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Abstract. We give a new su�cient condition for the normal extensions in
an admissible Galois structure to be re�ective. We then show that this con-
dition is indeed ful�lled when X is the (protomodular) re�ective subcategory
of S -special objects of a Barr-exact S -protomodular category C, where S is
the class of split epimorphic trivial extensions in C. Next to some concrete
examples where the criterion may be applied, we also study the adjunction
between a Barr-exact unital category and its abelian core, which we prove to
be admissible.

1. Introduction

In the paper [31] we studied the adjunction between the category of monoids and
the category of groups, given by the group completion of a monoid, from the point
of view of categorical Galois theory. We showed that the adjunction is admissible
with respect to the class of surjective homomorphisms, and we described the central
extensions (which turn out to coincide with the normal extensions): they are the
so-called special homogeneous surjections (see [11]). In the subsequent paper [32],
we showed that special homogeneous surjections of monoids are re�ective amongst
surjective homomorphisms. In order to do so, we applied Theorem 4.2 in [24].

The adjunction between monoids and groups is an instance of a more general
situation, recently described in [11] and in [12]: the category of monoids is S -
protomodular, with respect to a suitable class S of points (= split epimorphisms
with a �xed splitting), and the category of groups is its protomodular core relat-
ively to the class S (see Section 3). S -protomodularity allows us to recover, for
monoids, relative versions of several important properties of Mal'tsev [14] and pro-
tomodular [4] categories, like the Split Short Five Lemma, or the fact that every
internal re�exive relation is transitive.

The case of monoids and groups now suggests the following general question:
given an adjunction, admissible with respect to regular epimorphisms, between a
category with �weak� algebraic properties and a re�ective subcategory with �strong�
properties, like a protomodular one, such that the big category is S -protomodular
with respect to the class S of split epimorphic trivial extensions, is it always the
case that normal extensions are re�ective amongst regular epimorphisms?

The present paper gives an a�rmative answer to this question for the case of
Barr-exact categories [1]. In order to do this, we needed to obtain a new criterion
for re�ectiveness of normal extensions, Theorem 2.10: given a Galois structure

Date: 17th April 2018.
2010 Mathematics Subject Classi�cation. 20M32, 20M50, 11R32, 19C09, 18F30.
Key words and phrases. categorical Galois theory; admissible Galois structure; central, normal,

trivial extension; S -protomodular category; unital category; abelian object.
This work was partially supported by the Centre for Mathematics of the University of Coimbra

� UID/MAT/00324/2013, funded by the Portuguese Government through FCT/MEC and co-
funded by the European Regional Development Fund through the Partnership Agreement PT2020.

The �rst author is a Postdoctoral Researcher of the Fonds de la Recherche Scienti�que�FNRS.
The third author is a Research Associate of the Fonds de la Recherche Scienti�que�FNRS.

1



2 ANDREA MONTOLI, DIANA RODELO, AND TIM VAN DER LINDEN

between Barr-exact categories, which is admissible with respect to classes of regular
epimorphisms, the category of normal extensions is re�ective in the category of all
�brations (as the morphisms in the chosen class of regular epimorphisms are called)
provided that it is closed under coequalizers of re�exive graphs.

The paper is organised as follows. In Section 2 we recall some basic notions of
categorical Galois theory and we prove our criterion for re�ectiveness of normal
extensions. In Section 3 we recall the de�nition, some properties and some ex-
amples of S -protomodular categories. Section 4 is devoted to the proof that the
criterion can be applied in the context of Barr-exact S -protomodular categories.
In Section 5 we describe the concrete examples of the adjunction between monoids
and groups and the one between semirings and rings. Section 6 is devoted to the
study of a general class of examples, namely the adjunction between a Barr-exact
unital [5] category and its abelian core. In particular, we prove that, for any �-
nitely cocomplete Barr-exact unital category, the re�ection to its abelian core gives
an admissible Galois structure, and that the criterion for re�ectiveness of normal
extensions is applicable to this Galois structure.

2. Reflectiveness of normal extensions

In this section we work towards a general result on re�ectiveness of normal
extensions in an admissible Galois structure: Theorem 2.10 which says that, if the
�brations in the Galois structure are regular epimorphisms, and normal extensions
are closed under coequalisers of re�exive graphs, then the normal extensions are
re�ective amongst the �brations.

2.1. Galois structures. We begin by recalling the notion of an (admissible) Galois
structure as well as the concepts of trivial, normal and central extension arising from
it [21, 22, 23]. We consider the context of Barr-exact categories [1] and restrict
ourselves to �brations which are regular epimorphisms to avoid some technical
di�culties.

De�nition 2.2. A Galois structure Γ “ pC,X, I,H, η, ε,E ,F q consists of an
adjunction

C

I ,2
K X

H
lr

with unit η : 1C ñ HI and counit ε : IH ñ 1X between Barr-exact categories C
and X, as well as classes of morphisms E in C and F in X such that:

(G1) E and F contain all isomorphisms;
(G2) E and F are pullback-stable;
(G3) E and F are closed under composition;
(G4) HpF q Ď E ;
(G5) IpE q Ď F .

We call the morphisms in E and F �brations [22]. We moreover assume

(G6) the classes E and F consist of the regular epimorphisms in C and in X,
respectively.

Finally, we assume that C has coequalisers of re�exive graphs.

The following de�nitions are given with respect to a Galois structure Γ.
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De�nition 2.3. A trivial extension is a �bration f : AÑ B in C such that the
square

A
ηA ,2

f

��

HIpAq

HIpfq

��
B

ηB
,2 HIpBq

is a pullback. A central extension is a �bration f whose pullback p˚pfq along
some �bration p is a trivial extension. A normal extension is a �bration such
that its kernel pair projections are trivial extensions.

It is easy to see that trivial extensions are always central extensions and that
any normal extension is necessarily a central extension.

Given any object B in C, we can associate an adjunction

pE Ó Bq
IB ,2
K pF Ó IpBqq,
HB
lr

where pE Ó Bq denotes the full subcategory of the slice category pC Ó Bq determined
by the morphisms in E ; similarly for pF Ó IpBqq. The functor IB is just the
restriction of I, while HB sends a �bration g : X Ñ IpBq to the pullback

A ,2

HBpgq

��

HpXq

Hpgq

��
B

ηB
,2 HIpBq

of Hpgq along ηB .

De�nition 2.4. A Galois structure Γ “ pC,X, I,H, η, ε,E ,F q is said to be ad-
missible when, for every object B in C, the functor HB is full and faithful.

In the presence of an admissible Galois structure, every trivial extension is always
a normal extension:

Proposition 2.5 ([24], Proposition 2.4). If Γ is an admissible Galois structure,
then I : CÑ X preserves pullbacks along trivial extensions. Hence a �bration is
a trivial extension if and only if it is a pullback of some �bration in HpXq. In
particular, the trivial extensions are pullback-stable, so that every trivial extension
is a normal extension. �

The admissibility condition of a Galois structure together with the proposition
above give the needed conditions to have the re�ectiveness of trivial extensions
amongst �brations. In fact, the replete image of the functor HB is the category
of trivial extensions over B, denoted by TrivpBq. Moreover, TrivpBq is a re�ective
subcategory of pE Ó Bq, where HBIB : pE Ó Bq Ñ TrivpBq is its re�ector. So, by
Proposition 5.8 in [20], we obtain a left adjoint, called the trivialisation functor

Triv : FibpCq Ñ TrivpCq,

to the inclusion of the category TrivpCq of trivial extensions in C into the full
subcategory FibpCq of the category of arrows in C determined by the �brations.
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2.6. Re�ectiveness of normal extensions. Given an admissible Galois struc-
ture Γ as in De�nition 2.4 and an object B in C, we denote by NormpBq the full
subcategory of pE Ó Bq determined by the normal extensions over B. When it
exists, the left adjoint to the inclusion functor NormpBq ãÑ pE Ó Bq will be denoted
by Norm: pE Ó Bq Ñ NormpBq and called the normalisation functor (over B).
We also write

Norm: FibpCq Ñ NormpCq

for the left adjoint to the inclusion NormpCq ãÑ FibpCq (where NormpCq is the
category whose objects are the normal extensions in C) which exists as soon as the
normalisation functors over all objects B exist (again by Proposition 5.8 in [20],
using that normal extensions are stable under pullback).

We use the construction proposed in [17] and prove that it does indeed provide
us with a normalisation functor as soon as the Galois structure Γ is admissible and
satis�es the following condition:

(G7) NormpCq is closed under coequalisers of re�exive graphs in FibpCq.

This approach is related to the results in [16] where the problem of re�ectiveness
of normal extensions is studied in a much more general setting. Our present paper
and [16] were written independently and around the same, but with a di�erent
purpose in mind. Ours was to provide simple applications of the construction
in 2.7 below�essentially a simple version of the one proposed in [13], which strictly
speaking cannot be applied in the current context.

2.7. The construction. Given a �bration f : AÑ B, we pull it back along itself,
then we take kernel pairs vertically as on the left hand side of the diagram in
Figure 1. We apply the trivialisation functor to obtain the upper right part of the
diagram, then we take the coequaliser f on the right to get the morphism Normpfq

and the comparison ηNorm
f . The normality of Normpfq comes from condition (G7)

and the fact that all trivial extensions are normal extensions (Proposition 2.5).

Eqpπ2q

ηTriv
π1
1

)/

�� ��

π1
1

,2,2 Eqpfq

�� ��

Eqpπ2qTriv
Trivpπ1

1q

lr lr

�� ��
Eqpfq /5

LR

π2

����

π1 ,2,2 A

LR

f

����

EqpfqTriv

Trivpπ1qlr lr

LR

f

����

A
f ,2,2

ηNorm
f

07B A
Normpfqlr lr

Figure 1. The construction of Normpfq

2.8. The universal property. Let us prove that the extension Normpfq is univer-
sal amongst all normal extensions over B. Suppose that f “ g˝α, where g : C Ñ B
is a normal extension. First note that all steps of the construction are func-
torial. Next, since g is a normal extension, we have Normpgq “ g, C “ C and
ηNorm
g “ 1C . So we get an induced morphism α : AÑ C such that g˝α “ Normpfq

and α˝ηNorm
f “ α, which proves the existence of a factorisation. Now for the

uniqueness, suppose that β, γ : AÑ C are such that

g˝β “ Normpfq “ g˝γ and β˝ηNorm
f “ α “ γ˝ηNorm

f .
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We write πf1 , π
f
2 and πg1 , π

g
2 for the kernel pair projections of f and g, respectively.

From the fact that g is a normal extension, we have Trivpπg1q “ πg1 and g “ πg2 . Since

g˝α˝Trivpπf1 q “ f˝Trivpπf1 q “ Normpfq˝f “ g˝β˝f and, likewise, g˝α˝Trivpπf1 q “
g˝γ˝f , we �nd morphisms

rβ “ xα˝Trivpπf1 q, β˝fy, rγ “ xα˝Trivpπf1 q, γ˝fy : EqpfqTriv Ñ Eqpgq

such that πg2˝
rβ “ β˝f and πg2˝rγ “ γ˝f while

πg1˝
rβ “ α˝Trivpπf1 q and πg1˝rγ “ α˝Trivpπf1 q.

Now rβ “ rγ follows from the uniqueness in the universal property of the trivial

extension Trivpπf1 q: indeed,
rβ˝ηTriv

πf1
“ αˆ1B α “ rγ˝ηTriv

πf1
. Hence β “ γ.

2.9. The result. Thus, keeping Proposition 5.8 in [20] in mind, we obtain:

Theorem 2.10. Let Γ “ pC,X, I,H, η, ε,E ,F q be an admissible Galois structure
such that the conditions (G6) and (G7) hold. For any object B in C, NormpBq
is a re�ective subcategory of pE Ó Bq. As a consequence, normal extensions are
re�ective amongst �brations. �

2.11. A weaker condition. Condition (G7) is nice and simple, but it is slightly
too strong to be applied to S -protomodular categories as in Section 4. We may
replace it by the following slightly weaker alternative, which is clearly still strong
enough to imply the conclusion of Theorem 2.10:

(G7´) NormpCq is closed under coequalisers, in the category ArrpCq of arrows in C,
of certain re�exive graphs in FibpCq: given a re�exive graph of the following
form

R ,2

f2

����

,2
A1lr

f 1

����

g ,2,2 A

f

����
Eqphq ,2

,2
B1lr

h
,2,2 B

and its coequaliser, if f 1 and f2 are normal extensions, then also f is a
normal extension.

We thus obtain

Theorem 2.12. Let Γ “ pC,X, I,H, η, ε,E ,F q be an admissible Galois structure
such that the conditions (G6) and (G7´) hold. For any object B in C, NormpBq
is a re�ective subcategory of pE Ó Bq. As a consequence, normal extensions are
re�ective amongst �brations. �

3. S -protomodular categories

Our criterion for the re�ectiveness of normal extensions (Theorem 2.12) can
be applied to a general algebraic situation, in which the category C is an S -
protomodular category. The aim of this section is to recall the de�nition of an
S -protomodular category, as well as the results we need in order to show that this
re�ectiveness criterion is applicable.

The notion of S -protomodular category was introduced for a pointed context
in [11], and further developed in [12]. An extension to the non-pointed case was
then considered in [8].

Let C be a �nitely complete category. We denote by PtpCq the category of
points in C, whose objects pf, sq are the split epimorphisms f : AÑ B with a
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chosen section s : B Ñ A as in

A
f
,2 B

slr f˝s “ 1B

and whose morphisms are pairs of morphisms which form commutative squares with
both the split epimorphisms and their sections. Since split epimorphisms are stable
under pullbacks, the functor cod: PtpCq Ñ C, which associates with every split
epimorphism its codomain, is a �bration, usually called the �bration of points.
Let S be a class of points in C which is stable under pullbacks. If we look at it
as a full subcategory SPtpCq of PtpCq, it gives rise to a sub�bration S -cod of the
�bration of points. A point pf : AÑ B, s : B Ñ Aq in a pointed category C is said
to be a strong point if the pair pk, sq, where k is a kernel of f , is jointly strongly
epimorphic. Strong points were considered in [30], under the name of regular points,
and independently in [7], under the name of strongly split epimorphisms.

De�nition 3.1 ([11], De�nition 8.1.1). Let C be a pointed �nitely complete cat-
egory, and S a pullback-stable class of points. We say that C is S -protomodular
when:

(1) every point in SPtpCq is a strong point;
(2) SPtpCq is closed under �nite limits in PtpCq.

Remark 3.2. As mentioned in [8], in a pointed �nitely complete category C a
point pf, sq is strong if and only if, for any pullback as in the diagram

P
π2 ,2

π1
��

A

f

��
C

g
,2

LR

B,

s

LR

the pair pπ2, sq is jointly strongly epimorphic. Thanks to this fact, the de�nition
of S -protomodular category can be extended to the non-pointed case, by simply
replacing the notion of strong point by the property above (see [8, De�nition 4.3]).

The name S -protomodular comes from the fact that a pointed �nitely complete
category C is protomodular if and only if every point in C is a strong point [4]. Hence
the notion above is a version of the concept of protomodular category, relative with
respect to the class S .

Example 3.3. As observed in [11], the categories Mon of monoids and SRng of
semirings are S -protomodular with respect to the class S of Schreier split epi-
morphisms [29] (see below). Later, in [28], it was proved that every Jónsson-
Tarski variety, which is a variety whose corresponding theory contains a unique
constant 0 and a binary operation ` which satisfy the equations 0`x “ x`0 “ x for
all x, is S -protomodular with respect to the class of Schreier split epimorphisms.
Let us now recall the de�nition of such split epimorphisms.

De�nition 3.4 ([29, 28]). A split epimorphism f : AÑ B with given splitting
s : B Ñ A in a Jónsson-Tarski variety is a Schreier split epimorphism when, for
every a P A, there exists a unique α in the kernel N of f such that a “ α` sfpaq.

In Section 6 we give an example of an S -protomodular category of a di�erent
nature.

Let C be an S -protomodular category. We recall from [12] that an S -re�exive
graph (or S -re�exive relation)

Q
d ,2

c
,2 Aelr
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is a re�exive graph (respectively, a re�exive relation) such that the point pd, eq
belongs to S . A morphism f : A Ñ B is called an S -special morphism when
its kernel pair Eqpfq is an S -re�exive relation. An object X is called an S -
special object when the indiscrete relation on X is an S -re�exive relation. This
means that the point pp1 : X ˆX Ñ X, x1X , 1Xy : X Ñ X ˆXq, where p1 is the
�rst projection, belongs to S . The following result was proved, in the pointed
case, in [12], and then extended with the same proof to the non-pointed case in [8].

Proposition 3.5 ([12], Proposition 6.2). Let C be an S -protomodular category.
Any split epimorphism between S -special objects is in S and, consequently, is an
S -special morphism. The full subcategory SC of S -special objects is protomodular.

�

The protomodular subcategory SC is called the protomodular core of C re-
latively to the class S . Observe that, since SPtpCq is closed under �nite limits
in PtpCq, the subcategory SC is closed under �nite limits in C.

When C is the category of monoids, and S is the class of Schreier split epimorph-
isms, the protomodular core is the category of groups. Similarly, the protomodular
core of the category of semirings is the category of rings.

4. An application to S -protomodular categories

In this section we are going to consider a Galois structure Γ as in De�nition 2.2,
where C is a �nitely complete Barr-exact category with coequalisers of re�exive
graphs, X is a full re�ective subcategory of C, I is the re�ector, H is the inclusion
and E and F are the classes of regular epimorphisms. We assume that

(1) X is also Barr-exact;
(2) H preserves regular epimorphisms, so that Γ is indeed a Galois structure;
(3) Γ is admissible;
(4) writing S for the class of split epimorphic trivial extensions, the category

C is S -protomodular.

The functor H being the inclusion functor, we omit it from writing to simplify
notation. Note that, S being the class of split epimorphic trivial extensions, X is
contained in the protomodular core SC given by S -special objects: if X P X, then
the �rst projection p1 : X ˆX Ñ X is a trivial extension (because it is a morphism
in X). If C is pointed, then X is precisely the protomodular core SC. Indeed, if
p1 : X ˆX Ñ X is a trivial extension, then it is the pullback of a morphism in X.
Hence its kernel, which is X, belongs to X. In any case, X is a full subcategory of the
protomodular core SC, and being closed under �nite limits in it (since it is closed
under �nite limits in C), it is a protomodular category thanks to Proposition 3.5,
thus a Mal'tsev category (Proposition 17 in [5]). Since X is a Barr-exact Mal'tsev
category, then any re�exive relation is necessary the kernel pair of its coequaliser.

Applying Theorem 2.12, we shall prove that in this setting, the normal extensions
are re�ective amongst the �brations. Since condition (G6) is ful�lled by assumption,
we only have to prove that condition (G7´) holds.

In a regular category, a commutative square of regular epimorphisms

A1
g ,2,2

f 1

����

A

f

����
B1

h
,2,2 B

is called a regular pushout [6] when the comparison morphism to the pullback
xf 1, gy : A1 Ñ B1 ˆB A is a regular epimorphism.
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Lemma 4.1. In a regular category, pulling back along a morphism of regular epi-
morphisms preserves regular pushout squares.

Proof. A square of regular epimorphisms as above is a regular pushout if and only
if it decomposes as a composite of two squares of regular epimorphisms

A1 ,2,2

����

B1 ˆB A ,2,2

����

A

����
B1 B1

h
,2,2 B,

where the square on the right is a pullback. Given a regular epimorphism r : C 1 Ñ C
and a morphism pf 1, fq : r Ñ h, pulling back the given regular pushout square along
it yields a regular pushout square over r. �

Lemma 4.2. Any commutative solid diagram

Eqpfq

f1

��
f2

��

h ,2 Eqpgq

g1

��
g2

��
A

f

����

h ,2,2

LR

C

g

����

LR

B
k

,2,2 D,

where the bottom square gh “ kf is a pushout of regular epimorphisms and f is a
trivial extension is a regular pushout. Consequently, the comparison morphism h
is also a regular epimorphism.

Proof. By Proposition 5.4 and Theorem 5.5 in [14] it su�ces to prove that Eqphq
and Eqpfq permute to show that the bottom square is a regular pushout. The
equality EqphqEqpfq “ EqpfqEqphq can be proved with an argument which is
completely analogous to the one used in the proof of Theorem 3.9 in [9]. �

We recall that kernel pairs in PtpCq are computed objectwise: if pg, hq is a
morphism of points, then Eqppg, hqq “ pEqpgq,Eqphqq. Moreover, when C is regular,
a morphism pg, hq in PtpCq is a regular epimorphism if and only if both g and h are
regular epimorphisms in C.

Lemma 4.3. The functor Triv|PtpCq : PtpCq Ñ PtpCq preserves coequalisers of (ef-
fective) equivalence relations.

Proof. Consider the coequaliser diagram

Eqpgq
g2
,2

f2

��

g1 ,2
A1lr

f 1

��

g ,2,2 A

f

��
Eqphq

s2

LR

h2

,2
h1 ,2

B1

s1

LR

lr
h
,2,2 B

s

LR
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in PtpCq. Since I preserves all coequalisers, we obtain a re�exive graph in PtpXq
with its coequaliser

IpEqpgqq
Ipg2q

,2

��

Ipg1q ,2
IpA1qlr

��

Ipgq ,2,2 IpAq

��
IpEqphqq

LR

Iph2q

,2
Iph1q ,2

IpB1q

LR

lr
Iphq

,2,2 IpBq.

LR

The inclusion X Ñ C preserves regular epimorphisms (by assumption) and kernel
pairs, so this diagram is still a re�exive graph with its coequaliser when considered in
the category PtpCq. Indeed, if we take the (regular epimorphism, monomorphism)
factorisation of xIpg1q, Ipg2qy : IpEqpgqq Ñ IpA1q ˆ IpA1q in X, we get a re�exive
relation, say xe1, e2y : E Ñ IpA1qˆIpA1q, and the coequaliser of pe1, e2q is still Ipgq.
Since X is a Barr-exact Mal'tsev category, E is necessarily the kernel pair of its
coequaliser Ipgq, as mentioned above. Thus, the comparison IpEqpgqq Ñ EqpIpgqq
is a regular epimorphism, and similarly for IpEqphqq Ñ EqpIphqq.

Now we pull back along ηB , ηB1 , xIph1q, Iph2qy˝ηEqphq and ηEqphq to obtain the
diagram

EqpgqTriv
,2,2

�'

Trivpf2
q

��

P

�'

��

,2
,2 A
1
Triv

�'

,2,2

Trivpf 1
q

��

lr ATriv

Trivpfq

��

�'
IpEqpgqq ,2,2

Ipf2
q

��

EqpIpgqq

��

,2
,2 IpA

1q
Ipgq ,2,2

Ipf 1
q

��

lr IpAq

Ipfq

��

Eqphq

ηEqphq �'

LR

Eqphq

�'

LR

,2
,2 B
1 h ,2,2

η1
B �'

LR

lr B

ηB
�'

LR

IpEqphqq

LR

,2,2 EqpIphqq

LR

,2
,2 IpB

1q
Iphq

,2,2lr

LR

IpBq;

LR

we write P “ Eqphq ˆEqpIphqq EqpIpgqq to simplify notation. Since the front left
and right faces are regular pushouts (Proposition 3.2 in [6]), the dotted arrows are
regular epimorphisms by Lemma 4.1. Moreover, pullbacks preserve kernel pairs,
so that P must be the kernel pair of the regular epimorphism A1Triv Ñ ATriv.
Consequently, Trivpfq, being the coequaliser of its kernel pair, is also the coequaliser
of the re�exive graph Trivpf2q Ñ Trivpf 1q. �

Proposition 4.4. Consider a re�exive graph and its coequaliser in PtpCq

R ,2

f2

��

,2
A1lr

f 1

��

g ,2,2 A

f

��
S

s2

LR

,2
,2
B1

s1

LR

lr
h
,2,2 B,

s

LR

where f2 and f 1 are split epimorphic trivial extensions. Then f is also a split
epimorphic trivial extension.

Proof. We �rst consider the situation where R “ Eqpgq and S “ Eqphq are the
kernel pairs of g and h, respectively. By assumption, f is the coequaliser of its
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kernel pair

Eqpgq ,2

f2

��

,2
A1lr

f 1

��

g ,2,2 A

f

��

– ,2 ATriv

Trivpfq
x�

Eqphq

s2

LR

,2
,2
B1

s1

LR

lr
h
,2,2 B.

s

LR

But, applying Lemma 4.3, we conclude that Trivpfq is also its coequaliser, since
Trivpf 1q “ f 1 and Trivpf2q “ f2. Thus Trivpfq and f are isomorphic, which proves
that f is a trivial extension.

Now we prove that the above assumption can be made without any loss of
generality. Consider the diagram

R
ρ ,2

f2

��

ηR

�'

P
p2

,2

�'

��

p1 ,2
A1

ηA1

�'

lr

f 1

��

g ,2,2 A
ηA

�'
f

��

IpRq
γ ,2,2

Ipf2
q

��

EqpIpgqq ,2

��

,2
IpA1qlr

Ipf 1
q

��

Ipgq ,2,2 IpAq

Ipfq

��

S

ηS
�'

s2

LR

,2 Eqphq

�'

LR

,2
,2
B1

ηB1

�'

s1

LR

lr h ,2,2 B

ηB
�'

s

LR

IpSq ,2,2

LR

EqpIphqq

LR

,2
,2
IpB1q

LR

lr
Iphq

,2,2 IpBq,

LR

where P “ Eqphq ˆEqpIphqq EqpIpgqq. We shall prove that P is precisely the ker-
nel pair of g, so that the induced split epimorphism Eqpgq Ñ Eqphq is a trivial
extension, being a pullback of a �bration in X (Proposition 2.5).

For P to be the kernel pair of g, we just need to show that g˝p1 “ g˝p2, since
the rest of the proof is straightforward. As in the previous proof, the comparison
morphisms IpRq Ñ EqpIpgqq and IpSq Ñ EqpIphqq are regular epimorphisms, so
that the front left square of the diagram above is a regular pushout (Proposition 3.2
in [6]). Consequently, the comparison morphism

xIpf2q, γy : IpRq Ñ IpSq ˆEqpIphqq EqpIpgqq

is a regular epimorphism and so is the comparison morphism xf2, ρy in

R
ρ ,2

xf2,ρy
#+#+

f2

��

P

��

S ˆEqphq P

x�

pP

18

S ,2

LR

8C

Eqphq,

t

LR

as a pullback of xIpf2q, γy. The split epimorphism EqpIpgqq Ô EqpIphqq belongs
to S by Proposition 3.5, and so does the split epimorphism P Ô Eqphq by the
assumption of stability under pullbacks. Since C is an S -protomodular category,
the pair ppP , tq is jointly strongly epimorphic, thus jointly epimorphic (Remark 3.2).
Then, the pair pρ, tq is jointly epimorphic, so we get g˝p1 “ g˝p2. This �nishes the
proof. �

We have the following partial converse of Proposition 4.4.
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Proposition 4.5. Consider a morphism of points and its kernel pair in PtpCq

Eqpgq
g2
,2

f2

��

g1 ,2
A1lr

f 1

��

g ,2 A

f

��
Eqphq

s2

LR

h2

,2
h1 ,2

B1

s1

LR

lr
h
,2 B

s

LR

where f and f 1 are split epimorphic trivial extensions. Then f2 is also a split
epimorphic trivial extension.

Proof. This follows from the �nite limit closure in the de�nition of S -protomodul-
arity (De�nition 3.1). �

Since the class S we are considering is the class of split epimorphic trivial exten-
sions, then the S -special regular epimorphisms are precisely the normal extensions
with respect to the Galois structure Γ (De�nition 2.3). We are now ready to prove
that condition (G7´) holds.

Proposition 4.6. The category of S -special regular epimorphisms is closed in
ArrpCq under coequalisers of re�exive graphs, when they are of the type considered
in condition (G7´).

Proof. Consider a re�exive graph of regular epimorphisms and its coequaliser in C
as in the solid part of the diagram in Figure 2. Assume that S is an equivalence
relation, so that S “ Eqphq. We prove that, if f2 and f 1 are S -special regular
epimorphisms, then also f is an S -special regular epimorphism.

Eqpf2q

�� ��

,2
,2
Rlr

��

f2

,2,2

��

Eqphq

�� ��
Eqpf 1q

LR

g

��

,2
,2
A1lr

LR

f 1

,2,2

g

����

B1

LR

h

����
Eqpfq ,2

,2
Alr

f
,2,2 B

Figure 2. Closedness of S -special regular epimorphisms under
coequalisers of certain re�exive graphs

Taking kernel pairs to the left, we want to use Proposition 4.4 together with the
fact that S -special regular epimorphisms are precisely normal extensions to show
that the kernel pair projections of f are trivial extensions. For this argument to
be valid, we need to show that: (1) g is a regular epimorphism; and (2) it is the
coequaliser of the pair of vertical arrows Eqpf2q Ñ Eqpf 1q.



12 ANDREA MONTOLI, DIANA RODELO, AND TIM VAN DER LINDEN

We may deduce (1) that g is a regular epimorphism from the fact that the
coequaliser of Eqpf2q Ñ Eqpf 1q

Eqpf2q
,2
,2

����

R

����

lr

Eqpf 1q
f 1
1 ,2

f 1
2

,2

����

LR

A1

g

����

lr

LR

Q
d ,2

c
,2 Alr

is an internal groupoid on A. Indeed, by Proposition 4.4, it is an S -re�exive graph
since d is a split epimorphic trivial extension. Thanks to Proposition 7.5 in [12] (and
to its extension to the non-pointed context, see Proposition 4.9 in [8]), it su�ces
then to show that the kernel pairs Eqpdq and Eqpcq centralise each other. The
kernel pairs Eqpf 11q and Eqpf 12q centralise each other, since Eqpf 1q is an equivalence
relation. By Lemma 4.2, Eqpdq (resp. Eqpcq) is the regular image of Eqpf 11q (resp.
Eqpf 12q), so that Eqpdq and Eqpcq centralise each other too (Proposition 1.6.4 in [2]).
Hence the regular image of this internal groupoid is an equivalence relation, so a
kernel pair, with coequalizer f , which makes it isomorphic to Eqpfq.

Observe that, in the proof of (1), we do not need S to be an equivalence relation.
For the proof of (2), write f3 : Eqpgq Ñ Eqphq for the kernel pair of pg, hq. Taking

kernel pairs to the left, we obtain the kernel pair projections Eqpf3q Ñ Eqpgq. Note
that Eqpf3q is actually the kernel pair of g by interchange of limits. We claim that
the comparison RÑ Eqpgq is a regular epimorphism. Hence, by pullback, so is the
comparison Eqpf2q Ñ Eqpf3q, which �nishes the proof of (2).

We are left with proving our claim that R Ñ Eqpgq is a regular epimorph-
ism. We do so by showing that there is a quotient R1 of R which is a groupoid,
so that the �image� of the re�exive graph R is an (e�ective) equivalence relation
(namely Eqpgq). The groupoid R1 is obtained as a pullback of groupoids like in the
diagram

R
ρ ,2

f2

����

ηR

�'

R1
p2

,2

�'

����

p1 ,2
A1

ηA1

�'

lr

f 1

����

IpRq ,2,2

Ipf2
q

����

GrdpIpRqq ,2

����

,2
IpA1qlr

Ipf 1
q

����

Eqphq

ηS �'

Eqphq

�'

,2
,2
B1

ηB1

�'

lr

IpSq ,2,2 GrdpIpSqq ,2
,2
IpB1qlr

where GrdpIpRqq and GrdpIpSqq are the groupoids associated with the re�exive
graphs IpRq and IpSq, respectively. Since X is a Barr-exact Mal'tsev category, the
re�ection of re�exive graphs to groupoids is Birkho� (Corollary 3.15 in [33] com-
bined with Theorem 3.1 in [18]), so that (keeping Theorem 5.7 in [14] in mind) the
front left square is a regular pushout. The morphism ρ is now a regular epimorphism
by Lemma 4.1. �



REFLECTIVENESS OF NORMAL EXTENSIONS 13

Corollary 4.7. The category of S -special regular epimorphisms in C is closed in
ArrpCq under coequalisers of equivalence relations. �

Theorem 2.12 now implies the main result of this section.

Theorem 4.8. S -special regular epimorphisms are re�ective amongst regular epi-
morphisms. �

We conclude this section by observing that the criterion for re�ectiveness of nor-
mal extensions given by Theorem 4.2 in [24] cannot be applied to obtain the theorem
above in our general framework, since we are not supposing that the category C
admits the colimits that are needed to apply that theorem.

5. Examples

In this section we describe some concrete examples of the general framework
developed in the previous one.

5.1. Monoids and groups. The �rst example we consider is the following: C “
Mon is the category of monoids, and X “ Gp is the subcategory of groups. The
re�ection Gp: Mon Ñ Gp is given by the Grothendieck group (or group com-
pletion) [25, 26, 27]: given a monoid pM, ¨, 1q, its group completion GppMq is
de�ned by

GppMq “
GpFpMq

NpMq
,

where GpFpMq denotes the free group on M and NpMq is the normal subgroup
generated by elements of the form rm1srm2srm1 ¨m2s

´1. By choosing the classes of
morphisms E and F to be the surjections in Mon and Gp, respectively, we obtain
a Galois structure

ΓMon “ pMon,Gp,Gp,Mon, η, ε,E ,F q,

where Mon is just the inclusion functor from Gp to Mon. This Galois structure was
studied in [31], where it was shown to be admissible (Theorem 2.2 there). Moreover,
trivial, normal and central extensions were characterised for this Galois structure.
Let us brie�y recall what they are.

De�nition 5.2 ([11], De�nition 2.1.1). Let f be a split epimorphism of monoids,
with a chosen splitting S , and N its (canonical) kernel

N � ,2
k
,2 A

f
,2 B.

slr

The split epimorphism pf, sq is said to be right homogeneous when, for every
element b P B, the function µb : N Ñ f´1pbq de�ned through multiplication on
the right by spbq, so µbpnq “ n spbq, is bijective. Similarly, we can de�ne a left
homogeneous split epimorphism: the function N Ñ f´1pbq : n ÞÑ spbqn is a
bijection for all b P B. A split epimorphism is said to be homogeneous when it is
both right and left homogeneous.

As observed in [11], Proposition 2.1.3, a split epimorphism is right homogeneous
if and only if it is a Schreier split epimorphism (De�nition 3.4).

De�nition 5.3 ([11], De�nition 7.1.1). Given a surjective homomorphism g of
monoids and its kernel pair

Eqpgq
π1 ,2

π2

,2 A∆lr
g ,2,2 B,

the morphism g is called a special homogeneous surjection when pπ1,∆q (or,
equivalently, pπ2,∆q) is a homogeneous split epimorphism.
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Proposition 5.4 ([31], Proposition 4.2). For a split epimorphism f of monoids,
the following statements are equivalent:

(i) f is a trivial extension;
(ii) f is a special homogeneous surjection. �

Theorem 5.5 ([31], Theorem 4.4). For a surjective homomorphism g of monoids,
the following statements are equivalent:

(i) g is a central extension;
(ii) g is a normal extension;
(iii) g is a special homogeneous surjection. �

Special homogeneous split epimorphisms are, in particular, Schreier split epi-
morphisms, hence strong points ([11], Lemma 2.1.6). Moreover, they are stable
under pullbacks ([11], Proposition 7.1.4). So, Mon is an S -protomodular category
with respect to the class S of special homogeneous split epimorphisms, which are
precisely the split epimorphic trivial extensions of the Galois structure ΓMon we
are considering. All the other conditions we assumed in Section 4 are clearly satis-
�ed by ΓMon. As a consequence of Theorem 4.8, we see that special homogeneous
surjections are re�ective amongst surjective monoid homomorphisms. We observe
that this fact was already proved in [32], using Theorem 4.2 in [24] (although, as we
already mentioned, the same theorem cannot be applied to the general framework
of Section 4).

5.6. Semirings and rings. The second example we consider is of a similar nature.
Now C “ SRng is the category of semirings, and X “ Rng is the re�ective subcat-
egory of rings. In order to describe the re�ection, we �rst restrict the group com-
pletion functor to commutative monoids. This restriction has a simpler description
which we now recall. If pM,`, 0q is a commutative monoid, then its group com-
pletion GppMq can be described as the quotient M ˆM{„, where pm,nq „ pp, qq
when there exists k P m such that

m` q ` k “ n` p` k.

Now let pM,`, ¨, 0q be a semiring; we can de�ne a product in GppMq in the following
way:

rpm,nqs ¨ rpm1, n1qs “ rpm ¨m1 ` n ¨ n1,m ¨ n1 ` n ¨m1qs.

It is easy to check that this de�nition does not depend on the choice of the rep-
resentative for the class in GppMq, and that it turns GppMq into a ring. Hence it
gives the desired re�ection Rng: SRngÑ Rng.

Via a simpli�ed version of the arguments used in [31] for the Galois structure
between Mon and Gp, it is not di�cult to see that the re�ection of the adjunc-
tion between SRng and Rng is admissible with respect to the classes of surjective
homomorphisms both in SRng and in Rng. Hence we get an admissible Galois
structure. Once again, the split epimorphic trivial extensions are precisely the spe-
cial homogeneous split epimorphisms, while the normal (= central) extensions are
the special homogeneous surjections; the proofs easily follow from those of Proposi-
tion 5.4 and Theorem 5.5. Proposition 6.7.2 in [11] implies that a split epimorphism
pf : AÑ B, s : B Ñ Aq in SRng is special homogeneous if and only if the kernel N
of f is a ring and A is isomorphic to a semidirect product of B and N . (Observe
that every Schreier split epimorphism of semirings is homogeneous, because the
additive monoid structure is commutative.) This implies, in particular, that A, as
a monoid, is the cartesian product of B and N .

It is easy to see that all the conditions of Section 4 are satis�ed by this Galois
structure. Hence Theorem 4.8 implies, like for the case of monoids and groups,
that special homogeneous surjections of semirings are re�ective amongst surjective
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homomorphisms. (Once again, we could also conclude this by applying Theorem 4.2
in [24].)

6. The additive core of a unital category

This section is devoted to the description of a general example of the situation
considered in Section 4. This example is of a rather di�erent nature from the ones
of the previous section, so that Theorem 4.2 of [24] does not apply.

We start by recalling from [5] that a pointed �nitely complete category C is
unital when, for every pair of objects pA,Bq of C, the morphisms x1A, 0A,By and
x0B,A, 1By in the product diagram

A
x1A,0A,By

,2 AˆB
pAlr pB ,2 B

x0B,A,1By
lr

are jointly strongly epimorphic.
Examples of unital categories are all Jónsson-Tarski varieties (Example 3.3).

Actually, as shown in [2, Theorem 1.2.15], a variety of universal algebras is a unital
category precisely when it is a Jónsson-Tarski variety.

An object X in a unital category C is called abelian when it carries an in-
ternal abelian group structure (which is necessarily unique, as a consequence of
Theorem 1.4.5 in [2]). The full subcategory of C determined by the abelian objects
is denoted AbpCq and called the additive core of C. The category AbpCq is indeed
additive (by Corollary 1.10.13 in [2]), hence it is protomodular (by Example 3.1.13
in [2]). If C is a �nitely cocomplete regular unital category, then AbpCq is really a
core, since it is a re�ective subcategory of C by Propositions 1.7.5 and 1.7.6 of [2]

C

Ab ,2
K AbpCq;
Ą
lr

the unit is denoted by ηAb. Since AbpCq is closed in C under regular epimorph-
isms [2, Proposition 1.6.11], this adjunction gives a Galois structure with respect
to the regular epimorphisms in C and in AbpCq; we denote it by ΓAb.

We now assume C to be a �nitely cocomplete Barr-exact unital category. We
can then show that the Galois structure ΓAb satis�es all the conditions of Section 4.
First of all, AbpCq is also Barr-exact [1, Theorem 5.11]. The additive core AbpCq
is then an abelian category, called the abelian core of C. Next, we shall prove
that C is an S -protomodular category, where S is the class of split epimorphic
trivial extensions. In fact, the split epimorphic trivial extensions for the Galois
structure ΓAb have an easy description: see Proposition 6.2.

Lemma 6.1. If B is an object and N an abelian object of C then

AbpN ˆBq – N ˆAbpBq.

Proof. There is a comparison morphism

λ : AbpN ˆBq Ñ N ˆAbpBq

such that λ˝ηAb
NˆB “ 1N ˆ η

Ab
B . We use the fact that binary products coincide with

binary coproducts in AbpCq and consider the morphism

ξ “
v

ηAb
NˆB˝x1N , 0N,By Abpx0B,N , 1Byq

w

: N ‘AbpBq Ñ AbpN ˆBq.

Note that for the coproduct inclusions iN and iAbpBq of N ‘AbpBq, we have iN “
x1N , 0N,AbpBqy and iAbpBq “ x0AbpBq,N , 1AbpBqy. Then

λ˝ξ˝iN “ λ˝ηAb
NˆB˝x1N , 0N,By “ p1N ˆ η

Ab
B q˝x1N , 0N,By “ x1N , 0N,AbpBqy “ iN
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and

λ˝ξ˝iAbpBq˝η
Ab
B “ λ˝Abpx0B,N , 1Byq˝η

Ab
B “ λ˝ηAb

NˆB˝x0B,N , 1By

“ p1N ˆ η
Ab
B q˝x0B,N , 1By “ x0B,N , η

Ab
B y

“ x0AbpBq,N , 1AbpBqy˝η
Ab
B “ iAbpBq˝η

Ab
B .

The universal property of the unit ηAb gives λ˝ξ˝iAbpBq “ iAbpBq, so that λ˝ξ “
1N‘AbpBq.

On the other hand, the equalities

ξ˝p1N ˆ η
Ab
B q˝x1N , 0N,By “ ξ˝x1N , 0N,AbpBqy “ ξ˝iN “ ηAb

NˆB˝x1N , 0N,By

and

ξ˝p1N ˆ η
Ab
B q˝x0B,N , 1By “ ξ˝x0B,N , η

Ab
B y “ ξ˝x0AbpBq,N , 1AbpBqy˝η

Ab
B

“ ξ˝iAbpBq˝η
Ab
B “ Abpx0B,N , 1AbpBqyq˝η

Ab
B

“ ηAb
NˆB˝x0B,N , 1By

show that ξ˝p1N ˆ ηAb
B q “ ηAb

NˆB since x1N , 0N,By and x0B,N , 1By are jointly epi-
morphic, C being a unital category. Finally, from

ξ˝λ˝ηAb
NˆB “ ξ˝p1N ˆ η

Ab
B q “ ηAb

NˆB

we conclude that ξ˝λ “ 1AbpNˆBq by the universal property of the unit ηAb. �

Proposition 6.2. Let C be a �nitely cocomplete Barr-exact unital category. A split
epimorphism f : AÑ B with splitting s : B Ñ A in C is a trivial extension with
respect to ΓAb if and only if the following two conditions hold:

(1) pf, sq is isomorphic, as a point, to a product

ppB : N ˆB Ñ B, x0B,N , 1By : B Ñ N ˆBq;

(2) the kernel N of f is abelian.

Proof. Let pf, sq be a split epimorphic trivial extension. Then the square

A
ηAb
A ,2

f

��

AbpAq

Abpfq

��
B

LR

ηAb
B

,2 AbpBq

LR

is a pullback. So the kernel N of f is also the kernel of Abpfq, and is therefore
abelian. Moreover, a split epimorphism in AbpCq is a product projection and,
consequently, pf, sq is isomorphic to ppB , x0B,N , 1Byq.

Conversely, we must show that any product projection ppB , x0, 1Byq, where N is
abelian, is a trivial extension. To do so it su�ces to show that

AbpN ˆBq – N ˆAbpBq,

so that ηNˆB – 1N ˆ ηb. This is precisely Lemma 6.1. �

Thanks to this characterisation, we have that C is S -protomodular with respect
to the class of split epimorphic trivial extensions. This follows easily from the
fact that a pointed �nitely complete category C is unital if and only if it is S -
protomodular with respect to the class S of points of the form ppB , x0B,N , 1Byq�an
observation which is due to Sandra Mantovani.

The last condition of Section 4 we must show to hold concerns the admissibility
of the Galois structure ΓAb.
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Theorem 6.3. Let C be a �nitely cocomplete Barr-exact unital category. The
Galois structure ΓAb is admissible.

Proof. Combining Theorem 4.3 in [15] with both De�nition 5.5.3 and Proposi-
tion 5.5.5 in [3], we see that the Galois structure ΓAb is admissible if and only if
every pullback

X

f

����

a ,2 A

g

����
Y

b
,2 B

with g a regular epimorphism in AbpCq is preserved by the re�ector Ab.
We �rst begin by supposing that g is a split epimorphism, hence a product

projection. Then, being its pullback, so is the split epimorphism f . Furthermore,
the morphism a in the pullback is of the form 1NˆB : N ˆ Y Ñ N ˆB with N
abelian, and it follows from Lemma 6.1 that Ab preserves such a pullback.

For the general case, we consider the diagram

Eqpfq

����

ηAb
Eqpfq ,2 AbpEqpfqq

����

,2 Eqpgq

����
X

LR

ηAb
X ,2

f

����

AbpXq

Abpfq

����

LR

,2 A

LR

g

����
Y

ηAb
Y

,2 AbpY q ,2 B.

The top rectangle �ts into the previous case, so we can conclude that both top
squares are pullbacks. As mentioned in Section 4, the comparison morphism
AbpEqpfqq Ñ EqpAbpfqq is a regular epimorphism. Since the top right square above
is a discrete �bration, this comparison morphism is also a (split) monomorphism,
thus an isomorphism. By applying a well-known result for regular categories�
called the �Barr-Kock Theorem� in [10]; see Theorem 2.17 there, or 6.10 in [1]�to
the right hand side diagram, we conclude that the bottom right square is a pull-
back. �

We may conclude that all the conditions of Section 4 are satis�ed. Hence The-
orem 4.8 gives the following

Theorem 6.4. Let C be a �nitely cocomplete Barr-exact unital category, and AbpCq
its abelian core. Then normal extensions with respect to the induced Galois structure
ΓAb are re�ective amongst regular epimorphisms. �

6.5. Monoids versus abelian groups. We describe the normal extensions with
respect to ΓAb in the particular case when C is the category of monoids, so that
AbpCq is the category of abelian groups. Our description is similar to that of
Theorem 5.5 concerning the Galois structure ΓMon of Section 5. However, now we
must add a commutativity condition. So, we need to recall the following.

De�nition 6.6 ([19]). Two subobjects x : X Ñ Z and y : Y Ñ Z of Z in a �nitely
complete unital category C are said to commute if there exists a (necessarily
unique) morphism ϕ : X ˆ Y Ñ Z, called the cooperator of x and y, such that
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both triangles in the diagram

X
x1X ,0y ,2
�'

x
�'

X ˆ Y

ϕ

��

Y
x0,1Y ylr

w�

y
w�

Z

are commutative.

When two subobjects X and Y of Z commute we write rX,Y s “ 0. In the
category of monoids, two submonoids commute if and only if every element of the
�rst commutes, in the usual sense, with every element of the second.

Proposition 6.7. A surjective homomorphism of monoids f : AÑ B, with kernel
k : N Ñ A, is a normal extension with respect to the Galois structure ΓAb if and
only if it is a special homogeneous surjection and rN,As “ 0.

Proof. By de�nition, f is a normal extension if and only if the split epimorphism
pπ1 : Eqpfq Ñ A,∆: A Ñ Eqpfqq is a trivial extension. By Proposition 6.2, this
happens if and only if N is an abelian group and there exist isomorphisms α and β
of split extensions as in the diagram

N
x1N ,0y ,2 N ˆA

pA
,2

α

��

A
x0,1Aylr

N
x0,ky

,2 Eqpfq
π1

,2

β

LR

A.
∆lr

Via Proposition 6.2, it is easily seen that any split epimorphic trivial extension is a
special homogeneous surjection. Then, if the surjection f is a normal extension, its
kernel pair projection π1 is a special homogeneous surjection, and hence f also is,
thanks to Proposition 7.1.5 in [11]. Moreover, rN,As “ 0. Indeed, the cooperator
ϕ : N ˆAÑ A is given by ϕ “ π2˝α. Let us check that it is actually a cooperator:

ϕ˝x1N , 0y “ π2˝α˝x1N , 0y “ π2˝x0, ky “ k,

and

ϕ˝x0, 1Ay “ π2˝α˝x0, 1Ay “ π2˝∆ “ 1A.

Conversely, suppose that f is special homogeneous and rN,As “ 0. The fact
that rN,As “ 0 de�nes a morphism α : N ˆ A Ñ Eqpfq given by αpx, aq “
pa, xaq. Let us now describe its inverse. Since f is special homogeneous, the point
pπ1 : Eqpfq Ñ A,∆: AÑ Eqpfqq is a special homogeneous split epimorphism. Us-
ing right homogeneity, we have that for every pa1, a2q P Eqpfq there exists a unique
element qpa1, a2q P N such that

pa1, a2q “ p1, qpa1, a2qqpa1, a1q “ pa1, qpa1, a2qa1q.

We de�ne a map β : Eqpfq Ñ N ˆ A by putting βpa1, a2q “ pqpa1, a2q, a1q. It is
indeed the inverse of α, because

α˝βpa1, a2q “ αpqpa1, a2q, a1q “ pa1, qpa1, a2qa1q “ pa1, a2q

and

β˝αpx, aq “ βpa, xaq “ pqpa, xaq, aq “ pqpx0, kypxq∆paqq, aq “ px, aq,

where the last equality follows from Proposition 2.1.4 in [11]. Then α is an iso-
morphism. It clearly is a morphism of split extensions, and this concludes the
proof. �
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We end with a proof that, also in the case of monoids and abelian groups, normal
and central extensions coincide.

Proposition 6.8. A surjective monoid homomorphism is a normal extension if
and only if it is a central extension.

Proof. Since every normal extension is central, we only have to prove that central
extensions are normal. Let f : A Ñ B be a central extension. Then there exists a
surjective morphism p : E Ñ B such that the morphism f in the pullback diagram

N

x0,ky

��

N

k
��

P
p ,2,2

f
����

A

f

����
E

p
,2,2 B

is a trivial extension. Being a trivial (and hence normal) extension, f is a special
homogeneous surjection, and so f is, thanks to Proposition 7.1.5 in [11]. Moreover,
rN,P s “ 0. Hence, for all x P N and all pe, aq P P , we have

p1, xqpe, aq “ pe, aqp1, xq.

Since p is surjective, this implies that ax “ xa for all x P N and all a P A, and
hence rN,As “ 0. This proves that f is a normal extension by Proposition 6.7. �
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