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Let Xn, n ≥ 1, be an associated and strictly stationary sequence of random variables, having
marginal distribution function F . The limit in distribution of the empirical process, when it
exists, is a centred Gaussian process with covariance function depending on terms of the form
ϕk(s, t) = P(X1 ≤ s, Xk+1 ≤ t) − F(s)F (t). We prove the almost sure consistency for the histogram
to estimate each ϕk and also to estimate the covariance function of the limit empirical process, iden-
tifying, for both, uniform almost sure convergence rates. The convergence rates depend on a suitable
version of an exponential inequality. The rates obtained, assuming the covariances to decrease geomet-
rically, are of order n−1/3 log2/3 n for the estimator of ϕk and of order n−1/3 log5/3 n for the estimator
of the covariance function.

Keywords: Association; Empirical process; Histogram estimator; Stationarity

AMS Classification: 62G20; 62G05; 62G30

1. Introduction, assumptions and definitions

Let Xn, n ≥ 1, be a strictly stationary sequence of real-valued random variables with com-
mon continuous distribution function F . The empirical process induced by the sequence
Xn, n ≥ 1, is defined by Zn(t) = (1/

√
n)

∑n
i=1(I(−∞,t](Xi) − F(t)), where IA represents

the indicator function of the set A. The limit behaviour of the empirical process has been
intensively studied because of its importance in many statistical applications. The limit in
distribution of Zn(t) is well known to be a centred Gaussian process with covariance function
�(s, t) = F(s ∧ t) − F(s)F (t), if the variables are independent, or given by

�(s, t) = F(s ∧ t) − F(s)F (t) +
∞∑

k=1

(ϕk(s, t) + ϕk(t, s)),
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120 C. Henriques and P. E. Oliveira

where ϕk(s, t) = P(X1 ≤ s, Xk+1 ≤ t) − F(s)F (t), when they are dependent. For practical
purposes, we may need to be able to approximate the sum of the series in the expression
of �(s, t). Such an example is the Cramér-von Mises test statistic [1], which is the L2[0, 1]
norm of the empirical process of U [0, 1] random variables. So, with dependent variables, we
have an asymptotic distribution for this test statistic, but we cannot characterize it completely
because we do not know the covariance function �(s, t). The present article intends to be a
first step towards this goal, establishing conditions under which we may find estimates of the
limit covariance function.

We will be interested in the case of associated random variables, a dependence concept
introduced by Esary et al. [2] which we recall here. The random variables Xn, n ≥ 1, are
associated if

Cov(f (X1, . . . , Xn), g(X1, . . . , Xn)) ≥ 0

for any n ∈ N and any real-valued coordinate-wise increasing functions f and g for which the
covariance above exists. As far as convergence in distribution is concerned, this dependence is
characterized through its covariance structure [3]. The best-known results proving the conver-
gence of the empirical process, with assumptions on the decrease rate of the covariances, were
obtained by Louhichi [4] and Oliveira and Suquet [5, 6] in the D[0, 1], L2[0, 1] and Lp[0, 1],
respectively.

Given the strict stationarity of the sequence Xn, n ≥ 1, we denote the distribution function
of the random vector (X1, Xk+1) by Fk . Under the assumption of association, Henriques and
Oliveira [7] studied the histogram estimator for Fk(s, t), namely,

F̂k,n(s, t) = 1

n − k

n−k∑
i=1

(I(−∞,s](Xi)I(−∞,t](Xi+k)).

The strong consistency of this estimator follows if limn→∞(1/n)
∑n

j=1Cov1/3(X1, Xj ) = 0,
but no rates were provided. In the present article we prove an exponential inequality, Theorem
2.5, from which a uniform almost sure convergence rate for F̂k,n is derived.

For the estimation of the terms ϕk(s, t) with k ∈ N fixed, we consider the estimator

ϕ̂k,n(s, t) = F̂k,n(s, t) − F̂n(s)F̂n(t),

where F̂n is the empirical distribution function, defined by F̂n(s) = (1/n)
∑n

j=1I(−∞,s](Xj ).
The infinite sum in the expression of �(s, t) is estimated by

qn∑
k=1

ϕ̂k,n(s, t),

where qn → +∞ such that qn/n → 0. Finally, an estimator of �(s, t) is naturally given
by

�̂n(s, t) = F̂n(s ∧ t) − F̂n(s)F̂n(t) +
qn∑

k=1

(ϕ̂k,n(s, t) + ϕ̂k,n(t, s)).
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Convergence rates for the estimation of two-dimensional distribution functions 121

For easier reference, we now present the assumptions to be considered throughout the text.

(S1) Xn, n ≥ 1, is an associated and strictly stationary sequence of random variables having
density function bounded by B0; let B1 = 2 max(2/π2, 45B0).

To derive the exponential inequality, we will find a condition on the decrease rate of
Cov(X1, Xn), which is not very explicit. In order to present a simple condition on the decrease
rate of Cov(X1, Xn), we have to assume some particular behaviour on this sequence.

(G) Suppose that there exist a0 > 0 and a > 1 such that Cov(X1, Xn+1) = a0a
−n.

As previously mentioned, in section 2 we will establish an exponential inequality which is
the basis for the proofs of the convergence results of section 3. In this last section, we will
derive convergence rates for the uniform strong convergence of the estimators studied here.
In this article, C denotes a generic positive constant which may take different values in each
appearance; this will not be mentioned again in order to avoid unnecessary repetition.

2. Notation and preliminary results

In this section, we introduce notations and state some preliminary results needed for the
proofs of the results of the next section. First, let tn be a sequence of positive integers such that
tn → ∞. For each n ∈ N and each i = 1, . . . , tn, put xn,i = Q(i/tn), where Q is the quantile
function of F . In order to simplify the expressions that will follow, we define, for n, k ∈ N,

Dn,k = sup
s,t∈R

|F̂k,n(s, t) − Fk(s, t)| and D∗
n,k = max

i,j=1,...,tn
|F̂k,n(xn,i , xn,j ) − Fk(xn,i , xn,j )|.

The following lemma will be used to obtain an exponential inequality for Dn,k . The proof
of this lemma is contained in the proof of Theorem 2 of Henriques and Oliveira [7].

LEMMA 2.1 If the sequence Xn, n ≥ 1, satisfies (S1), then, for each n ∈ N and each
k ∈ N, Dn,k ≤ D∗

n,k + 2/tn, almost surely.

Now, we introduce some more notation to be used in the sequel. Let pn be a sequence of
positive integers such that pn → +∞. For each k ∈ N and n ∈ N large enough, let rk,n be the
largest integer such that rk,n ≤ (n − k)/(2pn). Now, divide the set {1, . . . , n − k} into pairs
of subsets, each one containing pn elements. The number of such subsets with pn elements
is 2rk,n. The last subset in the partition of {1, . . . , n − k} will have n − k − 2rk,npn < 2pn

elements. We will suppose that for each k ∈ N, rk,n → +∞. The choice of these sequences is
crucial for the proof of the exponential inequality. These sequences must be well tuned with
the behaviour of the covariance structure of the variables Xn, n ≥ 1.

For the sequences just defined, we have, for each k ∈ N and n ∈ N large enough,
1 ≤ (n − k)/(2rk,npn) ≤ (2pn + 2rk,npn)/(2rk,npn) = (1 + rk,n)/rk,n, so that for each
k ∈ N,

n − k

2rk,npn

−→ 1. (1)

Note also that, for each n ∈ N, the set {1, . . . , n − 1} has more pn − 1 elements than
{1, . . . , n − pn}. So, the partition of the first set will have at most two more subsets than
the partition of the last one. For fixed k ∈ N, we will eventually have k < pn, and this means
that, for each k ∈ N and n ∈ N large enough, we have rk,n = r1,n or rk,n = r1,n − 1.
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122 C. Henriques and P. E. Oliveira

Let us define the sets Ei = {2(i − 1)pn + 1, . . . , (2i − 1)pn}, Oi = {(2i − 1)pn +
1, . . . , 2ipn}, for each i = 1, . . . , rk,n, and R = {2rk,npn + 1, . . . , n − k}.

For each n, k ∈ N, and fixed s, t ∈ R, define the random variables

Wk,n = I(−∞,s](Xn)I(−∞,t](Xk+n) − Fk(s, t).

Note that the random variables Wk,n, n ≥ 1, are bounded by 1 and E(Wk,n) = 0. Additionally,
as the sequence Xn, n ≥ 1, is associated and strictly stationary and the Wk,n are decreasing
functions of the Xn, the sequence Wk,n, n ≥ 1, is also associated and strictly stationary.

Ioannides and Roussas [8] were the first authors to prove an exponential inequality for
bounded associated variables. They used an approach based on the decomposition of a sum of
variables into blocks, which we also follow here. The need for blocking arises from the fact
that it does not seem possible to find convenient control on the moment generating function
of the sum of associated variables. The blocking decomposition enables an approximation to
independence when the blocks are sufficiently far apart. In this article, the same technique
will be used, although the approximation to independence is achieved here in a different way.
In Ioannides and Roussas [8], a recursive argument was used, which needed some technical
manipulations, whereas we use the following result here.

LEMMA 2.2 [9] Let Y1, Y2, . . . , Yn be associated random variables that are bounded by a
constant M. Then, for any θ > 0,∣∣∣∣E(

eθ
∑n

i=1 Yi
) −

n∏
i=1

E
(
eθYi

)∣∣∣∣ ≤ θ2 enθM
∑

1≤i<j≤n

Cov(Yi, Yj ).

To obtain the exponential inequality, the sum in F̂k,n(s, t) − Fk(s, t) = (1/(n − k))
∑n−k

i=1
Wk,i is decomposed into three parts. To do this, define the random variables

Uk,i =
∑
j∈Ei

Wk,j , Vk,i =
∑
j∈Oi

Wk,j , i = 1, . . . , rk,n and Zk,n =
∑
j∈R

Wk,j .

Now, set

Uk,n = 1

n − k

rk,n∑
i=1

Uk,i, V k,n = 1

n − k

rk,n∑
i=1

Vk,i and Zk,n = 1

n − k
Zk,n,

so that

F̂k,n(s, t) − Fk(s, t) = Uk,n + V k,n + Zk,n. (2)

Using Lemma 2.2, we will now prove an exponential inequality for the variables Uk,n, which
also holds for V k,n, and finally, we will show that the remainder term, Zk,n, is negligible.

We prove a first exponential inequality assuming a general hypothesis on the covariances.
As it will be seen in the proof of Theorem 2.5, this assumption is satisfied under (G).

LEMMA 2.3 Let un, n ≥ 1, be some sequence of positive numbers. Suppose that (S1) is satis-
fied, C(k) = Cov(X1, Xk+1) is non-increasing as k → ∞ and there exists a constant C1 > 0
such that

C(pn − k) ≤ C1 exp(−18rk,nun). (3)

Then,

P(|Uk,n| ≥ un) ≤ C2 exp(−2rk,nu
2
n),

where C2 = 2 + B1C
1/3
1 .
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Convergence rates for the estimation of two-dimensional distribution functions 123

Proof The variables Uk,1, Uk,2, . . . , Uk,rk,n
, being the sum of associated random variables, are

associated.Additionally, |Uk,i | ≤ pn for every i = 1, . . . , rk,n. Then, we may apply Lemma 2.2
to obtain that, given λ > 0,

E
(
eλUk,n

) ≤
rk,n∏
i=1

E
(
eλ/(n−k)Uk,i

) + λ2

(n − k)2
exp

(
rk,npnλ

n − k

) ∑
1≤i<j≤rk,n

Cov(Uk,i , Uk,j ). (4)

As the density of the variables is supposed to be bounded by B0, it follows from corollary
to Theorem 1 in Sadikova [10] and relation (21) in Newman [11] (see Lemma 2.6 in [12] for
details) that

Cov(I(−∞,s](Xi), I(−∞,t](Xj )) ≤ B1 Cov1/3(Xi, Xj ), s, t ∈ R, (5)

where B1 has been defined earlier. Now, applying a classical inequality by Lebowitz [13] and
taking account of inequality (5), we find

Cov(Wk,l, Wk,m) ≤ B1
[
2 Cov1/3(Xl, Xm) + Cov1/3(Xl, Xk+m) + Cov1/3(Xk+l , Xm)

]
.

So, as C(k) is non-increasing, it follows that for m ∈ Ei and l ∈ Ej , with i 	= j ,
Cov(Wk,l, Wk,m) ≤ 4B1C

1/3(pn − k). Therefore

∑
1≤i<j≤rk,n

Cov(Uk,i , Uk,j ) ≤
rk,n−1∑
i=1

rk,n∑
j=i+1

∑
l∈Ei

∑
m∈Ej

4B1C
1/3(pn − k)

= 2rk,n(rk,n − 1)p2
nB1C

1/3(pn − k).

By construction of the sequences rk,n and pn, we have 2rk,npn ≤ n − k. It then follows that

2p2
nrk,n

(n − k)2
≤ 1

2rk,n

and
pnrk,n

n − k
≤ 1

2
.

From the preceding considerations, inequality (4) then becomes

E
(
eλUk,n

) ≤
rk,n∏
i=1

E
(
eλ/(n−k)Uk,i

) + eλ/2λ2 rk,n − 1

2rk,n

B1C
1/3(pn − k)

≤ exp

(
λ2

8rk,n

)
+ B1

2
e3λ/2C1/3(pn − k);

noticing that for x > 0, x2 ≤ ex , and applying Lemma 1 in Devroye [14]. Then, by the Markov
inequality [15], we obtain

P(Uk,n ≥ un) ≤ exp

(
− λun + λ2

8rk,n

)
+ B1

2
e3λ/2−λunC1/3(pn − k).

In order to minimize the first term on the right of this previous inequality, we choose
λ = 4rk,nun. We then find that

P(Uk,n ≥ un) ≤
(

1 + 1

2
B1C

1/3
1

)
exp(−2rk,nu

2
n),

using condition (3). As the variables −Uk,i, i = 1, . . . , rk,n, have the same properties as the
variables Uk,i, i = 1, . . . , rk,n, this inequality also holds for −Uk,n, which completes the proof.

�

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
B
-
o
n
 
C
o
n
s
o
r
t
i
u
m
 
-
 
2
0
0
7
]
 
A
t
:
 
1
6
:
1
3
 
7
 
N
o
v
e
m
b
e
r
 
2
0
0
8



124 C. Henriques and P. E. Oliveira

The next theorem states the conditions under which we may consider the sum in the last
block of decomposition (2) negligible.

LEMMA 2.4 Let k ∈ N be fixed and un be a sequence of positive numbers such that
r1,nun → +∞. Then, under (S1), P(|Zk,n| ≥ un) = 0, for every sufficiently large n.

Proof Note that Zk,n, being the sum of (n − k) − 2rk,npn < 2pn variables, which are
bounded by 1, satisfies |Zk,n| ≤ 2pn/(n − k). We then have, for every sufficiently large
n, P(|Zk,n| ≥ un) ≤ P(2pn/(n − k) ≥ un) = P(2pn/(un(n − k)) ≥ 1) = 0, on account of
convergence (1) and the assumption r1,nun → +∞. �

The next theorem establishes an exponential probability inequality for the estimator F̂k,n,
which will be used to obtain almost sure convergence rates.

THEOREM 2.5 Let k ∈ N be fixed and un be a sequence of positive numbers such that un → 0
and nun → +∞. Also, let tn be a sequence of positive integers such that tn → +∞ and untn →
+∞. Further assume that the assumptions (S1) and (G) hold and let b ∈ (0, (log1/2 a)/108).
Then, for every sufficiently large n,

P

(
sup

s,t,∈R

|F̂k,n(s, t) − Fk(s, t)| ≥ un

)
≤ C3t

2
n exp

( − bn1/2u3/2
n

)
, (6)

where C3 is a constant independent of n.

Proof Let r1,n = [18bn1/2/u
1/2
n ], where [x] denotes the integer part of x. First, we will

check that condition (3) is satisfied. Under (G), this condition takes the form a−(pn−k) ≤
C exp(−18rk,nun). Given that rk,n ≤ r1,n, this inequality follows from −(pn − k) log a ≤ C −
18r1,nun. Because of convergence (1), we can write pn = xnn/r1,n, for some 0 < xn → 1/2,
so that this inequality becomes − log a(xnn/r1,n − k) + 18r1,nun ≤ C. Rewriting this as

n1/2u1/2
n

(
− log axn

n1/2

r1,nu
1/2
n

+ k log a

n1/2u
1/2
n

+ 18
r1,nu

1/2
n

n1/2

)
≤ C (7)

and remembering that r1,nu
1/2
n /n1/2 → 18b, it becomes evident that, given the conditions

of this Theorem, this inequality is eventually verified. Moreover, it is easy to check that
r1,nun → +∞, so the result of Lemma 2.4 holds.

Fix s, t ∈ R. Taking account of decomposition (2), we obtain, from Lemma 2.3 applied to
Uk,n and to V k,n, and Lemma 2.4, for every sufficiently large n,

P
(∣∣F̂k,n(s, t) − Fk(s, t)

∣∣ ≥ un

)
≤ P

(
|Uk,n| ≥ un

3

)
+ P

(
|V k,n| ≥ un

3

)
+ P

(
|Zk,n| ≥ un

3

)
≤ C exp

(
−2

9
rk,nu

2
n

)
≤ C exp

(
−2

9
(r1,n − 1)u2

n

)
.

(8)
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Convergence rates for the estimation of two-dimensional distribution functions 125

Using Lemma 2.1 and remembering that untn → +∞, we obtain, for every sufficiently large n,

P(Dn,k ≥ un) ≤ P
(
D∗

n,k ≥ un

2

)
+ P

(
2

tn
≥ un

2

)
≤ t2

n max
i,j=1,...,tn

P
(∣∣F̂k,n(xn,i , xn,j ) − Fk(xn,i , xn,j )

∣∣ ≥ un

2

)
.

Finally, applying inequality (8), it follows, for every sufficiently large n,

P(Dn,k ≥ un) ≤ Ct2
n exp

(
− 1

18
(r1,n − 1)u2

n

)
≤ Ct2

n exp
(−bn1/2u3/2

n

)
.

�

3. Convergence and rates

We are now in a position to derive uniform strong convergence rates for the estimators
considered in this paper. We begin with the estimators F̂k,n(s, t) and ϕ̂k,n(s, t).

THEOREM 3.1 Let k ∈ N be fixed. Suppose that (S1) and (G) are satisfied. Then
sups,t∈R

∣∣F̂k,n(s, t) − Fk(s, t)
∣∣ → 0 almost surely with rate of order n−1/3 log2/3 n.

Proof Choose α > 5/3, b ∈ (0, log1/2 a/108) and tn = [n1/3/ log1/6 n]. Also, let

un = (
α
b

)2/3
log2/3 n/n1/3, so that exp

(
−bn1/2u

3/2
n

)
= n−α . As it is easily verified, these

sequences satisfy all the conditions of Theorem 2.5, from which we have, for every sufficiently
large n,

P

(
sup
s,t∈R

∣∣F̂k,n(s, t) − Fk(s, t)
∣∣ ≥ un

)
≤ Ct2

n exp
(−bn1/2u3/2

n

) ≤ Cn2/3−α log−1/3 n.

It is clear that the right-hand side of this inequality defines a convergent series, as α > 5/3.
The result follows now from the Borel-Cantelli lemma [16]. �

Note that under (S1) and (G), setting k = 0 and s = t , it follows from Theorem 3.1 that

sup
s∈R

∣∣F̂n(s) − F(s)
∣∣ = O

(
n−1/3 log2/3 n

)
a.s. (9)

Moreover, as |F(s)F (t) − F̂n(s)F̂n(t)| = F(s)|F(t) − F̂n(t)| + F̂n(t)|F(s) − F̂n(s)| ≤
|F(t) − F̂n(t)| + |F(s) − F̂n(s)|, Theorem 3.1 also implies that under (S1) and (G),

sup
s,t∈R

∣∣F(s)F (t) − F̂n(s)F̂n(t)
∣∣ = O

(
n−1/3 log2/3 n

)
a.s. (10)

The previous remarks serve to prove a characterization of the almost sure convergence of the
estimator ϕ̂k,n for the general term of the series in the expansion of �(·, ·).

THEOREM 3.2 Let k ∈ N be fixed. Suppose that (S1) and (G) are satisfied, then
sups,t∈R

|ϕ̂k,n(s, t) − ϕk(s, t)| = O(n−1/3 log2/3 n), almost surely.
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Proof Write

sup
s,t∈R

∣∣ϕ̂k,n(s, t) − ϕk(s, t)
∣∣ ≤ sup

s,t∈R

∣∣F̂k,n(s, t) − Fk(s, t)
∣∣ + sup

s,t∈R

∣∣F(s)F (t) − F̂n(s)F̂n(t)
∣∣ .

Thus, the theorem follows from Theorem 3.1, together with relation (10). �

The uniform strong consistency of the estimators for the infinite sum
∑∞

k=1 ϕk(s, t) and for
�(s, t) is established in the next result.

THEOREM 3.3 Let assumptions (S1) and (G) hold. If qn = O(n1/3 log−δ n), for some δ > 2/3,

then

sup
s,t∈R

∣∣∣∣∣
qn∑

k=1

ϕ̂k,n(s, t) −
∞∑

k=1

ϕk(s, t)

∣∣∣∣∣ −→ 0 a.s., (11)

sup
s,t∈R

∣∣�̂n(s, t) − �(s, t)
∣∣ −→ 0 a.s. (12)

Proof Choose α > 2, b ∈ (0, log1/2 a/108) and tn and un as in the proof of Theorem 3.1,
for which all conditions of Theorem 2.5 are verified. Here, it is worth noting that for each
k = 1, . . . , qn, the constant C3 in inequality (6) is independent of k. In fact, C3 depends on
C, the generic constant in inequality (7). Although looking at inequality (7) it seems that this
constant depends on k, we may conclude that, in fact, it does not. To justify this observation,
as qn(nun)

−1/2 → 0, we can replace k with qn in inequality (7), making it independent of
k. Furthermore, there is an n0 ∈ N such that inequality (6) holds true for all n ≥ n0 and
for all k = 1, . . . , qn. This is so because, as 2pn/(un(n − qn)) → 0, in Lemma 2.4, we can
choose n0 ∈ N such that for every n ≥ n0 and for every k = 1, . . . , qn, 2pn/(un(n − k)) ≤
2pn/(un(n − qn)) < 1.

Let εn = qnun. From Theorem 2.5 we then have, for every sufficiently large n,

P

(
sup
s,t∈R

∣∣∣∣∣
qn∑

k=1

(
F̂k,n(s, t) − Fk(s, t)

)∣∣∣∣∣ ≥ εn

)

≤
qn∑

k=1

P

(
sup
s,t∈R

| F̂k,n(s, t) − Fk(s, t) |≥ εn

qn

)
≤ Cqnt

2
n exp

(−bn1/2u3/2
n

) ≤ Cn−(α−1) log−(δ+1/3) .

As α − 1 > 1, the last sequence above defines a convergent series. As it is easily veri-
fied εn → 0, so the Borel-Cantelli lemma yields sups,t∈R

∣∣∑qn

k=1

(
F̂k,n(s, t) − Fk(s, t)

)∣∣ → 0
almost surely. Now, convergence (11) follows from

sup
s,t∈R

∣∣∣ qn∑
k=1

ϕ̂k,n(s, t) −
∞∑

k=1

ϕk(s, t)
∣∣

≤ sup
s,t∈R

∣∣∣∣∣
qn∑

k=1

(
F̂k,n(s, t) − Fk(s, t)

)∣∣∣∣∣
+ qn sup

s,t∈R

|F(s)F (t) − Fn(s)Fn(t)| + sup
s,t∈R

∣∣∣∣∣∣
∞∑

k=qn+1

ϕk(s, t)

∣∣∣∣∣∣ .
(13)

In fact, as we have just established, the first term on the right-hand side above converges
almost surely to zero. The convergence of the second term follows from relation (10), as
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qn ≤ Cn1/3 log−δ n, where δ > 2/3. Moreover, as mentioned before (see inequal-
ity (5)), ϕk(s, t) ≤ B1Cov1/3(X1, Xk+1), for every s, t ∈ R, and as (G) implies that∑

k Cov1/3(X1, Xk+1) < ∞, it follows that the third term of the upper bound above also
converges to zero as qn → +∞.

To prove convergence (12), we write

sup
s,t∈R

∣∣�̂n(s, t) − �(s, t)
∣∣

≤ sup
s,t∈R

∣∣F̂n(s ∧ t) − F(s ∧ t)
∣∣ + sup

s,t∈R

∣∣F(s)F (t) − F̂n(s)F̂n(t)
∣∣

+ sup
s,t∈R

∣∣∣∣∣
qn∑

k=1

ϕ̂k,n(s, t) −
∞∑

k=1

ϕk(s, t)

∣∣∣∣∣ + sup
s,t∈R

∣∣∣∣∣
qn∑

k=1

ϕ̂k,n(t, s) −
∞∑

k=1

ϕk(t, s)

∣∣∣∣∣ .
(14)

The almost sure convergence to zero of the first and second terms of the right-hand side above
follows, respectively, from relations (9) and (10). Finally, the third and fourth terms converge
to zero according to convergence (11). �

The previous result does not identify a convergence rate. An optimization of the choice of
the sequence qn gives the best convergence rates that follow from the exponential inequality
of Theorem 2.5.

THEOREM 3.4 Suppose (S1) and (G) hold. If qn = [log n] and β ≤ min{1/3, log a/3}, then

sup
s,t∈R

∣∣∣∣∣
qn∑

k=1

ϕ̂k,n(s, t) −
∞∑

k=1

ϕk(s, t)

∣∣∣∣∣ = O
(
n−β log5/3 n

)
a.s., (15)

and

sup
s,t∈R

∣∣�̂n(s, t) − �(s, t)
∣∣ = O

(
n−β log5/3 n

)
a.s. (16)

Proof Choose α > 5/3, b ∈ (0, log1/2a/108) and tn and un as in the proof of Theorem 3.1,
for which all conditions of Theorem 2.5 are verified. We again note that for each k = 1, . . . , qn,

the constant C3 in inequality (6) is independent of k. To verify this, just follow the arguments
used in the proof of Theorem 3.3, noting that we have again qn(nun)

−1/2 → 0. Also, there is
an n0 ∈ N such that inequality (6) holds true for all n ≥ n0 and for all k = 1, . . . , qn.

Arguing as in the proof of the previous theorem we then have, for εn = qnun,

P

(
sup
s,t∈R

∣∣∣∣∣
qn∑

k=1

(
F̂k,n(s, t) − Fk(s, t)

)∣∣∣∣∣ ≥ εn

)
≤ Cn−(α−2/3) log2/3 n,

because α − 2/3 > 1, this upper bound defines a convergent series. As εn = qnun ∼
n−1/3 log5/3 n, we then have sups,t∈R

∣∣∑qn

k=1

[
F̂k,n(s, t) − Fk(s, t)

]∣∣ = O
(
n−β log5/3 n

)
,

almost surely. Now, consider the decomposition (13). The rate for the first term on its right-
hand side has just been established. According to relation (10) and β ≤ 1/3, the second term
is of the same order. To prove relation (15), we still have to check that also the third term is
O

(
n−β log5/3 n

)
. For this, just apply inequality (5) to obtain

0 ≤ sup
s,t∈R

∞∑
k=qn+1

ϕk(s, t) ≤ B1

∞∑
k=qn+1

Cov1/3(X1, Xk+1) ≤ C

∞∑
k=qn+1

a−k/3 ≤ Ca−qn/3,

and notice that a−qn/3 is O(n−β log5/3 n), as β ≤ min{1/3, log a/3}.
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Finally, to prove relation (16) use decomposition (14) and apply relations (9), (10) and
(15). �

The last theorem states that under (G) with a > e, the estimators for the infinite sum∑∞
k=1 ϕk(s, t) and for �(s, t) are uniformly strong consistent with a convergence rate of order

n−1/3 log5/3n.

To conclude, we note that supposing a slightly weaker condition on the decrease rate of
the covariances, namely, Cov(X1, Xn+1) = a0k

− log k , with a0 > 0, still enables the derivation
of convergence rates for the estimators under consideration. Obviously, the rates under this
condition are much slower: of order log−1 n for ϕ̂k,n and of order 1/log1−δ n for the estimator
of the covariance function, �̂n, where δ ∈ (0, 1) may be chosen arbitrarily close to zero.
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