, 10, and maximal number of arc labels of |L| = 3, 5, 10, 15, 20.

• The second part, Set I.B, considers smaller instances compatible with realistic network topolo-
gies. These instances have n = 10, 20, 30, 40, 50 nodes, average degree δ = 2, 4, 6, and the same
number of arc labels as the previous set.

In both cases, for each arc (i, j) ∈ A, the cost was uniformly generated in cij ∈ {1, . . . , 100}, and
the label was uniformly generated in lij ∈ {1, . . . , |L|}. The results presented in the following are
mean values obtained for 10 different seeds, for each set of parameters.

Table 1: Problems of Set I.A solved until the end (%)
δ = 5 δ = 10 δ = 20

n\|L| 3 5 10 15 20 3 5 10 15 20 3 5 10 15 20
1 000 20 10 50 90 60 40 70 60 90 90 60 60 100 100 90
2 000 20 50 80 90 90 0 70 50 90 80 30 50 100 90 100
5 000 0 30 80 60 80 10 40 90 100 100 10 70 100 90 100

Table 2: Mean number of non-dominated solutions in Set I.A
δ = 5 δ = 10 δ = 20

n\|L| 3 5 10 15 20 3 5 10 15 20 3 5 10 15 20
1 000 2.7 4.4 4.5 2.7 3.1 3.0 3.4 4.2 4.4 4.5 4.3 5.3 5.0 5.1 4.2
2 000 3.2 3.7 5.0 5.2 3.7 3.5 5.7 5.2 5.8 4.2 4.0 5.4 5.3 6.9 4.7
5 000 2.7 2.4 3.5 4.7 3.4 2.8 4.2 4.8 5.5 5.2 4.5 4.2 4.5 5.3 3.7

The first purpose of the tests in Set I.A was to assess the empirical performance of the introduced
methods, when applied to the previous set of instances. The first remark to the results is that the
required run times of the three codes varied a lot for all instances – see Figure 1. In fact, part of
the problems were solved very fast, whereas others could only be solved partially because of the
memory limitations that have been imposed. The percentage of problems solved until the end (the
same for all three codes) is summarized in Table 1. It can be noted that the denser instances and
with a bigger number of labels, seem to be easier to solve than the smaller instances with fewer
labels. Although not intuitive, this has to do with the algorithm’s stopping condition, because in
bigger networks it is easier to find pairs of fully label disjoint paths, and thus halt the method very
quickly. On the other hand, Table 2 shows that the number of non-dominated solutions for these
instances is fairly small. The average values are between 2.4 and 6.9 solutions.

The mean run times for the three codes are presented in Figure 1. In general they are small,
at most 30 milliseconds, and increase with n and decrease with |L| and δ. The general tendency
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Figure 1: Mean run times for the codes SMLPP, SMLPP1, SMLPP2 in Set I.A
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is that the code SMLPPP runs faster than the other two codes, nevertheless, the results of all three
codes behave similarly and are very close.
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Table 3 presents the number of pairs of paths that had to be generated for solving the given
instances, considering only those that were solved until the end. The reason is to prevent the mean
values from being too biased by the maximum allowed number of generated solutions. The values
that correspond to the code(s) that produced the least number of pairs of paths are shown in bold on
Table 3. As mentioned earlier, some instances required the computation of many of these solutions,
while others were solved in very few iterations, which results in a visible variation of the average
values on Table 3. The values vary from one code to another but no code prevails over the others
with respect to the number of computed solutions. Nevertheless, the code SMLPP2 seemed to be
successful in generating less pairs of paths than SMLPP and SMLPP1, although this is not reflected in
the run times.

As shown in Figure 5, the run times for solving these instances were slightly bigger than for the
former tests, but were still small and did not exceed 30 milliseconds, in average. Moreover, there
seems to be a tendency of the code SMLPP to outperform the others for the sparser graphs, and of the
code SMLPP2 for the denser graphs. Still, all the run times were fairly close to each other and none
of the codes always dominated the other two. It is also worth noticing that often an increase in the
maximum number of labels, |L|, corresponds to instances that are faster to solve, which matches
the fact that most of these problems were solved until the end.

Table 4: Problems of Set I.B solved until the end (%)
δ = 2 δ = 4 δ = 6

n\|L| 3 5 10 15 20 3 5 10 15 20 3 5 10 15 20
10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
20 100 100 100 100 100 60 60 70 70 80 100 90 100 90 80
30 100 100 100 100 100 60 70 80 70 100 60 80 100 80 100
40 100 100 100 100 100 50 50 70 50 50 70 60 80 80 90
50 100 100 100 100 100 10 40 60 60 80 10 90 90 80 80

Because on the first part of the experiments the bigger problems were easier to solve than the
smaller ones, the second part was focused on much smaller instances (trying to test realistic sizes
in applications). The percentage of problems solved until the end is shown in Table 4, whereas the
mean run times of the codes SMLPP, SMLPP1 and SMLPP2 are depicted in Figures 2 to 4. More of
these instances are solved until the end than for the Set I.A. Additionally, most of the instances
in Set I.B are solved until the end. In particular, all the pairs of paths have been determined for
the networks with n = 10 nodes and with average node degree δ = 2. Moreover, the run times
for Set I.B are smaller than for the previous cases, which stems from the fact that the topologies
are easier to handle due to the drastic decrease of the sizes. In this case none of the three codes
dominates the others with respect to the run time.

Test set II As mentioned earlier, in many applications full label disjointness of the two paths
is wished but not mandatory. It may also be the case that no such paths exist, but a solution
is needed nevertheless. In both cases, pairs of paths with few common labels can still be useful.
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Figure 2: Mean run times for the codes SMLPP, SMLPP1, SMLPP2 on Set I.B, δ = 2
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Figure 3: Mean run times for the codes SMLPP, SMLPP1, SMLPP2 on Set I.B, δ = 4
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Figure 4: Mean run times for the codes SMLPP, SMLPP1, SMLPP2 on Set I.B, δ = 6

Therefore, the next results focus on the ability of the algorithms to find pairs of paths with at most
∆ = 1, 2 labels in common for the same instances, in particular for those that could not be solved
until the end. Table 5 presents the least number of common labels of the solutions obtained by code
SMLPP for those instances. The average value for these least numbers of common labels is either 1,
for the cases where all the last pairs of paths that were found have one label in common, or below
1.5. Besides, for these tests the number of path common labels was 2 for 5% of the instances with
n = 1 000, and 7% of the instances with n = 5 000. For the remaining cases pairs of paths with a
single label in common were found. Table 6 summarizes the run times to compute pairs of paths
with 1 or 2 labels in common, again for the instances that could not be solved until the end. It
is also worth noting that some of the problems with solutions with 1 common label may also have
solutions with 2 common labels. The average run times in Table 6 when ∆ = 2 include these cases,
as well as those instances for which the last solution has 2 common labels, which are significantly
harder to solve than the former. According to Table 6, solutions with ∆ = 1, 2 common labels could
be found in less than 24 milliseconds. These times are compatible with practical applications of the
method.

Table 5: Mean least number of common labels using SMLPP for problems that were not solved until
the end in Set I.A

δ = 5 δ = 10 δ = 20

n\|L| 3 5 10 15 20 3 5 10 15 20 3 5 10 15 20
1 000 1.1 1.2 1.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 * * 1.0
2 000 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 * 1.0 *
5 000 1.2 1.5 1.5 1.3 1.0 1.0 1.5 1.0 * * 1.2 1.0 * 1.0 *
*: All problems were solved until the end
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Still having in mind the calculation of pairs of paths with a limited number of labels in common,
on a second part of the empirical experiments two variants of the code SMLPP2 were implemented:

• The code SMLPPFix, which prevents the calculation of pairs of paths that can only generate
solutions with more than ∆ common labels. These solutions are not interesting for this
problem. As the MPS algorithm uses deviation paths, a subpath starting in s in the duplicated
network that has more than ∆ common labels surely leads to a pair of paths with more than
∆ common labels as well.

• The code SMLPPFixRank, which starts by ranking pairs of paths without testing their domi-
nance until the first one with at most ∆ common labels, and then resumes as SMLPPFix. In
this case the first pair of paths that can be non-dominated has at most ∆ common labels,
therefore the dominance test is not needed until such a solution is found.

Tests were run for the previous instances and considering ∆ = 2.
The percentage of problems that were solved until the end under the previous memory con-

straints, was the same as shown in Table 1. Although different numbers of pairs of paths are
generated by the three codes, the attempt to speed up the original code was not fully well suc-
ceeded, as all the codes presented very similar results in terms of the run time. For this reason the
run times are now shown here.

Test set III A third set of experiments was dedicated to the HMLPP problem. By definition
the arc costs are cij = 1, for any (i, j) ∈ A, and one of the goals of the problem is to minimize the
number of path hops. The used networks were those in Set I.A. Additionally, like for the previous
instances, each arc label was uniformly generated in lij ∈ {1, . . . , |L|}, for any (i, j) ∈ A, with
|L| = 3, 5, 10, 15, 20.

Table 7: Problems solved until the end (%) for the HMLPP problem
δ = 5 δ = 10 δ = 20

n\|L| 3 5 10 15 20 3 5 10 15 20 3 5 10 15 20
1 000 40 30 60 90 60 90 90 80 100 100 100 100 100 100 100
2 000 40 80 80 90 90 90 100 60 100 80 100 100 100 100 100
5 000 20 80 80 70 80 90 100 90 100 100 100 100 100 100 100

Table 8: Mean number of non-dominated solutions for the HMLPP problem
δ = 5 δ = 10 δ = 20

n\|L| 3 5 10 15 20 3 5 10 15 20 3 5 10 15 20
1 000 23.7 20.0 14.3 3.2 15.6 16.5 10.8 43.8 50.0 49.4 41.6 14.5 56.0 84.8 55.9
2 000 4.5 23.8 11.0 11.2 14.9 13.3 18.2 17.4 34.3 43.5 23.6 48.3 39.4 9.6 45.5
5 000 19.6 8.3 12.8 7.0 22.7 33.9 11.1 8.0 25.0 20.3 83.5 11.9 130.9 35.1 162.3
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Table 9: Mean least number of common labels using SMLPP for problems that were not solved until
the end

δ = 5 δ = 10 δ = 20

n\|L| 3 5 10 15 20 3 5 10 15 20 3 5 10 15 20
1 000 1.2 1.1 1.3 1.0 1.5 1.2 1.1 1.0 * * * * * * *
2 000 1.0 0.5 1.0 1.0 1.0 1.0 * 1.0 * 1.0 * * * * *
5 000 1.0 1.5 1.0 1.0 1.5 1.0 * 1.0 * * * * * * *
*: All problems were solved until the end

According to Table 7 more instances of the HMLPP problem could be solved until the end than
for the general SMLPP problem, although Table 8 shows that the mean number of non-dominated
pairs of paths is bigger for the HMLPP problem than for the SMLPP problem. Also, this is more
likely to happen for the denser instances with more different labels.

As shown in Figure 5, the run times for solving these instances were sometimes slightly bigger
and more unstable than for the former tests, but were still small and did not exceed 30 milliseconds,
in average. Moreover, there seems to be a tendency of the SMLPP code to outperform the others,
specially for the sparser graphs. Still, all the run times were fairly close to each other. It is also
worth noticing that, although there are some exceptions, often an increase in the maximal number
of labels, |L|, corresponds to instances that are faster to solve. This matches the fact that most of
these problems were solved until the end. The differences are probably due to the fact that in the
HMLPP problem the arc costs are all equal and, thus, the influence of the network topology can
prevail.

An analysis of the least number of labels in common for the pairs of paths that could be computed
for the problems interrupted due to memory constraints is given in Tables 9 and 10. According to
Table 9, the average number of labels in common for the last pair of paths in problems that were
not solved until the end is either 1.0 or below 1.5, given that 1 was the number obtained for most
of these instances. Among them there were 4% of the instances with n = 1 000 with a last solution
with 2 common labels. This percentage was of 1% of the instances when n = 5 000.

In terms of the average run time required to output these solutions, Table 10 shows that pairs
of paths with 1 label in common were found in less than 14 milliseconds, whereas pairs of paths
with 2 common labels were found in less than 13 milliseconds.
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5 Conclusions

This work addressed the problem of finding pairs of paths that are group disjoint as much as
possible, while minimizing the cost. A bicriteria approach to this problem (the SMLPP problem)
was introduced. The approach consists of a modification of the network topology, followed by the
application of an algorithm that computes the non-dominated pairs of paths with respect to the
two objective functions. The algorithm ranks pairs of paths according to the cost function, while
discarding the dominated solutions. The method also handles well a common objective function,
the number of hops.

Some different variants of this method were implemented aiming at skipping dominated solutions.
The proposed variants were tested for randomly generated instances. In general, the instances with
small densities and small values of |L| were harder to solve than denser instances with a wider range
of groups. Some of the instances of the SMLPP were solved very quickly, whereas solving others
depended on the allocated memory space. Nevertheless, in average the non-dominated solutions for
the problem were found in short times. Solutions of practical interest, in particular, pairs of paths
with 2 or 1 labels in common, were found in average in less than 31 milliseconds. These times seem
to be reasonable in practical terms.

The second variant of the problem, the HMLPP problem, includes the number of hops in the
paths as the min-sum objective function. The same algorithms were tested for experiments similar
to the previous ones, but considering all costs equal to 1. The results showed that these instances
were easier to solve than the first ones, despite having more non-dominated solutions. For this case,
the average run times for finding the non-dominated solutions did not exceed 30 milliseconds.
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