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REACTION-DIFFUSION EQUATIONS

FOR THE INFINITY LAPLACIAN

NICOLAU M.L. DIEHL AND RAFAYEL TEYMURAZYAN

Abstract. We derive sharp regularity for viscosity solutions of an in-
homogeneous infinity Laplace equation across the free boundary, when
the right hand side does not change sign and satisfies a certain growth
condition. We prove geometric regularity estimates for solutions and
conclude that once the source term is comparable to a homogeneous
function, then the free boundary is a porous set and hence, has zero
Lebesgue measure. Additionally, we derive a Liouville type theorem.
When near the origin the right hand side grows not faster than third
degree homogeneous function, we show that if a non-negative viscosity
solution vanishes at a point, then it has to vanish everywhere.
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1. Introduction

Reaction-diffusion equations arise naturally when modeling certain phe-
nomena in biological, chemical and physical systems. In this paper we study
reaction-diffusion equations for infinity Laplacian, which despite being too
degenerate to realistically represent a physical diffusion process, has been
studied in the framework of optimization and free boundary problems (see,
for example, [3], [10], [12, 13, 14], just to cite a few). More precisely, we
establish regularity and geometric properties of solutions of the problem

∆∞u = f(u) in Ω, (1.1)

where Ω ⊂ R
n, f ∈ C(R+) and

0 ≤ f(δt) ≤ Mδγf(t), (1.2)

with M > 0, γ ∈ [0, 3), t > 0 bounded, and δ > 0 small enough. Addition-
ally, we assume that

f is non-decreasing . (1.3)

Here, R+ is the set of non-negative numbers, and the infinity Laplacian is
defined as follows:

∆∞u(x) :=

n∑

i,j=1

uxiuxjuxixj ,

with uxi = ∂u/∂xi. Note that the continuity of f provides that f(u) is
bounded once u is bounded. Note also that (1.2) is quite general in the
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2 N.M.L. DIEHL AND R. TEYMURAZYAN

sense that it needs to hold only for δ close to zero. For example, it holds
for functions that are homogeneous of degree γ. Condition (1.3) is needed
to guarantee the comparison principle. Solutions of (1.1) are understood in
the viscosity sense according to the following definition:

Definition 1.1. A function u ∈ C(Ω) is called a viscosity super-solution
(resp. sub-solution) of (1.1), and written as ∆∞u ≤ f(u) (resp. ≥), if
for every φ ∈ C2(Ω) such that u − φ has a local minimum at x0 ∈ Ω, with
φ(x0) = u(x0), we have

∆∞φ(x0) ≤ f(φ(x0)). (resp. ≥)

A function u is called a viscosity solution if it is both a viscosity super-
solution and a viscosity sub-solution.

The infinity Laplace operator is related to the absolutely minimizing Lip-
schitz extension problem: for a given Lipschitz function on the boundary of
a bounded domain, find its extension inside the domain in a way that has
the minimal Lipschitz constant, [1]. It is known (see [7]) that such function
u has to be an infinity harmonic one, i.e. ∆∞u = 0 (in the viscosity sense).
The regularity issue of infinity harmonic functions received extensive atten-
tion over the years. As was shown in [5], the infinity harmonic functions in
the plane are C1,α, for a small α (it is conjectured that the optimal regular-

ity is C1, 1
3 ). In higher dimensions infinity harmonic functions are known to

be everywhere differentiable (see [6]).
As for the inhomogeneous case of ∆∞u = f , it is known that the Dirichlet

problem has a unique viscosity solution, provided f does not change sign (see
[9]). Moreover, as was shown in [8], for bounded right hand side, the Lips-
chitz estimate and everywhere differentiability of solutions remain true. The
case of f not being bounded away from zero, mainly, when f = uγ+, where
u+ := max (u, 0) and γ ∈ [0, 3) is a constant, was studied in [2] (dead-core
problem). The authors show that for such right hand side (strong absorb-
tion) across the free boundary ∂{u > 0} non-negative viscosity solutions are

of class C
4

3−γ . The denominator 3−γ is related to the degree of homogeneity
of the operator, which is three, i.e., ∆∞(Cu) = C3∆∞u, for any constant C.

Note that for γ ∈ (0, 3) this regularity is more than the conjectured C1, 1
3 ,

i.e., we obtain higher regularity across the free boundary. This result allows
to establish Hausdorff dimension estimate for the free boundary ∂{u > 0}
and conclude that it has Lebesgue measure zero.

We extend these results for the source term f satisfying (1.2). In partic-
ular, it includes equations with the right hand side

f(t) = et − 1 and f(t) = log(t2 + 1)

among others (see Section 7 for more examples). In fact, our results are true
in a broader context, when allowing “coefficients” in the right hand side, that
is, when in (1.1) one has f = f(x, u), as long as f(x, u) satisfies (1.2) as a
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function of u and is continuous (and bounded) as a function of x (see Section
7). For simplicity, we restrict ourselves to the case of f(x, u) = f(u).

Our strategy is the following: by means of a flattening argument, we show
that across the free boundary ∂{u > 0}∩Ω non-negative viscosity solutions

of (1.1) are of class C
4

3−γ , when (1.2) holds. When the source term is compa-
rable to a homogeneous function of degree γ, this result is sharp in the sense
that across the free boundary non-negative viscosity solutions grow exactly

as r
4

3−γ in the ball of radius r. We also analyze the borderline (critical) case,
that is, when γ = 3 (which is also the degree of the homogeneity of the in-
finity Laplacian). Unlike [2], f is not given explicitly, which makes it harder
to construct a barrier function - needed for our analysis. Nevertheless, we
are able to show that in this case (1.1) has a viscosity sub-solution whose
gradient has modulus separated from zero. We use this function to build up
a suitable barrier to conclude that if a viscosity solution vanishes at a point,
it has to vanish everywhere. Our results remain true when the right hand
side has some “bounded coefficients” (see Remark 7.1). For simplicity we
restrict ourselves with the right hand side “without coefficients”.

The paper is organized as follows: in Section 2, we prove an auxiliary re-
sult (flattening solutions) (Lemma 2.2), which we use in Section 3 to derive
the main regularity result (Theorem 3.1), and as a consequence, in Sec-
tion 4, we obtain Liouville type theorems (Theorem 4.1 and Theorem 4.2).
In Section 5, we prove several geometric measure estimates (Theorem 5.1
(non-degeneracy) and Corollary 5.1 (porosity)), and conclude that the free
boundary has Lebesgue measure zero (Corollary 5.2). In Section 6, when
γ = 3, we show that the only non-negative viscosity solution that has zero,
is the function that is identically zero (Theorem 6.1). Finally, in Section 7
we bring some examples of source terms for which our results are true.

2. Preliminaries

In this section we list some preliminaries, as well as prove an auxiliary
lemma for future reference. We start by the comparison principle, the proof
of which can be found in [4, 9].

Lemma 2.1. Let u, v ∈ C(Ω) be such that

∆∞u− f(u) ≤ 0, ∆∞v − f(v) ≥ 0 in Ω

in the viscosity sense, and f satisfy (1.3) or inf f > 0. If u ≥ v on ∂Ω, then
u ≥ v in Ω.

The comparison principle, together with Perron’s method leads to the
following result (for the proof we refer the reader to [4], for example). In
fact, existence of solutions can be shown even without directly applying the
comparison principle, as it was done, for example, in [11, Theorem 3.1].

Theorem 2.1. If Ω ⊂ R
n is bounded and ϕ ∈ C(∂Ω) is a non-negative

function, then there is a unique and non-negative function u that solves the
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Dirichlet problem {
∆∞u = f(u) in Ω,

u = ϕ on ∂Ω
(2.1)

in the viscosity sense.

The following auxiliary lemma is a variant of the flatness improvement
technique introduced in [2, 15, 16] to study the regularity properties of
solutions of dead-core problems.

Lemma 2.2. Let g ∈ L∞(B1)∩C(B1) be a non-negative function such that

‖g‖∞ ≤ max{1,M} sup
[0,‖u‖∞ ]

f,

where f and M are as in (1.2). For any given µ > 0 there exists a constant
κµ = κ(µ, n) > 0 such that if in B1 a continuous functions v, which vanishes
at the origin and v ∈ [0, 1], satisfies, in viscosity sense,

∆∞v − κ4µg(v) = 0

for 0 < κ ≤ κµ, then

sup
B1/2

v ≤ µ.

Proof. We argue by contradiction assuming that there exist µ∗ > 0, {vi}i∈N
and {κi}i∈N with vi(0) = 0, 0 ≤ vi ≤ 1, in B1 satisfying in viscosity sense to

∆∞vi − κ4i g(vi) = 0

where κi = o(1), while
sup
B1/2

vi > µ∗. (2.2)

By local Lipschitz regularity (see [8, Corollary 2], for example), the sequence
{vi}i∈N is pre-compact in the C0,1(B3/4). Hence, by Arzelà-Ascoli theorem,
vi converges (up to a subsequence) to a function v∞ locally uniformly inB2/3.
Moreover, v∞(0) = 0, 0 ≤ v∞ ≤ 1 and ∆∞v∞ = 0. The maximum principle
for the infinity harmonic functions then yields v ≡ 0, which contradicts to
(2.2) once i is big enough. �

The following definition is for future reference.

Definition 2.1. A function u is called an entire solution, if it is a viscosity
solution of (1.1) in R

n.

We close this section by reminding the notion of porosity.

Definition 2.2. The set E ⊂ R
n is called porous with porosity σ, if there

is R > 0 such that ∀x ∈ E and ∀r ∈ (0, R) there exists y ∈ R
n such that

Bσr(y) ⊂ Br(x) \ E.
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A porous set of porosity σ has Hausdorff dimension not exceeding n−cσn,
where c > 0 is a constant depending only on dimension. In particular, a
porous set has Lebesgue measure zero (see [17], for instance).

3. Regularity across the free boundary

In this section we make use of Lemma 2.2 and derive regularity result for
viscosity solutions of (1.1) across the free boundary ∂{u > 0}.

Theorem 3.1. If u is a non-negative viscosity solution of (1.1), where f
satisfies (1.2), and x0 ∈ ∂{u > 0} ∩ Ω, then there exists a constant C > 0,
depending only on γ, ‖u‖∞ and dist(x0, ∂Ω), such that

u(x) ≤ C|x− x0|
4

3−γ

for x ∈ {u > 0} near x0.

Proof. The idea is to use an iteration argument and carefully choose se-
quence of functions that allows to make use of the Lemma 2.2. Observe
that without loss of generality, we may assume that x0 = 0 and B1 ⊂ Ω.

For µ = 2−
4

3−γ , let now κµ > 0 be as in Lemma 2.2. We then construct
the first member of the sequence by setting

w0(x) := τu(ρx) in B1,

where
τ := min

{
1, ‖u‖−1

∞

}
and ρ := κµτ

− 3−γ
4 .

Note that τ3ρ4 = κ4µτ
γ , w0(0) = 0 and in w0 ∈ [0, 1]. Since u is a viscosity

solution of (1.1), then

∆∞w0(x)− τ3ρ4f(τ−1w0(x)) = 0

or, equivalently,

∆∞w0(x)− κ4µτ
γf(τ−1w0(x)) = 0. (3.1)

Since τ ≤ 1, then g(w0) := τγf(τ−1w0) ≤ f(u(ρx)) ≤ sup
[0,‖u‖∞]

f . From

Lemma 2.2, we obtain

sup
B1/2

w0 ≤ 2
− 4

3−γ .

For i ∈ N, we then define

wi(x) := 2
− 4

3−γwi−1(2
−1x).

and observe that wi(0) = 0, wi ∈ [0, 1] and wi satisfies

∆∞wi(x) = κ4µ2
4γ
3−γ

i
τγf

(
τ−12

− 4

3−γ
i
wi(x)

)
.

Using (1.2), for i big we estimate

2
4γ
3−γ

iτγf
(
τ−12−

4

3−γ
iwi(x)

)
≤ Mτγf

(
τ−1wi(x)

)
≤ M sup

[0,‖u‖∞]
f.
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Once again applying Lemma 2.2, one gets

sup
B1/2

wi ≤ 2−
4

3−γ ,

or in other terms,

sup
B1/4

wi−1 ≤ 2−2 4

3−γ .

Continuing this way, for w0 we obtain

sup
B

2−i

w0 ≤ 2
−i 4

3−γ . (3.2)

Next, for a fixed 0 < r ≤ ρ
2 , by choosing i ∈ N such that

2−(i+1) <
r

ρ
≤ 2−i,

and using (3.2), we estimate

sup
Br

u ≤ sup
Bρ2−i

u = τ−1 sup
Bρ2−i

w0

≤ τ−12−i 4

3−γ = 2
4

3−γ τ−12−(i+1) 4

3−γ

≤
(
τ−12ρ−1

) 4

3−γ r
4

3−γ

= Cr
4

3−γ .

�

Geometrically Theorem 3.1 means that no matter how “bad” the function
u is in {u > 0}, it touches the free boundary ∂{u > 0} smoothly. In other
words, a non-negative viscosity solution of (1.1) may have cusp singularities
in its positivity set, and yet it is smooth near its free boundary.

4. Liouville type results

Despite the regularity information being available only across the free
boundary, it is enough to derive the following Liouville type theorem.

Theorem 4.1. If u is an entire solution, (1.2) holds and u(x0) = 0 for a
x0 ∈ R

n with

u(x) = o
(
|x|

4

3−γ

)
, as |x| → ∞, (4.1)

then u ≡ 0.

Proof. Without loss of generality we may assume that x0 = 0. For k ∈ N,
set

uk(x) := k
−4

3−γ u(kx), x ∈ B1,

whereB1 is the ball of radius one centered at the origin. Note that uk(0) = 0.
Since u is an entire solution, for x ∈ B1 one has

∆∞uk(x) = k
−4γ
3−γ f

(
k

4

3−γ uk(x)
)
.
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Note that the right hand side of the last equation satisfies (1.2). From
Theorem 3.1, we then deduce that if xk ∈ Br is such that

uk(xk) = sup
Br

uk,

where r > 0 is small, then in Br one has

‖uk‖∞ → 0, as k → ∞. (4.2)

In fact, if |kxk| remains bounded as k → ∞, then applying Theorem 3.1 to
uk we obtain

uk(xk) ≤ Ck|xk|
4

3−γ , (4.3)

where Ck > 0 and Ck → 0. This implies that u(kxk) remains bounded as
k → ∞, and therefore uk(xk) → 0, as k → ∞, and (4.2) is true. It remains
true also in the case when |kxk| → ∞, as k → ∞, since then from (4.1) we
get

uk(xk) ≤ |kxk|
− 4

3−γ k−
4

3−γ → 0, as k → ∞.

Now, if there exists y ∈ R
n such that u(y) > 0, by choosing k ∈ N large

enough so y ∈ Bkr and using (4.2) and (4.3), we estimate

u(y)

|y|
4

3−γ

≤ sup
Bkr

u(x)

|x|
4

3−γ

= sup
Br

uk(x)

|x|
4

3−γ

≤
u(y)

2|y|
4

3−γ

,

which is a contradiction. �

In fact, once the comparison principle holds, the condition (4.1) can be
weakened in the following sense (Theorem 4.2 below). Let x0 ∈ R

n and
r > 0 be fixed, and let u ≥ 0 be the unique solution of (2.1) in Br(x0) with
ϕ ≡ αr > 0 constant, guaranteed by Theorem 2.1. Note that u is a viscosity
sub-solution of {

∆∞v = λvγ+ in Br(x0),

v = αr on ∂Br(x0),
(4.4)

where

λ := M−1β−γf(β), (4.5)

and β > ‖u‖∞ is a constant big enough so (1.2) holds. Then the condition
(4.1) can be weakened and substituted by

lim sup
|x|→∞

u(x)

|x− x0|
4

3−γ

<

(
λ
(3− γ)4

64(1 + γ)

) 1

3−γ

, (4.6)

where λ is defined by (4.5), and Theorem 4.1 can be improved to the fol-
lowing variant (see Theorem 4.2 below). The choice of the right hand side
of (4.6) comes from the explicit structure of the unique solution of (4.4),
which, as observed in [2], is given by

v(x) := Υ

(
|x− x0| − r +

(αr

Υ

) 3−γ
4

) 4

3−γ

+

, (4.7)
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where

Υ :=

(
λ
(3− γ)4

64(1 + γ)

) 1

3−γ

. (4.8)

Theorem 4.2. Let (1.2), (1.3) hold. If u is an entire solution and satisfies
(4.6), then u ≡ 0.

Proof. Once r > 0 is large enough, then (4.6) guarantees, with Υ > 0 defined
by (4.8),

sup
∂Br

u(x)

r
4

3−γ

≤ θΥ,

for some θ < 1. On the other hand, using (1.2), one has that the unique
solution of (4.4), with αr = sup

∂Br(x0)
u, given by (4.7), is a viscosity sub-

solution of (1.1). The comparison principle, Lemma 2.1, then implies that
u ≤ v in Br(x0). Letting r → ∞, we conclude that u ≡ 0. �

Remark 4.1. As can be seen from (4.7), the plateau of v, i.e., the set
{v = 0}, is the ball BR(x0), where

0 < R := r −
(αr

Υ

) 3−γ
4

.

Since 0 ≤ u ≤ v, the plateau of u contains the BR(x0).

Remark 4.2. Note that the inequality (4.6) has to be strict. For example,
if

w(x) := Υ|x− x0|
4

3−γ

then

lim sup
|x|→∞

w(x)

|x− x0|
4

3−γ

= Υ,

but w is not identically zero.

5. Non-degeneracy and porosity

In this section we show that once

f(δt) ≥ Nδγf(t) ≥ 0, (5.1)

with N > 0, γ ∈ [0, 3), t > 0 bounded, and δ > 0 small enough, then across
the free boundary non-negative viscosity solutions of (1.1) grow exactly as

r
4

3−γ in the ball Br, for r > 0 small enough. As a consequence, we conclude
that the touching ground surface is a porous set, which implies that it has
Hausdorff dimension less than n, and so its Lebesgue measure is zero (see
[17]). We start by the following non-degeneracy theorem.
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Theorem 5.1. Let (5.1) hold. Let also f satisfy (1.3) or inf f > 0. If u
is a non-negative viscosity solution of (1.1), then there exists a universal
constant c > 0, depending only on dimension and γ, such that

sup
Br(x0)

u ≥ cr
4

3−γ ,

where x0 ∈ {u > 0} ∩Ω and 0 < r < dist(x0, ∂Ω).

Proof. Since u is continuous, it is enough to prove the theorem for points
x0 ∈ {u > 0} ∩ Ω. Set

v(x) := c|x− x0|
4

3−γ ,

with a constant c ∈ (0,Υ), where Υ > 0 is defined by (4.8). Using (5.1),
direct computation reveals that the choice of c makes v a viscosity super-
solution of (1.1) in Br(x0), where r > 0 is such that Br(x0) ⊂ Ω. If v ≥ u
on ∂Br(x0), then the comparison principle, Lemma 2.1, would imply v ≥ u
in Br(x0), contradicting to the fact that 0 = v(x0) < u(x0). Hence, there is
a point y ∈ ∂Br(x0) such that v(y) < u(y). We then estimate

sup
Br(x0)

u ≥ u(y) ≥ v(y) = cr
4

3−γ .

�

As a consequence, we obtain that the free boundary is a porous set, there-
fore it has Hausdorff dimension strictly less than n, hence its Lebesgue mea-
sure is zero.

Note that from (1.2) one has f(0) = 0, so to use the comparison principle,
Lemma 2.1, it is enough to assume that f is non-decreasing, that is, (1.3)
holds.

Corollary 5.1. Let (1.2), (1.3) and (5.1) hold. If u is a bounded non-
negative viscosity solution of (1.1), then ∂{u > 0} is a porous set.

Proof. Let x ∈ ∂{u > 0} and y ∈ Br(x) be such that

u(y) = sup
Br(x)

u.

By Theorem 5.1, u(y) ≥ cr
4

3−γ . On the other hand, Theorem 3.1 provides

u(y) ≤ C [d(y)]
4

3−γ ,

where d(y) := dist (y, ∂{u > 0}). Therefore,

( c

C

) 3−γ
4

r ≤ d(y).

Hence, if σ := 1
2

(
c
C

) 3−γ
4 , one has

B2σr(y) ⊂ {u > 0}.
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We now choose ξ ∈ (0, 1) such that for the point z := ξy+ (1− ξ)x we have
|y − z| = σr. Then

Bσr(z) ⊂ B2σr(y) ∩Br(x).

Moreover, we have

B2σr(y) ∩Br(x) ⊂ {u > 0},

which together with the previous inclusion implies

Bσr(z) ⊂ B2σr(y) ∩Br(x) ⊂ Br(x) \ ∂{u > 0},

that is, the set ∂{u > 0} is porous with porosity σ. �

Corollary 5.2. If (1.2), (1.3), (5.1) hold, and u is a viscosity solution of
(1.1), then Lebesgue measure of the set ∂{u > 0} is zero.

6. The borderline case

Although, in general, one cannot expect more than C1,α regularity for
viscosity solutions of (1.1), Theorem 3.1 provides higher and higher regu-
larity across the free boundary, as γ ∈ [0, 3) gets closer to 3. In this section
we analyze the limit case of γ = 3. The scaling property of the operator
plays an essential role here, as γ = 3 is also the degree of homogeneity of the
infinity Laplacian, meaning that ∆∞(Cu) = C3∆∞u, for any constant C.
Observe that Theorem 3.1 cannot be applied directly, since the estimates
deteriorate as γ → 3. Thus, in this section (1.2) is substituted by

0 ≤ f(δt) ≤ Mδ3f(t), (6.1)

with M > 0, t > 0 bounded and δ > 0 small. Our first observation states
as follows.

Lemma 6.1. If u is a non-negative viscosity solution of (1.1), where f
satisfies (6.1), then its every zero is of infinite order.

Proof. This is a consequence of Theorem 3.1. To see that it is enough to
rewrite (1.2), for γ = 3, as

f(δt) ≤ Mδδ
3−βf(t),

where Mδ := Mδβ and β > 0. An application of Theorem 3.1 with M = Mδ

leads to the conclusion that if u(z) = 0 for z ∈ Ω, then Dnu(z) = 0,
∀n ∈ N. �

Furthermore, we show that if a non-negative viscosity solution of (1.1)
vanishes at a point, then it must vanish everywhere. For f ≡ 0 this follows
from the Harnack inequality. The particular case, when f is homogeneous
of degree three, that is, f(t) = Mt3, was studied in [2], where by means
of a suitable barrier function, was concluded that if non-negative viscosity
solution vanishes in an inner point, then it has to vanish everywhere. Unlike
[2], our function f is not given explicitly, which makes the construction of a
suitable barrier function more complicated. Observe that once (6.1) holds,
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then f(0) = 0, hence inf f = 0, so to use the comparison principle, one needs
to assume that f is non-decreasing.

Theorem 6.1. Let u be a non-negative viscosity solution of (1.1), where f
satisfies (1.3) and (6.1). If {u = 0} ∩ Ω 6= ∅, then u ≡ 0.

Proof. We argue by contradiction, assuming that there is x ∈ Ω such that
u(x) = 0, but u(y) > 0 for a point y ∈ Ω. Without loss of generality we may
assume that

r := dist (y, {u = 0}) <
1

10
dist (y, ∂Ω) .

We aim to construct a sub-solution of (1.1) which stays below u on ∂Br(y).
Let w be an infinity sub-harmonic function in Br(y) such that |∇w| ≥ η

for η ≥ 0 constant to be chosen later. Such function can be built up as a
limit, as p → ∞, of p-super-harmonic functions with modulus of gradient
separated from zero by η. We refer the reader for details to [7].

Now if g is a smooth function and v = g(w), direct computation reveals
that

∆∞v =
[
g′(w)

]3
∆∞w +

[
g′(w)

]2
g′′(w)|∇w|4.

Thus, for g(t) = et + t,

∆∞v ≥
[
g′(w)

]2
g′′(w)|∇w|4, (6.2)

since g′ ≥ 1 and ∆∞w ≥ 0. Also g′′ ≥ e−‖w‖∞ > 0, and (6.2) yields (recall
that |∇w| ≥ η)

∆∞v ≥ µη, (6.3)

where µ := e−‖w‖∞ > 0. Choosing

η >
M

µ
max

[0,‖v‖∞]
f,

from (6.3) we obtain

∆∞v −Mf(v) ≥ ∆∞v − µη ≥ 0,

i.e., v is a sub-solution of (1.1). The latter together with (1.2) gives, for any
small constant δ > 0,

∆∞ (δv) − f (δv) ≥ δ3 (∆∞v −Mf(v)) ≥ 0,

that is, the function δv is also a sub-solution of (1.1). We choose δ > 0 small
enough to guarantee

δv(x) ≤ u(x), x ∈ ∂Br(y),

and by the comparison principle, Lemma 2.1,

δv(x) ≤ u(x), x ∈ Br(y). (6.4)

Observe, that writing (1.2) as

f(δt) ≤ Mδδ2f(t),
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and applying Theorem 3.1 with M̃ = Mδ, we arrive at

sup
Bd(z)

u ≤ Cd4, (6.5)

where z ∈ ∂Br(y) ∩ ∂{u > 0}, and d > 0 is small. In fact, we choose

0 < d <
(

δη
4C

) 1

3

. Using the fact that |∇v| = g′|∇w| ≥ η, recalling (6.4) and

(6.5) and the choice of d, we estimate

δηd ≤ sup
Bd(z)

δ|v(x) − v(z)| ≤ sup
Bd(z)

δv ≤ sup
Bd(z)

u ≤ Cd4 ≤
1

4
δηd,

which is a contradiction. �

7. Examples and beyond

We close the paper with some examples of the source term, for which our
results are valid. We start with the following remark.

Remark 7.1. The results in this paper remain true, without changes in the
proofs, when in (1.1) the right hand side has continuous (bounded) coeffi-
cients, i.e.,

∆∞u = f(x, u),

as long as f(x, u) satisfies (1.2) (and (1.3), (6.1) when needed) as a function
of u.

Note that f ≡ 0 satisfies (1.2), (1.3), (5.1), therefore, our results resemble
those for the non-negative infinity harmonic functions. Also, the results are
true when in (1.1) one has f(t) = tγ , t ≥ 0, γ ∈ [0, 3) (studied in [2]).
In view of Remark 7.1, we can allow some coefficients too, as long as they
remain bounded, that is, functions of the type f(x, t) = g(x)tγ , where g
is a non-negative continuous, bounded function. When in the last example
γ = 0, i.e., the source term depends only on x, f(x, t) = g(x), across the free

boundary one has C
4

3 regularity, once g(x) ≥ 0 is continuous and bounded.
Furthermore, the non-degeneracy result is true, and hence the free boundary
is a porous set and has zero Lebesgue measure.

An example of the source term, not constructed via power functions is
f(t) := et − 1, which satisfies (1.2) with M = 1 and γ = 0, since eδt < et,
for δ > 0 small and t > 0. Hence, applying Theorem 3.1 to

∆∞u = eu − 1,

we conclude that non-negative viscosity solutions of the above equation are

C
4

3 near the free boundary ∂{u > 0}. Moreover, if u is an entire solution of
the last equation, which vanishes at a point and

u(x) = o
(
|x|

4

3

)
, as |x| → ∞,

then Theorem 4.1 implies that it has to be identically zero.
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Same conclusion can be made when in (1.1) the source term is f(t) :=
log(t2 + 1). Of course, Theorem 3.1 can be applied also for any linear
combination (with continuous, bounded coefficients) of the above source
terms. In fact, Theorem 3.1 is true for any non-negative continuous function,
which is non-decreasing around zero and vanishes at the origin. We point
out that (1.2) (as well as (5.1) and (6.1)) is required to hold only around
zero, so Theorem 3.1 is true also for source terms that are any of the above
examples around zero and can be anything outside, while remaining non-
negative and continuous (and in case of Theorem 5.1 and its consequences,
also non-decreasing).

We finish with an application of Theorem 6.1. Let u be a non-negative
viscosity solution of

∆∞u = log
(
1 + u3

)
. (7.1)

Since f(t) = log(1 + t3) satisfies (1.2) with M = 1 and γ = 0, Theorem 4.1

implies C
4

3 regularity of u near the touching ground. On the other hand,
the function f(t) can be written as

log
(
1 + t3

)
= t3

log
(
1 + t3

)

t3
:= t3g(t).

Set g(0) = 1. Then g is continuous, bounded (0 ≤ g ≤ 1) function, and the
non-decreasing function f(t) = g(t)t3 satisfies (6.1) with M = 1. Applying
Theorem 6.1, we conclude that if u is a non-negative viscosity solution of
(7.1), which is zero at a point, then it must be identically zero.
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