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DISCRETELY COMPACT EMBEDDINGS OF SPACES
OF CELL-CENTERED GRID FUNCTIONS

Sílvia Barbeiro
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� Compactness of embeddings in discrete counterparts of Sobolev spaces is considered. We study
the embeddings in spaces of cell-centered grid functions, in one- and two-dimensional domains.
No restrictions are made on the mesh-ratios of the underlying meshes.

Keywords Cell-centered grid functions; Compactness; Discrete spaces; Embeddings.

AMS Subject Classification 46E39; 74S20.

1. INTRODUCTION

Results in compactness of embeddings of spaces of grid functions
can play a primary role in the study of stability and convergence of
finite difference schemes. In particular, they are important technical
tools in order to establish supraconvergence results for schemes on
nonuniform meshes (see, e.g., [3–6, 9]). The discrete convergence theory
was introduced by Stummel, in [11], and later considered also by
Grigorieff and Reinhardt (see, e.g., [7, 8, 10, 12]) among others.

In this paper, we consider spaces of cell-centered grid functions.
We prove discrete compactness of embeddings in discrete versions of the
Sobolev spaces Lp , W 1,p

0 and W 2,p ∩ W 1,p
0 , 1 ≤ p ≤ ∞, in one-dimensional

domains. In two-dimensional domains we prove similar results for the cases
Lp and W 1,p

0 , 0 ≤ p < ∞. Grigorieff gives, in [8], correspondent results
for spaces of vertex-centered grid functions in one-dimensional domains.
In the case of nonuniform grids, the normed spaces that we consider in
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492 S. Barbeiro

this paper do not coincide with those defined in [8], and different kinds
of proofs are needed.

We obtain the compactness result for the discrete version of
the embeddings W 1,p

0 → Lq , in the one-dimensional case, using a
correspondent result in the continuous case. Functions defined in all
the domains that coincide with grid functions in the grid points are
considered. In the two-dimensional case we could not find appropriate
continuous prolongations of the grid functions, and the proof of the
discrete compactness result uses the Kolmogorov compactness theorem.
This last strategy could also be applied to the one-dimensional case,
but we chose to present the proof that we consider more natural.
The proof of discrete compactness of discrete versions of the embeddings
W 1,p

0 ∩ W 2,p → W 1,q
0 we present is also specific for the one-dimensional

case, and there is not an immediate extension for the two-dimensional
case.

The results we present in this paper play an important role in
the stability analysis of a cell-centered finite difference scheme for
second-order elliptic equations in [3].

2. DISCRETE APPROXIMATIONS

In this section, we start by introducing the discrete counterparts of the
Sobolev spaces Lp(0,R), W 1,p

0 (0,R) and W 2,p(0,R) ∩ W 1,p
0 (0,R). We define

the partition Gh of the domain [0,R ],
Gh := �0 = x0 < x1 < · · · < xN = R��

The set of the cell-centers is given by

Sh := �x1/2, x3/2, � � � , xN−1/2�,

where

xj−1/2 := xj−1 + xj
2

, j = 1, � � � ,N �

For the grid functions vh and wh defined on Sh := Sh ∪ �x0, xN � and Gh ,
respectively, the centered difference quotients are given by

(�vh)j := vj+1/2 − vj−1/2

hj−1/2
, j = 0, � � � ,N ,

and

(�wh)j−1/2 := wj − wj−1

hj−1
, j = 1, � � � ,N ,
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Discretely Compact Embeddings 493

where x−1/2 := x0, xN+1/2 := xN and

hj−1/2 := xj+1/2 − xj−1/2, j = 0, � � � ,N ,

hj−1 := xj − xj−1, j = 1, � � � ,N �

We also consider x−1 := x0, xN+1 := xN , h−1 := hN := 0. Let � be a sequence
of mesh sizes h = (h0, � � � , hN−1) such that

hmax := max�hj−1, j = 1, � � � ,N �

converges to zero.
Let

◦
L

p
h ,

◦
W

1,p
h and W 2,p

h ∩ ◦
W 1,2

h , respectively, be the spaces of grid
functions on Sh , which are zero in 0 and R , equipped with the norms
‖ · ‖0,p,h , ‖ · ‖1,p,h and ‖ · ‖2,p,h , respectively, where, if p ∈ [1,∞[ then

‖vh‖m,p,h :=
( m∑

�=0

|vh |p�,p,h
)1/p

,

with

|vh |p0,p,h :=
N∑
j=1

hj−1|vj−1/2|p ,

|vh |p1,p,h :=
N∑
j=0

hj−1/2|(�vh)j |p ,

|vh |p2,p,h :=
N∑
j=1

hj−1|(�2vh)j−1/2|p �

If p = ∞ then

‖vh‖m,∞,h := max
0≤�≤m

|vh |�,∞,h ,

where

|vh |0,∞,h := max
1≤j≤N

|(vh)j−1/2|,
|vh |1,∞,h := max

0≤j≤N
|(�vh)j |,

|vh |2,∞,h := max
1≤j≤N

|(�2vh)j−1/2|�

The pointwise restriction of the function v to the grid Sh will be
denoted by Rhv.
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494 S. Barbeiro

The symbol ‖ · ‖0,p,h does not always represent a norm in spaces of
grid functions. In order to overcome this fact, we restrict the definition to
spaces of grid functions that are zero in �0,R�. Sometimes, for the easiness
of the writing, we use the notation

◦
W

0,p
h for

◦
L

p
h . The space

◦
L 2
h is endowed

by the inner product

(vh ,wh)h :=
N∑
j=1

hj−1vj−1/2wj−1/2,

which is a discrete version of the usual L2(0,R)-inner product, (·, ·)0.
The discrete spaces introduced

◦
W

m,p
h , 1 ≤ p < ∞, and

◦
W m,∞

h , m = 0, 1,
form discrete approximations to W m,p

0 (0,R) and Cm(0,R), respectively, in
the sense explained in what follows ([11, 12]). A sequence (vh)h∈� is said
to converge discretely in (Lp(0,R),�

◦
L

p
h ) to an element v ∈ Lp(0,R),

vh → v in
(
Lp(0,R),�

◦
L

p
h

)
(h ∈ �),

if for each � > 0 there exists 	 ∈ C∞(0,R) such that

‖v − 	‖Lp (0,R) ≤ �, lim sup�‖vh − Rh	‖0,p,h , h ∈ �� ≤ �;

it is said to converge discretely in (W 1,p
0 (0,R),�

◦
W

1,p
h ) to an element

v ∈ W 1,p
0 (0,R),

vh → v in
(
W 1,p

0 (0,R),�
◦
W

1,p
h

)
(h ∈ �),

if for each � > 0 there exists 	 ∈ C∞(0,R) such that

‖v − 	‖W 1,p (0,R) ≤ �, lim sup�‖vh − Rh	‖1,p,h , h ∈ �� ≤ �;

it is said to converge discretely in (C(0,R),�
◦
L ∞

h ) to an element
v ∈ C(0,R),

vh → v in
(
C(0,R),�

◦
L ∞

h

)
(h ∈ �),

if

‖vh − Rhv‖0,∞,h → 0 (h ∈ �);

it is said to converge discretely in (C 1(0,R),�
◦
W 1,∞

h ) to an element v ∈
C 1(0,R),

vh → v in
(
C 1(0,R),�

◦
W 1,∞

h

)
(h ∈ �),
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Discretely Compact Embeddings 495

if

‖vh − Rhv‖1,∞,h → 0 (h ∈ �)�

A sequence (vh)� converges weakly to v in (L2(0,R),�
◦
L 2
h ), vh ⇀ v in

(L2(0,R),�
◦
L 2
h )(H ∈ �), if

(wh , vh)h → (w, v)0 (h ∈ �)

for all w ∈ L2(0,R) and for all (wh)� ∈ �
◦
L 2
h such that wH → w in

(L2(0,R),�
◦
L 2
h ).

In main result of this section, Theorem 2.1, asserts that every bounded
sequence in

◦
W

1,p
h has a convergent subsequence in (Lq(0,R),�

◦
L

q
h ) and

in (C(0,R),�
◦
L ∞

h ) and that every bounded sequence in W 2,p
h ∩ ◦

W
1,p
h has a

convergent subsequence in (W 1,q
0 (0,R),�

◦
W

1,q
h ) and in (C 1(0,R),�

◦
W 1,∞

h ),
with p, q satisfying certain conditions.

Corresponding natural embeddings in Sobolev spaces are given by the
Rellich–Kondrachov theorem (see, e.g., [1]).

Theorem 2.1. The sequence of natural embeddings

Jh : ◦
W

1,p
h → Lq

h and Jh : W 2,p
h ∩ ◦

W
1,p
h → ◦

W
1,q
h , h ∈ �,

for 1 ≤ p, q ≤ ∞, with q < ∞ if p = 1, are discretely compact.

Proof. We first consider the embedding

Jh : ◦
W

1,p
h → ◦

L
q
h , h ∈ ��

Let (vh)� ∈ �
◦
W

1,p
h be a bounded sequence. For each h ∈ �, we consider

the function wh , which is linear in each interval [xj−1/2, xj+1/2], j = 0, � � � ,N ,
satisfying

wh(xj−1/2) := vh(xj−1/2), j = 0, � � � ,N + 1�

Then the sequence (wh)� ∈ �W 1,p
0 (0,R) is bounded in �W 1,p

0 (0,R). In
fact, if p = ∞, then

‖wh‖W 1,p (0,R) = ‖vh‖1,p,h �
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496 S. Barbeiro

If 1 ≤ p < ∞, then

|wh |W 1,p (0,R)=
( ∫ R

0
|w ′(x)|p dx

)1/p

=
( N∑

j=0

hj−1/2|(�vh)j |p
)1/p

= |vh |1,p,h

and, by Friedrich’s inequality, there exists a constant C , depending only on
R and p, such that

‖wh‖W 1,p (0,R) ≤ C |wh |W 1,p (0,R)�

We note that the embedding W 1,p(0,R) → C [0,R ], 1 < p < ∞, is
compact and consequently we can find a subsequence �′ ⊆ � and a
function w ∈ C(0,R) such that

max
x∈[0,R ]

|wh(x) − w(x)|→ 0 (h ∈ �′)�

Hence,

vh → w in (C(0,R),�
◦
L ∞

h ) (h ∈ �′)�

Because for 1 ≤ q < ∞
‖vh − Rhw‖0,q ,h ≤ R 1/q‖vh − Rhw‖0,∞,h ,

we conclude the convergence

vh → w in (Lq(0,R),�
◦
L

q
h ) (h ∈ �′)�

Let us now consider p = 1. The embedding W 1,1(0,R) → Lq(0,R) is
compact and subsequently

wh → w in Lq(0,R) (h ∈ �′)

for some subsequence �′ ⊆ � and w ∈ Lq(0,R). We are now going to
prove that vh → w in (Lq(0,R),�

◦
L

q
h )(h ∈ �′). For each � > 0 and c > 0, it

is possible to find 	 ∈ C∞
0 (0,R) such that

‖w − 	‖Lq (0,R) ≤ �

c
�

Let us consider the function �h , which is linear in each interval
[xj−1/2, xj+1/2], j = 0, � � � ,N , and satisfies

�h(x) := 	(xj−1/2), j = 0, � � � ,N + 1�
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Discretely Compact Embeddings 497

There exists a constant C > 0, depending on R and q , such that

Cq‖vh − Rh	‖q
0,q ,h ≤

∫ R

0
|wh − �h |q dx �

Because �h → 	 in Lq(0,R), then
∫ R

0
|wh − �h |q dx →

∫ R

0
|w − 	|q dx (h ∈ �′)�

Consequently, taking c = C , holds

lim sup�‖vh − Rh	‖0,q ,h , h ∈ �′� ≤ ��

This concludes the first part of the proof, i.e., the sequence Jh : ◦
W

1,p
h → ◦

L
q
h ,

h ∈ �, is discretely compact.
We consider now the sequence of embeddings (Jh)�, Jh : W 2,p

h ∩
◦
W

1,p
h → ◦

W
1,q
h . Let (vh)� ∈ �(W 2,p

h ∩ ◦
W

2,p
h ) be bounded. The sequence

(wh)�, where wh is defined by

wh(xj) := (�vh)j , j = 0, � � � ,N ,

linear in each interval [xj , xj+1], j = 0, � � � ,N − 1, is bounded in
�W 1,p(0,R). For p > 1, then the Rellich–Kondrachov theorem gives the
existence of �′ ⊂ � and w1 ∈ C [0,R ] such that

max
0≤j≤N

|(�vh)j − w1(xj)| → 0 (h ∈ �′)�

Let w0(x) := ∫ x
0 w1(t)dt . Taking v0 = w0(0) = 0 into account, we have

|vj−1/2 − w0(xj−1/2)| ≤
N∑
i=0

|(�v)i − w1(xi)|+
N∑
i=0

|w1(xi) − (�w0)i |

≤ R max
0≤i≤N

|(�v)i − w1(xi)| +R max
0≤i≤N

|w ′
0(xi) − (�w0)i |,

j = 0, � � � ,N + 1. Hence the convergence

max
0≤j≤N+1

|vj−1/2 − w0(xj−1/2)| → 0 (h ∈ �′′),

follows and we conclude that

vh → w0 (h ∈ �′) in (C 1(0,R),�
◦
W 1,∞

h )�

For the case p = 1, the proof is analogous. �
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498 S. Barbeiro

The next lemma is helpful in the proof of the compactness embedding
theorem for the two-dimensional case.

Lemma 2.2. Let (vh)� ∈ �
◦
W

1,p
h be a bounded sequence, with 1 ≤ p < ∞. For

any � ∈ �, the step function defined by

wh(x) := vh(xj−1/2), x ∈ ]xj−1, xj ], j = 1, � � � ,N ,

and zero outside of these intervals, satisfies
∫
I
|wh(x + �) − wh(x)|p dx ≤ 3(|�| + hmax)

p |vh |p1,p,h , (2.1)

where I is any interval containing (x0, xN ).

Proof. Let � > 0. Then
∫
I
|wh(x + �) − wh(x)|p dx ≤

∫ R−�

0
|wh(x + �) − wh(x)|p dx

+
∫ 0

−�

|wh(x + �)|p dx +
∫ R

R−�

|wh(x)|p dx �

For f defined by

f (x) := j , x ∈ ]xj−1, xj ],

we have, using Hölder’s inequality,

∫ R−�

0
|wh(x + �) − wh(x)|p dx ≤

∫ R−�

0

( f (x+�)−1∑
k=f (x)

|wh(xk+1/2) − wh(xk−1/2)|
)p

dx

≤
∫ R−�

0

(f (x+�)−1∑
k=f (x)

hk−1/2

)p−1 f (x+�)−1∑
k=f (x)

hk−1/2|(�vh)k |p dx �

Because
∑f (x+�)−1

k=f (x) hk−1/2 ≤ � + hmax, we obtain

∫ R−�

0
|wh(x + �) − wh(x)|p dx ≤ (� + hmax)

p−1
NR−�∑
j=0

(
hj−1

f (xj+�)−1∑
k=j

hk−1/2|(�vh)k |p
)

≤ (� + hmax)
p−1

N∑
k=0

(
hk−1/2|(�vh)k |p

k∑
j=s(k)

hj−1

)
,
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Discretely Compact Embeddings 499

where NR−� and s(k), are the biggest integer and the smallest integers,
respectively, such that

∑NR−�
i=1 hi−1 ≤ R − � and f (xs(k) + �) − 1 ≥ k� From

xk − xs(k) < �

k∑
j=s(k)

hj−1 < � + hmax,

we conclude that
∫ R−�

0
|wh(x + �) − wh(x)|p dx ≤ (� + hmax)

p |vh |p1,p,h � (2.2)

On the other hand,

∫ 0

−�

|wh(x + �)|p dx =
∫ �

0
|wh(x)|p dx ≤

N�∑
j=1

hj−1|wh(xj−1/2)|p ,

with N� the smallest integer such that
∑N�

i=1 hi−1 ≥ �, and then

∫ 0

−�

|wh(x + �)|p dx ≤
N�∑
j=1

hj−1

( j−1∑
k=0

|vh(xk+1/2) − vh(xk−1/2)|
)p

=
N�∑
j=1

hj−1

( j−1∑
k=0

hk−1/2|(�vh)k |
)p

�

Because
∑N�

j=1 hj−1 ≤ � + hmax and for j ≤ N�,
∑j−1

k=0 hk−1/2 ≤ � + hmax, it
follows by an application of Hölder’s inequality

∫ 0

−�

|wh(x + �)|p dx ≤ (� + hmax)
p |vh |p1,p,h � (2.3)

In the same way as before, we have

∫ R

R−�

|wh(x)|p dx ≤
N∑

j=NR−�

hj−1

( N∑
k=j

hk−1/2|(�vh)k |
)p

and consequently

∫ R

R−�

|wh(x)|p≤ (� + hmax)
p |vh |p1,p,h � (2.4)

From (2.2)–(2.4) we obtain (2.1).
The case � < 0 can be proved analogously. �
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500 S. Barbeiro

The next lemma gives some more information about the embeddings
considered in the Theorem 2.1. Corresponding results for spaces of
continuous functions are well-known (see, e.g., [2], Theorem 3.12).

Lemma 2.3. If (vh)� ∈ �
◦
W 1,2

h is bounded and weakly convergent to v in
(L2(0,R),�

◦
L 2
h ), then v ∈ W 1,2

0 (0,R).

We address the demonstration to the proof of Lemma 3.4, where a
correspondent result for two-dimensional domains is considered.

3. DISCRETE APPROXIMATION OF Lp(�)
AND W1,p

0 (�), � ⊂ �2

We now need norms for functions on two-dimensional grids. To
this end we introduce discrete versions of the Sobolev spaces W m,p

0 (
),
m = 0, 1, p ∈ [1,∞[, where 
 is a union of rectangles.

Let us first introduce the nonuniform grid GH . In a rectangle
R = (x−1, xN+1) × (y−1, yM+1) that contains 
, we define the subset
GH := R1 × R2, where

R1 := �x−1 < x0 < · · · < xN < xN+1�

and

R2 := �y−1 < y0 < · · · < yM < yM+1��

The grid GH is assumed to satisfy the following condition: the vertices of

 are in the centers of the rectangles formed by GH .

In the case of a rectangular domain 
 = (x0, xN ) × (y0, yM ), we allow
both R = 
 and R ⊃ 
, i.e., we consider x−1 ≤ x0, xN ≤ xN+1, y−1 ≤ y0 and
yM ≤ yM+1.

Let

SH := �(xj−1/2, y�−1/2) : j = 0, � � � ,N + 1, � = 0, � � � ,M + 1�,

where xj−1/2 := (xj−1 + xj)/2, y�−1/2 := (y�−1 + y�)/2, and 
H := SH ∩ 
,
�
H := SH ∩ �
, 
H := 
H ∪ �
H �

In the definition of the discrete norms, we use the following centered
divided differences in x -direction

(�xvH )j ,�+1/2 := vj+1/2,�+1/2 − vj−1/2,�+1/2

hj−1/2
,

(�xwH )j−1/2,�+1/2 := wj ,�+1/2 − wj−1,�+1/2

hj−1
,
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Discretely Compact Embeddings 501

where hj−1/2 := xj+1/2 − xj−1/2, hj−1 := xj − xj−1. Correspondingly, the finite
central difference with respect to the variable y are defined, with the mesh
size vector k in place of h.

We denote by
◦
W

m,p
H (R), m = 0, 1, p ∈ [1,∞[, the space of grid functions

defined in CH that are zero on the set

�(xj−1/2, y�−1/2) : j = 0,N + 1, � = 0, � � � ,M + 1 ∨ j = 1, � � � ,N , � = 0,M + 1�,

and equipped with the norm

‖vH‖W
m,p
H (R) :=

( m∑
r=0

|vH |pr ,H
)1/p

,

where

|vH |p0,p,H :=
N∑
j=1

M∑
�=1

hj−1k�−1|vj−1/2,�−1/2|p ,

|vH |p1,p,H :=
N∑
j=0

M∑
�=1

hj−1/2k�−1|(�xvH )j ,�−1/2|p

+
N∑
j=1

M∑
�=0

hj−1k�−1/2|(�yvH )j−1/2,�|p �

Let PSH be the following operator that extends a grid function vH in

H to SH ,

PSH vH := vH in 
H , PSH vH := 0 in SH \
H �

We denote by
◦
W

m,p
H , m = 0, 1, the space of functions defined in 
H that

are zero on �
H , equipped with the norm

‖vH‖m,p,H :=
( m∑

r=0

|PSH vH |pr ,H
)1/p

, m = 0, 1�

The space
◦
W

0,p
H is also denoted by

◦
L

p
H .

◦
L 2
H is endowed by the inner product

(vH ,wH )H :=
N∑
j=1

M∑
�=1

hj−1k�−1(PSH vH )j−1/2,�−1/2(PSH w̄H )j−1/2,�−1/2�

When it is clear from the context that we use the extended function, we
omit the notation PSH .
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502 S. Barbeiro

Let RH be the operator that defines the restriction to 
H .
The discrete spaces introduced above form discrete approximations of

their continuous counterparts in the sense that we explain in what follows.
Let � be a sequence of positive vectors H = (h, k) of step-sizes

such that the maximum step-size Hmax converges to zero. A sequence
(vH )� ∈ �

◦
L

p
H converges discretely to v ∈ Lp(
) in (Lp(
),�

◦
L

p
H ), vH → v

in (Lp(
),�
◦
L

p
H ) (H ∈ �), if for each � > 0 there exists 	 ∈ C∞(
) such

that

‖v − 	‖Lp (
) ≤ �, lim
Hmax→0

sup�‖vH − RH	‖0,p,H � ≤ ��

A sequence (vH )� ∈ �
◦
W

1,p
H converges discretely to v ∈ W 1,p

0 (
) in
(W 1,p

0 (
),�
◦
W

1,p
H ), vH → v in (W 1,p

0 (
),�
◦
W

1,p
H ) (H ∈ �), if for each � > 0

there exists 	 ∈ C∞(
) such that

‖v − 	‖W 1,p (
) ≤ �, lim
Hmax→0

sup�‖vH − RH	‖1,p,H � ≤ ��

A sequence (vH )� converges weakly to v in (L2(
),�
◦
L 2
H ), vH ⇀ v in

(L2(
),�
◦
L 2
H ) (H ∈ �), if

(wH , vH )H → (w, v)0 (H ∈ �)

for all w ∈ L2(
) and (wH )� ∈ �
◦
L 2
H such that wH → w in (L2(
),�

◦
L 2
H ).

The following theorem was proved by Stummel in [11].

Theorem 3.1. Let (vH )� be a bounded sequence in �
◦
L 2
H . Then, there exists a

subsequence �′ of � and v ∈ L2(
), such that

vH ⇀ v in (L2(
),�
◦
L 2
H ) (H ∈ �′)�

The proof of the discrete compactness result that we present in the
following is based in the Kolmogorov compactness theorem ([1, 13]) and
uses the next lemma.

Lemma 3.2. Let (vH )� ∈ �
◦
W

1,p
H be a bounded sequence, with 1 ≤ p < ∞. Let

us consider the step function wH defined by

wH (x , y) := vj+1/2,�+1/2, (x , y) ∈ (xj , xj+1) × (y�, y�+1) ⊂ 
, (3.1)
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Discretely Compact Embeddings 503

and zero on �2\
. Let Q be a set containing 
. Then, for all � = (�1, �2) ∈ �2

the following estimate holds
∫
Q
|wH (x + �1, y + �2) − wH (x , y)|p dx dy

≤ 3
2
2p(|�1| + |�2|+hmax + kmax)

p |vH |p1,p,H � (3.2)

Proof. For � = (�1, �2) ∈ �2 holds∫
Q
|wH (x + �1, y + �2) − wH (x , y)|p dx dy

≤ 2p−1

∫
Q
|wH (x + �1, y + �2) − wH (x , y + �2)|p dx dy

+ 2p−1

∫
Q
|wH (x , y + �2) − wH (x , y)|p dx dy�

Because ∫
Q
|wH (x + �1, y + �2) − wH (x , y + �2)|p dx dy

≤
M∑
�=1

k�−1

∫ xN+�1

x0−�1

|wH (x + �1, y�−1/2) − wH (x , y�−1/2)|p dx ,

then from Lemma 2.2, we obtain∫
Q
|wH (x + �1, y + �2) − wH (x , y + �2)|p dx dy

≤ 3(|�1| + hmax)
p

M∑
�=1

k�−1

N∑
j=0

hj−1/2|(�x(PCH vH ))j ,�−1/2|p

≤ 3(|�1| + hmax)
p |vH |p1,p,H �

Analogously,∫
Q
|wH (x , y + �2) − wH (x , y)|p dx dy ≤ 3(|�2| + kmax)

p |vH |p1,p,H �

We conclude that∫
Q
|wH (x + �1, y + �2) − wH (x , y)|p dx dy

≤ 3
2

× 2p�(|�1| + hmax)
p + (|�2| + kmax)

p�|vH |p1,p,H � �
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504 S. Barbeiro

Theorem 3.3. The sequence of embeddings (JH )�,

JH : ◦
W

1,p
H → ◦

L
p
H (H ∈ �), (3.3)

1 ≤ p < ∞, is discretely compact.

Proof. Let (vH )� ∈ �
◦
W

1,p
H be a bounded sequence. There exists M

independent of H such that

‖vH‖1,p,H ≤ M �

For (wH )� defined by (3.1)
∫



|wH (x + �1, y + �2) − wH (x , y)|p dx dy ≤ C(|�1| + |�2| + hmax + kmax)
pM p �

Because

‖wH‖Lp (
) = |vH |0,p,H ≤ M ,

then (wH )� is uniformly bounded in �Lp(
). Using the Kolmogorov
compactness theorem, we conclude that the sequence (wH )� is relatively
compact in Lp(
). There exists a sequence �′ ⊆ � and w ∈ Lp(
) such
that

wH → w in Lp(
) (H ∈ �′)�

In order to conclude the proof, we need to prove that

vH → w in (Lp(
),�
◦
L

p
H ) (H ∈ �′)�

Let � > 0. There exists 	 ∈ C∞
0 (
) such that

‖w − 	‖Lp (
) ≤ ��

For the step function �H defined by

�H (x , y) := 	(xj+1/2, y�+1/2), (x , y) ∈ (xj , xj+1) × (y�, y�+1) ⊂ 
,

null otherwise, we have

‖�H − 	‖Lp (
) → 0 (H ∈ �)

and then

‖vH − RH	‖0,p,H = ‖wH − �H‖Lp (
) → ‖w − 	‖Lp (
)� �

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
B
-
o
n
 
C
o
n
s
o
r
t
i
u
m
 
-
 
2
0
0
7
]
 
A
t
:
 
1
5
:
3
5
 
7
 
N
o
v
e
m
b
e
r
 
2
0
0
8



Discretely Compact Embeddings 505

Lemma 3.4. If (vH )� ∈ �
◦
W 1,2

H is bounded and weakly convergent to v in
(L2(
),�

◦
L 2
H ), then v ∈ W 1,2

0 (
).

Proof. Let (vH )� be a bounded sequence in �
◦
W 1,2

H such that

vH ⇀ v in (L2(
),�
◦
L 2
H ) (H ∈ �)� (3.4)

We consider (wH )� from Lemma 3.2. From the proof of the last theorem,
we know that (wH )� converges to w ∈ L2(
), for some �′ ⊆ �. Let us
consider the sequence (w̃H )�′ defined by

w̃H := wH in 
, w̃H := 0 in �2\
,

and the prolongation to �2 of w

w̃ := w in 
, w̃ := 0 in �2\
�

We note that w̃H → w̃ in L2(�2) (H ∈ �′). For 	 ∈ C∞
0 (�2) and all

� = (�1, �2) ∈ �2, � �= 0, from Lemma 3.2 we have∫
�2

|(w̃H (x + �1, y + �2) − w̃H (x , y))	(x , y)|dx dy ≤ C(|�| +Hmax)‖	‖L2(�2)�

Taking the limit when Hmax → 0, results in∫
�2

|(w̃H (x + �1, y + �2) − w̃H (x , y))	(x , y)|dx dy ≤ C |�|‖	‖L2(�2),

and consequently
∫
�2

|	(x − �1, y − �2) − 	(x , y)|
|�| |w̃(x , y)|dx dy ≤ C‖	‖L2(�2)�

Considering � = �(1, 0) and the limit � → 0, we conclude that
∫
�2

|	x(x , y)w̃(x , y)|dx dy ≤ C‖	‖L2(�2),

for 	 ∈ C∞
0 (�2). Analogously, taking � = �(0, 1), we obtain

∫
�2

|	y(x , y)w̃(x , y)|dx dy ≤ C‖	‖L2(�2),

for all 	 ∈ C∞
0 (�2). Consequently, w̃ ∈ W 1,2(�2). Because w is a restriction

of w̃ to 
 and w̃ = 0 in �2\
, then w ∈ W 1,2
0 (
).

Let us finally prove that v = w. Let r ∈ L2(
) and (rH )� ∈ �
◦
L 2
H ,

such that rH → r in (L2(
),�
◦
L 2
H ) (H ∈ �). For the step function
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506 S. Barbeiro

defined by

sH (x , y) := rH (xj+1/2, y�+1/2), (x , y) ∈ (xj , xj+1) × (y�, y�+1) ⊂ 
,

zero in �2\
, we have

(vH , rH )H = (wH , sH )0 → (w, r )0 (H ∈ �)�

Finally,

vH ⇀ w in
(
L2(
),�

◦
L 2
H

)
(H ∈ �)�

Considering (3.4), we conclude that v = w. �
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