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Abstract. We study the categorical properties of preordered groups. We first give a description

of limits and colimits in this category, and study some classical exactness properties. Then we

point out a strong analogy between the algebraic behaviour of preordered groups and monoids,

and we apply two different recent approaches to relative categorical algebra to obtain some

homological properties of preordered groups.

1. Introduction

The categorical properties of topological groups, and more generally of topological models

of semi-abelian algebraic theories, have been studied in [3, 4]. This study allowed to under-

stand several algebraic and homological properties of these structures. Despite the similarities

in the topological flavour of the categories Top of topological spaces and Ord of preordered sets,

analogous techniques are not applicable to preordered groups. Indeed, an important difference

between topological groups and preordered ones is that the latter are not internal models in

Ord of the theory of groups, since the inverse map is not monotone, in general. Because of

this, several properties fail for preordered groups. For example, the category OrdGrp is not

protomodular in the sense of [5], which means that the (split) short five lemma does not hold.

In fact, a thorough study of the structure of split extensions in OrdGrp shows a great variety

of such structures: in some cases, it is possible to equip the domain of a split epimorphism with

uncountably many preorder structures that give rise to split extensions of preordered groups,

while in some others there is no compatible preorder.

The aim of this paper is to study the categorical properties of OrdGrp, following an ap-

proach which is necessarily different from the one of [3, 4]. First of all, from the properties of

the forgetful functors between OrdGrp and the categories Grp of groups and Ord, we obtain

a description of limits and colimits in OrdGrp, and we observe that there are two stable fac-

torization systems: (Epi, Regular Mono) and (Regular Epi, Mono). In particular, OrdGrp is

a regular category. Actually we can say more: it is normal, in the sense of [13], and efficiently

regular [7], although not Barr-exact [1].

Moreover, using the fact that the preorder relation is uniquely determined by the submonoid

of positive elements (called the positive cone), we get another forgetful functor, into the category

Moncan of monoids with cancellation, which has a left adjoint. This allows to identify a strong

similarity between the algebraic and homological behaviour of OrdGrp and of the category

Mon of monoids. In particular, two different relativizations of the classical categorical-algebraic

notions give interesting information when applied to OrdGrp. The first one is the objectwise

approach introduced in [22]: the idea is to identify, in a category with weak algebraic properties,

some “good” objects, which satisfy stronger properties. Such objects are called Mal’tsev and

.
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protomodular objects [22]. It was shown in [22] that the Mal’tsev objects and the protomodu-

lar objects in Mon are precisely the groups. Using this fact, we prove here that the Mal’tsev

objects and the protomodular objects in OrdGrp are precisely those preordered groups whose

submonoid of positive elements is a group or, in other terms, whose preorder relation is symmet-

ric. If we restrict our attention to strictly ordered groups, the “good” objects are the discrete

groups.

The second approach is the study of protomodularity with respect to a pullback stable class

of points (i.e. split epimorphisms with a fixed section), following [10]. Again, the first example

of this situation was observed in Mon, w.r.t. the class of Schreier points [21]. Here we identify

two suitable classes of points, one obtained by imposing that the restriction to the positive

cones is a Schreier point, the other by considering the internalization of the Schreier condition

in the category Mon(Ord) of internal monoids in Ord. With respect to both classes, OrdGrp

turns out to be an S-protomodular category (in the sense of [10]). This allows to extend the

homological results obtained in [10, 11] to OrdGrp.

2. On the category OrdGrp of preordered groups

We denote by OrdGrp the category whose objects are preordered groups, namely (not nec-

essarily abelian) groups G equipped with a preorder relation (i.e. a reflexive and transitive

relation) ≤ such that the group operation is monotone:

∀ a, b, c, d ∈ G, a ≤ c, b ≤ d ⇒ a+ b ≤ c+ d,

and whose arrows are monotone group homomorphisms.

It is well known that the preorder relation of a preordered group is completely determined by

the positive cone of G, which is the subset PG of positive elements of G, that are the elements

a ∈ G such that a ≥ 0:

Proposition 2.1. For a group G, to give a preorder relation ≤ on G such that (G,≤) ∈ OrdGrp

is equivalent to giving a submonoid PG of G which is closed under conjugation in G: for all

a ∈ PG and all b ∈ G, b+ a− b ∈ PG.

Proof. Suppose that (G,≤) ∈ OrdGrp and define PG = {a ∈ G | a ≥ 0}. It is clear that PG is

a submonoid of G closed under conjugation.

Conversely, let P be a submonoid of a group G closed under conjugation. We define a relation

≤ on G by putting:

a ≤ b ⇔ b− a ∈ P.

This relation is clearly reflexive. For transitivity, suppose that a ≤ b and b ≤ c. Then b−a, c−b ∈
P . Hence c− a = c− b+ b− a ∈ P and so a ≤ c. Moreover, the group operation is monotone.

Indeed, if a ≤ c and b ≤ d, then c − a, d − b ∈ P . Hence c + b − (a + b) = c − a ∈ P , so that

a+ b ≤ c+ b. Furthermore

c+ d− (c+ b) = c+ d− b− c ∈ P,

because d− b ∈ P and P is closed under conjugation. Hence c+ b ≤ c+ d. This concludes the

proof. �

We will denote preordered groups by X, Y , etc., using PX , PY , etc. for the corresponding

positive cones. It is immediate to see that a morphism f : X → Y in OrdGrp restricts to a
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monoid homomorphism PX → PY . Conversely, given groups G and H with submonoids M and

N closed under conjugation, a group homomorphism f : G → H whose restriction to M takes

values in N induces a morphism in OrdGrp between G and H with the preorders determined by

M andN , respectively. Hence, the category OrdGrp is isomorphic to the category whose objects

are pairs (G,M), where G is a group and M is a submonoid of G closed under conjugation, and

whose morphisms (G,M)→ (H,N) are group homomorphisms f : G→ H such that f(M) ⊆ N .

Remark 2.2. If a group G has only elements of finite order (in particular, if G is finite), then

every preorder ≤ which makes G a preordered group is symmetric, hence an equivalence relation.

Indeed, given a 6= 0, if a ≥ 0 then, by monotonicity of the group operation, every element of the

form na, with n ∈ N, is positive. Since a has finite order, its inverse is one of these elements,

hence −a is positive too. This means that the submonoid PG is a group, which is equivalent to

saying that the relation ≤ is symmetric.

Proposition 2.3. Consider the forgetful functors U1 : OrdGrp → Grp and U2 : OrdGrp →
Ord, with U1 forgetting the preorder and U2 the group structure. The functor U1 is topological

while U2 is monadic. We have therefore the following commutative diagram

OrdGrp
(topological) U1

yy

U2 (monadic)

%%
Grp

(monadic) | | %%

Ord

| | (topological)yy
Set

Proof. To show that U1 is a topological functor, let (fi : G→ Xi)i∈I be a family of group homo-

morphisms, with Xi, i ∈ I, preordered groups. Then PG = {y ∈ G | fi(y) ∈ PXi for every i ∈ I}
is a submonoid of G closed under conjugation, and this defines clearly the U1-initial lifting for

(fi). Topologicity of U1 gives that, with Grp, also OrdGrp is complete and cocomplete.

To show that U2 is monadic, we will use [14, Theorem 2.4].

(a) U2 has a left adjoint L2 : Ord→ OrdGrp: it sends a preorder A to the free group F(A) on

the set A, equipped with the preorder determined by the submonoid of F(A) obtained by closing

under addition and conjugation the set of the elements of the form b − a for all a, b ∈ A such

that a ≤ b.
(b) U2 reflects isomorphisms: given a morphism f : X → Y in OrdGrp, if U2(f) is an iso-

morphism in Ord then f is a bijective homomorphism and, for every x, x′ ∈ X, x ≤ x′ if and

only if f(x) ≤ f(x′). Therefore its inverse map is a monotone homomorphism, and so f is an

isomorphism in OrdGrp.

(c) OrdGrp has and U2 preserves coequalizers of all U2-contractible coequalizer pairs. First

recall that the functor | | : Grp→ Set is monadic. Given morphisms f, g : X → Y in OrdGrp

such that U2(f),U2(g) is a contractible pair in Ord, we know that the coequalizer q : Y → Q

in OrdGrp is preserved by U1, and so it is also preserved by | | · U1, since | | is monadic

and |U1(f)|, |U1(g)| are a contractible pair in Set. Therefore U2(q), as a split epimorphism that

coequalizes |U1(f)|, |U1(g)| in Set, is the coequalizer of U2(f),U2(g) in Ord. �

We collect below properties of OrdGrp that follow from this proposition.

Remark 2.4. (1) The functor U1 : OrdGrp→ Grp has both a left and a right adjoint. The

left adjoint L1 : Grp→ OrdGrp equips a group G with the discrete order: a ≤ b if and
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only if a = b. The right adjoint R1 : Grp → OrdGrp equips a group G with the total

relation: a ≤ b for all a, b ∈ G. It is immediate to see that both relations are compatible

with the group operation. In the first case, PG = {0}, while in the second one PG = G.

(2) OrdGrp is complete and cocomplete, as stated in the proof of Proposition 2.3.

(3) Limits are preserved by both forgetful functors. Therefore the product X × Y , of two

ordered groups X and Y , is the direct product of groups equipped with the relation ≤
given by:

(x1, y1) ≤ (x2, y2) ⇔ x1 ≤ x2 and y1 ≤ y2;

that is, PX×Y = PX × PY . Infinite products are obtained similarly. The equalizer of a

pair f, g : X → Y of parallel morphisms in OrdGrp is the equalizer in Grp equipped

with the preorder induced by the one of X.

(4) Colimits are preserved by U1 : OrdGrp→ Grp (but not by U2), so they are formed like

in Grp and equipped with the suitable preorder, as outlined next.

Coequalizers are easily described. Given a pair of morphisms f, g : X → Y , let

q : U1(Y ) → Q be the coequalizer in Grp of U1(f),U1(g). Putting PQ = q(PY ), it

is easy to check that PQ is a submonoid of Q closed under conjugation, hence it makes

(Q,PQ) a preordered group; and q : Y → (Q,PQ) is clearly a morphism in OrdGrp. The

universal property is easily checked.

Coproducts are a bit more difficult. Given two preordered groups X and Y , its co-

product is the free product of U1(X) and U1(Y ) in Grp equipped with the positive cone

obtained as the closure, under (internal) addition and conjugation, of the disjoint union

of PX and PY ; it can be, of course, also described as the intersection of all the sub-

monoids containing both PX and PY and closed under conjugation. Infinite coproducts

are obtained similarly.

(5) In OrdGrp a morphism f : X → Y is an epimorphism if and only if it is surjective: the

preservation of colimits by U1 and its faithfulness imply that U1 preserves and reflects

epimorphisms; therefore f is an epimorphism in OrdGrp if and only if U1(f) is an

epimorphism in Grp, that is, f is surjective. Regular monomorphisms in OrdGrp are

the morphisms f : X → Y that are injective with PX = f−1(PY ). It is easily seen that

(Epi, Reg Mono) is a stable factorization system in OrdGrp: every f : X → Y can be

factored as

X
f

//

e
''

Y,

(f(X), PY ∩ f(X))

m

77

and epimorphisms are pullback stable (just because surjective homomorphisms are pull-

back stable in Grp).

(6) As shown above, a morphism f : X → Y is a regular epimorphism if and only if it is

surjective and f(PX) = PY ; and f is a monomorphism exactly when it is an injective map.

It is easy to check that (Reg Epi, Mono) is a stable factorization system in OrdGrp.

Indeed, every f : X → Y can be factored as

X
f

//

e
&&

Y,

(f(X), f(PX))

m

88
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and regular epimorphisms are pullback-stable: consider the following pullback

X ×Y Z
π2 //

π1
��

Z

g

��
X

f
// Y,

where f is a regular epimorphism. If z ∈ PZ , then g(z) ∈ PY and so there exists x ∈ PX
with f(x) = g(z).

Proposition 2.5. The category OrdGrp is a regular category. Moreover, it is normal.

Proof. As stated above, OrdGrp is a (finitely) complete category with a stable factorization

system (Reg Epi, Mono), hence it is regular in the sense of Barr [1]. To show that it is normal

in the sense of Z. Janelidze [13], we observe that it is pointed and that, for every regular epi-

morphism f : X → Y , U1(f) is a regular epimorphism in Grp, hence a normal epimorphism in

Grp, and then, thanks to Remark 2.4.(4), f is a normal epimorphism in OrdGrp. �

Remark 2.6. The category OrdGrp is not Barr-exact [1]. Indeed, consider the following

equivalence relation:

Z× Z
p1 //

p2
// Z,〈1,1〉oo

where Z is equipped with the usual order and the positive cone of Z× Z is

P = {(x, x) | x ≥ 0}.

This is an equivalence relation in OrdGrp which is not effective, because the morphism 〈p1, p2〉,
which is the identity map as sets, is not an extremal monomorphism. However, OrdGrp is

efficiently regular (see [7], where the name used was effectively regular), namely if R is an

effective equivalence relation over an object X and T is another equivalence relation over X

which is a regular subobject j : T � R of R (i.e. j is a regular monomorphism in OrdGrp), then

T is itself effective. Indeed, T is a kernel pair of a morphism in Grp, since Grp is Barr-exact.

Moreover, being j a regular monomorphism in OrdGrp, PT = T ∩PR. The equivalence relation

R is effective in OrdGrp, hence PR = R ∩ PX×X , and so

PT = T ∩R ∩ PX×X = T ∩ PX×X ,

which proves that T is effective in OrdGrp.

Remark 2.7. From Remark 2.4 (6) it follows that a morphism f : X → Y in OrdGrp is an

extremal epimorphism (which is the same as a strong – or a regular – epimorphism) if and only

if it is an extremal epimorphism in Grp and its restriction to the positive cones is an extremal

epimorphism in Mon. However, the same is not true for pairs, or families, of morphisms, where

only one implication is true: if

X
f
// Y Z

g
oo

are morphisms in OrdGrp such that f and g are jointly strongly epimorphic in Grp and their

restrictions to the positive cones are jointly strongly epimorphic in Mon, then f and g are jointly

strongly epimorphic in OrdGrp. Indeed, suppose that f and g factor through a monomorphism
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m:

X
f
//

  

Y Z.
g

oo

~~
W

m

OO

Since f and g are jointly strongly epimorphic in Grp, we can assume that W = Y and that

m = idY . If PW 6= PY , then the restrictions of f and g to the positive cones would factor through

a proper inclusion PW → PY , and so they would not be jointly strongly epimorphic in Mon.

The converse implication is false, as the following example shows.

Example 2.8. Let Z be the group of integers with the usual order, namely PZ = N. Consider

the two coproduct inclusions in OrdGrp

Z
ι1 // Z+ Z Z.

ι2oo

ι1 and ι2 are clearly jointly strongly epimorphic in OrdGrp, but their restrictions to the positive

cones are not jointly strongly epimorphic in Mon, since the supremum of ι1(N) and ι2(N) is N+N,

which is not the positive cone of Z+Z, because N+N is not closed under conjugation in Z+Z.

Since closure under conjugation holds trivially in the abelian case, it is easily checked that

the result is true for abelian groups: when Y is an abelian group, a pair X
f
// Y Z

g
oo is

jointly strongly epimorphic in OrdGrp if and only if both its underlying group homomorphisms

in Grp and its restriction to the positive cones in Mon are so.

3. A special adjunction

The functor P : OrdGrp→Mon, which sends a preordered group to its positive cone, factors

through the category Moncan of monoids with cancellation: indeed, every submonoid of a group

satisfies both left and right cancellation properties. The functor P : OrdGrp →Moncan has a

left adjoint:

(A) Moncan

oGp
--

⊥ OrdGrp.
P

mm

It is obtained in the following way: given a monoid M with cancellation, we consider its group

completion Gp(M), i.e. the quotient of the free group F(M) on the underlying set of M w.r.t.

the normal subgroup generated by the elements of the form [a] + [b]− [a+ b] (see [15, 16, 17]).

Then we equip the group Gp(M) with the order induced by the positive cone PGp(M) which

is the smallest submonoid of Gp(M) containing ζM (M) and closed under conjugation, where

ζM : M → Gp(M) is the unit of the group completion adjunction. This clearly gives rise to

a preordered group, and this construction is functorial. Let us check that we actually get

an adjunction. Given a monoid M with cancellation and a preordered group X, a morphism

f : oGp(M) → X restricts to a monoid homomorphism PGp(M) → PX ; composing it with the

homomorphism M → ζM (M) ↪→ PGp(M), we obtain the desired homomorphism M → PX . Con-

versely, given a monoid homomorphism h : M → PX , we compose it with the inclusion of PX

into X, thus obtaining a homomorphism from M to the group X. By the universal property

of the group completion, this determines a unique group homomorphism f : Gp(M)→ X which

extends h. Such f is monotone: indeed, ζM (M) is contained in f−1(PX), and f−1(PX) is closed

under conjugation in Gp(M). Hence PGp(M) is contained in f−1(PX), and thus f(PGp(M)) ⊆ PX .
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So f : oGp(M)→ X is a morphism in OrdGrp. It is straightforward to check that these corre-

spondences are natural and inverse to each other.

The previous adjunction restricts to an adjunction between the category OrdAb of preordered

abelian groups and the category CMoncan of commutative monoids with cancellation:

CMoncan

oGp
--

⊥ OrdAb.
P

mm

In this case, the left adjoint oGp is much simpler: indeed, the group completion Gp(M) of a com-

mutative monoid M with cancellation is the quotient of the direct product M ×M w.r.t. the

congruence ∼ defined by (a, b) ∼ (c, d) if and only if a+ d = b+ c. Moreover, M is a submonoid

of Gp(M) (since M is a monoid with cancellation) and, being Gp(M) abelian, M is closed under

conjugation in it, hence it is the positive cone of a compatible preorder on Gp(M). Thus, the

composite functor P ·oGp is isomorphic to the identity functor on CMoncan. In other terms, the

unit η of this adjunction is an isomorphism. Observe that the functor P is not faithful: given

any two abelian groups X and Y , equipped with the trivial order (i.e. PX = PY = 0), then any

group homomorphism from X to Y is monotone and it is sent by P to the trivial map 0→ 0.

For the larger adjunction (A), it is not true that the unit is an isomorphism. In fact, the

situation is much more complicated. Clearly, being embeddable in a group is a necessary con-

dition on a monoid M to have an isomorphism as the unit of the adjunction (A), and being

cancellative is not enough for a monoid to be embeddable in a group. Mal’tsev gave in [16, 17]

a characterization of embeddable monoids (see also Chapter VII of [12] for a description of such

monoids). Here we are only interested in the study of those embeddable monoids.

Proposition 3.1. If a monoid M is the positive cone of a preordered group, then M = PoGp(M).

Proof. We start by observing that, if a monoid is embeddable in a group, then it is embed-

dable in its group completion. Consider then the following commutative diagram of monoid

homomorphisms:

M
ηM //

f ##

Gp(M)

h
��
H,

where H is a group and f is injective. Then h is injective, too. Indeed, since h is injective when

restricted to M and a generic element of Gp(M) is an equivalence class of chains of the form

m1 −m2 +m3 + . . .−mk, injectivity of h follows by induction on the length of the chain.

Now, if M = PH for a preordered group H, then the injective morphism h : oGp(M) → H

restricts to an injection PoGp(M) →M = PH . Since M ⊆ PoGp(M), the proof is complete. �

Proposition 3.2. Given a monoid M which is embeddable in a group, the component ηM : M →
PoGp(M) of the unit of the adjunction (A) is an isomorphism if and only if the following condition

is satisfied:

(B) ∀ a, b ∈M ∃ x, y ∈M such that a+ b = b+ x = y + a.

Proof. If M is the positive cone of oGp(M), then it is a submonoid closed under conjugation in

Gp(M). Hence, for all a, b ∈M the elements

y = a+ b− a and x = −b+ a+ b
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belong to M , and this gives Condition (B). Conversely, to prove that M is closed under conju-

gation in Gp(M), it suffices to conjugate an element a ∈ M with elements of the form b or −b,
with b ∈ M , because all elements in Gp(M) are chains of such. Now, supposing that Condition

(B) holds, we have:

a+ b = b+ x ⇒ −b+ a+ b = x ∈M ; a+ b = y + a ⇒ a+ b− a = y ∈M,

and this concludes the proof. �

The previous proposition actually gives a characterization of the monoids that are positive

cones of a preordered group. Indeed, we have the following

Corollary 3.3. A monoid M which is embeddable in a group is the positive cone of a preordered

group if and only if Condition (B) holds.

4. Algebraic properties of OrdGrp

Since a morphism in OrdGrp is an epimorphism if and only if it is surjective, hence if and

only if it is an epimorphism in Grp, we have that OrdGrp is a weakly Mal’tsev category [18],

which means that for every pullback of split epimorphisms as in the following diagram

A×Y C

πA

��

πC
// C

g

��

〈sg,1C〉oo

A

〈1A,tf〉

OO

f
// Y,

soo

t

OO

the morphisms 〈1A, tf〉 and 〈sg, 1C〉 are jointly epimorphic. In fact, this is a particular instance

of a more general context which is considered in [19, 20].

Actually, we have more: OrdGrp is weakly protomodular, which means that, for every split

epimorphism A
f
// B

soo with kernel k : X → A, k and s are jointly epimorphic. The proof that

a weakly protomodular category is weakly Mal’tsev is essentially the same as the proof that a

protomodular category is Mal’tsev (see, for example, [2]). Moreover, this explains why OrdGrp

is a normal category: indeed, as shown in [8], a weakly protomodular category is normal.

Furthermore

Proposition 4.1. OrdGrp is a unital category [6], i.e. for any two objects X and Y the

canonical morphisms 〈1, 0〉 : X → X×Y and 〈0, 1〉 : Y → X×Y are jointly strongly epimorphic.

Proof. Given X,Y, Z ∈ OrdGrp, consider the following commutative diagram

X
〈1,0〉

//

f ##

X × Y Y,
〈0,1〉
oo

g
{{

Z

m

OO

where m is a monomorphism. Being Grp unital, m is an isomorphism of groups; it only remains

to show that its inverse t is monotone. Suppose that (x, y) ≤ (x′, y′); then x ≤ x′ and y ≤ y′,

which implies that f(x) ≤ f(x′) and g(y) ≤ g(y′). But then

t(x, y) = f(x) + g(y) ≤ f(x′) + g(y′) = t(x′, y′).

�
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Proposition 4.2. OrdAb has biproducts.

Proof. We want to show that, for any X,Y ∈ OrdAb,

X
〈1,0〉

// X × Y Y
〈0,1〉
oo

is a coproduct diagram. Given morphisms f : X → Z and g : Y → Z, the (necessarily unique,

by unitality) morphism α which makes the following diagram commute:

X
〈1,0〉

//

f ##

X × Y

α
��

Y
〈0,1〉
oo

g
{{

Z

is just the composite X × Y
f×g
// Z × Z

mZ // Z , where mZ is the group operation of Z. �

The categories OrdGrp and OrdAb are not protomodular [5]. Indeed, if Z is the group of

integers with the usual order, we can equip the direct product Z×Z with (at least) two preorders:

the product one, given by

(x, y) ≤ (x′, y′) ⇔ x ≤ x′ and y ≤ y′,

and the (reverse) lexicographical one, given by

(x, y) ≤ (x′, y′) ⇔ y < y′ or y = y′, x ≤ x′.

Denoting by Z×p Z and Z×l Z the two corresponding ordered groups, we obtain a morphism of

split extensions in OrdGrp:

Z
〈1,0〉

// Z×p Z

1Z×Z
��

π2
// Z

〈0,1〉
oo

Z
〈1,0〉

// Z×l Z
π2
// Z

〈0,1〉
oo

whose middle component is not an isomorphism, because its inverse is not monotone. So the

Split Short Five Lemma does not hold in OrdGrp, nor in OrdAb.

In order to describe local categorical-algebraic properties of “good” objects in categories that

are not protomodular or Mal’tsev, in [22] some notions have been considered for objects. In

order to recall them, we first need the following

Definition 4.3. A point (i.e. a split epimorphism with a fixed section) A
f
// B

soo with kernel

k : X → A in a pointed finitely complete category is strong if k and s are jointly strongly

epimorphic. It is stably strong if every pullback of it along any morphism g : C → B is strong.

Definition 4.4 ([22]). An object Y of a finitely complete category C is

(1) a strongly unital object if the point Y × Y
π2
// Y

〈1,1〉
oo is stably strong;
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(2) a Mal’tsev object if, for every pullback of split epimorphisms over Y as in the following

diagram

A×Y C

πA

��

πC
// C

g

��

〈sg,1C〉oo

A

〈1A,tf〉

OO

f
// Y,

soo

t

OO

the morphisms 〈1A, tf〉 and 〈sg, 1C〉 are jointly strongly epimorphic;

(3) a protomodular object if every point over Y is stably strong.

We observe that, in a unital category, an object is strongly unital if, and only if, it is gregarious

in the sense of [2], Definition 1.9.1. Proposition 1.9.2 in [2] gives a characterization of gregarious

(= strongly unital) objects in Mon: a monoid M is gregarious if and only if for any m in M

there exist u, v ∈ M such that u + m + v = 0. Every group is a gregarious monoid, of course,

but there are gregarious monoids that are not groups, as Counterexample 1.9.3 in [2] shows.

However, a crucial fact for our study of “group-like” objects in OrdGrp is the following

Lemma 4.5. If a monoid M is the positive cone of a preordered group, then it is gregarious if,

and only if, it is a group.

Proof. Suppose that, for any m in M , there exist u, v ∈M such that u+m+ v = 0. Thanks to

Corollary 3.3, we know that there exists y ∈M such that m+ v = y +m. Then u+ y +m = 0

and u+ y is a left inverse for m. Every element having a left inverse, M is a group. �

Now we can state and prove the main result of this section:

Theorem 4.6. For a preordered group Y , the following conditions are equivalent:

(i) Y is protomodular;

(ii) Y is a Mal’tsev object;

(iii) Y is strongly unital;

(iv) PY is a group, i.e. the preorder relation on Y is an equivalence relation.

Proof. (iv) ⇒ (i): given a diagram in OrdGrp as

(C) K

��

k // B ×Y X

f ′

��

h′ // X

f
��

0 // B

〈1B ,sh〉

OO

h
// Y,

s

OO

being Grp a protomodular category, we already know that k and 〈1B, sh〉 are jointly strongly

epimorphic in Grp. So, thanks to Remark 2.7, it suffices to show that their restrictions to the

positive cones are jointly strongly epimorphic in Mon. Consider then the following diagram:

PK

��

k // PB×YX

f ′

��

h′ // PX

f

��
0 // PB

〈1B ,sh〉
OO

h
// PY

s

OO

(using the same notations for the restrictions to the positive cones). The functor P preserves lim-

its, hence the two downward squares are still pullbacks. Since PY is a group, it is a protomodular

object in Mon ([22], Theorem 7.7). Then the thesis follows.
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(i) ⇒ (ii) follows from Proposition 7.2 in [22].

(ii) ⇒ (iii) follows from Proposition 6.3 in [22], being OrdGrp a regular category.

(iii)⇒ (iv): thanks to Lemma 4.5, it suffices to prove that PY is a gregarious monoid. Suppose

that there is an element b ∈ PY for which there are no u, v ∈M with u+ b+ v = 0. Let X = 〈b〉
be the subgroup of Y generated by b, with the induced preorder, and j : X ↪→ Y the inclusion.

Observe that, for n ∈ N, nb = 0 if and only if n = 0 (otherwise there would exist u, v ∈M with

u+ b+ v = 0). Hence X, as a preordered group, is isomorphic to Z with its usual order, namely

PX = {nb | n ∈ N}. Consider then the following right-hand side pullback in OrdGrp:

Y
〈1,0〉

// Y ×X

1×j
��

π2
// X

〈j,1〉
oo

j
��

Y
〈1,0〉

// Y × Y
π2
// Y.

〈1,1〉
oo

We are going to prove that the positive cone of Y ×X is not the positive cone P generated by

C = {(c, 0) | c ∈ PY } ∪ {(nb, nb) | n ∈ N}.

To do that, we show that (0, b) /∈ P . The positive cone P is obtained by iteration of two steps,

using addition and conjugation. Formally, let C(0) = A(0) = C, and define, for k ∈ N,

A(k + 1) = {s+ t | s, t ∈ C(k)},

C(k + 1) = {w + s− w | s ∈ A(k + 1), w ∈ Y ×X}.
Then P =

⋃
k∈N

A(k) =
⋃
k∈N

C(k). Now we show, by induction, that if (c, b) ∈ P , then

c = y + u+ b+ v − y, for some y ∈ Y, u, v ∈ PY .

This is true for (c, b) ∈ C(0). If it is true for (c, b) ∈ C(k), then:

- if (a, b) ∈ A(k + 1), i.e.

(a, b) = (c1, b1) + (c2, b2)

for some (c1, b1), (c2, b2) ∈ C(k), then either b1 = b or b2 = b. Suppose b1 = b. Then

a = y + a1 + b+ a2 − y + c2 = y + a1 + b+ a2 + (−y + c2 + y)− y,

with −y + c2 + y ∈ PY . Hence (a, b) satisfies our claim. The case b2 = b is analogous.

- if (a, b) ∈ C(k + 1), i.e. a = z + c− z with (c, b) ∈ A(k + 1), then

a = z + y + a1 + b+ a2 − y − z,

and our claim is proved. Now, if the point Y ×X
π2
// X

〈j,1〉
oo is strong, then there is some

k ∈ N such that (0, b) ∈ A(k), and then, since

0 = y + a1 + b+ a2 − y,

with y ∈ Y, a1, a2 ∈ PY , we would get a1 + b+ a2 = 0, which is a contradiction.

�

The previous theorem shows, in particular, that OrdGrp is not a Mal’tsev category nor a

strongly unital one, since a finitely complete category is Mal’tsev (resp. strongly unital) if and

only if every object is Mal’tsev (resp. strongly unital); see [22].

We conclude this section by observing that, since the full subcategory of protomodular objects

in OrdGrp, i.e. the full subcategory whose objects are the preordered groups whose positive
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cone is a group, is closed under finite limits in OrdGrp, it is a protomodular category, thanks

to Corollary 7.4 in [22]. It is actually the category of the preordered groups such that the inverse

map is monotone, hence it is the category Grp(Ord) of internal groups in Ord.

5. A study of split extensions in OrdGrp

In order to understand better the protomodular aspects of OrdGrp, we will analyse the

structure of split extensions in this category.

Let X
k // A

p
// B

soo be a split extension in OrdGrp. Being also a split extension in

Grp, we have that A, as a group, is isomorphic to the semidirect product X oϕ B w.r.t. the

action ϕ of B on X given by ϕb(x) = k−1(s(b) + k(x)− s(b)); more precisely, in Grp the given

split extension is isomorphic to the split extension X
〈1,0〉

// X oϕ B
πB
// B.

〈0,1〉
oo In addition, if we

consider the corresponding group action ϕ : B → Aut(X) described above, we obtain that

ϕb : X → X is monotone for every b ∈ B,

because the positive cone of A is closed under conjugation.

Throughout this section, for a given split extension

(D) X
〈1,0〉

// X oϕ B
πB
// B

〈0,1〉
oo

in Grp, with X and B preordered groups and ϕb : X → X monotone for every b ∈ B, we will

study the compatible preorders on X oϕ B, in the sense that they make X oϕ B a preordered

group and (D) a split extension in OrdGrp.

There are two possible “canonical” preorders on X oϕ B, namely:

• the product preorder, whose positive cone is Pprod = PX × PB,

• and the (reverse) lexicographical preorder, which is defined by:

(x, b) ≤ (x′, b′) ⇔ b < b′ or (b = b′ and x ≤ x′).

In other terms, the positive cone of the lexicographical preorder is

Plex = {(x, b) ∈ X oϕ B | b > 0 or (b = 0 and x ≥ 0)};

indeed (x, b) ≤ (x′, b′) with respect to the preorder induced by the positive cone Plex if,

and only if,

(x′, b′)− (x, b) = (x′, b′) + (−ϕ−b(x),−b) = (x′ − ϕb′−b(x), b′ − b) ∈ Plex,

which means either b < b′ or b = b′ and x′ − x ≥ 0, i.e. x ≤ x′.

As a first example consider the ordered group Z and the split extension Z
〈1,0〉

// Z× Z
π2
// Z.

〈0,1〉
oo

As we mentioned before, both the product the lexicographic preorders are compatible. We will

see in Example 5.8 that these are not the only compatible preorders.

However, in general the two preorders mentioned above are not always compatible. Before

giving some necessary and sufficient conditions for their compatibility, we observe they are the

lower and the upper bound, respectively, for every compatible preorder on X oϕ B:
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Proposition 5.1. If P is the positive cone of a compatible preorder on X oϕ B, then:

Pprod ⊆ P ⊆ Plex.

Proof. If x ≤ x′ and b ≤ b′, then (x, 0) ≤ (x′, 0) and (0, b) ≤ (0, b′), because 〈1, 0〉 and 〈0, 1〉 are

monotone maps. Thus

(x, b) = (x, 0) + (0, b) ≤ (x′, 0) + (0, b′) = (x′, b′).

This proves that PX × PB ⊆ P . Moreover, if (x, b) ≤ (x′, b) in X oϕ B, then (x, b) − (0, b) ≤
(x′, b)−(0, b), hence (x, 0) ≤ (x′, 0). Being 〈1, 0〉 : X → XoϕB a kernel in OrdGrp, this implies

that x ≤ x′. This shows that P ⊆ Plex. �

Now we give necessary and sufficient conditions for the product and the lexicographical pre-

orders to be compatible. We start with the product preorder.

Proposition 5.2. The product preorder is compatible if and only if:

(E) ∀ b ∈ PB, ∀x ∈ X ϕb(x) ≥ x.

Proof. PX × PB is a positive cone if and only if, for every (x1, b1), (x2, b2) ∈ PX × PB and every

(x, b) ∈ X oϕ B, the elements

(x2, b2) + (x1, b1) and (x, b) + (x1, b1)− (x, b)

belong to PX × PB. Since

(x2, b2) + (x1, b1) = (x2 + ϕb2(x1), b2 + b1) ∈ PX × PB,

due to monotonicity of ϕb2 , and

(x, b) + (x1, b1)− (x, b) = (x+ ϕb(x1) + ϕb+b1−b(−x), b+ b1 − b),

we have that PX × PB is a positive cone if and only if:

(F) ∀x ∈ X, ∀x1 ∈ PX , ∀b ∈ B, ∀b1 ∈ PB, x+ ϕb(x1) + ϕb+b1−b(−x) ∈ PX .

Since b + b1 − b ∈ PB (being PB closed under conjugation) and ϕb(x1) ∈ PX (because ϕb

is monotone), it is immediate to see that, under (E), Condition (F) is satisfied. Conversely,

assuming (F) and choosing b = 0 and x1 = 0 there, we get that x + ϕb1(−x) ∈ PX , i.e.

ϕb1(−x) ≥ −x for all x ∈ X and b1 ∈ PB, which is clearly equivalent to (E). �

Remark 5.3. It is immediate to see that the product preorder on a semidirect product X oϕB
is compatible if and only if the product projection πX : X oϕ B → X is a monotone map. We

recall that πX is a group homomorphism if and only if the action ϕ is trivial, i.e. the semidirect

product is actually a direct product. In this case, the product preorder is clearly compatible.

Concerning the lexicographical preorder, we have the following:

Proposition 5.4. (1) If the preorder on B is antisymmetric, then the lexicographical pre-

order on X oϕ B is compatible.

(2) If X has a non-positive element, then the lexicographical preorder on XoϕB is compatible

if, and only if, the preorder on B is antisymmetric.

Proof. We first show that the preorder on B is antisymmetric if, and only if, given b, b′ ∈ PB,

b > 0 implies b + b′ > 0. Indeed, supposing that PB has no non-trivial invertible elements, if

b + b′ = 0, then b′ = −b, and since b′ ∈ PB, this would give b′ = 0, and so b = 0. Conversely,
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if the preorder on B is not antisymmetric, then there exists b ∈ PB, b 6= 0, such that −b ∈ PB.

Choosing b′ = −b we get that b > 0 but b+ b′ = 0.

Now suppose that the preorder on B is antisymmetric. We recall that the positive cone of the

lexicographical preorder is:

Plex = {(x, b) ∈ X oϕ B | b > 0 or (b = 0 and x ≥ 0)}.

Clearly (0, 0) ∈ Plex. If (x, b), (x′, b′) ∈ Plex, then

(x, b) + (x′, b′) = (x+ ϕb(x
′), b+ b′) ∈ Plex,

since in the case b > 0 or b′ > 0 we have that b + b′ > 0, while in the case b = b′ = 0 we have

x+ ϕb(x
′) = x+ x′ ≥ 0. Finally, if (x, b) ∈ X oϕ B and (x′, b′) ∈ Plex, then

(x, b) + (x′, b′)− (x, b) = (x+ ϕb(x
′)− (ϕb+b′−b(x)), b+ b′ − b) ∈ Plex,

because b′ > 0 implies b + b′ − b > 0, while from b′ = 0 we get that (x + ϕb(x
′) − x, 0) ∈ Plex,

since 0 = ϕb(0) ≤ ϕb(x′) by monotonicity of ϕb, and PX is closed under conjugation in X.

Finally, suppose that there exists x ∈ X \ PX . If the preorder on B is not antisymmetric,

there is b ∈ PB, b 6= 0, such that −b ∈ PB. Then (x, b) and (0,−b) both belong to Plex, but

(x, b) + (0,−b) = (x, 0) does not. �

In general, there is no compatible preorder on X oϕB. In order to give a concrete counterex-

ample, we first observe that, when PB is a group, there is at most one compatible preorder:

Proposition 5.5. If PB is a group then there is at most one preorder structure on X oϕ B
making (D) a split extension in OrdGrp.

Proof. Saying that PB is a group is the same as saying that B is a protomodular object in

OrdGrp. So, supposing that there are two compatible preorder structures on X oϕ B, whose

positive cones are P and P ′, we get that the intersection P ∩P ′ is a positive cone of a compatible

preorder structure, and it is contained in both. Hence we get two monomorphisms i : (XoϕB,P∩
P ′) → (X oϕ B,P ) and i′ : (X oϕ B,P ∩ P ′) → (X oϕ B,P ′) through which 〈1, 0〉 and 〈0, 1〉
factor:

X
〈1,0〉

// (X oϕ B,P ∩ P ′)

i
��

πB
// B

〈0,1〉
oo

X
〈1,0〉

// (X oϕ B,P )
πB

// B,
〈0,1〉
oo

X
〈1,0〉

// (X oϕ B,P ∩ P ′)

i′

��

πB
// B

〈0,1〉
oo

X
〈1,0〉

// (X oϕ B,P ′)
πB

// B.
〈0,1〉
oo

But, being B protomodular, 〈1, 0〉 and 〈0, 1〉 are jointly strongly epimorphic, and so i and i′ are

isomorphisms in OrdGrp. This means that P ∩ P ′ = P = P ′. �

We can actually say more: the unique possible preorder structure is the product one:

Proposition 5.6. If PB is a group the unique possibly compatible preorder structure on XoϕB
is the product preorder.

Proof. If P is a positive cone for X oϕ B and (x, b) ∈ P , then b = πB(x, b) ∈ PB. But PB is a

group, hence −b ∈ PB, which implies that (0,−b) ∈ P . Hence

(x, 0) = (x, b) + (0,−b) ∈ P.
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Since 〈1, 0〉 is the kernel of πB, this implies that x ∈ PX , i.e. (x, b) ∈ PX×PB. So, P is contained

in the positive cone of the product preorder. But we proved that the product preorder is the

smallest possible one, so P = PX × PB. �

Hence, if we consider a protomodular object B and a group action of B on X which does not

satisfy the (necessary and sufficient) condition for the product preorder to be compatible, then

there is no compatible preorder structure on the semidirect product X oϕ B. The following is a

concrete example:

Example 5.7. Consider the split extension X
〈1,0〉

// X oϕ B
πB
// B,

〈0,1〉
oo where X = Z with the

identity preorder (i.e. PX = {0}), B = Z with the total preorder (i.e. PB = Z), and the

action ϕ is given by ϕb(x) = (−1)bx. Then the product preorder is not compatible, because

ϕ1(x) = −x � x if x 6= 0.

Looking at the opposite situation, namely when the relation on B is antisymmetric, we can

get many compatible structures on the semidirect product, as the following example shows.

Example 5.8. Consider the split extension Z
〈1,0〉

// Z× Z
π2
// Z,

〈0,1〉
oo where on both copies of Z

there is the usual order (namely PZ = N). Then there is a bijection between the set of positive

cones of the compatible preorders on Z × Z and the set of sequences (xn)n∈N in N ∪ {∞} such

that x0 = 0 and, for all n,m ∈ N, xn+m ≥ xn + xm.

Indeed, for every positive cone P , we can define the sequence (xn), where

x0 = 0, xn = sup {k ∈ N | (−k, n) ∈ P} for n > 0.

If (−k, n) and (−k′,m) belong to P , then (−(k + k′), n + m) ∈ P , from which we get that

xn+m ≥ xn + xm. Conversely, given a sequence (xn) with x0 = 0 and, for all n,m ∈ N,

xn+m ≥ xn + xm, we define

P = {(−k, n) | n ∈ N, k ∈ Z, k ≤ xn}.

It is clear that Pprod ⊆ P ⊆ Plex; let us check that P is a submonoid of Z× Z (closedness under

conjugation comes for free, since all groups involved here are abelian):

(−k, n), (−k′,m) ∈ P ⇒ k ≤ xn, k′ ≤ xm ⇒ −(k+k′) ≤ xn+xm ≤ xn+m ⇒ (−(k+k′), n+m) ∈ P.

Thanks to this bijection, we can see that the set of compatible preorders is uncountable. In fact,

the set of sequences (xn) as above such that the value ∞ is never reached is uncountable. To

see this, suppose that this set is countable. So we get a sequence of sequences:

(x1n), . . . , (xkn), . . .

Consider the sequence (yn) defined by:

y0 = 0;

y1 = x11 + 1;

y2 = max {x22 + 1, y1 + y1};

y3 = max {x33 + 1, yi + yj : i+ j = 3};

yn = max {xnn + 1, yi + yj : i+ j = n}.
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It is immediate to see that (yn) satisfies the conditions to define a positive cone, that it never

reaches the value ∞, and that it is different from all sequences (xkn), because, for all n ∈ N,

yn 6= xnn. This contradicts the hypothesis that the set is countable.

6. Relative protomodularity

In Section 4 we used the objectwise approach of [22] to describe what remains of protomod-

ularity in the category OrdGrp. In [9, 10] a different approach was considered with a similar

scope: describing partial homological properties of “weak” algebraic categories, having as guid-

ing example the category Mon of monoids. This alternative approach does not try to identify

“good” objects, but rather a “good” class of points, relatively to which the category has strong

homological properties, similar to the ones of protomodular categories. The aim of this section

is to study the category OrdGrp from this alternative point of view. We will see that there are

at least two good classes of points we can consider. For both, we will identify a protomodular

subcategory of OrdGrp, called the protomodular core relatively to the chosen class of points.

Not so surprisingly, in both cases the protomodular core will be the full subcategory of OrdGrp

whose objects are the preordered groups whose positive cone is a group. This gives a strong

parallelism (which does not hold, in general) between the objectwise approach of Section 4 and

the one relative to classes of points.

We start by recalling from [10] the following

Definition 6.1. Let C be a pointed finitely complete category, and S a class of points in C

which is stable under pullbacks and closed in Pt(C) under finite limits. C is S-protomodular if

every point in S is a strong point.

The main example of an S-protomodular category is the category Mon of monoids w.r.t. the

class S of Schreier points [21]: a point

(G) X
k // A

p
// B

soo

in Mon is a Schreier point if, for every a ∈ A, there exists a unique x ∈ X such that

a = k(x) + sf(a). This happens if and only if there exists a unique map q : A → X (which

is not a monoid homomorphism, in general) such that a = kq(a) + sf(a) for all a ∈ A. As

explained in [21], Schreier points correspond to classical monoid actions, where an action of a

monoid B on a monoid X is a monoid homomorphism B → End(X), where End(X) is the

monoid of endomorphisms of X.

We observe that, given a split extension X
〈1,0〉

// X oϕ B
πB
// B

〈0,1〉
oo in Grp, where X and B

are preordered groups and the action ϕ satisfies Condition (E), the action ϕ restricts to a monoid

homomorphism ϕ|PB
: PB → End(PX), i.e. to a monoid action of PB on PX . This means that,

when the semidirect product XoϕB is equipped with the product preorder, the restriction of the

split extension X
〈1,0〉

// X oϕ B
πB
// B

〈0,1〉
oo to the positive cones is a Schreier split extension of

monoids. The converse is also true: if the split extension X
〈1,0〉

// X oϕ B
πB
// B,

〈0,1〉
oo restricted

to the positive cones, is a Schreier split extension of monoids, then, as a set, the positive cone

PXoϕB is the cartesian product PX×PB, which says that the preorder on XoϕB is the product
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preorder. This fact allows us to show that OrdGrp is an S-protomodular category w.r.t. a

suitable class S of points.

Proposition 6.2. Let S be the class of points X
k // A

p
// B

soo in OrdGrp whose restriction

to the positive cones is a Schreier point in Mon. Then OrdGrp is S-protomodular.

Proof. We already observed that, if two morphisms in OrdGrp are jointly strongly epimorphic

in Grp and their restrictions to the positive cones are jointly strongly epimorphic in Mon,

then they are jointly strongly epimorphic in OrdGrp. Grp is a protomodular category, so

every point in it is strong. Then the thesis follows, observing that both the forgetful functor

OrdGrp→ Grp and the positive cone functor P : OrdGrp→Mon preserve limits. �

We observe that the class S we are considering in OrdGrp is the class of points (G) such

that the map q : A → X defined by q(a) = k−1(a − sf(a)) is monotone. Indeed, this map q

corresponds, up to isomorphism, to the product projection πX : X oϕ B → X, which is mono-

tone if and only if the preorder on XoϕB is the product preorder, as we observed in Remark 5.3.

In an S-protomodular category C, it is possible to identify a protomodular subcategory, called

the protomodular core relative to the class S. Its objects are the so-called S-special objects:

Definition 6.3. Let C be an S-protomodular category. An object X is said to be S-special

when the point

X
〈1,0〉

// X ×X
π2
// X

〈1,1〉
oo

belongs to the class S.

Being OrdGrp an S-protomodular category for the class S considered above, we can wonder

what is the protomodular core of OrdGrp w.r.t. the class S. If the point

X
〈1,0〉

// X ×X
π2
// X

〈1,1〉
oo

is in S, the map q : X ×X → X is given by q(x, y) = x− y. It is easy to see that q is monotone

if and only if the inversion map i : X → X sending x to −x is monotone. This happens if and

only if PX is a group. Hence:

Proposition 6.4. The protomodular core S-OrdGrp is the full subcategory of OrdGrp whose

objects are the preordered groups X for which PX is a group, i.e. those for which the preorder

relation is symmetric.

Now we study another approach to S-protomodularity, which gives the same protomodular

core as the previous one.

Let Mon(C) be the category of internal monoids in a finitely complete category C. The notion

of a Schreier point only involves finite limits, so it is possible to express it internally in C. More-

over, the notion of S-protomodularity only involves finite limits and monomorphisms (indeed,

two morphisms are jointly strongly epimorphic if, whenever they factor through a monomor-

phism m, m is an isomorphism), hence it is Yoneda invariant (see Example 2.5 in [11]). This

means the following:

Proposition 6.5. Mon(C) is an S-protomodular category w.r.t. the class S of internal Schreier

points.
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When C = Set, the protomodular core is the category Grp of groups. Indeed, if X is a group,

the map q : X ×X → X defined by q(x, y) = x− y satisfies the Schreier condition. Conversely,

suppose that the point

X
〈1,0〉

// X ×X
π2
// X

〈1,1〉
oo

is a Schreier one. Then for all (x, y) ∈ X × X there exists a unique element q(x, y) ∈ X such

that

(x, y) = (q(x, y), 0) + (y, y).

From this equality we get that x = q(x, y)+y. In particular, choosing x = 0 we prove that every

y ∈ X is left invertible, hence X is a group.

Now, the argument above can be internalized, giving that the protomodular core of Mon(C)

w.r.t. the class of internal Schreier points is the full subcategory Grp(C) of internal groups

in C. When C = Top, we conclude that the protomodular core of the category of topological

monoids w.r.t. the class of topological Schreier points is just the category of topological groups.

When C = Ord, the category Mon(Ord) is just the category of preordered monoids, i.e. those

monoids equipped with a preorder relation such that the monoid operation is monotone. The

protomodular core of Mon(Ord) w.r.t. the class of preordered Schreier points is the subcategory

of internal groups in Ord, which are precisely those preordered groups for which the preorder

relation is symmetric, i.e. the positive cone is a group.

We conclude by observing that OrdGrp is a subcategory of Mon(Ord). Moreover, every

point in OrdGrp, whose restriction to the positive cones is a Schreier point in Mon, is actually

an internal Schreier point in Mon(Ord). This means that the class of points we considered in

the second approach contains the class of the first one.
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E-mail address: martins.ferreira@ipleiria.pt

Dipartimento di Matematica “Federigo Enriques”, Università degli Studi di Milano, Via Saldini
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