

João Gabriel Marques Carvalho

ELECTRICITY CONSUMPTION FORECAST MODEL FOR

THE DEEC BASED ON MACHINE LEARNING TOOLS

Dissertação no âmbito do Mestrado Integrado em Engenharia Eletrotécnica e de
computadores

Ramo de energia

Orientada pelo
Professo Doutor Tony Richard de Oliveira de Almeida

February de 2020

1

UNIVERSITY OF COIMBRA

FACULTY OF SCIENCES AND TECHNOLOGY

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

INTEGRATED MASTER IN ELECTRICAL AND COMPUTER

ENGINEERING

Electricity consumption forecast model for the DEEC

based on machine learning tools

João Gabriel Marques Carvalho

Supervisor:

Prof. Dr. Tony Richard de Oliveira de Almeida

Jury:

Prof. Dr. Humberto Manuel Matos Jorge

Prof. Dr. Nuno Miguel Mendonça da Silva Gonçalves

Prof. Dr. Tony Richard de Oliveira de Almeida

Dissertation submitted to the Electrical and Computer Engineering Department of the Faculty of

Science and Technology of the University of Coimbra in partial fulfillment of the requirements

for the Degree of Master of Science.

Coimbra, February of 2020

To my mother who never gave up fighting for me.

“However difficult life may seem, there is always something you can do and succeed at.”

 Stephen Hawking

https://www.brainyquote.com/authors/stephen-hawking-quotes

 iii

Acknowledgements

I would first like to thank my thesis advisor Prof. Dr. Tony Richard de Oliveira de Almeida

of DEEC, at University of Coimbra, who supported and advised all the way through to the

successful completion of this dissertation.

To my colleagues and friends for the friendship and moral support.

To my dogs for it love and grace.

And finally, it is imperative to express my most deep gratitude to my parents and sister,

for their profound and continuous support, encouragement and strength, that they gave me

throughout all these years of study and through the process of researching and elaborating this

dissertation. This achievement would not have been possible without them.

Thank you,

João Carvalho

https://www.thesaurus.com/browse/achievement

 v

Abstract

In this thesis, the design of a machine learning neural network capable of making energy

predictions is presented. With the increase in energy consumption, tools for the prediction of

energy consumption are gaining great importance and their implementation is required. This

concern is the main goal of the presented work.

We strive to explain the history of machine learning, what machine learning is and how it

works. It is also sought to explain the mathematical background and use of neural networks and

what tools have been developed nowadays to create machine learning solutions. Machine

learning is a computer program that can perform trained tasks in a similar way as the human

mind. The neural network (ANN) is one of the most used and important machine learning solution

through which pivotal data can be obtained.

For predicting the energy consumption at the Department of Electrical and Computer

Engineering (DEEC) of the University of Coimbra, a neural network was trained using real data

from the overall consumption of the DEEC towers.

Phyton was the language used and the supervised learning regression algorithm utilized.

With this prediction, we finally compare our data with real data, so that we may analyze it. The

data used in the training of the neural network goes from 2015/July/10 to 2017/December/31, a

total of 906 days. For each day of the year, there is a maximum of 3 values, which is considered

a small sample, but the only one available

The final comparison between real and predicted data was only done for the month of

January 2018. From the data achieved, predictions were made, but with a certain level of

discrepancy, that is explained with the low amount of data available. In the future, one of the

things that should be considered is to enlarge the training datasets, considering a larger amount

of input variables.

The main goal proposed for this thesis was successfully obtained. With all the presented

research it was strived to create text that would allow being a steppingstone in the creation of

better solutions. This is an extraordinary field that in the future will be able to elevate our

knowledge to a completely different level.

Keywords: Artificial neural network, multilayer perceptron, Feed Forward,

Backpropagation, Prediction

 vii

Resumo

Nesta tese apresentaremos o trabalho sobre a criação de uma rede neuronal de

aprendizagem automática, capaz de realizar previsões energéticas. Com o aumento do consumo

energético, devem desenvolvidas ferramentas capazes de prever o consumo. Esta necessidade

levou à pesquisa deste tema.

Procura-se explicar a história da aprendizagem automática, o que é a aprendizagem

automática e como é que esta funciona. Também se procura explicar os seus antecedentes

matemáticos, a utilização de redes neuronais e que ferramentas foram atualmente

desenvolvidas; de forma a criar soluções de aprendizagem automática.

A aprendizagem automática consiste num programa informático, que após treino é capaz

de desempenhar tarefas de forma similar à mente humana. A rede neuronal (ANN) é uma das

mais importantes ferramentas de aprendizagem automática, através da qual se pode obter

informação fundamental.

Para prever o consumo de energia no Departamento de Engenharia Eletrotécnica e de

Computadores (DEEC) da Universidade de Coimbra, uma rede neural foi treinada usando dados

reais do consumo total das torres do DEEC.

Phyton foi a linguagem utilizada e recorreu-se ao logaritmo de regressão de aprendizagem

supervisionada. Com esta previsão, comparam-se os dados obtidos com os dados reais, o que

permite a sua análise. Os dados usados no treino da rede neuronal vão de 2015/julho/10 a

2017/dezembro/31, num total de 906 dias. Por cada dia do ano existe um máximo de 3 valores,

considerando-se assim uma amostra pequena.

A comparação final entre os dados reais e os dados previstos foi somente realizada no mês

de janeiro de 2018.

A partir dos dados obtidos realizaram-se previsões, apesar de um certo nível de

discrepância; justificada pela pequena quantidade de dados disponíveis. No futuro, deve-se

aumentar os dados de treino de forma a obter um maior número de variáveis de entrada.

O principal objetivo proposto nesta tese foi atingido com sucesso. Com toda a pesquisa

apresentada, buscou-se criar informação que permitisse ser um marco na criação de melhores

soluções. Este é um campo extraordinário que no futuro permitirá elevar os nossos

conhecimentos a outros níveis.

Palavras-chave: Rede neuronal artificial, Perceptron de multicamada, Alimentação avante,

Retro propagação, Previsão

 ix

Table of Contents

Acronyms and Symbols .. xi

1 Introduction .. 1

1.1 Motivation and overall goals ... 1

1.2 Related work .. 3

1.3 Contributions ... 3

1.4 Structure of Dissertation .. 4

2 Machine learning .. 5

2.1 What is Machine learning .. 6

2.2 How does the computer learn? .. 7

2.3 What are Artificial Neural Networks ... 9

2.3.1 Multilayer Perceptron’s ... 10

2.3.2 Multilayer Perceptron’s Structure .. 11

2.3.3 Information processed by a neuron .. 12

2.3.4 Activation Functions .. 13

2.3.5 Effect of Bias ... 15

2.3.6 Neural Network Feedforward .. 15

2.3.7 Number of neurons in the hidden layer .. 16

2.3.8 Number of hidden layers .. 16

2.3.9 Training algorithm ... 17

2.4 Tools commonly used for creating machine learning solutions 19

3 Data and program analysis .. 21

3.1 Program Implementation ... 22

3.1.1 Program Implementation ... 22

3.1.2 Training set .. 23

3.1.3 Main program ... 24

3.2 Experimental data analysis .. 31

Table of Contents

 x

4 Conclusion and Future work ... 39

References ... 41

 xi

Acronyms and Symbols

Abbreviation Meaning

ANN

BP

DEEC

Artificial Neural Networks

Back-Propagation

Departamento de Engenharia Eletrotécnica e de Computadores

FCTUC Faculdade de Ciências e Tecnologia da Universidade de Coimbra

FFNN

Lux (LX)

Feed Forward Neural Network

Illuminance

MLP

SKlearn

Multilayer perceptron’s

Scikit-learn

 xiii

List of figures

Fig. 1.1. Representative Workflow study .. 2

Fig. 2.1. Machine-learning approaches ... 7

Fig. 2.2 Neural network ... 9

Fig. 2.3 Schematic of a fully connected multilayer perceptron’s neural network 11

Fig. 2.4 Multilayer Perceptron´s Structure with named neuron, inputs and outputs 12

Fig. 2.5 Information processing by ith of the lth layer ... 13

Fig. 2.6 Sigmoid function ... 14

Fig. 2.7 Arc-tangent function ... 14

Fig. 2.8 Hyperbolic-tangent function .. 14

Fig. 2.9 Neuron Relations .. 18

Fig. 3.1 Diagram of DEEC .. 22

Fig. 3.2 Library of “Neural network” file ... 25

Fig. 3.3 Data Processing .. 26

Fig. 3.4 Scaling .. 26

Fig. 3.5 neural network creation ... 27

Fig. 3.6 Representation of neural network architecture ... 27

Fig 3.7 Training neural network .. 28

Fig 3.8 Saving data .. 29

Fig 3.9 Library of the “Test” file ... 28

Fig 3.10 Load and Data processing .. 29

Fig 3.11 Data transformation .. 30

Fig 3.12 Data saving .. 30

Fig 3.13 Visualization of Real to Predicted values in Tower R in January 32

Fig 3.14 Visualization of Real to Predicted values in Tower S in January 32

Fig 3.15 Visualization of Real to Predicted values in Tower T in January 33

Fig 3.16 Visualization of Real to Predicted values in Tower B in January 33

Fig 3.17 Visualization of Real to Predicted values of Overall consumption in January 34

Fig 3.18 Visualization of Real to Predicted values in Tower R for February 35

Fig 3.19 Visualization of Real to Predicted values in Tower S for February 35

Fig 3.20 Visualization of Real to Predicted values in Tower T for February 36

Fig 3.21 Visualization of Real to Predicted values in Tower B for February 36

Fig 3.22 Visualization of Real to Predicted values of Overall consumption for February 37

 xv

List of tables

Table 1. Tools used to create neural network solutions ... 19

 1

1 Introduction

Index

1.1 Motivation and overall goals ... 1

1.2 Related work ... 3

1.3 Contributions .. 3

1.4 Structure of Dissertation ... 4

1.1 Motivation and overall goals

Every year, energy consumption grows world widely. This growth in energy consumption

increases the need for a better planning of energy use, which also includes the better planning of

energy distribution and energy consumption measurement [1]. Therefore, the same situation is

observed in our country, Portugal.

Energy is now regarded as one of the strategic elements of society. More than just an asset,

it represents a significant value to the services it provides directly and indirectly. It is ubiquitous

in developed societies and it follows the same trend in developing societies [2].

With the increase of electric consumption, the necessity to predict how much electrical

power is going to be consumed day by day is pivotal. This task has many variables to content

with.

For example, for a building like the Department of Electrical and Computer Engineering, an

educational/research institution, time of day, temperature, wind, humidity, season, class periods,

weekends, total of staff/students/visitors, and many more variables can be considered as direct

factors of the department energy demand.

However, just utilizing the variables day, month, weekends, seasons, temperature and

humidity we can strive for a machine learning solution that allow us to determine how much

electricity is going to be used in any day of the year. The machine learning solution that we are

going to utilize is an Artificial Neural Network.

1.1 Motivation and overall goals

 2

Artificial neural network (ANN) is an emerging discipline, a branch of artificial intelligence,

which has been developing rapidly in recent years. An ANN is a complex network formed by many

processing units through the way of connection, that, based in intuitive human thinking, combines

distributed storage of information together, resulting in sudden novel ideas or solutions to

problems [3]. As such, this thesis has the aim of developing a machine learning program to predict

how much electricity will the Department of Electrical and Computer Engineering of Coimbra’s

University (DEEC) consume each day of the year.

With the variables referred above (day, month, weekend, season, temperature and

humidity) as input neurons, and the energy consumption, from the DEEC building towers, (R, S,

T and B) as output neurons, an ANN its trained with two goals: (i) To compare the values predicted

with the values trained; with the final objective to visualize the error in the predictions; and (ii) to

make queries about predictions outside the data utilized to train; as we can observe from fig 1.1

Fig.1.1 Representative Workflow study – Basic representation of how an artificial neural network

can predict values

Introduction

 3

1.2 Related work

The domains in machine learning are vast and expanding every year. Today, many fields of

modern science use machine learning solutions to tackle problems, such as computer-aided

disease diagnosis, bioinformatics, computer vision [4], and many others like energy consumption

prediction. All of them have the same logic in preparation and execution, what changes is its

complexity and difficulty in execution.

In disease diagnosis, there are programs with the main purpose to find the tissues of interest,

and then measure and analyze whether these tissues produce lesions. Also, programs that

perform organ detection from a given complex dataset with abnormalities, automatic detection of

lacunas of presumed vascular origin, and even programs that detect cerebral microbleeds from

MRI images [4].

Bioinformatics deals with computational and mathematical approaches for understanding and

processing biological data [5]. Computer vision has a dual goal. From the biological science point

of view, computer vision aims to come up with computational models of the human visual system.

From the engineering point of view, computer vision aims to build autonomous systems, which

could perform some of the tasks which the human visual system can perform (and even surpass

it in many cases) [6].

1.3 Contributions

In summary, the contributions of this work result in a trained neural network with 6 input

neurons, and 4 output neurons, represented in Fig.1.1.

With real values and a backpropagation algorithm a neural network is trained to make

predictions of energy consumption in select parts of the DEEC building. This provides the basics

to the expansion of the input neuron to other variables to make the prevision closer as possible

to the reality.

1.4 Structure of Dissertation

 4

1.4 Structure of Dissertation

This dissertation is divided into 4 chapters.

• The current chapter provides the motivations, overall goals, related research and

expected contributions of this work.

• Chapter 2 will strive to explain what machine learning is, how does the computer learn,

what are artificial neural networks and what tools are used to create machine learning

solutions

• In Chapter 3, will explain the implementation and results, first we explain how the program

works and analyze the results by comparing the predictions with the real results.

• Finally, in Chapter 4 we will draw conclusions and propose future work.

 5

2 Machine learning

Index

2.1 What is Machine learning .. 6

2.2 How does the computer learn? .. 7

2.3 What are Artificial Neural Networks ... 9

2.3.1 Multilayer Perceptron’s ... 10

2.3.2 Multilayer Perceptron’s Structure .. 11

2.3.3 Information processed by a neuron .. 12

2.3.4 Activation Functions .. 13

2.3.5 Effect of Bias ... 15

2.3.6 Neural Network Feedforward .. 15

2.3.7 Number of neurons in the hidden layer .. 16

2.3.8 Number of hidden layers .. 16

2.3.9 Training algorithm ... 17

2.4 Tools commonly used for creating machine learning solutions 19

Machine learning (ML), also often data mining, computational intelligence, or pattern

recognition [5], is a computing science that evolved from pattern recognition and from the theory

of computational learning [7].

Nowadays, machine learning is a major success factor in the ongoing digital transformation

across all industries. With machine learning, startups and behemoths alike can make new

products that can learn to perform their intended task better, faster and more intelligently than

humans ever could [7]. They work using historical data to train a program so that it can learn what

it as to do.

2.1 What is Machine learning

 6

There are several tools nowadays available for the programing, training and development of

machine learning algorithms. These tools can perform the same tasks but depending the engineer

background some tools may be better suited than others.

2.1 What is Machine learning

Machine learning is not a new area. It has existed since the 1970s, when the first related

algorithms were developed [7] and is becoming more and more used in all sorts of fields

nowadays [8].

The expansion in computing power has allowed us to use machine learning, to tackle more

complex problems. The increase of collected/stored data has granted the ability to apply machine

learning solutions to an increasing expansive range of domains, such as [7, 12, 14]:

• Security heuristics that distill attack patterns to protect, for instance, ports or networks;

• Image analysis to identify distinct forms and shapes, such as for medical analyses or face

and fingerprint recognition;

• Deep learning to generate rules for data analytics and big data handing, just as the ones

used in marketing and sales promotions;

• Object recognition and predictions from combined video streams and multisensory fusion

for autonomous driving;

• Pattern recognition to analyze code for weaknesses like criticality and code smells (which

is any characteristic in the source code of a program that possibly indicates a deeper

problem);

• Mean sea level pressure, wind speed, and relative humidity can be predicted by utilizing

artificial neural networks;

• The machine learning methods designed for high penetration level of photovoltaic (PV)

power prediction included Artificial Neural Networks (ANNs), Support Vector Regression

(SVR) and Regression Trees (RT);

Overall, the general idea behind most machine learning technics is complex, but essentially

the same. A computer learns to perform a task by studying training set of examples, so then it

can perform the same task, with new data, that it has not been encountered before, and therefore,

give us an expected data [7].

about:blank

Machine Learning

 7

2.2 How does the computer learn?

Training ANNs is generally performed by applying a learning model/strategy to a cost function

[14]. There are two types of learning strategies that gives to the computer the ability to learn and

train. Those strategies are Supervised Learning and Unsupervised Learning [7].

Supervised Learning happens when a machine learning program utilizes real live input and

output datasets for training. This type of learning is very much like giving students a problem and

a way to solve it, so that, when a similar problem appears, they can figure out its solution [7].

On the other hand, Unsupervised Learning consist in training a machine learning program with

only input data, expecting that the computer will figure out what the solution is. This type of

learning is like giving a student a set of patterns and asking him/her to figure out the underlying

motifs that generated the patterns. [7]

Within these two types of learning strategies there are sub-types known as applications, and

in each application, algorithms, exemplified in figure 2.1.

Fig. 2.1. Machine-learning approaches – In machine learning a computer learns how to perform

a task by first being trained, in the figure we can see the types of learning that exist, its subtypes

and what type of algorithms there are in existence [2].

Within supervised learning strategies we can divide all applications in classification

algorithms and regression algorithms.

Classification algorithms take inputs from a dataset and the class of each piece of data, so

that the computer may learn to classify new data. For example, presenting the image of a number

figure and let the program to identify the number value.

2.2 How does a computer learn?

 8

For these classification type problems, we can utilize logic regression, classification trees,

support vector machines, random forests, and artificial neural networks (ANNs) as tools to solve

such problems.

Regression algorithms are used when the objective is to predict a value of an entity, for

example, predicting what is going to be the consumption of electricity in a certain building. To

solve regression type problems, regression algorithms include Linear regression, decision trees,

Bayesian networks, Fuzzy classification, and ANNs.

 It is important to clarify that sometimes supervised learning must deal with under or

overfitting issues.

 An underfitting model easily captures the complex patterns in data such as linear and

logistic regression; while an overfitting model is more complex, like decision trees [23].

Underfitting happens when a model it is incapable of capturing the underlying pattern of data,

usually models with high bias and low variance. This happens when the amount of available data

to build an accurate model is too small or it is used a nonlinear data in order to create a linear

model [23].

Overfitting, on other hand, happens when the model captures the noise along with the

underlying pattern in data, models with low bias and high variance. This situation occurs when

the model it is trained many times over noisy dataset [23].

Within unsupervised learning algorithms we can divide all applications in clustering

algorithms and dimensionality reduction algorithms.

Clustering algorithms take inputs from a dataset covering various dimensions and divide

them into clusters satisfying certain criteria. To solve clustering type problems, clustering

algorithms include hierarchical clustering, Gaussian mixture models, genetic algorithms (in which

the computer learns the best way for a task through artificial selection), and ANNs as tools to

solve them.

A dimensionality reduction algorithm takes the initial dataset that covers various dimensions

and project the data to fewer dimensions. These fewer dimensions will then try to better capture

the data´s fundamental aspects. To solve dimensionality reduction problems, we have principal

component analysis, tensor decomposition, multidimensional statistics, random projection, and

ANNs as tools to achieve a resolution [7].

ANN is a major player in the machine learning world for its ability to utilize any type of learning

algorithm, as so will be used in this dissertation to help conquering its goals.

Machine Learning

 9

2.3 What are Artificial Neural Networks

Neural network analysis (NNA) was proposed nearly 50 years ago by Warren McCulloch and

Walter Pitts [9], but it is only in the last 20 years that software applications have been developed

to handle practical problems from mathematics, engineering, medicine, economics, meteorology,

psychology, neurology and many others fields. ANNs is one of the most widely used solutions for

energy prediction problem [15].

Some of the most important fields are voice recognition, analysis of electromyography and

other medical signatures, identification of military targets, and identification of explosives in

passengers’ suitcases. They are also used in weather trends forecasting, prediction of mineral

exploration sites, electrical and thermal load prediction, adaptive and robotic control, and many

others.

ANNs are a great tool because they can build predictive models from past data collected by

sensors, making it great for process control, so they can be used as an alternative method in

engineering analysis. They are a mathematical and computer mimic of the human brain [10] [15].

The way the network is trained, it requires no detailed information about a system. Instead, it

learns by analyzing the relationship between the input data, controlled and uncontrolled variables

and the output data. From there, after the creation of a network of connections between neurons,

neural networks can predict and work for the job that it was created for [10].

In this chapter, it will be discussed the most used neural network configuration (Fig. 2.2), known

as multilayer perceptron’s, together with the concept of basic backpropagation training.

Fig. 2.2 Neural network – Example of neural network with 𝑥𝑝 inputs and y output [16]

2.3.1 Multilayer Perceptron´s

 10

2.3.1 Multilayer Perceptron’s

According to Wang et al. (2005), the multilayer perceptron is the most popular type of neural

network in work today. They belong to the family of feedforward neural networks, a type of neural

network capable of approximating generic classes of functions, including continuous and

integrable functions [11].

Multilayer perceptron has a minimum of 3 layers of nodes named, input layer, hidden layer

and output layer. In the input layer, it exists the input nodes that are connected to all the nodes in

the hidden layer (Fig 2.3), and the hidden nodes to the output nodes. Every single node is called

a neuron. Every neuron relates to the next layer neurons, and every connection has a

corresponding weight, bias and activation function [11]

The idea of weight, also known as synaptic weight, is a foundational concept in artificial

neural networks. The weight represents a factor by which any values passing into the neuron are

multiplied [21]. To each connection, it is assigned a weight that represents its relative importance

[11]. A set of weighted inputs allows each artificial neuron or node in the system to produce related

outputs [21].

Activation function, also called transfer function, is the function in an artificial neuron that

delivers an output based on its input [11]. This activation function can be linear, discrete, or some

other continuous distribution function. The activation function is the backbone of the multilayer

perceptron training, a function with differentiable properties. The ideal function is a sigmoid

function, the function generally used in most feed forward neural network applications [20].

In order to train a network is used an algorithm technique called Backward Propagation.

Backpropagation was derived by multiple researchers in the early 60's and was rediscovered and

popularized by Rumelhart & McClelland (1986) [20]. It is currently the most common approach to

training feed forward ANNs [20]. In its training phase, the values for the weights, activation

functions and bias are determined by utilizing historic data, so that the neural network learns to

give the right answer [20,22].

Bias is the difference between the average prediction of our model and the correct value

which we are trying to predict. In any model, prediction is pivotal to detect and understand de

prediction errors in order to minimize and avoid mistakes that can put at stake the accuracy of the

built models. Model with high bias pays very little attention to the training data and oversimplifies

the model and it always leads to high error on training and test data. An ideal model with good

balance presents a low bias and a low variance. It is important elucidate the notion of variance,

which is the variability of model prediction for a given data point or a value which tells us spread

of our data. In an ideal model, as referred earlier, a low bias and variance avoid the dangers of

over fitting and under fitting. This kind of model displays a low total error despite the irreducible

error that can never be changed. Irreducible error is the error that cannot be reduced even in

good models; it is a measure of the amount of noise in our data that is never reduced [22].

Machine Learning

 11

To sum up the basics of al process it is important to know some fundamental steps:

1. Based on historic data the network calculates what it assumes to be the outputs.

2. The resultant outputs from the network are compared with the expected outputs

3. Weights, biases and error of each neuron are adjusted, as many times as needed in

order to improve the network results.

At last, this constant adjustment flow shows the network’s learning ability, the main core

of all experiment [20].

In the next sub-chapters, we will explain in more detail all the system.

2.3.2 Multilayer Perceptron’s Structure

As mentioned before, a multilayer perceptron structure consists of an input layer, one or

more hidden layers, and an output layer, as shown in fig. 2.3. In this figure, we can see a very

basic neural network, with two neurons in the input layer, two hidden layers with four neurons

each, and two neurons in the output layer with its connections.

Fig. 2.3 Schematic of a fully connected multilayer perceptron’s neural network with two

inputs and two outputs and layer representation [23]

As we can clearly see in figure 2.4, every single neuron is connected to every neuron in

next layer.

2.3.2 Multilayer Perceptron´s Structure

 12

Fig 2.4 Multilayer Perceptron´s Structure with named neuron, inputs and outputs adapted

from [24]

Each arrow has a certain weight, 𝑤𝑖𝑗
𝑙 , which represents how much the connection from

𝑗𝑡ℎ neuron of the l-1𝑡ℎ layer can influence the 𝑖𝑡ℎ neuron of the 𝑙𝑡ℎ layer (Fig.2.5). 𝑥𝑖 represents

the input of the multilayer perceptron and 𝑧𝑖
𝑙 the output of the 𝑖𝑡ℎ neuron of the l layer of the

multilayer perceptron.

Every connection between neurons also includes a 𝑤𝑖0
𝑙 that is an extra weigh parameter

that represents the bias for 𝑖𝑡ℎ neuron of 𝑙𝑡ℎ layer. As such, 𝑤 of multilayer perceptron includes

wij
l , j = 0, 1, …, Nl−1, i = 1 ,2, ..., Nl , l=2,3,...,L, that is, equation (1) represents all the weights and

bias of all the connections to the first neuron of the second layer [11].

𝑤 = [𝑤10
2 𝑤11

2 𝑤12
2 … , 𝑤𝑁𝐿𝑁𝐿−1

2]𝑇 (1)

2.3.3 Information processed by a neuron

In a neural network, every neuron has a function. The neurons in the input layer inserts data

from a dataset to the network, the output layer neurons give an answer to said data in

concordance with all previous neurons and the rest of the neurons in the hidden layer process

inputs from the former layer of neurons and gives output data to the next layer.

In Fig. 2.5, it can be seen an illustration of the way in which a neuron in a multilayer

perceptron processes information.

Machine Learning

 13

Fig. 2.5 Information processing by 𝑖𝑡ℎ of the 𝑙𝑡ℎ layer - In this figure it is seen a representation of

an individual neuron from its inputs from other neurons to its output

For example, let’s use the first neuron of the second layer, presented in Fig. 2.4. It receives

stimuli from the neurons in the input layer, that is 𝑥1 to 𝑥𝑝 . At first, each input is multiplied by the

corresponding weight. Then, the corresponding result from each connection is added to produce

a weighted sum 𝛾. This weighted sum is then passed through a neuro activation function, 𝜎 (), to

produce the output for that neuron. This output, 𝑧1
2, becomes the input stimulus for the neurons in

the next layer from that neuron.[11].

2.3.4 Activation Functions

Activation functions define the neuron output. In classification problems de neuron output

has binary values (zero or one) and in regression problems de neuron output comprehends the

interval [0,1].

The most used hidden neuron activation function is the sigmoid function 𝜎(𝛾) given by the

equation (2):

 𝜎(𝛾) =
1

(1+𝑒−𝛾)
 (2)

As shown in fig.2.6, equation (2), the sigmoid function is a smooth switch function having

property of (3)

 𝜎(𝛾) → {
1 𝑎𝑠 𝛾 → +∞
0 𝑎𝑠 𝛾 → −∞

 (3)

2.3.4 Activation Functions

 14

Fig. 2.6 Sigmoid function – Figure of a Standard logistic sigmoid function

But the sigmoid function is not the only one used today for we have also several others like.

The Arc-tangent function shown in figure 2.7 and given by the equation (4) below:

𝜎(𝛾) =
2

(𝜋)
arctan(𝛾) (4)

Fig. 2.7 Arc-tangent function- Principal values of the
2

(𝜋)
arctan(𝛾) function

The Hyperbolic-tangent function shown in Figure 2.8 and given by the equation (5):

𝜎(𝛾) =
(𝑒𝛾−𝑒−𝛾)

(𝑒𝛾+𝑒−𝛾)
 (5)

Fig. 2.8 Hyperbolic-tangent function - Principal values of the
(𝑒𝛾−𝑒−𝛾)

(𝑒𝛾+𝑒−𝛾)
 function

All these logistic functions and many more are bounded, continuous, monotonic, and

continuously differentiable. But the activation functions for output neurons can either be logistic

functions (e.g., sigmoid), or simple linear functions that compute the weighted sum of the stimuli.

The linear activation function, equation (6), is defined as:

Machine Learning

 15

𝜎(𝛾) = 𝛾 = ∑ 𝑤𝑖𝑗
𝐿 𝑧𝑗

𝐿−1𝑁𝐿−1
𝑗=0 (6)

The use of linear activation functions in the output neurons can help to improve the

numerical conditioning of the neural network training process back propagation [11].

2.3.5 Effect of Bias

The weighted sum is expressed by the equation (7):

𝛾𝑖
𝑙= 𝑤𝑖1

𝑙 𝑧1
𝑙 + 𝑤𝑖2

𝑙 𝑧2
𝑙−1 + ⋯ + 𝑤𝑖𝑁𝑙−1

𝑙 𝑧1
𝑙 (7)

and is zero, if all the previous hidden layer neuron responses (outputs) 𝑧1
𝑙−1, 𝑧2

𝑙−1, … , 𝑧𝑁𝑙−1

𝑙−1 are

zero. In order to create a bias, we assume a fictitious neuron whose output is 𝑧0
𝑙−1 = 1 and add a

weight parameter 𝑤𝑖0
𝑙−1 called bias.

The weighted sum can then be written as equation (8)

𝛾𝑖
𝑙 = ∑ 𝑤𝑖𝑗

𝐿 𝑧𝑗
𝐿−1𝑁𝐿−1

𝑗=0 (8)

The effect of adding the bias is that the weighted sum is equal to the bias when all the previous

hidden layer neuron responses are zero, equation (9), that is,

𝛾𝑖
𝑙=𝑤𝑖0

𝑙 , if 𝑧1
𝑙−1 = 𝑧2

𝑙−1 = ⋯ = 𝑧𝑁𝑙−1

𝑙−1 = 0 (9)

The parameter 𝑤𝑖0
𝑙 is the bias value for 𝑖𝑡ℎ neuron in 𝑙𝑡ℎ layer as shown in Fig.2.5 [11].

2.3.6 Neural Network Feedforward

A Feed Forward Neural Network (FFNN) is defined as a simple type of neural network in

which the information flow is in the forward direction from the input towards the hidden and output

nodes [14].

A FFNN is used to calculate the outputs y from multilayer perceptron’s neural networks by

using inputs 𝑥𝑖 and weights w. This is achieved by first feeding to the external inputs into the

neurons of the first hidden layer, as observed in Fig. 2.3 and 2.4, until finally the information

reaches the output layer of the neural network.

The computation is given by the equations (10) and (11),

𝑧𝑖
1 = 𝑥𝑖 , 𝑖 = 1,2, … , 𝑁𝑖 , n=𝑁1 (10)

𝑧𝑖
𝑙 = 𝜎(∑ 𝑤𝑖𝑗

𝐿 𝑧𝑗
𝐿−1)

𝑁𝐿−1
𝑗=0 , i=1,2, …, 𝑁𝑙 , l=2,3,…,L (11)

The outputs of the neural network are extracted from the output neurons as equation (12)

𝑦𝑖 = 𝑧𝑖
𝐿, i=1,2,…, 𝑁𝐿 , 𝑚 = 𝑁𝐿 (12)

During feedforward computation, the neural network weights 𝑤 are fixed [11].

2.3.7 Number of neurons in the hidden layer

 16

2.3.7 Number of neurons in the hidden layer

The universal approximation theorem states that a neural network with a single hidden layer

with a finite number of neurons can approximate virtually any nonlinear function [11]. However, it

does not specify the number of hidden neurons necessary for a given problem complexity. The

precise number of hidden neurons remains an open question. Although there is no clear-cut

answer, the number of hidden neurons depends largely on the degree of nonlinearity and the

dimensionality of the original problem. In other words, highly nonlinear problems need more

neurons and smoother problems need fewer neurons. At this point, stands out a new problem

that must be addressed.

On one hand, too many hidden neurons may lead to overlearning, which happens when the

neural network loses its flexibility in calculating numbers that do not exist in the training dataset.

On the other hand, too few hidden layer neurons do not give enough freedom to the neural

network to accurately learn the behavior of the problem.

Therefore, to solve this issue is fundamental to ask the question “How big the network really

needs to be?”.

There are three possible solutions.

The first one is user experience, where the individual practical skills are by far the most

important quality. The second one is a trial and error process, where the user tenacity will succor

a good network. And the third and last solution is an adaptive process or optimization process

that adds/deletes neurons as needed, during training [11].

2.3.8 Number of hidden layers

As stated above, for the existence of multilayer perceptron, at least 3 layers of neurons are

necessary: the input layer, the hidden layer and the output layer. In practice, neural networks with

one or two hidden layers are commonly used. Intuitively, four-layer perceptron’s perform better in

modeling nonlinear problems where exist certain localized behavioral components that repeat in

other regions of the problem [11].

Machine Learning

 17

2.3.9 Training algorithm

Next, the backpropagation algorithm, that is one of the most used training algorithms

nowadays, will be briefly explained [11].

2.3.9.1 Back Propagation algorithm

As we have seen until now the main objective in all neural networks is to find the optimal set of

weights (w) so that the output parameters (y = (x, w)) are as close as possible to the expected

values. For this, an algorithm is utilized through a process called training.

The training data are pairs of (𝑥𝑘, 𝑑𝑘), k = 1, 2, …, P, where 𝑑𝑘 is the desired outputs of the

neural model for inputs 𝑥𝑘, and P is total number of training samples. During training, the neural

network performance is evaluated by computing the difference between actual neural outputs and

desired outputs for all the training samples. This difference, also known as the error, equation

(12), is quantified by

𝐸 =
1

2
 ∑ ∑ (𝑚

𝑗=1𝑘𝜖𝑇𝑟
𝑦𝑗(𝑥𝑘 , 𝑤) − 𝑑𝑗𝑘)2 (12)

where 𝑑𝑗𝑘 is the 𝑗𝑡ℎ element of 𝑑𝑘, 𝑦𝑗(𝑥𝑘,w) is the 𝑗𝑡ℎ neural network output for input 𝑥𝑘, and 𝑇𝑟

is an index set of training data. The weight parameters w is adjusted during training, such that

this error is minimized.[11]

2.3.9.2 Training Process

The first step in training is to initialize the weight parameters w being suggested small random

values.

During training, w is updated along the negative direction of the gradient of E, as

 𝑤 = 𝑤 − 𝜂
𝜕 𝐸

𝜕𝑤
, until E becomes small enough.

Here, the parameter η is called the learning rate. If we use just one training samples at a time to

update w, the per-sample error function𝐸𝑘 , equation (13) given by

𝐸𝑘 =
1

2
 ∑ (𝑦𝑗(𝑥𝑘 , 𝑤) − 𝑑𝑗𝑘)2𝑚

𝑗=1 (13)

Is used and w is updated as equation (14). [11]

𝑤 = 𝑤 − 𝜂
𝜕 𝐸𝑘

𝜕𝑤
. (14)

2.3.9.3 Error Back Propagation

 18

2.3.9.3 Error Back Propagation

Using the definition of 𝐸𝑘, equation (13), the derivate of 𝐸𝑘 with respect to the weight parameters

of the 𝑙𝑡ℎ layer can be computed by simple differentiation as equation (15) and (16),

𝜕𝐸𝑘

𝜕𝑤𝑖𝑗
𝑙 =

𝜕𝐸𝑘

𝜕𝑧𝑖
𝑙 =

𝜕𝑧𝑖
𝑙

𝜕𝑤𝑖𝑗
𝑙 (15)

And

𝜕𝑧𝑖
𝑙

𝜕𝑤𝑖𝑗
𝑙 =

𝜕𝜎

𝜕𝛾𝑖
𝑙=𝑧𝑖

𝑙−1 (16)

The gradient
𝜕𝐸𝑘

𝜕𝑧𝑖
𝑙 can be initialized at the output layer, equation (17), as

𝜕𝐸𝑘

𝜕𝑧𝑖
𝑙 = (𝑦𝑖(𝑥𝑘 , 𝑤) − 𝑑𝑖𝑘) (17)

using the error between neural network outputs and desired outputs (training data). Subsequent

derivatives
𝜕𝐸𝑘

𝜕𝑧𝑖
𝑙 are computed by back propagating this error form l+1th layer to lth layer (Fig. 2.9).

[11]

Fig. 2.9 Neuron Relations - Relationship between 𝑖𝑡ℎ neuron of 𝑙𝑡ℎ layer, with neurons of layer l

– 1 and l + 1

Machine Learning

 19

2.4 Tools commonly used for creating machine learning

solutions

With the advent and rise of machine learning popularity many tools have been developed for an

easier learning and development experience as such, most are open source. In Table 1 we

compare some of the most popular machine learning tools, each one with different characteristics,

such as: type of license, supported languages, variety of machine-learning models and software

maturity, for example. [7]

Table 1. Comparison between tools commonly used to create neural network solutions

 Tool

Python R Spark Matlab TensorFlow

License Open source Open source Open source Proprietary Open source

Distributed No No Yes No No

Visualization Yes Yes No Yes No

Neural nets Yes Yes MLP

classifier

Yes Yes

Supported languages Python R Scala, Java,

Python, and

R

Matlab Python and

C++

Variety of machine-

learning models

High High Medium High Low

Suitability as a

general-purpose tool

High Medium Medium High Low

Maturity High Very High Medium Very High Low

For numerical and statistical problems, the communities are divided between two programs.

Some prefer R and others prefer Python. However, an absolute division cannot be considered.

The machine learning field is very wide and there is no single tool perfect for everyone. It is then

best for a software engineer to become acquainted with many different tools and learn which one

is the most appropriate for a given situation. [7]

Having said that, why this division?

The division happened really because of the background of its users. R is popular with

people with a somewhat stronger statistical background, for it has a superb collection of machine-

2.4 Tools commonly used for creating machine learning solutions

 20

learning and statistical-inference libraries. Chances are if a fancy algorithm is found somewhere

and we want to try it on data, an implementation in R exists for it.

R also boasts a ggplot2 visualization library, which is a tool to produce excellent graphs.

On the other hand, Python is popular with users with a computer science background.

Python was not made specifically for machine learning or statistics, but it has an extensive

library for numerical computing (NumPy), scientific computing (SciPy), statistics (StatsModels),

machine learning (scikit-learn) [7]. These are largely wrappers of C code, so we get Python’s

convenience with C’s speed.

Although there are fewer machine-learning libraries for Python than there are for R, many

programmers find working with Python easier for they might already know the language or find it

easier to learn than R. The users may also find Python convenient for preprocessing data, reading

it from various sources, cleaning it and bringing it to the required formats.

For visualization, Python relies on matplotlib. We can do pretty much everything on

matplotlib, but we might discover we have to put in some effort. The seaborn library is built on top

of it, letting you produce elegant visualizations with little code. In general, R and Python work

when the dataset fits in the computer’s main memory [7]. If that’s not possible, a distributed

platform must be used.

The most well-known is Hadoop, but Hadoop has the problem of being difficult to run even

simple machine learning algorithms. So, many people prefer to work at the higher level of

abstraction that Spark offers.

Spark leverages Hadoop but looks like a scripting environment, we can interact with it using

Scala, Java, Python, or R. Spark also has a machine-learning library that implements key

algorithms, so for many purposes you don’t need to implement anything yourself [7].

H2O is a relatively new entrant in the machine-learning scene. It is a platform for

descriptive and predictive analytics that uses Hadoop and Spark. We can also use it with R and

Python. It implements supervised and unsupervised-learning algorithms and a Web interface

through which you can organize your workflow.

A promising development is the Julia programming language for technical computing,

which aims at top performance. Because Julia is new, it does not have nearly as many libraries

as Python or R. Yet, thanks to its impressive speed, its popularity might grow.

Strong commercial players include Matlab and SAS, both having a distinguished history.

Matlab has long offered solid tools for numerical computation, to which it has added machine-

learning algorithms and implementations. For engineers familiar with Matlab, it might be a natural

fit. SAS is a software suite for advanced statistical analysis; it also has added machine-learning

capabilities and is popular for business intelligence tasks [7].

In this dissertation, Python is utilized to construct the machine learning solution to achieve

its goal because of its ease of language and learning curve.

 21

3 Data and program analysis

Index

3.1 Program Implementation .. 22

3.1.1 Program Implementation ... 22

3.1.2 Training Set ... 23

3.1.3 Main Program .. 24

3.2 Experimental data analysis ... 31

Summary:

How does our machine learning solution works?

What does it do?

Did we achieve our objective?

In this chapter all these questions will be answered and explained.

3.1 Program Implementation

 22

3.1 Program Implementation

3.1.1 Program Implementation

Before starting to explain the program implementation, it is necessary to analyze what is

expected from the program.

It is expected that using a machine learning solution we can make predictions of the energy

consumption of towers R, S, T, B and the overall consumption in DEEC exemplified in figure 3.1.

Figure 3.1 - Diagram of DEEC - In this figure it is seen the tower location as well as all the

possible location in the department

What type of learning strategy is to be used to achieve the solution to the problem?

The answer to this question is very important, because it is the very core of the machine

learning solution. As it was explained in section 2.2, machine learning is divided in two types of

learning strategies: supervised learning and unsupervised learning the decision of what type of

learning strategies used is completely depended on the data in the training phase and what

problem it is expected to solve.

So, does the data expected to be used in this solution have both input and output values?

Yes, the data used has both input and output values. From this answer alone a conclusion

can be taken: the program will use a supervised learning algorithm, meaning that the training

strategy will be a classification type algorithm or a regression type algorithm.

Which one then?

Classification types are used when a program is expected to identify what it is, for example

what number is in a picture. On the other hand. regression types are used when the program is

expected to predict a value. With this in mind, it is identified that the current task of this dissertation

Data and Program analysis

 23

will need a regression type algorithm since predicting values is exactly the essence of the problem

to solve.

Therefore, the program to implement will use a supervised learning strategy utilizing a

regression algorithm. Once the learning strategy is defined, the range of alternatives regarding

possible algorithms for implementing the learning machine is then reduced.to a smaller amount.

In figure 2.1, we can see some of the languages that can be utilized for the expected effect but

as stated above artificial neural networks are the one that it is used.

From here, it is possible to start developing the program, because without the

understanding of all this, many versions can be made and all of them wrong because this

simple exercise was not made.

So, Python language was selected as the preferred tool for implementing the required

solution regarding the aim of this dissertation. It’s ease of use, plus the support of a large

community, in particularly to those that are new in the field, were relevant in this choice.

3.1.2 Training set

The developed solution consists of two code files, the “Neural network” file (Appendix A)

and the “Test” file (Appendix B), and the required training sets.

The training sets are the values used to train the neural network and, as stated above, they

have input and output values. In appendix D, it is possible to see all the values in the training of

the neural network for 2016 of the datasheet.

The data is presented in the datasheet and it is organized as follows:

• Number of month for example July is 7

• Number of day

• If it is weekend it is 1 if not is 0

• Season spring being number 1, summer number 2, autumn number 3 and winter

number 4

• Humidity in percentage

• Temperature in ºC.

The input values used were chosen for their practicality: month, day, weekend

(Saturday/Sunday), season, temperature and humidity are all the input values used in this work.

All input values used have their way of influencing how much energy the department

consumes. For example, it is expected that, during a weekend the energy consumption will go

down because there are no classes in session. If the temperature is low, the energy consumption

will go up because, eventually, heaters are turn on. The same can be said about humidity: high

humidity will make consumption also go up because it can be raining or the humidity is making a

3.1.2 Training set

 24

hot tropical day. Same applies to the season of the year: It can be expected that in winter

the energy consumption will be higher because of the lower temperatures.

The output values used are the energy consumption of towers R, S, T, B and overall

consumption of the building. In the R tower of the DEEC (Fig.3.1), there are several rooms that

are mainly laboratories with electrical motors, and, for this, this tower has the biggest power

consumption of all four towers. The S tower has also laboratories, but these do not have high

electrical consumption equipment’s as they are mainly computer labs and minimal electronic labs.

The T tower has mostly lecture rooms, and B tower is where it is located the study rooms. Finally,

the overall consumption is all the consumption of whole department. It is important to clearly state

that the overall consumption is the consumption of all the towers and the rest of all locations.

3.1.3 Main program

The program is divided into 2 files, Appendix A is all the code from file Neural_Network.py

and it is half of the developed code.

This part of the code has the objective of creating, training and then saving the neural

network that is going to be used to make predictions.

The libraries used, listed in Figure 3.2 and 3.8, are pytorch, numpy, pandas and Scikit-learn

(sklearn). These libraries are used in the developed software in tasks that range from the creation

of the neural network to its utilization.

Figure 3.2 Library of “Neural network” file – Code for the library of the neural network file

Pytorch is a Python implementation of the Torch machine learning framework that has

enjoyed a broad uptake at Twitter, Carnegie Mellon University, Salesforce and Facebook [17].

Numpy is the base data structure used for data and model parameters [18]. Pandas is a

Python package that provides fast, flexible, and expressive data structures designed to make

working with “relational” or “labeled” data both easy and intuitive [19].

Scikit-learn is a Python module that integrates a wide range of state-of-the-art machine

learning algorithms, for medium-scale supervised and unsupervised problems [19].

So, by using pandas, the excel file with the training set is uploaded and saved into the

variable name “dataset”. Afterwards, this variable is divided into 11 other variables so then they

can easily be handled to create the array that is used in the training of the neural network.

import torch.nn as nn

import numpy as np

import pandas as pd

from sklearn import preprocessing

Data and Program analysis

 25

At first, it may seem that it would be faster to simply make the array from the variable

“dataset”. However, this variable has all the training data, even outputs that are not used in certain

neural networks (for example, using output data for tower B is counterproductive if it is being

created a neural network for tower R). So, it is faster to simply change the output used in the array

making faster creation and testing of neural networks. This part of the code can be analyzed in

figure 3.3.

Figure 3.3 Data Processing – Data processing part of the “neural network” file

After defining the required dataset for training the neural network, it is necessary to

normalize the data into values between 0 and 1. This scaling is one of the main parts of an ANN

learning process. If the inputs are not between (0,1) or (-1,1) the program cannot equally distribute

the importance of each input, thus naturally large values become dominant making the ANN

training ineffective. So, in Figure 3.4 the array in scaled using a minmax scaler algorithm (eq 18)

to achieve that objective.

𝑥´ =
𝑥−𝑚𝑖𝑛 (𝑥)

𝑚𝑎𝑥(𝑥)−𝑚𝑖𝑛 (𝑥)
 (18)

Finally, the data is divided into inputs and outputs, and converted into torch tensors, which

is a container that can house data in N dimensions, so that they can be used in the training of the

neural network.

Having the data ready to be used the neural network need now to be created, so that it can

be trained, and predictions found.

dataset = pd.read_excel('datasheet.xlsx', skiprows=1)

ano = dataset['ano']

mes = dataset['mês']

dia = dataset['dia']

sabdom = dataset['sab/dom']

estacao = dataset['estacao']

temp = dataset['temp']

humidade = dataset['humidade']

torrer = dataset['torrer']

torres = dataset['torres']

torret = dataset['torret']

torreb = dataset['torreb']

consumo = dataset['consumo']

z = np.array(np.column_stack((mes, dia, sabdom, estacao, temp,

humidade, torreb)))

3.1.3 Main program

 26

Figure 3.4 Scaling – Code for the scaling part of the “neural network” file

Figure 3.5 neural network creation – Code for the neural network creation of the “neural

network” file

In Figure 3.5, it is presented the code to create the neural network. Having the name “model”

it is created with six input neurons, five hidden layers and one output neuron. The arguments of

nn.linear define the inputs and outputs of each layer as such it is necessary to always be careful

that the number of outputs from one layer is the same to the number of inputs in the next layer so

that no error is generated. The number of neurons used in each hidden layer is 1000 making

figure 3.6 the final architecture of the neural network.

Scaler = preprocessing.MinMaxScaler()

scale = Scaler.fit_transform(z)

X_train = scale[:, [0, 1, 2, 3, 4, 5]]

Y_train = scale[:, [6]]

"Transforming data from numpy to torch format"

xtrain = torch.Tensor(X_train)

ytrain = torch.Tensor(Y_train)

model = nn.Sequential(nn.Linear(6, 1000),

 nn.Linear(1000, 1000, bias=True),

 nn.Linear(1000, 1000, bias=True),

 nn.Linear(1000, 1000, bias=True),

 nn.Linear(1000, 1000, bias=True),

 nn.Linear(1000, 1000, bias=True),

 nn.Linear(1000, 1), nn.Sigmoid())

Data and Program analysis

 27

Figure 3.6 Representation of neural network architecture – In figure it is possible to

observe a representation of the neural network created having 6 inputs neurons, 5 hidden

layers with 1000 neuron in each layer and 1 output neuron

The number of neurons in each hidden layer was chosen because of the good results that

it gave in testing but also by trial and error, one of the ways to find the number of neurons in a

layer as explained in section 2.3.7.

 Finally, the activation function used is the sigmoid function, as defined by the last

argumento of “nn.sequencial”. It is important to note that, even with only on “nn.sigmoid”, this one

works in all the layers.

After preparing the training data and creating the neural network,it is possible to start

training the ANN.

Figure 3.7 Training neural network – Training neural network segment of the “neural

network” file

criterion = torch.nn.MSELoss() #"Mean Squared Error Loss"

optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

for epoch in range(2000):

 # Forward Propagation

 y_pred = model(xtrain)

 # Compute and print loss

 loss = criterion(y_pred, ytrain)

 # Zero the gradients

 optimizer.zero_grad()

 # perform a backward pass (back propagation)

 loss.backward()

 # Update the parameters

 optimizer.step()

3.1.3 Main program

 28

In Figure 3.7, it is listed the code used to train the neural network. This code makes the

previous created neural network run for 2000 epoch (cycles) in which first the data is forward

through the neural network newly created, to then calculate the error and finally through

backpropagation training adjust the values in every connection. The number of epochs chosen is

again, like before in the number of neurons in each layer, a case of trial and error were the

objective is to find a value that gives values of quality and importance.

Finally, the parameterization of the values in the dataset is saved in a file (Scale.txt) and

the trained neural network is also saved in a file (Neural Network.txt), both files will be paramount

in the next part of the code (Figure 3.8).

Figure 3.8 Saving data – Code segment from “neural network” file were the neural

network and the scale is saved

To recap, the first half of the code creates a neural network 7 layer deep; it then trains that

neural network with prepared data to finally save it so that predictions can be made.

Figure 3.9 Library of the “Test” file – Code segment were the libraries for the test file is

presented

Now the second half of the code, is used to make the prediction. It is very similar to the first

half, both in libraries (Figure 3.9) and data preparations (Figure 3.10) but in this part of the

program the values in “Scale.txt” are used to parametrize the input data. This makes it so that the

data used in the prediction are in the same scale as the data used in training. Of course, this

brings with it a certain error, for if the input data has an even smaller minimum or a higher

maximum this will make those values default to zero and one respectively. It is important to

mention that if the error does exist the next time the neural network is trained with the new data

that error will be mitigated. Another difference in the preparation of the data is that there is no

output data to prepare since that is what it is wished to be found.

torch.save(model, "Neural network.txt")

torch.save(Scaler, "Scale.txt")

import torch

import numpy as np

import pandas as pd

from sklearn import preprocessing

Data and Program analysis

 29

Figure 3.10 Load and Data processing – Code segment for the loading and processing of

data for the “test” file

Ergo, after preparing the input data, it is forwarded through the neural network to obtain

predicted values (Figure3.11), however the predictions made are values between zero and one.

At this moment, the file “Scale.txt” comes into play again, in order to convert the predicted values

into real data. This is achieved by making a matrix with both the input and output values, to then

make the conversion (Figure 3.11), finally that data is saved in an excel file (Figure 3.12) to then

be analyzed and studied in how effective the solution using a machine neural network in python

is.

model = torch.load("Neural network.txt")

Scale = torch.load("Scale.txt")

datatest = pd.read_excel('testedatasheet.xlsx', skiprows=1)

anoteste = datatest['ano']

mesteste = datatest['mês']

diateste = datatest['dia']

sabdomteste = datatest['sab/dom']

estacaoteste = datatest['estacao']

tempteste = datatest['temp']

humidadeteste = datatest['humidade']

xtest = np.array(np.column_stack((mesteste, diateste, sabdomteste,

estacaoteste, tempteste, humidadeteste, humidadeteste)))

3.1.3 Main program

 30

Figure 3.11 Data transformation – Code segment were the data is transformed to usable

values

Figure 3.12 Data saving – Code segment for the “test file” were the predict output values

are saved

In conclusion when the user wants to make a prediction it is only necessary the insertion of

data into the excel file “testedatasheet”, run the neural network previously trained and view the

predicted data in the output file.

"Processes the data into numbers between 0 and 1"

xtestscale = Scale.transform(xtest)

X_test = xtestscale[:, [0, 1, 2, 3, 4, 5]]

"Transforming data from numpy to torch format"

Xtest = torch.Tensor(X_test)

"Testing neural network”

Forward Propagation

data = model(Xtest)

y_output = data.detach().numpy()

matrix_no_scale = np.column_stack((Xtest, y_output))

output = Scale.inverse_transform(matrix_no_scale)

"convert your array into a dataframe"

df = pd.DataFrame(output)

"save to xlsx file"

filepath = 'output.xlsx'

df.to_excel(filepath, index=False)

Data and Program analysis

 31

3.2 Experimental data analysis

The training data, seen in Fig C1 to C7 in Appendix C, is data used to train the neural

network This data goes from 2015/July/10 to 2017/December/31 which corresponds to 906 days,

and in each day there are six input values and one output value for each tower and overall

consumption. This data was obtained by using the values registered in the department database

and the reason why is only used this amount is because it was all the available data at the time.

The amount of data used is a small sample in comparison with other similar works. For

example, in a similar energy consumption problem, the data used by the authors comprise

consumptions from over 426.305 homes in Bexar County, Texas (TX) with four years of monthly

consumption [1].

This indicates that there might be some discrepancy between the real-life data and the

predicted data that can be correlated to the small amount of training data but also to the

impossibility of having all the possible input variables correlated to energy consumption. However,

this is not a total obstacle to try to obtain some predictions from the data available.

As it can be observed in Figure 3.13, 3.14, 3.15, 3.16 and 3.17, these are the comparison

between both real and predicted data for the month of January 2018. This data was obtained by

inputting into the trained neural network already observed data, having the neural network save

the output data and the input data into an excel file where it is analyzed and compared with the

real data.

It is possible to easily verify that the program learned the cycle of weekend and weekday;

as expected with the large amount of sample data in our training set but the values predicted have

an expected discrepancy between real and predicted with some having a bigger discrepancy than

others (fig 3.15, 3.16, 3.17).

When analyzing the figures in question (Figure 3.13, 3,14, 3.15, 3.16, 3.17) all generally

present the same evolution, each of them with a major or minor discrepancy. Analyzing Figure

3.13 and 3.14 we see that the raises and falls of the predicted and real values are parallel with a

similar average. However, observing the obtained data from figure 3.16, 3.17 and 3.18 the same

does not occur. There is a larger discrepancy in each of the last three figures (figure 3.16, 3.17,

3.18). The situation in question can be explained from the large instability in the training sets

(Figures C1, C2, C3, C4, C5 in Appendix C).

In the training values used to obtain the predictions presented in figures 3.13 and 3.14

(figures C1 and C2, Appendix C), it is easily noticed when a class is in section or not.

From the data available for towers T and B (figures C3 and C4, Appendix C), it is possible

to observe abnormal behaviors on the power consumption. For Tower T, there are presented

some extremely low values of power consumption, and for Tower B it is noticeable a large period

of unchanged power consumption, which is indicative of an eventual data corruption.

3.2 Experimental Data analysis

 32

This makes the neural network have a harder time to predict consumption and unfortunately

brings problems to the prediction. Even though all the discrepancies and the corruption of data in

Fig.C4, it is possible to collect data from the predicted numbers since they are inside the range

of values expected.

Figure 3.13- Visualization of Real to Predicted values in Tower R for January – In this graph

it is observed and compared the real and predicted values of Tower R energy consumption. It is

also observed that the raises and falls of both are parallel and that the predicted values already

can predict and behavior of weekdays and weekends. Both average values are very close to each

other.

Figure 3.14- Visualization of Real to Predicted values in Tower S for January – In this figure

it is observed and compared the real and predicted values of Tower S energy consumption. It

observed that the raises and falls of both are parallel and that the predicted values already can

predict the behavior of weekdays and weekends. Both average values are very close to each

other.

Data and Program analysis

 33

Figure 3.15- Visualization of Real to Predicted values in Tower T for January – In this figure

it is observed and compared the real and predicted values of Tower S energy consumption. It is

observed a large discrepancy in the values. It is also observed that the predicted values know

when the days of the week and weekend are. The rises and lows of both graphs also parallel.

Figure 3.16- Visualization of Real to Predicted values in Tower B for January – In this figure

it is observed and compared the real and predicted values of Tower B energy consumption. It is

observed discrepancies in its performance.

3.2 Experimental Data analysis

 34

Figure 3.17 – Visualization of Real to Predicted values of Overall consumption for January – In

this figure it is observed and compared the real and predicted values of the overall consumption

of DEEC. It is observed discrepancies in its performance, but it is also possible view similarities

between both lines in the figure.

 It is important to point out that the predicted values are quite good for the amount of data

used. As stated above, there are only 906 entries. This is about two and a half years of data with

each entry having 6 inputs and the output expected in the prediction. The month tested above is

also a time period with more erratic energy consumption, since it is timeframe where there is less

students in the department and no classes, and it corresponds to exam season. January is also

one of the months that has less training values since the training sets start in the middle of July.

As such there is a lot of variables that the program is for now unable to cope with but with more

data in the training set and an increased number of input neurons this inability will disappear in

time.

 The same can be observed in the month of February 2018 (Fig 3.18, 3.19, 3.20, 3.21,

3.22) in it large discrepancies are observed between the real and predicted values. These

discrepancies are again explained with the low amount of values, the months used are some of

the months with the most erratic energy consumption in the year but also with observed data

corruption that create even bigger discrepancies reflecting on the predictions presented in the

figures below.

Data and Program analysis

 35

Figure 3.18- Visualization of Real to Predicted values in Tower R for February – In this

graph it is observed and compared the real and predicted values of Tower R energy consumption.

It is also observed that the raises and falls for the weekends are parallel, that there is data

corruption in the real values and It is observed discrepancies in its performance.

Figure 3.19- Visualization of Real to Predicted values in Tower S for February – In this graph

it is observed and compared the real and predicted values of Tower S energy consumption. It is

also observed that the raises and falls for the weekends are parallel, that there is data corruption

in the real values, it is observed discrepancies in its performance.

3.2 Experimental Data analysis

 36

Figure 3.20- Visualization of Real to Predicted values in Tower T for February – In this graph

it is observed and compared the real and predicted values of Tower T energy consumption. It is

observed a large discrepancy in the values. It is also observed that the predicted values know

when the days of the week and weekend are.

Figure 3.21- Visualization of Real to Predicted values in Tower B for February – In this figure

it is observed and compared the real and predicted values of Tower B energy consumption. It is

observed discrepancies in its performance.

Data and Program analysis

 37

Figure 3.22- Visualization of Real to Predicted values in Overall consumption for February

– In this figure it is observed and compared the real and predicted values of the overall

consumption of DEEC. It is observed discrepancies in its performance, it is also possible to view

similarities between both lines in the figure and data corruption in the real values.

 39

4 Conclusion and Future work

Throughout this dissertation it has been analyzed and explored several aspects of the broad

scientific study that is Machine learning. It has been explored what machine learning is, what tools

are most commonly used today, how does a machine learn and what type of algorithm exists.

The Artificial Neural Networks (ANN) was our preferred machine learning algorithm from its

mathematical standpoint. With the main purpose to create code that allows us to predict how

much electricity DEEC consumes in the respective towers (R, S, T and B) and overall.

Using the variables day, month, weekend (Saturday/Sunday), season, humidity,

temperature as input layers and then passing them through 5 hidden layers with 1000 neurons

each previously trained with already known values predictions were achieved.

The main goal proposed at the beginning of this dissertation was successfully obtained

despite some level of discrepancies in the predicted values of January and February. The

detected discrepancies seem to be the result of the low amount of training data that was provided

and some observed data corruption in the real values being fully expected for those discrepancies

to disappear with larger amounts of training data.

So, for future work one of the things that must be made is enlarge the training datasets with

a larger amount of input variables. Some of those possibly can be the number of students in the

department, number of classes, average department lux (lx), elevator uses and at last but pivotal,

“enlarge the already available number of input values”, since the larger the amount data available

to train, the better the neural network can predict and even ignore certain errors in the collection

process.

We can also enlarge the amount of output values by introducing other levels of the

department (DEEC), not only the department towers and its overall consumption.

Machine learning is an area of study both fascinating and the future of all technology.

It is an area that soon will be able to achieve extraordinary things. From giving a boost to

health professionals, in the detection of diseases; fully and automated machines and factories

capable to do many tasks without human help; intelligent and independent exploration machines

to fully autonomous artificial intelligence, as many others.

 41

References

1. BERRIEL, Rodrigo F., LOPES, Andre Teixeira, RODRIGUES, Alexandre, VAREJAO, Flavio Miguel
and OLIVEIRA-SANTOS, Thiago, 2017. Monthly energy consumption forecast: A deep learning
approach. Proceedings of the International Joint Conference on Neural Networks. 2017. Vol. 2017-
May, p. 4283–4290. DOI 10.1109/IJCNN.2017.7966398.

2. FONSECA, Susana, TURISMO, Mestre and LOCAIS, Identidades, 2008. A eficiência energética
do ponto de vista dos cidadãos. VI Congresso Português de Sociologia. 2008.

3. ZHANG, Hong, 2011. A preliminary study on artificial neural network. Proceedings - 2011 6th IEEE
Joint International Information Technology and Artificial Intelligence Conference, ITAIC 2011. 2011.
Vol. 2, p. 336–338. DOI 10.1109/ITAIC.2011.6030344.

4. LIU, Jin, PAN, Yi, LI, Min, CHEN, Ziyue, TANG, Lu, LU, Chengqian and WANG, Jianxin, 2018.
Applications of deep learning to MRI images: A survey. Big Data Mining and Analytics. 2018. Vol. 1,
no. 1, p. 1–18. DOI 10.26599/bdma.2018.9020001.

5. CHICCO, Davide, 2017. Ten quick tips for machine learning in computational biology. BioData
Mining. 2017. Vol. 10, no. 1, p. 1–17. DOI 10.1186/s13040-017-0155-3.

6. HUANG, T S, 1997. Computer Vision: Evolution and Promise. Report. 1997.

7. BOYARSHINOV, Victor, 2005. Machine Learning Machine Learning. Computer. 2005. Vol. 2005,
no. April.

8. DUBOSSON, Fabien, BROMURI, Stefano and SCHUMACHER, Michael, 2016. A python
framework for exhaustive machine learning algorithms and features evaluations. Proceedings -
International Conference on Advanced Information Networking and Applications, AINA. 2016.
Vol. 2016-May, p. 987–993. DOI 10.1109/AINA.2016.160. © 2016 IEEE.

9. OF, Bulletin and BIOPHYSICS, Mathematical, 1943. IDEAS IMMANENT IN NERVOUS ACTIVITY
I . Introduction neuron m a y be excited by impulses a r r i v i n g at a sufficient n u m b e r of
neighboring synapses within the period of latent addition , which lasts less than one q u a r t e r of
a millisecond . O. . 1943. Vol. 5, p. 115–133.

10. HIRSHBERG, A. and ADAR, R., 1997. Artificial neural networks in medicine. Israel Journal of
Medical Sciences. 1997. Vol. 33, no. 10, p. 700–702.

11. WANG, Rong Xiu and YUAN, Xiang Hui, 2005. Accuracy and track velocity of coarse grating
displacement measurement system. Bandaoti Guangdian/Semiconductor Optoelectronics [online].
2005. Vol. 26, no. SUPPL., p. 152–155. Available from:
https://www.ieee.cz/knihovna/Zhang/Zhang100-ch03.pdf?fbclid=IwAR3-
quybtazmyz5hnxqkV5j7FLX0XQjfiwcSi_k3AV2oQ2ETH5ccE6N7v5c

12. BALA, Kanchan, CHOUBEY, Dilip Kumar and PAUL, Sanchita, 2017. Soft computing and data
mining techniques for thunderstorms and lightning prediction: A survey. Proceedings of the
International Conference on Electronics, Communication and Aerospace Technology, ICECA
2017. 2017. Vol. 2017-January, p. 42–46. DOI 10.1109/ICECA.2017.8203729. © 2017 IEEE.

https://www.ieee.cz/knihovna/Zhang/Zhang100-ch03.pdf?fbclid=IwAR3-quybtazmyz5hnxqkV5j7FLX0XQjfiwcSi_k3AV2oQ2ETH5ccE6N7v5c
https://www.ieee.cz/knihovna/Zhang/Zhang100-ch03.pdf?fbclid=IwAR3-quybtazmyz5hnxqkV5j7FLX0XQjfiwcSi_k3AV2oQ2ETH5ccE6N7v5c

References

 42

13. YANLIN, He, ZHIQIANG, Geng, YONGMING, Han, XU, Yuan and QUNXIONG, Zhu, 2018. A novel
nonlinear virtual sample generation approach integrating extreme learning machine with noise
injection for enhancing energy modeling and analysis on small data: Application to petrochemical
industries. 2018 5th International Conference on Control, Decision and Information Technologies,
CoDIT 2018. 2018. P. 134–139. DOI 10.1109/CoDIT.2018.8394788.

14. THEOCHARIDES, Spyros, MAKRIDES, George, GEORGE, E and KYPRIANOU, Andreas, 2018.
System Power Output Prediction. 2018 IEEE International Energy Conference (ENERGYCON).
2018. P. 1–6.

15. AMASYALI, Mehmet Fatih and BILGIN, Metin, 2015. Comparison of machine learning methods for
the sequence labelling applications. . 2015. P. 503–506. DOI 10.1109/siu.2015.7129870.

16. GUO, Heng, 1992. Network Feature Extraction. . 1992. Vol. 3, no. 6, p. 68.

17. https://www.infoworld.com/article/3159120/facebook-brings-gpu-powered-machine-learning-to-
python.html?fbclid=IwAR3UwTFWezMGWu3BVyEiHwsBeU1G86iat82vf7XkirF5urExQOeqHNkf_
q8

18. https://pandas.pydata.org/pandas-
docs/stable/getting_started/overview.html?fbclid=IwAR1E4mCG1Yy3qeXK6BdFMLhktn1ZTfviYY
_k7TLYX1-SGuiewflhxkwnn2A

19.
20. CHRISTIAN W. DAWSON & ROBERT WILBY (1998) An artificial neural network approach to

rainfall-runoff modelling, Hydrological Sciences Journal, 43:1, 47-66,
DOI:10.1080/02626669809492102

21. https://www.techopedia.com/definition/33274/weight-neural-networks (15/de setembro)

22. Schmidhuber, Jürgen (2015-01-01). "Deep learning in neural networks: An overview". Neural
Networks. 61: 85–117. arXiv:1404.7828. doi:10.1016/j.neunet.2014.09.003. PMID 25462637.

23. https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229 (15 de
SET)

24. Kalogirou, Soteris. (2006). Artificial neural networks in energy applications in buildings.
International Journal of Low-carbon Technologies. 1. 201-216. 10.1093/ijlct/1.3.201.

25. Faghfouri, Aram & Frish, Michael. (2011). Robust discrimination of human footsteps using seismic
signals. Proc SPIE. 10.1117/12.882726.

https://www.infoworld.com/article/3159120/facebook-brings-gpu-powered-machine-learning-to-python.html?fbclid=IwAR3UwTFWezMGWu3BVyEiHwsBeU1G86iat82vf7XkirF5urExQOeqHNkf_q8
https://www.infoworld.com/article/3159120/facebook-brings-gpu-powered-machine-learning-to-python.html?fbclid=IwAR3UwTFWezMGWu3BVyEiHwsBeU1G86iat82vf7XkirF5urExQOeqHNkf_q8
https://www.infoworld.com/article/3159120/facebook-brings-gpu-powered-machine-learning-to-python.html?fbclid=IwAR3UwTFWezMGWu3BVyEiHwsBeU1G86iat82vf7XkirF5urExQOeqHNkf_q8
https://www.techopedia.com/definition/33274/weight-neural-networks
https://en.wikipedia.org/wiki/ArXiv
https://arxiv.org/abs/1404.7828
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1016%2Fj.neunet.2014.09.003
https://en.wikipedia.org/wiki/PubMed_Identifier
https://www.ncbi.nlm.nih.gov/pubmed/25462637
https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229%20(15

 43

Appendix A – “Neural Network” file

import torch.nn as nn

import numpy as np

import pandas as pd

from sklearn import preprocessing

"Data Processing"

dataset = pd.read_excel('datasheet.xlsx', skiprows=1)

ano = dataset['ano']

mes = dataset['mês']

dia = dataset['dia']

sabdom = dataset['sab/dom']

estacao = dataset['estacao']

temp = dataset['temp']

humidade = dataset['humidade']

torrer = dataset['torrer']

torres = dataset['torres']

torret = dataset['torret']

torreb = dataset['torreb']

consumo = dataset['consumo']

z = np.array(np.column_stack((mes, dia, sabdom, estacao, temp, humidade, torreb)))

"Processes the data into numbers between 0 and 1"

Scaler = preprocessing.MinMaxScaler()

scale = Scaler.fit_transform(z)

X_train = scale[:, [0, 1, 2, 3, 4, 5]]

Y_train = scale[:, [6]]

“Neural Network” file

 44

"Transforming data from numpy to torch format"

xtrain = torch.Tensor(X_train)

ytrain = torch.Tensor(Y_train)

"Creating the neural network with 6 input neurons, 4 hidden layer and 1 output neuron"

model = nn.Sequential(nn.Linear(6, 1000),

 nn.Linear(1000, 1000, bias=True),

 nn.Linear(1000, 1000, bias=True),

 nn.Linear(1000, 1000, bias=True),

 nn.Linear(1000, 1000, bias=True),

 nn.Linear(1000, 1000, bias=True),

 nn.Linear(1000, 1), nn.Sigmoid())

"Training neural network"

criterion = torch.nn.MSELoss() #"Mean Squared Error Loss"

optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

for epoch in range(2000):

 # Forward Propagation

 y_pred = model(xtrain)

 # Compute and print loss

 loss = criterion(y_pred, ytrain)

 # Zero the gradients

 optimizer.zero_grad()

 # perform a backward pass (back propagation)

 loss.backward()

 # Update the parameters

 optimizer.step()

"Saving neural network and Scaler"

torch.save(model, "Neural network.txt")

torch.save(Scaler, "Scale.txt")

 45

Appendix B – “Test” file

import torch

import numpy as np

import pandas as pd

from sklearn import preprocessing

"Load neural network"

model = torch.load("Neural network.txt")

Scale = torch.load("Scale.txt")

"Data Processing"

datatest = pd.read_excel('testedatasheet.xlsx', skiprows=1)

anoteste = datatest['ano']

mesteste = datatest['mês']

diateste = datatest['dia']

sabdomteste = datatest['sab/dom']

estacaoteste = datatest['estacao']

tempteste = datatest['temp']

humidadeteste = datatest['humidade']

xtest = np.array(np.column_stack((mesteste, diateste, sabdomteste,

estacaoteste, tempteste, humidadeteste, humidadeteste)))

"Processes the data into numbers between 0 and 1"

xtestscale = Scale.transform(xtest)

X_test = xtestscale[:, [0, 1, 2, 3, 4, 5]]

"Transforming data from numpy to torch format"

Xtest = torch.Tensor(X_test)

“Test” file

 46

"Testing neural network”

Forward Propagation

data = model(Xtest)

y_output = data.detach().numpy()

matrix_no_scale = np.column_stack((Xtest, y_output))

output = Scale.inverse_transform(matrix_no_scale)

"convert your array into a dataframe"

df = pd.DataFrame(output)

"save to xlsx file"

filepath = 'output.xlsx'

df.to_excel(filepath, index=False)

 47

Appendix C

Fig. C1 Real data used in training Tower R – Real data of the energy consumption of

tower R used for the training of neural network

Fig. C2 Real data used in training Tower S – Real data of the energy consumption of

tower S used for the training of neural network

 48

Fig C3 Real data used in training Tower T – Real data of the energy consumption of tower

T used for the training of neural network

Fig C4 Real data used in training Tower B – Real data of the energy consumption of tower

B used for the training of neural network

 49

Fig C5 Real data used in training overall consumption – Real data of the energy

consumption of DEEC used for the training of neural network

Fig C6 Real data used Temperature – Real data of temperature used in the training of the

neural network

 50

Fig C7 Real data used Humidity – Real data of humidity used in the training of the neural

network

 51

Appendix D – Example of Datasheet

Ano Month Day Sat/Sun Season Temp Humidity Tower R Tower S Tower T Tower B Overall

2016 1 1 0 1 11,04167 94,94792 1270 1960 4040 1200 8500

2016 1 2 1 1 10,09375 87,70833 2560 1250 4660 1500 10000

2016 1 3 1 1 12,9375 95,55208 2010 1960 4180 2000 10200

2016 1 4 0 1 13,10417 96,5 6520 9150 13220 2300 31200

2016 1 5 0 1 8,197917 93,30208 6100 6660 17140 2100 32000

2016 1 6 0 1 9,9375 93,27083 6670 6310 16000 2000 31000

2016 1 7 0 1 14,05208 95,57292 5160 6100 15220 2200 28700

2016 1 8 0 1 12,71875 96,95833 5350 5170 13160 2100 25800

2016 1 9 1 1 10,25 96,17708 3150 1830 5910 1200 12100

2016 1 10 1 1 12,57292 95,28125 1050 1680 6330 1600 10700

2016 1 11 0 1 10,76042 78,4375 5770 6290 10820 2100 25000

2016 1 12 0 1 8,90625 85,13542 6680 5290 12310 2500 26800

2016 1 13 0 1 7,8125 82,92708 6670 6290 11420 2200 26600

2016 1 14 0 1 11,04167 96,54167 6230 3920 14930 1900 27000

2016 1 15 0 1 7,520833 82,35417 5210 4680 12090 1900 23900

2016 1 16 1 1 3,823529 78,4 2270 1670 5540 1400 10900

2016 1 17 1 1 4,96875 74,98958 2240 1100 6020 1600 11000

2016 1 18 0 1 7,177083 96,33333 7070 4950 13460 2200 27700

2016 1 19 0 1 7,885417 96,57292 8290 5900 16490 2300 33000

2016 1 20 0 1 9,875 94,6875 4520 5870 14460 2200 27100

2016 1 21 0 1 10,95833 96,04167 6090 6830 15060 2300 30300

2016 1 22 0 1 11,79167 97,69792 5450 4520 12710 2300 25000

2016 1 23 1 1 12,5625 90,96875 4080 1470 6930 1300 13800

2016 1 24 1 1 15,19792 73,23958 1360 1430 5970 1300 10100

2016 1 25 0 1 12,19792 91,125 4360 5780 13740 2100 26000

2016 1 26 0 1 9,635417 90,32292 4350 4790 13640 2400 25200

2016 1 27 0 1 8,260417 84,60417 5270 4430 12770 2100 24600

2016 1 28 0 1 9,104167 92,19792 3500 5120 13460 2400 24500

2016 1 29 0 1 7,572917 86,83333 8020 5850 10310 2200 26400

2016 1 30 1 1 6,489583 90,14583 1950 2470 7050 1500 13000

2016 1 31 1 1 9,416667 92,47917 2750 1540 4870 1600 10800

2016 2 1 0 1 8,208333 85,54167 6380 4480 11920 2000 24800

2016 2 2 0 1 8,041667 86 4460 5070 14750 2500 26800

2016 2 3 0 1 8,8125 76,26042 6010 5110 12860 2100 26100

2016 2 4 0 1 5,479167 73,70833 5210 5670 11320 2300 24500

2016 2 5 0 1 6,635417 72 5640 5520 9210 2200 22600

2016 2 6 1 1 8,697917 87,61458 2540 2060 4380 1500 10500

2016 2 7 1 1 10,13542 83,32292 3600 1520 3940 1600 10700

2016 2 8 0 1 11,4375 94,82292 6590 5980 17320 2800 32700

2016 2 9 0 1 12,0625 96,61458 2300 2200 8880 1600 15000

Datasheet Example

 52

2016 2 10 0 1 12,71875 97,05208 4290 5850 17560 1900 29600

2016 2 11 0 1 12,51579 97,04211 7430 5330 15380 2100 30300

2016 2 12 0 1 13,29167 97,78125 6660 7840 12780 2200 29500

2016 2 13 1 1 13,32292 97,03125 1115 1120 6510 1600 11300

2016 2 14 1 1 8,270833 92,9375 1750 955 4700 1700 10200

2016 2 15 0 1 8,59375 67,96875 7250 6290 18230 2200 34000

2016 2 16 0 1 4,395833 70,10417 7260 6640 13280 2100 29400

2016 2 17 0 1 6,635135 83,89189 6850 6910 17570 2500 33900

2016 2 18 0 1 6,458333 76,8125 5230 7900 15240 2300 30700

2016 2 19 0 1 5,104651 71,0814 5940 5500 14460 2100 28000

2016 2 20 1 1 7,026316 67,15789 1640 1990 5850 1200 10700

2016 2 21 1 1 7,4375 66,11458 1560 1780 6520 1300 11200

2016 2 22 0 1 7,9375 74,15625 7170 8150 17660 2000 35100

2016 2 23 0 1 8,625 81,76042 6310 6570 18630 2500 34100

2016 2 24 0 1 8,229167 94,04167 6460 8010 18810 2300 35700

2016 2 25 0 1 9,905263 89,94737 6130 7110 14860 2500 30600

2016 2 26 0 1 7,5 95,82292 8200 9390 16310 2000 35900

2016 2 27 1 1 5,354167 88,95833 3450 4090 5740 1400 14700

2016 2 28 1 1 8,260417 75,76042 1290 2140 6430 1200 11100

2016 2 29 0 1 7,239583 75,69792 7790 10400 16500 2300 37100

2016 3 1 0 1 7,1875 75,82292 8680 7170 13950 2400 32300

2016 3 2 0 1 8,5 85,14583 8220 7410 13140 2100 30900

2016 3 3 0 1 9,34375 80,44792 3960 9790 13950 2800 30500

2016 3 4 0 1 7,78125 90,13542 8140 9740 13460 2200 33600

2016 3 5 1 1 8,25 83,78125 2160 2680 5830 1400 12100

2016 3 6 1 1 7,59375 85,09375 2340 2650 4570 1300 10900

2016 3 7 0 1 9,452632 79,37895 6210 10890 19390 2700 39300

2016 3 8 0 1 7,810526 74,73684 6960 10650 16280 2300 36300

2016 3 9 0 1 7,145833 90,70833 7090 9410 19720 2200 38500

2016 3 10 0 1 8,094737 77,54737 5290 9290 14920 2100 31600

2016 3 11 0 1 7,290323 72,41935 6500 9570 13100 2500 31700

2016 3 12 1 1 7,71875 70,22917 1640 2370 6360 1200 11600

2016 3 13 1 1 7,864583 69,67708 1690 1910 5880 1300 10800

2016 3 14 0 1 8,452632 71,24211 6960 8970 14340 2200 32500

2016 3 15 0 1 8,989583 93,04167 6220 9240 16430 2000 34000

2016 3 16 0 1 9,25 82,96875 4870 7530 13860 2100 28400

2016 3 17 0 1 8,604167 77,41667 4690 7760 14100 1750 28300

2016 3 18 0 1 8,479167 95,39583 3420 10120 15560 2400 31500

2016 3 19 1 1 8,757895 95,13684 2540 1400 4960 1200 10100

2016 3 20 1 1 8,923913 93,76087 2120 1610 4730 1100 9600

2016 3 21 0 2 8,252632 90,42105 7120 5680 8980 1900 23700

2016 3 22 0 2 8,578947 81,45263 5980 5100 10600 1800 23500

2016 3 23 0 2 10,38542 79,27083 5790 4430 9060 1500 20800

2016 3 24 0 2 9,020833 71,66667 4510 5240 8430 1600 19800

2016 3 25 0 2 9,46875 82,17708 1460 2050 4870 1400 9800

2016 3 26 1 2 10,96842 95,83158 2680 1730 4770 1200 10400

 53

2016 3 27 1 2 9,434783 87,13043 1690 2410 4460 1300 9900

2016 3 28 0 2 11,10526 95,06316 5400 6580 9910 1400 23300

2016 3 29 0 2 11,79487 96,61538 5830 7300 14300 2300 29800

2016 3 30 0 2 11,79487 96,61538 5430 6710 13880 2200 28300

2016 3 31 0 2 11,79487 96,61538 7090 6890 12920 1900 28800

2016 4 1 0 2 11,79487 96,61538 6920 8440 11140 2400 28900

2016 4 2 1 2 9,760417 89,8125 1830 2660 5090 1200 10800

2016 4 3 1 2 9,760417 89,8125 1130 2650 5080 1600 10500

2016 4 4 0 2 9,760417 89,8125 7510 8470 18500 2600 37100

2016 4 5 0 2 11,14583 82,54167 6710 6420 13740 1700 28700

2016 4 6 0 2 11,14583 82,54167 3860 5780 13680 1750 25100

2016 4 7 0 2 11,14583 82,54167 5600 6640 11560 1700 25500

2016 4 8 0 2 9,428571 85,42857 6060 8440 12000 2000 28500

2016 4 9 1 2 9,428571 85,42857 2760 1760 7360 1700 13600

2016 4 10 1 2 9,428571 85,42857 1580 1830 6740 1400 11600

2016 4 11 0 2 9,428571 85,42857 5300 7230 16000 2250 30800

2016 4 12 0 2 9,760417 89,8125 6590 7050 13980 2400 30100

2016 4 13 0 2 11,14583 82,54167 7060 6990 12340 2400 28800

2016 4 14 0 2 12,5 94,65625 4930 6720 18180 2100 32000

2016 4 15 0 2 12,8125 92,13542 7330 8690 13980 2000 32000

2016 4 16 1 2 12,3125 90,15625 2140 2290 5750 1400 11600

2016 4 17 1 2 10,94792 90,40625 1890 2490 7310 1400 13400

2016 4 18 0 2 6,375 95,25 5630 6050 12700 1900 26300

2016 4 19 0 2 12,73529 86,47059 5660 6120 12830 2200 26900

2016 4 20 0 2 13,51807 84,46988 4600 5330 12260 2600 24800

2016 4 21 0 2 11,48958 95,88542 4100 5140 11730 2100 23100

2016 4 22 0 2 13,4375 90,07292 5200 6100 11000 2000 24300

2016 4 23 1 2 14,77083 80,91667 1710 2020 4250 1500 9500

2016 4 24 1 2 14,71875 75,40625 1350 1760 4750 1500 9400

2016 4 25 0 2 15,89583 71,1875 1560 1820 4800 1500 9700

2016 4 26 0 2 14,40625 76,71875 4710 6090 11720 2200 24800

2016 4 27 0 2 12,38889 78,65556 6440 4290 9850 1900 22500

2016 4 28 0 2 10,44444 92,22222 2840 3880 11750 1900 20400

2016 4 29 0 2 16,22581 56,33871 5040 4610 9750 1800 21200

2016 4 30 1 2 16,22581 56,33871 1040 1360 5780 1600 9800

2016 5 1 1 2 13,01053 61,58947 1460 970 5930 1700 10100

2016 5 2 0 2 14,22917 65,30208 3480 4430 11370 2000 21300

2016 5 3 0 2 17,29167 64 4490 3490 9890 2000 19900

2016 5 4 0 2 19,36458 58,27083 4430 3450 8920 2000 18800

2016 5 5 0 2 16,33333 85,91667 4320 3540 10640 2500 21000

2016 5 6 0 2 13,36458 98,78125 6170 4230 9400 2200 22000

2016 5 7 1 2 11,34375 95,71875 1080 2130 4270 1500 9000

2016 5 8 1 2 11,69792 93,55208 900 1720 4640 1400 8700

2016 5 9 0 2 11,09375 96,22917 3030 3640 10410 2000 19100

2016 5 10 0 2 11,25 91,38542 2590 3470 10720 1800 18600

2016 5 11 0 2 10,3125 94,66667 3960 4070 11150 1700 20900

Datasheet Example

 54

2016 5 12 0 2 10,23958 95,29167 2550 4170 8960 1900 17600

2016 5 13 0 2 11,73958 91,375 3960 4240 9280 2000 19500

2016 5 14 1 2 12,90625 89,79167 1460 1000 5520 1500 9500

2016 5 15 1 2 15,37895 82,24211 1670 980 5100 1300 9100

2016 5 16 0 2 15,96875 77,30208 3890 4030 13860 2000 23800

2016 5 17 0 2 15,04167 82,44792 4510 4060 11640 1800 22100

2016 5 18 0 2 14,16667 76,05208 5030 4180 10490 2000 21700

2016 5 19 0 2 15 79,79167 3650 4050 10890 2300 20900

2016 5 20 0 2 18,09375 80,19792 5530 5090 7480 2900 21000

2016 5 21 1 2 15,20833 85,03125 1410 1870 5400 1600 10300

2016 5 22 1 2 14,73958 74,41667 900 1156,667 5470 1833,333 10.033

2016 5 23 0 2 15,05208 65,30208 3.378 3378,041 5470 4469,072 29.917

2016 5 24 0 2 14,40625 86,44792 900 1156,667 3060 4469,072 20.691

2016 5 25 0 2 14,41667 90,17708 3.825 4310,909 18611,13 4469,072 20.691

2016 5 26 0 2 13,64583 80,86458 3.825 4310,909 18611,13 4469,072 20.691

2016 5 27 0 2 14,30526 77,41053 3.825 4310,909 18611,13 4469,072 20.691

2016 5 28 1 2 13,07292 93,73958 3.825 4310,909 18611,13 4469,072 20.691

2016 5 29 1 2 13,47917 94,27083 3.378 3378,041 18611,13 9870,103 33.780

2016 5 30 0 2 13,72917 82,58333 3.497 3476,667 5392,783 1700 19900

2016 5 31 0 2 15,73958 74,4375 4.221 4675,357 264,9138 2089,286 18700

2016 6 1 0 2 18,3125 68,48958 3770 4530 8490 2000 18800

2016 6 2 0 2 17,91667 70,16667 3650 3940 7800 2000 17400

2016 6 3 0 2 15,88542 79,70833 4480 2290 10420 2050 19300

2016 6 4 1 2 16,23958 81,59375 920 2070 4990 1200 9200

2016 6 5 1 2 16 78,02083 900 1630 4740 1400 8700

2016 6 6 0 2 18,13542 79,82292 2560 4590 7710 2000 16900

2016 6 7 0 2 18,82292 76,1875 3470 4690 7420 2000 17600

2016 6 8 0 2 19,91304 73,36957 4170 4130 7980 1800 18100

2016 6 9 0 2 18,24468 78,05319 3730 4090 7860 1900 17600

2016 6 10 0 2 17,48958 79,41667 1380 820 5380 1600 9200

2016 6 11 1 2 16,77174 74,98913 2040 670 4270 1500 8500

2016 6 12 1 2 18,83333 79,05208 950 760 4360 1400 7500

2016 6 13 0 2 18,16667 87,42708 3540 3550 8590 1900 17600

2016 6 14 0 2 16,53684 85,57895 5370 3600 7010 1800 17800

2016 6 15 0 2 13,94681 92,17021 4155 4155 8570 2300 19200

2016 6 16 0 2 13,80208 91,05208 4690 4800 7890 2000 19400

2016 6 17 0 2 15,56989 80,29032 4710 4460 7820 2100 19100

2016 6 18 1 2 16,51087 73,67391 1130 800 5250 1600 8800

2016 6 19 1 2 18,12632 71,16842 1170 780 4310 1700 8000

2016 6 20 0 2 19,71579 75,92632 3730 3510 7640 2000 16900

2016 6 21 0 2 21,07609 77,5 3830 3360 8300 2100 17600

2016 6 22 0 3 20,37634 81,13978 3950 3910 8120 2000 18000

2016 6 23 0 3 19,11702 78,29787 3490 3230 7960 1700 16400

2016 6 24 0 3 18,32967 81,84615 3760 3625 8875 2100 18400

2016 6 25 1 3 18,32967 81,84615 820 710 5060 1300 7900

2016 6 26 1 3 18,32967 81,84615 810 740 4710 1400 7700

 55

2016 6 27 0 3 22,25 71,41667 5360 3610 8110 2200 19300

2016 6 28 0 3 20,54762 66,57143 3360 3540 9080 2100 18100

2016 6 29 0 3 20,54762 66,57143 5250 3230 9800 2500 20800

2016 6 30 0 3 20,54762 66,57143 2910 3430 9320 2500 18200

2016 7 1 0 3 18,40625 72,03125 4920 3500 8880 1900 19200

2016 7 2 1 3 18,54839 78,84946 1260 660 4760 1300 8000

2016 7 3 1 3 22,25 71,41667 1230 660 4470 1300 7700

2016 7 4 0 3 21,15625 75,23958 2660 1240 6690 1500 12100

2016 7 5 0 3 22,23958 73,04167 4580 4880 8300 2000 19800

2016 7 6 0 3 23,1978 73,62637 4225 5910 9015 2200 21400

2016 7 7 0 3 23,23958 71,85417 4240 5750 8160 1900 20100

2016 7 8 0 3 20,13542 74,90625 5130 4040 6680 2100 18000

2016 7 9 1 3 21,125 75,52083 1030 2190 5730 1400 10400

2016 7 10 1 3 19,46237 77,60215 1140 2750 4670 1400 10000

2016 7 11 0 3 18,48958 74,82292 4410 5680 7740 1800 19700

2016 7 12 0 3 17,35417 70,42708 4420 5260 8010 1900 19700

2016 7 13 0 3 18,71875 66,10417 3710 4940 7410 1700 17800

2016 7 14 0 3 20,67708 57,6875 4160 3860 7330 2200 17600

2016 7 15 0 3 23,72917 50,5 4800 3940 7520 1700 18000

2016 7 16 1 3 26 45,19792 1290 1590 5680 1400 10000

2016 7 17 1 3 25,45833 46,60417 1420 640 4900 1300 8300

2016 7 18 0 3 25,37234 51,01064 5490 4130 8930 1900 20500

2016 7 19 0 3 22,25532 59,74468 5370 2890 8000 2000 18300

2016 7 20 0 3 19,34375 64,42708 4700 4510 8040 1900 19200

2016 7 21 0 3 18,95833 76,63542 4350 3620 8680 2000 18700

2016 7 22 0 3 20,0625 76,4375 5430 3700 8320 1900 19400

2016 7 23 1 3 22,20833 63,52083 1500 1480 4870 1500 9400

2016 7 24 1 3 24,70833 53,5625 1440 770 5050 1400 8700

2016 7 25 0 3 25,5625 52,65625 4190 4120 9360 2000 19700

2016 7 26 0 3 22,64583 63,90625 4620 3070 7470 1700 16900

2016 7 27 0 3 22,41667 70,6875 4720 3770 8170 2100 18800

2016 7 28 0 3 23,73958 66,55208 4560 4150 7650 1800 18200

2016 7 29 0 3 23,66667 66,97917 5060 3960 7130 1700 17900

2016 7 30 1 3 20,38947 76,54737 1050 690 4820 1300 7900

2016 7 31 1 3 19,35417 78,21875 970 740 4150 1100 7000

2016 8 1 0 3 19,0625 79,52083 2600 2590 6370 1200 12800

2016 8 2 0 3 19,89583 78,77083 1890 3610 6850 1400 13800

2016 8 3 0 3 18,875 80,32292 1770 3600 5190 1300 11900

2016 8 4 0 3 19,97895 85,55789 2040 3980 6040 1200 13300

2016 8 5 0 3 21,12632 76,21053 2000 3050 5210 1200 11500

2016 8 6 1 3 23,16667 59,48958 1150 740 4260 1200 7400

2016 8 7 1 3 25,7766 46,04255 940 680 4940 1100 7700

2016 8 8 0 3 25,6413 49,3913 3000 2580 6080 1100 12800

2016 8 9 0 3 23,02105 56,47368 3040 2280 7630 1200 14200

2016 8 10 0 3 24,24468 44,64894 1230 2590 6730 1200 11800

2016 8 11 0 3 23,76042 47,5 2760 2610 6590 1300 13300

Datasheet Example

 56

2016 8 12 0 3 23,82292 49,1875 2680 1280 6790 1100 11900

2016 8 13 1 3 23,58696 49,52174 1150 710 4390 1100 7400

2016 8 14 1 3 21,04348 62,72826 1140 710 4210 1000 7100

2016 8 15 0 3 19,19355 73,50538 1170 680 4700 1400 8000

2016 8 16 0 3 18,66667 75,13542 1600 910 6140 1300 10000

2016 8 17 0 3 19,09677 82,56989 2230 1040 6780 1100 11200

2016 8 18 0 3 18,44211 76,54737 2520 1190 5740 1100 10600

2016 8 19 0 3 19,1828 88,45161 2400 870 5290 1100 9700

2016 8 20 1 3 18,77895 75,92632 940 800 5120 1100 8000

2016 8 21 1 3 19,59375 68,57292 950 840 4570 1100 7500

2016 8 22 0 3 21,375 66,9375 2510 2250 6290 1100 12200

2016 8 23 0 3 20,80208 74,60417 2460 1660 8240 1100 13500

2016 8 24 0 3 20,96875 77,83333 1850 1470 7630 1200 12200

2016 8 25 0 3 19,78125 83,45833 3290 2470 6290 1400 13500

2016 8 26 0 3 21,53125 79,84375 2050 1620 6590 1100 11400

2016 8 27 1 3 20,16667 82,57292 920 560 4880 1000 7400

2016 8 28 1 3 19,40625 76,54167 1120 540 4200 1100 7000

2016 8 29 0 3 17,47917 77,5625 1150 3300 7410 1100 13000

2016 8 30 0 3 18,40625 78,6875 2740 2170 7360 1200 13500

2016 8 31 0 3 18,79167 80,22917 2830 2650 5470 1400 12400

2016 9 1 0 3 21,4382 76,67416 1970 3440 7080 1700 14300

2016 9 2 0 3 20,98958 78,90625 2790 3090 6330 1500 13800

2016 9 3 1 3 21,26042 75,45833 930 1260 5350 1400 9000

2016 9 4 1 3 21,75 73,59375 940 540 4870 1400 7800

2016 9 5 0 3 22,78125 68,59375 3050 2410 7080 1500 14100

2016 9 6 0 3 25,11702 59,90426 2830 2540 8370 1500 15300

2016 9 7 0 3 19,64211 77,67368 2140 2450 6850 1700 13200

2016 9 8 0 3 18,1875 76,16667 2840 2620 5680 2000 13200

2016 9 9 0 3 17,16667 73,28125 3240 890 6320 1700 12200

2016 9 10 1 3 18,625 78,26042 2360 570 4100 1300 8400

2016 9 11 1 3 20,14583 75,97917 960 480 5300 1300 8100

2016 9 12 0 3 19,01042 77,1875 3220 3450 8030 2200 17000

2016 9 13 0 3 17,85417 81,91667 3000 3170 9040 1800 17200

2016 9 14 0 3 15,56842 79,88421 4000 3520 7600 2000 17200

2016 9 15 0 3 16,85106 86,7234 3160 3890 7320 1700 16800

2016 9 16 0 3 17,125 84,60417 4070 3020 6780 1600 15600

2016 9 17 1 3 17,21053 80,70526 1450 520 5370 1400 8800

2016 9 18 1 3 17,31579 76,34737 1520 540 4490 1500 8100

2016 9 19 0 3 17,21505 79,77419 3660 3460 7910 2100 17200

2016 9 20 0 3 18,48315 81,24719 4220 3170 9020 2700 19300

2016 9 21 0 3 16,76543 82,85185 4450 4100 9750 2300 20800

2016 9 22 0 3 15,06977 81,7093 4440 5150 8830 2000 20500

2016 9 23 0 3 16,37778 80,46667 4650 3740 7890 1700 18100

2016 9 24 1 4 17,46237 86,52688 1020 610 4710 1300 7700

2016 9 25 1 4 17,32222 84,95556 950 580 4720 1300 7600

2016 9 26 0 4 15,21591 79,23864 4750 3640 7750 2300 18500

 57

2016 9 27 0 4 19,78652 76,53933 4690 3840 7880 2400 19000

2016 9 28 0 4 19,60714 71,34524 5190 3630 8210 3100 20300

2016 9 29 0 4 20,25275 63,79121 4140 4380 9140 2300 20100

2016 9 30 0 4 16,86667 80,25556 4100 2970 7990 2200 17400

2016 10 1 1 4 16,92941 73,18824 1540 1780 3720 1500 8600

2016 10 2 1 4 13,71084 82,06024 2900 600 3850 1300 8700

2016 10 3 0 4 14,54118 80,27059 4310 3140 9520 2600 19700

2016 10 4 0 4 13,73333 83,3 3720 4260 8300 2200 18600

2016 10 5 0 4 16,45833 74,66667 1070 2320 4450 1300 9200

2016 10 6 0 4 14,82292 76,84375 5100 4830 8590 2400 21100

2016 10 7 0 4 13,95833 77,51042 4420 3430 8450 2100 18500

2016 10 8 1 4 14,42708 79,45833 1110 570 4370 1300 7400

2016 10 9 1 4 14,41667 80,71875 1580 560 4110 1300 7600

2016 10 10 0 4 15,26042 76,64583 5030 3180 9330 3000 20700

2016 10 11 0 4 13,79167 89,69792 4890 2780 8030 2400 18300

2016 10 12 0 4 13,5625 98,70833 5030 4410 11660 2700 23900

2016 10 13 0 4 13,23958 95,42708 4330 3220 6390 2100 16100

2016 10 14 0 4 13,15625 84,83333 4030 2920 6090 1800 14900

2016 10 15 1 4 13,47917 93,71875 1490 630 4420 1300 7900

2016 10 16 1 4 13,34375 88,42708 960 620 4560 1500 7700

2016 10 17 0 4 13,15625 97,21875 4870 3250 10440 2600 21300

2016 10 18 0 4 15,66667 94,22917 5590 3100 8700 2300 19900

2016 10 19 0 4 16,60417 91,97917 5590 4030 10170 2800 22700

2016 10 20 0 4 15,89583 86,89583 3200 4650 9310 2000 19300

2016 10 21 0 4 15,20833 89,26042 5470 3630 8100 2400 19700

2016 10 22 1 4 15,28125 97,13542 910 590 4240 1400 7200

2016 10 23 1 4 12,60417 95,55208 950 550 4440 1200 7200

2016 10 24 0 4 13,6875 89,48958 4660 3460 8810 2200 19300

2016 10 25 0 4 16,71875 82,90625 4820 3460 9110 3100 20600

2016 10 26 0 4 16,625 82,03125 5420 4960 10660 2500 23600

2016 10 27 0 4 18,54167 76,79167 5140 4100 9000 2450 21300

2016 10 28 0 4 19,37895 72,10526 4240 90 261,0457 2094,643 17.207

2016 10 29 1 4 20,30208 63,625 2220 630 3390 1300 7600

2016 10 30 1 4 16,93 72,13 930 680 4430 1400 7500

2016 10 31 0 4 15,65625 64,70833 2910 3640 10140 2600 19400

2016 11 1 0 4 18,26042 58,27083 890 1530 5420 1600 9500

2016 11 2 0 4 16,82796 72,84946 5940 4890 9700 2800 23400

2016 11 3 0 4 15,83333 75,69792 4040 4590 9520 3100 21300

2016 11 4 0 4 14,35417 95,07292 5010 4350 7930 2100 19600

2016 11 5 1 4 11,53125 94,02083 1920 660 4260 1700 8600

2016 11 6 1 4 8,1875 80,08333 990 650 4100 1400 7200

2016 11 7 0 4 7,145833 77,02083 4460 4380 10450 3200 22600

2016 11 8 0 4 7,114583 75,86458 6430 4890 11460 2400 25300

2016 11 9 0 4 12,32292 91,63542 5110 6320 11280 2200 25000

2016 11 10 0 4 9,875 92,73958 5330 6310 11430 2400 25600

2016 11 11 0 4 9,947368 89,82105 6560 4970 8610 1900 22100

Datasheet Example

 58

2016 11 12 1 4 12,26042 95,59375 1130 850 5060 1300 8400

2016 11 13 1 4 11,36458 89,125 1160 720 4570 1400 7900

2016 11 14 0 4 9,09375 74,77083 6510 5640 10540 2400 25200

2016 11 15 0 4 7,458333 70,66667 6190 5070 9110 2800 23300

2016 11 16 0 4 6,238095 78,28571 5890 6670 9740 2600 25000

2016 11 17 0 4 8,15625 80,05208 5000 7290 10220 3000 25600

2016 11 18 0 4 9,53125 93,77083 6310 6930 9610 2500 25400

2016 11 19 1 4 8,75 84,3125 1010 1530 4900 1400 8900

2016 11 20 1 4 13,36458 97,30208 1030 1720 5300 1300 9400

2016 11 21 0 4 9 98,64516 5990 5190 12310 3100 26700

2016 11 22 0 4 7,75 91,05208 7600 5870 11040 3200 27900

2016 11 23 0 4 4,65625 83,08333 6740 5700 12560 2000 27100

2016 11 24 0 4 5,546512 91,01163 8130 8100 12970 2700 32000

2016 11 25 0 4 9,09375 95,4375 10590 7500 13150 2000 33300

2016 11 26 1 4 9,302083 89,01042 1460 1640 6140 1200 10500

2016 11 27 1 4 5,895833 91,19792 1960 2240 5740 1200 11200

2016 11 28 0 4 6,21875 89 10460 8110 12800 2300 33800

2016 11 29 0 4 7,364583 82,97917 6940 8390 13260 2500 31300

2016 11 30 0 4 13,05208 67,48958 9120 7200 15790 2600 34800

2016 12 1 0 4 12,89583 81,03125 1140 3890 5700 1600 12400

2016 12 2 0 4 11,3125 86,16667 8420 7660 11630 2200 30000

2016 12 3 1 4 12,73958 89,90625 1630 3060 4640 1300 10700

2016 12 4 1 4 13,48958 92,5 1090 2390 4870 1200 9600

2016 12 5 0 4 12,67708 87,17708 7810 8370 11250 2300 29900

2016 12 6 0 4 10,85417 81,29167 8520 7540 9800 2400 28400

2016 12 7 0 4 10,52632 80,14737 8060 7220 12090 2900 28950

2016 12 8 0 4 10,9375 68,94792 3550 3430 4470 1500 13000

2016 12 9 0 4 13,65625 65,30208 9000 7360 9370 2200 28000

2016 12 10 1 4 13,44792 75,29167 1800 2490 4160 1300 9800

2016 12 11 1 4 9,84375 82,16667 1340 2820 4600 1500 10300

2016 12 12 0 4 8 85,11458 7060 7730 12650 2500 30100

2016 12 13 0 4 8,5 89 5070 9250 12780 2350 30100

2016 12 14 0 4 9,84375 92,30208 7510 7230 11670 2000 28500

2016 12 15 0 4 6,6875 87,85417 6950 10540 16450 3000 37100

2016 12 16 0 4 8,4375 85,125 6050 8620 15300 1800 31800

2016 12 17 1 4 7,90625 83,05208 2810 1330 6720 1200 12100

2016 12 18 1 4 5,614583 80,59375 1790 1680 5490 1300 10300

2016 12 19 0 4 4,977778 74,35556 6940 7980 13330 2100 30700

2016 12 20 0 4 5,555556 77,59259 6940 7890 11260 1800 28000

2016 12 21 0 4 5,253521 80,5493 5190 7830 13230 2000 28400

2016 12 22 0 1 5,78125 82,28125 6200 7950 9540 1800 25600

2016 12 23 0 1 5,375 86,77083 4070 1910 7640 1400 14000

2016 12 24 1 1 4,25 86,04167 4070 1910 7640 1400 14000

2016 12 25 1 1 4,833333 81,05556 4070 1910 7640 1400 14000

2016 12 26 0 1 3,866667 87,66667 4070 1910 7640 1400 14000

2016 12 27 0 1 5,666667 70,47619 4070 1910 7640 1400 14000

 59

2016 12 28 0 1 7,522727 72,65909 4070 1910 7640 1400 14000

2016 12 29 0 1 5,171429 73,6 4070 1910 7640 1400 14000

2016 12 30 0 1 4,838235 73,57353 4070 1910 7640 1400 14000

2016 12 31 1 1 5,412698 76,19048 4070 1910 7640 1400 14000

