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Resumo 
Conhecida como uma das doenças neurológicas mais comuns, a epilepsia afeta 1% da população 

mundial. Para 30% dos pacientes diagnosticados com epilepsia, não há tratamento ou medicação 

viável para evitar a ocorrência de crises. Esse tipo de epilepsia é chamado de epilepsia resistente a 

medicamentos. Isso significa que integridade física desses pacients pode estar comprometida a 

qualquer momento, o que pode colocar suas vidas em risco. Para essas pessoas, todo esforço bem-

sucedido em prever ou detectar crises epilépticas tem o potencial de melhorar significativamente suas 

vidas. 

Esse assunto tem sido explorado na literatura bastante extensivamente, principalmente quando se 

trata de analisar características temporais e dados extraídos de vários electrodos. No entanto, existem 

muito poucos estudos que se concentram também em explorar as relações espaciais entre electrodos. 

A nossa ideia é explorar o potencial das relações espaciais entre os electrodos, através de mapas de 

electrodos, a fim de criar um modelo que possa prever ou detectar crises, possivelmente com melhor 

desempenho do que as já existentes. Nesse sentido, este projecto de tese aplicará técnicas de 

aprendizagem computacional profunda ao problema de detecção ou previsão de crises epilépticas, 

usando mapas de eletrodos derivados de dados do eletroencefalograma (EEG). 

Nosso modelo final é um detector de crises realista, que deve produzir alertas para crises em tempo 

real, usando redes neurais convolucionais em dados brutos de EEG. Esta tese explora os vários 

desafios da construção de um modelo capaz de alta sensibilidade e detecção precoce de um sistema 

como esse. 

Esta tese foi conduzida usando dados de EEG incluídos na European Epilepsy Database (banco de 

dados EPILEPSIA). 
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Abstract 
 

Known as one of the most common neurological disorders, epilepsy affects 1% of the world’s 

population. For 30% of epilepsy diagnosed patients, there is no viable treatment or medication to 

prevent the occurrence of seizures. This type of epilepsy is called drug-resistant epilepsy. This means 

that their physical integrity is compromised, which eventually may put their lives at risk. For these 

people, every successful effort in predicting or detecting seizure events has the potential to 

significantly improve their lives. 

This subject has been explored in literature quite extensively, particularly when it comes to analyzing 

temporal features and data retrieved from various electrodes.  However, there aver very few studies 

that focus also on exploring the spatial relations between electrodes. Our idea is to explore the 

potential of spatial relations between electrodes, through electrode maps, in order to create a model 

that can predict or detect seizures, possibly with better performance than already existing ones. 

Towards that end, this thesis project will be applying deep learning techniques to the problem of 

detecting or predicting epileptic seizures, using electrode maps derived from electroencephalogram 

(EEG) data. 

Our final model is a realistic seizure detector that is expected to produce alerts for seizures in real-

time using convolutional neural networks on raw EEG data. This thesis explores the various 

challenges of building a model capable of high sensitivity and early detection for a system like this. 

This thesis was conducted using scalp EEG data comprised in the European Epilepsy Database 

(EPILEPSIA database). 
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Chapter 1 

Introduction 
In this chapter, we are going to describe the reasons why the theme of this thesis project is important 

and interesting and what we intend to achieve throughout and in the end of this thesis project. 

 

1.1 Motivation 

 

About 1% of the world’s population suffers from epilepsy [1]. About one third of these patients suffer 

from drug resistant (refractory or intractable) epilepsy [101] meaning that the administration of 

antiepileptic drugs is not effective. People who belong to this group have their lives impaired by the 

unpredictability of seizures. The ability to somehow know when they are going to experience a seizure 

so they can prepare accordingly would provide them some security and comfort. 

Scalp EEG is a non-invasive tool to retrieve information about the state of the subject’s brain. Due to 

this, a device can be built in order to provide the aforementioned seizure detection and prediction 

capabilities that so many people can benefit from [2]. 

Several studies [25, 36, 37] have shown that there are significant changes in the EEG signal produced 

before a seizure that can potentially be exploited to predict it. However, the results of such attempts 

to create prediction models have not been as successful as it is desired yet. 

Seizure detection consists in detecting, as early as possible preferably, when a patient is starting to 

have a seizure event. It is distinguished from prediction, as detection attempts to identify when 

seizure is happening rather than when it is about to happen. This is also a very important problem to 

solve, as monitoring patients that suffer from epilepsy in an automatic fashion [79], can be essential to 

keep them healthy and safe, as not detecting a seizure in time to provide proper assistance to the 

patient may lead to otherwise avoidable injuries or other complications. 

Much has already been done when it comes to exploring the temporal variations on EEG electrodes 

but not so much has been done when it comes to exploring spatial variations. This is a more recent 

perspective that has not been extensively studied yet. This innovative way of approaching this 

problem may open up the way for new possibly important features and, together with temporal 

features, may improve the prediction and detection rates for epileptic seizures. The proposal of this 

thesis project is to approach this problem by using topographic maps as a way of retrieving spatial 

features of EEG.  

Another method that is proposed to be used in this thesis project is the use of artificial neural networks 

(ANNs). ANNs, if adapted carefully to this problem, can successfully use features, both in the 
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temporal and spatial domains, to create very complex classifiers that can weight in a number of 

features that would perhaps be impossible for a human being to think of. To add to this, they provide 

enough flexibility to create different models for different patients or types of epilepsy. In this thesis, 

we are free to work with Deep ANNs of various types, such as the ones that have been proposed for 

this thesis, specifically: Convolutional Neural Networks (CNN), Deep Belief Networks (DBNs) and 

Long Short-term Memory networks (LSTM). Each of these networks and more will be described 

further in this document, with their potential advantages and disadvantages properly explored. The 

chosen model ended up using typical CNN and other propose Deep ANNs were not used. 

As for the much-needed data, Centro de Informática e Sistemas da Universidade de Coimbra (CISUC) 

has access to the European Epilepsy Database (EPILEPSIAE) which contains long-term EEG 

recordings of 275 patients [3]. This database is expected to provide the required data to fulfill this 

thesis. 

1.2 Objectives 

The main objective of this master’s dissertation is to apply deep learning to explore spatiotemporal 

relations between EEG electrodes. 

The first step for its completion would be to contextualize the problem. This step requires studying 

and understanding the various concepts and applications associated to epilepsy, EEG, topographic 

maps, analysis of temporal and spatial data, feature selection and extraction and the functionality and 

reasoning behind the different types of deep neural networks. The state of the art methods that were 

used to try to solve this problem will also be referred to. 

Afterwards, the following steps were undertaken: 

• Creation of topographic brain maps: create a framework that is able to organize the 

various electrodes used to measure EEG into a map, assign their respective values 

relating to the feature that we are mapping and interpolate the values within them 

(ended up not being used). 

• Finding an efficient and accurate representation for the maps: The goal of this step 

is to mitigate the enormous amount of time that deep learning methods take to be 

optimized by finding a compressed yet accurate representation for our maps. 

• Creating a framework for extraction and classification of data: The goal of this step 

is to create a framework that allows extraction of data from the EPILEPSIAE database 

and use it to train a neural network of our choice; 

• Finding the appropriate architecture and optimal parameters for classification: This 

step requires extensive testing to compare various possible neural network 

architectures and different parameters to try to find those that produce the best results 

on average, using data from the EPILEPSIA database 

• Test the final algorithm on real data: this final step requires using the EPILEPSIAE 

database to validate the methods and features obtained in the previous steps, 
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analyzing the obtained results and show if they represent improvements over the 

state of the art methods. 

 

1.3 Outline 

The structure of this thesis is detailed bellow. 

Chapter 2 explains the most important background concepts required to tackle this problem. 

Chapter 3 presents the state of the art of epileptic seizure detection and prediction methodologies. 

Chapter 4 presents the methods, results and performance evaluation 

Chapter 5 presents the results and discussion 

Chapter 6 presents the final conclusions of our project 
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Chapter 2 

Background concepts 
In this chapter, the necessary concepts to understand epilepsy disorder and seizure prediction are 

presented. 

 

2.1 Electroencephalography and its origins in the brain  

EEG (Figure 1) is an electrophysiological method used to monitor electrical activity generated by the 

brain. In order to achieve this, electrodes are placed either over the scalp (non-invasive EEG) or 

directly over the surface or inside of the brain (invasive EEG). These electrodes measure potential 

differences (voltages) where they are placed, in the brain, generally to a reference electrode, allowing 

the fluctuations in those voltages to be plotted and analyzed. 

 

 

Figure 1 – Typical human EEG recording of a seizure (Source: [12]) 
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In order to understand how EEG is generated in the brain, we must first take a look at how electrical 

current and activity is produced and transmitted throughout the brain. This requires explaining 

different types of neurons synapses and other concepts of neurophysiology. 

 

2.2 Neurons 

Neurons (Figure 2) or nerve cells are the primary components of the nervous systems and consist of 

electrically excitable cells that are able to transmit signals and information through electrochemical 

processes [8]. This signal transmission processes occur through a structure called synapse. A typical 

neuron is constituted by: 

• Soma: this is the cell body which contains the nucleus organelles and much of the 

neuron’s mass. The soma is able to store ions and, thus, electric potential. 

• Dendrites (dendrons): which are small protoplasmic ramifications of the nerve cell 

that are able to propagate electrochemical signals received by other nerve cells. These 

signals are usually received from the axon (or, more specifically the axon terminal) of 

another neuron via synapses located at various points throughout the dendritic tree; 

• Axon: the axon is a slender projection of the neuron that serves to conduct electrical 

charges away from the soma and into dendrites of other neurons. The interface with 

other neurons happens through synapses located at the axon terminal, which is 

located in the extremities of the axon. 

 

 
Figure 2 – Multipolar neuron (Taken from [8]) 

 

For EEG a specific type of neurons called pyramidal neurons are of special interest, as they are 

considered to be the primary source of EEG signal. These are multipolar neurons (one long-projecting 

axon, two or more dendrites) characterized by the fact that they have a triangular soma and a long 

projecting axon (Golgi I). These are considered to be the primary excitatory sources in a mammal’s 

prefrontal cortex [9]. Synchronous activity of these neurons will produce EEG signal. 

  

2.3 EEG signal generation 
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At rest, each neuron stands typically at -60mV to -70mV compared to the extracellular environment 

[10]. This is due to the fact that the cellular body of the neuron contains an unequal distribution of 

positive and negative ions (Na+, K+ and Cl-, for example). A typical synapse is chemical and is 

characterized by exchange of neurotransmitters between the post-synaptic and pre-synaptic neurons. 

These neurotransmitters make the cellular membrane at the synapse more permeable. Depending on 

which neurotransmitters are in play, this chemical reaction will allow either a flow of positively 

charged ions from the pre-synaptic neuron to the post-synaptic neuron, making the post-synaptic cell 

more positively charged, which causes an excitatory postsynaptic potential (EPSP), or a flow of 

negative ions in the same direction, or of positive ions in the opposite direction, making the post-

synaptic cell more negatively charged, both of which cause an inhibitory postsynaptic potentials 

(IPSP) [95]. 

Successive EPSPs, without IPSPs rebalancing the neuron’s potential, will cause the neuron to 

accumulate more and more positive charges and when a certain threshold is reached, the axon of the 

neuron lets the positive ions diffuse through itself and let’s some negative ions in, becoming 

negatively charged again (Figure 3). This process, by its nature, will cause an action potential to be 

triggered. This is commonly referred to as the neuron firing and causes the neuron to transmit the 

signal to one or more neurons. 

 

Figure 3 – Repeated EPSPs generating an action potential (Taken from [11]) 

 

EEG signal is generated when various neurons fire in a synchronous way or in quick succession (101), 

as the movement of the positive and negative charges through the dendrites and the axon of the 

neurons causes a voltage to occur. When EEG is recorded non-invasively, the problem is that the 

electrodes are placed over the scalp and thus will only be able to measure voltages that are at least 

close and generated by neurons that are perpendicular to the scalp. The only neurons considered to 

be able to generate measurable scalp EEG signal are thus the pyramidal neurons that are 

perpendicular to the scalp. When these pyramidal neurons are firing synchronously, they generate 

synchronous and periodic activity that is commonly known as neural oscillations or brain waves. 
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Much of the electrical signal being generated in the brain is not measured by EEG electrodes and this 

can definitely be a problem when using EEG signal to make predictions about the behavior of certain 

areas of the brain, especially if they are further away from the scalp and have a lower prevalence of 

pyramidal neuron. 

There is some evidence that non-synaptic currents, fast action potentials, calcium spikes, voltage-

dependent intrinsic oscillations, intrinsic spike afterhyperpolarization, ephaptic effects, and glia-

generated slow potential shifts also play a role in EEG generation [98]. 

 

2.4 Brain waves 

Brain waves or neural oscillations are rhythmic or repetitive patterns of neural activity in the central 

nervous system [13]. They are typically categorized by their frequency in five groups (note that that 

there is no absolute consensus on the literature for the frequency bands): 

• Delta waves (0.5 Hz to 4 Hz): These waves are typically associated with deep sleep. If 

high delta activity is registered during an awoken state it can be associated with brain 

damage, dissociative states of mind or sleep deprivation. High relative delta wave 

power is correlated to inhibitory neural activity that is required to filter actions, 

thoughts or sensorial information and inhibit movements [14]. This can be interesting 

as loss of sensorial information, interruption of the thinking process and motor 

inhibition occur during seizures. Delta wave generation is regulated by the thalamus 

and the suprachiasmatic nuclei [15] and its sources are generally located in the frontal 

and cingulate cortex [16]. These oscillations have high amplitude and span throughout 

a wide portion of the brain. A subset of low frequency (0.5 Hz to 1 Hz) delta waves is 

sometimes differentiated and labeled as sub-delta waves. 

• Theta waves (4 Hz to 7.5 Hz): There are two types of theta waves: hippocampal theta 

waves and cortical theta waves, classified according to their origin in the brain. Due to 

being generated from deep inside the head, scalp electrodes have considerable 

difficulties detecting hippocampal theta waves, however, theta activity in the cortex 

generally signifies communication between the hippocampus and the cortex [17]. 

High theta wave power is associated with lighter sleep stages, but also appears during 

REM (rapid eye movement) sleep, mental imagery and sensations and memory related 

information processing, as well as other activities and functions. As with delta waves, 

theta waves are also correlated to motor and response inhibition [18]. 

• Alpha waves (7.5 Hz to 12.5 Hz): Alpha waves are associated with a relaxed mental 

state. They are known to appear when a person closes his/her eyes during an awaken 

state [20]. They are correlated with primary sensory processing [19] and with attention 

and memory processes [16]. This waves also inhibit the cognitive process and are thus 

hypothesized to be a necessary element of suppression of information in the cognitive 

process, working in conjunction with higher frequency waves to create the selection 
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mechanism necessary for cognition [16]. They are often measured in the occipital 

region, as they are related to the processing of visual information. 

• Beta waves (12.5 Hz to 30 Hz): Beta waves are more commonly measured in higher 

powers in the frontal and central regions of the cortex [21]. They are modeled during 

cognitive processes that require sensorimotor activity [16]. Beta waves are sometimes 

divided into three different frequency ranges: 

o Low beta waves (12.5 Hz to 15 Hz): known as beta 1 waves or SMR 

(Sensorimotor Rhythm) waves, they are correlated with relaxed attention and 

idle the motor strip, quieting down the body but not the mind [22]. These 

waves have been used to as a basis for neurofeedback training for epilepsy 

[23]; 

o Mid-range beta waves (15 Hz to 20 Hz): This beta waves are known also as 

beta 2 waves and are correlated to increase in energy, anxiety and optimal 

concentration and performance on a task. This category of brainwaves is often 

considered to go as far as 23 Hz; 

o High Beta waves (20 Hz to 30 Hz): known as beta 3 waves, these waves are 

associated with stressful situations, hyper-vigilance, arousal and rage [24]. 

This category of brainwaves is often considered to go as far as 40Hz; 

• Gamma waves (>30 Hz): Similar to high beta waves, these waves are correlated to 

arousal, intensive focus and hypervigilance. Contrary to the lower frequency waves, 

gamma waves are associated with cortical activation and action. There is evidence that 

these waves can be modulated by lower frequency waves to create a cognitive process 

or carry out tasks [25]. 
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Figure 4 – How brain waves look like (Taken from [49]) 

 

 

 

 

2.5 Electrode positioning systems 

There is a wide variety of ways that electrodes can be distributed throughout the scalp. There are some 

internationally recognized systems that were created to standardize testing methods and allow 

scientists and medical personnel to be able to compare each other’s results accurately. 

In each system, each electrode on the scalp is given a standardized name and position. The name 

reflects above which lobe the electrode is placed. Electrodes can be placed on pre-frontal (Fp), frontal 

(F), temporal (T), parietal (P), occipital (O), and central (C) lobes. The “z” stands for zero and indicates 

that the electrode should be placed on the midline sagittal plane of the skull. The “A” electrodes, 

sometimes called “M” for mastoid process, are to be placed behind the ear and are used for 

contralateral referencing other electrodes. In high-resolution systems, “AF” (anterior-frontal) 

electrodes are to be placed between “Fp” and “F” electrodes [99] and the I and N electrodes stand for 

inion and nasion, respectively, and should be placed on those locations. 
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2.5.1 The 10-20 system 

The 10–20 (Figure 5) system is a standardized electrode system where the distances between adjacent 

electrodes are either 10% or 20% of the total diameter of the skull. 

 

 

Figure 5 – The 10–20 system (Source:  [33]). Note that the T5 and T6 electrodes are also named P5 and P6, 

respectively. 

 

 

 

2.5.2 The 10-10 system 

In an analogous way to the 10-20 system, the 10-10 system (Figure 6) is a standardized electrode 

system where the various electrodes are always at a distance equal to 10% of the front to back diameter 

of the skull. It is basically a higher resolution version of the 10-20 system. 

 



11 

 

 

Figure 6 – A representation of a 10-10 electrode system extended with anterior and posterior electrodes in the inferior 

chain. (Source: [34]). 

 

2.6 Epilepsy and epileptic seizures 

According to the World Health Organization (WHO) [4], epilepsy is a chronic disorder of the brain 

that is characterized by recurrent seizures (Figure 7) that can produce involuntary movements in a 

given part of the body (partial seizures) or throughout it (generalized seizures). 

Seizures events are characterized by symptoms that range from simple lapses of attention or muscle 

jerks to convulsions and/or loss of control of certain bodily functions. They happen when a certain 

region in the brain enters on a hyperexcitable state, which can result from increased excitatory 

synaptic neurotransmission, decreased inhibitory neurotransmission, an alteration in voltage-gated 

ion channels, or alteration of intra or extra-cellular ion concentrations in favor of membrane 

depolarization [5]. It can also result from synchronous excitatory external signals (for example 

flickering lights) with a frequency above a certain threshold (more on this 2.5).In broad terms, seizures 

occur when, in a certain region of the brain, there is a sufficiently high discrepancy between the brain’s 

ability to inhibit neuronal action potentials and its ability to generate and propagate them. A common 

cause for this is improper functioning of the inhibitory neurons in this region [5]. 
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Figure 7 – EEG showing 3 Hz spike discharges: a typical pattern of an absence seizure. (Taken from [97]) 

 

The occurrence of seizures can endanger the person’s health in many ways, from possible brain 

damage to injury due to loss of physical control. People with drug resistant epilepsy cannot rely on 

medication to stop seizure discharges and therefore being unable to live without constraints.  

The nature of an epileptic seizure depends on many factors such as the person’s age, the sleep-wake 

cycle, prior injuries to the brain, genetic tendencies, medications, which circuits in the brain are 

involved, among others [26].  

Additionally, according to the 2017 classification of seizures (Figure 8) by the International League 

(ILAE) [27], seizures may be classified by their onset location, how they affect the person’s awareness 

and their psychosomatic effects. 

According to their onset location in the central nervous system, seizures can be classified as follows 

[28]: 

• Focal seizures: Previously known as partial seizures, these start in a specific area of 

the brain. Given the onset area, they can be classified as temporal, frontal, 

hippocampal, parietal, etc. 

• Generalized seizures: These seizures’ onset involves neural networks in both sides of 

the brain. 

• Unknown onset: The onset of the seizure is undefined. 

• Focal to bilateral seizures: Previously known as secondary generalized seizures, these 

seizures start on one side of the brain and extend to the other one. 
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Awareness is the ability to perceive the world around us. On generalized seizures, the awareness of 

the patient is always considered to be impaired, so there is no need for classification. Focal seizures 

classification has been described as follows [28]:  

• Focal aware seizures: Previously known as simple partial seizures, these are focal 

seizures in which the person’s awareness remains intact, despite a possible loss of 

mental or bodily control. These seizures are commonly found in people who have 

brain injuries [29]. 

• Focal impaired awareness seizures: Seizures are classified as such if awareness is lost 

at some point during the seizure discharge. These seizures were previously known as 

complex partial seizures. 

• Awareness unknown: this classification is assigned to the cases in which the person’s 

awareness cannot be determined. For seizures reported to occur when the person is 

sleeping, this classification may be adequate. 

Regarding psychosomatic symptoms, seizures are classified in two different ways [28]: 

• Motor seizures: During these seizures, some type of involuntary movement occurs, 

such as jerking, stiffening or even automatic rather complex movements such as 

walking, rubbing hands, etc. Terms such as “generalized tonic-clonic seizure”, 

describing a seizure in which body stiffening (tonic) and jerking (clonic) occur are also 

used. 

• Non-motor seizures: When it comes to focal seizures, this term refers to seizures in 

which non-motor symptoms, such as changes in mood, thinking and sensations, occur 

in the first place. Regarding generalized seizures, this term most often refers to absence 

seizures, which are seizures that involve primarily brief changes in awareness, 

sometimes paired with minor movements such as lip-smacking. 
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Figure 8 – Seizure classification chart, by ILAE (Taken from [28]). 

 

Many of these types of seizures can be classified directly in EEG recordings, as they will produce 

different patterns on the recording. Figure 7 shows a typical epileptic pattern. 

 

2.7 Epileptic brain states 

When looking for predictors and identifiers of seizures in EEG data, we consider four different states: 

• Ictal state: this state corresponds to the EEG segment capturing the moment when the 

seizure is taking place. 

o Postictal state: this state corresponds to the period of time, after the ictal state, when 

the EEG recordings show transitional patterns from the ictal state to normal brain 

functioning (interictal), and the patient experiences symptoms such as headaches, 

confusion and nausea derived from the exhaustion of the brain caused by the seizure 

[35]. It can last from a few minutes to more than a day, depending on the severity of 

the seizure [54]. 

• Preictal state:  This state corresponds to an altered state of consciousness that leads or 

evolves into a seizure. Numerous studies have concluded that this state indeed exists 

and is distinct from the normal brain state with statistical significance [25, 36, 37]. The 
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time period before the seizure considered to be preictal has not been yet clinically 

defined and varies considerably in the literature [82]. Direito et al. [37], through 

statistical analysis of topographic maps, concluded that there are statistically 

significant changes in EGG, on average, 52 minutes before a seizure. However, 

Mormann et al. [36] found a period of 5 to 30 minutes using univariate measures and 

of 240 minutes using bivariate measures, while, in absence seizures, periods of less 

than 1 minute were found for the pre-ictal state [47]. This indicates that more studies 

need to be done to find where the preictal state really begins. However, the earlier the 

prediction the better. 

• Interictal state: Every EEG segment that is considered to not be related to ictal state is 

considered interictal.  

 

A classifier must be able to, as accurately as possible, distinguish between these periods. The main 

goal of this thesis is to build a classifier that can do exactly this. 

 

2.8 Ictal patterns 

Epileptic seizures generally follow an activity pattern that can be observed on the EEG recording 

during the time of the seizure or at its onset, that marks the transition from the preictal state to the 

ictal [104]. These patterns allow us to pinpoint where a seizure begins, as well as separating seizures 

in different groups. Here are the patterns recorded and utilized in the EPILEPSIA database (maybe 

explain them): 

1. Amplitude depression (figure 9): There is a consistent observable difference in amplitude 

between some electrodes and others, usually observable between electrodes on opposite sides 

of the brain [105]. Labeled as ‘m’ in the EPILEPSIA database. 
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Figure 9: Seizure from patient #85202 showing an amplitude depression pattern. It can be observed more clearly on 

T4 around the onset, where an initial flattening happens while keeping the high frequencies. This pattern disappears 

latter on the seizure. 

 

2. Low amplitude fast activity (LAFTA): This pattern corresponds to a flattening of the EEG 

signal caused by a sudden lowering in voltage and a decrease in low-frequency activity in the 

brain [104]. Labeled as ‘l’ in the EPILEPSIA database. 

3. Repetitive spiking (figure 10): This pattern is characterized by repetitive voltage bursts 

causing a pattern of high amplitude and low frequency that resembles a spike [106].  Labeled 

as ‘r’ in the EPILEPSIA database. 

  

Figure 10: Repetitive spiking pattern on a seizure from patient #58602. Screenshot taken from Epilab. 
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4. Rhythmic alpha waves: The ictal onset is characterized by an increase in alpha wave activity. 

Labeled as ‘a’ in the EPILEPSIA database. 

5. Rhythmic beta waves: The ictal onset is characterized by an increase in beta wave activity. 

Labeled as ‘b’ in the EPILEPSIA database. 

6. Rhythmic delta waves: The ictal onset is characterized by an increase in delta wave activity. 

Labeled as ‘d’ in the EPILEPSIA database. 

7. Rhythmic sub-delta waves: The ictal onset is characterized by an increase in sub-delta wave 

activity. Labeled as ‘e’ in the EPILEPSIA database. 

8. Rhythmic theta waves (figure 11): The ictal onset is characterized by an increase in theta wave 

activity. Labeled as ‘t’ in the EPILEPSIA database. 

 

Figure 11: Seizure showing a rhythmic theta wave pattern. Screenshot taken from Epilab. 

 

9. Rhythmic sharp waves (figure 13): Sharp waves (figure 12) are oscillatory patterns that have 

origin in the hippocampus. They can also appear during the onset of a seizure. Labeled as ‘s’ 

in the EPILEPSIA database. 
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Figure 12: Sharp wave pattern in EEG. Taken from [107]. 

 

  

Figure 13: Ictal segment showing a prevalence of rhythmic sharp waves near the onset, from patient #114902. 

Screenshot taken from Epilab. 

 

10. Cessation of interictal activity (only): Labeled as ‘c’ in the EPILEPSIA database. 

11. Polyspikes: Seizures that begin with a pattern characterized by multiple spike waves (figure 

14). Labeled as ‘p’ in the EPILEPSIA database. 
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Figure 14: Polyspike wave patterns in an EEG recording. Source: [108] 

 

12. Unclassified: some seizures do not have their seizure pattern recorded in the database. In this 

thesis document, they will be labeled as ‘u’. 

 

2.8 Quantitative EEG 

Quantitative EEG (QEEG) is a field that is concerned with applying computational techniques and 

numerical analysis to EEG [55], such as Fourier analysis and wavelet analysis. The analog EEG signal 

is first acquired at a certain frequency (256 Hz or more, preferably) and some sort of discrete time-

series analysis is applied to it to allow the extraction of features such as, for example, the relative 

spectral power density of each type of brain wave we have so far described. With a multi-channel EEG 

recording, what is commonly known as brain mapping (spatial analysis) may also be performed, and 

this is the main goal of this thesis project. 

 

2.9 Noise and artifacts in EEG 

Not everything on an average EEG reading is signal. In fact, EEG is known to have a particularly poor 

signal to noise ratio (SNR). The main problems here are that the electrical activity generated by the 

brain is of very low magnitude and the EEG recordings easily get contaminated by recordings of other 

bodily functions and from noise from outside sources or electrical devices. These non-cerebral 

interferences are called noise or artifacts. Artifacts of extra-bodily origin are called extraphysiologic 

and artifacts of bodily origin are called physiologic [30]. 
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Extraphysiologic artifacts stem from noise sources in the environment. Radio waves, electromagnetic 

instruments, even movements of people and objects nearby the patient may produce some noise that 

will be recorded by the electrodes, so EEG should be recorded in an as much as possible isolated 

environment. Here are some of the most common or noteworthy extraphysiologic artifacts [32]:  

• Alternating current artifacts: These artifacts stand at 50 Hz or 60 Hz since this is the 

typical frequency of alternate current that is used. In Europe and the USA, 

respectively. A Notch filter suffices to remove this artifact. 

• Electrode related artifacts: There many common electrode artifacts, such as electrode 

popping, which is identified by a single sharp wave on the specific electrode. Other 

artifacts may be related to changes in scalp resistance, etc. 

Physiologic artifacts are trickier to deal with and often require more complex methods to remove 

them. Here are some of the types of physiologic artifacts that one may find in an EEG recording: 

• Muscle artifacts (electromyogram): These are the most common artifacts and result 

from muscular activity. Tremors will produce rhythmic low-frequency activity, 

whereas contractions will produce higher frequency activity. Artifacts like these, as 

shown in Figure 15 will generally appear during motor seizures. 

 
Figure 15 – Chewing artifacts [31] 

 

• Glossokinetic artifact: This refers to EEG artifacts produced by thong movements. 

The thong functions as a dipole with its base being positive in relation to the tip. This 

will produce a visible effect on EEG. 

• Eye movements artifacts (Figure 16): Eyes, just like the thong, are dipoles. Eye 

movements in EEG are useful for identifying sleep stages as they create visible 

patterns in EEG recordings. 
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Figure 16– Eye movement artifacts are typically observed in the frontal electrodes. The phase reversals in F7 and F8 

indicate lateral eye movements [32]. 

 

2.10 Artificial neural networks 

An artificial neural network (ANN) is a computational structure that roughly imitates a biological 

brain. It is a collection of various interconnected nodes, known as artificial neurons, each of them able 

to receive one or more inputs, assigning them a weigh, and generating an output through a transfer 

function to pass to another neuron or be the value for the final classification. In practice, this allows 

an ANN to work as collection of classifiers, rather than only one classifier, as each of its neurons and 

layers can be seen as an intermediate classifier. 

Neural networks with various layers of neurons are known as deep neural networks. In those 

networks, neurons are separated in layers, whose number represents the depth of the network (akin 

to the depth of the graph), and the number of neurons in each layer is regarded as the width of that 

layer. 

There are currently many different structures for neural networks that can be used to solve problems 

like the one we have here. We will now be going through some of the proposed ones and discuss the 

advantages and disadvantages of using each one. 

 

2.10.1 Multilayer perceptron 

Multilayer perceptrons (MLPs) are the earliest form of deep neural networks. They are constituted by 

an input layer, one or more hidden layers and an output layer. They work as feed-forward neural 

networks, which is the same as saying that they have no cycles, so the output of a neuron from one 

layer can only go to the next layer. These networks learn through backpropagation. 
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MLPs learn through backpropagation of the error, which is a supervised learning algorithm that 

basically consists in computing the final classification error obtained in one iteration of the learning 

process, computing that error into a loss function and updating the neural network weights based on 

the value obtained from that loss function. 

• Advantages:  

o Fast training, allowing for more iterations;  

o Easy to implement;  

o Relatively simple final model; 

o Can serve as a starting model and then be customized. 

• Disadvantages:  

o The vanishing gradient problem [38] can keep these networks from reaching 

optimal performance;  

o For time series analysis, temporal evolution or causal analysis become 

especially hard, as these networks don’t take into account past or future 

events, unless given features that explicitly model chains of events, which may 

not be obvious or hard to obtain;  

o Not designed to deal with any specific type of problem, so may require some 

reworking to produce significant results for problems that are complex to 

model. 

 

2.10.2 Deep belief neural networks 

A Deep Belief Network (DBN) is simply an MLP with a different training algorithm that consists in 

training each layer to classify the input from the previous layer with the minimum possible error. This 

attenuates considerably the vanishing gradient problem, as each layer is now optimized 

independently. DBNs work as stacks of feed-forward networks. 

In terms of advantages and disadvantages, they are akin to those of an MLP, except for the fact that 

the vanishing gradient problem is basically solved, so they generally outperform those. 

 

2.10.3 Convolutional neural networks  

A Convolutional Neural Networks (CNN) is a form of feed-forward neural network with some 

different hidden layers, called convolutional layers. The neurons in these layers organize their inputs 

into a matrix and then apply convolutions with certain filter matrixes to those matrixes. Obviously, 

this only improves the learning process if the data provided to the network makes sense to represent 

in matrix form. 

• Advantages:  

o Good performance when processing data that can be represented by a matrix, 

such as an image or a video;  
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o The feature extraction and selection may be simplified or even skipped when 

using CNNs, as using the raw matrixes or part of them as input may suffice. 

• Disadvantages:  

o If unidimensional vectors of holistic features that represent the dataset can’t 

be produced, and one must resort to images or videos to serve as an input, 

they need to be produced or extracted, which can take time to process; 

o The training phase is expected to be slow, as processing matrixes has higher 

complexity that processing unidimensional features, and convolutions take 

more time than applying transfer functions; 

o For the same reasons, classification is also expected to be slow, unless the 

neural network is regularized; 

o Temporal evolution and causality are also difficult to model in strictly spacial 

CNNs, because of the reasons explained above. 

 

2.10.3.1 Temporal convolutional neural networks 

Temporal convolutional networks (TCNs) are a form of CNNs, that applies convolutions temporal 

data, essentially doing the same as RNNs in a more efficient way. These networks are fairly recent 

and have the potential to becoming state of the art in solving many problems that LSTMs are currently 

used for [40, 41]. 

 

2.10.4 Recurrent neural networks 

Recurrent neural networks (RNNs) are neural networks with a built-in feedback loop, that is, the 

output of a neuron of a certain layer can be added to any other layer in the next iteration. These 

networks receive a sequence of values as input and output a sequence of values as well. 

The training method here is slightly different and is called backpropagation through time [39]. 

• Advantages:  

o These networks can model sequential behavior quite easily, as, when 

calculating an output for a certain time step, they can take into account any 

output from another previous time step, making them good choices to model 

temporal evolution and causality; 

o For the same reason, the number of false positives and false negatives, when 

trying to detect a preictal state, may be reduced, as previous preictal or 

interictal classifications may be used as a way of encouraging or deterring the 

classifier from classifying a certain time period as preictal, respectively. 

 

• Disadvantages:  

o Extra connections mean that extra weights need to be corrected in each 

training step, so these networks take longer to train and the final model is very 
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complex, producing a slower classification (this can be attenuated using 

regularization); 

o The vanishing gradient problem and the exploding gradient problem are 

harder to solve in an RNN. 

 

2.10.4.1 Long short term memory neural networks 

A long short-term memory neural network (LSTMs) is a type of recurrent network that has a memory 

cell and a forget gate that allow the network to select information from previous iterations to be used 

on further iterations and create a classifier based on that. Compared to regular RNNs, LSTMs can not 

only store a previous output, but also a previous input. 

• Advantages:  

o Sequential analysis is now enhanced, allowing signals or events that depend 

on a previous input to be correctly modeled; if there is a relation of causality 

in the system that is independent of the output of the system (such as the 

previous value of a certain feature), these neural networks are able to 

incorporate such a relation in the classification process;  

o The temporal evolution of a signal may be modeled without needing to extract 

specific features for that purpose; 

o Designed to deal with the exploding and vanishing gradient problems of 

RNNs 

• Disadvantages:  

o Very heavy computationally, both in training and classification (in this case, 

regularization can help), even more than a regular RNN; 

 

2.10.5 Attention-based mechanisms 

Attention is a fairly recent development in neural networks. It allows the algorithm to only focus on 

certain important parts of the input that is to be classified, making training far more efficient. This is 

especially interesting for brain mapping, as it allows our model to focus on specific regions of the 

brain or scalp, that can be either predefined or figured out by the network. For more information, refer 

to [42]. 

 

2.10.6 Adaptive resonance theory-based neural networks 

Adaptive resonance theory (ART) refers to a theory on how the brain recognizes patterns. It proposes 

that pattern recognition occurs as a result of the interaction of 'top-down' observer expectations with 

'bottom-up' sensory information [43]. This model postulates that the brain stores memories as 

templates for a certain pattern and compares them with objects detected by the senses. As long as the 

difference between the expected pattern and the object does not exceed a certain threshold, the object 
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is classified as being of the same class of the said pattern. If no expected patterns are similar enough 

to the object in question, then a new template pattern is created based on the features of said object. 

This theory offers a plastic and stable base for unsupervised learning. Networks based on this theory, 

in their simplest form, deploy one neuron for each pattern and, when they receive a new input, check 

which neuron has the closest model for that new input and choose it, perform a check to see if that 

pattern is similar enough to the input and, if it is, classify it as such and update the weights, if it isn’t, 

create a new neuron for that pattern. 

This type of neural networks is interesting as, in this problem, it is definitely not guaranteed that all 

preictal or ictal patterns are even similar in the same patient, let alone across different patients. The 

same is true for the duration of the preictal state. An unsupervised learning method like this one can 

at least help with mapping, classifying the various ictal and preictal states found and tell us when they 

start, if not allow for an accurate classification as well. 
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Chapter 3 

State of the art 
 

3.1 Earlier approaches to seizure prediction 

The first approaches to seizure prediction date back to the 70s [59] when Viglione and Walsh [57] 

decided to try to predict absence seizures with linear approaches which were followed by Sigel et al 

in 1982 [58], who noted that absence seizures could be predicted by analyzing the power spectrum 

density of the EEG signal one minute before absence seizures with 64% to 84% accuracy. Rogowski et 

al. [60], in 1981 and Salant et al. [61] in 1998 reported significant pre-ictal changes six seconds before 

seizures using auto-regressive modeling. 

During the 90s and early 2000s, various seizure prediction attempts by analyzing certain features in 

pre-ictal data [59], such as Lyapunov exponents [62], spatiotemporal correlation density [63] and 

dynamical similarity [64, 65] were performed, however, this studies did not take into account interictal 

data, having no controlling mechanisms, which makes it impossible to access the specificity of these 

proposed approaches. 

The first, controlled studies testing preictal data against interictal data using measures such as 

correlation dimension [66], dynamical entrainment [67] and accumulated signal energy [68] showed 

the capability of distinguishing preictal data from interictal data. 

However optimistic these early results might seem, as more extensive databases became available, 

reassessment studies were performed on measures such as correlation dimension [69], similarity index 

[70] and accumulated energy [71] that found substantially poorer predictive performance than was 

led to expect from previous studies. Due to these studies and others, the reproducibility of earlier 

studies was put into question in [72], as well as the very suitability of the aforementioned non-linear 

measures for temporal analysis of EEG [73, 74]. 

In 2002 the First International Collaborative Workshop on Seizure Prediction [75] was held. In this 

workshop, various methods of seizure prediction were compared on a joint dataset. Bivariate and 

multivariate measures were found to outperform univariate measures [59], suggesting that a 

combination of factors must be studied in order to predict seizures. The pre-ictal changes in EEG were 

also found to be restricted to certain channels. 

Shortly after these events, the first seizure prediction algorithms [76, 77, 78] were developed, which 

unfortunately produced sensitivity and specificity results that were unacceptable on a clinical level. 
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3.2 Modern day approaches to seizure detection and 

prediction 

Modern day approaches to seizure detection and prediction are tendentially keener on building 

classifiers or classification models based on either features retrieved from EEG or even raw EEG. Many 

studies now use machine learning models such as support vector machines (SVMs) or ANNs. We will 

go over a few of these studies, in order to paint a diverse picture of how the state of the art of seizure 

detection and prediction looks like and try to expose a variety of methods and features that may prove 

useful to this thesis.   

 

3.2.1 Seizure detection 

Seizure detection consists in simply differentiating ictal from interictal data, disregarding the preictal 

and postictal states. Automatic seizure detection can be very useful to monitor patients on a clinical 

level as it is crucial to be able to detect all seizures that are afflicting the patients [79], to keep them as 

safe and healthy as possible.  

Seizure detection in the time domain requires discrete analysis of consecutive EEG epochs in order to 

classify them as ictal or not. This can be achieved, for example, as Runarsson and Sigurdsson [80] did, 

by producing histograms of the epochs of the signal, taking the amplitude difference between peaks 

and lows of the signal and their separation in time. Using an SVM classifier, this study was able to 

achieve 90% of detection rate on self-recorded data. Other methods such as Principal Component 

Analysis (PCA), Linear Discriminant Analysis (LDA) and Independent Component analysis (ICA) 

have also been applied to the temporal distribution of signals to extract features for classification [82]. 

Treating the signal on the frequency domain is more common. These methods trend to exploit the 

phase and magnitude of the various frequency components of the signal being measured, obtained by 

applying a Fourier transform, and various higher level features that can be obtained using them. An 

example of this is the work of Khamis et al. [81] that uses moments of power spectral densities of EEG 

signals as features to perform classification, obtaining 91% of detection rate and 0.02 false positives 

per hour in a total of 618 hours. 

Entropy, largest Lyapunov exponents, Hurst exponents and other non-linear measures can also be 

used to exploit the stochasticity, non-linearity and non-stationarity of EEG signal for seizure detection, 

despite their apparent past failures in seizure prediction. A good example of success using these 

measures applied to different frequency bands of EEG is the study from Martis et al. [83] that obtained 

99.5% of sensitivity and 100% of specificity using SVM classification. 

Wavelet-based methods have also been used for seizure detection quite extensively. One interesting 

and successful study was performed by Orhan et al. [84] who used discrete wavelet transforms 

(DWTs) to decompose EEG signal in sub-bands, clustering the wavelet coefficients using K-means and 

feeding them as input to a multilayer perceptron (MLP). This study obtained values for accuracy 
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ranging from 95% to 100%. This isn’t the only study using wavelet analysis that obtained this level of 

performance, showing that wavelet analysis is suitable for this problem. 

Another very interesting and worth mentioning study in seizure detection is the study of Weng and 

Khorasani [85] that uses Adaptive Resonance Theory based neural networks to create an automatic 

adaptive model that is able to effectively discover new patterns of seizures automatically and attribute 

to them a certain classification. The study managed to obtain 94.9% sensitivity and 100% specificity. 

This study can serve as a base to build predictors that are able to adapt themselves to each patient, 

which has always been something that researchers on seizure prediction have struggled with, given 

the heterogeneous nature of seizures. 

Spatial analysis using Convolutional Neural Networks (CNNs) has also been performed by Wei et al. 

[86] This study uses a three-dimensional matrix with multichannel EEG as input of a CNN, achieving 

88.90% of sensitivity and 93.78% of specificity. 

When it comes specifically to the use of topographic maps for seizure detection, there is not much 

work available. However, it is worth noting that it makes sense to analyze most EEG features on a 

topographic/spacial basis, as brain currents propagate from electrode to electrode, making the signal 

in one electrode dependent on signals of close by electrodes, and brain signals are particularly well 

known to display some lateralized behavior, amongst many other reasons. One study that used 

topographic maps for seizure detection was conducted by Min Jing and Saeid Sanei [92] who came up 

with a method that they called topographic independent component analysis (TICA) which, to put it 

in simple terms, consists in applying a version of ICA that considers a certain degree of dependency 

between electrodes depending on how close they are to each other. 

Plenty of more work with similar results has been done when it comes to seizure detection. One can 

say that, overall, seizure detection models have rather good performance. However, it is worth noting 

that the majority of these studies were done in datasets that are not particularly extensive, since the 

extensive ones, like the EPILEPSIA one, are fairly recent. Thus, their performances may be a result of 

overfitting the studied dataset and not such good usability in a clinical set. 

 

3.2.2 Seizure prediction 

Prediction of epileptic seizures is a more complicated problem than detection due to the fact that 

preictal states are more similar to interictal ones than ictal ones are. For this reason and despite the 

fact that the literature on prediction of seizures is more extensive than the one on detection, the 

performance of prediction models trends to be a lot lower than the one of detection models, especially 

when it comes to specificity. However, there are still studies that yield promising results and, as stated 

before, there are statistically significant differences between the preictal and interictal states [25, 36, 

37], even if less than the ones between the ictal and interictal states, making it very important to have 

long interictal periods when testing seizure prediction models [88]. Many measures, features and 

methods used for seizure detection are also used for prediction. 
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One of the most basic and intuitive ways to approach this problem is to exploit the envelope of 

amplitude of the signal. This is what Li et al. [87] did, by applying averaging filters and morphological 

operations to transform the signal’s envelope into a series of spikes and setting a spike ratio threshold 

to distinguish ictal, interictal and preictal states. This method was able to achieve a sensitivity of 75.8% 

and a false alarm rate of 0.09/hour. 

Non-linear measures continue to be used for seizure prediction. One example of that is the study from 

Aarabi and He [89] which created a patient-specific time-domain rule-based predictor that combines 

various non-linear measures such as: correlation entropy, correlation dimension, Lempel-Ziv 

complexity, noise level, largest Lyapunov exponent and non-linear independence. The tests were only 

performed one or two patients, which is clearly an insufficient number of patients to determine the 

real accuracy of the implemented method. However, patient one obtained 90.0% sensitivity and 0.06 

false positives per hour, while patient two obtained 96.5% sensitivity and 0.055 false positives per 

hour. 

Studies based on the frequency domain are more common when it comes to seizure prediction. One 

of those studies is the study from Bandarabadi et al. [90] done by researchers in CISUC which use the 

relative power spectrum density between brain waves. This study was performed on the EPILEPSIA 

database, which provides certain advantages on evaluation due to the various extensive recordings 

that it contains. The obtained 75.8% sensitivity and a false prediction rate (FPR) of 0.1/hour. 

Wavelet-based analysis is also one of the ways that one can find in the literature when it comes to 

seizure prediction. Elgohary et al. produced a study using the zero-crossings of the wavelet transform 

coefficients of EEG as features for a binary SVM classifier that distinguishes between interictal and 

preictal sates. This study obtained a sensitivity of 96% and a specificity of 90%. This study, has the 

particularity of only selecting 10 minutes of data for training, in order to try to build a predictor that 

does not require long term data recordings. This study shows that this feature has great potential 

when it comes to predicting epileptic seizures. 

Studies using multiple different features both on time and frequency domains have also been 

performed in CISUC. One by Direito et al. [91] has compiled a set of features available in EPILAB [46] 

that include auto-regressive modelling prediction error, decorrelation time, signal energy, Hjorth 

exponents of mobility and complexity, relative spectral power of the various brain waves, spectral 

edge power and frequency, mean, standard deviation, skewness and kurtosis and six decomposition 

levels of Daubechies wavelet coefficients. The most relevant features were selected for each patient 

and classification was performed using SVMs. The study obtained only 38,47% sensitivity and 0.20 

false positives per hour. The poor performance of this study is due to the fact that it was designed for 

the testing to approach as much as possible a real environment, something that is not very common 

in the literature. 216 recordings of patients from the EPILEPSIA database prefacing 16,729.80 hours of 

inter-ictal data and 1206 seizures were used for testing this study. This study clearly shows that 

sometimes promising results by studies performed in smaller datasets are not reproducible in a real 

or close to real environment and that much work still needs to be done in this area. 
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When it comes specifically to exploiting topographic maps for seizure prediction, not much has been 

done. However, there is a particularly interesting study from Direito et al. [37] who performed seizure 

prediction using topographic maps of spectral power densities of brain waves. Their method consists 

in finding points of interest in the maps and tracking those points over time. A Hidden Markov Model 

(HMM) was used to perform classification by distinguishing between the ictal, preictal, postictal and 

interictal states. This study was performed in 10 patients suffering from focal seizures and obtained 

an average of 94.59% sensitivity and 92.22% specificity, highlighting the potential of topographic maps 

to be used for seizure prediction and detection. 

In terms of spatial analysis, quite a few studies were published recently that show promising results 

for seizure prediction. One of those studies dates only to the end of last year and was performed by 

Hisham Daoud and Magdy Bayoumi [96]. Their method consists in producing tridimensional 

matrixes in which two dimensions represent the spatial distribution of electrodes over the scalp and 

one has the raw (yet denoised) EEG data of each electrode. These matrixes are then used as input for 

a CNN. In the first layers of the CNN, the matrix is convolved in the spatial dimensions to find a 

region of interest. Then it is feed into a network that also possesses an LSTM module that allows it to 

take into account matrixes corresponding to previous time frames to allow the neural network to also 

study the temporal evolution of the EEG signal. This method has been able to produce 99.6% 

sensitivity and an FPR of 0.004/hour and, even more interestingly, a prediction time of 1 hour. This 

certainly one of the most successful studies on this field and showcases the ability of both spatial 

features and temporal evolution to produce results that are clinically acceptable. However, this study 

was performed with raw EEG data and, for this reason, there is extremely high overload on the 

classification process. 

Seizure prediction, despite all the efforts done on this area, is still an issue that needs further study, 

yet the results obtained from researchers are promising. This is a very complex and difficult problem 

that can be explored in many different ways. Studies like the one of Direito et al. [91] show that the 

models and algorithms for seizure prediction need to be tested in an environment that emulates as 

much as possible a real one in order to really evaluate their prospects for clinical use. Studies like this 

one are, unfortunately, more an exception than a rule.   
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 Chapter 4 

Materials and methods 
 

The work that will be developed in this thesis will require data and various methods and processes 

that should also be explained. In this section, we will go through the data, the framework, and the 

methods and technical artifacts that need to be taken into account to work on this thesis. 

 

4.1 Framework 

Our framework (figure 17) consists on acquiring the signal, preparing it, dividing it into training a 

testing set, organizing it into a map, feeding it on a neural network, performing cross-validation, 

performing a parameter search, passing the results through a regularization process and analyzing 

the results. In schematic terms: 

 

Figure 17: The framework of our project. 

 

Each of these steps will be explained in further detail below. 
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4.2 Planning 

The work of the first semester consisted more on studying the problem, creating topographic maps 

and writing the report. The topographic map framework ended up not being used. 

The second semester essentially consisted of following our framework. The Gantt diagram of figure 

18 illustrates this. 

 
Figure 18 – This thesis’ final Gantt diagram 

 

4.3 Signal acquisition  

Since the very beginning, it was proposed that I would work with the EPILEPSIA database [44], the 

largest epilepsy database worldwide. It contains long term EEG and ECG recordings of 275 patients 

that suffer from epilepsy, as well as extensive metadata and annotations, prefacing in total over 40000 

hours of recording. These recordings were provided from epilepsy centers of the University Hospital 

Freiburg, Germany, of the University Hospital of Coimbra, Portugal, and of the Hospital de la Pitier-

Salpetriere in Paris, France. 

217 of these are surface recordings, while 58 are invasive EEG recordings. Some of these patients also 

had their EMG recorded. The surface recordings were performed using a 10-20 electrode system, 

sometimes with a few additional electrodes and recordings of a reference electrode and scalp 

resistance and invasive EEG recordings can use up to 125 electrodes. The sampling rates vary from 

250 Hz to 2.5 kHz and the number of seizures recorded for each patient varies between 3 and 94 in a 

recording that lasts 165 hours, in average. 
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The annotation scheme is both based on video analysis and EEG screening made by experienced staff 

members and EEG signal analysis made by epileptologists. The first method was used to record the 

clinical onset and the second was used for the EEG onset. 

Along with the EEG and seizure related data, characteristics of the patient such as his/her age, the 

medication that he/she was prescribed, etc. are also stored. For this work, we considered the focus of 

the seizure and its pattern to be the primary ones to analyze. 

One of the most important advantages of this database is that it not only contains the EEG recordings 

of seizures and activity near them, but it also contains full sets of interictal recordings of the patients, 

allowing a real-time like evaluation of the detection and prediction performance. 

This database is also particularly interesting for the fact that all recordings are from people who would 

later undergo surgery, so these patients all suffer from drug-resistant epilepsy which, for obvious 

reasons, is the category of epilepsy that is the most important to develop a predictor or detector for. 

For more information on this database check Klatt et al. [44] or the official site of the database [45]. 

 

4.4 Preprocessing 

This step consists of selecting the data we need for evaluating our model in a realistic way. In our case, 

we need continuous data containing both interictal and ictal samples. It is preferable that the interictal 

data is before the ictal data, as it can allow us to understand how our model performs when a seizure 

is about to begin. For reasons explained in section 4.6.2, it was decided that we would only work with 

seizures that had by at least one hour of continuous (or only briefly interrupted) interictal data 

recorded right before them. 

 

4.4.1 Noise and artifact removal  

As mentioned in the previous section, alternating current noise can be removed effectively with a 

Notch filter. D/C current can also be removed with a high pass filter. This proved to be unnecessary 

later on, as using these filters did not change the performance of our network. This is to be expected 

as these forms of noise are independent of ictal and interictal samples. 

Other artifacts require more complex techniques to remove that are not viable in real-time, most often. 

Due to this, it was decided that we would try to train our neural network with the artifacts present on 

the EEG. This proved to be a problem in some situations, as explained in the results and discussion 

section. 
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4.5 Map creation 

4.5.1 Compressed maps 
Compressed maps were developed by figuring out which would be the most efficient representation 

that could preserve the spatial features of the input data. 

We have five electrodes both in the central meridian and parallel of the head. Since we are considering 

a spherical head model, we can consider that both dimensions are equal in our model. Likewise, the 

upper and lower meridian and the upper and lower parallel of the head, we find five electrodes. Since 

all electrodes mentioned so far in this paragraph are supposed to have a distance from their nearest 

electrode either to the left, right, above or below of 10% of the front to back distance of the skull, we 

can simplify things and organize these electrodes in a 3x5 rectangle. We can add the three electrodes 

in the front (Fp1, Fpz and Fp2) and back front (O1, Oz and O2) of the head respectively centered on 

top and bottom of our rectangle. If recordings for Fpz and Oz are not available, we can simply compute 

the interpolation of the three nearest electrodes with equal weights, since they should all be 

equidistant from Fpz or Oz. This would suffice, however, since we want to use a CNN, a full rectangle 

would be more convenient. All that we need to do, in this case, is compute the bottom left and right 

and the top left and right values as the interpolation of its nearest electrodes, according to the expected 

distances. We then have a 5 by 5 square matrix with our values than can be computed into a CNN. 

 

4.5.2 Compressed raw maps 

It was decided that raw data should be tested before features. There are various reasons for this, such 

as neural networks being expected to work on raw data without problems, CNN filters in practice 

already retrieve and select features and with raw data we are giving the classifier the maximum 

possible quantity of information. Also feature selection in real-time may take too long, while 

evaluating raw data is fast enough to give a human the sensation of being instantaneous. This ended 

up being the only method that we could test, due to time restrictions.  

The representation used consists of using a 5-by-5-by-x matrix where x corresponds to sampling rate 

times the temporal window size. The values on this extra dimension correspond to the temporal 

values of the electrodes or interpolation of these values, according to our map model. We can call 

these maps “Compressed raw maps”. 
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Figure 19: Scheme of our neural network input. 

 

4.6 Model 

4.6.1 Artificial neural network 

For seizure detection, a typical CNN was chosen as the model. This is due to the fact that CNN's, as 

explained previously, are state of the art for image processing and we can treat our maps as 

tridimensional images. Since it was decided that raw data was to be used, tridimensional 

convolutional layers are necessary to process the input. Apart from this, the rest of the architecture of 

the neural network and its parameters must be selected. But first, we must take a look at what kind of 

input is going in our neural network.  

 

4.6.2 Input 

Given the fact that this is a highly imbalanced problem since there are far more non-ictal samples than 

ictal ones, there has to be a strategy to prevent our model from tuning itself to perform well only for 

the more common class. There are two typical paths to solve this problem: 

1. Balance both datasets, simply by using just as many non-ictal samples as ictal ones, in this 

case; 

2. Apply a higher misclassification cost to the class that has the least number of samples. 

Since the first approach would result in too few samples to use a CNN reliably, the second was chosen. 

At first, a window of 5 seconds was chosen and every 5 seconds of sample were compiled without 

any overlap. It took very little to realize that this did not produce enough samples for machine learning 
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processing and the few tests done resulted in good performance on the training set, and very poor 

performance on the testing set, which is a clear sign of overfitting. 

This problem was solved by using an overlap of 80% (4 seconds) in the same 5 seconds window. This 

allowed the upsampling of seizure cases and resulted in solving the problem of overfitting. 

Apart from this, there were two input methods considered: 

1. Use only cases where, for the whole duration of the five seconds, either the sample 

corresponded to an ictal event or an interictal/preictal time for its full duration, that is, either 

all five seconds are identified as ictal or not. 

2. Use only fully interictal/preictal samples for the samples labeled as non-ictal and use both 

fully ictal and partially ictal (starting as preictal and ending as ictal) samples for the ictal time. 

In this case, the first sample to be classified as ictal in each batch would have four seconds 

classified as interictal and one classified as ictal, the second would have three classified as 

interictal and two as ictal and so on until all seconds of the sample are classified as ictal. 

Both cases were tested, yielding similar results, with the only difference being that the first case took 

about 3 times the number of iterations to train the neural network to a value of loss equal to the second 

case. Since time and computational capabilities were major technical restrictions in this work, it was 

decided that the second option would be taken. 

The preictal/interictal time before each seizure to go into the neural network was also briefly tested. 

Two options were considered: seizure and non-seizure time for each seizure prefacing 1 hour and an 

analogous method but with 2 hours of data. The tests showed very little difference between both 

methods in terms of performance, so 1 hour was considered sufficient to represent a time long enough 

to simulate interictal temporal sample evaluation in real-time. So, for each seizure, we will be taking 

the ictal period and enough interictal data before the seizure to make one hour in total. This will be 

what our neural network will receive in each batch. As a consequence, only seizures which have an 

interictal time of at least one hour before it recorded will be possible to use. This may sound like a 

disadvantage, and it can be, for the reason that some seizures will be inevitably excluded, but it allows 

us to create measures that will be uniform for each seizure, facilitating comparison between them and, 

as a consequence, between each patient. 

With the input method defined, we can now search a few possible architectures. 

 

4.6.3 Network architecture 

Only CNN's were chosen as they have the ability to extract both spatial and temporal features in their 

convolutional layer. 

Since it would be too lengthy of a job to search the network architecture extensively, a few alternatives 

were chosen to be tested with one patient, with similar parameters. Those alternatives were: 

1. 1 convolutional layer and 3 feedforward layers; 
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2. 1 convolutional layer and 4 feedforward layers; 

3. 1 convolutional layer and 5 feedforward layers; 

4. 2 convolutional layers and 4 feedforward layers; 

After each convolutional layer, there exists a pooling layer performing a max-pooling operation and 

after each convolutional layer, an RLU (rectifying linear unit) is used.   

The parameters of the networks were selected so that the total number of neurons was similar in all 

the tests and, in the case of the last architectural option, a few different parameters were tested for the 

convolutional layers, and the best result will be the only one presented. 

Architectural 

option 

Convolutional 

layer parameters 

Feedforward 

layer parameters 

1 3,3,48,1 78,16,2 

2 3,3,48,1 39,39,13 

3 3,3,48,1 30,30,10 

4 [2,2,16,1] x 2 39,39,13 
Table 1: Architectural options for our neural network 

 

4.6.4 Base parameter search 

Since a full grid search would take far too long, the parameters were searched using a bottom-up 

approach, meaning that the parameters that define the structures that the initialization method was 

the first parameter to be searched and then we proceeded to search the parameters for the structures 

of the neural network by the order in with they transform the input. The parameters on which this 

pseudo grid search was applied were: 

1. Initialization method; 

2. Size of convolutional filter dimensions; 

3. Number of filters being trained; 

4. Maximum width of the layers of the feedforward neural network; 

5. Seizure misclassification penalty. 

Each network configuration was run five times to provide statistical significance. 

 

4.6.4.1 Initialization method 

The weights, biases and filter parameters must be initialized in some way, in order to lead the learning 

process in the right direction and prevent the gradients from exploding or vanishing. The initialization 

methods considered were: 

1. Initializing everything as ones; 

2. Random normal distribution 1:  a typical Gaussian distribution of mean 0 and standard 

deviation 1; 
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3. Random normal distribution 2: a typical Gaussian distribution of mean 0 and standard 

deviation 5; 

4. Random uniform distribution 1: a uniform distribution with a minimum value of 0 and a 

maximum value of 1. 

5. Random uniform distribution 2: a uniform distribution with a minimum value of -100 and a 

maximum value of 100.  

6. Glorot normal distribution: an initialization method based on normal distributions of mean 0 

and setting the variance of the weights to a value that preserves the variance and gradient 

from layer to layer [102]. 

7. Glorot uniform distribution: analogous to the previous method but using a uniform 

distribution and setting the maximum and minimum values of the weights in a way that 

preserves the variance and the gradient from layer to layer [102]. 

8. Orthogonal distribution with the biases initialized as ones: The initializer generates an 

orthogonal matrix. Since the biases are column matrixes, they have to be initialized differently. 

9. Truncated normal distribution: a truncated normal distribution at 2 standard deviation values 

with mean 0 and standard deviation 1. 

10. Uniform unit scaling distribution: an initialization method that aims to preserve the scale of 

the input variance from layer to layer in the network by initializing the weights in the interval: 

[
−√3

√𝑑𝑖𝑚
 ,

√3

√𝑑𝑖𝑚
] 

 

Where dim is either the number of neurons in the respective layer in the case of a feed-forward 

layer or the product of the first 3 dimensions in the case of a convolutional layer. 

11. Variance scaling distribution: Also attempts to preserve the scale of the input variance, but 

this time through computing a truncated normal distribution with an average of 0 and a 

standard deviation of: 

 

√
𝑓𝑎𝑐𝑡𝑜𝑟

𝑛
 

Where factor, in our case, is set to 2 and n is the number of input connections in each layer. 

 

4.6.4.2 Convolutional layer  

Our tridimensional convolutional layer receives 4 different parameters, apart from the initialization 

method, which are the sizes of the three dimensions of the layer’s filter and the number of filters. It 

was decided that the first two dimensions would be the same, due to the fact that it would not make 

sense to search each of them independently from each other, as they both relate to the spatial 

component of the EEG and it would take far too much time to perform a grid search on all their 

possible combinations. However, the author highly recommends that this is done if there would be 

future attempts to turn the presented model into a real medical support system 
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We considered the following parameters in each layer: 

• First and second dimension: we considered all the possible dimensions from 1 to 5; 

• Third dimension: we considered the parameters 16, 24, 32, 48, 64 and 88; 

• Number of convolutional filters: we considered a number of filters from 1 to 5. 

 

4.6.4.3 Feedforward network  

Our feedforward network has four layers: one input layer, two hidden layers and one output layer. 

Since we are using one-hot labels, our output layer will be the size of the output space, which is 2. Due 

to time and resource restrictions on the parameter search, it was decided that the input layer and the 

first hidden layer would have the same size and the last layer would have 1/3 of their size. Given this, 

we decided that the maximum width parameters of our feedforward network would be: 12, 18, 24, 33, 

42, 54, 66, 81 and 99. 

 

4.6.4.4 Misclassification penalty  

Misclassification penalty or misclassification cost is the extra penalty applied to classifying a seizure 

sample as interictal. This is applied on the backpropagation algorithm for rectifying the weights, in 

each iteration, to the error calculation, to all the ictal samples. So if we have a misclassification penalty 

of 5, it means that the error calculation on the backpropagation algorithm will be multiplied by 5 for 

each seizure sample, causing the model to consider each ictal sample as 5 times more important than 

each interictal sample to the final result for the weights of the corresponding iteration. As stated 

before, this was the chosen way to solve the high unbalance in the data. 

The misclassification cost could simply reflect the proportion of interictal to ictal samples, which 

would always leave us with possible penalty values over 100. However, we want to minimize, first of 

all, the false positive rate, since, in practice, a seizure only has to be detected as early as possible, giving 

room for some false negatives afterwards and many and possibly long streaks of false positives should 

be avoided, as that would make our model too unreliable and the generated seizure alerts would have 

no meaning. Due to this, our search focused on slightly lower values. The values chosen were: 30, 40, 

50, 60, 75 and 90. 

 

4.6.4.5 Other parameters 

Other necessary parameters were left out of the search, due to time restrictions. Those include: 

1. Number of iterations: set to 400 during the tests; 

2. Lower bound for loss: set to 0.05; 

3. The learning rate was set to 0.0005, since this was the lowest value found, after some testing, 

that did not make the gradient explode; 
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4. The optimizer chosen was the ADAM optimizer [103], as it is currently considered the state-

of-the-art optimizer; 

5. Max pooling used on the tests was set to: 

[6 − 𝑐𝑥, 6 − 𝑐𝑦, 𝑓𝑙𝑜𝑜𝑟 (
1280 − 𝑐𝑧

104
)] 

With cx as the first dimension of the convolutional filter, cy as the second and cz as the third. 

This gives us a final result of [2,2,12]; 

6. Strides for the convolutional layers were set to [1,1,8]; 

7. No padding was used. 

 

4.6.5 Training methods 

Using the parameters obtained in our search as base, we trained and test our model with more 

patients. In various cases, a further small parameter search was performed, as is represented in the 

flow diagram in figure 17. 

The chosen way to validate our model’s performance was through cross-validation, since, in a real 

environment, seizure cases to be detected would obviously not have been part of the training set, so 

we divided our data into training and testing sets 

Our neural network was trained using three approaches: standard, progressive and mixed. 

 

4.6.5.1 Standard approach 

The first approach consisted in, for each patient, training is performed using the parameters that were 

obtained in the parameter search on its the training set and then testing the resulting model on the 

testing set. Seizures are divided into training and testing in chronological fashion, using the oldest for 

training and the newest for testing. This is a very standard approach when performing cross-

validation, so that is exactly what we will be calling it. 

 

4.6.5.2 Progressive approach 

The second approach used in this thesis project consisted in training and testing with our data by 

progressively adding new seizures to the training set, in chronological order, and testing only with 

the immediately next seizure to the last one added to our training set. To put this in a simple way, we 

start with 3 seizures for the training set in each patient, train a model, and test it with the 4th oldest 

seizure; then, we add that testing seizure to the training set, retrain the model and test with the 5th 

seizure. This keeps going on until there are no more seizures to test. This is expected to improve our 

results, as there are now more seizures on the training overall. 
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4.6.5.3 Mixed approach 

What we call mixed training here consists of picking a group of patients with similar characteristics 

and dividing it into train and test groups. The patients on the training group are used to produce the 

model, by training a neural network with the architecture and parameters selected with their ictal and 

interictal data and the analogous data from the patients in the testing set is used to test the model. 

The purpose of this training method is to evaluate if it is possible to use data from already existing 

databases to detect seizures of new patients, that is, creating a ready-made seizure detection system 

without having to subject patients to a data collection and model creation process. 

We are not expecting results that can compete with the results from previous methods, as we are now 

dealing with a much more difficult problem. 

 

4.6.6 Regularization 

Since one second being classified as ictal or non-ictal is hardly relevant, as it can easily be a false 

positive or false negative, triggering or stopping an alert based on just that would lead to a very 

inconsistent, flawed and highly erroneous system. Due to this, there must be some form of 

regularization. 

The chosen form consists of triggering a series of alerts based on how many instants/seconds were 

classified as ictal consecutively. The alerts go as follows: 

1. Yellow alert: When 2 consecutive instants are classified as ictal; 

2. Orange alert: When there is an instant classified as ictal right after a yellow alert; 

3. Red alert: When there is an instant classified as ictal right after an orange or red alert. 

Each time there is an instant classified as interictal right after an orange alert, a yellow alert is 

triggered, effectively lowering the alert’s importance. In the same way, a red alert may be dropped to 

orange. 

The only actually relevant alerts in this model end up being the red alerts, as yellow alerts are rather 

weak and can easily be a result of localized noise and orange alerts usually appear as a transition to 

red alerts. However, orange and yellow alerts are useful to measure when red alerts will be triggered. 
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Chapter 5 

Results and discussion 
5.1 Network architecture 

One patient, a patient from the EPILEPSIA database labeled with the ID 58602, was used to search for 

the optimal architecture. 10 seizures of this patient, and previous non-ictal time, as explained above, 

were selected for training, and other 10 for testing. 

The false positive and false negative rates were tabled for each of these architectures, producing the 

following results: 

Architectural 

option 

Convolutional 

layer parameters 

Feedforward 

layer parameters 

FPR  FNR 

1 3,3,48,1 78,16,2 0.04544 0.26221 

2 3,3,48,1 39,39,13 0.00400 0.21507 

3 3,3,48,1 30,30,10 0.02238 0.28338 

4 [2,2,16,1] x 2 39,39,13 0.21288 0.58958 
Table 2: Parameters for the various options for our network architecture 

 

Given this, option 2 was chosen as the architecture to work with, giving us a network that can be 

summarized by the following figure: 

 

Figure 20: Scheme of the neural network architecture that will be used. 
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The best parameters were chosen based on both the FPR and the FNR, since our purpose here is to 

minimize both. Once again, data from patient 58602 was used in the same fashion.  

 

5.2.1 Initialization method 

Since there were many initialization methods to consider here, and it was expected that some of them 

would not produce desirable results, and thus would be a waste of time to run all of these, one primary 

run throughout all of these methods was performed with the following results (Figure 21) 

 

Figure 21: Preliminary initialization method search 

 

The best performing methods were then selected for further evaluation, involving 4 more runs of each. 

The results were the following (Figures 22 and 23): 
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Figure 22: Box plots for the false positive rate of each pre-selected initialization method. 

 

 

Figure 23: Box plots for the false negative rate of each pre-selected initialization method. 
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Due to these results, we selected orthogonal initialization as our default initialization method. 

 

5.2.2 Convolutional layer  

The results for these first two dimensions were the following: 

 

 

Figure 24: Box plots for the average false positive rate obtained with different first and second dimensions for the 

convolutional filter. 

 



46 

 

 

Figure 25: Box plots for the average false negative rate obtained with different first and second dimensions for the 

convolutional filter. 

Given these results, it was decided that the value selected for these dimensions should be 4, since it 

presents the lowest false positive rate and the lowest dispersion, even though values of both 2 and 3 

presenting promising results as well. 

For the third dimension of the filter the following values were tested, producing the following results: 

 

Figure 26: Box plots for the average false positive rate obtained with different values for the third dimension of the 

convolutional filter. 
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Figure 27: Box plots for the average false negative rate obtained with different values for the third dimension of the 

convolutional filter. 

32 is definitely the overall best value, as it achieves both the lowest result for the false positive rate 

and false negative rate, also with a relatively low average result. 

The network was tested with different numbers of filters in the convolutional layer producing the 

following results: 

 

Figure 28: Box plots for the average false positive rate obtained with different values for the number of filters in the 

convolutional filter. 
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Figure 29: Box plots for the average false negative rate obtained with different values for the number of filters in the 

convolutional filter. 

 

Given these results, it is clear that the training the network with 3 filters yielded the best results, 

therefore that is the chosen value. 

 

5.2.3 Feedforward network 

The following results were obtained during our parameter search for the maximum width of our 

feedforward network: 
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Figure 30: Box plots for the false positive rate for each value used in the maximum width (number of neurons in the 

first two layers) search. 

 

 

Figure 31: Box plots for the false negative rate for each value used in the maximum width (number of neurons in the 

first two layers) search. 

 

Given these results, a maximum width of 42 was chosen, since even though the results for a maximum 

width of 66 were slightly better, since the complexity of increasing the number of neurons in the way 

we are doing here is of O(n3), due to the fact that we are increasing the number of neurons in 3 layers. 
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5.2.4 Misclassification penalty  

The search for the misclassification penalty/cost produced the following results: 

 

Figure 32: Results for the false positive rate for the misclassification penalty search. 
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Figure 33: Results for the false negative rate for the misclassification penalty search. 

 

Both 40 and 50 show similar results. 50 ended up being the chosen one due to having the lowest 

standard deviation. However, this parameter proved to be highly patient dependent in future tests. 

In the end, we are left with the following network model: 

 

Figure 34: Our network with the chosen parameters 
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5.3 Performance evaluation 

Various measures of performance, either standard or related to the regularization method presented 

before were used to statistically interpret the results obtained these measures are: 

1. FPR: false positive rate; 

2. FNR: false negative rate; 

3. FRAR: false red alert rate, according to our regularization rules, measured by checking the 

ratio of interictal/preictal samples that contain red alerts to the total number of samples; 

4. NSRAR: near seizure false red alert rate, measured by the ratio of preictal samples occurring 

five minutes before the seizure that contain red alerts to the total number of preictal samples 

five minutes before seizures; 

5. FSFRAR: far seizure false red alert rate, measured by calculating the false red alert excluding 

samples happening five minutes before seizure; it can be considered the significant false red 

alert rate. This is equivalent to 1 minus the specificity of our model; 

6. FRA/B: false red alerts per batch (using only samples far from seizures); 

7. ALFRA: average length of false red alerts (using only samples far from seizures); 

8. STDFRAL: standard deviation of false red alert’s length (using only samples far from 

seizures); 

9. FS: failed seizures (the numbers correspond the reference number of the failed seizure); 

10. ATFTRA: average time for the first true red alert: average time that it takes for the first red 

alert, measured from the first EEG or clinical onset onwards. 

11. ORAS: Occurrence of red alerts in a seizure: indicates how likely it is to find a red alert in an 

ictal sample. This is the sensitivity of our model. 

 

5.4 Testing 

5.4.1 Standard approach 

We took data from 11 patients, one of which was used to perform the parameter search, in the 

EPILEPSIAE database and divided their seizures in training and testing set. The number of seizures 

in each training and testing sets for each patient varies with the number of seizures recorded for that 

patient. One hour of interictal/preictal time before the seizure was taken for both training and testing. 

The patients selected were the following with the following traits and best performing parameters: 
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Patient 

ID 

Nº 

train 

Nº 

test 

Patterns train Patterns test Focus Initialization 

method 

Conv. 

layer 

Feedforward 

layer 

Cost 

58602 10 10 r,t,t,t,r,u,r,r,t,r t,t,u,t… t-l orthogonal [4,4,32,1] 39,39,13,2 48 

11002 4 4 u,s,a,t u,t,t,t tp-r orthogonal [4,4,32,1] 21,21,7,2 50 

30802 5 4 t,a,t… all t t-l, t-r orthogonal [4,4,32,3] 42,42,14,2 150 

81102 8 4 all t all t t-r orthogonal [4,4,32,3] 42,42,14,2 100 

85202 6 4 m,r,c,c,m,m all m t-l orthogonal [4,4,32,3] 42,42,14,2 50 

109502 6 3 all t all t t-r, t-l' orthogonal [4,4,32,3] 42,42,14,2 12 

113902 9 6 t,d,t… t,t,a,… t-r orthogonal [4,4,32,3] 42,42,14,2 40 

114902 6 5 s,t,b,s,t,t r,a,a,t,t 't-r, tll' orthogonal [4,4,32,3] 42,42,14,2 50 

55202 6 3 t,t,d,t… t,r,r 't-r, t-b' orthogonal [4,4,32,3] 42,42,14,2 150 

98202 5 4 t,a,t… all t 't-l' orthogonal [4,4,16,1] 42,42,14,2 12 

114702 11 10 t,t,t,t,d,u,d,d,d,t,t t,d,d,t,d,t,… 'tpr' orthogonal [4,4,32,3] 42,42,14,2 50 

Table 3: Patient characteristics and parameters used. All patients chosen suffer from temporal seizures, and most of 

them present rhythmic theta waves during seizures. 

 

In this table, we can find the following parameters: 

1. Patient ID: the identification number of the patient in the EPILEPSIA database; 

2. Nº train: Number of seizures used for training; 

3. Nº test: Number of seizures used for testing; 

4. Patterns train: This refers to the seizure pattern that the specialist found to on the EEG 

recorded; 

5. Focus: refers to the localization of the focus of the seizure; 

6. Initialization method: The initialization method used for the specific patient; 

7. Conv. Layer: the parameters used in the convolutional layer in the form: [x, y, z, nº_filters]; 

8. Feedforward layer: The width of each layer of our neural network; 

9. Cost: The misclassification cost/penalty. 

The results for our first approach are summarized in the table below: 

Patient FPR FNR FRAR NSRAR FSFRAR FRA/B ALFRA STDFRAL FS ATFTRA ORAS 

58602 0,00379 0,24749 0,00051 0,00033 0,00052 0,50 4 4,12 #3 10,33 0,67057 

11002 0,02229 0,59925 0,00382 0,00667 0,00356 3,75 3 2,00 #1 #4 20,00 0,28090 

30802 0,02924 0,50239 0,00662 0,01333 0,00600 3,50 6 7,00 - 16,75 0,23923 

81102 0,04917 0,71429 0,00641 0,01000 0,00608 6,75 3 3,60 - 29,75 0,11058 

85202 0,01461 0,39394 0,00397 0,01250 0,00318 1,50 7 7,28 - 6,75 0,45791 

109502 0,05893 0,11574 0,02971 0,17556 0,01584 7,67 7 8,00 - 17,67 0,84259 

113902 0,07274 0,35200 0,02066 0,03056 0,01974 14,17 5 4,00 #1 7,20 0,52800 

114902 0,01114 0,29703 0,00057 0,00067 0,00056 0,60 3 3,00 - 16,20 0,63366 

Average 0,03274 0,40277 0,00903 0,03120 0,00694 4,80 5 4,88 - 15,58 0,47043 

55202 0,30176 0,60377 0,27099 0,15111 0,28201 21,00000 44 174,26 #1 4,50 0,31132 

98202 0,20342 0,51581 0,10465 0,10167 0,10493 44,25000 8 12,73 - 16,25 0,32612 

114702 0,69880 0,06729 0,69536 0,70000 0,69493 3,50000 645 952,12 - 2,50 0,91028 

Average 0,13326 0,40082 0,10393 0,10931 0,10340 9,71667 67 107,10 - 13,44 0,48283 

Table 4: Patients by ID and their results for each measure. 



54 

 

 

Two groups of patients were created, as they present considerably different results. The first group 

refers to the patients in which our model classified smoothly, while the second represents patients for 

whom our model found extra issues that affect classification, which will be explained and explored in 

the analysis. The first average refers to the first group, while the last average refers to all patients. 

 

5.4.1.1 Individual patient analysis  

5.4.1.1.1 Patient #58602 

This patient was used for choosing both the neural network architecture and parameters. Naturally, 

it has much better results than the average. 

A simulation where the results turned to have very low false red alert rate was chosen to give the idea 

on how the cleanest possible interictal classification would result in terms of ictal detection. In this 

regard, the results are very promising, since only one seizure failed to produce a red alert and only 2 

false red alerts were produced, giving our model a specificity of 99.948%. However, there was one 

seizure that failed to produce a red alert, which was also the only seizure whose patter was not 

classified in the database, meaning this could very well be a different type of seizure that the model 

was not trained to detect. 

The model takes 10 seconds, on average, to produce a red alert. This can be diminished by reducing 

the model’s specificity, however, with such a high specificity, orange and even yellow alerts become 

important, so we can regard the model as producing an alert 8 seconds in the seizure on average. 

Most of the false negatives are on the undetected seizure, at the end of the seizure, or at its very 

beginning, which is to be expected.  

In an example with a lower specificity, all seizures are correctly detected. Here is an example: 

 

Patient FPR FNR FRAR NSRAR FSFRAR FRA/B ALFRA STDFRAL FS ATFTRA ORAS 

58602 0,02087 0,18395 0.00531 0,03700 0,00238 1,6 5 6 - 9,4 0,74247 

Table 5: A different simulation that happened to land on a local optimum that put more emphasis on minimizing the 

false negative rate. For reference, the ATFTRA without the previously missed seizure would be 8. 

 

As it can be seen, the FRAR is 10 times higher in this case, corresponding to a model specificity of 

99,461% and 8 times more false red alerts. Most of the false negatives are still where they were on the 

previous model. The red alert for the previously undetected seizure also only lasts 3 seconds, meaning 

it can easily be confused with a false positive, since the other seizures have red alerts during most of 

their time. 
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Figure 35: The elusive seizure of patient #58602. Screenshot from Epilab. 

 

Given all this, we can note that our model was successful for this patient, despite having a hard time 

detecting one of the seizures. 

 

5.4.1.1.2 Patient #11002 

Our chosen parameters performed very poorly for this patient, showing that it is probably necessary 

to perform parameter searches for problems like this either on more patients or perform a parameter 

search for each patient. 

While the specificity for this patient is on acceptable levels (99,644%) and false red alerts are short, 

meaning, once again, that even yellow and orange alerts can be significant, which is always a plus, 

the model fails to predict half of the seizures it was set to predict. This problem is likely due to the 

high heterogeneity of the seizures that affect this patient, the fact that all seizures used in the training 

set had been classified with different patterns and the fact there were only 4 seizures used for training 

the model. Due to this, the model probably lacks information to perform a generalization. This is 

important to note, since there has to be a minimum number of seizures required for deep learning 

models to perform a generalization and we can conclude that 4 seizures of different types is clearly 

insufficient. The low information available from this patient may also explain why reducing the size 

of our parameters and the number of filters produced better results, as there could have been a 

problem related to overfitting with the chosen parameters. 

Given the above, we can say that our model was unsuccessful for this patient, but it may not be hard 

to improve it in a real scenario, by simply using all the seizures available of the patient for training. 

However, we don’t have a way to perform cross-validation for that scenario. 
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5.4.1.1.3 Patient #30802 

The misclassification penalty, on this patient, was increased to boost the model’s performance, 

meaning the misclassification penalty has to somehow be adapted to each patient for optimal results, 

bolstering the idea that parameters don’t work as well for all patients. 

This patient shows high specificity (99.400%), making its alerts meaningful and the model is able to 

detect all seizures, albeit with a considerable delay of 16.75 seconds on average. These results were a 

lot better than expected, given that this patient was only trained with 4 seizures. However, contrary 

to the previous patient, this patient shows high homogeneity in its seizure patterns, which could easily 

be the reason why it shows much better performance at identifying seizures, while showing similar 

specificity. 

Despite this, the model produced a very high FNR and low ORAS, which means that the seizure alerts 

will be intermittent. However, even intermittent alerts are significant when the specificity is high. 

We can consider that our model was successful for this patient, despite the change in the 

misclassification penalty performed. 

 

5.4.1.1.4 Patient #81102 

We have another patient with high specificity (99.392%) and in which the misclassification penalty 

was increased, but this time with an even higher false negative rate. As a result, seizures take even 

longer to detect, (25 seconds on average) and red alerts are too infrequent during seizures, this time 

only being present in little more than 11% of seizure cases. However, with such high specificity, even 

yellow alerts may be significant. 

While 11% is far more than the approximately 0.6% of FSFRAR present in this patient, making this 

difference undoubtedly statistically significant, and all seizures were detected, we will consider that 

our model is too unreliable due to the fact that it takes too long to detect seizures and the intermittent 

alerts might confuse both the patient and professionals that might be taking care of the patient. 

Therefore, we will consider the model unsuccessful for this patient, despite still being a good model 

to possibly help professionals study EEG and identifying seizures in it, due to the high specificity and 

the fact that it detected all seizures. 

 

5.4.1.1.5 Patient #85202 

This patient was trained with the exact same parameters that we obtained in our parameter search 

and shows remarkably good results. With a specificity of 99.682% and an average time to produce a 

red alert of just 6.75 seconds, while detecting all seizures, this patient arguably shows even better 

results than the patient #58602, used for the parameter search. The ORAS is still lower than 50%, 
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however, this is mainly due to the fact that the false negatives are concentrated in the last moments of 

the seizure, which is hardly relevant, as specificity and early detection are our priorities. 

This patient has the particularity that the pattern identified it seizures is mostly amplitude depression 

(m), so this pattern may be more easily identifiable by our neural network, but there isn’t enough 

information to affirm this.  

False red alerts in this patient show high patterns of activity in lateral electrodes. This could signify 

that there is some epileptic/ictal activity happening that was not registered or could simply be typical 

low-amplitude fast activity arising from muscle artifacts. 

 

Figure 36: Example of a supposedly interictal segment that produces a red alert in patient #85202 Screenshot from 

Epilab. 

 

Our model was definitely successful at classifying seizures from this patient. 

 

5.4.1.1.6 Patient #109502 

This patient presented the lowest FNR and highest ORAS while still preserving a low FSFRAR and, 

therefore a high specificity of 98.416%. The misclassification penalty had to be reduced during training 

to achieve this result. This patient has the particularity of having a relatively high when compared to 

other patients, NSRAR, as it shows high prevalence of red alerts right before seizures.This is 

considered desirable. 

This patient has focal temporal seizures in both lobes, yet all of them showing rhythmic theta waves 

as the classified pattern, so we find a patient in which high (in this case, complete) homogeneity of 

seizure patterns produces good results. 
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Our model was successful in classifying data for this patient. 

 

5.4.1.1.7 Patient #113902 

This patient shows relatively lower specificity (98,026%) than the others, but seizures are detected 

earlier than usual, with only a 7,2 seconds delay on average, so our model produced a different trade-

off in this case. 

This patient shows three different seizure patterns, one which appears in the training set and not the 

testing set (rhythmic delta waves) and another one that makes up for the majority of the testing set 

and does not appear on the training set (rhythmic alpha waves). Despite this, it was a seizure that 

failed to be detected showed rhythmic theta waves, which were present in seizures in the training set 

as well. 

The undetected seizure was detected in another simulation, but this simulation produced lower 

specificity and even higher false negative rate, behaving worse in both interictal and ictal samples in 

general. However, it is worth including it in this document for comparison: 

Patient FPR FNR FRAR NSRAR FSFRAR FRA/B ALFRA STDFRAL FS ATFTRA ORAS 

113902 0,09841 0,43600 0,05101 0,09278 0,04716 18,66667 9,00000 11,26943 - 9,50000 0,36800 

Table 6: Another simulation for the patient 113902. The only parameter changed here was the misclassification 

penalty, which was set to 50 in this case. 

 

 

Figure 37: The seizure that proved to be hard for our model to detect. Screenshot taken from Epilab. 
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Despite the problems, we can consider that the early detection of seizures and still high specificity 

present clear signs that our model can generally classify data from this patient successfully. 

 

5.4.1.1.8 Patient #114902 

This patient presents good results with a specificity of 99,944%, despite the relatively high time 

seizures take to be detected on average (16,2 seconds). Neither the high heterogeneity of patterns and 

the fact that certain patterns are only present on the training set and others on the testing set nor the 

fact that this patient has two different focuses for its seizures seems to hinder the performance of our 

model for this patient, which is encouraging. 

 

5.4.1.1.9 Patient #55202 

Weather due to the high heterogeneity in the seizure patterns of this patient or perhaps the high 

occurrence of noise in recordings of this patient, or even an undetected presence of epileptic patterns 

in the samples classified as interictal, our model could not reliably classify data from this patient. 

The first seizure of this patient is the only one not correctly identified, despite, once again, the pattern 

for this seizure being present in the training set, and the patterns for the other seizures not being 

present. 

The second batch produces red alerts throughout almost the entire recording. When plotting the 

recordings of this batch using Epilab, we find a very interesting recurring pattern that seams to be of 

epileptic origin in the electrodes near the seizure focus: 

 

Figure 38: Recurring pattern, more noticeable in the temporal electrodes, which can be of epileptic origin. Screenshot 

taken from Epilab 
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Our neural network identifies this pattern as of ictal origin. We cannot affirm with certainty weather 

this pattern is actually related to any ictal or epileptic state or not. 

 

5.4.1.1.10 Patient #98202 

This patient is here to represent a patient whose recording is particularly noisy. Not even with a new 

small parameter search was it possible to get around the noise presented on the recording. It remains 

to be tested if a properly filtered recording would produce better results. However, it is still worth 

noting that all seizures were detected successfully in a reasonable time, so the model may still have 

some worth when it comes to, for example, helping a professional classify EEG segments.  

 

Figure 39: Typical recording of the patient #98202 where excessive activity, probably of muscular origin, produces 

false positives. Screenshot from Epilab. 

 

Our model was unsuccessful for this patient. 

 

5.4.1.1.11 Patient #114702 

This patient actually presents the best results that we managed to get in the first 3 tested seizures. 

However, the model completely breaks and starts classifying everything as ictal in the next seizures. 

The next approach was though to try to solve this problem. 

Patient FPR FNR FRAR NSRAR FSFRAR FRA/B ALFRA STDFRAL FS ATFTRA ORAS 

58602 0,00500 0,14721 0 0 0 0 - - - 8,33 0,80203 

Table 7: Results for the first 3 seizures for the patient #114702. 
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5.4.1.2 General analysis  

5.4.1.2.1 False red alerts  

We defined three different states: one ictal, one preictal occurring five minutes or less before a seizure 

and one interictal/preictal occurring more than five minutes before a seizure. Our average rate of red 

alerts for the first group was 47.043%, 3.120% and 0.694% respectively, showing clear differences 

between the three states, even if our model was only trained to distinguish two of them. 

However low the FSFPR is in average, it still signifies that about 5 red alerts happen in each batch on 

average, coincidentally lasting on average about 5 seconds and having a standard deviation of about 

5 seconds relating to how long they last. The only way to improve on this would be to increase the 

number of samples that take to produce a red alert. However, this would affect the already high time 

that it takes to detect a seizure, once the ictal event starts. Here is what would happen if we only 

produced red alerts only each 5 samples classified as ictal: 

Patient FRAR NSRAR FSFRAR FRA/B ALFRA STDFRAL FS ATFTRA ORAS 

58602 0,000310717 0,00000 0,00034 0,30 4 4,89898 #3 12,00000 0,65050 

11002 0,002617986 0,00500 0,00240 2,25 3 1,73205 #1 #4 21,00000 0,26217 

30802 0,005144105 0,01000 0,00470 2,75 6 7,54983 - 21,25000 0,20574 

81102 0,004157272 0,00667 0,00393 3,50 4 3,74166 #4 33,33333 0,08173 

85202 0,003332624 0,01000 0,00271 1,00 9 7,41620 - 12,25000 0,42761 

109502 0,026716821 0,16444 0,01362 6,00 7 8,12404 - 18,66667 0,83333 

113902 0,016252927 0,02444 0,01550 11,67 4 3,87298 #1 9,60000 0,50800 

114902 0,000340987 0,00000 0,00037 0,40 4 2,82843 - 17,20000 0,62129 

Average 0,00735918 0,02757 0,00545 3,48 5 5,02052 - 18,16250 0,44880 

Table 8: Results when we increase the number of false positives required to produce a red alert by one. 

 

With this new method, we can manage to decrease the number of false red alerts per batch by about 

one, but there is a price to pay when it comes to seizure detection. The ORAS decrease consistently 

and so does the time it takes to produce a red alert during a seizure, making this change overall 

undesirable. 

We can, therefore, conclude that our regularization method should stay as it is and improving our 

method has to be done through other means. 

 

5.4.1.2.2 Clinical onset and ATFTRA 

Comparing the average time for a clinical onset to occur, after the noted EEG onset, can give us an 

idea of how useful our method is for early detection of seizures. A clinical onset was only noted in the 

EPILEPSIA database when the patient starts showing signs of having a seizure event during the film 

recording, so we can evaluate how long it takes for a red alert to happen once the symptoms of a 

seizure appear. 
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Patient ATCO ATFTRA Difference 

#58602 0,50 10,33 -9,83 

#11002 0,00 20,00 -20,00 

#30802 0,00 16,75 -16,75 

#81102 10,33 19,67 -9,34 

#85202 8,25 6,75 1,50 

#109502 11,00 17,67 -6,67 

#113902 0,00 7,20 -7,20 

#114902 21,75 14,75 7,00 

Average 6,48 14,14 -7,66 

Table 9: Average difference between how long a clinical onset takes from the first recorded onset (EEG or clinical), 

and the time our model takes to produce a red alert for each patient. The acronym “ATCO” means “average time for 

clinical onset” and the ATFTRA is only taking into account seizures for which the clinical onset was recorded, hence 

the different values for some patients. 

The average result of 7.66 seconds of delay for a red alert to be triggered after a clinical onset isn’t very 

representative as there is a very high discrepancy from patient to patient for this difference. This is 

related to the fact that, in the database, some patients have their EEG onset consistently recorded after 

the clinical onset, while others display the opposite scenario This can be related to different 

epileptologists having a more or less conservative approach to pinpointing the EEG onset. Patients 

#81102, #85202, #109502, #114902, showing only an average delay for a red alert of 1.88 seconds, have 

their EEG onsets consistently before their clinical onsets, while the rest of the patients in the previous 

table display the opposite scenario, showing a delay of 13.45 seconds. 

In conclusion, for patients who had their EEG onsets annotated early, our model performs much 

better, so, in a possible future application involving deep learning and seizure detection, early EEG 

onset annotation is a must in order to obtain an as early as possible seizure detection. 

Patients #81102 and #11490 had one seizure excluded each that did not have a clinical onset recorded. 

In both cases, this seizure also happened to be the one that took more time to produce a red alert in 

our model. This may signify that epileptic events without or with little clinical manifestation can be 

harder to detect, but we don’t have enough data to confirm it. 

 

5.4.1.2.3 Seizure focus and performance  

Our work is limited in this aspect, since only data from patients that only exhibit temporal seizures 

was used. We can still study if a patient displaying various focal regions for its seizures affects the 

performance of our neural network or not. 

Average FPR FNR FRAR NSRAR FSFRAR FRA/B ALFRA STDFRAL FS ATFTRA ORAS 

1 focus 0,03252 0,46139 0,00707 0,01201 0,00662 5,27 4,40 4,20 - 14,80 0,40959 

2 focuses 0,03310 0,30505 0,01230 0,06319 0,00747 3,90 5,33 6,00 - 16,87 0,57183 

Table 10: Averages results for patients belonging to the groups that had seizures either always with their focus on the 

same part of the brain, or in two different parts. 
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Both statistical measures related to interictal and to ictal samples sometimes perform better in one case 

or the other. This is what we expect if or model performs independently from this trait. There isn’t 

any clear trend that can be derived for our model to perform better or worse in each scenario. 

 

5.4.1.2.4 Seizure patterns and performance 

As we have seen in the individual patient analysis, a seizure being classified with a different pattern 

than the ones present on the training set is not an impeding factor for its correct identification. 

However, it is still worth to perform a deeper analysis on this subject. 

The first thing that we can do is to pick up the patients for whom the classification was smooth and 

separate them into two groups: one with homogenous seizure patterns and another with heterogenous 

seizure patterns. A patient is considered to have a homogenous seizure pattern if, in both the training 

and testing set, half of its seizures have the same pattern and that pattern is the same in both the 

training and testing sets. It is considered heterogenous otherwise. 

 

Heterogenous patients Homogenous Patients 

#58602 #30802 

#11002 #81102 

#113902 #85202 

#114902 #10902 

Table 11: Patients classified as either heterogenous our homogenous, relating to their seizure patterns. 

 

The first thing to notice here is that only heterogenous patients contain seizures that failed to be 

detected, but, from those 4 seizures, 2 were left unclassified and the other 2 belonged to a pattern that 

was present in the training set. As so, no seizure that belonged to a classified pattern that was only 

present in the testing set failed to be detected.  

If calculate the average results for this two groups, we get the following results: 

Average FPR FNR FRAR NSRAR FSFRAR FRA/B ALFRA STDFRAL FS ATFTRA ORAS 

Homogenous 0,03799 0,43159 0,01168 0,05285 0,00778 4,85417 5,75000 6,47142 - 16,73 0,41258 

Heterogeneous 0,02749 0,37394 0,00639 0,00956 0,00610 4,67917 3,75000 3,28078 - 13,43 0,52828 

Table 12: Averages results for patients that were considered to display either homogenous or heterogenous seizure 

patterns. 

 

The average results seem to indicate that a higher variety of seizure patterns, despite producing 

problems at detecting certain seizures, performs statistically much better. Even the ORAS of the 

heterogeneous group is higher and its FNR is lower despite the undetected seizures. 
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We can, therefore, conclude that a higher variety of patterns causes the model to have better 

differentiation but a patient displaying more heterogeneous patterns also provides a more 

complicated problem for our classifier, causing it to fail more. As we only have four patients in each 

group, we cannot affirm this with enough confidence, but it is a likely scenario that can be explored 

in further studies. 

 

5.4.1.2.5 Overall viability  

There are at least 3 ways that a model like this can be realistically applied: 

1. Facilitate the job of an epileptologist by identifying possible seizure segments in EEG 

recordings; 

2. Create alerts for medical personnel to allow better vigilance of epileptic patients in real-time; 

3. Create a system that allows the patient or its family to be alerted when a seizure is taking place 

in real-time. 

For the first case, the usefulness of this model would be to allow the epileptologist to, after collecting 

some seizure samples from a patient, identifying other regions of interest where possibly previously 

undetected seizures could be hiding. Our model is not 100% effective at detecting seizures and it fails 

for some patients, but it could still provide help and lower the amount of time and errors associated 

with identifying seizures in EEG recordings of epileptic patients. 

In the second and third case, if our model is trained in data in which EEG onsets are pinpointed early, 

the model can provide with a detector of seizures that takes very little to produce a red alert and has 

high specificity for some patients. For others, it might simply fail completely. Also, a previous 

recording of seizures of a patient would be necessary each time. This makes it so that this model is 

unable to provide a ready-made reliable patient independent system. However it has the potential to 

provide accurate detection of seizures for some patients, so it might be worth trying, as epileptic 

seizures can be highly risky and anything that can provide earlier assistance when they occur can be 

critical. 

 

5.4.2 Progressive approach 

The same patients and parameters used in the previous method were used on this one. They may not 

be optimal, but there was no time or extra graphic cards to perform another parameter search. 

The results for our progressive training method are summarized in the table below: 
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Patient FPR FNR FRAR NSRAR FSFRAR FRA/B ALFRA FS ATFTRA 

58602 0,01695 0,36896 0,00666 0,05412 0,00208 3,82353 0,88235 #2 #10 16,40000 

11002 0,10697 0,53012 0,03833 0,03733 0,03516 8,00000 11,00000 #2 #5 36,66667 

30802 0,05324 0,75743 0,02455 0,00133 0,02444 6,00000 15,20000 #2 #3 23,50000 

81102 0,05873 0,57863 0,01759 0,01422 0,01639 7,80000 6,93333 #2 #4 #9 16,10000 

85202 0,06680 0,50971 0,02440 0,04139 0,02085 8,91667 13,91667 - 22,66667 

109502 0,33659 0,10765 0,31935 0,29190 0,29414 411,42857 3,42857 - 20,00000 

113902 0,09074 0,41006 0,06669 0,08143 0,05981 8,71429 9,28571 #5 12,07692 

114902 0,04602 0,22591 0,01579 0,00250 0,01558 4,37500 8,50000 - 16,87500 

Average 0,14316 0,44745 0,10076 0,09503 0,09265 53,76285 14,82646 - 19,95169 

55202 0,24245 0,62981 0,17732 0,11556 0,16757 10,16667 35,50000 #4 20,60000 

98202 0,19301 0,53009 0,09052 0,03944 0,08708 6,33333 37,66667 - 25,33333 

114702 0,36329 0,27358 0,32711 0,36611 0,29610 115,83333 20,77778 #9 #11 9,25000 

Average 0,10767 0,44651 0,06710 0,06263 0,06172 51,71015 11,86815 - 21,06873 

Table 13: Average results for progressive training for each patient 

 

Considering, this time, the test set of the previous method, in order to compare both methods with 

more precision, the following results were obtained: 

Patient FPR FNR FRAR NSRAR FSFRAR FRA/B ALFRA FS ATFTRA 

58602 0,01987 0,25460 0,01051 0,09000 0,00288 5,00000 0,90000 #3 11,44444 

11002 0,09972 0,54144 0,04498 0,03333 0,04216 9,00000 12,00000 #1 #4 39,00000 

30802 0,04498 0,73909 0,02256 0,00000 0,02256 5,25000 15,50000 #1 23,50000 

81102 0,05362 0,60976 0,01487 0,01788 0,01335 6,63636 6,72727 #5 17,71429 

85202 0,05308 0,53943 0,02229 0,03222 0,01953 11,22222 9,88889 - 23,66667 

109502 0,48736 0,06601 0,48085 0,45333 0,44177 641,50000 2,75000 - 9,50000 

113902 0,03246 0,34444 0,01175 0,06042 0,00665 3,75000 5,75000 - 12,87500 

114902 0,07271 0,18842 0,02526 0,00400 0,02492 7,00000 13,60000 - 12,00000 

Average 0,09701 0,43606 0,06417 0,06553 0,05856 57,38226 8,64333 - 20,53566 

55202 0,27621 0,58572 0,23055 0,17222 0,21604 13,33333 23,33333 #1 5,00000 

98202 0,21504 0,43603 0,11243 0,05917 0,10727 7,25000 37,25000 - 15,25000 

114702 0,32670 0,31448 0,30092 0,37500 0,26916 118,10000 21,40000 #1 #3 5,00000 

Average 0,15289 0,41995 0,11609 0,11796 0,10603 75,27654 13,55450 - 15,90458 

Table 14: Average results for progressive training for each patient using the testing set of the standard approach, to 

facilitate comparison. 

 

5.4.2.1 General analysis  

For most patients, this method didn’t show any improvements. In patient #109502, this method 

produced unacceptable results (a new parameter search would likely solve this). 
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From the first group, the only patient whose results improved by using this method was patient 

#113902, which has the highest number of seizures, with the exception for the patient #58602, which 

was used for parameter search. From the second group, we notice critical changes only in patient 

#114702, which now obtained completely different results, failing in seizures that it almost detected 

flawlessly before and solving some of the continuous false positives. However, the results for this 

patient are still unacceptable. 

Both patient #113902 and patient 114702 showed poorer results on the last seizures in the previous 

method. This tendency was reverted with this new method, as expected. 

Since our patients with the highest number of seizures, with exception for the patient used for the 

previous parameter and architecture search were the ones experiencing improvements, especially on 

their latest seizures, we can hypothesize that, for longer recordings, retraining the model from time to 

time is be good idea. However, retraining the model with each new seizure does not seem to improve 

results. Further research is necessary here. 

 

5.4.3 Mixed approach 

Besides the fact that all the data for all patients was retrieved at 256Hz, all the chosen patients to 

evaluate this model have in common the fact that they have exclusively focal seizures with their focus 

on the temporal left lobe. Their other characteristics are as follows: 

 

 

 

 

 

 

Tables 15 and 16: Patients and their characteristics in both train (left) and test (right) sets for mixed training. 

Using the previously mentioned measures, we can evaluate the results that our network model 

produced on the test set, which are. 

Table 17: Results for each patient on the test set for the mixed training approach 

Patient nº 

seizures 

Patterns 

 52302 6 u,u,t,d,t,t 

58602 20 r,t,t,t,r,u,r,r,t,r,t,t,u,t,… 

85202 10 m,r,c,c,m,… 

98102 4 all u 

112802 6 all t 

Overall 46 - 

Patient nº seizures Patterns 

21902 6 t,t,t,t,t,b 

23902 5 t,t,t,t,d,t 

26102 6 m,m,t,t,m,t 

50802 5 all t 

Overall 22 - 

Patient FPR FNR FRAR NSRAR FSFRAR FRA/B ALFRA STDFRAL FS ATFTRA ORAS 

21902 0,03250 0,59441 0,01030 0,00000 0,01125 10 4 3,00000 #1 32,80  

23902 0,18234 0,96186 0,16274 0,00030 0,17769 14,8 9 91,38381 all -  

26102 0,25549 0,51312 0,15802 0,03118 0,16447 50,3 11 17,80449 #6 15,80  

50802 0,10052 0,20354 0,05288 0,00000 0,05783 22,8 9 13,49074 - 12,60  

Overall 0,14307 0,51370 0,09514 0,02424 0,09308 25 14 37,90778 - 22,13  
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5.4.3.1 Individual patient analysis  

5.4.3.1.1 Patient #21902 

This patient shows results comparable to those that patients from the first method showed, however 

one seizure failed to be detected and the ATFTRA is excessively high. However, this is one of those 

patients in which the EEG onset appears before the clinical in all cases, on average 16.17 seconds 

earlier. This still produces a 16.63 seconds delay between the clinical onset and the first red alert. This 

is expected, given the analysis on the first method, since four in five patients used for training this 

time had their EEG onsets consistently recorded either later or at the same time of the clinical onset. 

The false red alerts in this patient seem to have a common pattern: 

 

Figure 40: Pattern followed by most false red alerts in patient 21902. 

 

5.4.3.1.2 Patient #23902 

Our model completely failed to detect seizures from this patient. This shows that some patients may 

present seizure patterns that are completely different from other patients, making a hypothetical 

patient independent seizure detector a very difficult problem. 

 

5.4.3.1.3 Patient #26102 

The results for this patient were very poor, as they show a very high false positive rate. Our model 

seems to be confusing high-frequency activity in the patient’s brain with ictal activity. This showcases 

one of the problems that may arise from not training a model with specific data from the patient being 

classified. 
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Figure 41: High activity pattern in patient #26102 producing a red alert. Screenshot taken from Epilab. 

 

5.4.3.1.4 Patient #50802 

The results for this patient can be considered somewhat successful when compared to the two 

previous ones but are still far from what we obtained with our first approach. A specificity of 94,217% 

and an average of almost 23 red alerts for each batch are not suitable results for any real application. 

 

5.4.3.2 General analysis 

This method was only successful for 1 in 4 patients. The others showed problems that were to be 

expected, such as the lack of ability of the model to detect seizures from a certain patient, or the low 

specificity given by the model not being able to interpret certain interictal samples correctly. 

We can, however, conclude that if our model produced good results for one patient, it is still possible 

to improve it to produce better results in more patients. Since this idea wasn’t explored further in this 

thesis project, all this serves is to point out problems and showcase what could possibly be done to 

put it in practice. No hard conclusions can be taken from such a superficial study. 

 

5.4.4 Seizure prediction 

Our model is easily adaptable to be trained for late prediction, however, seizure prediction ended up 

not being performed due to the fact that it would require a new parameter search, and this was not 

possible due to time and resource restrictions. It will be performed in the future. 
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Chapter 6 

Conclusions 
We have already taken a few conclusions that can be quickly summarized by: 

1. Our model failed for 3 in 11 patients, so we cannot affirm that it may provide a reliable seizure 

classifier; 

2. Parameters searched using only one patient performed comparably well when applying them 

to other patients, with some exceptions. The misclassification penalty, however, can not be 

held in the same regard, as it is highly dependent from patient to patient. 

3. Red alerts have a much higher chance to appear on a seizure than near a seizure and the same 

goes for near a seizure than far from it, which means that there is a statistical difference 

between the EEG recordings produce in these three states; 

4. In order to have early detection of seizures, we must also have early annotation of EEG onsets. 

5. The focus of the seizure does not really affect the performance of a CNN, as even patients with 

focal seizures on opposite sides of the brain did not see a drop in performance. This is to be 

expected due to the nature of CNN's. 

6. Seizures with patterns for which the model was not trained can still be identified, suggesting 

a high similarity between them. 

7. Patients with more heterogenous seizure patterns show better statistical performance but are 

more prone to detection failures. 

8.  Our progressive training approach only provided better results for patients that had more 

seizures and longer EEG recordings, meaning that retraining the model for every seizure is 

not worth it, but retraining it after a certain quantity of seizures (more than five at least) may 

be worth it. 

9. A patient independent classifier has to be studied in a more extensive fashion but showed 

acceptable results for one patient, which is promising. 

Our best approach produced an average specificity of 99.306% and sensitivity of 47.043%, if we take 

off the failed patients. This is due to the model, a lot due to the regularization method, being heavily 

tweaked for sensitivity, which is a must, since, in a real environment, there is far more interictal than 

ictal time and our red alerts must be meaningful. With slower (taking more seconds of positive results 

to produce a red alert) red alerts we have seizures being identified later and, if we tune our model for 

poorer specificity, we have more red alerts in interictal times than is desired. Training a patient-

specific model with more seizures also cannot be the solution, as it makes the model less useful in a 

real environment. So, with our approach, there is not much more to do. It is also worth noting that 

many ictal samples that are not classified with red alerts are also classified with orange or yellow ones. 
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6.1 Further improvements  

 

In section 2.8 of the background concepts, we saw that many seizure patterns can be related sudden 

bursts of spike waves, theta activity, etc. In our model, we are assuming that all ictal samples should 

be classified in the same fashion, but this isn’t necessarily the case. For example, we can see in figure 

9, in seizures that show amplitude depression patterns, the genesis of the seizure is very different from 

what starts happening as it progresses. This can explain why some of our seizures take so long to be 

detected. A model that is able to identify the beginning of a seizure versus the preictal/interictal state, 

to identify the beginning of a seizure versus its end and its end versus the post-ictal, rather than then 

classifying the entire seizure as a unit may provide better results when it comes to sensitivity. Anyway, 

the difficulties of our model definitely lie on identifying whether we are in a seizure or not and where 

the seizure begins. 

Training with more complex maps, using data from patients with different electrode setups and 

coupling our results with other methods like, for example, ECG classification may also provide some 

improvements. 

Another possibility that was briefed on the background concepts was to use adaptive models to 

identify the various brain states. This would likely come up with various patterns for ictal, preictal 

and interictal states and may be worth testing. 
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Topographic map creation 
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Preliminary work 
This chapter explains what was done in the first semester of this thesis project. With exception for 

studying the problem and the state of the art, the work of the first semester consisted mostly on the 

creation and validation of topographic maps. 

 

5.1 Topographic maps 

5.1.1 Geometry 

There are many different approaches to plot the geometry of a topographic map. A topographic map 

of the scalp corresponds to an approximation of the electrode positions on the scalp by creating a 

tangent space that fits this approximation. The approach that we have picked in this work is based on 

interceptions of circles, that attempt to simulate the curves of the human head. So far it assumes the 

head to be circular when seen from above but a correction to this may be done in the future, but it will 

probably yield the same classification results, since this correction will be based on the circular 

geometry created. Another possible geometric tool to explore here could be the transverse Mercator 

projection. 

The geometry chosen is centered around two concentric circles: one with a larger radius for the six 

electrodes that are at eye level (X9 and X10) and another for those that are right above. Other auxiliary 

circles will be used, which will be explained below. The X and Y axis will also be used. The electrodes 

will correspond to some of the interceptions of this circles and axis. 

In order to create the wanted geometrical pattern, it is useful to have formulas that calculate these 

interceptions. Since it is trivial to intercept the circles with the axis, we only need to find a formula to 

intercept circles with circles. To simplify this process, we will simply use the fact that any axis on a bi-

dimensional plane can be translated such as they will fit two points having one with its x coordinate 

equal to zero and another with its y coordinate equal to zero. This is trivial to verify since, in a bi-

dimensional plane, an axis can be moved in a direction perpendicular to itself, thus it is able to fit the 

coordinate of the other axis of one point at 0 or any other value and, since we have two axis we can fit 

two points, which, in this case, will be the centers of two circles. In this case, it follows that we can 

solve this system of equations to intercept two circles (Eq. 7): 

 

{
(𝑥 − 𝑎)2 + 𝑦2 = 𝑟1

2

𝑥2 + (𝑦 − 𝑏)2 = 𝑟2
2     Eq. 7 

 

With one circle having its center at [a,0] and radius r1 and the other having its center at [0,b] and radius 

r2. 
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Isolating and replacing the terms of this equation we can obtain (Eq. 8): 

 

{
𝑦 = √𝑟1

2 − (𝑥 − 𝑎)2

−4(𝑏2𝑥2 + 𝑎2𝑥2) +  4(𝑎𝑏2 + 𝑎3 − 𝑎𝑐) = −4𝑏2𝑟1
2 + 2𝑎2𝑏2 + 𝑎4 + 𝑏4 − 2𝑎2𝑐 + 𝑐2 

 Eq. 8 

 

Where 𝑐 = 𝑟1
2 − 𝑟2

2. 

To simplify this expression, we can consider (Eq. 9, 10, 11): 

 

𝑑 = 𝑎2 + 𝑏2       Eq. 9 

𝑒 = 𝑎𝑏2 + 𝑎3 − 𝑎𝑐      Eq. 10 

𝑓 = −4𝑏2𝑟1
2 + 2𝑎2𝑏2 + 𝑎4 + 𝑏4 − 2𝑎2𝑐 + 𝑐2   Eq. 11 

 

Now through the quadratic formula we can obtain (Eq. 12): 

 

{
𝑦 = √𝑟1

2 − (𝑥 − 𝑎)2

4𝑒±√16𝑒2−16𝑑𝑓

8𝑑

     Eq. 12 

 

With this formula we can easily compute the intersections of any two circles if we know their centers 

and radiuses. To solve in order to x firstly, we simply need to trade the x’s for the y’s, the a’s for the 

b’s and r1 for r2. 

The main unit to consider here is the radius of the larger circle, which we will call r, which corresponds 

to half of the map’s resolution. Since, in the 10-10 electrode position system, there are ten electrodes 

along each axis until the bigger circle and 8 until the smaller one, the radius of the smaller circle is 

0.8r. In order to obtain suitable positions for the electrodes that are inside and along the smaller circle 

we will need four more auxiliary circles. 

Taking the 10-20 system, the first circle will contain the points corresponding to the Fp1, F3, C3, P3, 

O1 electrodes. This circle has a center at 𝑟(𝑡𝑎𝑛(0.4) − 0.4) and a radius of  
𝑟

tan (0.4)
  as this allows C3 to 

be half way between Cz and T3. The circle that contains the symmetrical in relation to the y axis 

electrodes is, obviously symmetrical in relation to the y axis to the previously mentioned circle. We 

will also plot the equivalent circles to this ones, but with the x and y coordinates switched. After this, 

we will end up with something of the kind of Figure 7. 
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This only places the values of the electrodes on certain positions on the plane. Now we need to find 

the remaining points on the plane to create a map. 

 

5.1.2 Interpolation 

Interpolation, in numerical analysis, is a method of constructing new data points in the range of 

previously known data points. 

The interpolation method chosen at this point was the natural neighbor interpolation (93). This 

method creates a Voronoi tessellation [94] with the electrode values and their positions and, for each 

new point to be inserted, calculates the various weights based on the portions of the Voronoi 

tessellation that are taken from the other points. This can be expressed by the following equation (Eq. 

13): 

 

𝐺(𝑥∗, 𝑦∗) = ∑ 𝑤𝑖𝑓(𝑥𝑖, 𝑦𝑖)𝑛
𝑖=1     Eq. 13 

 

Where 𝐺(𝑥∗, 𝑦∗) is the value obtained on a new point, 𝑓(𝑥𝑖 , 𝑦𝑖) is the value at a given point (𝑥𝑖 , 𝑦𝑖) and 

𝑤𝑖 is the weight assigned to a point (𝑥𝑖 , 𝑦𝑖). The greater the taken portion is, the greater the weight. 

This works as a smoother form of linear interpolation. If we want a form of interpolation which is non-

linear we can apply a transformation to the values that makes them linear, build the interpolator with 

those linear values, and then apply the inverse transformation to the final obtained values. This works 

because natural interpolation is a linear transformation for points that have the same weights (in the 

same position). The function scateredinterpolant from Matlab was be used to create this interpolator, 

but others work just as well. 

 

5.1.3 Extrapolation 

Extrapolation is necessary here for estimating the values on the scalp that are outside of the convex 

hull of the electrode points. This values are probably not that relevant but, for now, let’s have them. I 

will be using nearest neighbor extrapolation, for now, which consists of assigning the value of the 

nearest point to values that are beyond the limit of the convex hull. It is needless to say that this 

method will not produce spectacular results so there is room open for improvement if need be, or, 

most likely, excluding this method. The function scateredinterpolant from Matlab was be used to create 

this as well. 

 

5.1.4 Contours and coloring  
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First, it should be clarified that, in order to have an easy term of comparison between features, I will 

be plotting the Z-scores of each feature rather than the values of the feature itself. As such, the values 

will be plotted in a scale of -3 to 3. This is a common practice when it comes to topographic brain 

maps. The step chosen was 0.25 and this means the contours will mark steps of such magnitude. The 

jet color pallet of Matlab was chosen. In Figures 9 and 10 we have representations of the color scale 

and an example map  

 

5.1.5 Map validation  

In order to validate the maps, a benchmark generator that can generate signals that exclude certain 

bands in each electrode and then calculates their power spectrum density was created. In this way, 

we can simulate, for example, an electrode that only produces delta waves, or only produces beta and 

gamma waves. We can then produce a short video with various samples of topographic maps for the 

given configuration. The benchmark created is described in Table 1. 

Electrodes\Waves Delta Theta Alpha Beta Gamma 

Fp1 X     

Fp2 X X    

F7  X X   

F3  X    

Fz   X   

F4   X X  

F8    X  

T3    X  

C3   X X  

Cz    X X 

C4     X 

T4   X X X 

T5   X X  

P3   X   

Pz  X X   

P4  X    

T6 X X    

O1  X X X  

O2 X     

Table 18 – Configuration for the validation maps. 

This configuration produced the following maps: 
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Figure 42 – power spectrum density of delta waves for time = 55 seconds. 

 

 

Figure 43 – Relative power spectrum density of theta waves for time = 55 seconds. 
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Figure 44 – Relative power spectrum density of alpha waves for time = 55 seconds. 

 

 

Figure 45 – Relative power spectrum density of beta waves for time = 55 seconds. 
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Figure 46 – Relative power spectrum density of gamma waves for time = 55 seconds. 

 

As can be seen, this results validate the method and code used to produce this maps and so we can 

proceed to apply them to real data. The issue that seems to be present here is that, for example, the 

alpha waves seem to be made redundant by the beta waves. This is due to the frequency range of the 

beta waves being 4.5 times greater than the one of the alpha waves being considered. This will not be 

significant in real EEG data, given that the amplitude of alpha waves is of greater magnitude that the 

one of the beta waves, evening out this effect. However, these discrepancies in amplitude and 

frequency range between waves may require some attention in the future. 

 

5.2 Preliminary conclusions 

During the first semester of this thesis project, the topographic map creation toolbox was produced, 

validated and preliminary evaluation of relative spectral powers of the various brain waves has been 

informally evaluated by compiling the maps in a video for one patient and trying to look for some 

changes. There appear to be some pre-ictal differences in some brain wave bands in some areas of the 

brain, such as the theta band, but it is extremely difficult to evaluate those differences and come to 

any trustworthy results. 

More important than that, the literature, concepts and tools necessary or useful for this thesis have 

been extensively reviewed and a much clearer picture of what needs to be done to produce relevant 

work has surfaced. The research done so far leads to a few conclusions: 
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1. CNNs are likely perfectly suited for EEG spacial analysis, as, in their convolution 

layers they can successfully retrieve spacial features and find regions of interest. 

2. The quantity of features that provide encouraging results on seizure detection and 

prediction plus the fact that raw EEG also provides good results leads one to the 

conclusion that there is some common ground in at least some of these features that 

is discriminating the various epileptic brain states. That being said, more holistic, 

complementary or lower level features may produce better results. 

3. Spacial analysis of EEG looks promising to predict and detect seizures, as various 

studies [37, 86, 96] achieved good sensitivity and specificity results 

4. Taking into account the fact that we reached the conclusion that the signal on EEG 

electrodes is spatiotemporally correlated and the use of LSTMs gave promising results 

on seizure prediction [96], we can infer that it may be useful to develop or use 

machine learning mechanisms, such as TCNs or LSTM modules, or features that 

express temporal or spacial evolution, such as AR coefficients or spectral flux, to help 

successful classification of the various epileptic brain states. 

5. Studying the entropy of EEG signals has also yielded good classification results, so 

it would be a valid choice to exploit that. 
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Appendix B 
Illustrative charts for the test results of the standard approach 

(chronological order) 
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Patient #58602 
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Patient #11002 
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Patient #30802 
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Patient #81102 
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Patient #85202 

 



101 

 

 

 



102 

 

Patient #109502 
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Patient #113902 
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Patient #114902 
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