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Abstract

Durum wheat is an important crop in semi-arid Mediterranean regions as An-
dalusia, an autonomous community in the southern part of Spain. Accurate
early predictions of durum wheat yield can provide precious information for
within-season adjustment of crop managing as well as for economical and po-
litical stakeholders. In this study, an alternative methodology to mechanis-
tic crop models is proposed for within-season early prediction of durum wheat
yield in Spain based on estimates for its larger producer community, Andalusia.
The proposed mathematical framework embeds the construction of Radial Ba-
sis Functions (RBF) interpolation models based on the sown area and a large
number of climatic variables. Global warming and increasing occurrence of ex-
treme weather events are only two of the factors that make crop yield forecast
extremely difficult as they can lead to an increased interannual yield variability.
Nevertheless, the RBF models proposed presented good quality yield predictions
clearly outperforming multivariate linear models used as benchmark. Moreover,
RBF models’ predictions made four months prior to harvest are able to capture
the trend of the yield series as well as near-harvest predictions.

Keywords: Durum wheat yield, Mediterranean climate, Radial Basis
Functions, Cross-validation, Variable Screening

1. Introduction

Wheat is the most popular agricultural crop in the northern hemisphere
occupying the main growing area of its temperate zone. It is classified into
two types according to the texture of the grain: durum wheat, mainly used for
manufacturing of pasta, and soft wheat, also known as bread wheat as baking
is its main use. Durum wheat is more resistant to extreme climatic conditions
as compared to soft wheat [7]. For that reason, durum wheat is an important
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crop in semi-arid Mediterranean regions [12], where extreme climatic condi-
tions as drought and high temperatures are the typical production constraining
variables. One of such regions is Andalusia, an autonomous community in the
southern part of Spain. Andalusia is an important producer of wheat at an
international level and represents 8% of the surface area and 9% of the pro-
duction of the European Union. Furthermore, Andalusia is the largest durum
wheat producing community in Spain (∼70%) [3].

Accurate early predictions of durum wheat yield can provide precious in-
formation for within-season adjustment of crop managing, e.g. optimization
of fertilization as nitrogen effect is well known [1], for economical players, e.g.
commodity trading, or for political stakeholders, e.g. assessment of climate
change impact [10]. Predicting durum wheat yield has received attention from
researchers in recent years (see, e.g. [12, 13, 14, 29]). Typically, mechanistic
crop simulation models that attempt to mimic interactions between different
factors that determine crop development and growth are used to estimate crop
yield. E.g., the CERES-wheat model was used for early prediction of durum
wheat yield in Central Italy [12]. CERES-wheat model simulate the develop-
ment, growth and yield of wheat considering the interactions between soil, plant
genetics, climate and nitrogen supply [22]. Other well-known generic mechanis-
tic crop simulation models used to predict wheat yield include SIRIUS [11] and
EPIC [34]. Regardless of the models’ structure, their goal is to simulate crop
development and growth in response to a number of different input variables
fed to the model in a daily time basis. Yield prediction based on mechanical
crop models shows very good results for short-term estimations and for similar
scenarios, i.e. fields with similar soil, local weather and nitrogen supply [15].
However, prediction accuracy deteriorates for longer-term estimates. One of the
difficulties for obtaining accurate long-term estimations is related to unknown
future weather conditions that need to be fed to the models and whose forecast
accuracy diminishes with long-term predictions. Another difficulty is to be able
to provide national estimates as aggregated yields depend on yields obtained
for a number of fields with different soil, local weather and nitrogen supply
characteristic [4].

The goal of this paper is to propose an alternative methodological approach
to provide early predictions of durum wheat yield in Spain based on estimates
for its larger producer community, Andalusia. As illustrated in Fig. 1, the yield
trends are identical for Spain and Andalusia, as it would be expected knowing
that about 70% of the Spanish durum wheat yield is granted by Andalusia. In
Fig. 1 it is also possible to observe that both the Spanish and the Andalusian
area of durum wheat has clearly decreased since the beginning of the century.
That decreasing trend has occurred worldwide due to several factors includ-
ing global warming, increasing occurrence of extreme weather events, and new
agricultural policy guidelines that have steered farmers towards more profitable
crops [2]. In addition to the sown area, Mediterranean climatic conditions are
the most important variables to explain the annual variation of durum wheat
yield [8]. Weather has a major impact on plants as well as pests and diseases
and it has been reported that as much as 80% of the variability of agricultural
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Figure 1: Sown area (has) and durum wheat yield (ton) of Andalusia and Spain for the time
frame in study – season 2000/2001 up to the season 2016/2017. Andalusia sown area for
2017/2018 season is provisional but is also displayed.

production is due to the variability in weather conditions [19]. A mathematical
framework based on the sown area and a large number of climatic variables
is proposed to answer the question: “at a given month of the season, what
is the durum wheat yield expected for Spain?”. This framework embeds the
construction of Radial Basis Functions interpolation models to estimate durum
wheat yield considering the sown area and selected subsets of climatic variables
calculated through a tailored variable screening strategy that aims at selecting
weather variables based on their prediction features.

2. Materials and methods

2.1. Durum wheat agroclimatic data in Andalusia

Andalusia is located in the southern part of Spain, east of the southern part
of Portugal and north of the Mediterranean Sea, as illustrated in Fig. 2. It is
the second largest Spanish autonomous community in area being divided into
eight provinces: Huelva, Seville, Cádiz, Córdoba, Málaga, Jaén, Granada and
Almeŕıa. These provinces have distinct weather conditions that are monitored
by a set of agroclimatic stations since the year 2000. These stations can perform,
and store daily, several meteorological measurements in an automated way [16].
Sown areas and durum wheat yield historical series are available for each of these
provinces. Thus, predictions for these provinces can be calculated considering
the local climatic conditions as an attempt to minimize the weather bias. In
Fig. 2, the provinces highlighted in bold, Cádiz, Córdoba, Huelva, Málaga and
Seville, are the largest durum wheat producers corresponding to an aggregated
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Figure 2: Andalusia geographic location and its corresponding eight provinces. Highlighted
in bold, Cádiz, Córdoba, Huelva, Málaga and Seville, are the largest durum wheat province
producers.

yield of approximately 95% of the Andalusia annual durum wheat yield. For
that reason, predictions are only calculated for these five provinces starting in
season 2000/2001 up to the current season 2017/2018. Historical data of durum
wheat yields and sown area for each of these five provinces are displayed in
Table 1.

The recommended sowing date in Andalusia is from middle November to
middle December. The harvest will be made when the grain has reached phys-
iological maturity which typically occurs in June. Mechanistic crop simulation
models are mainly focused on the months of March, April and May, since during
that time frame the most important development stages occur and can thus be
simulated: in March the tillers grow, in April stem elongation and inflorescence
occur while in May occurs the grain-filling [12]. The advantage of complex
mechanical crop models is to capture soil–weather–crop interactions, for a spe-
cific location, allowing the identification of the most important variables for the
different crop stages. However, all the climatic information prior to these im-
portant crop development stages is ignored and that information is key for two
reasons: it is important for within-season crop development as well and may
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Table 1: Tonnes of durum wheat yields and sown area for the five largest durum wheat
producer provinces of Andalusia. Sown areas for season 2017/2018 are provisional.

Cádiz Córdoba Huelva Málaga Seville

Area Yield Area Yield Area Yield Area Yield Area Yield
Season (Has) (Ton) (Has) (Ton) (Has) (Ton) (Has) (Ton) (Has) (Ton)

2000/2001 89960 240650 130959 379485 18064 43571 35084 75059 192142 505028
2000/2002 88967 238856 133493 421615 18067 50207 34603 68800 191594 604808
2000/2003 87662 231238 135725 357031 18351 43677 36446 106985 182291 509863
2000/2004 87330 307617 136545 491174 17819 48959 34598 110223 190440 647415
2000/2005 85278 201053 136024 127912 17980 21972 35365 40036 185686 192757
2000/2006 59692 182634 95310 326971 13517 40500 29279 93455 128525 455153
2000/2007 57283 182634 78853 214098 9791 33500 26969 89229 100325 346110
2000/2008 66589 182634 84702 242363 9517 26500 27853 88747 106440 299120
2000/2009 64422 181681 84600 267296 11413 43368 25097 80971 118875 426739
2000/2010 61204 98384 71169 146808 12375 23205 20715 52561 127084 328050
2000/2011 53886 163706 53471 142022 8925 31238 20163 48877 82325 248490
2000/2012 60719 101704 60803 57606 11807 10036 20371 40704 107395 102360
2000/2013 50802 122383 50274 146297 9810 41889 15674 42897 86513 261882
2000/2014 42392 137771 47337 165630 9362 28086 15657 33595 76020 264510
2000/2015 49623 159750 53033 135384 10708 41048 15315 43570 95068 302399
2000/2016 65174 124616 59879 157230 13045 37273 19587 35620 125114 241924
2000/2017 65174 177139 51050 164891 11114 51124 15200 37225 115892 382056
2000/2018 58614 – 51045 – 11114 – 15250 – 92461 –

have buried the climatic trends for the remaining of the season. For these rea-
sons, all weather data ranging from the month following the end of the previous
season (July) to the end of the current season (June) is considered aiming at
longer term yield forecasts.

The daily measurements stored daily in the agroclimatic stations covering
the different provinces of Andalusia include minimum, mean and maximum
temperature (oC), solar radiation (MJ/m2), rainfall (mm), evapotranspiration
(mm) and relative humidity (%). The most important weather variables af-
fecting durum wheat yield are rainfall and temperature [20]. Low precipitation
and its temporal distribution in a Mediterranean environment can explain as
much as 75% of the wheat yield variability [6], while quality of durum wheat
under Mediterranean conditions is mainly affected by precipitation and air tem-
perature [9]. Based on daily weather data provided by the agroclimatic sta-
tions, monthly variables were calculated for each province including monthly
minimum, mean and maximum temperature and monthly accumulated rainfall.
The average values of these monthly variables for season 2000/2001 up to season
2016/2017 and months from July to February in current season 2017/2018 are
displayed in Fig. 3. These monthly variables can provide information for thermal
or water stress conditions occurring before and during the crop cycle. However,
the effect of water deficit or high temperatures is not univocal [12], and the com-
bined effect of meteorological variables can lead to different results compared
to their single impact [35]. Therefore, adding to these four monthly variables,
additional monthly weather variables were considered, including the number of
days with no rainfall in the month, and the monthly mean of following variables:
maximum and minimum temperatures, solar radiation, evapotranspiration and
relative humidity. The total number of monthly weather variables considered
exceeded one hundred (10 × 12 months = 120 monthly weather variables).
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Figure 3: Rainfall and temperatures for the five largest durum wheat producer provinces of
Andalusia considering the average values for the time frame in study, season 2000/2001 to
season 2016/2017 and months from July to February in current season 2017/2018.

2.2. Radial Basis Functions Interpolation Models

There are many examples in the literature of successful applications of Radial
Basis Functions (RBF) interpolation models, including in agriculture [23, 30],
radiotherapy [24, 25] or aeronautics [26, 27]. RBF interpolation models have
been shown to provide excellent surrogates for modeling sparsely known re-
sponses that, in practice, can be used for optimization or forecast purposes [28].
The response surfaces obtained by RBF interpolation models are able to capture
the relationships between predictors (explanatory variables) and outcome(s) (re-
sponse variable(s)) which encourages its use for prediction of unknown outcomes
given the predictors’ values. Moreover, it has been shown that stochastic mod-
els in the presence of noise coincide with the corresponding radial basis algo-
rithm [36]. Computation of RBF response surfaces can be obtained even for a
small set of poorly distributed data points in a high dimensional space. Despite
this important feature, RBF response surfaces’ shape between data points is
strongly correlated to the basis functions used. Thus, for a given set of data
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points some basis functions can capture the correct trends while other basis
functions may fail to extract the main relationships between predictors and
outcome displaying misleading trends. Therefore, it is fundamental to choose
the most appropriate radial basis function, for a given set of data points, using
quantitative measures instead of a qualitative choice made a priori most of the
times based on authors’ intuition [28]. RBF interpolation is briefly described in
the following section.

2.2.1. RBF interpolation

Let x1, . . . ,xN be a set of data points with xk = (xk1 , . . . , x
k
n) ∈ Rn, k =

1, . . . , N and let’s assume that the response y(x) is only known at these N data
points. If φ(x) represents a given basis function, a RBF model g(x) can be
mathematically expressed as:

g(x) =

N∑
k=1

αkφ(‖x− xk‖), (1)

where ‖x− xk‖ corresponds to the Euclidean distance between x and xk,

||x− xk|| =

√√√√ n∑
i=1

|θi|
(
xi − xki

)2
,

parameterized by scalars θ1, . . . , θn [28]. The interpolation conditions given by
the following system of equations

N∑
k=1

αkφ(||xj − xk||) = y(xj), for j = 1, . . . , N,

allow a straightforward calculation of the α coefficients in Eq. 1 for each set
of fixed θ parameters. The most prominent examples of basis functions that
are typically used in practice are the multiquadric RBF, φ(x) =

√
1 + x2, the

thin plate RBF, φ(x) = x2 ln(x), the cubic RBF, φ(x) = x3, and the Gaussian
RBF, φ(x) = exp(−x2), graphically illustrated in Fig. 4. The first three RBFs
can be used to capture possible growth rates of the response – linear, almost
quadratic, and cubic, respectively. The Gaussian RBF can be used to capture
a possible exponential decay trend of the response [21]. As most of the times
it is not possible to know a priori the response trends, cross-validation can be
used to determine the most suitable basis function for the data set at hand and
also to compute the θ parameters.

2.2.2. Cross-validation

Selection of the most suitable basis function for the set of data points at
hand can simply be done by testing different possible RBFs. However, the same
basis function φ(x) gives origin to RBF interpolation models that behave differ-
ently between data points for distinct sets of model parameters θ1, . . . , θn. The
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Figure 4: Graphical illustration of multiquadric RBF, φ(x) =
√

1 + x2, thin plate RBF,
φ(x) = x2 ln(x), cubic RBF, φ(x) = x3, and Gaussian RBF, φ(x) = exp(−x2).

model parameter tuning should be focused on finding the RBF model with best
prediction ability. Cross-validation (CV) can be used as proxy of the model’s
ability to predict out-of-sample responses [32]. Thus, for each RBF φ(x), the
θ model parameters are calculated in order to minimize the CV error, i.e. to
improve the prediction features of the model. Algorithm 1 depicts the leave-
one-out CV routine used for calculating the θ model parameters that leads to
the RBF model with best predicting ability [28].

It is important to highlight that the minimization of the CV error, ECV

(θ1, . . . , θn), leads to a demanding highly non-convex global optimization prob-
lem in a possibly high dimension n. This optimization problem could be sim-
plified if all θ parameters were considered equal. However, this simplification
would erase the benefits of using different θ model parameters which enable the
scaling of each variable xi based on its importance on explaining the response’
variance. Thus, the use of different θ enables an implicit variable screening
embedded in the RBF parameter tunning which makes the optimization effort
worth it. However, this effort might become unbearable for very large n which
makes the selection of appropriate subsets of variables an important step in this
framework.

2.3. Variable Screening

Generically, a regression model with a large number of explanatory variables
may present several issues including data over-fitting. In this context, a large
number of explanatory variables brings an extra issue: increased difficulty on
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Algorithm 1 Leave-one-out CV for RBF model parameter tuning

Input:

• Set of data points, x1, . . . ,xN .

• Known response of the N data points, y(x1), . . . , y(xN ).

Iteration:

1. Consider θ1, . . . , θn, a fixed set of RBF model parameters.

2. For k = 1, . . . , N , compute the N RBF interpolation models g−k(x)
considering the subset of data points (xj , y(xj)) for 1 ≤ j ≤ N, j 6= k.

3. Compute the leave-one-out CV error:

ECV (θ1, . . . , θn) =

√√√√ 1

N

N∑
k=1

(g−k(xk)− y(xk))
2
. (2)

obtaining the optimal value of the CV error in Eq. 2. As previously described,
the potential number of predictors of durum wheat yield is over one hundred.
The purpose of variable screening is to select a subset of explanatory variables
that most influence response variation. Thus, if the change of a given variable
leads to an insignificant change in response then that variable should not be
selected or should be removed.

The traditional procedure for selecting a subset of explanatory variables is to
consider the input variables that have a statistically significant correlation with
the outcome. In this study, this common procedure would select a very large
number of explanatory variables which makes the optimization of the CV error
more difficult and may lead to over-fitted RBF models that behave extremely
well in-sample but perform poorly out-of-sample. Selecting procedures that
require the outcome for certain data points, e.g. ANOVA, are not feasible as
well for the problem at hand. Other variable screening procedures are only valid
for data points that follow a specific distribution which is not the case. Such an
example is the main effects estimate method [33], that requires the data points
to be uniformly distributed in a rectangular domain.

More flexible variable screening procedures include the forward and the back-
ward selection methods that are commonly used to calculate the explanatory
power of linear model’s predictors. In general, we can assume that these proce-
dures are suitable for variable screening when data is fitted by nonlinear models
as well. A combination of forward and backward selection methods is proposed
focusing in the predicting features of the models instead of the coefficient of
determination (R2) commonly used. Algorithm 2 depicts the variable screening
strategy that starts with forward selection and ends with backward screening.
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Algorithm 2 Forward-backward procedure for variable selection

Input:

• Set of data points, x1, . . . ,xN .

• Known response of the N data points, y(x1), . . . , y(xN ).

• Auxiliary data points, x̂1, . . . , x̂N , initially with 0 variables.

Forward procedure:

ECV
min ← +∞

Continue ← 1
While Continue

For i = 1 to n
If xi does not belong to the set of variables of auxiliary data points

x̂1, . . . , x̂N

x̌1, . . . , x̌N ← x̂1, . . . , x̂N ⊕ xi, where ⊕ corresponds to adding xi to
the set

of variables of the auxiliary data points
x̂1, . . . , x̂N

Fit the RBF interpolation model gi(x̌) to the points (x̌k, y(xk)) for
1 ≤ k ≤ N

and using Eq. (2) calculate the corresponding CV error, ECV
i

End If
End For
If argmin1≤i≤nECV

i < ECV
min

ECV
min ← argmin1≤i≤nECV

i

x̂1, . . . , x̂N ← x̂1, . . . , x̂N ⊕ xi
Else

Continue ← 0
End If

End While

Backward procedure:

Continue ← 1
While Continue

For i = 1 to n
If xi belong to the set of variables of auxiliary data points x̂1, . . . , x̂N

x̌1, . . . , x̌N ← x̂1, . . . , x̂N 	 xi, where 	 corresponds to removing xi
from the set of variables of the auxiliary data points

x̂1, . . . , x̂N

Fit the RBF interpolation model gi(x̌) to the points (x̌k, y(xk)) for
1 ≤ k ≤ N

and using Eq. (2) calculate the corresponding CV error, ECV
i

End If
End For
If argmin1≤i≤nECV

i < ECV
min

ECV
min ← argmin1≤i≤nECV

i

x̂1, . . . , x̂N ← x̂1, . . . , x̂N 	 xi
Else

Continue ← 0
End If

End While
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At the first iteration, data points with a single input variable are fitted using
RBF interpolation models. All input variables are tested, one at a time, and
the variable leading to the RBF model with best predicting feature (lowest CV
error) is selected. At the following iterations, variables not yet included are
tested, one at a time, and the best is added until the CV error cease to improve.
It is worth to point out that at the end of a given iteration, p, of the forward
procedure, the subset of variables selected probably does not correspond to be
best subset of p variables. The reason is simply because this procedure does
not test all possible combinations of p variables –

(
n
p

)
= n!

p!(n−p)! . Therefore,

after the forward selection, a backward screening is performed aiming to further
decrease the CV error. The backward selection follows a strategy similar to the
forward procedure but now variables are removed instead of added.

3. Computational results

Computational tests were performed using MATLAB(R2018a) on a Intel
Core PC @ 2.60Ghz. The optimization of the CV error (Eq. 2) was performed
using the optimization toolbox of MATLAB, concretely fminsearch, an imple-
mentation of the Nelder-Mead derivative-free optimization procedure [17]. The
basis functions, and corresponding RBF optimal θ parameters, were selected
based on the optimal CV error obtained as this measure was used as surrogate
of the RBF model prediction ability [28].

A typical measure used to assess the quality of the yield forecast is the
normalized root mean squared error [5, 11]. The normalized root mean squared
error of crop yield predictions (P) can be calculated based on deviations from
actual yields (A) accumulated over time represented by M seasons:

nRMSE =

√√√√ 1

M

M∑
i=1

(Pi −Ai)2 ×
100

Ā
,

where Ā is the mean value of the actual yields. The normalized root mean
squared error gives a measure of the relative difference of simulated versus ob-
served data. The lower the value of nMRSE, the higher the ability of the models
to capture the interannual variability of the yields. The simulation is considered
excellent when nRMSE is inferior to 10%, good when nRMSE is between 10%
and 20%, fair when nRMSE is between 20% and 30%, and poor when nRMSE
is greater than 30% [5, 11].

Another measure used to assess the quality of the yield forecast is the mean
prediction error (or mean relative absolute error) calculated as

1

M

M∑
i=1

|Pi −Ai|
Pi

× 100.

This measure provides quantitative information regarding the differences be-
tween estimated and observed yields.
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The tailored strategy for early prediction of durum wheat yield in Spain for
each of the M = 17 seasons in study, 2000/2001–2016/2017, was performed as
follows:

• Eliminate all the data related to the season being predicted including sown
areas, climatic variables and yields.

• Set the month the forecast will be made. Eliminate all the climatic data
after that month for all the seasons. For each province, considering the
remaining data:

– compute a subset of explanatory variables using Algorithm 2 for each
basis function considered;

– determine the best RBF model that corresponds to the lowest CV
error obtained in previous step;

– using the best RBF model estimate the durum wheat yield for each
of the five provinces;

• Compute five durum wheat yield predictions for Spain by scaling each of
the provinces’ estimate by their mean contribution to the overall durum
wheat yield of Spain;

• Sort the five estimates and take the middle value (median) as the durum
wheat yield forecast for Spain in that season.

This strategy uses cross-validation to assess the models prediction perfor-
mance which is a common procedure including for wheat yield prediction (see,
e.g. [15, 18]). As most of the models used to forecast durum wheat yield are
multivariate linear models (see, e.g. [12, 13, 15, 31]), the strategy sketched for
obtaining the best set of variables and the RBF model with highest predictive
ability was also used to obtain a multivariate linear model for benchmark pur-
poses. MATLAB implementation lscov was used to obtain the ordinary least
squares solution, x, of the linear system of equations Ax = b, where columns
of A correspond to the selected variables, b corresponds to the Spanish durum
wheat yield for the M−1 seasons used to fit the model with the goal of predicting
the removed season.

Fig. 5 displays the forecast results obtained by linear models and RBF mod-
els for near-harvest yield estimate, i.e. the month of forecast is June, meaning
that only information available until June is used in for prediction. The nMRSE
obtained by RBF models was 18.9% which is considered good while the linear
models obtained a poor forecast (nMRSE=32.2%). The mean prediction error
obtained by RBF models was 16.3% clearly outperforming the linear models
that obtained a mean prediction error of 26.6%. Furthermore, RBF models
were able to capture most of the trend of the durum wheat yield series, which is
quite difficult for such irregular series, while linear models clearly fail to do so.
We should stress the decisive role of variable screening that clearly enhanced
forecasts’ quality. It should be also reminded that each of the framework steps
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Figure 5: Durum wheat yield previsions obtained by linear models (a) and durum wheat yield
previsions obtained by RBF models (b) considering June as the month of forecast.
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including variable screening, basis selection and RBF model fitting are done in
an automated way for an out-of-sample forecast. Thus, different subsets of vari-
ables were obtained for different regions and for different seasons to be predicted.
While displaying all the subsets of predictors obtained might be confusing as
they are too many and depend on geographical region and season, it might be
relevant to know that the variables that appear more often were the sown area
(has), the accumulated rainfall (mm) in January and the maximum temperature
(oC) in October. It is interesting to note that the two main climatic variables
emerge: rainfall and air temperature.

In order to make early predictions of durum wheat yield, the previous strat-
egy was used considering the months preceding June. As the estimated sown
area for each province for the current season is only available during the month
of January, predictions are only possible at the end of that month. The nMRSE
obtained by RBF models at the end of January up to the end of May were
30.4%, 25.1%, 24.8%, 21.9%, 20.3%, respectively. This means that the forecast
obtained at the end of January is poor while the forecast obtained by the end
of February is the first fair forecast. The remaining forecasts are also fair but it
is worth to point out that there is only a small deterioration of the results until
February. Estimates obtained with RBF models at the end of January and at
the end of February are displayed in Fig. 6. It can be observed that forecast at
the end of January fails to capture most of the trend of the yield series while the
first fair forecast obtained by the end of February already captures most of the
series trend. As the climatic data for this season is available up to the end of
February, a forecast for the current season, 2017/2018, considering climatic data
up to the end of February is already displayed in Fig. 6. Despite the estimated
decrease in the sown area, the prevision foretell a slight yield increase for the
current season as provisional yield for 2016/2017 is 1159900 ton and forecast for
2017/2018 is 1168200 ton.

A RBF model considering only the three variables that emerged the most
was also computed and the forecast results are displayed in Fig. 7. Note that this
model can obtain a forecast in the end of January as accumulated rainfall (mm)
in January is its late climatic variable. The nMRSE obtained was 17.2% while
the mean prediction error 11.9%. Despite the very good results, such model is
less reliable for future forecasts than the previously reported models. In fact, the
yield estimates provided by this model cannot be considered as out-of-sample
estimates because the variable selection incorporates information from all series.
Actually, for the seasons where that variables did not emerge, the estimates are
quite bad. E.g., for season 2011/2012 the prediction error is superior to 70%.
An estimate for the current season, 2017/2018, was also computed using this
model and the prevision foretell a slight yield decrease (1101300 ton) compared
to the last season. It is possible to obtain RBF models with almost perfect
in-sample accuracy but they are unreliable for future forecasts. Nevertheless, in
this particular case, estimates obtained are quite similar.
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Figure 6: Durum wheat yield previsions obtained by RBF models at the end of January (a)
and durum wheat yield previsions obtained by RBF models at the end of February (b).
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Figure 7: Durum wheat yield previsions obtained by RBF models considering the sown area
(has), the accumulated rainfall (mm) in January and the maximum temperature (oC) in
October.

4. Discussion and conclusions

In this paper, an alternative methodology to deterministic crop models for
within-season early prediction of durum wheat yield is proposed. Global warm-
ing and increasing occurrence of extreme weather events are only two of the
factors that make crop yield forecast extremely difficult as they lead to an in-
creased interannual yield variability. Nevertheless, the RBF models proposed
presented good predictions clearly outperforming the commonly used multivari-
ate linear models. The strategy drafted for variable selection was decisive for
obtaining RBF models with improved predicting ability. Although some vari-
ables emerge more often than others, their role should be carefully interpreted
in this context. While in complex system deterministic crop models it is possi-
ble to identify climatic variables that have an important role during the more
susceptible crop stages, here the main emerged meteorological variables should
simply be seen as good yield predictors rather than having a decisive role in a
particular crop development stage.

One of the difficulties faced in this study was related to the goal of estimat-
ing national yields instead of local predictions. Aggregated yields are obviously
more challenging as the different yields’ error are added as well as the error as-
sociated to scale. E.g., if actual durum wheat yield from the five larger producer
communities in Andalusia are used to compute the Spanish yield instead of the
RBF model estimates, the mean prediction error is 4.2%. Thus, comparison of
the results achieved is 16.3% against 4.2% which is a better perspective than a
comparison 16.3% against 0%.

Typically, estimates obtained by mechanistic crop models near-harvest are
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much more accurate than results obtained by RBF models for the month of
June, at least for a specific location. However, long-term forecasts quality re-
sults deteriorate markedly using deterministic crop models which do not occur
for the framework proposed. Thus, this mathematical framework gathering RBF
models and variable screening show great potential to provide early aggregated
yield predictions. Although near-harvest forecast are not sharp accurate, long-
term estimates are able to capture the trend of the yield series, making this
framework a valid alternative to be combined/merged with deterministic crop
models. Furthermore, the use of RBF models, as alternative to linear mod-
els, could enhance the ability to capture the soil–climatic–plant interactions of
dynamic and complex system deterministic crop models.
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