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On the Finite Sample Behavior of Fixed Bandwidth
Bickel–Rosenblatt Test for Univariate

andMultivariate Uniformity

CARLOS TENREIRO

CMUC, Department of Mathematics, University of Coimbra,
Coimbra, Portugal

The Bickel–Rosenblatt (BR) goodness-of-fit test with fixed bandwidth was introduced
by Fan in 1998. Although its asymptotic properties have been studied by several
authors, little is known about its finite sample performance. Restricting our attention
to the test of uniformity in the d-unit cube for d ≥ 1, we present in this article
a description of the finite sample behavior of the BR test as a function of the
bandwidth h. For d = 1 our analysis is based not only on empirical power results
but also on the Bahadur’s concept of efficiency. The numerical evaluation of the
Bahadur local slopes of the BR test statistic for different values of h for a set of
Legendre and trigonometric alternatives give us some additional insight about the
role played by the smoothing parameter in the detection of departures from the null
hypothesis. For d > 1 we develop a Monte-Carlo study based on a set of meta-type
uniforme alternative distributions and a rule-of-thumb for the practical choice of
the bandwidth is proposed. For both univariate and multivariate cases, comparisons
with existing uniformity tests are presented. The BR test reveals an overall good
comparative performance, being clearly superior to the considered competiting tests
for bivariate data.

Keywords Bahadur efficiency; Bickel–Rosenblatt test; Goodness-of-fit test;
Kernel density estimator; Uniformity test.

Mathematics Subject Classification 62G10; 62G20.

1. Introduction

Let X1� � � � � Xn� � � � be a sequence of independent and identically distributed
d-dimensional absolutely continuous random vectors with unknown density
function f . As it has been shown by Fan (1998), a test of the simple hypothesis
H0 � f = f0 against the alternative Ha � f �= f0, where f0 is a fixed density
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828 Tenreiro

function on �d, can be based on the Bickel–Rosenblatt (BR) statistic with fixed
bandwidth.

The classical BR statistic introduced by Bickel and Rosenblatt (1973) is based
on the L2 distance between the kernel density estimator fn of f introduced by
Rosenblatt (1956) and Parzen (1962), and its mathematical expectation under the
null hypothesis,

I2n�hn� = n
∫
�fn�x�− E0fn�x��

2dx� (1)

where, for x ∈ �d,

fn�x� =
1
n

n∑
i=1

Khn
�x − Xi��

Khn
�·� = K�·/hn�/h

d
n with K a kernel on �d, that is, a bounded and integrable

function on �d, and �hn�, the bandwidth, is a sequence of strictly positive real
numbers converging to zero as n goes to infinity (see also Fan, 1994; Gouriéroux
and Tenreiro, 2001; Tenreiro, 2007, for the asymptotic properties of the classical BR
test). Analogously to Anderson et al. (1994) that have used kernel density estimators
with fixed bandwidth for testing the equality of two multivariate probability density
functions, Fan (1998) uses the BR statistic with a constant bandwidth, that is,
hn =h > 0, for all n ∈ �, and shows that I2n�h� can be interpreted as a L2 weighted
distance between the empirical characteristic function and the characteristic function
implied by the null model with weight function t → ��K�th��2. Moreover, he
provides an alternative asymptotic approximation for the finite-sample properties of
the BR test by showing that the asymptotic distribution of I2n�h� is an infinite sum
of weighted 	2 random variables (see also Tenreiro, 2005, 2007).

Although the asymptotic properties of the fixed bandwidth Bickel–Rosenblatt
test for a general simple or composite hypothesis are well described in the literature,
little is known about its finite sample performance. Previous studies undertaken by
Henze and Zirkler (1990), Henze (1997), Henze and Wagner (1997), and Tenreiro
(2005), in the case of testing normality, indicate that this performance strongly
depends on the choice of the bandwidth.

In this article, we explore the empirical properties of the BR statistic with fixed
bandwidth to test a univariate or multivariate uniformity hypothesis, that is, we
take f0 = U , where U is the density of the uniform density over the d-dimensional
unit cube 
0� 1�d. The choice of this null distribution is mainly motivated by its
practical significance. Examples of this practical interest are the assessing of the
quality of a pseudo random number generator (see Madras, 2002, p. 12), and the
problem of goodness-of-fit to a given distribution by using the Rosenblatt (1952)
transformation. On the other hand, despite testing uniformity in the unit interval

0� 1� has been studied by many authors (see Stephens, 1974, for a review on the
subject; see also Marhuenda et al., 2005, for a recent simulation study comparing
several existing univariate uniformity tests), the corresponding multi-dimensional
problem seems to have received less attention in the literature. The exception seems
to be the work by Liang et al. (2001) where multivariate uniformity tests based on
several discrepancy criteria that arise in the error analysis of quasi-Monte Carlo
methods for evaluating multiple integrals, are considered and compared. Although
other easy to evaluate statistics could be used to test multivariate uniformity, like
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Bickel–Rosenblatt Goodness-of-Fit Test 829

the multivariate versions of the classical Cramér-von Mises and Watson statistics
(see Shorack and Wellner, 1986, Ch. 5, for the asymptotic behavior of the classical
univariate EDF statistics), no finite sample analysis of these test procedures is, to
our knowledge, available in the literature.

The rest of the article is organized as follow: In Sec. 2 we briefly recall the
asymptotic properties of the BR test with fixed bandwidth and some comments
are made about the evaluation of the test statistic (1). Although several simple
choices for K are possible, in this article we restrict our attention to the case where
K is the standard normal density function. The test of a univariate uniformity
hypothesis is considered in Sec. 3. We give numerical evaluations of the principal
components and most significant weights of the test statistic as a function of the
bandwidth h. Moreover, based on the results of Tenreiro (2005), the Bahadur local
slopes are numerically evaluated for different values of h for a set of Legendre
and trigonometric alternatives. The simulation study presented in Sec. 3 indicates
that the finite sample properties of tests I2�h� are globally in accordance with the
theoretical properties based on the Bahadur local slopes. We conclude that for small
values of h, the BR test is appropriate to detect non location and high-order or high-
frequency alternatives, whereas for large values of h the test could almost exclusively
detect location alternatives. Comparisons with the quadratic EDF tests of Anderson
and Darling (1954) and Watson (1961) based on the empirical distribution function,
and with the data-driven Neyman’s test introduced in Eubank and LaRiccia (1992)
are also presented. In Sec. 4 we consider the test of a multivariate hypothesis of
uniformity. We present a simulation study involving a set of meta-type uniform
alternative distributions that give us some insight about the finite sample power
properties of the multivariate BR test of uniformity as a function of h. A rule-
of-thumb for choosing h is proposed and the corresponding BR test is compared
with multivariate versions of the Cramér-von Mises and Watson tests and with the
multivariate uniformity test introduced by Liang et al. (2001) based on a symmetric
discrepancy 	2-type statistic. The BR test reveals an overall good comparative
performance, being clearly superior to the competiting tests for bivariate data.

2. The Fixed Bandwidth Bickel–Rosenblatt Test

For the sake of completeness, we describe in this section the asymptotic behavior of
the test statistic under the null hypothesis and under a fixed alternative distribution.
The convergence in distribution and the convergence in probability will be denoted
by d

n→�−→ and p

n→�−→, respectively.

2.1. Asymptotic Null Distribution and Consistency

The asymptotic behavior of the statistic I2n�h�, with h > 0, for testing a composite
null hypothesis was first obtained by Fan (1998). For a simple null hypothesis test
it comes easily from the representation of I2n�h� as a degenerate V -statistics. When
one tests the simple hypothesis H0 � f = U , it takes the form

I2n�h� =
1
n

n∑
i�j=1

Qh�Xi� Xj�� (2)
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830 Tenreiro

with

Qh�u� v� = Wh�u− v�−Wh � U�u�−Wh � U�v�+Wh � U � U�0��

for u� v ∈ �d, and h > 0, and W = K � K� where � denotes the convolution product
and �u� = �−u�. Under the null hypothesis and from the limit distribution of
degenerate V-statistics (cf. Theorem 1.2 of Gregory, 1977; Theorem 4.3.2 of Fan,
1998; Koroljuk and Borovskich, 1989; Tenreiro, 2005), we have

I2n�h�
d

n→�
−→ I��h� =

�∑
k=1

�k�hZ
2
k�

where �Zk� k ≥ 1� are independent and identically distributed standard normal
variables, and ��k�h� k ≥ 1�, with �1�h ≥ �2�h ≥ · · · , denotes the infinite collection of
strictly positive eigenvalues of the symmetric positive semi-definite Hilbert-Schmidt
operator Ah defined, for q ∈ L2�U�, by �Ahq��u� = �Qh�u� ·�� q�·� �� where �·� ·�
denotes the usual inner product in L2�U�. Moreover, under a fixed alternative f with
f �= U , we have

n−1I2n�h�
p

n→�
−→ �2��d

∫
��f�t�−�U�t��2��K�th��2dt�

Therefore, assuming that the Fourier transform �K of K is such that �t ∈�d �
�K�t� = 0� has Lebesgue measure zero, the convergence in probability of the
statistic I2n�h� to +� for a fixed alternative, enable us to conclude that the test
associated with the critical regions

�I2n�h� > �−1
h �1− ����

for 0 < � < 1, where �h is the cumulative distribution function (cdf) of the random
variable I��h� given before, is asymptotically of size � and consistent to test H0

against Ha � f �= U .

2.2. Evaluating the Test Statistic

From the representation (2) we easily see that I2n�h� can be written as

I2n�h� = −I2�1n �h�+ I2�2n �h�+Wh�0�+ nWh � U � U�0�� (3)

where

I2�1n �h� = 2
n∑

i=1

Wh � U�Xi� and I2�2n �h� = 2
n

∑
1≤i<j≤n

Wh�Xi − Xj��

Therefore, the calculation of I2n�h� can be easily performed if K is chosen such that
the convolutions W = K � K and Wh � U have close forms. If K is a product kernel
on �d, that is, K�u� = ∏d

i=1 k�ui�� for u = �u1� � � � � ud� ∈ �d, where k is a kernel on
�, and the functions w = k̄ � k and w�x�= ∫

�−��x�
w�t�dt are easy to evaluate, the

exact calculation of I2n�h� does not involve any problem since Wh�u� =
∏d

i=1 wh�ui�
and Wh � U�u� =

∏d
i=1�w��ui − 1�/h�− w�ui/h���
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Bickel–Rosenblatt Goodness-of-Fit Test 831

Several simple choices for k are possible. In the following, we restrict
our attention to the case where k is the standard normal density function
k�x�= exp�−x2/2�/�2��1/2, for x ∈ �. However, similar qualitative results can be
obtained for other kernels like the standard gamma density function k�x� =
exp�−x�, for x ≥ 0. This is not surprising, because the test statistic depends on k
through the convolution k̄ � k which present a quite similar shape for these two quite
different kernels.

3. Testing Univariate Uniformity

In this section we consider the test of a univariate hypothesis of uniformity. In order
to get a better understanding of the role played by the smoothing parameter in the
detection of departures from the null hypothesis, and to compare the BR tests with
existing test procedures, we present in the following an analysis based not only on
empirical power results but also on the Bahadur’s concept of efficiency (see Nikitin,
1995).

3.1. Local Alternatives and Bahadur Efficiency

If �f�·� �� � � ∈ ��, where � is a non trivial closed real interval, is a family of
probability density functions containing the density U , that is, U = f�·� �0�, for some
�0 ∈ �, it is natural to compare a set of competitor tests through their Bahadur local
exact slopes when � → �0. For � in an appropriate right neighborhood of the origin,
in the following we consider local alternatives of the form

f�x� �� = 1+ �Q�x�� (4)

for 0 ≤ x ≤ 1, where Q is a bounded function that belongs to the tangent space
H�U� of U defined by H�U� = �h ∈ L2�U� � �h�U� = 0�. From the results of Tenreiro
(2005), the Bahadur local exact slope of the BR test I2n�h� corresponding to the
previous local alternative is given by

CI2n �h�
�f�·� ��� = �−1

1�h�Wh � Q�Q��2�1+ o�1��� when � → 0�

where �1�h is the largest eigenvalue of the operator Ah defined in Sec. 2.
Moreover, the previous local slope can be written in terms of the infinite

collection ��k�h� k ≥ 1� of strictly positive eigenvalues of Ah and of the principal
components �qk�h� k ≥ 1�, which are the orthonormal basis for H�U� corresponding
to the previous eigenvalues, that is, for all k and j, Ahqk�h = �k�hqk�h� a�e� �U� and
� qk�h� qj�h � = �kj , where �kj is the Kronecker symbol:

CI2n �h�
�f�·� ��� =

�∑
k=1

�−1
1�h�k�h�qk�h� Q�2�2�1+ o�1��� when � → 0�

From the previous representation, namely from the fact that the eigenvalues
��k�h� converge to zero, it is clear that only a finite directions of alternatives
effectively contribute to CI2n �h�

�f�·� ���. The natural question, that we discuss in the
next paragraph, is how rapidly the principal directions loose influence.
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832 Tenreiro

3.2. Principal Components and Most Significant Weights

As described in the previous paragraph, the Bahadur local slope of I2n�h� depends
on the weights ��k�h�, where �k�h = �−1

1�h�k�h, and on the principal components �qk�h�.
Numerical evaluations of the most significants weights are shown in Table 1 for
several values of h. These approximations have been obtained through a quadrature
method using Lapack routines (see Anderson et al., 1999). For comparison, we also
present the corresponding weights for the well known quadratic EDF tests A2

n of
Anderson and Darling (1954) and U 2

n of Watson (1961) based on the empirical
distribution function (see also Shorack and Wellner, 1986, Ch. 5). These tests are
consistent against all alternatives and have shown good performance in testing
uniformity in several comparative simulation studies (see Marhuenda et al., 2005;
Miller and Quesenberry, 1979; Stephens, 1974).

From the values shown in Table 1 and the representation for the Bahadur
local slopes given in the previous subsection, we expect that the BR test for
small values of h could use information contained in other components different
from the first ones. This conclusion is in accordance with the properties of the
classical BR test whose asymptotic power function does not depend on the actual
direction of the alternative under consideration (see Bickel and Rosenblatt, 1973;
Fan, 1994; Gouriéroux and Tenreiro, 2001). However, for moderate or large values
of h, it appears that I2n�h� might exclusively use information contained in the first
component. See Tenreiro (2005) for similar conclusions in the test of a simple
hypothesis of normality. In these last cases the test behaves very much like a
parametric test for a one-dimensional alternative whereas in the former cases the
test behaves like a well-balanced test for higher-dimensional alternatives.

In Fig. 1 we plot the first four principal components of I2n�h� for the values
of h considered in Table 1. Since the components of the Anderson-Darling test
are the Legendre polynomials which arise from the orthogonalization of powers, it
is clear that in some sense for all values of h the first four principal components
describe deviations in location, scale, skewness, and kurtosis, respectively, from the
null hypothesis. Therefore, taking into account the previous conclusions, it appears
that for small values of h the BR test could be appropriate to detect non location

Table 1
Weights �k�h for I2n�h� with K the standard normal density function

h = 0�01 h = 0�1 h = 1�0 A2
n U 2

n

�2�h 9�96× 10−1 7�40× 10−1 2�46× 10−2 3�33× 10−1 1�00× 10−0

�3�h 9�89× 10−1 4�25× 10−1 1�80× 10−4 1�67× 10−1 2�50× 10−1

�4�h 9�81× 10−1 2�40× 10−1 2�12× 10−6 1�00× 10−1 2�50× 10−1

�5�h 9�70× 10−1 1�07× 10−1 3�52× 10−7 6�67× 10−2 1�11× 10−1

�6�h 9�59× 10−1 4�72× 10−2 9�04× 10−9 4�76× 10−2 1�11× 10−1

�7�h 9�44× 10−1 1�69× 10−2 5�19× 10−13 3�57× 10−2 6�25× 10−2

�8�h 9�30× 10−1 6�04× 10−3 2�13× 10−13 2�78× 10−2 6�25× 10−2

�9�h 9�12× 10−1 1�79× 10−3 6�91× 10−16 2�22× 10−2 4�00× 10−2

�10�h 8�95× 10−1 5�35× 10−4 2�60× 10−16 1�82× 10−2 4�00× 10−2

�11�h 8�75× 10−1 1�35× 10−4 1�41× 10−16 1�52× 10−2 2�78× 10−2

�12�h 8�55× 10−1 3�44× 10−5 1�39× 10−16 1�28× 10−2 2�78× 10−2
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Bickel–Rosenblatt Goodness-of-Fit Test 833

Figure 1. Principal components for: I2n�h� – solid line; A2
n – broken line; U 2

n – broken and
dotted line.
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834 Tenreiro

and high-order alternatives, whereas for large values of h the test could, almost
exclusively, detect location alternatives. Finally, it is interesting to remark that for
very small values of h the first and third principal components of the BR test agree
quite well with the corresponding components of the Watson test and for large
values of h the first three principal components of the BR test are close to the
corresponding components of the Anderson-Darling test.

3.3. Bahadur Local Exact Slopes

In this paragraph the BR test with fixed bandwidth is compared, for different values
of h, with the quadratic EDF tests of Anderson-Darling and Watson through their
Bahadur exact slopes for two sets of local alternatives of the form (4). In the first
set of alternatives that we denote by ���j�, for j = 1� � � � � 4, we take for Q the jth
Legendre polynomial defined by:

P1�x� =
√
3�2x − 1��

P2�x� =
√
5�6x2 − 6x + 1��

P3�x� =
√
7�20x3 − 30x2 + 12x − 1��

P4�x� = 3�70x4 − 140x3 + 90x2 − 20x + 1��

These four polynomials are the first principal components of Anderson-Darling’s
test and, as mentioned before, the alternatives (��j) describe deviations in location,
scale, skewness, and kurtosis, respectively, from the null hypothesis. The second set
of alternatives is based on the first four principal components of Watson’s test.
These are denoted by �� �j�, for j = 1� � � � � 4, and Q is one of the trigonometric
functions

T1�x� =
√
2 sin�2�x��

T2�x� =
√
2 cos�2�x��

T3�x� =
√
2 sin�4�x��

T4�x� =
√
2 cos�4�x��

Since the Bahadur local exact slopes of the tests we consider take the form �2�1+
o�1��, up to the multiplication by a constant, when � → 0 (see Nikitin, 1995,
pp. 73–81, for quadratic EDF tests), for the comparison of such tests it is sufficient
to compare the coefficients of �2. They are usually called local indices and are
plotted in Fig. 2 for h ∈ 
0�01� 1�5�. We also plot the local indices for the Anderson-
Darling and Watson tests.

It is clear from Fig. 2 that a moderate or large bandwidth leads to a test
with high efficiency for deviations in location whereas a small bandwidth leads to
a high efficiency test for other moments alternatives or trigonometric alternatives.
However, the gain of efficiency in the location alternative ���1� by taking a large
value of h implies a severe loss of efficiency in non location alternatives.
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Bickel–Rosenblatt Goodness-of-Fit Test 835

Figure 2. Local indices for Legendre and trigonometric alternatives as function of h: I2n�h�
– solid line; A2

n – broken line; U 2
n – broken and dotted line.

3.4. Some Simulation Results

To examine the power performance of BR tests for several choices of the
bandwidth, and to determine if the previous comparisons based on Bahadur local
efficiency reflect the finite sample properties of BR tests, a simulation experiment
is undertaken including the BR tests I2n�0�02� (small bandwidth), I2n�0�1� (medium
bandwidth), and I2n�0�5� (large bandwidth). These bandwidths have been chosen
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836 Tenreiro

after some preliminar simulation work with a large set of bandwidths that allowed
to identify some systematic behavior of the sample power of the BR test as a
function of h. In Fig. 3, the graphics (a) and (b) show the general behavior of
the power as a function of h for location alternatives and (c) and (d) reveal the
general behavior of the power as a function of h for non location alternatives. These
empirical results are globally in accordance with the theoretical results based on
Bahadur local efficiency presented in Fig. 2. However, contrary to the Bahadur local
efficiency results, we see that a very small bandwidth choice is not necessarily the
best choice for h. Moreover, we see that the values of h that maximize the power
do not depend significantly on n.

Additionally to the EDF tests A2
n and U 2

n that as before will be used for
comparison, we also consider the data-driven Neyman’s test Znm introduced in
Eubank and LaRiccia (1992) which is based on the first m principal components
of the Cramér-von Mises EDF statistic given, for j = 1� 2� � � � , by qj�x� = cos��jx�,
0 ≤ x ≤ 1, where m is not a fixed integer, but it depends on the observations. The
inclusion of this test procedure in our simulation study is motivated by the good
empirical power results for the test reported by Eubank and LaRiccia (1992) and
Kim (2000).

Figure 3. Empirical power of I2n�h� as function of h for n = 20 (solid line), n = 40
(broken line), and n = 60 (broken and dotted line) at level 0�05: (a) Beta(0.75,1.125);
(b) Beta(1.5,2.25); (c) Beta(0.5,0.5); (d) Beta(2.5,2.5).
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Bickel–Rosenblatt Goodness-of-Fit Test 837

The power properties of the previous tests are investigated under four sets of
alternative distributions:

(1) Beta alternatives

f�x� = ��a+ b�

��a���b�
xa−1�1− x�b−1� 0 ≤ x ≤ 1�

for a� b > 0, where � is the gamma function.
(2) Legendre alternatives of the form

f�x� = 1+ �Pj�x�� 0 ≤ x ≤ 1�

for � > 0 and j = 1� 2� 3� 4� 5� 6, where Pj is the jth Legendre polynomial.
(3) Cosine alternatives of the form

f�x� = 1+ � cos��jx�� 0 ≤ x ≤ 1�

for � > 0 and j = 1� 2� 3� 4� 6� 8� 10.
(4) Sine alternative with

f�x� = 1+ � sin��jx�� 0 ≤ x ≤ 1�

for � > 0 and j = 2� 4� 8� 12.

Some of these alternatives have been used in Eubank and LaRiccia (1992)
and Kim (2000). The Legendre alternatives permit us to describe deviations to the
null hypothesis in location (j = 1), scale (j = 2), skewness (j = 3), kurtosis (j= 4),
and high moment alternatives (j = 5� 6). For the trigonometric alternatives, the
parameter j controls the frequency of the alternative and allows the analysis of the
performance of the tests as a function of the frequency of the alternative. For the
trigonometric and Legendre alternatives, the parameter � determines the L2 distance
of the alternative from the null hypothesis. Several values of � where considered
but similar qualitative results were observed. A more realistic set of models for the
alternative to the null hypothesis of uniformity is given by the beta distributions.
The set of values taken for a� b > 0 lead to different shape alternatives, and, in
particular, to symmetric (a = b) and asymmetric (a �= b) alternatives.

For all the considered alternative distributions, the empirical power results, that
we present in Tables 2 and 3 at level 0�05, were evaluated on the basis of 2,000
Monte-Carlo samples of size n, for n = 20� 40� 60, or 80. Similar qualitative results
were observed for the levels 0�01 and 0�1. The critical values of all the test statistics
were found by simulating 104 samples from the null distribution.

From Tables 2–3, we conclude that for small values of h the BR test is
appropriate to detect non location, high-moment, and high-frequency alternatives,
whereas for large values of h the test exclusively detects location alternatives. For
high-moment or high-frequency alternatives (that is, Legendre and trigonometric
alternatives with j > 4), the best tests are the Znm and I2n�0�02� tests. Both EDF
tests and the BR tests with h = 0�1� 0�5 have no power for these alternatives. If
we restrict our attention to low-frequency alternatives (that is, beta alternatives
and Legendre and trigonometric alternatives with j ≤ 3), the best tests are the Znm
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838 Tenreiro

Table 2
Empirical power at level 0�05 for beta alternatives

a b � �2 n I2n�0�02� I2n�0�1� I2n�0�5� A2
n U 2

n Zmn

Asymmetric beta alternatives
0.5 0�75 0.4 0.107 20 0.35 0.41 0.41 0.60 0.36 0.48

60 0.82 0.85 0.77 0.94 0.81 0.90
0.75 1�125 0.4 0.083 20 0.17 0.24 0.39 0.37 0.15 0.27

60 0.42 0.61 0.75 0.78 0.36 0.65
1.0 1�5 0.4 0.069 20 0.15 0.27 0.36 0.32 0.18 0.26

60 0.39 0.68 0.79 0.79 0.46 0.68
1.5 2�25 0.4 0.051 20 0.23 0.42 0.36 0.34 0.43 0.32

60 0.75 0.95 0.89 0.95 0.93 0.91
2.0 3�0 0.4 0.040 20 0.39 0.68 0.38 0.46 0.73 0.52

40 0.81 0.97 0.81 0.94 0.97 0.95
2.5 3�75 0.4 0.033 20 0.56 0.85 0.42 0.59 0.90 0.73

40 0.95 1.00 0.86 0.99 1.00 1.00
Symmetric beta alternatives

0.5 0�5 0.5 0.125 20 0.33 0.33 0.16 0.54 0.44 0.44
60 0.82 0.81 0.26 0.92 0.91 0.90

0.75 0�75 0.5 0.100 40 0.12 0.13 0.09 0.16 0.18 0.17
80 0.20 0.25 0.10 0.28 0.34 0.30

1.5 1�5 0.5 0.063 40 0.14 0.19 0.04 0.06 0.28 0.18
80 0.30 0.41 0.04 0.21 0.54 0.41

2.0 2�0 0.5 0.050 20 0.21 0.29 0.03 0.04 0.39 0.24
60 0.63 0.80 0.04 0.52 0.91 0.79

2.5 2�5 0.5 0.042 20 0.31 0.46 0.02 0.04 0.39 0.24
40 0.69 0.87 0.03 0.56 0.95 0.87

3.5 3�5 0.5 0.031 20 0.47 0.67 0.02 0.16 0.82 0.63
40 0.96 0.99 0.03 0.95 1.00 0.99

and I2n�0�1� tests. We remark that although the superior results are obtained by
the Anderson-Darling test for pure location alternatives and by the Watson test
for scale alternatives, these tests also reveal a poor performance for some of the
considered low-frequency alternatives.

The results also confirm the good power properties of Znm test reported by
Eubank and LaRiccia (1992) and Kim (2000). This test behaves like a omnibus test
which shows a good or reasonable performance against a large range of alternatives.
Therefore, it should be used in practice if no information is available about the
alternative to the null hypothesis. This omnibus property is also shared by I2n�0�02�.
However, although for high moment and high frequency alternatives the tests Znm

and I2n�0�02� have obtained the best power results, for low-frequency alternatives
Znm is superior to I2n�0�02�.

4. Testing Multivariate Uniformity

The BR test for a multivariate uniformity hypothesis is discussed in this section. In
order to describe its finite sample power performance as a function of h, to propose
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Bickel–Rosenblatt Goodness-of-Fit Test 839

Table 3
Empirical power at level 0�05 for Legendre and trigonometric alternatives

� j � �2 n I2n�0�02� I2n�0�1� I2n�0�5� A2
n U 2

n Zmn

Legendre alternatives
0.3 1 0�587 0.076 20 0.13 0.22 0.30 0.27 0.15 0.20

80 0.38 0.66 0.78 0.78 0.49 0.66
0.3 2 0�5 0.105 20 0.12 0.15 0.08 0.14 0.19 0.15

80 0.37 0.55 0.12 0.42 0.64 0.54
0.3 3 0�5 0.083 20 0.10 0.11 0.06 0.07 0.11 0.10

80 0.34 0.38 0.06 0.13 0.35 0.40
0.3 4 0�5 0.083 20 0.10 0.09 0.05 0.07 0.08 0.11

80 0.32 0.22 0.05 0.11 0.17 0.33
0.3 5 0�5 0.083 20 0.10 0.07 0.05 0.06 0.07 0.08

80 0.32 0.14 0.05 0.08 0.13 0.26
0.3 6 0�5 0.083 20 0.10 0.05 0.06 0.06 0.05 0.08

80 0.28 0.08 0.05 0.06 0.09 0.23
Cosine alternatives

1.0 1 0�297 0.042 20 0.55 0.90 0.95 0.94 0.74 0.89
40 0.95 1.00 1.00 1.00 0.98 1.00

1.0 2 0�5 0.134 20 0.55 0.85 0.20 0.55 0.89 0.78
40 0.95 1.00 0.28 0.93 1.00 1.00

1.0 3 0�477 0.083 20 0.53 0.57 0.07 0.16 0.40 0.65
40 0.94 0.96 0.07 0.43 0.82 0.98

1.0 4 0�5 0.096 20 0.54 0.27 0.08 0.17 0.19 0.60
40 0.94 0.69 0.06 0.28 0.59 0.96

1.0 6 0�5 0.089 20 0.49 0.07 0.06 0.10 0.10 0.46
40 0.91 0.10 0.07 0.15 0.18 0.92

1.0 8 0�5 0.086 20 0.43 0.05 0.06 0.08 0.07 0.36
40 0.87 0.05 0.05 0.10 0.10 0.86

1.0 10 0�5 0.085 20 0.35 0.05 0.05 0.08 0.07 0.29
40 0.79 0.04 0.05 0.07 0.07 0.80

Sine alternatives
0.5 2 0�420 0.078 60 0.44 0.72 0.63 0.61 0.72 0.59

80 0.57 0.84 0.76 0.77 0.84 0.74
0.5 4 0�460 0.082 60 0.43 0.31 0.18 0.22 0.16 0.40

80 0.54 0.44 0.21 0.29 0.24 0.52
0.5 6 0�473 0.083 60 0.36 0.09 0.11 0.12 0.08 0.28

80 0.49 0.10 0.12 0.15 0.09 0.41
0.5 8 0�480 0.083 60 0.33 0.06 0.08 0.09 0.06 0.24

80 0.44 0.07 0.08 0.10 0.07 0.34
0.5 12 0�487 0.083 60 0.23 0.06 0.07 0.07 0.05 0.18

80 0.32 0.07 0.07 0.09 0.07 0.26
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840 Tenreiro

a rule-of-thumb for the practical choice of the bandwidth h, and to compare the
corresponding BR test with other existing uniformity tests, we conduct a Monte-
Carlo study based on a set of meta-type uniform alternative distributions.

A meta-type uniform distribution in 
0� 1�d can be seen as the distribution of
the random vector �V1� � � � � Vd� that is obtained from an absolutely continuous
random vector �X1� � � � � Xd�, by taking Vi = Gi�Xi�� where, for i = 1� � � � � d, Gi is the
distribution function of Xi (see Fang et al., 2002, for the idea of meta-distribution).
Therefore, these alternatives are appropriate to model the situation where one does
not have relevant information about the dependence structure of the alternative to
the null distribution but it is known that its support is contained in the unit d-cube
and their margins are uniformly distributed in the interval 
0� 1�.

In the simulation we choose the random vector �X1� � � � � Xd� to have one of the
following multivariate distributions where � ∈ �d and the matrix � = 
�ij� �= �� is
chosen as �ii = 1 and �ij = �, with 0 < � < 1, for 1 ≤ i �= j ≤ d (see Liang et al.,
2001, for a similar set of alternative distributions; see also Johnson, 1987; Kotz et al.,
2000, for relevant information about these distributions):

(1) The multivariate normal distribution, Nd����� with mean � and covariance
matriz �.

(2) The multivariate t-distribution Td�m� ���� with density function

g�x� = C���−1/2
(
1+m−1�x − ��′�−1�x − ��

)−�m+d�/2
�

with m > 0, where, here and in the following, C > 0 is a normalizing constant
that takes possibly different values in each occurrence.

(3) The symmetric Kotz type distribution Kd�N� ���� with density function given
by

g�x� = C���−1/2
(
�x − ��′�−1�x − ��

)N−1
exp

(
−√

�x − ��′�−1�x − ��
)
�

where 2N + d > 2.
(4) The symmetric Pearson Type-II distribution Pd�m� ���� with density function

g�x� = C���−1/2
(
1− �x − ��′�−1�x − ��

)m
�

having support �x − ��′�−1�x − �� ≤ 1 and shape parameter m > −1.
(5) The logistic distribution Ld��� with density function

g�x� = C exp
(
−

d∑
i=1

xi

)( d∑
i=1

exp�−xi�+ 1
)−��+d�

�

with � > 0.
(6) The asymmetric Laplace distribution ALd����� with density function

g�x� = C���−1/2 exp
(
x′�−1�

)( x′�−1x

2+ �′�−1�

)�/2

×K�

(√
�2+ �′�−1���x′�−1x�

)
�
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Bickel–Rosenblatt Goodness-of-Fit Test 841

where � = �2− d�/2 and K� is the modified Bessel function of third kind given
by K��u� = u�

∫ �
0 t−�−1 exp�−t − u2/�4t��dt/2�+1� u > 0.

After some simulation work for some of the previous alternative distributions,
we concluded that, as in the univariate case, the value of h that maximize the
empirical power of the BR test does not depend significantly on the sample size n

but strongly depends on the underlying alternative distribution and data dimension.
This is illustrated in Fig. 4 where we present two typical behaviors of the power of

Figure 4. Empirical power of I2n�h� as function of h for n = 10 (solid line), n = 20 (broken
line), n = 40 (broken and dotted line), and d = 2� 5� 10 at level 0�05: (a) ALd�0� �0�2�;
(b) Kd�1� 0� �0�5�.
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842 Tenreiro

the BR test as a function of h, for n = 10� 20� 40, d = 2� 5� 10, and h ∈ 
0�01� 1�2�.
For the Kotz multivariate distribution (b) it is interesting to remark the large
empirical power obtained by the BR test for d = 5� 10 when h is very small. This
type of behavior occurs since for small values of hd−1 the term I2�1n �h� dominates
the term I2�2n �h� of Eq. (3), and, as a consequence, it determines the behavior of test
statistic I2n�h�. Therefore, for such values of h the BR test is essentially based on the
sum 1

n

∑n
i=1 Wh � U�Xi�� and detect alternatives f that satisfy

∫
Wh � U�u�U�u�du �=∫

Wh � U�u�f�u�du� This is in particular true for U -shaped distributions like meta-
uniform distribution based on symmetric Kotz multivariate distribution, because
they give significant probability to regions in the neighbourhood of the d-unit cube
frontier.

In order to use the BR test in practice and to compare it with some existing
multivariate uniformity test procedures, it is essential to propose an easy-to-use rule
for choosing the bandwidth h. Since we do not have a particular type of alternative
in mind, it is natural to expect that BR test should show a reasonable performance
against a large range of alternatives.

With this goal, for data dimensions from d = 2 to 10, for each one of the
following 11 alternative distributions, and for n taking one of the values n = 10 or
n = 20, we calculate the bandwidth hf�n that maximizes the empirical power over
the set �0�01� 0�02� � � � � 1�2� of values of h (when the sample power is maximized
for more than one value of h, we take for hf�n the smallest of such values of h).
With the exception of the asymmetric Laplace distribution where � = 1 = �1� � � � � 1�,
we take � = 0 and � = 0�2� 0�5 for all the distributions depending on � and on ��,
respectively. Moreover, for the Student distribution we take m = 3, for the Kotz
distribution we consider N = 1, for the Pearson distribution we take m = 3/2 and
the value � = 0�5 is considered for the logistic distribution.

For each one of the considered data dimension d, the sample distribution of
the bandwidths hf�n that maximizes the empirical power, for f and n given above,
is described in Fig. 5 for the BR test at level 0�05. A logarithmic regression of
the corresponding sample medians over the data dimension, leads to the following
relation that we will use as rule-of-thumb for the choice of h when the dimension

Figure 5. Empirical distribution of hf�n for several values of d at level 0�05.
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Bickel–Rosenblatt Goodness-of-Fit Test 843

of the data is d:

h = 0�09 ln�d�+ 0�036� (5)

This rule-of-thumb can also be used for the BR test at levels 0�01 and 0�1, since the
distributions of the bandwidths hf�n for these two levels are very similar to that one
shown in Fig. 5.

Table 4
Empirical power at level 0.05 for multivariate alternatives with d = 2� 3� 4

d = 2 d = 3 d = 4

X-Distribution n I2n W 2
n Tn n I2n W 2

n Tn n I2n W 2
n Tn

Nd�0� �0�2� 60 0.08 0.10 0.06 40 0.12 0.20 0.08 40 0.18 0.36 0.13
80 0.12 0.11 0.07 80 0.24 0.30 0.12 80 0.35 0.57 0.23

Nd�0� �0�5� 40 0.39 0.24 0.19 20 0.41 0.43 0.24 20 0.56 0.67 0.40
60 0.62 0.31 0.31 40 0.76 0.63 0.55 40 0.91 0.88 0.86

Td�5� 0� �0�2� 60 0.11 0.10 0.07 60 0.24 0.25 0.13 60 0.32 0.45 0.21
80 0.18 0.11 0.10 80 0.28 0.31 0.14 80 0.44 0.56 0.28

Td�5� 0� �0�5� 60 0.66 0.30 0.30 40 0.80 0.63 0.53 20 0.63 0.66 0.44
80 0.83 0.38 0.49 60 0.96 0.78 0.83 40 0.94 0.86 0.85

Td�1� 0� �0�2� 40 0.28 0.09 0.09 40 0.52 0.20 0.20 40 0.67 0.36 0.32
80 0.64 0.12 0.13 80 0.90 0.28 0.29 60 0.90 0.45 0.44

Td�1� 0� �0�5� 40 0.70 0.23 0.20 20 0.62 0.39 0.28 10 0.42 0.42 0.29
60 0.90 0.29 0.32 40 0.97 0.58 0.58 20 0.84 0.60 0.51

Kd�2� 0� �0�2� 60 0.72 0.24 0.60 40 0.70 0.38 0.73 40 0.74 0.54 0.82
80 0.89 0.37 0.77 60 0.90 0.55 0.92 60 0.92 0.71 0.96

Kd�2� 0� �0�5� 20 0.39 0.15 0.27 20 0.70 0.46 0.61 10 0.41 0.46 0.44
40 0.82 0.30 0.59 40 0.99 0.72 0.97 20 0.84 0.68 0.83

Kd�1� 0� �0�2� 40 0.32 0.18 0.50 20 0.37 0.27 0.80 10 0.28 0.27 0.84
80 0.59 0.28 0.78 60 0.91 0.66 1.00 20 0.62 0.42 0.98

Kd�1� 0� �0�5� 40 0.62 0.34 0.57 20 0.68 0.58 0.82 10 0.54 0.58 0.82
60 0.84 0.48 0.77 40 0.94 0.82 0.99 20 0.86 0.79 0.98

Pd�0�5� 0� �0�2� 60 0.13 0.10 0.06 60 0.22 0.28 0.11 60 0.30 0.48 0.18
80 0.17 0.12 0.07 80 0.29 0.32 0.14 80 0.43 0.59 0.27

Pd�0�5� 0� �0�5� 40 0.39 0.25 0.19 20 0.37 0.45 0.23 20 0.54 0.68 0.38
60 0.61 0.33 0.31 40 0.74 0.65 0.55 40 0.91 0.89 0.84

Ld�1�0� 40 0.47 0.24 0.19 20 0.42 0.42 0.24 20 0.63 0.67 0.43
60 0.70 0.33 0.32 40 0.83 0.61 0.57 40 0.93 0.87 0.87

Ld�0�2� 10 0.57 0.24 0.18 10 0.95 0.57 0.47 10 0.99 0.78 0.85
20 0.98 0.37 0.40 20 1.00 0.78 0.99 20 1.00 0.94 1.00

ALd�0� �0�2� 60 0.21 0.10 0.09 60 0.44 0.24 0.16 60 0.63 0.45 0.29
80 0.30 0.11 0.09 80 0.59 0.29 0.19 80 0.80 0.56 0.39

ALd�0� �0�5� 40 0.52 0.23 0.20 20 0.48 0.42 0.25 10 0.34 0.44 0.22
80 0.89 0.37 0.47 60 0.98 0.76 0.81 40 0.97 0.86 0.83

ALd�1� �0�2� 40 0.66 0.28 0.24 20 0.62 0.48 0.31 10 0.44 0.51 0.27
80 0.97 0.45 0.65 60 1.00 0.87 0.94 20 0.81 0.75 0.54

ALd�1� �0�5� 20 0.55 0.26 0.20 10 0.51 0.42 0.23 10 0.72 0.67 0.46
40 0.94 0.40 0.54 20 0.90 0.62 0.59 20 0.98 0.87 0.89
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844 Tenreiro

In the following, the BR test with h given by (5) is compared with two other
easy to evaluate multivariate uniformity tests. They are the multivariate versions
of the Cramér-von Mises statistic W 2

n based on the empirical distribution function
and the multivariate uniformity test introduced by Liang et al. (2001) based on
a symmetric discrepancy 	2-type statistic Tn. Initially, the multivariate version of
the Watson statistic U 2

n was also considered but, in general, this test revealed a

Table 5
Empirical power at level 0.05 for multivariate alternatives with d = 5� 7� 10

d = 5 d = 7 d = 10

X-Distribution n I2n W 2
n Tn n I2n W 2

n Tn n I2n W 2
n Tn

Nd�0� �0�2� 40 0.24 0.58 0.18 20 0.17 0.57 0.13 20 0.23 0.75 0.22
80 0.47 0.79 0.35 60 0.52 0.91 0.44 60 0.71 0.98 0.69

Nd�0� �0�5� 10 0.37 0.62 0.28 10 0.49 0.79 0.47 10 0.64 0.89 0.69
20 0.69 0.83 0.58 20 0.87 0.94 0.85 20 0.96 0.98 0.98

Td�5� 0� �0�2� 40 0.28 0.56 0.22 40 0.43 0.77 0.39 20 0.33 0.70 0.40
60 0.46 0.68 0.32 60 0.67 0.89 0.59 40 0.65 0.91 0.65

Td�5� 0� �0�5� 10 0.38 0.59 0.31 10 0.51 0.77 0.49 10 0.71 0.88 0.76
20 0.73 0.82 0.59 20 0.90 0.93 0.87 20 0.98 0.98 0.98

Td�1� 0� �0�2� 20 0.43 0.34 0.31 10 0.32 0.35 0.39 10 0.48 0.42 0.60
40 0.80 0.54 0.50 20 0.61 0.49 0.52 20 0.81 0.61 0.79

Td�1� 0� �0�5� 10 0.56 0.58 0.41 10 0.69 0.73 0.63 10 0.83 0.83 0.84
20 0.91 0.78 0.70 20 0.97 0.91 0.91 20 1.00 0.96 0.99

Kd�2� 0� �0�2� 20 0.36 0.40 0.51 20 0.29 0.58 0.41 20 0.20 0.74 0.31
40 0.74 0.68 0.84 40 0.61 0.82 0.76 40 0.43 0.93 0.65

Kd�2� 0� �0�5� 10 0.47 0.60 0.53 10 0.53 0.78 0.61 10 0.59 0.88 0.68
20 0.89 0.83 0.91 20 0.94 0.94 0.96 20 0.93 0.98 0.97

Kd�1� 0� �0�2� 10 0.36 0.36 0.97 10 0.45 0.48 1.00 10 0.85 0.49 1.00
20 0.80 0.50 1.00 20 0.98 0.64 1.00 20 1.00 0.67 1.00

Kd�1� 0� �0�5� 10 0.65 0.73 0.95 10 0.74 0.82 1.00 10 0.89 0.87 1.00
20 0.95 0.89 1.00 20 0.99 0.97 1.00 20 1.00 0.98 1.00

Pd�0�5� 0� �0�2� 40 0.27 0.60 0.17 40 0.36 0.81 0.27 20 0.24 0.76 0.19
80 0.53 0.80 0.37 80 0.73 0.96 0.63 60 0.72 0.98 0.67

Pd�0�5� 0� �0�5� 10 0.32 0.62 0.24 10 0.46 0.80 0.40 10 0.63 0.88 0.65
20 0.67 0.83 0.55 20 0.85 0.96 0.84 20 0.95 0.99 0.99

Ld�1�0� 10 0.38 0.60 0.29 10 0.54 0.77 0.50 10 0.69 0.85 0.73
20 0.75 0.81 0.63 20 0.88 0.92 0.88 20 0.97 0.98 0.98

Ld�0�2� 10 1.00 0.88 0.99 10 1.00 0.95 1.00 10 1.00 0.98 1.00
ALd�0� �0�2� 40 0.55 0.54 0.31 20 0.43 0.52 0.36 10 0.34 0.49 0.43

60 0.80 0.69 0.46 40 0.77 0.76 0.58 20 0.59 0.69 0.57
ALd�0� �0�5� 10 0.45 0.59 0.35 10 0.60 0.74 0.55 10 0.77 0.85 0.78

20 0.81 0.78 0.64 20 0.94 0.92 0.88 20 0.98 0.97 0.98
ALd�1� �0�2� 10 0.54 0.68 0.38 10 0.70 0.85 0.61 10 0.83 0.93 0.83

20 0.89 0.89 0.65 20 0.97 0.98 0.95 20 1.00 0.99 1.00
ALd�1� �0�5� 10 0.83 0.80 0.66 10 0.93 0.91 0.89 10 0.98 0.96 0.99

20 0.99 0.96 0.98 20 1.00 0.99 1.00 20 1.00 1.00 1.00
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very poor performance in comparison with the other considered tests. Among the
several test statistics considered by Liang et al. (2001) which are based on quasi-
Monte Carlo methods for measuring the discrepancy of points in 
0� 1�d, the statistic
Tn considered in the following has shown the best results. However, contrary to
the considered BR tests and the previous EDF tests, the test based on Tn is not
asymptotically consistent against all alternative distributions.

In Tables 4 and 5 we present the empirical power results at level 0.05 of the BR
test for h given by (5) and of the above-mentioned W 2

n and Tn tests. These results
were obtained on the basis of 2,000 Monte-Carlo samples of sizes n = 10� 20� 40� 60,
or 80. Similar qualitative results were observed for the levels 0.01 and 0.1. For
the evaluation of the critical values of all the involved test statistics 104 samples
from the null distribution were used. The set of alternative distributions we consider
includes some of the distributions used to derive the rule-of-thumb (5) and some
other meta-uniform distributions based on the Student distributions with m = 1
(Cauchy distribution) and m = 5, on the Kotz distribution with N = 2, on the
Pearson distribution with m = 0�5, on the logistic distribution with � = 0�2� 1�0, and
on the asymmetric Laplace distribution with � = 0 (symmetric Laplace distribution).

The empirical power results show that the BR test present excellent comparative
properties for bivariate observations. It is clearly more powerful than tests W 2

n and
Tn for the considered set of alternatives. For data dimensions d = 3 and d = 4, the
BR test reveals good performance and, in particular, it is never the worse of the
considered test procedures for any one of the considered distributions. For large
data dimensions the BR test does not present the same good performance. Although
none of the considered tests is uniformly the best test over the considered set of
alternative distributions, it seems that the Cramér-von Mises test obtain the best
overall results for d ≥ 5.
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