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Abstract
Cerebrovascular diseases are the leading cause of mortality in Portugal, especially when related with extreme temperatures. This
study highlights the impacts of the exposure-response relationship or lagged effect of low and high temperatures on cerebrovas-
cular mortality, which can be important to reduce the health burden from cerebrovascular diseases. The purpose of this study was
to assess the effects of weather on cerebrovascular mortality, measured by ambient temperature in the District of Lisbon, Portugal.
A quasi-Poisson generalized additive model combined with a distributed lag non-linear model was applied to estimate the
delayed effects of temperature on cerebrovascular mortality up to 30 days. With reference to minimum mortality temperature
threshold of 22 °C, there was a severe risk (RR = 2.09, 95% CI 1.74, 2.51) of mortality for a 30-day-cumulative exposure to
extreme cold temperatures of 7.3 °C (1st percentile). Similarly, the cumulative effect of a 30-day exposure to an extreme hot
temperature of 30 °C (99th percentile) was 52% (RR = 1.65, 95% CI 1.37, 1.98) higher than same-day exposure. Over the
13 years of study, non-linear effects of temperature on mortality were identified, and the probability of dying from cerebrovas-
cular disease in Lisbon was 7% higher in the winter than in the summer. The findings of this study provide a baseline for future
public health prevention programs on weather-related mortality.
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Introduction

Several epidemiological studies have provided evidence for
the association between ambient temperature and mortality
rate (Åström et al. 2013; Gasparrini et al. 2015a). The findings
of these studies are similar. Generally, the relationship be-
tween temperature and mortality was U-, J- or V-shaped, de-
fined by a temperature range of minimum mortality and
monotonically increasing incidence for colder and warmer
temperatures (Davis et al. 2016; Schwartz et al. 1996).

When the temperature is below or above a certain critical
threshold, mortality gradually increases as the temperature is
decreased or increased (Anderson and Bell 2009; Näyhä
2005). The location of the minimum function, called the min-
imum mortality threshold, may be an indicator of adaptive
capacity or acclimatization (Kendrovski 2006). Minimum
mortality thresholds were reported in other studies in Spain
(Näyhä 2005), the USA (Patz et al. 2010), and in Russia
(Curriero et al. 2002).

The mortality rates during winter (Antunes et al. 2017;
Keating and Donaldson 1997; Vasconcelos et al. 2013) and
in summer season (Braga et al. 2001; Gasparrini et al. 2015b;
Pattenden et al. 2003) reflect the significant impact of seasonal
factors on certain causes of death, particularly cardiovascular
diseases (Eng and Mercer 1998) and cerebrovascular diseases
(Kendrovski 2006). The Eurowinter Group (Keating and
Donaldson 1997) found smaller increases in cold mortality
in northern Finland (cold region) than in warmer regions. In
all these studies, a variety of models have been used to assess
the impacts of temperature on mortality, such as time-series
(Braga et al. 2001; Gasparrini et al. 2015b; Keating and
Donaldson 1997).
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Extreme temperatures have a lag effect on cerebrovascular
mortality (Anderson and Bell 2009), and in time series analy-
ses, a popular approach is based on distributed lag models
(DLMs) (Dominici et al. 2000), generalized to distribute lag
non-linear models (DLNMs) (Armstrong 2006) when includ-
ing non-linear exposure-response associations. The distribut-
ed lag non-linear model was developed to simultaneously es-
timate the non-linear and delayed effects of temperature on
mortality (Gasparrini et al. 2010).

The lagged effects of extreme temperatures on mortality
have been reported in many regions, including Europe,
Australia, China, Canada, and the USA (Anderson and Bell
2009; Armstrong 2006; Åström et al. 2013). In Portugal, very
few studies (Antunes et al. 2017) have examined the short-
term and delayed effects of ambient temperature on mortality.
No previous study has analyzed the time lag and the impact of
both low and high temperature effects on cerebrovascular
mortality in the District of Lisbon. Our study is the first to
provide epidemiological evidence in Portugal.

The goals of this study were (i) to assess the associations
between extreme temperature exposure and mortality from
cerebrovascular diseases, (ii) to compare these associations
in cold and hot seasons, and (iii) to evaluate the lag effects
and temperature thresholds in the District of Lisbon, Portugal.

Materials and methods

Data collection

We requested data on daily counts of deaths from cerebrovas-
cular diseases as well as meteorological data and concentra-
tions of air pollutants from 1 January 2000 to 31 December
2013. The geographical area under study comprises the
District of Lisbon, Portugal.

The data of cerebrovascular mortality (CBM) were provid-
ed by Statistics Portugal. The cause-specific mortality was
classified according to the International Classification of
Diseases, 10th Revision: Cerebrovascular diseases (ICD-10:
I60-I69).

Daily meteorological data, including ambient temperature
measures (daily mean temperature, daily maximum tempera-
ture, daily minimum temperature) and dew point were collect-
ed from the National Climatic Data Center for the Geofísico
Meteorological Station. Temperature measurements in de-
grees Kelvin (K) were converted to degrees Celsius (°C).
We calculated the relative humidity (HR, %) using formula
published previously (Lawrence 2005).

Daily air pollution data on particulate matter less than
10-μm aerodynamic diameter (PM10) were obtained from
the Portuguese Environment Agency. Concentrations of
PM10 were measured and recorded hourly at each station.
The daily average values of PM10 concentrations were

calculated for urban background monitoring stations in the
study area.

Statistical methods

All the analysis was based on generalized additive models
(GAM). Initially, we performed univariate analysis to assess
the association between cerebrovascular mortality (CBM) and
each risk factor individually Furthermore, multivariable GAM
models will be explored such that covariates will be included
based on their relative contributions in the univariate analyses
in the following way:

1. Covariates with correlation coefficients |r| > 0.7 will be
excluded from the models to avoid issues related to
multicollinearity.

2. Covariate inclusion from univariate analysis will be based
on a p value smaller than 0.1.

3. Inference is based on the 5% level of significance.
4. The final model fit will be assessed usingmodified Akaike

information criteria for models with overdispersed data
Quasi-AIC (Gasparrini et al. 2010).

The final step of the time series model is to construct
models based on data from (1) the entire year, (2) the summer
period only (June, July, August, and September), and (3) the
winter period only (December, January, February, and
March).

The usual practice is to assume an overdispersed Poisson
regression model for the mortality counts. Quasi-Poisson has
been used in several weather exposure-mortality studies
(Armstrong 2006; Gasparrini et al. 2015a,b; Schwartz et al.
1996). In this study, we applied quasi-Poisson generalized
additivemodels, with smooth terms fitted by penalized splines
to estimate the association between daily mortality daily
counts from CBM on day t, Yt, t = 1,… , n and several covar-
iates. Following Gasparrini et al., (2010), the general form of
the model is given by:

g μtð Þ ¼ αþ ∑
J

j¼1
s j xtj;β j

� �þ ∑
K

k¼1
γkutk ; ð1Þ

where μt ≡ E(Y) and g is a monotonic link function. The func-
tions sj denotes the smooth function for variables xjwhile γk is
the parameter estimate for the linear relationship of variables,
uk and g(μt). The following covariates were considered in the
model: ambient temperature (tmin, tmax, tmean), relative hu-
midity (HR), and dew point (DEWP) with other confounding
variables such as day of the week (DOW) a binary indicator
for weekend or weekday, holiday period (HOY), daily PM10

values (PM10), and season (winter, spring, autumn, and
summer).
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Oftentimes, the effect of a specific exposure event is not
limited to the period when it is observed, but it is delayed in
time (Gasparrini et al. 2010). Inference about the effect of unit
increase in the climatic variable on a single day is not reasonable;
the effect of climatic variable has been found to spread over
several days (Braga et al. 2001; Gasparrini et al. 2010; Keating
and Donaldson 1997; Pattenden et al. 2003). Specifically, the
association between mortality from CBM and temperature ex-
posure may take more than a few days to manifest itself.

The model formulation is as follows:

log E Y tð Þ½ � ¼ αþ cb temperaturet;…; temperaturet−lð Þ

þ s PM10ð Þ þ s RHð Þ þ s DEWPð Þ þ s Timeð Þ

þ δ1 jDOWt þ δ2 jHOYt þ δ3 jSeasont þ δ4 jYeart

ð2Þ

Specifically, s(Time) was fitted with 13 degrees of freedom
(dfs) per year of the study as natural cubic spline function to
control for long-term temporal trend and seasonality in the
data. The number of df determines the smoothness, and the
more degrees of freedom, the more flexibility is allowed in the
shape of the function (Dominici et al. 2000; Pattenden et al.
2003). Different choices of df were explored, see Table S1.
Similarly, s(PM10), s(RH), and s(DEWP), represent the natu-
ral cubic spline functions for PM10, RH, and DEWP respec-
tively, with two df for each. Season is a fixed categorical
variable in the model not a smooth function to allow the com-
parison between seasons while a linear term for Year, HOY,
and DOWas an indicator of day of the week was included in
the model.

Temperature is the main exposure of interest. Previous
studies have used a lag of 30 days (Antunes et al. 2017; Yu
et al. 2011). In this study, lagged temperature was evaluated
for lags between 0 and 30 days.

The term Bcb (Temperature, lag)^ represents the cross-
basis matrix obtained by applying to temperature lag-

response-exposure. The non-linear and delayed exposure-
lag-response relationship between temperature and CBM
mortality was modeled by applying a bi-dimensional
cross-basis spline function describing simultaneously the
dependency of the relationship along the temperature range
and its distributed lag effects.

The cross-basis parameterization for the exposure-lag-
response function can be re-expressed as:

s x; tð Þ ¼ wT
x;tη ¼ ∑

L

l¼l0
f :ω xt−l; lð Þ ð3Þ

The bi-dimensional function is f. ω(xt − l, l) where f(x) and
ω(l) represent the smooth function for exposure-response and
lag-response function. Is defined as the exposure-lag-response
function, and models simultaneously the exposure–response
curve along temperature and lag–response curve namely an
exposure–lag–response surface (Gasparrini 2014). Quadratic
B-splines were used for both temperature-response function,
f(x) and lag-response function,ω(l) with several 3 knots placed
at equally spaced positions.

Themodel selection for the number of knots and df is based
on modified Akaike information criteria for models with
overdispersed data Quasi-AIC (Gasparrini et al. 2010). See
the appendix Table S1 for the different formulation of the
128 candidate models including models for lags 0–35 days.

All statistical analyses were performed with R 3.4.0 (The R
Project for Statistical Computing, http://www.r-project.org),
with the package Bdlnm^ to create the DLNM.

Results

Exploratory data analysis

Summary statistics for meteorological measures, air pollut-
ants, and cerebrovascular mortality (CBM) were presented

Table 1 Descriptive statistics for
meteorological measures, air
pollutants, and cerebrovascular
mortality (CBM). District of
Lisbon (Portugal), period 2000–
2013

Variables Mean SD Min Percentiles Max

25th 50th 75th

Temperature (°C)

Tmean 17.38 5.19 4.10 13.30 17.00 21.43 33.30

Tmin 9.07 2.80 0.10 7.10 9.30 11.10 17.80

Tmax 15.75 3.17 7.30 13.90 15.60 17.20 50.70

Relative humidity (%) 66.81 18.63 26.70 57.40 69.70 80.90 102.60

PM10 (μg/m
3) 36.53 21.04 4.50 21.40 31.35 46.00 241.60

Dew point (°C) 10.75 4.12 − 1.52 8.10 11.20 13.90 20.40

CBM 8.56 3.49 2.00 6.00 8.00 11.00 28.00

SD standard deviation, Min minimum, Max maximum; PM10 particulate matter less than 10 μm aerodynamic
diameter
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in Table 1. During the study period, the average of daily mean
temperatures (tmean), PM10, relative humidity, dew point, and
number of deaths were 17.38 °C, 36.53 μg/m3, 66.81%,
10.75 °C, and 8.56, respectively.

The number of deaths was highest in the winter and lowest
in the summer. Furthermore, the average (standard deviation)
of mean daily temperature across Lisbon during the period
2000 to 2013 ranges between mean (SD) = 16.97 (4.96) and
mean (SD) = 17.94 (4.96).

Modeling approach

The cerebrovascular mortality (CBM) data was fitted using
distributed non-linear model (DNLM) and generalized addi-
tive model (GAM) (Armstrong 2006); a quasi-Poisson link
function was to account for over-dispersion in the counts data.

Based on the exploratory data analysis (EDA) on the cor-
relation among the meteorological variables, temperature var-
iables (tmax, tmin) were not used in the multivariable analysis
due to multicollinearity. Only mean daily temperature was
used (tmean). Usually thresholds of correlation coefficients
between predictor variables of |r| > 0.7 is an appropriate indi-
cator for when collinearity begins to severely distort model
estimation and subsequent prediction (Dormann et al. 2013).

Similarly, Table 2 presents the univariate DLNM GAM
models and their respective inclusion. The inclusion criteria
used is based on a p value of at least 0.1; therefore, the variable
BHOY^ indicating holiday will not be included in the multi-
variable model. Similarly, the day of the week BDOW^ was
not significantly associated with CBM. Hence, BDOW^ will
not be included in the multivariable model fitting for CBM.

The best fitted model for temperature-mortality association
for all year round according to QAIC isModel 1 with lag 0–30
(Table S1). This model described the mean daily temperature
delayed effects (lag 0–30) by quadratic B-spline function for
exposure-response and lag-response with a total df of 30 and
3 knots placed at equal distance, respectively. The model also
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Fig. 1 Contributions of the model
terms the temperature-
cerebrovascular mortality
association. a Season. b Smooth
term in dew point. c Smooth in
relative humidity. d Smooth term
in PM10. The dashed curves
represent the 95% confidence
interval for the fitted curves. The
reference temperature was at
minimum mortality temperature
of 22 °C

Table 2 Summary of univariate DLNM GAMs fitted to cerebrovascular
mortality (CBM) lags days (0–30). District of Lisbon (Portugal), period
2000–2013

Model p value R-sq adj RMEL

CBM~tmean < 0.0001 0.07 3197.3

CBM~season < 0.0001 0.10 3103.2

CBM~DEWP < 0.0001 0.05 3242.9

CBM~HR < 0.0001 0.01 3344.9

CBM~PM10 < 0.0001 0.02 3326.9

CBM~DOW 0.538 − 0.0001 3367.9

CBM~Hoy 0.324 ~ 0 3366.6

CBM~Year < 0.0001 0.03 2999.8

Inclusion criterion into the multivariable GAMs is based on p values ≤
0.1. R-sq adj adjusted R-squared, RMEL restricted maximum likelihood
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includes the term BTime^ described by a natural cubic spline
function to control for long-term temporal trend and season-
ality with 13 df generated per year of study and natural cubic
spline for PM10, RH, and DEWP respectively, with 2 df each,
while Season and Year are fixed categorical variables.

Fig. 1 displays the contributions of the model terms
(Season, relative humidity, dew point, and PM10) to the
temperature-cerebrovascular mortality association for the best
fitted model described above. The flattening of the estimated
association shown in Fig. 1 b to d indicates there is no clear
trend observed in CBMwith dew point, relative humidity, and
PM10, respectively. We can see in Fig. 1a that there is signif-
icant increase in the risk of mortality from cerebrovascular
disease in winter (RR = 1.06, 95% CI 1.00–1.13) and autumn
(RR = 1.08, 95% CI 1.03–1.13) compared to the risk of CBM
in the summer period.

The analyses focused more on the relationships of the
lagged temperature metrics and mortality. The strength of
these relationships varied depending on the temperature value
and whether the mortality was recorded on the same day of
exposure or after a few days. The idea of cumulative effect of
temperature is to sum up the effects of all contributions of the
exposure to the maximum lag indicated. Considering the cu-
mulative effect of temperature on CBM at different lags (see
Fig. 2), there is a slow and short adverse effect of low temper-
ature (≤ 5 °C) peaking at peak at 6-day lag (RR 1.065, 95% CI
1.028–1.103). As presented in Fig. 2b, the cumulative effect
(lag 0–30) of exposure to minimum temperature of 4.1 °C is
3.81 (95% CI 2.19; 6.61) while the cumulative exposure to
maximum temperature of 33.3 °C is 4.85 (95%CI 2.39; 9.85).
The short adverse effect at a temperature of 5oC is displayed in
the right graph in Fig. 2c. The middle graph shows a similar
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Fig. 2 Cumulative effects of mean temperature (°C) on cerebrovascular
mortality (CBM) for the entire year for the District of Lisbon, Portugal,
2000–2013. a The relative risk (RR) of mortality dependence on temper-
ature and lag days using cross-basis smoothing by natural splines. b
Estimated relative risk for the effect of temperature on mortality. c

Estimated temperature effect (5 °C) on mortality at various lag days (0–
30). The line represents the relative risks while the gray shaded regions
indicate the 95% confidence intervals. The reference temperature was at
minimum mortality temperature of 22 °C
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Fig. 3 Effects of mean temperature (°C) on cerebrovascular mortality
(CBM) during summer months (June–September) for the District of
Lisbon, Portugal, 2000–2013. a Relative risk (RR) of mortality by tem-
perature and lag days using cross-basis smoothing by natural splines. b
Estimated relative risk for the effect of temperature on mortality. c

Estimated temperature effect on mortality at various lag days (0–30) at
99th percentile value of 30 °C. The line represents the relative risks while
the gray shaded regions indicate the 95% confidence intervals. The ref-
erence temperature was at minimum mortality temperature of 22.5 °C
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pattern with a slight increase in risk of CBM at temperatures
above 25 °C.

Considering the summer data, most of the explanatory var-
iables are not associated with CBM. The significant associa-
tion between temperature and CBM is depicted in Fig. 3.
Figures 3b and c show the effect of temperature on mortality
risk. It indicated that the mortality risk increases above a tem-
perature of approximately 27 °C, and the effect is immediate
after exposure in the summer months (lag 0).

Similar to the data collected for the entire year, for winter
months, the relative risk of CBM decreases over the years by a
factor of − 0.007. The relationship between mortality risk and
temperature for different lags is displayed in Fig. 4. The effect
of temperature on mortality risks is highest on the same day
(lag 0) and at temperatures lower than 5oC while mortality
risks decline steadily thereafter (Fig. 4, middle graph).

Figure 5 presents the evaluation of the effect of hot and
cold temperatures on cause-specific mortality as well as lag-
mortality risk relationships specific to hot and cold tempera-
tures. Displayed in Fig. 5 is the effect of high temperature at
the 99th percentile (30.0 °C) and other percentiles, such as the
75th percentile of temperature 21.4 °C. Similarly, the effect of
cold temperatures at the 1st percentile (7.3 °C) as well as the
25th percentile of temperature at 13.3 °C on mortality risk
from cerebrovascular along the lag days was also displayed
in Fig. 5. Both extreme hot and cold temperatures are associ-
ated with a higher risk of CBM, and the effect is immediate
(highest at lag 0 for hot temperatures and lag 6 for cold tem-
peratures) (Fig. 5a, b). Since the effect extreme temperature is
immediate, the temperature thresholds were examined at lag 0.
The thresholds for cold temperature stand around 17 °C and at
21 °C for hot temperatures for CBM risk (Fig. 5).

Table 3 presents the lag−cerebrovascular cumulative rela-
tive risks of cold and hot temperature effects at 1st, 25th, 75th,
and 99th percentile of temperatures together with their 95%
confidence intervals (with reference to MMT of 22 °C).

Varying temperature percentiles were evaluated: high temper-
ature was evaluated at 99th percentile (30.0 °C), 75th percen-
tile (21.4 °C) while the cold effect was evaluated at 1st per-
centile (7.3 °C) and 25th percentile (13.3 °C) with reference at
minimum mortality temperature (MMT) of 22 °C.

The cumulative effect of temperature is obtained by sum-
ming the effects of all contributions of the exposure up to the
maximum lag indicated. For example, the relative risks of the
cumulative effects for 7.3 °C over the same day, 6 days and
30 days of exposure are 0.97, 1.21, and 2.09 (Table 3), respec-
tively, with reference toMMT. This implies that there is severe
risk (RR = 2.09, 95% CI1.74; 2.51) of CBM for 30 days cu-
mulative exposure at cold temperature of 7.3 °C. The cumu-
lative exposure of the middle 50th percentile temperature
(25th percentile, 13.3 °C and 75th percentile, 21.4 °C) is very
low (see Table 3 and Fig. 5a, b). Similarly, the cumulative
effect of 30 days of exposure to temperature of 30.0 °C is
about 52% higher than the same day exposure.

Assessment of models

For comparison and assessment of knots, df, and delay effects,
we fitted several models with lags 0–35. Comparing the model
fitted delayed effect lags 0–30, models with lags 0–35 per-
formed better with lower QAIC in each category (Table S1).
However, differences in the estimated temperature-mortality
association are relatively similar.

The best fitted model (in category 0–35 lags) for
temperature-mortality association for the whole year round
according to QAIC (model 1 with lags 0–35 in Table S1),
described mean daily temperature delayed effects by quadratic
B-spline function for exposure-response and lag-response
with a total df of 30 and 3 knots placed at equal distance,
respectively, year by a natural cubic spline function to control
for long-term temporal trend and seasonality with 13 df gen-
erated per year of study.
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Fig. 4 Effects of mean temperature (°C) on cerebrovascular mortality
(CBM) during the winter months (December–March) for the District of
Lisbon, Portugal, 2000–2013. a Relative risk (RR) of mortality by tem-
perature and lag days using cross-basis smoothing by natural splines. b
Estimated relative risk for the effect of temperature on mortality. c

Estimated temperature effect on mortality at various lag days (0–30) at
1st percentile value of 7.3 °C. The line represents the relative risks while
the gray shaded regions indicate the 95% confidence intervals. The ref-
erence temperature was at minimum mortality temperature of 20 °C
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Fig. 5 Lagged relationship
between cerebrovascular
mortality (CBM) risk curves and
mean temperature (°C) for the
District of Lisbon, Portugal,
2000–2013. a, b Cold tempera-
tures (minimum, 1st and 25th
percentile, median) and high
temperatures (median, 75th and
99th percentile, maximum). c, d
Mortality risks at specific lags
(lag 0 and lag 6) and at 1st, 25th,
75th, and 99th percentile temper-
atures of 7.3 °C, 13.3 °C, 21.4 °C,
and 30.0 °C, respectively, with
reference temperature set at mini-
mum mortality temperature of
22 °C
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We present exposure-response and lag-response curves for
models 1 (0–30 lags and 0–35 lags) and models 6 (0–30 lags
and 0–35 lags) in Fig. 6. The left panel reported the cumula-
tive mortality risk for different model specifications while the
right panel displayed the estimated contributions to the risk
associated with morality from CBM at each lag at 5 °C tem-
perature exposure. Model 1 with 0–35 lags predicts a maxi-
mum increase in risk at lag 10, with RR of 1.055 (95% CI
1.031–1.079) compared with RR of 1.055 (95% CI 1.025–
1.027) estimated from similar model (model 1) with 0–30 lags
at peak at lag 6 (RR 1.065, 95% CI 1.028–1.103). All models
explored suggest a significant decrease in risk at longer lags.

Discussion

Our study compared the relationships between temperature
and mortality resulting from cerebrovascular diseases in hot
and cold weather conditions. To the best of our knowledge,
this is the first study to assess potentially significant associa-
tions between temperature and cerebrovascular mortality and
to quantify the lagged effects in Portugal. The effects of tem-
perature on daily mortality were investigated for the winter
and the summer seasons. Mean temperature was thus selected
as a temperature indicator to study the relationship between

weather and mortality. Moreover, this indicator was selected
in other studies carried out in China, Australia, and the USA
(Guo et al. 2011; Yu et al. 2010). It has also been reported that
the selection of correct variable is essential because some hu-
midity measures can be highly correlated with other atmo-
spheric variables, making it difficult to identify the unique
contribution of any single variable (Davis et al. 2016). For
example, in the study by Vajanapoom et al. (2001), they ex-
cluded dew point and mean temperature from their model
because of their high variance inflation factor values. Also,
Dormann et al. (2013) stated that they do not think the prob-
lem of collinearity can be solved, for logical reasons: without
mechanistic ecological understanding, collinear variables can-
not be separated by only statistical means.

In this study, we used a distributed lag non-linear model to
assess the lag effects of temperature on cerebrovascular mor-
tality. The lag structures of both hot and cold temperatures
effects were investigated for 30 days. Previous studies have
suggested that short time lags cannot completely capture the
effects of temperature on cerebrovascular mortality (Anderson
and Bell 2009; Goodman et al. 2004); longer time lags should
therefore be applied to examine the effects of temperature
(Schwartz et al. 1996). In this study, we observed increased
risk of extreme -cold and -heat temperatures on CBM at shorter
lags. Increase risk of CBM persists throughout the 30 lags for
extreme cold while the risk of CBM due to heat is lower and
non-significant after 10 days lag. The findings in this study are
consistent with previous studies (Martens 1998); the effects of
hot and cold temperatures on mortality were immediate (lag 0)
and longer for cold effect (Pattenden et al. 2003).

We have also studied the association between lag days and
mortality risks of incremental cumulative hot and cold tem-
perature effects. The results suggest that there is a severe risk
(RR = 2.09, 95% CI 1.74; 2.51) of mortality for a 30-day-
cumulative exposure to extreme cold temperatures of 7.3 °C.
Similarly, the cumulative effect of a 30-day exposure to an
extreme hot temperature of 30 °C is 52% higher than same-
day exposure. Various underlying mechanisms have been

Table 3 Lag−cerebrovascular relative risk (RR) (with 95% confidence
interval, 95% CI) of cold and hot temperature effects at 1st, 25th, 75th,
and 99th percentile of temperatures. District of Lisbon (Portugal), period
2000–2013 (with reference at MMT of 22 °C)

Temperature Lag 0 Lag 6 Lag 30
RR (95% CI) RR (95% CI) RR (95% CI)

7.3 °C 0.97 (0.91; 1.03) 1.21 (1.05; 1.38) 2.09 (1.74; 2.51)

13.3 °C 0.97 (0.92; 1.01) 0.99 (0.90; 1.08) 1.18 (1.07; 1.31)

21.4 °C 0.99 (0.99; 1.00) 0.99 (0.98; 1.00) 1.00 (0.99; 1.01)

30.0 °C 1.13 (1.08; 1.18) 1.55 (1.40; 1.71) 1.65 (1.37; 1.98)
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Model 1 Lag 0-35
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baFig. 6 Cumulative relative risk of
CBM associated with temperature
in the lag periods 0–30 and 0–35.
The figure presents the cumula-
tive exposure-response curves (a)
and lag-response curves (b), for
models 1 and 6 for lags 0–30 and
0–35with 13 dfs/year at 5 °Cwith
reference at minimum mortality
temperature (MMT) of 22 °C
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proposed to explain the mortality risk associated with expo-
sure to heat and cold. Exposure to high temperatures might
cause dehydration, reductions in cerebral perfusion, sweating
thresholds, and increased surface blood circulation (Chen
et al. 2016; García-Trabanino et al. 2015; Keatinge et al.
1986). These influences might cause or trigger death from
cerebral thrombosis (García-Trabanino et al. 2015).
Exposure to lower temperatures has been associated with in-
creased heart rate via affecting factors such as cholesterol and
fibrinogen, peripheral vasoconstriction and plasma fibrinogen
concentrations, and increased blood viscosity that increases
the likelihood of death (Keatinge et al. 1984; Wilson et al.
2011; Woodhouse et al. 1994). The immediate increase of
deaths after a decrease in temperature could be explained by
changes in blood pressure that cause oxygen deficiency in the
heart muscle as well the increased risk of thrombosis
(Ballester et al. 1997).

An interesting finding is that cerebrovascular disease is sig-
nificantly associated with seasonality; there is higher likelihood
of mortality from cerebrovascular in the winter than in the sum-
mer. Our findings are consistent with a number of previous
studies in Macedonia (Kendrovski 2006), Rússia (Revich and
Shaposhnikov 2008) and Thailand (Vajanapoom et al. 2001).

We acknowledge the following limitations in our study.
Firstly, temperature exposure was not measured at the individ-
ual level. Secondly, the mortality outcomes did not account for
age, gender, presence of chronic diseases, and socio-economic
factors. Those factors could modify the exposure–response
relationship between temperature and mortality. Thirdly, this
study was confined to one District, which makes our results
hard to be generalized to others regions of Portugal. Lastly, the
smoothing methods for exposure-lag-response relationships
are difficult to validate in DLNM (Gasparrini et al. 2017).
We explored quadratic B-spline and linear function each sep-
arately for exposure-response and lag-response. These limita-
tions do not reduce the importance of the findings from this
study. The findings provide detailed assessment of
temperature-cerebrovascular mortality in hot and cold temper-
ature in Lisbon.

Conclusions

The present study shows a non-linear pattern between
mean temperature and the number of deaths, showing an
overall U-shape and revealing a comfort zone for interme-
diate temperatures. The study allows us to conclude that
cerebrovascular mortality has gradually diminished over
the period under analysis. This fact is consistent with oth-
er studies conducted in Sweden (Åström et al. 2013),
South Korea (Xu et al. 2013), and Spain (Lee et al.
2016). In our study, several reasons may be responsible
for this decline, namely the improvement in the indicators

of this cause of death (Cayuela et al. 2016), the introduc-
tion of preventive measures (DGS – Direção Geral de
Saúde 2015), and the strategic programs included in the
National Health Plan, measures that were implemented
during the period under analysis. The dissemination of
the Contingency Plans for Heat (DGS – Direção Geral
de Saúde 2014) and Winter (DGS – Direção Geral de
Saúde 2016) by the Portuguese Directorate-General of
Health, was providing information to minimize one’s risk
of exposure to extreme temperatures.

In conclusion, the probability of dying from cerebrovascu-
lar disease in Lisbon was higher in winter than in summer.
Therefore, our study suggests that the effect of cold and heat
should not be underestimated. Anticipation of temperature-
related mortality, under future warming scenarios, including
demographic changes and adaptation, may constitute a prior-
ity for Public Health in Portugal.
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