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Abstract

We investigate a Galois connection in poset enriched categories between subcate-
gories and classes of morphisms, given by means of the concept of right-Kan injectiv-
ity, and, specially, we study its relationship with a certain kind of subcategories, the
KZ-reflective subcategories. A number of well-known properties concerning orthogo-
nality and full reflectivity can be seen as a particular case of the ones of right-Kan
injectivity and KZ-reflectivity. On the other hand, many examples of injectivity in
poset enriched categories encountered in the literature are closely related to the above
connection. We give several examples and show that some known subcategories of the
category of T0-topological spaces are right-Kan injective hulls of a finite subcategory.

1 Introduction

In the realm of poset enriched categories there are several studies on injectivity (in partic-
ular, in the category of T0 topological spaces and in the category of locales) and, dually, on
projectivity (as, for example, in the categoy of frames and in the category of quantales).
Some of that work can be found in [?, ?, 3, 4, 5, 6, 9, 10, 11, ?, ?] and in references there. In
this paper we deal with a special type of injectivity, which, in fact, is associated with many
of the injectivity occurrences investigated in the above mentioned literature: the right-Kan
injectivity. In a poset enriched category, an object Z is said to be right-Kan injective with
respect to a morphism f : X → Y if, for every g : X → Z, there is a morphism g/f : Y → Z
such that g/f ·f = g and g/f is the supremum of all morphisms t : Y → Z such that tf ≤ g.
In a series of papers, Escardó, also with Flagg, observed that several injectivity situations
are instances of a general pattern: in a poset enriched category, the objects injective with
respect to T -embeddings, for T a KZ-monad over the category, are just the T -algebras
of the monad. More precisely, a monad T = (T, η, µ) over a poset enriched category X
is said to be of Kock-Zöberlein type, briefly, a KZ-monad, if T is locally monotone, i.e.,
the restriction of T to every hom-set is order-preserving, and ηTX ≤ TηX for every object
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X. (Indeed, this is a particular case of a Kock-Zöberlein doctrine, see [?].) A morphism
f : X → Y of X is called a T -embedding if Tf has a reflective left-adjoint, that is, there
exists (Tf)∗ : TY → TX such that (TF )∗ · Tf = 1TX and 1TY ≤ Tf · (Tf)∗. In [4] it
is shown that the Eilenberg-Moore algebras of a KZ-monad T coincide with the objects
of X injective w.r.t. T -embeddings, and, moreover, they are also precisely the objects of
X right-Kan injective w.r.t. T -embeddings. It is clear that the category of the Eilenberg-
Moore algebras of a KZ-monad over X is a reflective subcategory of X whose reflector F
is locally monotone and fulfils the inequalities ηFX ≤ FηX for η the corresponding unit. In
the present paper, the subcategories of X endowed with a reflector with these properties
are called KZ-reflective.

Here we consider the notion of right-Kan injectivity between morphisms too: a morphism
k : Z → W is right-Kan injective w.r.t. f : X → Y if Z and W are so and, moreover,
k(g/f) = (kg)/f for all morphisms g : X → Z. In this way, the objects and morphisms
which are right-Kan injective w.r.t. a given subclass H of Mor(X ) constitute a subcategory
of X , denoted by H , and we obtain a Galois connection between classes of morphisms and
subcategories. When X is an arbitrary category seen as an enriched poset category via the
equality partial order, right-Kan injectivity just means orthogonality, and a subcategory is
KZ-reflective iff it is reflective and full. There are many papers exploring the relationship
between orthogonality and full reflectivity (see, for instance, [8] and [1], and references
there, and also [?]). We show that right-Kan injectivity mantains the good behaviour of
orthogonality. Particularly, this is clear in what concerns limits. In fact, let a limit cone

( L
li // Xi )i∈I be said jointly order-monic provided that the inequalities lif ≤ lig, i ∈ I,

imply that f ≤ g. It is worth noting that in several everyday poset enriched categories
all limits are jointly order-monic (see 2.8). We prove that every subcategory of the form
H , for H a class of morphisms, is closed under jointly order-monic limits, and every
KZ-reflective subcategory closed under coreflective right adjoints (see 2.11) is of that form,
hence, closed under those limits. Moreover, the categories of Eilenberg-Moore of a KZ-
monad over X coincide with the KZ-reflective subcategories of X closed under coreflective
right adjoints. As a byproduct, we complete Escardó’s result on the relationship between
T -algebras and T -embeddings: Let A be the Eilenberg-Moore category of a KZ-monad T ;
we show that the class E of T -embeddings is the largest one such that A = E .

A characterization of the KZ-reflective subcategories in a poset enriched category X ,
which is very useful to achieve some of the results of this paper, is given in 3.4: they
are exactly those subcategories A of X such that, for every X ∈ X , there is a morphism
ηX : X → X with X in A satisfying the conditions:

(i) A ⊆ {ηX |X ∈ X} and, for every morphism g : X → A with A ∈ A, g/ηX belongs
to A;

(ii) for every f : X → A in A and g : X → A in X , if gηX ≤ fηX then g ≤ f .

In the last section, we show that some KZ-reflective subcategories of the category Top0
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of T0-topological spaces and continuous maps are right-Kan injective hulls of finite subcat-
egories. This is the case of the category of continuous lattices and maps which preserve
directed supremums and infimums, and of the category of continuous Scott domains and
maps which preserve directed supremums and non empty infimums, both of them regarded
as subcategories of Top0 via the Scott topology. It is also the case of the category of stably
compact spaces and stable continuous maps.

2 Right-Kan injectivity

Throughout we work in a poset enriched category X : the hom sets of X are endowed with
a partial order for which the composition is monotone, i.e., if f, g : A→ B are morphisms
such that f ≤ g then jfh ≤ jgh whenever the compositions are defined. Of course, the
category Pos of posets and monotone maps, as well as several subcategories of Pos, in
particular the category Frm of frames and frame homomorphisms, are poset enriched via
the pointwise order. Also the category Top0 of T0 topological spaces and continuous maps
is so: take the pointwise specialization order.

In a poset enriched category, a morphism r : X → Y is said to be right adjoint to the
morphism l : Y → X (and l is said to be left adjoint to r) if lr ≤ 1X and 1Y ≤ rl. This
forms an adjunction, denoted by l a r. This adjunction is said to be reflective if lr = 1X
(notation: l aR r), and coreflective if 1Y = rl (notation: l aC r).

Definition 2.1. Given a morphism X
f→ Y and an object A, we say that A is right-Kan

injective w.r.t. f , symbolically A f , provided that, for every morphism g : X → A, there
exists g′ : Y → A such that:

1. g′f = g

2. tf ≤ g =⇒ t ≤ g′, for each morphism t : Y → A

When such morphism g′ exists, we denote it by g/f .

A morphism h : A → B is said to be right-Kan injective w.r.t. f : X → Y , briefly
h f , if A and B are both right-Kan injective w.r.t. f and, for every g : X → A, we have

(hg)/f = h(g/f).

Remark 2.2. Recall that an object A is injective w.r.t. a morphism f (respectively,
orthogonal to f) if the map hom(f, A) : hom(Y,A)→ hom(X,A) is surjective (respectively,
bijective). We have the following properties:

1. An object A is right-Kan injective w.r.t. a morphism f : X → Y iff A is injective
w.r.t. f and every morphism g : X → A admits a right Kan extension along the
morphism f (that is, there is g′ : Y → A such that g′f ≤ g and g′ fulfils condition 2
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of 2.1). To show the sufficiency, let ḡ : Y → A be such that ḡf = g and let g′ : Y → A
be the right Kan extension of g along f . Then ḡ ≤ g′, so g = ḡf ≤ g′f ; since g′f ≤ g,
we get g′f = g. Consequently, g′ = g/f .

2. Another equivalent way of defining the right-Kan injectivity of an object A w.r.t.
a morphism f : X → Y is the following: A f iff hom(f, A) has a reflective
right adjoint (hom(f, A))∗ in Pos. Furthermore, if it is the case, it holds that
(hom(f, A))∗(g) = g/f for every g : X → A. To see that, let A f , and define
(hom(f, A))∗ : hom(X,A) → hom(Y,A) in that way. Then, it is order-preserving,
since, for g, g′ ∈ hom(X,A), with g ≤ g′, we have that g = g/f ·f ≤ g′ implies, by def-
inition of g′/f , that g/f ≤ g′/f . Now, on one hand, for every k ∈ hom(Y,A), we have
that (hom(f, A))∗ · hom(f, A)(k) = (hom(f, A))∗(kf) = (kf)/f ≥ k = idhom(Y,A)

(k),

where the inequality derives from 2 of Definition 2.1. On the other hand, for every
g ∈ hom(X,A), we get hom(f, A) · (hom(f, A))∗(g) = hom(f, A)(g/f) = (g/f) · f =
g = idhom(X,A)

(g). Therefore hom(f, A) `R (hom(f, A))∗. Conversely, suppose that

hom(f, A) has a reflective right adjoint (hom(f, A))∗. Then, for every g : X → A,
we have that (hom(f, A))∗(g) · f = hom(f, A)((hom(f, A))∗(g)) = g. And, given
k : Y → A such that kf ≤ g, we obtain kf ≤ g ⇔ hom(f, A)(k) ≤ g ⇒
(hom(f, A))∗ · hom(f, A)(k) ≤ (hom(f, A))∗(g) ⇒ k ≤ (hom(f, A))∗(g). Hence
(hom(f, A))∗(g) = g/f .

3. It is immediate from Definition 2.1 that if X is an arbitrary category, regarded as
being enriched with the trivial ordering (i.e., equality), an object A is orthogonal to
a morphism f iff it is right-Kan injective w.r.t. f .

4. Let H be a class of morphisms of X , and let C consist of all objects and morphisms
of X which are right-Kan injective w.r.t. f for all f ∈ H. Then it is easy to see that
C is a subcategory of X .

Notations 2.3. Let H ⊆ Mor(X ). We will denote by

H

the subcategory of all objects and morphisms of X which are right-Kan injective w.r.t. f
for all f ∈ H.

Given a subcategory A of X , we denote by

A

the class of all morphisms f of X such that all objects and morphisms of A are right-Kan
injective w.r.t. f .

Remark 2.4. The pair of maps
(

( ) , ( )
)

establishes a (contra-variant) Galois con-

nection between the classes of X -morphisms and the subcategories of X .
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Remark 2.5. If all morphisms of H are epimorphisms then the subcategory H is full. In
fact, in that case, given objects A and B in H and an X -morphism f : A→ B, then, for
every h : X → Y ∈ H and g : X → A, we have that the equality ((fg)/h)h = fg = f(g/h)h
implies (fg)/h = f(g/h).

Examples 2.6. In Section 4 we will provide several examples of H and A . Here we
describe two simple ones.

1. Let X = {0} and Y = {0, 1} be ordered by the natural order, let h : X → Y be the
inclusion map, and letH consist of just h. Then, in the category Pos, the subcategory
H has, as objects, the posets A for which every upper set x ↑= {z ∈ A |x ≤ z}
has a supremum, and, as morphisms, the order-preserving maps f : A→ B such that
f(sup(x ↑)) = sup(f(x) ↑), for every x ∈ A. It is clear that all those objects A belong
toH : given a morphism g : X → A, the morphism g/h is defined by (g/h)(0) = g(0)
and (g/h)(1) = sup(g(0) ↑). The other way round, let A be a poset belonging to H ,
let x ∈ A, and define g : X → A by g(0) = x. Then g/h(1) = sup(x ↑). The
characterization of the morphisms of H is also easily verified.

2. Consider now Pos enriched with the pointwise dual order ≥. In this case, for the
morphism h as above, it is easy to see that H coincides with Pos, and, for each
morphism f with the same domain as h, f/h is a constant map.

In the next propositions we will enumerate some properties of H and A . First we
need some definitions.

Definition 2.7. We say that a family of morphisms

(
X

fi // Xi

)
i∈I

is jointly order-

monic if the inequalities fi · g ≤ fi · h, for all i ∈ I, imply g ≤ h.

Dually, a family

(
Xi

fi // X

)
i∈I

is jointly order-epic if g ≤ h whenever g · fi ≤ h · fi,

i ∈ I.

In particular, a morphism X
f→ Y is said to be order-monic (respectively, order-epic) if

fg ≤ fh implies g ≤ h (respectively, gf ≤ hf implies g ≤ h).
We say that a limit is jointly order-monic if the corresponding cone limit is so. Analo-

gously we speak of jointly order-epic colimits.

Examples 2.8. 1. In the category Pos a family of morphisms

(
X

fi // Xi

)
i∈I

is

jointly order-monic iff, for every x, x′ ∈ X, x ≤ x′ whenever fi(x) ≤ fi(x
′) for

all i. Thus, jointly order-monic families of morphisms are also jointly monic (i.e.,
fi(x) = fi(x

′) for all i implies that x = x′). Clearly, in this category, limits are jointly

order-monic. On the other hand, families of morphisms

(
Xi

fi // X

)
i∈I

which are
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jointly surjective (i.e., X = ∪i∈Ifi[Xi]) are also jointly order-epic, and, hence, they
comprehend colimit cocones.

Several everyday subcategories of Pos are closed under limits in Pos, including Frm,
and, then, they have also jointly order-monic limits.

2. Similarly, in Top0, enriched with the usual order (that is, with the pointwise spe-
cialization order), every initial family of morphisms – and, in particular, every limit
– is jointly order-monic, and, then, also jointly monic. As before, jointly surjective
families – and, in particular, colimits – are jointly order-epic.

3. Let SLat denote the category whose objects are meet-semilattices and whose mor-
phisms are maps preserving meets of finite sets (including the meet 1 of the empty
set). In this category, coequalizers are always surjective, then order-epic. On the
other hand, recall that the injections of the coproduct of a family of objects Ai, i ∈ I,

in SLat are given by Aj
γj // Π′i∈IAi , where Π′i∈IAi is the sub-meet-semilattice of

the product Πi∈IAi consisting of all elements (ai)i∈I such that ai 6= 1 only for a finite
number of i’s and γj(a) = (ai)i∈I with aj = a and ai = 1 for all i 6= j (see [10]). It is
easily seen that the family (γi)i∈I is jointly order-epic. Therefore, in SLat, colimits
are jointly order-epic.

4. In Frm, colimits are also jointly order-epic. For coequalizers it follows immediately,
since they are surjective. In order to show that also coproducts are jointly order-epic,
we recall briefly a description of them, whose details may be found, for instance, in
[?] (see also [10]). It is well-know that the inclusion functor of Frm into SLat is
a right adjoint and, for each object S of SLat, the universal morphism is given by

S
λS // D(S) , where D(S) is the set of the lower subsets of S with the inclusion

order, and λS(s) =↓ s for each s ∈ S. Moreover, as it is going to be shown in
the second example of Examples 3.5, this reflection is a KZ-reflection in the sense of
Definition 3.1; by Theorem 3.4, this implies that the universal morphism λS sastifies
the implication g · λS ≤ f · λS ⇒ f ≤ g for every pair of morphisms f, g : D(S)→ L
in Frm. The injections of the coproduct of a family of objects Ai, i ∈ I, in Frm, are
of the form

Aj
γj // Π′i∈IAi = S

λS // D(S) ν // D(S)/R

where the γj morphisms are the injections of the coproduct in SLat and ν is a certain
onto frame homomorphism. Let now f, g : D(S)/R → L be two morphisms in Frm
such that

g · (ν · λS · γi) ≤ f · (ν · λS · γi) for all i ∈ I.

Then, as coproducts in SLat are jointly order-epic, we obtain g · (ν ·λS) ≤ f · (ν ·λS).
From this inequality, since the reflection of SLat into Frm is KZ, we get g · ν ≤ f · ν.
Finally, being surjective, ν is order-epic, and it follows that g ≤ f .
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In the next proposition we collect some properties of the classesA forA a subcategory.
In particular we are going to see that these classes are stable under jointly order-epic
pushouts and wide pushouts. Recall that a class H of morphisms is said to be stable
under pushouts if when a pair of morphisms (f ′, g′) is the pushout of (f, g) with f ∈
H, also f ′ ∈ H. And H is stable under wide pushouts provided that the wide pushout

( X
f // Y ) = ( X

fi // Xi
ti // Y ) of a family of morphisms ( X

fi // Xi )i∈I belongs to
H whenever all fi do.

In the Proposition 2.10 we will see that subcategories of the form A = H are closed
under jointly order-monic limits. That is, every jointly order-monic limit cone in X of a

composition functor I
D // A � � E // X , with E the inclusion of A into X , is a limit cone

in A. This means that the limit cone is formed by morphisms of A and, moreover, that,
every other cone of ED has the unique factorizing morphism in A.

Proposition 2.9. Let A be a subcategory of X . Then A has the following properties:

1. Iso (X ) ⊆ A .

2. A is closed under composition. Moreover, if f : X → Y and g : Y → Z belong to
A and h : X → A is a morphism with codomain in A then h/(gf) = (h/f)/g.

3. If X
f // Y and r, s : X → A are morphisms such that f ∈ A and A is an object

of A, then r ≤ s =⇒ r/f ≤ s/f .

4. A is stable under those pushouts and wide pushouts which are jointly order-epic.

Proof 1. It is obvious. In particular, if f : X → Y is an isomorphism then, for every
g : X → A, it holds that gf−1 = g/f .

2. For morphisms f, g and h as in the statement 2, we have that:

((h/f)/g) · (g · f) = (((h/f)/g) · g) · f = (h/f) · f = h.

Moreover, if j : Z → A is such that j(gf) ≤ h, then jg ≤ h/f , and, consequently,
j ≤ (h/f)/g. Hence, (h/f)/g = h/(gf). Now, taking into account this property of the
composition, it is immediate that also every morphism of A is right-Kan injective w.r.t.
gf .

3. It is immediate from Definition 2.1.
4. Let f : X → Y belong to A and let the square

X
f //

g

��

Y

g′

��
Z

f ′
//W
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represent a pushout such that the pair (f ′, g′) is jointly order-epic. We want to show that,
then, f ′ ∈ A . Given h : Z → A, with A ∈ A, we have

(h · g)/f · f = h · g.

Then there exists t : W → A such that t · f ′ = h and t · g′ = (h · g)/f . We show that

t = h/f ′. (2.1)

Let k : W → A be such that k · f ′ ≤ h. Then

k · f ′ ≤ t · f ′. (2.2)

On the other hand, from the following implications

k · f ′ ≤ h ⇒ k · f ′ · g ≤ h · g
⇒ k · g′ · f ≤ h · g
⇒ k · g′ ≤ (h · g)/f = t · g′.

we obtain that
k · g′ ≤ t · g′. (2.3)

Since the pushout (f ′, g′) is jointly order-epic, (2.2) and (2.3) implies that k ≤ t. Thus
every object of A is right-Kan injective w.r.t. f ′.

Concerning the right-Kan injectivity of the morphisms of A w.r.t. f ′, let a : A→ B be
a morphism of A and h : Z → A. Put t = h/f ′, as in (2.1), and u = (a · h)/f ′.

X
f //

g

��

Y

g′

��
Z

f ′ //

h
��

W

t~~||
||

||
||

u

��
A a

// B

We know that, as it holds for t in (2.1), u is the morphism such that u · f ′ = a · h and
u · g′ = (a · h · g)/f . We want to show that at = u. On one hand, (at)f ′ = ah = uf ′;
on the other hand, (at)g′ = a(hg)/f = (ahg)/f = ug′, by using the fact that f ∈ A .
Consequently, by the pushout universal property, at = u, i.e., a · (h/f ′) = (a · h)/f ′.

The proof that A is stable under jointly order-epic wide pushouts uses a technique

similar to the one used for pushouts: Let
(
X

fi→ Xi

)
i∈I

be a family of morphisms in A
and let the diagram

X
fi //

f   A
AA

AA
AA

A Xi

ti
��
Y
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represent a jointly order-epic wide pushout. Given a morphism g : X → A, with A ∈ A, let
t : Y → A be the unique morphism such that tf = g and tti = g/fi, for all i ∈ I. It is easy
to see that t = g/f , thus A is right-Kan injective w.r.t. f . Furthermore, given a morphism
a : A → B in A, analogously to the case of pushouts, we obtain that at = (ag)/f , i.e.,
a(g/f) = (ag)/f . Therefore f ∈ A . 2

Proposition 2.10. Every subcategory of the form A = H , for H ⊆ Mor(X ), is closed
under jointly order-monic limits.

Proof Let (li : X → Ai)i∈I be a jointly order-monic limit cone in X with all connecting
morphisms m : Ai → Aj in A.

(1) First we show that X ∈ A. In fact, given h : Z → W in H, and g : Z → X,

Z
h //

g

��

W

(lig)/h
��

X
li // Ai

the family
((li · g)/h : W → Ai)i∈I

forms a cone, since, for every connecting morphism m : Ai → Aj we have that:

m · (li · g)/h = (m · li · g)/h = (lj · g)/h.

Hence, there is a unique morphism g : W → X such that li · g = (li · g)/h (i ∈ I). The
equalities ligh = ((lig)/h)h = lig imply that gh = g. Furthermore, if k : W → X is a
morphism such that kh ≤ g, we obtain likh ≤ lig, so lik ≤ (lig)/h = lig; consequently,
since the given limit is jointly order-monic, k ≤ g. Thus, g = g/h.

(2) The projections li belong to A. This is immediate from (1) where we saw that, for
each morphism g : Z → X, li · (g/h) = li · g = (lig)/h.

(3) In order to conclude that the cone (li : X → Ai)i∈I is a limit inA, let (di : B → Ai)i∈I
be a cone in A for the given diagram. Then there is a unique morphism b : B → X in X
satisfying the equalities lib = di. It remains to show that b belongs to A. Let h : Z → W
be a morphism of H, and consider a morphism t : Z → B:

Z
h //

t
��

W

t/h~~}}
}}

}}
}}

(bt)/h
��

B
b
//

di   A
AA

AA
AA

X

li
��
Ai
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Then, for every i ∈ I,

lib(t/h) = di(t/h)
= (dit)/h, because di belongs to A
= (libt)/h
= li((bt)/h), since, by (2), li belongs to A.

Therefore, b(t/h) = (bt)/h, i.e., b ∈ A. 2

We finish this section by showing that the subcategories of the form H are closed
under a certain kind of retracts. This will be useful in the following.

Definition 2.11. A subcategory A of the category X is said to be closed under corefletcive
right adjoints if, whenever r : A → X and r′ : B → Y are coreflective right adjoint
morphisms, f : A→ B is a morphism of A and g : X → Y is a morphism which makes the
square

A
f //

r

��

B

r′

��
X g

// Y

(2.4)

commutative, then g is a morphism of A.

Remark 2.12. If A is a subcategory closed under coreflective right adjoints, then every
coreflective right adjoint morphism r : A → X with domain in A belongs to A: in the
above diagram, put f := 1A, r := 1A, r′ := r and g := r.

Proposition 2.13. For every H ⊆ Mor(X ), the subcategory H is closed under coreflec-
tive right adjoints.

Proof Put A = H and consider the commutative diagram (2.4) with f ∈ A, and r and
r′ coreflective right adjoint morphisms. Let l : X → A be the left adjoint of r : A→ X, so
r · l = 1X and l · r ≤ 1A. First we show that if A ∈ H also X ∈ H . Let j : Z → W
belong to H. Given a : Z → X, it is easy to see that

a/j = r · ((l · a)/j). (2.5)

In fact we have that (r · ((l · a)/j)) · j = r · l · a = a; and, moreover, k · j ≤ a⇒ (l · k) · j ≤
l ·a⇒ l ·k ≤ (l ·a)/j ⇒ r · l ·k ≤ r · ((l ·a)/j)⇒ k ≤ r · ((l ·a)/j). Consequently, X belongs
to A and the same happpens to Y .

Now, we show that r is right-Kan injective w.r.t. H. Given j : Z → W in H, consider
a morphism d : Z → A. The inequality r · (d/j) ≤ (r · d)/j holds by definition of (r · d)/j.
Conversely,

(r · d)/j = r · ((l · r · d)/j), using the property (2.5)
≤ r · (d/j), by 3 of 2.9, since l · r ≤ 1A.
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Thus, r (and, analogously, r′) belongs to H .
Finally, we show that g is right-Kan injective w.r.t. H. Given u : Z → X, we have:
g · (u/j) = g · (r · ((l · u)/j)), by (2.5)

= g · r · ((l · u)/j),
= r′ · f · ((l · u)/j)
= (r′ · f · l · u)/j, because r′ · f ∈ Mor(H )
= (g · r · l · u)/j
= (g · u)/j. 2

Remark 2.14. From the proof of 2.13 it follows that, moreover, in what concerns objects,
H is closed under arbitrary retracts, that is, if r : A→ X is a retract with A in H then
X belongs to H too.

3 KZ-reflective subcategories

A functor F : X → Y between poset enriched categories is said to be locally monotone if,
for all morphisms f and g with common domain and codomain, f ≤ g implies Ff ≤ Fg.

Definition 3.1. A subcategory A of X is said to be KZ-reflective in X provided that the
inclusion of A in X has a left-adjoint F such that:

1. F is locally monotone;

2. ηFX ≤ FηX , for all objects X of X .

Remark 3.2. Let X be an arbitrary category and consider it enriched with the trivial
order, i.e., equality. Then for subcategories A of X (closed under isomorphisms) to be
KZ-reflective just means to be reflective and full. Indeed, in this case, the equality ηF = Fη
implies that, for every object A of A, ηA is an isomorphism, since, together with εAηA = 1A
(for ε the counit) we have that ηAεA = FεA · ηFA = FεAFηA = F (εAηA) = 1FA. Now,
given a morphism f : A→ B with A and B in A, f = η−1

B · Ff · ηA, thus it belongs to A.

Remark 3.3. Let A be a reflective subcategory of X with left adjoint F , unit η and counit
ε. Then the condition 2 of Definition 3.1 is equivalent to

2′. εFA ≥ FεA, for all objects A of A.

In fact, given 2., we have that FεA = FεA ·εF 2A ·ηF 2A ≤ FεA ·εF 2A ·F 2ηA = FεA ·FηA ·εFA =
εFA. The other way round is dual.

The next theorem provides a characterization of the KZ-reflective subcategories of X .
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Theorem 3.4. A subcategory A of X is KZ-reflective if and only if, for every object X of
X , there is an object X in A and a morphism ηX : X → X such that

(i) ηX belongs to A and, for every morphism g : X → A with A ∈ A, g/ηX belongs
to A;

(ii) for every f : X → A in A and g : X → A in X , if gηX ≤ fηX then g ≤ f .

In that case, the corresponding reflector is given on objects by FX = X, and on morphisms

by F ( X
f // Y ) = (ηY f)/ηX .

Proof Let A be a KZ-reflective subcategory of X , with left adjoint F and unit η. We
show that, then, (i) and (ii) are fulfilled with FX = X. First we observe that the property

(ii)′ gηX ≤ fηX ⇒ g ≤ f , for every pair of morphisms f, g : FX → A of A ,

which is a weaker version of (ii), follows from the following obvious implications:
g · ηX ≤ f · ηX ⇒ εA · Fg · FηX ≤ εA · Ff · FηX

⇒ g · εFX · FηX ≤ f · εFX · FηX
⇒ g ≤ f.

(i) For X ∈ Obj(X ), A ∈ Obj(A) and g : X → A, let g be the unique A-morphism such

that g = g · ηX . We want to show that g =
∨
{ FX t // A : t · ηX ≤ g}. For morphisms

t : FX → A and t : F 2X → A in X and A, respectively, such that t ·ηX ≤ g and t ·ηFX = t,
we have:

(t · FηX) · ηX = t · (FηX · ηX)
= t · (ηFX · ηX)
= t · ηX ≤ g = g · ηX

i.e.,
(t · FηX) · ηX ≤ g · ηX .

Consequently, by (ii)′, t · FηX ≤ g. Hence, t = t · ηFX ≤ t · FηX ≤ g.
To show the right-Kan injectivity of the morphisms of A w.r.t. ηX , consider morphisms

g : X → A and f : A → B, with f in A. We have, from above, and using the same
notation, that

f(g/ηX)ηX = f · g · ηX = fg = fg · ηX = ((fg)/ηX)ηX

with both morphisms f(g/ηX) and (fg)/ηX in A; by (ii)′, this implies that f(g/ηX) =
(fg)/ηX .

(ii) It is immediate from (i): Let f and g be under the assumed conditions. Then,
the equality fηX = ((fηX)/ηX) · ηX , with f and (fηX)/ηX belonging to A, implies f =
(fηX)/ηX . Then, by definition of (fηX)/ηX , we get the inequality g ≤ f .

Concerning the sufficiency, define F : X → A by FX = X and F ( X
f // Y ) =

(ηY f)/ηX . It is easy to see that F is a functor:

12



(a) For every X, F1X = (ηX1X)/ηX = ηX/ηX , by definition. But 1XηX = ηX and,
moreover, for every g : X → X such that gηX ≤ 1XηX , it holds that g ≤ 1X , by (ii).
Consequently, 1X = ηX/ηX and, thus, 1FX = F1X .

(b) Given a composition of morphisms X
f // Y

g // Z , taking into account that the
morphism ((ηZg)/ηY ) belongs to A, we have:

FgFf = ((ηZg)/ηY ) · ((ηY f)/ηX) = (((ηZg)/ηY ) · ηY ) · f)/ηX = (ηZgf)/ηX = F (gf).

The local monotonicity of F follows from (ii): Given f, g : X → Y such that f ≤ g,
we have that Ff · ηX = ηY f ≤ ηY g = Fg · ηX , and, as Fg belongs to A, this implies that
Ff ≤ Fg.

In order to conclude that F is a left adjoint of the inclusion functor of A into X , it
suffices to show that, for every f : X → A, with A in A, f/ηX is the unique morphism in A
such that (f/ηX) · ηX = f . Let f ′ : FX = X → A be an A-morphism such that f ′ηX = f .
Then, by (ii), we have simultaneously that f ′ ≤ f/ηX and f/ηX ≤ f ′, so f ′ = f/ηX .

The inequality ηFX ≤ FηX follows immediately from the equality ηFX · ηX = FηX · ηX
and property (ii), taking into account that the morphism FηX belongs to A. 2

Examples 3.5. 1. In Pos, let H = {h} be as in Example 2.6.1. Using 3.4, we can
conclude that H is KZ-reflective. To see that, we observe first that, as it is
easy to verify, if C is a connected component of a poset A, then it has a supre-
mum iff all upper sets x ↑ with x ∈ C do, and, in this case, all these supre-
mums coincide with the supremum of C. Now, for every poset X, consider X =
X ∪ {C |C is a connected component of X} with the partial order generated by the
one inherited from X together with x ≤ C if x ∈ C for every x ∈ X and every
connected component C. Then, a straight computation shows that the morphism ηX
given by the embedding of X into X fulfils (i) and (ii). Moreover, for every f : X → A
with codomain in A, the morphism f/ηX is defined by (f/ηX)(x) = x, for x ∈ X, and
(f/ηX)(C) is the supremum of the connected component containing f [C], for every
connected component C of X.

2. Let SLat be the category of meet-semilattices (see 2.8) enriched with the pointwise
dual order ≥. Then Frm is a KZ-reflective subcategory of SLat. Indeed, it is well-
known that Frm is reflective in SLat, with the reflection of every S ∈ SLat done by
λS : S → D(S), where D(S) = ({U ⊆ S |U =↓ U}, ⊆) and λS(s) =↓ s for each s ∈ S.
Moreover, if g : S → L is a morphism of SLat with codomain in Frm, the unique
morphism g : D(S) → L of Frm such that gλS = g is defined by g(U) = sup(g[U ]).
To conclude that the reflection is KZ, we show that λS verifies the conditions of 3.4
(for the ordering ≥). We begin by (ii).

Let then k, f : D(S) → L be morphisms such that f is a frame homomorphism and
kλS ≥ fλS. Using the symbol ∨ to denote the supremum, for every U ∈ D(S), we
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have that

k(U) = k

(⋃
u∈U

(↓ u)

)
≥
∨
u∈U

k(↓ u) =
∨
u∈U

kλS(u)

≥
∨
u∈U

fλS(u) =
∨
u∈U

f(↓ u) = f(
⋃
u∈U

↓ u) = f(U),

the last but one equality holding because f belongs to Frm.

Moreover, Frm is right-Kan injective w.r.t. every λS. Indeed, if g : S → L is a
morphism with codomain in Frm, taking into account that gλS = g with g ∈ Frm,
and the property (ii), we conclude that g = g/λS. The right-Kan injectivity of the
morphisms of Frm is also easy: if f : L → M is a frame homomorphism, then we
have that f(

∨
g[U ]) =

∨
fg[U ], that is, f(g/λS)(U) = (fg/λS)(U).

Other examples of KZ-reflective subcategories will be described in Section 4.

Next we go further on the relationship between KZ-reflectivity and right-Kan injectivity.

Definition 3.6. Let F : X → A be a locally monotone functor between poset enriched
categories. A morphism f of X is said to be an F -embedding if Ff has a reflective left-
adjoint morphism in A.

Proposition 3.7. If A is a KZ-reflective subcategory of X , with left adjoint F , then A
is just the class of all F -embeddings.

Proof
Let f : X → Y belong to A . Consider the diagram

X
f //

ηX
��

Y

ηY
��

a
uukkkkkkkkkkkkkkkkkk

FX
Ff

// FY

Fa{{wwwwwwww

F 2X

εFX

ccGGGGGGGGG

where a = ηX/f . We show that εFX · Fa is a reflective left-adjoint of Ff , i.e., that
(εFX · Fa) · Ff = 1FX and 1FY ≤ Ff · (εFX · Fa).

The equality is clear:

(εFX · Fa) · Ff = εFX · F (a · f) = εFX · FηX = 1FX .

Concerning the inequality, first we observe that, since f ∈ A , (Ff ·ηX)/f = Ff ·(ηX/f) =
Ff ·a; now, since ηY ·f = Ff ·ηX , by the definition of (Ff ·ηX)/f , we have that ηY ≤ Ff ·a,
and, consequently,

1FY · ηY ≤ Ff · a = Ff · εFX · ηFX · a = Ff · εFX · Fa · ηY .
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Then, by (ii) of Theorem 3.4, we obtain 1FY ≤ Ff · εFX · Fa.

Conversely, let f : X → Y be such that Ff has the morphism l : FY → FX as a
reflective left-adjoint, that is, l · Ff = 1FX and 1FY ≤ Ff · l. We want to show that
f ∈ A .

Let g : X → A be a morphism with codomain in A. We are going to see that g/f exists
and is given by

g/f = εA · Fg · l · ηY . (3.1)

In fact,

(εA · Fg · l · ηY ) · f = εA · Fg · l · Ff · ηX = εA · Fg · ηX = εA · ηA · g = g.

Let now k : Y → A be such that k · f ≤ g, and let k : FY → A be the A-morphism which
fulfils the equality k · ηY = k. We show that then k ≤ εA · Fg · l · ηY :

k · f ≤ g ⇒ k · f ≤ εA · ηA · g
⇒ k · ηY · f ≤ εA · Fg · ηX
⇒ k · Ff · ηX ≤ εA · Fg · ηX
⇒ k · Ff ≤ εA · Fg, by (ii) of Theorem 3.4

⇒ k ≤ k · Ff · l ≤ εA · Fg · l, because l is a left-adjoint of Ff

⇒ k = k · ηY ≤ εA · Fg · l · ηY .

It remains to show that the morphisms of A are also right-Kan injective w.r.t. f : X →
Y . Let b : A→ B be a morphism of A. Then

b · (g/f) = b · εA · Fg · l · nY , by (3.1)
= εB · Fb · Fg · l · nY = (b · g)/f, again by (3.1). 2

We have just characterized the class A for A a KZ-reflective subcategory. We are
going to see that, whenever A is KZ-reflective and closed under coreflective right adjoints,
then it coincides with its right-Kan injective hull (A ) .

Remark 3.8. If A is a KZ-reflective subcategory and A ∈ A, then the reflection morphism
ηA is a coreflective left-adjoint. Indeed, we know that 1FA = ηA/ηA, from Theorem 3.4, and
(ηA · εA) · ηA = ηA. Consequently ηA · εA ≤ 1FA. Since εA · ηA = 1A, it follows that εA is a
coreflective right-adjoint of ηA.

Theorem 3.9. If A is a KZ-reflective subcategory closed under coreflective right adjoints
then

A = (A )

and, consequently, A is closed under jointly order-monic limits.
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Proof Of course, A ⊆ (A ) , so we need just to prove the converse inclusion. Denote
by F the corresponding left adjoint functor from X to A. We know, from (i) of Theorem
3.4, that {ηX , X ∈ X} ⊆ A .

In order to prove the inclusion (A ) ⊆ A for objects, let X ∈ (A ) . Then, since
ηX ∈ A , there exists a morphism x = 1X/ηX : FX → X such that x ·ηX = 1X . Moreover,
the equality (ηX · x) · ηX = ηX assures that ηX · x ≤ ηX/ηX = 1FX , by Theorem 3.4. Thus
ηX aC x, i.e., x is a coreflective right adjoint of ηX . Since A is closed under coreflective
right adjoints, X ∈ Obj(A) and x ∈ Mor(A) (see Remark 2.12).

Let now f : X → Y belong to (A ) . As we have just seen, the objects X and Y
belong to A, and the morphisms x = 1X/ηX and y = 1Y /ηY are coreflective right adjoints
and also belong to A. Consider the following diagram:

X ηX
//

f

��

1X
,,

FX x
//

Ff

��

X

f

��
Y

ηY //

1Y

22FY
y // Y

We show that the right square is commutative:

y · Ff = y · ((ηY · f)/ηX), by Theorem 3.4

= (y · ηY · f)/ηX , since y ∈ A and ηX ∈ A
= f/ηX , since y · ηY = 1Y
= (f · 1X)/ηX
= f · (1X/ηX), since f ∈ (A ) and ηX ∈ A
= f · x

Since A is closed under coreflective right adjoints, we conclude that f ∈ Mor(A).
Now, from Proposition 2.10, it turns out that A is closed under jointly order-monic

limits. 2

Remark 3.10. Let A be a KZ-reflective subcategory closed under coreflective right ad-
joints. From the proof of 3.9, it follows that A = {ηX , X ∈ X} . Consequently, taking
into account Remark 2.5, if the reflections are all epimorphisms then the subcategory A is
full.

Remark 3.11. From the above theorem, we know that in several everyday poset enriched
categories, where limits are jointly order-monic (see 2.8), KZ-reflective subcategories which
are closed under coreflective right-adjoints are closed under all limits.

Let X be an arbitrary category enriched with the trivial order (=). In this case, the
above theorem states the well-known fact that every full and isomorphism-closed reflective
subcategory A of X coincides with its orthogonal hull (A⊥)⊥ and is closed under limits.
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Remark 3.12. Recall from [4] and [6] that a Kock-Zöberlein monad (shortly, KZ-monad)
on a poset enriched category X is a monad T = (T, η, µ) : X → X such that T is locally
monotone and ηTX ≤ TηX for all objects X. A KZ-monad is a special case of the notion
of Kock-Zöberlein doctrine introduced by Anders Kock in [?]. In [4] Mart́ın H. Escardó
has observed that, for each object X of X there is at most one T-algebra structure map
mX : TX → X associated to X, and that, if it is the case, ηX aC mX . So we can
identify each T-algebra with its underlying object. Moreover, Escardó has shown that the
Eilenberg-Moore algebras of a KZ-monad are precisely the objects of X which are injective
w.r.t. all T -embeddings (see Definition 3.6), and that they also coincide with those objects
of X which are right-Kan injective w.r.t. T -embeddings.

The next theorem establishes the relationship between KZ-reflective subcategories and
KZ-monads.

Theorem 3.13. The KZ-reflective subcategories of X closed under coreflective right ad-
joints coincide, up to isomorphism of categories, with the categories of T-algebras for T a
KZ-monad over X .

Proof It is clear that if T = (T, η, µ) : X → X is a KZ-monad (see remark above) then
X T is a KZ-reflective subcategory of X . Next we show that, furthermore, X T is closed
under coreflective right adjoints in the sense of 2.11. Consider the commutative diagram
(2.4) of the Definition 2.11 , with f ∈ X T, l aC r and l′ aC r′, and let mA and mB be the
corresponding structure maps of A and B. Thus, r and r′ are retractions with right inverses
l and l′, respectively; then, it easily follows that X and Y belong to X T with mX = rmAT l
and mY = r′mBT l

′ (see [3]). It remains to show that g is a T-morphism, that is, that
mY Tg = gmX . First, observe that

mY · Tg = (r′ ·mB · T l′) · Tg · (Tr · T l) = r′ ·mB · T l′ · Tr′ · Tf · T l. (3.2)

Now, departing from the equality (3.2), we get that, on one hand,

mY · Tg ≤ r′ ·mB · Tf · T l, because l′r′ ≤ 1B and T is locally monotone
= r′ · f ·mA · T l, since f ∈ X T

= g · r ·mA · T l = g ·mX ;

and, on the other hand,

mY · Tg = r′ ·mB · T l′ · Tr′ · Tf · (TmA · TηA) · T l, since mAηA = 1A
≥ r′ ·mB · T l′ · T (r′ · f ·mA) · ηTA · T l, because TηA ≥ ηTA
= r′ ·mB · T l′ · ηY · r′ · f ·mA · T l
= mY · ηY · r′ · f ·mA · T l
= r′ · f ·mA · T l = g · r ·mA · T l = g ·mX .
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Consequently, mY Tg = gmX , i.e., g ∈ X T.

Conversely, let A be a KZ-reflective subcategory of X closed under coreflective right
adjoints, with U the inclusion functor and F the left adjoint of U . Then the corresponding
monad T, with T = UF , is of the Kock-Zöberlein type. In fact, T is locally monotone
because F is so, and ηTX = ηUFX = ηFX ≤ FηX = UFηX . It remains to show that the
comparison functor

A K // X T

given by KA = (A, εA) and Kf = f for every object A and every morphism f of A (where
ε is the counit of the adjunction) is an isomorphism of categories. K is clearly injective on
objects and on morphisms. Let (A,mA) be a T-algebra. Thus, as mentioned in Remark
3.12, ηA aC mA. Since A is closed under coreflective right-adjoints, this assures that A ∈ A.
But then, from Remark 3.8, we know that ηA aC εA. Hence, mA = εA and K(A) = (A,mA).

Finally, given a morphism KA = (A,mA)
g // (B,mB) = KB in X T, again the fact that

A is closed under coreflective right adjoints, combined with the equality gmA = mBFg,
implies that g ∈ A. 2

Remark 3.14. Let A be a KZ-reflective subcategory of X closed under coreflective right
adjoints, let U and F be the corresponding inclusion and reflector functors, respectively,
and let T = UF . Then T is the endofunctor part of a KZ-monad and A is the category
of algebras for that monad. It is clear, from Definition 3.6, that every F -embedding is
a T -embedding. On the other hand, as mentioned in Remark 3.12, the T -algebras, that
is, the objects of A, are precisely those objects of X which are right-Kan injective w.r.t.
T -embeddings. From 4.3.4 of [4] it also follows that the T -morphisms (in our case, the
morphisms of A) are right-Kan injective w.r.t. T -embeddings. But, by Proposition 3.7,
the largest class of morphisms w.r.t. which all objects and morphisms of A are right-
Kan injective are the F -embeddings. Thus, every T -embedding is an F -embedding and,
therefore, the class of T -embeddings coincides with the one of F -embeddings.

4 Right-Kan injective hulls of finite subcategories of

Top0

In this section we give some examples of KZ-reflective subcategories of Top0, based on
results of [6] and references there, and we prove that they are the right-Kan injective hull of

a finite subcategory of Top0, that is, they are of the form
(
A

)
for a finite subcategory

A. As a byproduct, we obtain new characterizations of embeddings, dense embeddings
and flat embeddings in Top0. Moreover, in Remark 4.7, we consider the dual notions of
KZ-reflective subcategory and F -embedding and relate them to results of [?].

Examples 4.1. The subcategories of Top0 described in the following are KZ-reflective:
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1. ContI denotes the category of continuous lattices and maps which preserve directed
supremums and infimums. It is known that, considering every continuous lattice
endowed with the Scott topology, ContI becomes a subcategory of Top0 ([9]).

2. ScottDI is the category of continuous Scott domains and maps which preserve di-
rected supremums and non empty infimums. ScottDI is a subcategory of Top0,
again via the Scott topology ([9]).

3. SComp denotes the subcategory of Top0 consisting of all stably compact spaces and
stable continuous maps. Thus, the objects of SComp are those spaces which are
sober, locally compact and whose family of all saturated compact sets is closed under
finite intersection ([10], [?]). (A set A of a T0 space X is saturated if it coincides with
the upper set A ↑ for X equipped with the specialization order.) The morphisms
of SComp are the stable continuous maps, that is, morphisms f : X → Y of Top0

such that for every pair of open sets U and V and a compact set K in Y such that
U ⊆ K ⊆ V , there exists a compact K ′ in X such that f−1(U) ⊆ K ′ ⊆ f−1(V ).

The KZ-reflectivity of the above three subcategories follows immediately from the fact that
they are categories of algebras of KZ-monads (see Theorem 3.13). Concerning ContI, it is
known from Day [?] and Wyler [?] that it coincides with the category of Einlenberg-Moore
algebras of the filter monad, and, as it was observed by Escardó ([3]), this monad is of
Kock-Zöberlein type. The category ScottDI was proved to be the category of algebras of
the proper filter monad by Wyler [?], and this monad was showed to be of Kock-Zöberlein
type by Escardó and Flagg in [6]. At last, we know from Simmons [?] and Wyler [?] that
SComp is the category of algebras of the prime filter monad, and, again from [6], that this
monad is also a KZ-monad.

In [6] the authors present other examples of categories of algebras of KZ-monads over
Top0, which are, consequently, KZ-reflective subcategories of Top0.

In what follows, given a space X we denote its lattice of open sets by ΩX. Given a
continuous map f : X → Y , the frame homomorphism f−1 : ΩY → ΩX preserves all
joins and, hence, has a right adjoint, denoted by f∗ : ΩX → ΩY , in the category SLat of
meet-semilattices with a top and maps which preserve the meet and the top. The map f∗
is given by

f∗ (U) =
⋃{

V : f−1 (V ) ⊆ U
}
, U ∈ ΩX.

Remark 4.2. In [6], Escardó and Flagg proved that for the filter and the proper filter
monads T over Top0 the T -embeddings are the embeddings and the dense embeddings,
respectively (see also [?]). It is easy to see that a map f in Top0 is an embedding iff the
map f−1 is surjective ([10]), and it is a dense embedding iff, moreover, f∗(∅) = ∅ ([6]).
Moreover, f is an embedding iff the adjunction f−1 a f∗ is reflective, i.e., f−1f∗ = 1ΩX .
These characterizations will be used in the following.
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Also in [6], it was proven that, when T is the prime filter monad, the T -embeddings are
the flat embeddings, that is, the maps f of Top0 such that f−1 is surjective and its right
adjoint f∗ preserves finite unions.

Next we show that the three categories listed in 4.1 are the right-Kan injective hull of
a finite subcategory of Top0.

Let 2 and 3 denote the chains 0 < 1 and 0 < 1 < 2, respectively. In particular 2, as an
object of Top0, is the Sierpiński space.

Lemma 4.3. For S the subcategory of Top0 consisting of the Sierpiński space 2 and the

identity on 2, it holds that
(
S

)
= ContI. Moreover, a continuous map between T0

topological spaces is an embedding iff 2 is right-Kan injective w.r.t. it.

Proof We know that ContI is the category of algebras of the filter monad T over Top0

and that the T -embeddings are the embeddings (see 4.1 and 4.2). Furthermore, from 3.13
and 3.14, we have that the T -embeddings are just the F -embeddings for F the left adjoint
of the inclusion of ContI into Top0. Consequently, by 3.7 and 3.9, we conclude that
ContI = E , where E is the class of all embeddings. Therefore, we only have to show that
S = E .

Since the Sierpiński space is in ContI, it is clear that E ⊆ S . The other way round
is also immediate: if g : X → Y belongs to S , then, in particular, 2 is injective w.r.t. g,
and it is known, and easy to prove, that, then, g is an embedding. 2

Remark 4.4. Let g : X → Y be an embedding (in Top0). Then, it is easily seen that, for
every map χU : X → 2, with U an open set of X, we have that χU/g = χg∗(U).

More generally, let h : X → Z be a morphism of Top0 with Z a finite continuous lattice.
In this case the topology of Z is generated by all sets of the form z ↑= {w ∈ Z : z ≤ w}.
We are going to show that the map h/g is defined by

h/g(y) =
∨
{z ∈ Z : y ∈ g∗(h−1(z ↑))}. (4.1)

First of all, it is continuous, with (h/g)−1(z ↑) = g∗(h
−1(z ↑)), for all z ∈ Z. To conclude

that h/g · g(x) = h(x) for every x ∈ X, we observe that h−1(h(x) ↑) = g−1g∗(h
−1(h(x) ↑

)), because g is an embedding (see Remark 4.2); consequently, g(x) ∈ g∗(h
−1(h(x) ↑)).

Moreover, h(x) is the supremum of all z for which g(x) ∈ g∗(h−1(z ↑)), since

g(x) ∈ g∗(h−1(z ↑))⇔ x ∈ g−1g∗(h
−1(z ↑))⇔ x ∈ h−1(z ↑)⇔ h(x) ≥ z.

Let now k : Y → Z be a morphism such that kg ≤ h. In order to show that k ≤ h/g,
it suffices to verify that, for every y ∈ Y , y ∈ g∗(h−1(k(y) ↑)), that is, that there is some
V ∈ ΩY such that y ∈ V and g−1(V ) ⊆ h−1(k(y) ↑). The set V = k−1(k(y) ↑) fulfils this
requirement, since x ∈ g−1(V ) is equivalent to x ∈ (kg)−1(k(y) ↑), and this implies that
x ∈ h−1(k(y) ↑), because kg ≤ h.
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Proposition 4.5. The subcategory ScottDI of Top0 coincides with
(
A

)
, where A

is the two-objects category whose only non-identity morphism is the inclusion 2
� � f // 3 .

Moreover, a continuous map between T0 topological spaces is a dense embedding iff the

inclusion 2
� � f // 3 is right-Kan injective w.r.t. it.

Proof By using an argument similar to the one used at the beginning of the proof of
Lemma 4.3, we conclude that ScottDI = D , where D is the class of all dense embeddings.

Moreover, since the morphism 2
� � f // 3 belongs to ScottDI, we know that D ⊆ A . So

we only have to show that A ⊆ D. Let g : X → Y be a morphism in A . Then, in

particular, 2 g; hence, by 4.3, g is an embedding. Now, for the inclusion 2
f
↪→3 and the

map χ∅ : X → 2, we have that

(f · χ∅) /g = f · (χ∅/g) = f · χg∗(∅),

taking into account that f g and the description of χ∅/g given in Remark 4.4. Thus, the
image of (f · χ∅) /g does not contain the point 2, and, consequently, from the characteriza-
tion of (f · χ∅) /g given by (4.1) in Remark 4.4, we know that no point y of Y belongs to
g∗
(
(f · χ∅)−1 ({2})

)
, i.e., g∗

(
(f · χ∅)−1 ({2})

)
= ∅. But (f · χ∅)−1 ({2}) is clearly empty,

then we have g∗ (∅) = ∅, that is, g is a dense embedding. 2

Let A be the poset with underlying set {0, a, b, 1}, where a and b are non-comparable
and 0 and 1 are the bottom and the top elements, respectively. And let k : A → 2 be the
map which takes 0 to 0 and all the other elements of A to 1.

Proposition 4.6. The subcategory SComp of Top0 coincides with
(
A

)
, where A is

the two-objects category whose only non-identity morphism is k : A → 2. Furthermore, a

continuous map between T0 topological spaces is a flat embedding iff the map A
� � k // 2 is

right-Kan injective w.r.t. it.

Proof Of course every finite space of Top0 is stably compact. Moreover, every continuous
map between finite T0-spaces is trivially stable. Thus, the above morphism k belongs to
SComp. Now, arguing as at the beginning of the proof of Lemma 4.3, we see that the only
thing to prove is that A ⊆ F for F the class of all flat embeddings.

Let g : X → Y belong to A . Then, since 2 g, g is an embedding. We are going to
show that, moreover, it must be flat, i.e., that g∗(G∪H) = g∗(G)∪g∗(H) for all G, H ∈ ΩX.
Let then G and H be open sets of X and define h : X → A by

h(x) =


1 if x ∈ G ∩H
a if x ∈ G \G ∩H
b if x ∈ H \G ∩H
0 if x 6∈ G ∪H
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Then, from Remark 4.4, we know that h/g : Y → A is given by

h/g(y) =


1 if y ∈ g∗(G ∩H)
a if y ∈ g∗(G) \ g∗(G ∩H)
b if y ∈ g∗(H) \ g∗(G ∩H)
0 if y 6∈ g∗(G) ∪ g∗(H)

Consequently,

(k · (h/g))(y) =

{
1 if y ∈ g∗(G) ∪ g∗(H)
0 if y 6∈ g∗(G) ∪ g∗(H)

(4.2)

But, by 4.4, (kh)/g = χg∗(G∪H), and we know that (kh)/g = k ·(h/g), since k is right-Kan in-
jective w.r.t. g. Hence, by (4.2), χg∗(G∪H) = χg∗(G)∪g∗(H), thus g∗(G ∪H) = g∗(G) ∪ g∗(H),
as requested. 2

Remark 4.7. Let X be a poset enriched category. The dual category X op may be seen as
a poset enriched category with the order given by f op ≤ gop iff f ≤ g. This way, the dual
notions of right-Kan injectivity, KZ-reflectivity and KZ-monad are clear. In particular:

• Given a morphism f : X → Y and an object A in X , we say that A is right-
Kan projective w.r.t. f if it is right-Kan injective w.r.t. f op in X op. That is, for
every morphism g : A → Y , there exists g′ : A → X such that f · g′ = g and
f · t ≤ g ⇒ t ≤ g′, for all possible morphisms t.

• A coreflective subcategoryA of X , with right adjoint G and co-unit ε, is said to be KZ-
coreflective in X provided that G is locally monotone and the inequality εGX ≤ GεX
is fulfilled for all X ∈ X (equivalently, ηGA ≥ GηA for all A ∈ A, see Remark 3.3).

Analogously, we obtain the definition of a KZ-comonad. For the dual of the concept of
F -embedding, we use the term G-quotient; that is, if G : X → A is a locally monotone
functor between poset enriched categories, a morphism f : X → Y is said to be a G-quotient
if the morphism Gf has a reflective right adjoint in A.

In [?], Bernhard Banaschewski introduced the notion of K-flat morphism in the category
Frm of frames, which gives a general approach to the study of projectivity in Frm, unifying
several previously known results. Let SLat denote the category whose objects are meet-
semilattices with a top, and whose morphisms are maps preserving the meet and the top.
Let K be a subcategory of SLat in which Frm is reflective, with reflector F and such that,
for every reflection ηA : A→ FA, the frame FA is generated by the image of ηA. A frame
homomorphism h : L → M is K-flat if it is onto and its right adjoint h∗ : M → L (which
exists in SLat) belongs to K. As it is shown in [?], when K is a category under the above
described conditions, F is locally monotone and the comonad H : Frm → Frm induced
by the adjunction between Frm and K is of Kock-Zöberlein type. Furthermore, it is easy
to see that the K-flat morphisms are exactly the H-quotients, or, equivalently, the frame
homomorphisms which are F -quotients. To show that, first observe that, given a K-flat
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frame homomorphism f : L→ N , the adjunction f a f∗ is reflective: For every y ∈ N , the
sobrejectivity of f assures the existence of some x such that f(x) = y, and then we have
that (f · f∗) (y) = (f · f∗) (f (x)) = f ((f∗ · f) (x)) ≥ f(x) = y; thus f · f∗ = 1N . Now it is
clear that Ff aR Ff∗. Conversely, a reflective adjunction Ff aR (Ff)∗, with f : L → N
in Frm, implies that f aR εL · (Ff)∗ · ηN , where η and ε are the unit and counit.

B. Banaschewski showed that several examples of projectivity in Frm are instances of
K-projectivity for a convenient category K. These examples encompass several cases of
projectivity previously studied (in [11], [?], [5], [?] and more) and, in particular, the frame
counterpart of examples of 4.1. From 3.7, we know that the K-flat morphisms are not only
a class of morphisms w.r.t. which the corresponding category of co-algebras is right-Kan
projective, but, moreover, that it is the largest one with such property.
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[1] J. Adámek, M. Hébert and L. Sousa, The Orthogonal Subcategory Problem and the
Small Object Argument, Appl. Categ. Structures 17 (2009), 211-246.

[2] B. Banaschewski, Projective frames: a general view, Cahiers de Topol. Géom. Différ.
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