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FULLY NONLINEAR INTEGRO-DIFFERENTIAL

EQUATIONS WITH DEFORMING KERNELS
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Abstract. We develop a regularity theory for integro-differential equa-
tions with kernels deforming in space like sections of a convex solution of
a Monge-Ampère equation. We prove an ABP estimate and a Harnack
inequality, and derive Hölder and C

1,α regularity results for solutions.
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1. Introduction

In stochastic control problems (see [18]), for example if, in a competitive
stochastic game, two players are allowed to choose from different strategies
at every step in order to maximize the expected value u(x) at the first
exit point of a domain, we encounter the fully nonlinear elliptic integro-
differential Isaacs equation

Iu(x) := inf
α

sup
β
Lαβu(x) = f(x), (1.1)

where

Lαβu(x) :=

∫

Rn

(u(x+ y) + u(x− y)− 2u(x))Kαβ
x (y) dy (1.2)

are generators of n-dimensional pure jump Lévy processes, those for which

diffusion and drift are neglected. The kernels Kαβ
x (y) measure the frequency

of jumps in the y direction at the point x. For a homogeneous medium, as
in [9, 10] for example, the kernel does not depend on x.

We are interested in this paper in the case of a slowly deforming medium

for which the level sets of the kernels Kαβ
x are sections of a convex solution
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φ of a Monge-Ampère equation. Set

vx(y) = φ(y)− φ(x)−∇φ(x) · (y − x), x, y ∈ R
n, (1.3)

and note that vx ≥ 0, since the graph of a convex function stays above
supporting hyperplanes.

We will study equation (1.1) for kernels in (1.2) that satisfy the bounds

(2− σ)λ

vx(y)
n+σ
2

≤ Kαβ
x (y) ≤

(2− σ)Λ

vx(y)
n+σ
2

, (1.4)

for constants Λ ≥ λ > 0 and σ ∈ (0, 2). We will assume that kernels are

symmetric, i.e., that Kαβ
x (y) = Kαβ

x (−y), but this is a purely technical
assumption, rendering the proofs simpler. The kernels in (1.4) may be very
degenerate, since the sections of φ are comparable to ellipsoids, which may
have very degenerate eccentricity (see [14], for example). The right hand
side of (1.1) is assumed to be a bounded and continuous function in R

n. The
case of φ(y) = |y|2 resembles the kernel of the fractional Laplacian and was
studied in [10], extending the notion of ellipticity by means of the relations

M−w(x) ≤ I(u+ w)(x) − Iu(x) ≤M+w(x),

where

M−u(x) := inf
L∈L

Lu(x)

and

M+u(x) := sup
L∈L

Lu(x)

are analogs of the extremal Pucci operators. Here L is the class of operators
of (1.2) type whose kernels satisfy (1.4).

The approach used in [10] is a non-local version of the strategy used in
[6]. In our case, the strong degeneracy of the kernels precludes the use of
standard covering arguments, a difficulty that can be overcome considering
the deformation of the kernels is driven by the Monge-Ampère geometry.
This is due to the fact that sections of a convex solution of a Monge-Ampère
equation enjoy an engulfing property: if two sections overlap, then by lifting
one by a universal constant, we engulf the other. After renormalization,
sections become comparable to balls (see [12, 14]) and this geometry allows
for a refinement of the known techniques in order to develop a regularity
theory.

The regularity theory in the classical non-variational approach (see [6])
heavily depends on the Aleksandrov-Bakelman-Pucci (ABP) estimate

sup
B1

u ≤ C(n)

(

∫

{Γ=u}∩B1

(f+)n

)1/n

,

where u is a viscosity subsolution of the maximal Pucci equation with (−f)
as the right-hand side, which is non-positive outside the unit ball B1, and
where Γ is the concave envelope of u in B3. The ABP estimate bridges the
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gap between a pointwise estimate and an estimate in measure. For u(0) ≥ 1,
it provides the bounds

1 ≤ C‖f‖∞|{Γ = u} ∩B1|
1/n ≤ C‖f‖∞|{u ≥ 0} ∩B1|

1/n,

where |E| stands for the n-dimensional Lebesgue measure of the set E.
We need a nonlocal version of the ABP estimate like the one in [9, 10]

but we are dealing with kernels which deform in space and we must have
some control over the deformation. It turns out that if the deformation is
driven by the Monge-Ampère geometry then the engulfing property of the
Monge-Ampère sections provides the needed environment to use a covering
lemma from [7] and obtain a variant of the ABP estimate. Once this is
achieved, we can use a variant of Calderón-Zygmund decomposition from
[8] to obtain the Harnack inequality and further regularity results. The
heart of the proof is to find the suitable geometry of the neighbourhoods of
the contact points within which there is a portion where a sub-solution u
stays quadratically close to the tangent plane of its concave envelope Γ and
such that, in smaller neighbourhoods, Γ has quadratic growth. This task, in
turn, requires a certain control over the deformation of sections, that allows
one to properly define a suitable concave envelope. We then conclude that
if a concave function stays below its tangent plane translated by −r (for a
given number r > 0) in a portion of an annulus of the unit section, then
Γ + r stays above its tangent plane in the interior section of the annulus.
Through the normalisation map, we ultimately extend the regularity theory
from [10] into the framework of slowly deforming kernels.

The paper is organized as follows: in Section 2, we list several known facts
about the behaviour of a convex solution of the Monge-Ampère equation. It
is also here that we define the analogs of the Pucci extremal operators in our
framework and state some preliminary results. Section 3 is devoted to the
ABP estimate. Using properties of the level sets of the kernels (sections of
a convex solution of the Monge-Ampère equation) and a covering argument
from [7], we get a version of the ABP estimate in a non-local setting with
slowly deforming kernels (Corollary 3.2 and Theorem 3.1). In Section 4,
we construct an auxiliary function which is a subsolution of the minimal
equation outside of a small section and is strictly positive in a larger section
(Lemma 4.2). This function is added to u in Section 5 to force the contact
set with Γ to stay inside intermediate normalized sections. In this way,
using a variant of Calderón-Zygmund decomposition from [8], we are able to
prove a variant of the so-called Lε estimate, which bridges the gap between
a pointwise estimate and an estimate in measure (Theorem 5.1), the main
step towards the Harnack inequality, which we prove in Section 6 (Theorem
6.1). Finally, as a consequence of the Harnack inequality, we derive Hölder
(Theorem 6.2) and C1,α (Theorem 6.3) regularity results for solutions.
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2. Preparatory material

In this section we list several known facts about the sections of a convex
solution of a Monge-Ampère equation (which can be found in [1, 3, 4, 5,
8, 12, 14, 15]; see also [17], where a non-local linearized Monge-Ampère
equation is treated, as well as [2, 11, 19] for a more comprehensive approach
to non-local equations) and also state some preliminary results.

2.1. Sections of a Monge-Ampère convex solution. To understand
the deformation of kernels, we need to look at the sections of a C2 convex
solution of the Monge-Ampère equation

detD2φ = g,

where 0 < g− ≤ g(x) ≤ g+ < ∞, x ∈ R
n, for constants g− and g+. A

section Sr(x) of φ is defined as

Sr(x) := {y : φ(y) < φ(x) +∇φ(x) · (y − x) + r2},

or, recalling (1.3),

Sr(x) = {y : vx(y) < r2}. (2.1)

Geometrically, it amounts to taking a supporting hyperplane at x and lifting
it by r2 to carve out the convex set Sr. These are the “balls of radius r”
in the Monge-Ampère geometry. The sections are “balanced” around the
point from which we lift, and we know precisely how the volume grows.
Before proceeding, we point out that our results depend upon the geometry
of Monge-Ampère sections and are valid for generic x and r rather than a
specific section. For simplicity, we will often omit the center of the section,
when it is not playing an essential role in the proofs.

The proof of following theorem can be found in [12, 14].

Theorem 2.1. There is an ellipsoid E of volume rn such that

cE ⊂ Sr(x) ⊂ CE,

where c and C are universal positive constants depending only on n.

Since E is an ellipsoid, there is an affine transformation T such that
T (E) = B1, and therefore

Bαn ⊂ T (Sr) ⊂ B1,

with Br being the ball of radius r centered at 0, and where αn is a positive
constant depending only on n. We will refer to T as a normalization map
that normalizes the section Sr, and to T (Sr) as a normalized section.

We list several properties of the sections for future reference. The first
fact is that sections of φ satisfy the engulfing property. More precisely, if
two sections of similar size overlap, a universal multiple of one engulfs the
other, indicating that they must have roughly the same shape. The proof
can be found in [12, 14].
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Theorem 2.2. There is a universal constant γ > 1 such that if y ∈ Sr(x),
then

Sr(x) ⊂ Sγr(y).

The next theorem provides a quantitative estimate on the size of nor-
malized sections. It states that if an affine map normalizes a section, then
all other sections with comparable height are still comparable to balls (see
[1, 12, 14] for the proof).

Theorem 2.3. Let T be an affine transformation that normalizes SR(x)
and r ≤ R. If

SR(x) ∩ Sr(y) 6= ∅,

then there exist positive constants K1, K2, K3, and ε, such that

BK2
r
R
(Ty) ⊂ T (Sr(y)) ⊂ BK1(

r
R
)ε(Ty),

and Ty ∈ BK3(0).

As a consequence of the previous theorem, we have a result on the defor-
mation of sections, the proof of which can be found in [7, 8, 12, 14].

Theorem 2.4. The following assertions hold:

(i) there exist C0 > 0 and p0 ≥ 1 such that whenever 0 < r < s ≤ 1,
t > 0 and x ∈ Srt(y), then

SC0t(s−r)p0 (x) ⊂ Sst(y);

(ii) there exist C1 > 0 and p1 ≥ 1 such that whenever 0 < r < s < 1,
t > 0 and x ∈ St(y) \ Sst(y), then

SC1t(s−r)p1 (x) ∩ Srt(y) = ∅;

and as a consequence

(iii) there exists δ > 0 such that whenever x ∈ S3t/4(y) \ St/2(y), then

Sδt(x) ⊂ St(y) \ St/4(y).

Also, for r > 0,

(iv) |Sr(x)| ≤ 2n|Sr/2(x)|;
(v) |Sr(x)| − |Sǫr(x)| ≤ n(1− ǫ)|Sr(x)|, for all ǫ ∈ (0, 1).

The following Besicovitch type covering lemma is from [7, Lemma 1]. It
plays an essential role in our analysis.

Lemma 2.1. If A ⊂ R
n is a bounded set and Sr(x), x ∈ A, r ≤ C for a fixed

constant C > 0, is a covering of A, then there is a countable subcovering
such that

(i) A ⊂
⋃∞

k=1 Srk(xk);
(ii) xk /∈

⋃

j<k Srj(xj), ∀k ≥ 2;
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(iii) for small ǫ > 0, the family {S(1−ǫ)rk(xk)}
∞
k=1 has bounded overlaps,

i.e., there exists a universal constant M > 0 such that
∞
∑

k=1

χSrk(1−ǫ)(xk)(x) ≤M log
1

ǫ
,

where χE is the characteristic function of the set E.

The next covering lemma is from [8, Theorem 3]. It is a variant of the
Calderón-Zygmund decomposition and is used to derive the so-called Lε

estimate, giving access to the Harnack inequality.

Lemma 2.2. If A is an open, bounded set and θ ∈ (0, 1), then there exists
a family of sections {Srk(xk)}

∞
k=1 such that

(1) {xk}
∞
k=1 ⊂ A;

(2) A ⊂
∞
⋃

k=1

Srk(xk);

(3)
|A ∩ Srk(xk)|

|Srk(xk)|
= θ;

(4) |A| < c(θ)

∣

∣

∣

∣

∣

∞
⋃

k=1

Srk(xk)

∣

∣

∣

∣

∣

,

where c(θ) ∈ (0, 1) is a constant depending only on θ, but not on A nor the
family of sections.

We will make use of the normalization map to normalize sections when
needed. As the normalization of a section implies that all the other sections
are comparable to Euclidian balls, our results are valid for generic r, which
comes at the price of constants, depending upon the normalization map,
appearing in the estimates (see Theorem 6.2, for example).

2.2. Extremal operators. Note that when g ≡ 1, φ is a quadratic polyno-
mial, and we are back to the case of the fractional Laplacian, studied in [10].
We also point out that when λ = Λ = 1 in (1.4), we are in the framework of
the fractional non-local linearized Monge-Ampère equation, studied in [17].

Setting
δ(u, x, y) := u(x+ y) + u(x− y)− 2u(x),

Lαβ can be rewritten as

Lαβu(x) =

∫

Rn

δ(u, x, y)Kαβ
x (y) dy.

We now define the adequate class of test functions for our purposes.

Definition 2.1. A function ϕ is said to be C1,1 at a point x, and we write
ϕ ∈ C1,1(x), if there exist v ∈ R

n and M,η0 > 0 such that

|ϕ(x+ y)− ϕ(x)− v · y| ≤M |y|2,
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for every |x| < η0. A function ϕ is said to be C1,1 in a set Ω, and we write
ϕ ∈ C1,1(Ω), if it is C1,1 at every point in Ω, for a uniform constant M .

Since solutions of the Monge-Ampère equation with a bounded right-hand
side have quadratic growth when a section is normalized, the kernels in our
framework are a deformation of a kernel comparable to that of the fractional
Laplacian. Hence, throughout the paper, we will use the normalization map
to make sections comparable to Euclidean balls, and then change the vari-
ables back. In this way, we reproduce several properties in our framework.
However, this approach may result in the dependence of the constants ap-
pearing in the estimates on the normalization map (see the proof of Theorem
6.2 for details).

Remark 2.1. Let u ∈ C1,1(x) ∩ L∞(Rn), then Iu(x) ∈ R (see Remark 2.2
of [9]).

Definition 2.2. Let f be a bounded and continuous function in R
n. A

function u : Rn → R, upper continuous in Ω, is a viscosity subsolution of
the equation Iu = f , and we write Iu ≥ f , if whenever x0 ∈ Ω, Br(x0) ⊂ Ω,

for some r, and ϕ ∈ C2(Br(x0)) satisfies

ϕ(x0) = u(x0) and ϕ(y) > u(y), ∀y ∈ Br(x0) \ {x0},

then, if we let

v :=







ϕ in Br(x0)

u in R
n \Br(x0),

we have Iv(x0) ≥ f(x0).
A viscosity supersolution is defined analogously and a function is called a

viscosity solution if it is both a viscosity subsolution and a viscosity super-
solution.

Remark 2.2. Functions which are merely C1,1 at a contact point x can be
used as test functions in the definition of viscosity solution (see Lemma 4.3
in [10]).

Let L be the collection of linear operators Lαβ satisfying (1.4). We define
the maximal and minimal operators (the Pucci analogs) with respect to the
class L as

M+u(x) := sup
L∈L

Lu(x)

and

M−u(x) := inf
L∈L

Lu(x).

By definition, if M+u(x) <∞ and M−u(x) <∞, we have the simple forms

M+u(x) = (2− σ)

∫

Rn

Λδ+ − λδ−

vx(y)
n+σ
2

dy
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and

M−u(x) = (2− σ)

∫

Rn

λδ+ − Λδ−

vx(y)
n+σ
2

dy,

where δ+ and δ− are, respectively, the positive and negative parts of δ.

Definition 2.3. The operator I is called elliptic with respect to the class L
of integro-differential operators, if

• Iu(x) is well defined for all u ∈ C1,1(x), u bounded;
• Iu ∈ C(Ω) once u ∈ C2(Ω);
• M−(u − v)(x) ≤ Iu(x) − Iv(x) ≤ M+(u − v)(x), for any bounded
functions u and v which are C1,1 at x.

We close this section by recalling several results, the proofs of which can be
derived as in [10]. The first result says that if u can be touched from above,
at a point x, with a paraboloid, then Iu(x) can be evaluated classically.

Lemma 2.3. If Iu ≥ f in Ω, and ϕ ∈ C2 touches u from above at a point
x ∈ Ω, then Iu(x) is defined in the classical sense, and Iu(x) ≥ f(x).

Another important result is the continuity of Iv in Ω, if v ∈ C1,1(Ω).

Lemma 2.4. If v is a bounded function in R
n, which is C1,1 in some open

set Ω, then Iv ∈ C(Ω).

Although in general one can not compare two solutions at a given point,
since they may not have the required behaviour simultaneously, it is possible
to show (see [10, Section 5]) that the difference of a subsolution of the max-
imal operator and a supersolution of the minimal operator is a subsolution
of the maximal operator.

Lemma 2.5. If Ω is an open, bounded set, and u and v are bounded func-
tions in R

n such that

(1) u is upper-semicontinuous, v is lower-semicontinuous in Ω;
(2) Iu ≥ f , Iv ≤ g in the viscosity sense in Ω with f , g continuous,

then

M+(u− v) ≥ f − g in Ω

in the viscosity sense.

As in [10], Lemma 2.5 leads to the following comparison principle.

Theorem 2.5. Let I be elliptic with respect to a class L, Ω ⊂ R
n be a

bounded open set, u, v be bounded functions in R
n such that u is upper

semi-continuous in Ω and v is lower semi-continuous in Ω. If Iu ≥ f and
Iv ≤ f in Ω, where f is continuous, and u ≤ v in R

n \Ω, then u ≤ v in Ω.

The existence of a solution for the Dirichlet problem then follows from the
comparison principle, by constructing suitable barriers and using Perron’s
method (see [16]).
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3. The ABP estimate

In this section we prove a version of the ABP estimate, which will give
access to the regularity theory. We start with the following proposition,
which then allows one to properly define a suitable concave envelope for
functions.

Proposition 3.1. Let γ > 1 be the engulfing constant from Theorem 2.2.
If x ∈ S1(0), then there exists a constant τ > γ such that whenever either
x+ y or x− y is not in Sτ (0), then both of them are not in S1(0).

Proof. Let x + y /∈ Sτ (0), for some τ > γ to be chosen later. We want
to show that x − y /∈ S1(0). We argue by contradiction and assume that
x − y ∈ S1(0). By the engulfing property, Theorem 2.2, this implies that
S1(0) ⊂ Sγ(x− y), and therefore

Sγ(x− y) ∩ Sτ (0) 6= ∅,

since they both contain S1(0). If T is an affine transformation that normal-
izes the section Sτ (0), i.e.,

Bαn ⊂ T (Sτ (0)) ⊂ B1,

then from Theorem 2.3 we obtain that

T (Sγ(x− y)) ⊂ BK1(
γ
τ
)ε(Tx− Ty),

for some positive constants K1 and ε. Since 0 ∈ Sγ(x − y), the above
inclusion then gives

|Tx− Ty| < K1

(γ

τ

)ε
.

Similarly, since also x ∈ Sγ(x− y), then the above inclusion provides

|Ty| < K1

(γ

τ

)ε
,

hence

|Tx| < 2K1

(γ

τ

)ε
.

Combining the last two inequalities, we obtain

|Tx+ Ty| < 3K1

(γ

τ

)ε
.

On the other hand, since x+ y /∈ Sτ (0), then Tx+ Ty /∈ Bαn , i.e.,

|Tx+ Ty| ≥ αn.

By choosing τ > γ
(

3K1
αn

)1/ε
, we get a contradiction. The other case is

proved analogously. �

Hereafter, we will assume that τ > γ is as in Proposition 3.1. Whenever
the center of a section is the origin, we will omit it, i.e., we will write Sr
instead of Sr(0).
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Let u be a non-positive function outside the section S1. The concave
envelope of u is defined by

Γ(x) :=

{

min {p(x) : p is a plane and p ≥ u+ in Sτ} in Sτ
0 in R

n \ Sτ .

Lemma 3.1. Let u ≤ 0 in R
n \ S1 and Γ be its concave envelope. If

M+u(x) ≥ −f(x) in S1, then there is a constant C0 > 0, depending only
on λ and n (but not on σ), such that, for any x ∈ {u = Γ} ∩ S1 and any
M > 0, there exists k such that

|Wk(x)| ≤ C0
f(x)

M
|Rk(x)|,

where Rk(x) = Srk(x) \ Srk+1
(x), rk = 2−1/(2−σ)−k and

Wk(x) := Rk(x) ∩
{

y : u(y) < u(x) +∇Γ(x) · (y − x)−Mr2k
}

.

Here ∇Γ stands for any element of the superdifferential of Γ at x, which will
coincide with its gradient when Γ is differentiable.

Proof. Since u can be touched by the plane

Γ(x) +∇Γ(x) · (y − x)

from above at x, then from Lemma 2.3, M+u(x) is defined classically, and
we have

M+u(x) = (2− σ)

∫

Rn

Λδ+ − λδ−

v
n+σ
2

x (y)
dy.

Note that δ(u, x, y) = u(x+y)+u(x−y)−2u(x) ≤ 0, whenever x ∈ {u = Γ}.
In fact, if both x−y and x+y are in Sτ , then δ ≤ 0, since u(x) = Γ(x) = p(x)
for some plane p that remains above u in the whole section Sτ . On the other
hand, if either x− y or x+ y is not in Sτ , then by Proposition 3.1 both are
not in S1, and thus u is non-positive at those points. Hence, in any case,
δ ≤ 0, and therefore

−f(x) ≤M+u(x) = (2− σ)

∫

Rn

−λδ−

vx(y)
n+σ
2

dy

≤ (2− σ)

∫

Sr0 (x)

−λδ−

vx(y)
n+σ
2

dy,

where r0 = 2−1/(2−σ). Now, splitting the integral in the sections and reor-
ganizing terms, we obtain

f(x) ≥ (2− σ)λ

∞
∑

k=0

∫

Srk
(x)\Srk+1

(x)

δ−

vx(y)
n+σ
2

dy,

which, together with (2.1), provides

f(x) ≥ (2− σ)λ
∞
∑

k=0

∫

Rk(x)

δ−

rn+σ
k

dy. (3.1)
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Note that since x ∈ {u = Γ}, then

Wk(x) ⊂ Rk(x) ∩ {z : −δ > 2Mr2k}. (3.2)

But δ ≤ 0 and so −δ = δ−. From (3.1)-(3.2), we then have

f(x) ≥ 2Mλ(2 − σ)

∞
∑

k=0

r2−n−σ
k |Wk(x)|. (3.3)

Suppose now the conclusion of the lemma is false. Then (3.3) implies

f(x) ≥ 2λC0(2− σ)f(x)

∞
∑

k=0

r2−n−σ
k |Rk(x)|. (3.4)

Using Theorem 2.1, we estimate

|Rk(x)| ≥ crnk ,

where c > 0 is a universal constant. Combining the latter with (3.4), we
deduce

f(x) ≥ 2λ(2− σ)C0cf(x)
∞
∑

k=0

r2−σ
k

≥ C(2− σ)
1

1− 2−(2−σ)
C0f(x)

≥ CC0f(x),

where the last inequality holds because (2−σ)/(1−2−(2−σ)) remains bounded
below for σ ∈ (0, 2). The constant C > 0 depends only on λ, n but not on
σ. By choosing C0 large enough, we obtain a contradiction. �

Remark 3.1. Note that if M+u(x) ≥ g(x), then u 6= Γ in {g > 0}.

The next lemma reveals that Lemma 3.1 implies a uniform quadratic
detachment of Γ from its tangent plane in a smaller section.

Lemma 3.2. Let r ∈ (0, 1), Γ be a concave function in Sr(x) and h > 0.
There exists ε0 > 0 such that, if

∣

∣

(

Sr \ Sr/2
)

(x) ∩ {y : Γ(y) < Γ(x) +∇Γ(x) · (y − x)− h}
∣

∣

≤ ε
∣

∣Sr \ Sr/2
∣

∣ ,

for 0 < ε ≤ ε0, then

Γ(y) ≥ Γ(x) +∇Γ(x) · (y − x)− h,

in the whole section Sr/2(x).

Proof. Let y ∈ Sr/2(x). Using Theorem 2.4, we conclude that there exist
two points z1 and z2 in Sr(x) \ Sr/2(x) such that the sections Scr(z1) and
Scr(z2) are contained in the ring Sr(x) \ Sr/2(x), for some constant c > 0.
Moreover, we can choose these points such that y = αz1+(1−α)z2 for some
α ∈ (0, 1). If ε0 is small enough, then at those points one has

Γ(z1) ≥ Γ(x) +∇Γ(x) · (z1 − x)− h
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and

Γ(z2) ≥ Γ(0) +∇Γ(x) · (z2 − x)− h.

The concavity of Γ then gives

Γ(y) ≥ αΓ(z1) + (1− α)Γ(z2) = Γ(x) +∇Γ(x) · (y − x)− h.

�

Corollary 3.1. Let u be as in Lemma 3.1 and r0 = 2−1/(2−σ). Under the
hypothesis of Lemma 3.1, for every ε > 0, there exist C = C(n, ε) > 0 and
r ∈ (0, r0) such that

∣

∣(Sr \ Sr/2)(x) ∩ {y : u(y) < u(x) +∇Γ(x) · (y − x)− Cf(x)r2}
∣

∣

≤ ε
∣

∣Sr \ Sr/2
∣

∣

and

|∇Γ(Sr/4(x))| ≤ Cf(x)n|Sr/4(x)|.

Proof. By taking M = C0f(x)/ε in Lemma 3.1, we obtain the first estimate
with C = C1 := C0/ε. Moreover, since u(x) = Γ(x) and u(y) ≤ Γ(y), for
y ∈ Sr(x), one has
(

Sr \ Sr/2
)

(x) ∩
{

y : Γ(y) < Γ(x) +∇Γ(x) · (y − x)− C1f(x)r
2
}

⊂Wr(x),

where

Wr(x) :=
(

Sr \ Sr/2
)

(x)∩
{

y : u(y) < u(x) +∇Γ(x) · (y − x)− C1f(x)r
2
}

.

Set

F (y) := Γ(y)− Γ(x)−∇Γ(x) · (y − x) + C1f(x)r
2.

From Lemma 3.2 and the concavity of Γ, we have

0 ≤ F (y) ≤ C1f(x)r
2, ∀y ∈ Sr/2(x). (3.5)

Since F is concave and

∇F (y) = ∇Γ(y)−∇Γ(x),

using (3.5), we obtain the bound

|∇Γ(y)−∇Γ(x)| ≤ C2f(x)r
2, ∀y ∈ Sr/4(x),

for a constant C2 > 0. Therefore,

∇Γ(Sr/4(x)) ⊂ BC2f(x)r2(∇Γ(x))

and, estimating the measures of these sets and using Theorem 2.1, we obtain,
with α(n) denoting the volume of the unit ball and observing that r2 < r,

|∇Γ(Sr/4(x))| ≤ α(n)Cn
2 f(x)

nr2n ≤ C3f(x)
n
∣

∣Sr/4(x)
∣

∣ ,

for a constant C3 > 0. Taking C = max{C1, C3}, we conclude the proof. �

We then derive a lower bound on the volume of the union of the sections
Sr, where Γ (and u) detaches quadratically from its tangent plane.



FULLY NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS 13

Corollary 3.2. For each x ∈ Σ := {u = Γ} ∩ S1, let Sr(x) be the section
obtained in Corollary 3.1. Then

C(supu)n ≤

∣

∣

∣

∣

∣

⋃

x∈Σ

Sr(x)

∣

∣

∣

∣

∣

.

Proof. Using Lemma 2.1, we cover Σ by sections Sr with bounded overlaps.
Since Γ has quadratic growth in each section Sk of the covering, then from
Corollary 3.1 we have

|∇Γ(Sk)| ≤ C |Sk| ,

where C > 0 is a universal constant. Strictly speaking, the estimate is only
valid on the set Sr/4. A rigorous justification follows in the same manner as
in [19], as Lemma 4.5 is used to prove Lemma 4.1. Thus,

(supu)n = (supΓ)n ≤ C |∇Γ (Sτ )| = C |∇Γ (Σ)|

≤ C
∑

k

|∇Γ (Sk)|

≤ C
∑

k

|Sk| .

�

The next result is a consequence of Corollary 3.1, and provides the first
step towards the so-called Lε estimate.

Theorem 3.1. There exists a constant κ > 0 and a countable family of
sections {Si}

∞
i=1, with center xi ∈ Σ and height r

4 ≤ ri <
r
2 , where r ∈ (0, r0)

is as in Corollary 3.1, covering Σ and with bounded overlaps, such that

|∇Γ(Si)| ≤ C

(

max
Si

f

)n

|Si|

and
∣

∣

∣

∣

{

y ∈ κSi : u(y) ≥ Γ(y)− C

(

max
Si

f

)

r2i

}∣

∣

∣

∣

≥ µ |Si| ,

where the constants C > 0 and µ > 0 depend only on n, λ, Λ, but not on σ.

Proof. Using Lemma 2.1, we find the covering {Si(xi)}
∞
i=1 satisfying the

desired properties. We have Si ⊂ Sr/2(xi) and, by Theorem 2.4, there is a
constant κ > 0 such that

Sr(xi) ⊂ κSi.

Moreover, since Γ is concave, we also have

Γ(y) ≤ u(xi) +∇Γ(xi) · (y − xi).
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From Corollary 3.1 and the fact that ri and r are comparable (recall also
that the volume of Sr is comparable to rn), we obtain

∣

∣

∣

∣

{

y ∈ κSi : u(y) ≥ Γ(y)− C

(

max
Si

f

)

r2i

}∣

∣

∣

∣

≥
∣

∣

{

y ∈ κSi : u(y) ≥ u(xi) +∇Γ(xi) · (y − xi)− Cf(xi)r
2
}∣

∣

≥ (1− ε)
∣

∣Sr \ Sr/2
∣

∣

≥ µ |Si| .

�

4. An auxiliary function

In order to prove the Harnack inequality, one needs to show that under
the hypothesis of Lemma 3.1, u is non-negative, not just in a positive portion
of section S1, but in a positive portion of any middle-sized section centered
in a smaller section Sr ⊂ S1. Having in mind the localization of the contact
set, we construct a function which is a subsolution of the minimal equation
outside of a small section and is strictly positive in a larger section. This
function will later be added to u to force the contact set with Γ to stay
inside of the intermediate sections.

Lemma 4.1. For a given R > 1, there exist m > 0 and σ0 ∈ (0, 2) such
that the function

F (x) := min
(

2m, |x|−m
)

satisfies

M−F (x) ≥ 0,

for every σ ∈ (σ0, 2) and 1 ≤ |x| ≤ R. The constants m and σ0 depend only
on λ, Λ, R and dimension.

Proof. Without loss of generality, it is enough to prove the lemma for the
vector x = e1 = (1, 0, . . . , 0), since for every other point with |x| = 1 the
result will follow by rotation. If |x| > 1, one can consider the function

g(y) := |x|mF (|x|y) ≥ F (y)

and note that

M−F (x) = CM−g(x/|x|) ≥ CM−F (x/|x|) > 0,

for a constant C > 0. In order to prove the lemma for x = e1, we will use
the following elementary inequalities:

(a+ b)−q ≥ a−q

(

1− q
b

a

)

, (4.1)

(a+ b)−q + (a− b)−q ≥ 2a−q + q(q + 1)b2a−q−2, (4.2)
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where a > b > 0 and q > 0. Using (4.1) and (4.2) for |y| < 1
2 , we get

δ(F, e1, y) = |e1 + y|−m + |e1 − y|−m − 2

=
(

1 + |y|2 + 2y1
)−m/2

+
(

1 + |y|2 − 2y1
)−m/2

− 2

≥ 2
(

1 + |y|2
)−m/2

+m(m+ 2)y21
(

1 + |y|2
)−m/2−2

− 2

≥ m

(

−|y|2 + (m+ 2)y21 −
1

2
(m+ 2)(m + 4)y21 |y|

2

)

.

We choose m > 0 large enough to guarantee

(m+ 2)λ

∫

∂S1

y21 dσ(y)− Λ|∂S1| =: δ0 > 0. (4.3)

Then we make use of the above relation to estimate the part of the integral
in M−F (e1) over the set Sr (with r > 0 small). More precisely,

M−F (e1) = (2− σ)

∫

Sr

λδ+ − Λδ−

v
n+σ
2

x (y)
dy

+(2− σ)

∫

Rn\Sr

λδ+ − Λδ−

v
n+σ
2

x (y)
dy

≥ (2− σ)C

∫ r

0

λmδ0s
2 − 1

2m(m+ 2)(m+ 4)CΛs4

sn+σ
ds

−(2− σ)

∫

Rn\Sr

Λ
2m

v
n+σ
2

x (y)
dy

≥ cr2−σmδ0 −m(m+ 2)(m+ 4)C
2− σ

4− σ
r4−σ

−
2− σ

σ
C2m+1r−σ,

where c and C are positive constants (independent of σ). Note that we used
(4.3) to bound the first integral and the fact that 0 ≤ F (x) ≤ 2m to bound
the second. We finish the proof by choosing σ0 close enough to 2, so that
the factor (2−σ) forces the second and the third terms in the last inequality
to be very small to conclude

M−F (e1) ≥
1

2
cr2−σmδ0 > 0.

�

Arguing as in Corollary 9.2 of [10], with the obvious adaptations, we
obtain the following corollary.

Corollary 4.1. For any σ0 ∈ (0, 2) and r > 0, there exist m > 0 and s > 0
such that the function

F (x) = min
(

s−m, |x|−m
)
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is a subsolution, i.e.,

M−F (x) ≥ 0,

for all σ ∈ (σ0, 2) and |x| > r, where the constants m and s depend only on
λ, Λ and the dimension.

Corollary 4.2. For given r > 0, R > 1 and σ0 ∈ (0, 2), there exist s > 0
and m > 0 such that the function

g(x) := min
(

s−m, |T−1
r x|−m

)

satisfies

M−g(x) ≥ 0,

for x ∈ R
n \ Sr, where Tr is the normalization map of the section Sr.

Proof. Since

g(x) = F
(

T−1
r x

)

, for x ∈ R
n

and

M−g(x) = C|detTr|M
−F

(

T−1
r x

)

≥ 0,

for all x ∈ R
n \ Sr, the result follows from Corollary 4.1. �

We are now ready to construct the function which will later be added to
u to force the contact set with Γ to stay inside of the intermediate sections.

Lemma 4.2. For a given σ0 ∈ (0, 2), there exists a continuous function
ψ : Rn → R satisfying the following conditions:

• ψ = 0 in R
n \ S2τ ;

• ψ > 2 in Sτ ;
• M−ψ > −ϕ in R

n, for some positive function ϕ supported in S1/4

for every σ > σ0.

Above, τ > 0 is as in Proposition 3.1.

Proof. We prove the lemma by constructing the function ψ. Let s > 0 and
m > 0 be as in Corollary 4.1 with r = 1/4. Set

1

c
ψ(x) :=























0 in R
n \ S2τ

|T−1
1
4

x|−m − (2τ)−m in S2τ \ Ss

q in Ss,

where q is a quadratic paraboloid chosen such that ψ is C1,1 across ∂Ss.
The constant c is chosen such that ψ > 2 in Sτ . Since ψ ∈ C1,1(S2τ ), then
from Lemma 2.4, we have that M−ψ ∈ C(S2τ ). Corollary 4.1 then gives
M−ψ ≥ 0 in R

n \ S1/4, which completes the proof. �
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5. Towards the Harnack inequality

In this section we prove a lemma which bridges the gap between a point-
wise estimate and an estimate in measure. This is the main tool towards
the proof of the Harnack inequality, as in [6, 9, 10]. It is here that we will
make use of the function ψ from Lemma 4.2.

Lemma 5.1. Let σ ∈ (0, 2) and σ0 ∈ (0, σ). There exist constants ε0 > 0,
η ∈ (0, 1) and M > 1, depending only on σ0, λ, Λ and n, such that if, with
τ > 0 as in Proposition 3.1,

u ≥ 0 in R
n; inf

Sτ

u ≤ 1; M−u ≤ ε0 in S2τ ,

then

|{u ≤M} ∩ S1}| > η.

Proof. Note that if σ is far from 2, one can prove the lemma adapting the
ideas from [20], but as in [10] we argue differently to guarantee an estimate
that remains uniform as σ → 2.

Define ̺ := ψ − u, where ψ is the function from Lemma 4.2, and observe
that

M+̺ ≥M−ψ −M−u ≥ −ϕ− ε0.

Let now Γ be the concave envelope of ̺ in S4τ . Applying Theorem 3.1
(rescaled) to ̺, we get a family of sections Si such that

max
S2τ

̺ ≤ C|∇Γ(S2τ )|
1/n ≤ C

(

∑

i

|∇Γ(Si)|

)1/n

≤

(

C
∑

i

(max
Si

(ϕ+ ε)+)n|Si|

)1/n

≤ Cε0 + C

(

∑

i

(max
Si

(ϕ+)n|Si|

)1/n

,

with C > 0 constant. On the other hand, we have max
S2τ

̺ ≥ 1, since inf
Sτ

u ≤ 1

and ψ ≥ 2 in Sτ , and therefore

1 ≤ Cε0 + C

(

∑

i

(max
Si

(ϕ+)n|Si|

)1/n

.

Hence, if ε0 is small enough, one has

1

2
≤ C

(

∑

i

(max
Si

(ϕ+)n|Si|

)1/n

.
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Also, since suppϕ ⊂ S1/4,

1

2
≤ C





∑

Si∩S1/4 6=∅

|Si|





1/n

or else
∑

Si∩S1/4 6=∅

|Si| ≥ C. (5.1)

Also, the height of Si is bounded by 2−1/(2−σ) < 1. Hence, every time
Si intersects S1/4, one has κSi ⊂ S1/4, for κ > 0 as in Theorem 3.1. An
application of Theorem 3.1 then gives

∣

∣

{

y ∈ κSi : ̺(y) ≥ Γ(y)− Cr2i
}∣

∣ ≥ µ |Si| , (5.2)

and Cr2i < C. Observe that the family {κSi}, where Si ∩ S1/4 6= ∅, is an

open covering for
⋃

i Si and is contained in S1/2. By taking a subcovering
with bounded overlapping and using (5.1) and (5.2), one gets

∣

∣

{

y ∈ S1/2 : ̺(y) ≥ Γ(y)− C
}∣

∣

≥

∣

∣

∣

∣

∣

⋃

i

{y ∈ κSi : ̺(y) ≥ Γ(y)− C}

∣

∣

∣

∣

∣

≥ C1

∑

i

|{y ∈ κSi : ̺(y) ≥ Γ(y)− C}|

≥ C1c1.

Therefore, if l := max
S1/2

ψ, then

|{y ∈ S1/2 : u(y) ≤ l + C}| ≥ C1c1.

Hence, for M := l + C, noting that S1/2 ⊂ S1, one has

|{y ∈ S1 : u(y) ≤M}| ≥ C1c1,

which completes the proof. �

As a consequence, using a variant of Calderón-Zygmund decomposition
(Lemma 2.2), as in [8, Theorem 3], from Lemma 5.1 we get the following
result.

Theorem 5.1. Let z ∈ R
n, u ≥ 0 in R

n, inf
Sr(z)

u ≤ 1, M−u ≤ ε0 in S2τ (z).

There exist constants ρ ∈ (0, 1), C > 0 and ε > 0 such that

|{u > t} ∩ Sρ(z)| ≤ Ct−ε|Sr(z)|, ∀t > 0.

Here C and ε > 0 depend only on λ, Λ, g−, g
+ and n.
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Proof. As in [8, Theorem 4], it is enough to consider the case when section
Sr(z) is normalized and has unit parameter r = 1. Then the result follows
from the fact that, as in [8, proof of Theorem 4], using Lemma 5.1 and
Lemma 2.2, for Q and P large enough, one can construct a decreasing family
of sections Sk := Srk(z), k ∈ N ∪ {0}, with 1 = r0 > r1 > . . ., such that

∣

∣

∣

{

u > QP k+2
}

∩ Sk+1

∣

∣

∣ < c(θ)
∣

∣

∣

{

u > QP k+1
}

∩ Sk

∣

∣

∣ , k ∈ N,

where c(θ) < 1 is as in Lemma 2.2,

rk = 1−
k
∑

i=1

(

γ

(

H

QP i+1

)
1
ε

)
1
p

,

p > 1, and H is a structural constant. Passing to the limit as k → ∞, we
obtain

ρ := 1−
∞
∑

i=1

(

γ

(

H

QP i+1

) 1
ε

)
1
p

∈ (0, 1),

once P , Q are large enough.
Since c(θ) < 1, Lemma 2.2 then implies the result for the section Sρ(z).

�

6. The Harnack inequality and consequences

In this section, we prove the Harnack inequality for integro-differential
equations with kernels deforming like sections of a strictly convex solution
to a Monge-Ampère equation and, as a consequence, we derive Cα and C1,α

estimates for solutions. The Harnack inequality remains uniform as σ → 2.
We need the following auxiliary result.

Theorem 6.1. Let σ0 > 0, σ ≥ σ0 and C0 > 0. If u ≥ 0 in R
n, M−u ≤ C0,

M+u ≥ −C0 in S2τ , then there exists C > 0, depending on σ0 but not on
σ, such that

u(x) ≤ C(u(0) + C0) in Sρ/2,

where ρ is as in Theorem 5.1.

Proof. Without loss of generality, one can assume that u(0) ≤ 1 and C0 = 1
(otherwise divide by u(0) + C0). Take ε > 0 as in Theorem 5.1 and set
κ = n

2ε and

vθ(x) := θ(dist(x, ∂S1))
−κ, ∀x ∈ S1.

Let now θ0 > 0 be the minimum value of θ for which there holds u ≤ vθ
in S1. Note that there must be a point x0 ∈ S1 such that u(x0) = vθ0(x0)
(otherwise one would be able to take θ0 smaller). As in [10], the aim is to
show that θ0 can not be too large, i.e., that there exists C > 0 such that
θ0 < C.
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For that purpose, we estimate the portion of the section Sr(x0) covered by
{u < u(x0)/2} and by {u > u(x0)/2}, where r = d/2, d being the distance
of the point x0 to ∂S1. Theorem 5.1 provides

∣

∣

∣

∣

{

u >
u(x0)

2

}

∩ Sρ

∣

∣

∣

∣

≤ C

∣

∣

∣

∣

2

u(x0)

∣

∣

∣

∣

ε

= C2εθ−εdκε ≤ C1θ
−ε
0 rn.

On the other hand, |Sr(x0)| ≥ C2r
n, so

∣

∣

∣

∣

{

u >
u(x0)

2

}

∩ Sr(x0)

∣

∣

∣

∣

≤
C1

C2
θ−ε
0 |Sr(x0)|, (6.1)

which means that if θ0 is large, then the set {u > u(x0)/2} can cover only
a small portion of Sr(x0).

Our next task is to show that if θ0 is large, then the measure of the portion
of Sr(x0) covered by {u < u(x0)/2} does not exceed (1 − δ)|Sr(x0)|, for a
positive constant δ independent of θ0. This will lead to a contradiction,
hence θ0 must be bounded, and the result will follow.

Let h > 0 be so small that

dist(x, ∂S1) ≥ d−
hd

2
, ∀x ∈ Shr(x0),

and so, for every x ∈ Shr(x0), one has

u(x) ≤ vθ0(x) ≤ θ0

(

d−
hd

2

)−κ

≤ u(x0)

(

1−
h

2

)−κ

.

Therefore,

ω(x) :=

(

1−
h

2

)−κ

u(x0)− u(x) ≥ 0 in Shr(x0),

and M−ω ≤ 1. The latter follows from the fact that M+u ≥ −1. We would
like to apply Theorem 5.1 (rescaled) to ω, but we can not do so because ω
is not non-negative in the whole space, but just in Shr. This leads us to
consider the function a := ω+ instead, and estimate the change in the right
hand side due to the truncation error. We need to find an estimate forM−a
from above. For x ∈ R

n, we have

M−a(x)−M−ω(x)

2− σ
= λ

∫

Rn

δ+(a, x, y) − δ+(ω, x, y)

v
n+σ
2

x (y)
dy

+ Λ

∫

Rn

δ−(ω, x, y)− δ−(a, x, y)

v
n+σ
2

x (y)
dy

:= I1 + I2. (6.2)

Note that if δg := δ(g, x, y), then

δ+a = δω + ω−(x− y) + ω−(x+ y)

due to the elementary equality

ω+(x+ y) = ω(x+ y) + ω−(x+ y).
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Also,

δ+a ≥ δ+ω and δω = δ+ω − δ−ω ,

so we estimate

I1 = −λ

∫

{δ+a >δ+ω }

δ−ω

v
n+σ
2

x (y)
dy

+ λ

∫

{δ+a >δ+ω }

ω−(x+ y) + ω−(x− y)

v
n+σ
2

x (y)
dy

≤ Λ

∫

{δ+a >0}

ω−(x+ y) + ω−(x− y)

v
n+σ
2

x (y)
dy. (6.3)

Similarly,

I2 = Λ

∫

{δ−ω >0}∩{δ−a 6=δ−ω }

δ−ω − δ−a

v
n+σ
2

x (y)
dy

+ Λ

∫

{δ−ω =0}∩{δ−a 6=δ−ω }

ω−(x+ y) + ω−(x− y)

v
n+σ
2

x (y)
dy

≤ Λ

∫

{δ−ω >0}∩{δ−a 6=δ−ω }

−δω − δ−ω

v
n+σ
2

x (y)
dy. (6.4)

Observe that

−δ−ω − δ−a = 2ω(x)− (ω(x+ y) + ω(x− y))− δ−a

= 2ω(x)− [(ω+(x+ y) + ω+(x− y))

−(ω−(x+ y) + ω−(x− y))]

= −δa − δ−a + ω−(x+ y) + ω−(x− y)

= −δ+a + ω−(x+ y) + ω−(x− y). (6.5)

Using (6.4) and (6.5) we then get

I2 ≤ −Λ

∫

{δ−ω >0}∩{δ−a 6=δ−ω }

δ+a

v
n+σ
2

x (y)
dy

+ Λ

∫

{δ−ω >0}∩{δ−a 6=δ−ω }

ω−(x+ y) + ω−(x− y)

v
n+σ
2

x (y)
dy

≤ Λ

∫

{δ−a ≥0}

ω−(x+ y) + ω−(x− y)

v
n+σ
2

x (y)
dy. (6.6)
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Therefore, from (6.2), (6.3) and (6.6), one gets

M−a(x)−M−ω(x)

2− σ
≤ Λ

∫

Rn

ω−(x+ y) + ω−(x− y)

v
n+σ
2

x (y)
dy

= −2Λ

∫

{ω(x+y)<0}

ω(x+ y)

v
n+σ
2

x (y)
dy.

Moreover, by the definition of ω, for x ∈ Shr/2(x0) we have

M−a(x)−M−ω(x)

2− σ
≤ 2Λ

∫

ω(x+y)<0

−ω(x+ y)

v
n+σ
2

x (y)
dy

≤ 2Λ

∫

Rn\Shr(x0−x)

(

u(x+ y)−
(

1− h
2

)−κ
u(x0)

)+

v
n+σ
2

x (y)
dy.

Observe that if t > 0 is the largest value for which u(x) ≥ t(1− |4x|2), then
there must be a point x1 in a smaller section Sr such that u(x1) = 1−|4x1|

2.
Since u(0) ≤ 1, then t ≤ 1. Thus,

(2− σ)

∫

Rn

δ−(u, x1, y)

v
n+σ
2

x (y)
dy ≤ (2− σ)

∫

Rn

δ−(1− |4x1|
2, x1, y)

v
n+σ
2

x (y)
dy ≤ C,

where the constant C > 0 does not depend on σ. On the other hand, since
M−u(x1) ≤ 1, we find

(2− σ)

∫

Rn

δ+(u, x1, y)

v
n+σ
2

x (y)
dy ≤ C.

In particular, since u(x1) ≤ 1 and u(x1 − y) ≥ 0, we have

(2− σ)

∫

Rn

(u(x1 + y)− 2)+

v
n+σ
2

x (y)
dy ≤ C.

By assuming θ0 > 0 is large enough, we can suppose that u(x0) > 2. Writing

u(x+ y)−

(

1−
h

2

)−κ

u(x0) = u(x+ x1 + y − x1)−

(

1−
h

2

)−κ

u(x0),
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we estimate

2Λ(2− σ)

∫

Rn\Shr(x0−x)

(

u(x+ y)−
(

1− h
2

)−κ
u(x0)

)+

v
n+σ
2

x (y)
dy

≤ 2Λ(2− σ)

∫

Rn\Shr/2(x0−x)

(

u(x1 + y + x− x1)−
(

1− h
2

)−κ
u(x0)

)+

v
n+σ
2

x (y + x− x1)

·
v

n+σ
2

x (y + x− x1)

v
n+σ
2

x (y)
dy

≤ C(hr)−
n+σ
2 .

Hence, since

M−a =M−ω + (M−a−M−ω),

we finally conclude

M−a ≤ 1 + C(hr)−
n+σ
2 in Shr/2(x0),

where the constant C > 0 does not depend on σ. This allows to apply
Theorem 5.1 to a in Shr/2(x0). From Theorem 5.1 and the fact that

a(x0) =

(

(

1−
h

2

)−κ

− 1

)

u(x0),

one has
∣

∣

∣

∣

{

u <
u(x0)

2

}

∩ Shr/4(x0)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

{

a(x) > u(x0)

(

(

1−
h

2

)−κ

−
1

2

)}

∩ Shr/4(x0)

∣

∣

∣

∣

∣

≤ C
∣

∣Shr/4(x0)
∣

∣

[(

(

1−
h

2

)−κ

− 1

)

u(x0)

+
(

1 + C(hr)−
n+σ
2

)

(rh)σ
]ε
(

u(x0)

(

(

1−
h

2

)−κ

−
1

2

))−ε

≤ C
∣

∣Shr/4(x0)
∣

∣

[(

(

1−
h

2

)−κ

− 1

)

u(x0) + C1(hr)
−c(n)

]ε

·

(

u(x0)

(

(

1−
h

2

)−κ

−
1

2

))−ε

≤ C
∣

∣Shr/4(x0)
∣

∣

[(

(

1−
h

2

)−κ

− 1

)ε

+ h−c(n)εt−ε

]

, (6.7)
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where c(n) > 0 does not depend on σ. In order to get the last estimate in
(6.7), we used the inequalities

[(

(

1−
h

2

)−κ

−
1

2

)

u(x0) + C1(hr)
−c(n)

]ε

≤

(

(

1−
h

2

)−κ

−
1

2

)ε

uε(x0) + C1(hr)
−c(n)ε

and
(

1−
h

2

)−κ

−
1

2
≥

(

1−
h

2

)−n
ε

−
1

2
≥

1

2
,

for h > 0 sufficiently small, and also

C2h
−c(n)εu−ε(x0)

(

(

1−
h

2

)−κ

−
1

2

)−ε

≤ C3h
−c(n)εr−c(n)εu−ε(x0) ≤ C4h

−c(n)εθ−ε
0 dn(1−cε) ≤ C5h

−c(n)εθ−ε
0 .

We choose h > 0 small enough to guarantee

C|Shr/4(x0)|

(

(

1−
h

2

)−κ

− 1

)ε

≤ C|Shr/4(x0)|

(

(

1−
h

2

)− 2n
ε

− 1

)ε

≤
1

4
|Shr/4(x0)|. (6.8)

Observe that we can choose such h independently of θ0. Then, for this fixed
h, we take θ0 > 0 large enough to guarantee

C|Shr/4(x0)|h
−c(n)εθ−ε

0 ≤
1

4
|Shr/4(x0)|. (6.9)

Combining (6.7)-(6.9), we obtain
∣

∣

∣

∣

{

u <
u(x0)

2

}

∩ Shr/4(x0)

∣

∣

∣

∣

≤
1

4
|Shr/4(x0)|,

which implies, for θ0 > 0 large,
∣

∣

∣

∣

{

u >
u(x0)

2

}

∩ Shr/4(x0)

∣

∣

∣

∣

≥ c|Sr(x0)|,

which contradicts (6.1). �

As a consequence of the Harnack inequality, we obtain the Hölder regu-
larity of solutions.
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Theorem 6.2. Let σ0 > 0 and σ ∈ (σ0, 2). If u is a bounded function in
R
n such that

M−u ≤ C0 and M+u ≥ −C0 in S2τ (x0),

then there exists a positive constant α ∈ (0, 1), depending only on λ, Λ, σ0
and dimension, such that u ∈ Cα(Sρ/2) and

‖u‖Cα(Sρ/2(x0)) ≤ C

(

sup
Rn

|u|+ C0

)

,

for a constant C > 0, depending only on the norm of the normalization map
that normalizes the section Sγρ/2(x0), λ, Λ, σ0, C0 and dimension. Here the
constant τ > 1 is as in Proposition 3.1 and ρ ∈ (0, 1) as in Theorem 5.1,
and γ > 1 is the engulfing constant.

Proof. From the Harnack inequality, as in [13, Lemma 8.23], we conclude
that there exist C > 0 and α ∈ (0, 1) such that

oscSr(x0)u ≤ C

(

r

ρ

)α

max
Sρ(x0)

u, r < ρ.

Let x, y ∈ Sρ/2(x0) and Sr0(x) be the smallest section containing y. By the
engulfing property, Theorem 2.2, Sρ/2(x0) ⊂ Sγρ/2(x). Thus, y ∈ Sγρ/2(x),
hence r0 ≤ γρ/2, since Sr0(x) is the smallest section containing y. If T is the
affine transformation that normalizes the section Sγρ/2(x0), then arguing as
in [8, Section 4], we have

r0 ≤ 2γρ

(

2‖T‖

K2

)1/ε

|x− y|1/ε,

where K2 > 0 and ε > 0 are the constants appearing in Theorem 2.3. Thus,

|u(x)− u(y)| ≤ oscSr0(x)
u ≤

(

r0
ρ

)α

max
Sρ(x)

u ≤ C|x− y|α/ε max
Sρ(x)

u.

�

In order to prove the interior C1,α regularity of solutions one needs to
have an extra assumption on the kernels. The idea is to use Theorem 6.2 for
incremental quotients of the solution, but since we do not have a uniform
bound in L∞ for these incremental quotients outside of the domain, we
assume a modulus of continuity in measure for the kernel, to make sure that
faraway oscillations tend to cancel out. More precisely, for a given ̺ > 0,
we define the class L1 of the operators L with kernels K satisfying not only
(1.4), but additionally

∫

Rn\S̺

Kαβ
x (y)−Kαβ

x (y − h)

|h|
dy ≤ Υ, for |h| <

̺

2
. (6.10)

The proof of the next theorem is essentially the same as the one of Theorem
13.1 of [10], hence we will omit it.
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Theorem 6.3. Let σ0 > 0 and σ ∈ (σ0, 2). Let also the kernels Kαβ
x satisfy

(1.4) and (6.10). If u is a bounded function such that Iu = f in S2τ , then
there is a constant γ ∈ (0, 1), depending only on λ, Λ, σ0 and dimension,
such that u ∈ C1,γ(Sρ/2) and

‖u‖C1,γ (Sρ/2)
≤ C sup

Rn
|u|,

for a constant C > 0, depending only on the norm of the normalization
map of the section Sγρ/2(x0), λ, Λ, σ0, Υ and dimension. Here the constant
τ > 1 is as in Proposition 3.1 and ρ ∈ (0, 1) as in Theorem 5.1.
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