




Beatriz Campos Raposo Medeiros Araújo
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Resumo

Ao longo dos anos, a percentagem de população com carta de condução tem crescido

rapidamente e, consequentemente, também a taxa de acidentes de viação. Sonolência

é uma das principais razões para acidentes rodoviários por provocar um decréscimo

de percepção, concentração e controlo sobre o véıculo. Por esta razão, novas técnicas

para prevenção de acidentes causados devido ao cansaço do condutor têm sido ex-

ploradas como, por exemplo, a possibilidade de prever se o condutor está sonolento

ou não.

Este projeto tem como objetivo implementar técnicas de machine learning para

identificação de diferentes estados mentais do condutor recorrendo ao uso de uma

headband de fácil utilização e transporte, capaz de recolher ondas cerebrais. O

estado mental do sujeito, neste caso de alerta ou sonolência, está diretamente in-

terligado com a maior ou menor presença de certas frequências cerebrais, o que

permite identificar em que condição o indiv́ıduo se encontra. Para este fim, foram

realizadas aquisições da atividade cerebral em distintas situações. Posteriormente,

diversos métodos de identificação e remoção de rúıdo (artefatos) e algoritmos de

séries temporais foram aplicados para a construção de datasets que, mais tarde, se-

riam classificados por uma rede neuronal com o objetivo de diferenciar entre estados

de viǵılia e cansaço.

Palavras-chave - EEG, ICC, Headband para leitura de ondas cerebrais, Redes

Neuronais Artificiais, Análise de séries temporais, Sonolência, Alerta
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Abstract

Over the last years, the percentage of licensed drivers has increased rapidly and, as

a consequence, so have car accidents. Drowsiness is one of the main reasons for car

crashes due to a decrease of perception, concentration and control over the vehicle.

For that reason, new techniques for prevention of accidents caused by somnolence

have been explored. That includes, for example, prediction of non-alert states.

This project aims at implementing machine learning techniques for the identification

of different mental states of the driver, with the use of a wearable and lightweight

headband, capable of collecting brain signals. The mental state of the subject, in

this case of alertness or somnolence, is directly interconnected with a higher or lower

presence of certain brain frequencies that will enable to identify in which condition

the individual is in. For that purpose, recordings of brain response to different sce-

narios, both in alert and drowsiness situations, were made. Different methods were

applied to detect and reject noise (namely so called artifacts) and different time

series algorithms were applied for the construction of datasets that were after be

fed to an artificial neural network with the goal of differentiate between states of

vigilance and drowsiness.

Keywords - EEG, BCI, Wearable brain sensing headband, Artificial Neural Net-

works, Time Series Analysis, Drowsiness, Alertness
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1

Introduction

A study1, from the Portuguese Pneumology Society, concluded that around 20% of

the car accidents in Portugal are due to drowsiness of the driver. The same paper

also claims that the risk of accident increases when driving longer distances and

when the driver suffers from obstructive sleep apnea. Also, in the field of work

safety, according to the Authority for Work Conditions, fatigue is one of the main

causes for work accidents, mainly on the transports sector2. These are due to the

fact that somnolence causes a decrease of brain activity that, as a consequence,

will affect the person’s behavior resulting in frequent yawning and blinking eyes,

difficulty in focusing, slowing down, rambling thoughts and bad memory1.

Numerous researches have been done with the goal of detecting the subject’s level

of alertness. Therefore, diverse physiological factors were taken into account, for

the differentiation between an alert and a drowsy state such as, heart and pulse

rate, eye blinking frequency and skin electric potential [1]. Despite all the different

somnolence indicators, the direct measurement of brain activity, generated by the

exchange of information between neurons and electro-chemical transmitters, has

shown to be one of the most reliable [2][3].

Brain activity can be monitored by electrophysiological methods, such as electroen-

cephalography (EEG) where weak electrical signals detected by electrodes positioned

on the scalp are considerably amplified and stored to computer memory or printed

in paper [2][4]. The measurement of EEG signals is a non-invasive procedure that is

often known to have a large quantity of electrodes for a greater precision. However,

there has been increasing research in the field of wearable and wireless EEG devices

with as few as four channels [5]. Those systems have shown to be useful in cases

where medical grade devices are impractical such as for drowsy drivers, where there

is a need for a lightweight system. On the other hand, those simple headsets present

1SPP lança campanha “Não conduza de olhos fechados” published in 2017-08-04,
http://www.sppneumologia.pt/noticias/noticia/spp-lana-campanha-no-conduza-de-olhos-fechados-04082017, visited in 2019-01-16

2Luśıadas -“Acidentes de trabalho: não corra risco”, https://rotasaude.lusiadas.pt/acidentes-de-trabalho-nao-corra-riscos/,
visited in 2019-03-05
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1. Introduction

a lack of resolution in comparison with more complex ones [6].

The goal of the present project is the possibility of differentiation between mental

states, in this case drowsiness and alertness, using the MUSE brain sensing headset,

manufactured by Interaxon Inc., with only four electrodes capable of reading EEG

signals, two of them positioned between the pre-frontal and frontal regions (AF7

and AF8) and the other pair between the temporal and parietal lobes (TP9 and

TP10). Data from the sensors are collected, processed and fed to a machine learning

algorithm (artificial neural networks), for data classification [7].

For a detailed analysis of the topic, the present dissertation is divided in different

chapters. In the Chapter 2, Brain Computer Interfaces, electroencephalography and

the various frequency rhythms from the different regions of the brain are reviewed.

In Chapter 3, past research in the field of drowsiness detection with EEG devices is

explored. In the Chapter 4, the hardware and software used for the recording of the

EEG signal and its analysis is described. In Chapter 5, the various methods used

for artifacts removal, time series analysis and dataset and artificial neural network

construction are explained. In Chapter 6, the obtained results are presented and

examined. Finally, in Chapter 7 some conclusions and future work are highlighted.
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2

BCI and Brain Waves

Nowadays, with the advance of technologies, it’s possible to read electrical signals

from the brain, which are mainly produced by neuronal postsynaptic membrane

polarity changes as a result of the activation of voltage-gated or ion-gated channels

[8]. In this chapter, the devices and methods for brain activity monitoring and

interpretation will be described.

2.1 BCI System

The acquisition, analysis and translation of the electrical brain signals are done using

devices called brain-computer interfaces (BCI) [8].

A BCI is a hardware and software communications system that can recognize a cer-

tain set of patterns in the signals of the brain depending on the output aimed by the

user [2][8]. This system uses electroencephalographic or cortical single-neuron ac-

tivity to control cursor movement, select letters or icons, or operate neuroprostheses

through the transmission of brain signals to the muscles or to external prosthetic

devices [9][10].

2.1.1 BCI Elements

For a successful use, a brain-computer system needs to have elements that will allow

the signal acquisition, feature extraction, classification, and the control interface

(Fig. 2.1) [2]. The usual steps performed by the BCI system are described bellow

Acquisition

During this stage, sensors are used to capture brain signals that will have to be

amplified enough for the next stage of digital processing. Those signals may be

25



2. BCI and Brain Waves

Figure 2.1: Components of a brain-compurter interface system [8].

subjected to filtering for noise reduction and artifact processing. One example of a

sensor that can be used during this step is electrodes. Electrodes are required to

study the electrophysiologic activity.

At the end of the acquisition stage, the resulting signals are read and transmitted

to a computer [8].

Feature extraction

Since the brain activity results in different signals, and some overlap in both time and

space, it is fundamental the analysis of the digital signals for identification of impor-

tant information [2][8]. Signal contamination by unwanted noise results in diverse

artifacts, that may be caused by the measurement equipment or by the test subject

itself, will need to be filtered out. The artifacts created by the recordings devices

may be due to defective electrodes, line noise and high electrode impedance. On the

other hand, physiological artifacts are represented, for example, by eye movements,

cardiac activity and muscle activity [11].

For a better visualization, the signal has to pass through filtering and artifact re-

moval. With the goal of noise elimination from the various artifacts, numerous

approaches can be use. One of most used method is linear filtering which is capable

of removing artifacts in certain signals where the overlapped frequency bands do not

match with the range frequencies of the brain signals. In this case, usual is applied

low-pass and high-pass filters [12]. Another technique example is spatial filtering
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2. BCI and Brain Waves

that resorts to a small number of new channels, that are a linear combination of the

original ones, that filters the signal by reuniting information that is spread over the

various EEG channels [12].

At this phase, the result is usually a low dimension vector suitable for translation

into output commands with all the relevant information [2].

Classification

During this step, the resulting vector is passed to the feature translation algorithm

for detection and classification of the discriminative features. This process will allow

deciphering of the pacient’s intentions into suitable commands for the output device

[2][8].

Control interface

At last, the resulting ouput commands will operate the external device, providing

functions such as letter selection, cursor control, robotic arm operation, or other

[2][8].

2.1.2 BCI Control Signals

As described at the beggining of section 2.1, a BCI system monitors cerebral activity

for the interpretation of intentions. For that purpose, the brain transmits control

signals that after proper analysis and modulation will allow the required output [2].

Those computer interfaces are classified according with the origin of the recorded

signal being divided into two categories: exogenous or endogenous. Exogenous

BCI systems are related with neuronal activity caused by external stimuli, while

endogenous systems are mainly influenced by brain rhythms and other potentials

[13].

Exogenous BCI systems require minimal training since their control signals are easy

to set-up. Such systems monitor SSVEPs (steady-state Visual Evoked Potencials)

and P300 control signals that require only one EEG channel to be detected and

possess a high bit rate of information. In regard to VEP signals, they represent

brain signal modulations in the visual cortex, where SSVEPs occur in reaction to

stimuli of a higher frequency and as result they are not as susceptible to lower

frequency artifacts as eye blinking. On the other hand, P300 indicates positive

peaks due to infrequent stimulus [2][13].
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In contrast, endogenous BCI systems necessitate training where the subjects have to

learn specific patterns that will after be translated by the computer system. Those

type of systems are described as being conditioned by the users and specific mental

tasks performances [2]. Thus, endogenous interfaces do not use any external stimuli

what is particularly advantageous for patients without motor function [14]. The

control signals monitored by those kind of BCIs are SCPs (Slow Cortical Potencials)

that represent slow voltages shifts in the brain signals and sensorimotor rhythms that

are related with motor imagery without any movement [2][13].

2.2 Neuroimaging Method - Electroencephalog-

raphy (EEG)

The brain activity can be monitored by electrophysiological methods where the

activity is generated by the exchange of information between neurons and electro-

chemical transmitters or by hemodynamic methods given that neural activity is

controlled by alterations in cerebral blood flow and blood oxygenation that are

detectable with fMRI (functional Magnetic Resonance Imaging) techniques [2][15].

In this section, electroencephalography, one of the methods for the measurement of

the electrophysiological activity will be described in more detail.

2.2.1 EEG and Measurement System

Electroencephalography (EEG) is a non-invasive technique that measures the electric

activity that occurs during synaptic excitations of the dendrites in the neurons with

the use of electrodes placed on the scalp. The EEG signal is a result of the potential

difference over time between signal or active electrode and reference electrode [2]. For

this process, researchers felt the need to create a standard system for the positions

of the electrodes, the 10-20 system.

The 10-20 international system is the recognised method used for uniform distribu-

tion of the EEG electrodes across the scalp, independent from the head size. The

standard clinical setup uses only 19 electrodes (Fig. 2.2). Taking into account the

anatomic structure of the brain, the standard setup does not allow recording of

the signals from the mesial temporal structures. Thus, if the machine allows more

recordings, it is recommended that an inferior temporal chain would be included in

the 10-20 system performing a total of 25 electrodes (Fig. 2.3) [16].
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2. BCI and Brain Waves

Figure 2.2: Standard 10-20 system with 19 electrodes [17].

Figure 2.3: Recommended standard 10-20 system including the inferior temporal
chain (T9/T10, F9/F10 and P9/P10) with 25 electrodes [16].

Due to an incomplete coverage of the scalp using the standard electrode configu-

ration, it was also created a 10-10 system (Fig. 2.4) that allows a more complete

recording of the patient brain activity. Despite the creation of this more complex

method, the standard setup has the advantage of taking less time and being more

efficient [16].

An electroencephalography system is composed by electrodes, amplifiers, A/D con-

verter and a recording device. For a good acquisition of signal, this method often

resorts to gel that will reduce the impedance for a better conduction between the

skin and the electrodes which are usually made of silver chloride (AgCl). Some of

the more recent portable EEG devices chose not to use gel and instead are com-

posed by active ”dry” electrodes. Those type of electrodes can be constituted with

materials as titanium and stainless-steel. They may also have in their structure

preamplification circuits or be incorporated with ultra-high input impedance in case

of no active circuits (passive electrodes) [2].

29



2. BCI and Brain Waves

Figure 2.4: 10–10 Positioning System (modification of the 10-20 system) [17].

Figure 2.5: Locations of the different lobes - frontal, temporal, parietal and occip-
ital [18].

2.2.2 Brain Anatomy

For a better understanding of the EEG signal and positioning of the electrodes

across the scalp, it is important to study the different regions of the brain and their

functions.

The human brain divides into four lobes: frontal, temporal, parietal and occipital

lobes (Fig. 2.5).

Frontal Lobe

The frontal region is the largest of the brain, thus for a better analysis it is divided

into different areas: dorsolateral, inferolateral, orbitofrontal and medial [19].

The dorsolateral frontal lobe is composed by the prefrontal cortex, the premotor
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cortex and the primary motor cortex and its responsible for the motor tasks [19].

In respect to the inferolateral frontal region, the dominant hemisphere, usually the

left side, is in charge of the expressive language [19]. Both orbitofrontal and me-

dial frontal areas have as function the control of emotions, social interactions and

personality [19].

This lobe is truly important in the field of concentration, orientation and judgement

being involved in the process of difficult decisions and interactions [19].

Temporal Lobe

The temporal region includes the primary auditory cortex responsible for processing

sound [19]. This area is also important in the retention of emotions, visual memory

and language comprehension [19].

The medial area of the temporal lobe is composed by essential structures of the brain

as the parahippocampal gyrus, uncus, hippocampus, tamporal horn and choroidal

fissure [19].

Parietal Lobe

The parietal area of the brain is located between the occipital and frontal lobes and

above the temporal lobe [20]. In this region is situated the primary somatosensory

cortex [19].

This brain region is in charge of the primary analysis of somatic sensations as touch,

position of the limbs and temperature [20]. This area is also responsible for the

examination of space and specification of spatial target important in the motor taks

[20]. Another functions of the parietal lobe is the generation of attention and the

analysis of visual motion [20].

Occipital Lobe

The occipital lobe is the main area capable of processing the visual information and

as a consequence, damages in this region can cause blindness and hallucinations [19].

This brain region is divided into three surfaces (medial, lateral, and basal) and three

borders (superomedial, inferolateral, and inferomedial) [21].
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2. BCI and Brain Waves

2.2.3 Frequency Ranges

The EEG resulting signal can be filtered according to the different ranges of fre-

quency: delta (δ), theta (θ), alpha (α), beta (β), and gamma (γ), respectively (Tab.

2.1).

Table 2.1: Frequency intervals of the different brain waves [22].

Brain Waves Frequency Interval (Hz)

Delta, δ 0.1 - 4
Theta, θ 4 - 8
Alpha, α 8 - 13
Beta, β 13 - 30

Gamma, γ 30 - 70

Delta band (δ)

Delta waves are the lowest in the frequency band spectrum. They can be divided

in two different groups. The lowest delta frequencies (<1 Hz) are related to cortical

integration and regulation of the body while higher delta frequencies are a sign of

cognitive processes as active memory [23]. They are more pronounced on the frontal

region in adults and posteriorly in children [24].

Those waves have often maximal amplitude in the frontal regions and are usually

only visualized in a deep sleep state in adults. If observed during an awake state,

it’s often a sign of neurological diseases [2].

A down side of delta waves is that, due to their low frequency, they are mistaken by

artifacts signals [2].

Theta band (θ)

Theta waves are usually related to drowsiness, meditation [25], emotion, cognitive

processes, memory and spatial processing [2]. In the theta domain, most of the

observed frequencies are on the lower half of the interval, closer to 4 Hz, and are

predominant on the temporal regions. The temporal theta represents verbal recall

(left side) and spatial orientation (right side) [23].

In adults in a normal awake state, it is possible to observe a small amount of theta

waves. However, in children or adults in a drowsy state, it can be observed a most
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higher amount of theta frequencies. Likewise to the delta range, if a large set of

theta waves are observed in awake adults, it is a sign of neurologic diseases [2].

Alpha band (α)

Alpha frequencies are related to visual processing and, sometimes, to memory brain

functioning [2]. Recent studies show that alpha rhythms can occur in any part of

the brain (as theta activity) but are mostly found in occipital (maximal) and frontal

brain regions [2][23][25].

Over the time, another fact that was observed is that this band of frequency trans-

mits also mental effort. When the eyes close and the body relaxes, the alpha am-

plitude increases and when the eyes open and there is mental effort they attenuate

mainly in frontal areas [2].

Other important feature is that, in the same range as alpha frequencies, it can be

found mu waves although they are connected with the motor cortex and, sometimes,

are correlated with beta frequencies [2].

A consequence of aging is the slowing of alpha waves and combined with an increase

of theta frequency, it can indicate cognitive decline and Parkinson’s disease [23].

Beta band (β)

Beta waves are able to measure motor activity and are maximal on the frontal and

central regions of the brain. When there is no motor activity they have a symmetrical

distribution, whereas active movement results in the attenuation of the waves and

change of the symmetrical distribution [2]. They are also related with cognitive

processing and are stimulated into activity by gamma [23].

Due to the fact that beta brain waves are represented in a big frequency interval (13

- 30 Hz), usually for analysis the band is divided at least into two bands: low beta

(13–21 Hz) and high beta (21–30 Hz) because of the differences in topographies and

reactivity to tasks [26]. However, opinions may vary in relation to the amount of

sub-bands and their limits frequency values [23].

Higher frequency beta waves are mostly found on the central region of the brain

in the sensorimotor area (C3, Cz, C4) [27]. They are also known as rolandic beta

frequencies and can possess a range of frequency of 14 to 30 Hz [27]. On the other

hand, lower frequency beta waves are predominant on the frontal region of the brain

(F3, Fz and F4 locations) and have a frequency maximum at around 19 Hz [27].
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Those frequencies are more related with cognitive tasks and decision making [27].

Gamma band (γ)

This frequency range represents some motor functions, perceptions of visual and

auditory stimuli and cortical processing related to cognitive functions [2]. Also, some

studies reveal correlation between gamma and beta cortical oscillatory activity and

force. Gamma waves are maximal during muscle contraction [2]. They are mostly

found on the area of the somatosensory cortex [24].

Because of artifacts resulting from electromyography (EMG) or electrooculography

(EOG), gamma frequencies are less used in EEG-based BCI systems [2].

The tab. 2.2) represents a summary of the characteristics from the differents brain

waves.

Table 2.2: Summary of the brain waves features.

Brain Waves Brain Regions Features

Delta, δ
- Frontal (adults) - Cortical integration
- Posterior (children) - Regulation of the body

- Cognitive processes

Theta, θ

- Temporal - Drowsiness
- Meditation
- Emotion
- Cognitive Processing
- Memory
- Spatial Processing

Alpha, α
- Occipital (maximal) - Visual Processing
- Frontal - Memory brain functioning

Beta, β
- Frontal - Motor Activity
- Central - Cognitive Processing

- Decision Making

Gamma, γ
- Somatosensory Cortex - Motor functions

- Perceptions of visual and auditory stimuli
- Cortical processing
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In this chapter the work that has been done so far in the scope of drowsiness detection

and the methods and equipment used for its research are described.

3.1 Research on Drowsiness Detection

Within the scope of drowsiness detection some research has been done mainly con-

cerning the danger of falling asleep while driving. In begining stages, studies were

done in the field of image processing, where images recorded by a video camera were

analyzed according to the driver’s face [28] or eyelids movement [29]. In 2002, an in-

vestigation was done using time series of interhemisphere and intrahemisphere [30].

The correlation between homologue electrodes, on the interhemisphere, allowed to

observe a decrease with drowsiness [30]. On the intrahemisphere was possible to

notice the transition from alertness to drowsiness and vice versa [30].

As the studies in the area developed, another strategy of decomposing the EEG into

frequency sub-bands was explored. The changes of alpha and theta waves, during

wakefulness, give information about the drowsy state of the subject. In an alert

state, alpha power is usually low unless the subject is severely fatigued. On the

drowsy state, alpha power is high. The transition from a condition of drowsiness

to sleep represents a gradual alpha power reduction and a gradual increase of theta

power [31]. Together with variations of the power of lower frequencies it was noted

an increase of Shannon Entropy and K-L Entropy before driving that proved their

sensitivity to sleepiness and importance on fatigue detection [3].

Bandwidth changes also showed to have an influence on the detection of awake and

drowsy states as sporadic synchronization was dectected in the EEG signals while

the subjects were trying to maintain wakefulness against sleepiness [32]. From the

extration of some chaotic features, it was possible to conclude that the complexity

of brain activity in alertness is higher than in drowsiness [33].
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3.2 Data Acquisition

Over the years, EEG devices and techniques for data acquisition, within the scope of

somnolence levels, have been developed according to the available technology needs

and evolution of BCIs. Most of the papers about drowsiness detection use complex

EEG systems with a large number of electrodes. Besides the normal EEG caps, some

examples of EEG devices and sampling rates used in the past were the MEDELEC

1A97 EEG system with 16 channels and a sampling rate of 256 Hz per channel [30]

and the Grass Model-78 Polysomnography3 system with 25 channels avaiable and a

sampling rate that can get to at most 1000 Hz [31].

With the advance of technology the need for different types of EEG devices emerged.

Focus on portable wireless EEG systems increased in the last years like, for example,

the B-Alert EEG System, with 10 to 24 channels, that was used in the field of

drowsiness detection [34]. The developers of EEG portable devices are also working

towards the goal of creating more affordable systems as is the case of the Emotiv

system with 5 to 14 channels and the Muse headband with 4 channels4.

Concerning the time acquisition matter, there is not a pre-established notion on

which is the ideal recording duration for analysis. Within the scope of somnolence

identification, different approaches were taken. For instance, a study using a neural

network and wavelet coefficients resorted to the recording of seven hours episodes

where EEG signals were taken every 20 minutes for each block and lately divided into

five seconds epochs for examination [31]. Another paper resorting to instantaneous

equivalent bandwidths for detection of drowsiness, acquired data from 30 minutes

recordings in a shielded room and, subsequently, five minutes of raw EEG were

selected from it for future evaluation [30]. A more recent research using the Muse

headband sensing system recorded brain waves of each individual during one hour

and proceeded to analyze 50 minutes from it [35].

3.3 Electrodes Position on the Scalp

For drowsiness detection the location of the electrodes, their impedance and the

state of alertness are very important [31]. One of the problems in the scope of EEG

research is the missing information about the methods for channel selection, lack of

3GRASS TECHNOLOGIES, https://www.erikg.com/grass.html, visited in 2019-04-02

4EEG Headset Prices – An Overview of 15+ EEG Devices, https://imotions.com/blog/eeg-headset-prices/, visited in 2019-04-02
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justifications and different opinions [36].

A study for sleepiness recognition using the Emotiv EPOC headset containing 14

electrodes and two reference electrodes opted to chose six positions in the frontal

lobe: AF3, AF4, F3, F4, FC6 and F8, and one in the parietal lobe: P8 for identifica-

tion of alpha and beta pulses [25]. However, another paper selected the signal from

the electrodes in the occipital regions O1 and O2, where it is highly correlated with

the driver’s alertness level [37]. Some authors decided also to use more electrodes

for data acquisition as, for example, in cases of measuring the entropy of the brain

where electrodes were positioned at 14 locations (F7, F8, T3, T4, T5, T6, F3, F4,

C3, C4, P3, P4, O1, O2). This last article defended that during wakefulness, al-

pha and theta waves of interest for research on sleepiness [31]. Regarding the Muse

system, the study found in the field of drowsiness detection used only the EEG

recording from one of the frontal sensors for later examination [35].

3.4 Artifacts Removal

With the extration of the EEG data, an aspect that must be taken into account is

the different artifacts of the recording. Besides roving eyes, artifacts may have other

sources such as dangling legs, muscle tension, surrounding noise, teeth grinding,

sweating, breathing, heart beat, or electrical line noise. All scalp locations are

subject to contamination. The locations with more artifacts are, usually, the frontal

(20–30 Hz range) and temporal (40–80 Hz range) at the Fp1, Fp2, F7, F8, T3 and

T4 positions [23][38].

Methods for artifact removal are dependent on the type of data that was recorded

and the goal. An important first step is to establish the frequency interval that

we intend to study. An hypothesis for that is to use a band pass filter such as,

for example, a butterworth filter [3] or a Chebyshev filter [33]. The next step is the

removal of frequent biologial artifacts created as a result of blinking and movements,

for instance. When EOG data is also available it is easy to remove visually movement

artifacts [33]. Another strategy used was the independent component analysis (ICA)

followed by a moving-average spectral analysis using a 250-point Hanning window

with 125-point overlap [1]. To further minimize the artifacts effects, the resulting

signal was filtered by median filter with a moving 2-s window [1]. For the artificial

noise removal that results from the grounding of the EEG electrodes (50 Hz in

Europe), it is usually used a notch filter [33].
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One other technique used for artifact rejection was organizing the data by epochs

according to the sum of square amplitudes and save the first, for example, 100 epochs

with the lowest total amplitude for further analysis [39].

3.5 Methods for Data Analysis

After artifacts removal, different ways for the interpretation of the EEG signal for

somnolence detection were already explored. Most studies resort to time series algo-

rithms such as FFT, DWT and PSD for examination of the variation of amplitude

over different frequencies. Besides those methods, nowadays, the interest in ma-

chine learning has been growing and some research using artificial neural networks

has been done in the field of distinction between an alert and a drowsy state.

3.5.1 Time Series Algorithms and Feature Extraction

Since power spectral ranges are associated with fatigue and drowsiness, one viable

way to separate the frequencies is to pass the filtered signal through a FFT [34]

that will convert the signal to a frequency domain. Another method to separate the

different frequency bands is to apply a DWT that allows the analysis with different

resolutions by decomposing the signal by successive high-pass and low-pass filtering

of the time domain signal. The studies that use the wavelet transform method

defend that the Fourier transform is not ideal since it should only be applied to

stationary signals, those do not change much over time [31]. However, althought

the signal is continuous, from 0 Hz to half of the sampling frequency, the brain state

of the person may originate some frequencies which are more dominant [4].

Regarding feature extration originated from time series algorithms, there is not an

exact theory. In [31] was selected the range of frequency from 0.3 up to 70 Hz and

after that examined the frequency interval from 1 to 30 Hz since it includes delta,

theta, alpha and beta domains. However, [3] tested the frequencies from 0.5 Hz up

to 45 Hz, also including a bit of the gamma spectrum. In [34], only the theta and

alpha waves were investigated. From this, it is possible to conclude that studies, in

the field of alert levels detection, opt to remove the beginning of the delta spectrum

since it is more susceptible to artifacts [2]. Also, most papers choose not to select

all of the gamma spectrum due to a higher probability of aliasing [40].
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3.5.2 Feature Classification

After feature extraction, the next step is the process of classification by grouping

them into different categories according to the similarities and differences between

them [41].

Various techniques have been already proposed for drowsiness EEG signal classifi-

cation. In [31] the approach of neural networks classification was taken, where the

model that showed better accuracy results was the ANN configuration of 15-23-3,

in which both layers had sigmoid transfer functions. The reason for using three

outputs was for the representation of all scenatios: awake [0.9 0.1 0.1], drowsy [0.1

0.9 0.1] and sleep [0.1 0.1 0.9]. The targets of 0.1 and 0.9 were chosen, instead of 0

and 1, for preventing the outputs from being directly interpretable as probabilities.

In that case, the total number of 294 samples was partitioned into: 198 samples for

training, 44 for validation and 52 for testing.

In [35], methods for statistical classification in machine learning were implemented,

SVM and LDA. The SVM technique is capable of constructing, in a multi-dimensional

space, a hyperplane or a set of hyperplanes to obtain maximum separation between

the classes. In respect to LDA approach, a pattern recognition is used for finding a

linear combination of features which will separate classes of objects from each other.

Another paper, with the goal of somnolence detection, used fuzzy classification meth-

ods which are able to find the optimal structure and parameters automatically [1].

The tab. 3.1) represents a summary of the different techniques, described in this

chapter, applied to the raw EEG signal for its processing and analysis.
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Table 3.1: Summary of techniques used in EEG the signal analysis.

Artifacts Removal
Time Series Al-
gorithms

Range of Fre-
quencies (Hz)

Feature Classification

- By observation - FFT - 0.3 - 70
- Feed-Forward Neural
Networks

- Bandpass filter - DWT - 1 - 30 - SVM
- Notch filter - PSD - 0.5 - 45 - LDA
- Moving average
Hanning window with
overlap

- Fuzzy Networks

- Median filter
- Establishment of a
threshold
- ICA
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4.1 Wearable and Wireless EEG Devices - Muse

headband

Recently the need for the creation of wearable and wireless EEG devices has in-

creased for applications such as brain computer interfaces. Those EEG systems

allow for the measurement of brain activity without the need of a hospital setup,

making possible their application in day to day life [42]. Wireless equipments provide

real-time recordings for immediate collection and interpretation of data important

in cases such as drowsiness detection [5]. Those simpler devices use dry electrodes

without the need for a conductive gel which is usually utilized for reducing the

electrode impedance, allowing a better connection for brain waves detection [5].

However, dry electrodes are easier to place and if implemmented, for example, in a

headband, simple to fixate.

The second version of the Muse headband was used with the purpose of recording

brain activity. However, the third version of the Muse headband was launched into

the market during the realization of this project. This last version of Muse available

also provides information of the heart rate, breathing and body movements5.

The Muse headband is capable of measuring, mainly, EEG signals by picking up

variations on the electric field as they manifest as voltages on the surface of the

scalp, with a dynamic range of [0; 1682,815]µV and a sampling rate of 256 Hz. This

system has seven dry electrodes in which four of them read signals in the electrodes

positions TP9, AF7, AF8 and TP10 (Fig. 4.1), according to the 10-20 modified

system6. Regarding the composition of the electrodes, the frontal ones are coated

with silver while the temporal pair is made with conductive silicone-rubber7.

5Introducing Muse 2, https://choosemuse.com/muse-2/, visited in 2019-08-27

6MuseTM headband, http://developer.choosemuse.com/tools/available-data, visited in 2018-10-07

7Myndlift clinical system, https://www.myndlift.com/myndlift-equipment, visited in 2019-07-05
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Figure 4.1: Muse headband, 2nd version

This device has also 1 REF (reference electrode) and 2 DRLs (Driven Right Leg

electrodes) in each side. The reference electrode provides a baseline measurement

that is compared to every recording8. This electrode is placed on the Fpz position

(center of the forehead), according to the 10-20 system6. As a supplement to the

REF, the DRLs circuits, also known as ground electrodes, will supress the active

noise by driving the reference through the skin and adjusting the ouput bases on

noise feedback from the reference signal6.

Figure 4.2: Accelerometer axes10.

The Muse set has also an accelerometer and a gyroscope. On both of them, the

directions X, Y and Z are oriented on a Right Hand Coordinate System where the

X is pointing forward from the center of the head7.The accelerometer measures 3

values (in milli-G’s) that represent the acceleration in relation to the gravity in the

8MuseTM headband, http://www.forum.choosemuse.com, visited in 2018-10-07
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directions x, y and z, respectively (Fig. 4.2). Those values depend on the positions

and movements of the head as, forward/back and up/down6. Thus, as the head

leans down, aligning the X axis with the downward force of gravity, the X values

increase9. However, if the head inclines upwards, the X values become negative. On

the other hand, Y values increase if the head tilts to the right and decrease if the

head bends to the left9. If the headband is on the level of the head, it will be in the

direction of the ground aligned with the Z axis (X = 0, Y = 0, Z = 1)9. However, if

the headband moves out from this orientation, the Z values will decrease9. In this

case, if Z = -1 the headband is upside down.

As for the gyroscope data, it represents the rotation in degrees per second of the

X, Y and Z directions (around 1000 degrees per second)6. The rotation around

the X axis corresponds to movements of the head side to side 10. Thus, when the

head is tilting to the right, positive values increase. Motions up and down of the

head represents rotation around the Y axis10. So, when the subject is looking up,

Y positive values will increase. If the individual is looking to the left or right, there

is rotation around the Z axis10. The Z positive values will increase if looking to the

right.

This EEG portable device, in each session, starts with self-calibration protocols

where instead of doing an average brain waves, it will calibrate to each subject.

This procedure is really important for a better performance of the headband since

the brain state is slightly different from session to session, there is a lot of different

skull shapes and sizes and the brain morphology changes from human to human8.

For a good performance of the Muse headband, it was important to clean the device.

With use and time, electrodes could lose the ability of recording brain waves. This

would happen due to the presence of dust or oil from the skin on the electrodes.

Thus, it was important to use a cotton swab with rubbing alcohol to clean the

sensors11.

9LibMuse 6.0.3 - Accelerometer,
https://web.archive.org/web/20181211073121/http://android.choosemuse.com/enumcom_1_1choosemuse_1_1libmuse_1_1_accelerometer.html,
visited in 2019-08-28

10LibMuse 6.0.3 - Gyro,
https://web.archive.org/web/20190515215757/http://android.choosemuse.com/enumcom_1_1choosemuse_1_1libmuse_1_1_gyro.html, visited in
2019-08-28

11How do I care for my Muse headband?,
https://choosemuse.force.com/s/article/How-do-I-care-for-my-Muse-headband?language=en_US, visited in 2019-08-28
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Figure 4.3: Material used for the EEG signal recording.

4.2 Connection Protocol

Muse is a portable system where the raw EEG signal is transmitted via Bluetooth

Low-Energy (BLE) to a computer, in real-time. The computer used was a MacIn-

tosh, with Mac OS X 10.10.5, equipped with a BLE dongle (Fig. 4.3) (Fig. 4.4).

The MacIntosh computer was running Ubuntu 18.04.1 in a virtual machine so that

the software could be developed in a Linux environment. Input data was parsed

using Python 2.7.15, in the Linux virtual machine12.

The BLE transmission corresponds to a low energy version of Bluetooth specified

in the version 4.0. This version, with relatively short range, defends that sensors

can communicate using a coin cell battery even up to two years [43]. This feature is

promising in the field of wireless portable EEG devices since it allows the recording

of the brain activity during bigger periods of time.

12Connection Protocol by Alexandre Barachant and Hubert Banville, https://github.com/alexandrebarachant/muse-lsl, visited in
2019-02-10
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Figure 4.4: Experimental setup scenario for the recording of the EEG signal.
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Methodology and Data Analysis

To achieve the proposed goals, a multi-step algorithm is necessary to obtain ac-

ceptable results. Thus, this chapter describes the steps of pre-processing of the

EEG signal and features extraction for the databases contruction that will later be

analyzed by a Neural Artificial Network model.

5.1 Pre-Processing of Data

For an improvement of the Neural Network outcome, the EEG signal was previously

examined. The pre-processing of data allows minimization of the artifact influence.

In this stage, it is also determined which interval of frequencies will be extracted to

be fed to the ANN.

5.1.1 Data Acquisition and Time Synchronization

Firstly, the EEG signal, in both scenarios of alertness and drowsiness, was obtained

from three subjects. For that, it was recorded eight minutes in each mind state.

During the alert state recording the subject was alert and relaxed, whereas in the

somnolence state recording, the subject was fatigued and relaxed.

After EEG signal acquisition with the Muse system, it was possible to notice that

the timestamps were not constant. Those were created by the Interaxon API during

processing of the bluetooth data and not by the hardware itself. Thus, during

the EEG recording, bluetooth data stream was buffering and processing packets in

chunks. That originated different time deltas between the obtained samples13.

It was also observed that a lot of samples were missing. After some research it was

possible to conclude that the reason for that still unknown and debatable. One

13MuseTM headband, http://forum.choosemuse.com/t/syncing-time-between-muse-monitor-and-pc/1224, visited in 10-03-2019
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Figure 5.1: Recording of raw EEG, during eight minutes, captured by the sensor
in the position AF7 in an alert state.

of the reasons could be that Muse recognize those samples as being eye blinks or

similar artifacts [44].

To solve this problem and maintain a steady sampling rate of 256 Hz, it was cal-

culated how many values were lost. With that it was possible the averaging of the

deltas between timestamps keeping the 256 Hz sampling rate.

Fig. 5.1 represents an example of an eight minutes recording in an alert state. In

this example, around 144 samples were lost (0,117% of the values).

5.1.2 Artifacts Rejection

A simple artifact removal was done. First, the more obvious artifacts, probably

due to external noise and more harsh muscles movement, were removed by visual

inspection (Fig. 5.2). This method of visual inspection was chosen since we are

working with specific recordings to study the possibility of differentiate between two

mental states. However, during a real-time situation, it could be applied a threshold.

This feature can be used in the pre-whitening process of amplitude spectra [45]. It

indicates which are the peaks limits (maximum and minimum) of the spectrum.

Thus, the threshold will attenuate samples where the amplitude value is bigger than

the established one. This way the most obvious artifacts wont be as pronounced.

After that, the five final minutes interval was selected for later analysis (Fig. 5.3).

Due to the fact that the brain state is constantly changing, the signal interpretation
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Figure 5.2: Removal of obvious artifacts in an EEG signal, captured by the sensor
in the position AF7 in an alert state, by visual inspection.

Figure 5.3: Selected five minutes signal for further analysis of EEG captured by
the sensor in the position AF7 in an alert state.
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Figure 5.4: EEG during half a second in an alert state measured by sensor in the
position AF7.

Table 5.1: Different frequency intervals tested.

Frequency Range (Hz) Frequency Waves

1 - 21 δ, θ, α, low - β
1 - 30 δ, θ, α, β
4 - 13 θ, α
4 - 30 θ, α, β

was done taking into consideration changes with half a second interval (Fig. 5.4).

Thus, each interval is composed with 128 samples (256/2 = 128). To further min-

imize the artifact influence in the recording, it was implemented a median filter to

each half a second interval (Fig. 5.5).

Then, an order 6 bandpass filter (Fig. 5.6), which selects a specific frequency range

to pass a signal unattenuated [46], was applied to each interval. Different frequency

intervals were tested based on the influence of the different bands (Tab. 5.1).

A notch filter was also implemented. This method has the particularity of removing

only a frequency passing the components below and above it [47]. Since the study of

drowsiness detection has in focus the lower side of the frequency spectro, frequencies

above 40 Hz were not analysed. With that said, there was no need to use the notch

filter for the removal of the mains frequency oscillations of alternating current that,

in Europe, is 50 Hz. But, this filter was applied to remove a 22 Hz frequency caused

also by the power line frequency influence.
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Figure 5.5: Median of EEG during half a second in an alert state measured by
sensor in the position AF7.

Figure 5.6: Representation of different frequency responses orders with Butter-
worth bandpass filter application for [1, 30] Hz.
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5.1.3 Analysis with Time Series Algorithms

For the examination of the EEG signal, it is important to convert its original time

domain to a frequency domain. The Fast Fourier Transform (FFT) performs a highly

efficient computation of the Discrete Fourier Transform (DFT) of data samples series

and from there it allows the power spectrum analysis [48]. The DFT maps a signal

represented as a time series x(n) into the frequency domain where its samples are

equally spaced (Nyquist samples) [49].

The N-point DFT of a series is:

X(fk) =
N−1∑
n=0

x[n]e−j2πfkn (5.1)

for fk = k/N, k = 0, 1, ..., N − 1; N: number of samples

For real series, the real part of (Eq. 5.1) is symmetric at the folding frequency

(ff = fs/2) while the imaginary part is antisymmetric. Those features represent

the fact that the Fourier coeficients between N/2 and N − 1 can be viewed as the

negative frequency harmonics between −N/2 and N − 1. Thus, the FFT negative

part of the spectrum can be ignored [50].

|X(fk)| = |X(
k

N
)| = |X(k)| = |

N−1∑
n=0

x[n]e−j2πfkn/N | (5.2)

for fk = k/N, k = 0, 1, ..., N − 1; N: number of samples

The DFT magnitude at bin k is correspondent to the FFT magnitude at bin k (Eq.

5.2).

As said in Chapter 4, the Muse headband frequency rate is 256 Hz. Since the signal

has been analysed in half a second intervals, each FFT is composed by 128 samples

and given that the spectrum is symetric, 65 samples are represented in the frequency

domain, this is N = 128/2 + 1 (origin point) (Fig. 5.7). Since frequencies above the

folding frequency (65 Hz) were not being considered in the study, this downsampling

process did not affect the signal information given that, according to the Nyquist

sampling theorem, aliasing can occur in the downsampled signal in frequecies higher

than the folding frequency [40].

The Power Spectral Density was also determined to study how the power of the
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Figure 5.7: Filtered Fast Fourier Transform with bandpass filter from 1 Hz up to
30 Hz (interval of frequencies [0, 40] Hz), of half a second interval, in both alert and
drowsy states, measured by the electrode in the position AF7.

EEG signal is distributed over the frequency (Fig. 5.8). The PSD was obtained by

the square of the FFT amplitude (Eq. 5.3) where the obtained plot of each half a

second is known as periodogram [51].

|P (fk)| = |X(fk|2 (5.3)

For a more in dept study of the disparities between the power spectral densities and

the presence of the various brain waves of both vigilant and somnolent conditions,

Welch’s method was implemented. This procedure estimates the PSD by splitting

the data into overlapping segments by computing a modified periodogram for each

segment and performing the average of the overall periodograms14. This technique

was applied with a sampling frequency of 256 Hz (one second) and an overlap of

50% (128 points).

Over the obtained PSDs overlapped spectra, a hanning window was also used (Fig.

5.9). The hann function (Eq. 5.4) has the purpose of smoothing discontinuities at

the start and end of the sampled signal15. This windowing technique was used for

atenuation of, mainly, the delta waves amplitudes (beginning of the spectrum) that

are more susceptible to artifacts, as described in Chapter 2, and also to smooth

14Welch’s Method Python, https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.signal.welch.html, visited in
2019-07-15

15Hanning Window Python, https://docs.scipy.org/doc/numpy/reference/generated/numpy.hanning.html, visited in 2019-07-15
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5. Methodology and Data Analysis

Figure 5.8: Filtered Power Spectral Density with bandpass filter from 1 Hz up to
30 Hz (interval of frequencies [0, 40] Hz), of half a second interval, in both alert and
drowsy states, measured by the electrode in the position AF7.

gama frequencies not as important to this study.

w(n) = 0.5− 0.5cos(
2πn

M − 1
) (5.4)

for 0 ≤ n ≤M − 1; M = Number of samples

After averaging both PSDs in an alert and drowsy states during five minutes, the

absolute and relative power of the various brain waves were obtained. For that

purpose, the limits of the different frequency ranges were established. After, the

Simpson’s rule (Eq. 5.516) was applied. This method uses a quadratic polynomial

on each interval (1 Hz) to approximate the function and compute the integral16.

SN(f) =
∆x

3

N/2∑
i=1

(f(x2i−2) + 4f(x2i−1) + f(x2i)) (5.5)

for [a, b],∆x = (b− a)/N, xi = a+ i∆x; N = Number of intervals

The Simpson’s rule is able to decompose the area under the line of the power plot

into numerous parabolas and then sum it all17. However, this approach requires an

even number of intervals. Thus, when the number of intervals were odd, the first

N − 2 intervals were obtained with the Simpson’s rule and the last interval with

16Simpson’s Rule, https://www.math.ubc.ca/~pwalls/math-python/integration/simpsons-rule/, visited in 2019-09-05

17Compute the average bandpower of an EEG signal, https://raphaelvallat.com/bandpower.html, visited in 2019-05-20
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Figure 5.9: Hanning Window with 129 points applied to the resulting Power Spec-
tral Density of EEG signal.

the trapezoidal rule18. The trapezoid rule (Eq. 5.619) gives an approximation of an

integral by summing the areas of the trapezoids19.

TN(f) =
∆x

2

N∑
i=1

(f(xi) + f(xi−1)) (5.6)

for [a, b],∆x = (b− a)/N, xi = a+ i∆x; N = Number of intervals

Thus, the absolute power is the direct result from the area of the plot in the respec-

tive frequency interval while the relative power is acquired with the division of the

corresponding brain waves absolute power by the total absolute power from all the

brain frequencies.

With the values from the absolute powers of each brain waves were calculated the

ratios between the theta and alpha frequencies (Eq. 5.7).

θ, α ratio =
θ absolute power

α absolute power
(5.7)

18SciPy.org - scipy.integrate.simps, https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.simps.html, visited in
2019-09-05

19Trapezoid Rule, https://www.math.ubc.ca/~pwalls/math-python/integration/trapezoid-rule/, visited in 2019-09-05
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Figure 5.10: Exemplification of dataset construction of one mind state. Each
section (ex. PSDt=1) corresponds to the PSD spectrum [0, 40] Hz of a half a second
interval and is composed by 21 bins.

5.2 Dataset Construction and Network Parame-

ters

The filtered PSD data was later used for creating a dataset. Each dataset feature

vector, that would further be used as the ANN input, was composed with 42 bins.

This vector was composed with a total of one second of PSD filtered data. Thus, the

first half of the vector (21 bins) was constituted with the PSD spectrum obtained

from a half a second interval whereas the second half corresponded to the posterior

interval. As said in the previous section, each PSD spectrum comprised frequencies

from 0 up to 40 Hz. Thus, each bin has the information of 2 Hz. This resolution

has to do with the fact that each interval corresponds to half a second. So, as the

number of samples decreases to half so as the number of bins (40/2 + 1 = 21).

A 50% overlap was applied. Hence, the first half of each input vector was set up

with the same data from the last half of the previous input vector. In summary,

from each five minutes EEG recording (300 seconds) resulted a 1198 × 42 dataset

where 599 features vectors represented the alert condition and the other 599 vectors

the drowsy state. A last column was added for the outputs in which, the alert state

was represented by 1 and the drowsy state by 0.

The diagram represented in Fig. 5.10 aimes to clarify the dataset construction of

the data from one mind state.
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Figure 5.11: Neural Artificial Network model used.

Table 5.2: Different structures tested for the neural network.

Neural Network structures

(Input layer - Hidden layer - Output layer)

42 - 5 - 2
42 - 10 - 2
42 - 20 - 2
42 - 42 - 2

The constructed dataset was then fed to an artificial neural network. The data was

divided 80% for the training set and 20% for the test set. 20% of training data

was separated for validation. The training set was constitued by 766 samples, the

testing set by 240 samples and the validation set by 192 samples.

Regarding the structure of the network, it was composed by an input layer, one

hidden layer and an output layer (Fig. 5.11). The number of inputs in the first layer

was fixed to 42 and the output layer was constitued by two outputs. The reason why

it was chosen two outputs was for better observe the precision of the neural network.

For the hidden layer, different tests were performed to observe how many neurons

would deliver the best result (Tab. 5.2). The input layer used a linear activation

function and the hidden layer used a sigmoid activation function.

Fig. 5.12 represents a summary of all the methods applied for data analysis.
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Figure 5.12: Methods summary.
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Results

In this chapter the results from the EEG signal recordings and the application of

the methods referred in Chapter 5 are described and interpreted. The viability of

the artificial neural network model is tested according to the accuracy obtained.

6.1 Examination of Power Spectral Densities

First, analysis of the obtained power spectral densities was done. From the visual-

ization of the averaged PSDs plot originated with the Welch’s method application

(Fig. 6.1), it is possible to notice that in the lower range of frequencies (delta, theta

and beta), both states present similiar values. However, a slight dominance of the

drowsy state is observed. Concerning the higher frequencies (beta and gamma) the

alert state presents higher values.

The Welch’s method is based on the average of absolute power densities, direclty pro-

portional with the captured EEG signal. Thus, the absolute power values are highly

dependent on the signal quality. The EEG recording is affected by the headband

maintenance, electrodes position and contact with skin, different types of skulls,

surrounding noise, skin properties and others. Therefore, different recordings can

present high dispersions. In Fig. 6.2 is possible to notice that the drowsiness detec-

tion using the direct absolute power values is not trustworthy. With the observation

of the subject 2 plot, it is noticeable a slight predominance of the drowsy state.

However, the subject 3 plot presents a strong predominance of the alert state. Both

of this situations represent a case of different quality of signals.

The Tab. 6.1 confirms the unreliable conclusions with the use of the direct absolute

power values. As said before, in subject 1, the absolute powers of both mental states

are around the same range of values due to the fact that the position and condition

of the headband was really similiar. It is possible to observe in this subject that

lower frequencies (delta, theta and alpha) are predominant on the drowsy state.
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Figure 6.1: Resulting averaged PSD in both alert and drowsy from the application
of the Welch’s method with an overlap of 50% (Subject 1).

Table 6.1: Absolute powers of the various brain waves in both alert and drowsy
states (values represented in (µ2)).

Subject 1 Subject 2 Subject 3
Brain Waves Alert Drowsy Alert Drowsy Alert Drowsy
δ 6.396 7.706 63.797 621.071 196.682 5.063
θ 4.287 4.879 110.768 316.593 128.827 4.042
α 2.138 2.163 578.770 652.420 539.435 6.202
β 4.126 2.484 736.422 810.823 687.174 9.785
γ 0.641 0.177 308.414 307.595 280.514 3.620
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(a) Subject 2

(b) Subject 3

Figure 6.2: Resulting averaged PSD in both alert and drowsy from the application
of the Welch’s method with an overlap of 50% (Subject 2 and 3).
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(a) Alert state

(b) Drowsy state

Figure 6.3: Relative power of the brain waves over five minutes of both mental
states (Subject 1).

On the other hand, the higher frequencies (beta and gamma) are more present on

the alert state. However, in subject 2 and 3, the discrepancies between the values

of each state are truly noticeable, mainly in subject 3, due to different conditions

during the EEG signal recording.

Nevertheless, the Welch’s method and absolute powers allows for the achievement

of the relative power values. The relative power represent the relation between

the brain waves predominance and the total power of the spectrum. This feature

represents a more reliable way to visualize the different frequency waves presence.

Both bar plots represented in Fig. 6.3 are related to the subject 1. Lower frequency

waves (delta, theta and alpha) are, as expected, more predominant on the drowsy

state. Regarding the higher frequencies, they are more presentont the alert state.
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Table 6.2: Relative powers of the various brain rhythms in both alert and drowsy
states.

Subject 1 Subject 2 Subject 3
Brain Waves Alert Drowsy Alert Drowsy Alert Drowsy
δ 0.343 0.420 0.036 0.221 0.106 0.171
θ 0.230 0.266 0.062 0.113 0.069 0.136
α 0.115 0.118 0.323 0.232 0.290 0.210
β 0.222 0.135 0.411 0.286 0.369 0.331
γ 0.034 0.010 0.172 0.110 0.151 0.122

Table 6.3: Ratios obtained from the absolute powers between theta and alpha
brain waves.

Subject 1 Subject 2 Subject 3
Ratios Alert Drowsy Alert Drowsy Alert Drowsy

θ

α
2.005 2.255 0.191 0.485 0.239 0.650

The Tab. 6.2 represents the obtained relative powers for all subjects. Concerning the

subjects 2 and 3, the lower frequencies δ and θ are more predominant on the drowsy

state and the higher frequency brain waves β and γ are more present on the alert

state. However, contrary to the subject 1, alpha frequencies are superior on the alert

state. As described in Chapter 2, α waves are highly related with the relaxation

of the subject. Thus, in both tested mind states (alertness and drowsiness) the

subjects were relaxed what can result in ambiguous results. Hence, it is possible to

notice a higher correlance and better identification of drowsiness with delta and theta

frequency waves. Regarding the subject 1 and the predominance of alpha frequencies

on the drowsy state, it is mentioned in the BCI and Brain Waves chapter that, a

consequence of aging is the slowing of alpha waves. Thereby, this subject was the

older one with 49 years old in comparison with the other two subjects with 23 years

old.

With examination of the Tab. 6.2, it is also possible to notice that the sum of the

relative powers of the brain waves in each mind state is different than 1 as it would

be expected. As explained on the chapter 5, this has to do with the fact that the

Simpson’s rule delievers an approximation of the area under the line of the power

plot. Thus, since the area is an approximation so it will be the absolute and relative

power values.

As described on chapter 3, delta waves are more susceptible to artifacts thus, it’s

63



6. Results

conclusions may not be as reliable. Therefore, between the other brain frequencies,

the ones who showed, so far, correct and more pronounced drowsiness detection

was the theta waves. Hence, the ratios between the theta and alpha waves were

calculated for each subject. With Tab. 6.3 examination is possible to observe a

higher theta to alpha ratio on the drowsy state, as it would be expected.

6.2 ANN Performance and Selection of the Best

Model

As a complement to the absolute and relative powers and ratios analysis, different

models of artificial neural networks were tested. In scenarios where there are nu-

merous datasets this method is more advisable. This technique was explored on this

project to study the reliability for drowsiness detection. If proven accurate, ANNs

can be better explored in the future with a higher quantity of datasets.

First, as described on chapter 5, different frequency bands were tested at the step

of bandpass filtering. With the PSDs obtained from the readings of the electrode

AF7 from subject 1 and an artificial neural network structure 42 − 10 − 2, it was

possible to observe that the best accuracy was deliever by the frequency range from

1 Hz up to 30 Hz (Tab. 6.4). The obtained test accuracy was of 73,8%. This

frequency interval includes δ, θ, α and β frequencies. Intervals including the gamma

frequencies were not tested because they are not really significant for the drowsiness

detection goal.

Table 6.4: Testing of different frequency ranges from the subject 1 EEG signal
captured from the AF7 electrode. The ANN structure used was 42− 10− 2.

Frequency Range (Hz) Test Accuracy (%) Train Accuracy (%)

1 - 21 54,2 72,3
1 - 30 73,8 81,3
4 - 13 53,1 68,6
4 - 30 71,7 80,5

Afterwards, various ANN structures were tested with the obtained PSDs from the

subject 1 EEG signal captured by the AF7 electrode. With Tab. 6.5 examination,

it is possible to notice that the ANN structure with better accuracy was 42− 5− 2

with 74,2%.

Regarding the position of the electrodes, it was study which one delievered the best

accuracy results. For that, PSDs originated from the recordings of the subject 2 were
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Table 6.5: Testing of different ANN structures using the resulting PSD spectra
with bandpass filtering of frequencies [1, 30] Hz. Data from the subject 1 EEG
signal captured from the AF7 electrode.

ANN Structure Test Accuracy (%) Train Accuracy (%)

42 - 5 - 2 74,2 75,7
42 - 10 - 2 73,3 77,5
42 - 20 - 2 71,2 80,1
42 - 42 - 2 68,8 82,8

Table 6.6: Testing of different PSD spectra with bandpass filtering of frequencies
[1, 30] Hz resulting from various electrode positions. The ANN structure used was
42− 5− 2 with data from the subject 2 EEG signal.

Electrode Position Test Accuracy (%) Train Accuracy (%)

AF7 75,8 81,5
AF8 55,4 65,6

FRONTAL 69,2 72,4
TP9 76,7 77,8
TP10 78,8 83,1

TEMPORAL 76,2 79,3
ALL 57,1 70,9

used. The various electrode positions, AF7, AF8, FRONTAL ((AF7 + AF8)/2),

TP9, TP10, TEMPORAL ((TP9 + TP10)/2) and ALL ((AF7 + AF8 + TP9 +

TP10)/4), were tested (Tab. 6.6). Despite the fact that the temporal sensors

presented high accuracy, it was selected the left frontal measure point, AF7, for

further analysis. This decision was due to the reason that both temporal electrodes

showed a big quantity of artifacts resulting in a high percentage of false positives.

One of the causes for the high presence of artifacts in the back electrodes is the

fact that their material is different from the frontal ones since they are made with

silicone-rubber. This conductive material is used because of its streching capacity.

However, this feature may lead to a loose electrode and as consequence poor contact

with the skin [52]. Another reason was the location of the sensores in the head where

there was the possibility of presence of hair that would also contribute to the loss

of contact with the skin.

Lastly, the classification of all subjects datasets was performed. Thus, as studied

before, it was used the 42 − 5 − 2 ANN structure. As input, the datasets were

composed by the resulting PSDs with bandpass filtering of frequencies [1, 30] Hz

from the AF7 electrode position. The Tab. 6.7 displays the obtained accuracy

results from the different subjects.
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Table 6.7: Testing of different subjects using the resulting PSDs from the AF7
electrode position. The ANN structure used was 42− 5− 2.

Subject Test Accuracy (%) Train Accuracy (%)

1 70,8 77,1
2 75,8 81,5
3 96,7 98,1

6.3 Results Discussion

As described in the State of the Art, one other study with the Muse headband for

drowsiness detection, was conducted in 2017[35]. It was used the first version of the

Muse headband and data from 23 subjects in both fresh and drowsy states. At first,

they were able to obtain an accuracy of 81% with SVM and 76% with LDA, per

subject. However, with cross-subject validation they obtained an accuracy of 74%

with SVM and 68% with LDA. On the other hand, with a temporal aggregation

strategy they were able to reach a cross-subject validation of 87%. Concerning

the current project, as explained in chapter 5, it was used for the mind states

classification a feed forward neural network. According to Tab. 6.7, the obtained

results were: subject 1 - 70,8%, subject 2 - 75,8% and subject 3 - 96,7%.

Comparing both studies, similar accuracy was obtained using different approaches.

The study from 2017 was able to reach a maximal accuracy of 87%, whereas the

present study achieved a maximal of 96,7% in one of the subjects. However, the

subjects accuracy average of the current study was 81,1%. Given that the maximal

accuracy obtained in this work was considerably high, it shows that this approach

can be successful.

Regarding the different accuracy results obtained from the different subjects, it can

be due to diverse reasons. First, is the clairity of the difference between the alert

and drowsy state. Perhaps, subject 3 was feeling more drowsy at the time of the

recording in comparison to the other two subjects. Another really strong reason is

the age factor. The recording from the oldest subject (subject 1) reached the lowest

accuracy. As mentioned before, with age the subject alert state tends to not be as

pronnounced. The alpha waves tends do decrease and theta waves may increase.

Thus, the difference between the two mind states is not as clear. Concerning the

subject 2, it was one of the persons responsable for conducting this study. Therefore,

once for example in a drowsy state, the subject may become alert while thinking

and worrying about the results. One other reason can be the remaining recording
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artifacts and their influence in the obtained results.

Thus, for a more in dept study in the matter, more subjects should be tested. A

larger number of datasets will better support this approach veracity. One factor

that must be taken into consideration is the age. Hence, it’s important to capture

different EEG from subjects with different ages.

’
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Conclusion

The main goal of the present project was to detect drowsiness, using brain waves

read by a wearable and wireless EEG device, the MUSE brain sensing headset. The

purpose was to test if a simple headband with a small number of electrodes could

achieve results similar to the clinical grade devices.

From the analysis of the raw EEG signal, it was already possible to notice a higher

influence of the artifacts in comparison with more complex EEG equipments. The

Muse headband does a poor job on isolating the real EEG signal from the eye move-

ments, muscle activity, surrounding noise and noise from other electronic devices.

Thus, the sensitivity of Muse to noise represents a considerable disadvantage, since

this device is meant to be used while driving, for example.

Concerning resolution, recordings from the Muse headband offer low resolution.

There are various skull types, thus even though the headband is adjustable, it is

hard to place the electrodes on the exact intended spot. Also, skin conditions will

influence the signal quality. Another reason for the lack of resolution is the low

number of electrodes and their position. On Chapter 2, it was mentioned that alpha

frequencies, highly correlated with relaxation, are maximal on the occipital area.

However, the Muse headset doesn’t possess electrodes on this area. Concerning the

theta waves, strongly associated with drowsiness, they are mostly present on the tem-

poral lobe. Yet, the back electrodes of the Muse headband, on the temporal-parietal

positions, are made with silicone-rubber which is more susceptible to artifacts, as

described in the previous chapter. One other reason for the large number of artifacts

amount is that the headband can easily move and loose contact with the skin.

After artifacts removal and processing of the EEG signal, the power spectral den-

sities of both alert and drowsy states were analysed. With the Welch’s method

application it was possible to obtain the absolute powers from each brain wave.

From the examination of the absolute powers it was possible to notice the lack of

resolution of some recordings. Thus, the absolute powers weren’t directly used for
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the identification of drowsiness. However, they were important for calculating the

relative powers.

With the examination of the relative powers from each mind state of each subject,

it was possible to notice that lower frequency waves were more predominant on the

drowsy state. On the other hand, higher frequency waves were more present on

the alert state as expected. Regarding the alpha frequencies, different results were

obtained. Subject 1 (49 years old) presented a higher amount of alpha waves on the

drowsy state, whereas subjects 2 and 3 (both 23 years old) presented in the alert

state. One reason for this result is the age factor and its correlation with the slowing

of alpha waves in older subjects, as explained in Chapter 2.

As stated in Chapter 2, the theta band is highly related to the drowsy state. Thus,

the ratio between the theta and alpha brain waves was calculated. As expected it

was possible to observe a higher ratio on the drowsy state in all subjects.

With the purpose of exploring the machine learning area and the possibility of

using the techniques for further work, the classification of both mind states with an

ANN model was tested. After studying which would be the best input features and

ANN structure, different accuracy results were obtained for each subject. The test

accuracy results obtained were: subject 1 - 70,8%, subject 2 - 75,8% and subject 3

- 96,7%. Perhaps, one of the reasons for the lowest accuracy result could be also

because of the age of the subject. The discrepancies between each mind state weren’t

much pronounced in this case.

In the future, to improve the obtained results, it is important to perform more

recordings with different subjects and collect more datasets. As observed, each

subject may present different results and therefore different conclusions. In the field

of pre-processing of data, as described in Chapter 3, another technique that could

be tested is ICA for artifact removal. One main disadvantage of the Muse headband

is the large amount of different methods on this step should be tested. With more

and larger datasets the ANN method should be better explored.

An interessant matter to be explored in further studies would be the influence of

light, caffeine or sound while the subject is drowsy.
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