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RESUMO

Esta dissertação tem como objetivo o controlo de um braço robótico, Kinova Jaco2,

utilizando movimentos oculares de um utilizador. Esse tipo de controlo é explorado  para

fins assistivos, utilizadores com problemas de mobilidade ou simplesmente funcionalidades

extra para interação homem-máquina.

Uma  breve  análise  do  Eye  Tracker é  apresentada,  onde  são  especificados  os

requisitos para sua comunicação com a interface de controle do robô escolhido. O uso da

interface  ROS permite  o  desenvolvimento  dos  componentes  necessários  para  serem

genéricos e modulares, que podem ser usados com outros braços robóticos. Para realizar o

controle do robô considera-se a existência dos controladores ROS já desenvolvidos para o

robô escolhido, assim os únicos requisitos são a geração de poses cartesianas desejadas.

Usando dois  blinks para sinalizar a geração de uma nova pose desejada, podendo

esta ser gerada a partir da interseção do olhar do utilizador com a point cloud. Para isso, é

necessário o conhecimento da localização do Eye Tracker no mundo obtido através de uma

rigid  body  transform com  marcadores  Aruco colocados  no  mundo.  A  análise  das

características locais do ponto de interseção entre o olhar e a point cloud permite a extração

da nova pose desejada. Um método de geração de pose adicional é implementado onde a

seleção dos marcadores usando o foco visual do utilizador, sendo que para cada marcador a

predefinição  de  uma  pose  desejada  é  necessária,  o  que  permite  o  controlo  do  robô

considerando a preparação do espaço de trabalho à priori.

Em conclusão,  os  métodos  desenvolvidos alcançaram uma precisão  significativa,

tendo  em conta  os  erros  inerentes  presentes  nos  dados  extraídos  do  Eye  Tracker.  Os

métodos desenvolvidos para a geração de poses são específicos à aplicação, permitindo ao

utilizador  realizar  tarefas  semi-predefinidas  mais  rapidamente  do  que  usando

telemanipulação. Resultando em uma redução de ~30% no tempo de operação do robô.

Palavras-Chave: Kinova Jaco, Pupil Eye Tracker, ROS, Aruco, tele-manipulação
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ABSTRACT

This dissertation has as its objective the control of a robotic arm, Kinova  Jaco2,

using ocular movements of a user. This type of control is explored in an assistive context,

for disabled users or simply as extra functionality in human-machine interaction.

A brief analysis of the Eye Tracker is presented, where the requirements for its

communication with the chosen robot control interface are specified. The use of the ROS

interface allows the development of the necessary components to be generic and modular,

which can be used with other robotic arms. To accomplish the robot control it is considered

the existence of the  ROS controllers already developed for the chosen robot, as such the

only requirements are the generation of cartesian desired poses. 

Using double blinks to hint the generation of a new desired pose, then these can be

generated from either the intersection of the detected user gaze with the world point cloud.

For  which  is  required  the knowledge of  the location of  the Eye Tracker  in  the  world

obtained using a Rigid Body transform on Aruco markers placed in the world. Analysing

the local features of the intersection point between the gaze and the point cloud allows the

extraction of a new desired pose. An additional pose generation method is implemented

where the selection of world markers using the user gaze, for each marker the existence of a

predefined desired pose is required, allows for robot control considering preparation of the

workspace a priori.

In conclusion, the methods developed achieved significant accuracy, considering the

inherent errors present in the data extracted from the Eye Tracker. The developed methods

for  pose  generation  are  application-specific,  these  allow  the  user  to  accomplish  semi-

predefined  tasks  faster  than  telemanipulation.  Resulting  in  a  ~30%  reduction  in  the

operation time of the robot.

Keywords: Kinova Jaco, Pupil Eye Tracker, ROS, Aruco, Telemanipulation  
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 1 Introduction

Human awareness is mostly a product of the visual system, as this is the dominant

human sense used by humans to interact with the real environment.  It  also has a deep

connection to the internal  cognitive processes and can be described as unconscious and

intent driven. Then from an analysis of this process, especially the visual attention which

can  be  considered  a  reflection  of  the  internal  thought  process,  results  the  potential

acquisition of user intention.

Visual servoing for robotic applications can be considered an extremely researched

area,  however most of this research was costly and bulky,  only in recent years has the

technology  advancements  allowed the  implementation of  similar  experiments  in  mobile

applications at affordable prices. One such application is the research into Human-Machine

Interaction (HMI), where the multi-sensor systems are common. The high dimensionality of

the captured information requires  high computational  performance, especially  since this

specific application usually requires the aforementioned computation to be done in real-

time.

Considering the robotic trend in the industrial setting has become Human-Machine

Cooperation (HMC) then, a possible approach is visual servoing driven by human intent,

through eye analysis. This data in junction with a number of different human cues, most

common include tactile, speaking and ocular data, serve as the basis of this cooperation

trend in HMI and are worth exploring.

This type of research instruments  also have extremely useful  applications in the

assistive robotics field which usually requires less accuracy and have as main focus the

systems applicability.
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 1.1 Objectives

This dissertation has as its objective the control of a robotic arm, in this case the

Kinova Jaco2, which is a robot with 6 Degrees Of Freedom (DOF), using ocular movements

of a user. To accomplish this task generic modules that output the desired cartesian pose

are developed for the desired robot interface, the Robotic Operating System (ROS).

 1.2 Contributions

The  work  presented  provides  a  complete  generic  ROS environment,  including

simulation,  designed  for  robot  control  using  the  Pupil  eye  tracker  in  section  (3).  This

includes the necessary initial gaze processing, world perception and two different methods

to generate a robot goal pose. A complete testing of each of the featured methods is also

presented.  This  development  also  takes  future  researches  into  account  which  adds

genericness as a prerequisite.

This dissertation is focused on the initial development of the interface between the

chosen eye tracker and the ROS which results in its focus being on the processing of the

acquired  data  rather  than  robot  control  algorithms.  Although  the  robot  used  in  the

dissertation is the previously stated Kinova Jaco2, the research environment developed is

completely generic and can easily be used with other robots provided the existence of its

support for the ROS.

 1.3 Outline

To simplify the document structure of this dissertation all the document sections are

divided  according  to  the  modular  components  of  the  developed  system,  which  can  be

observed in the following diagram (1).

This results in the following document structure: 

Chapter 1 - Introduction

Serves  as  an  initial  introduction  to  the  dissertation,  including  the  objectives,

contributions and a brief overview of the document structure.

Chapter 2 - Background
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A very brief introduction to the research already developed in this scientific area,

focusing on those that make use of the same eye tracker as this dissertation.

Chapter 3 - Pupil Eye Tracker

Serves as an introduction to the technical capabilities of both the Pupil Software

and the Pupil eye tracker cameras.

Chapter 4 - ROS Pupil Package

Has  both  the  real  and  simulated  environments  complete  setup,  including  the

communication  between  the  Pupil  Software  and  the  ROS environment  and  the  initial

processing  required  for  the  data  extracted.  Includes  in-depth  analysis  of  the  expected

quality of the data generated from each of the individual components developed.

Chapter 5 - ROS Gaze Package

Development of methods for robot goal  pose generation, with a brief individual

analysis of the results obtained for each individual module.

Chapter 6 - Results

Brief evaluation of the results of the complete system for the methods developed in

the previous chapter, using practical demos.

Chapter 7 - Conclusions

Final feedback of this dissertation results, and suggestions for future work. 

Figure 1: Complete system diagram, with corresponding document section signaled in blue.

As a remark, the chosen chapter names follow the developed ROS modules names,

and  the  ROS platform  naming  guidelines  which  names  each  individual  module  as  a

packages.
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 2 Background

Although the eye tracking research can be traced back more than a century [1], only

recently has the technology advancements allowed for easy to use, affordable, and compact

solutions to eye tracking. These have recently become viable by using well known computer

vision algorithms for video processing of a camera facing the desired eye for which the

computers were previously incapable considering the real-time requirements.

These eye tracking devices take advantage of certain particularities of the human

eye structure, especially since for full resolution of a particular object this must be projected

into the fovea of the eye. This drives the eye movements according to the user visual focus

which in turn provides an indication of the the items being observed. It is also important to

note that the human eye movements can be divided into two different types, saccades and

fixations,  which  represent  sudden  and  instantaneous  eye  movements  followed  by  brief

fixations, 200-600ms [2]. However these fixations can not be considered completely stable

due to small jittery motions, of generally less than one degree, which are imperceptible to

the  user  but  are  the  origin  of  eye  tracking  errors  and  need  to  be  correctly  filtered  in

software. It is also worth to noting that humans visual acuity is at its peak in the foveola

region of the eye, however since this area represents approximately 1º degree of Field Of

View (FOV), then it expected that the overall accuracy of any eye tracking system will be

limited by this factor.

These types of systems provide extremely useful information since eye gaze reveals

user intent [3] [4] [5] and can be used to infer the user cognitive load [6] which results in

high  applicability  in  psychological  or  analytic  studies  [7]  [8]  [9]  [10]  for  a  diverse  of

applications. Only recently has the technology allow for sufficient accuracy and reduced

latency  for  these  to  be  useful  in  robotics,  especially  in  an  assistive  capacity  and/or

alternatives to normal robot operation. These take an indirect approach to robot control by

either  creating  methods  for  shared  autonomy,  making  use  of  the  extra  information  to

resolve the extra dimensionality presented in a 7 DOF robot [11], creating simple support

systems to  increase  the  practicality  of  low dimensional  joysticks  in  higher  dimensional
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robots  [12],  using  the  user  inferred  attention  point  for  error  detection  during  robot

operation [13], or by creating control schemes to combine user gaze and robot manipulator

inputs into a single robot goal [5] [14] [15].

Another area of active research where these types of head-mounted systems are

beneficial  is  in AR and VR environments [16] where the estimated user focus point  is

especially useful to further refine user interfaces.

Currently  there  are  two  main  methods  for  eye  detection,  either  head-mounted

trackers with cameras directed to both the eye and world scenes, two cameras are always

required  in  this  case  so  calibration  is  possible,  or  static  world  cameras  that  use  head

detection to estimate the eye locations and subsequently its gaze orientation. However, for

the latter case, the accuracy depends highly on the quality of the cameras used and limits

the user movements to a predefined world region which in our case is undesired.

Considering, the affordability and compactness as prerequisites then the resulting

head-mounted eye trackers available are reduced to the Tobii Pro Glasses 2 [17] and Pupil

Labs  Eye  Tracker  [18].  These  have  similar  capabilities  and  approaches  to  gaze

extrapolation and both achieve acceptable accuracy [19]. Mean overall accuracy of 0.84º

for the Pupil Eye Tracker and 1.42º for the Tobii Pro Glasses. However, it is important to

note that these are highly dependent of the quality of the initial calibration procedure used

in each eye tracker [20]. Furthermore,  considering that pupil detection errors propagate

throughout  the  subsequent  system  layers,  then  the  obvious  choice  for  this  dissertation

becomes the eye tracker with the highest overall accuracy and most versatile calibration

procedures [19] [20], the Pupil eye tracker. 
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 3 Pupil Eye Tracker

 3.1 Overview

The Pupil  eye tracker,  or just Pupil,  is  a wearable mobile eye tracking headset,

developed by Pupil Labs [18], from Berlin, with one world camera and one Infrared (IR)

eye camera for dark pupil detection. Since its initial development a RGB-D world camera,

Intel Realsense R200 [21], and a second optional eye camera were also introduced. The

cameras communicate with a computer using USB 3.0, where the camera video streams are

read  using  the  open-source  Pupil  Capture  software  for  real-time  pupil  detection,  gaze

mapping, recording, and other functions.

The development focus for the Pupil was affordability and extensibility, as such,

both the hardware and software take a modular approach to its  design and most of its

components can be bought inexpensively. As such, a Do-It-Yourself (DIY) tutorial for the

hardware development and the CADs for the mounting frames are also provided by Pupil

Labs resulting in a flexible research environment. Considering the modular approach the

final product can be divided into three major modules, the world and eye cameras, and the

mounting frame.

Monitoring of Ocular Data for Robotic Control 6
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Intel Realsense R200 World Camera.



Since the frame structure was developed with additive fabrication methods in mind,

and its CAD is provided, the generic mounting frame provided can be easily swapped with

a custom made. Facilitating the application of this eye tracker for non-generic user cases

such as users with debilitating medical conditions or simply to account for head growth in

children.

 3.2 Analysis of the Cameras Capabilities

 3.2.1 Eye Camera

As described,  the  pupil  eye tracker  has  one  world camera  and  one or  two eye

cameras. The current version of the eye camera has the following principal characteristics:

• Global  Shutter  –  Improves  pupil  detection  since  the  movements,  saccades  are

extremely fast;

• Fast FPS – 2 modes, 200 FPS at 200x200 resolution or 120FPS at 400x400.

Considering that the most useful information pertaining this dissertation will be the

eye blinking and fixation points in time. Since eye blinks take approximately 100ms and

fixations  require an acceptable period of time,  then the 120 Frames Per Second (FPS)

mode with  higher  resolution has  sufficient  update frequency being the chosen mode in

subsequent work.

It is also important to notice that the eye camera uses a surface mount  IR led to

illuminate the user’s eye reducing the effect of visual noise from ambient light sources.

Although experiments relating the actual Pupil eye tracker to eye damage have not been

made, the pupil hardware has been certified for IR safety according to EN62471:2008. 
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 3.2.2 World Camera

As the world camera, the Pupil makes use of the Intel Realsense R200  RGB-D

camera. This module has 3 cameras, a RGB camera with rolling shutter and 2 displaced IR

cameras  which  are  used  in  junction  with  an  IR laser  projector  to  estimate  the  depth

information.

Since most of this dissertation will be influenced by the data obtained from

this camera,  especially the depth stream it produces then it  is beneficial to measure its

quality. To achieve this several frames of an orthogonal wall to the camera are acquired at

different distances resulting in average and standard deviation images for each distance. For

display purposes these are then projected to a top view, as seen in figure  5. The plane is

verified, previously to the data collection, to be orthogonal using a plane fitting algorithm

from which  the  camera  is  oriented  as  to  obtain  the  best  orthogonality  results  at  each

distance.

Important to note that depth values lower than 700mm or higher than 3500mm are

considered invalid and do not influence neither the average nor the standard deviation.

Table 1: Depth values of a orthogonal plane to the camera, averaged from 100 frames, in millimetres.

750mm 1250mm 1750mm 2250mm 2750mm

Average (mm) 740.6 1268.5 1784.1 2303.3 2838.9

STD (mm) 2.0 2.8 6.9 11.6 29.3

Average Error (mm) -9.4 18.5 34.1 53.1 88.9
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The RGB-D world camera option has now been discontinued by Pupil Labs. The

only option currently available is a normal 30 FPS at 1080p resolution RGB camera. Seeing

that the camera used in this dissertation is the discontinued version, then it is useful to

present similar RGB-D camera products, that may be implemented as a substitute for the

R200 camera, acknowledging the advantages that such upgrades would bring to the present

dissertation.

The following products are all Intel Realsense Products and are considered Class 1

Laser Products.

Table 2: Comparison between available Intel Realsense RGB-D cameras

R200 D415 D435

Environment Indoor and Outdoor Indoor and Outdoor Indoor and Outdoor

Depth Technology Active IR Stereo Active IR Stereo Active IR Stereo

Sensor Technology Rolling Shutter Rolling Shutter Global Shutter

Depth Resolution Up to 480p Up to 720p Up to 720p

Depth FOV (HxV) 56ºx43º 63.4ºx40.4º 85.2ºx58º

Minimum Depth 0.32 m 0.16 m 0.11 m

Maximum Depth Up to 10m Up to 10m Up to 10m

RGB Resolution Up to 1080p Up to 1080p Up to 1080p
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Figure 5: Depth image averages and standard deviations projected into the X-Z plane of the

depth camera optical coordinate system.



RGB FOV (HxV) 70x43º 69.4ºx42.5º 69.4ºx42.5º

RGB Frame Rate 30 FPS at 1080p 30 FPS at 1080p 30 FPS at 1080p

Dimensions (WxHxD) 101x10x4mm 99x20x23mm 90x25x25mm

Price 79$ 149$ 179$

The use of the R200 Camera is no longer advised8 since it has become a legacy

product  with  limited  hardware  and  software  support.  The  D415  camera  currently  in

production with full hardware and software support is a good option for most applications,

the most concerning issue becomes the rolling shutter that just like in the R200 camera can

be a problem in mobile applications, which is the case. Finally the D435 camera effectively

removes the previous cameras issues having a global shutter and a better  FOV. The only

drawback is its bigger size.

 3.3 Pupil Software

The pupil  software,  written mostly  in  Python 3,  can be divided into two major

components, the Pupil Capture which is the main focus for this dissertation and the Pupil

Player which can be used to visualize previously recorded data from Pupil Capture. Both

have similar structure, using individual plugins joint together to form the actual software.

Since this type of software implementation has distributed design then it requires a internal

communication server, which in the Pupil Software case is built around the ZeroMQ library

which is called the Inter Process Communication (IPC) backbone of the application. This

server uses 2 Transmission Control Protocol (TCP) sockets with random Internet Protocol

(IP) addresses, which are known to all the plugins spawn by the application, one used as a

one to many publisher that the spawned plugins can use to publish whatever messages are

desired, and another as a many to one subscriber. These can be used by to read/receive

information between the different plugins in a N-to-N design. This messages are required to

be a multi-part,  using the first part as a message name/id and the second as the actual

payload. This lets the developers parse the payloads according to the paired topic name.

Internally the Pupil Software payloads are serialized and compressed using the MsgPack

library, resulting in a similar message structure to JavaScript Object Notation (JSON).

8 The R200 camera uses deprecated api, for its correct function in linux environment it is required the use of

the linux 16.04 with a specific patched kernel, 4.4.0.
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Since the ZeroMQ library creates a computer-wide server then, as long as publisher

and subscriber addresses are known, an external application can communicate with Pupil

Software. Since these addresses are created randomly then its required to use the Pupil

Remote plugin, through which  an external source can request the IPC backbone addresses.

It is also important to notice that the actual camera images are not published into the IPC

backbone by default, the use of the Frame Publisher plugin is required in junction with

code changes to the Pupil Software so that the three frames, Eye RGB, World  RGB and

World Depth are accessible externally.

The Pupil  Software  principal  features  are  the  real-time pupil  detection  and  the

calibration algorithms, which uses the detected pupil locations in relation to several screen

markers to estimate the parameters of a two bivariate polynomial of adjustable degree that

maps the detected pupil positions in the eye camera into the world scene. There are also

other  calibration  methods  implemented  including  manual  marker  calibration,  natural

features  calibration  and  recent  updates  introduced  a  tip  of  finger  calibration.  In  this

dissertation the chosen calibration methods is the screen marker calibration, since access to

a computer is not limited. All of the aforementioned algorithms have as its basis a bundle

adjustment algorithm to estimate the unknown parameters.
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Important to notice that since the calibration adjusts parameters that relate the eye

position  to  the  world  camera  coordinate  system,  whenever  the  user  moves  or  adjusts

physically the Pupil headset a new calibration is required. This also means that physical

intensive movements from the user are not advised since the probability of a small shift in

the  headset  position  can  happen  resulting  in  the  incorrect  gaze  vector  from that  point

onwards.

 3.3.1 Pupil Detection Algorithm

The  pupil  detection  algorithm  implemented  in  the  Pupil  Software,  especially

designed  for  dark  pupil  in  IR illuminated  eye  images,  is  composed  by  several  minor

algorithms. Starting with conversion to a grayscale image, initial region estimation using

strongest response for centre surrounded features. Edges detection using Canny algorithm

and edge filtering based on neighbouring pixel intensity excluding edges originating from

spectral  reflections.  Finally,  edges  are  filtered  using  connected  components  based  on

curvature continuity and pupil candidates are formed with a ellipse fitting algorithm. 

Although  the  pupil  ellipse  is  detected,  and  can  be  used  directly  using  the

aforementioned two bivariate polynomial mapping for the 2D gaze vector extrapolation, it is

also possible to overlay this pupil detection into a 3D eye model estimate to obtain a 3D

gaze vector. This feature implemented by Yuta Itoh and Jason Orlosky makes use of the

algorithm in [22] resulting exactly in the required outputs, a 3D gaze vector in the eye

camera  optical  coordinate  frame  which  can  be  transformed  into  the  world  camera
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coordinate frame using the estimated extrinsic parameters from the previously mentioned

bundle adjustment.

Although  the  eye  detection  is  fairly  accurate,  it  is  important  to  note  that  this

accuracy is directly related with the calibration quality since the extrinsic parameters that

relate the eye camera and world camera frames are estimated during the calibration process.

As such it is advised to follow the necessary guidelines for the calibration process as to limit

the presence of posterior mapping errors from which the fixation of the user head during

the full calibration process is the most important.

It should also be noted that the pupil detection algorithm performance is affected by

external  IR intensive lights, which slightly reduces the quality during outdoor operation,

however since this dissertation is focused in indoor environments this problem is dismissed.
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 4 ROS Pupil Package

 4.1 ROS Communication with Pupil Software

Just as mentioned in previous chapter, the use of the Intel Realsense R200 camera

restricts the Operating System (OS) by requiring the Linux version 16.04 with a modified

version of the 4.4.0 kernel. Consequently the ROS version becomes limited to the Kinetic

version, since the new updates require the minimum Linux version 18.04, as such both the

OS and ROS must be downgraded, in addition the python version linked to the ROS is also

the downgraded python 2.7 version which is not compatible with python 3, which is the

version used in Pupil Software.

Taking in consideration all of the aforementioned requirements, then to create a

communication bridge between the  ROS and Pupil  Software it  is  necessary  to  use  the

ZeroMQ, MsgPack libraries and both the Pupil Remote and Frame Publisher plugins in

junction with the modified version of the Pupil Software, allowing external link to the Pupil

Software  IPC backbone, which provides the developers with access to the internal Pupil

Software messages.

To obtain  the aforementioned effect,  a  C++  ROS package was created  with  its

single purpose being the communication between the ROS and Pupil Software. As such this

package uses the Pupil Remote plugin to request the internal Pupil Software IPC addresses,

subsequently connecting to them using the ZeroMQ library [A]. Considering the previously

mentioned message structure for the Pupil Software which is based of the JSON structure,

then the messages received  from the Pupil IPC backbone need to be translated, as such the

use of the coupled message topic name and preceding knowledge of the information sent

for each of the message types allows the extraction of the desired information. This de-

serialization, just like in Pupil Software is also accomplished using the MsgPack library,

specifically the adaptors module of the ZeroMQ Library for which it is necessary to define

explicitly the different messages data structure.
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Internally, the Pupil Software has 4 types of messages:

• Log Messages (Messages used internally for Pupil Software Logging)

• Notification  Messages  (Messages  used  to  coordinate  all  the  individual  plugins

actions.  For  example,  notifications  to  spawn  any  desired  plugin,  calibration  or

recording start/stop notifications permit control of previously prepared plugins from

external sources)

• Frame Messages (Messages with the actual images payloads, with respective size

and format specified. Each individual camera has its frame message.)

• Gaze/Pupil Messages (Can be considered a  single  message,  since all  the Pupil

Messages, one for each eye camera available, are actually used internally to produce

a single gaze message) 

Important to notice, that it is possible to select which of the previously mentioned

topics the developer wants to receive when subscribing to the IPC backbone using the ZMQ

library.  Considering  that  only  the  frame  of  each  camera  and  gaze/pupil  messages  are

required in the ROS environment then it is necessary to create their ROS counterparts. By

analysing  the  previously  mentioned  messages  payloads  and  considering  the  3D  gaze

mapping as the calibration methods of choice then the resulting message structure becomes:

• Gaze Datum, resulting message from the pupil detection algorithm;

− topic - name of the topic subscribed to receive this message;

− confidence - normalized confidence value from the pupil detection algorithm;

− norm_pos - normalized coordinates (u,v) of the eye point in the world image

plane, projection from the gaze_point_3d into the image plane;

− timestamp - time of correspondent source image, used for synchronization;

− gaze_normal_3d -  3D vector of the gaze, in junction with eye_center_3d it

fully defines the gaze line;

− gaze_point_3d - 3D position of the gaze point in the world camera frame, not

really useful since it requires the binocular option, with the monocular version it

has fixed depth;

− eye_center_3d - estimated 3D center of the eye in the world camera frame;

− base_data - list of the Pupil Datum messages used to generate the current Gaze

Datum message;
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• Pupil Datum, individual message for each eye, every information is relative to the

respective eye camera coordinate systems;

− topic - name of the topic subscribed to obtain this message;

− index – index of the closest world image, in time;

− timestamp -  time of  the correspondent  eye  camera  source  image,  used for

synchronization;

− id - boolean flag to specify right of left eye;

− confidence -  normalized  confidence  of  the  pupil  detector  on  the  current

message information;

− method - Detection method used, in this dissertation is, 3d c++;

− ellipse - 2D ellipse of the detected pupil in pixels, result from the ellipse fitting

of the pupil detection algorithm;

− model_birth_timestamp - initial time of the 3d eye model, useful to verify if

the model has completed the eye fitting;

− model_confidence - normalized confidence of the 3d eye model fitting;

− model_id - each new model has a different id;

− theta - polar coordinate of the eye model;

− phi - polar coordinate of the eye model;

− circle_3d - 3D ellipse of the pupil detected in the corresponding source image;

− sphere - resulting sphere generated by the eye model in the eye camera frame;

− projected_sphere - the previous sphere projected into the eye camera image.

Since the gaze and pupil messages in the Pupil Software are constructed from minor

types such as 2d_ellipse, sphere and 3d_circle, then the resulting ROS message structure can

be represented by the diagram (8), where it is possible to visualize the different components

that constitute the custom created ROS message pupil_msgs/gaze_datum.msg.
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All  of  the  information  required  is  then  unpacked,  using  the  MsgPack  library

adaptors,  directly into  the respective messages  counterparts,  which upon conclusion are

published into the ROS server.

As mentioned before, the necessary messages for the ROS environment also include

the three different camera images. These images are kept as payloads in the Pupil Software

camera frame message types which have the following structure.

• Camera Frame, message with all the information related to the cameras presented

in the Pupil, one camera frame message for each individual camera;

− topic - name of the topic subscribed to have access to this message;

− index -  incremental  index  sequence  of  the  image,  used  for  synchronization

purposes;

− timestamp - time of the source image, used for synchronization purposes;
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− format - image format used, in this dissertation will always be BRG8, without

compression;

− width - width of the image in pixels;

− height - height of the image in pixels;

− raw_data - actual serialized image data.

Since the  ROS already has a message type with specialized transport for images,

then instead of creating a new message type as a counterpart to the frame messages, as done

for the pupil/gaze messages, this message is divided into three components, thus following

the ROS design guidelines. Which for image processing involves the use of nodelets instead

of  normal  nodes  and  the  specialized  image  transport  strategies  which  include  the

compressed and theora transports. This specialized strategies require the use of the  ROS

messages  types  sensor_msgs/Image and  sensor_msgs/CameraInfo which  already  include

most of the internal Pupil Software frame message data. Although not really necessary a

ROS message type is also created to store all the data of the original frame message, with

the exception of the actual image data, in order to preserve a similar message structure as

observed in Pupil Software. Which results in the following group of ROS messages used for

each of the three Pupil cameras.

Now, it  is  also important to verify the capability  of the communication module

created. In order to do so a latency test is executed individually for each of the camera

frame  messages,  important  to  note  that  the  gaze_datum message  latency  is  considered

negligible since, taking in consideration that its message size is around 600 Bytes while the

eye  frame message  has  480  KBytes  and  their  published  frequency  is  the  same,  the

estimated latency for the  gaze_datum should be close to x800 lower than the eye  frame
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message. Furthermore, the latency considered also takes into account the time spent parsing

the received messages and the republishing into the ROS server.

Table 3: Communication and processing latency while using the ROS Pupil Package.

Eye Frame World Frame Depth Frame

Average (ms) 3.58 16.01 3.77

STD (ms) 2.54 6.5 1.71

Expected FPS 120 30 30

It can be observed, that communication between the Pupil Software and the  ROS

framework is very time consuming which means that frames are dropped and the resulting

processing  FPS are  be  unstable,  as  such,  a  straightforward  modification  to  the  Pupil

software is necessary to limit the transmission rate, this limit is only desired in the world

RGB and Depth streams.

 4.2 Pose Estimation using the RGB-D camera

Taking  into  account  the  previous  section,  then  all  the  camera  frame and

gaze_datum messages are now accessible in the ROS. So considering that this dissertation

aim is to control a robotic arm by inferring from this data, then its necessary to transform

this data, which is tied into the Pupil headset workspace, into the same workspace, which in

this  case  is  the  coordinate  system  of  the  base  of  the  robot  used.  However,  this

transformation is  problematic as it  requires  knowledge of the Pupil  whereabouts in the

robot  coordinate system, and since the Pupil  is  the coupled to  the user  itself  which is

mobile, then this estimation needs to be computed in real-time by correlating the static

world, in the robot base coordinate system, which is known in advance, with the world as

seen from the Pupil world RGB and Depth cameras. 

This correlation is usually done with a Perspective-N-Point (PNP) algorithm. This

estimates the pose of the camera used by correlating 3D points, at known locations in the

world, with their corresponding 2D points observed in the  RGB image. Considering the

knowledge of the intrinsic parameters of the camera used it is possible to achieve a 3D pose

estimation with at least 4 pairs of corresponding points between the 3D and 2D workspaces.

However, this estimation is highly dependent on the quality of both the camera calibration
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and of the 2D point detection. As such, since the Pupil world camera RGB stream is not

calibrated in the Pupil software and the gaze calibration methods are applied directly on the

distorted image, plus taking in consideration that the camera has a rolling shutter and is

positioned  in  a  mobile  structure,  then  this  pose  estimation  method  is  not  the  most

recommended option. Especially since using it completely discards the World Depth data.

Since the World Depth information is provided, then this pose estimation can be

simplified to the estimation of a Rigid Body transform. Which in practice means finding the

most suitable translation and rotation for fitting two equal sets of 3D points, in this case the

same world points as seen from different coordinate systems. Then, with that end in mind,

its necessary to have pairs of 3D corresponding points between the world coordinate system

and the points generated by the Depth image in the Pupil coordinate system. To achieve

these matching points the Aruco library from OpenCV is used, in which is implemented a

detection algorithm for custom 2D markers, similar to 2D QR codes, with individual IDs.

Using this library detection algorithm directly in the distorted world  RGB camera image

provides the pixels coordinates for each of markers corners with its respective IDs, only

these  points  are  undistorted.  Now,  considering  the  Depth  image  information  has  been

aligned into the  RGB image plane using the known intrinsic and extrinsic parameters for

the two cameras,  then a Depth value will  exist  for each of the previously obtained 2D

markers pixel coordinates, resulting in a 3D point for each of these in the Pupil coordinate

system.  Now,  with  the  corresponding  pair  of  points  defined,  a  straightforward

implementation of the chosen Rigid Body transformation algorithm will provide the pose

estimation for the Pupil in the World coordinate system.

Considering the dependence of the algorithm in the quality of the depth information

then the observed offset in the figure (5) should be corrected. Thus a polynomial is fitted

into the observed depth to correct the previous depth error, resulting in the new depth value

.

(Equation 4.1)

This results in the correction of the depth information seen in figure (10) to,
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Table 4: Corrected depth values. Average from 100 frames, in millimetres.

750mm 1250mm 1750mm 2250mm 2750mm

Average (mm) 749.9 1250.1 1749.2 2249.3 2748.4

STD (mm) 1.9 2.7 6.8 11.0 26.3

Average Error (mm) -0.1 0.1 -0.2 -0.7 -1.6

Figure 10: Projection of the corrected depth values using the specified polynomial.

Note that the depth also has a slight radial distortion, however the correction for

such distortion would require a higher complexity polynomial, since the previous 1D fitted

polynomial, , would have to be multivariate, , for which a more detailed data

collection would be required.

As mentioned, the matching points for the Rigid Body transformation are obtained

by employing a detection algorithm implemented in the OpenCV Aruco Library, which

makes use of binary square fiducial markers that can be printed and placed in the world.

Considering the FOV of the World camera and its advised working distance, maximum of

3.5m indoor,  then markers with 5.6cm sides are adequate.  Using the robot base as the

world origin, then the markers arrangement chosen, for a 160x80cm table, is a grid pattern

of 35x30cm, as represented by the figure (11).

Three additional markers are also placed in the robot base corresponding to the

positions, #14 at (0.043, 0, 0.15), #15 at (0, -0.043, 0.15) and #16 at (-0.043, 0, 0.15).
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Now, with the depth values corrected, and the static world markers location defined

the previously outlined process results in the following pseudo-code:

Pseudo-Code for pose_estimation()

#[Wx,Wy,Wz,id] is the known World location of each Marker

#Extract the [x,y,z,id] from the RGB and Depth frames

[u_d,v_d,id] = aruco_detect_markers( rgb_image )

[u,v] = undistort_rgb_pixels( [u_d,v_d] , rgb_parameters )

[depth] = align_depth_into_rgb( depth_image, rgb_parameters, depth_parameters )

For Each in [u,v,id]:

    [Cx,Cy,Cz,Cid] = project_rgb_points_with_depth( [u,v], depth, 

rgb_parameters)

#Estimation of the Camera Pose

[rotation, translation] = rigid_body_transformation( [Cx,Cy,Cz,Cid], 

[Wx,Wy,Wz,Wid] )

Pseudo-Code for rigid_body_transformation() using Horn Algorithm

W_Centroid = calculate_world_centroid( [Wx,Wy,Wz,Wid] )

C_Centroid = calculate_camera_centroid( [Cx,Cy,Cz,Cid] )

W_Vectors = world_vectors_from_centroid_to_markers( [Wx,Wy,Wz,Wid], W_Centroid )

C_Vectors = camera_vectors_from_centroid_to_markers( [Cx,Cy,Cz,Cid], C_Centroid )

C = calculate_covariance( W_Vectors, C_Vectors )

#Construct N as per the Horn Algorithm [4x4 Matrix]

N = [C(1,1)+C(2,2)+C(3,3),  C(2,3)-C(3,2),  C(3,1)-C(1,3),  C(1,2)-C(2,1);

     C(2,3)-C(3,2),  C(1,1)-C(2,2)-C(3,3),  C(1,2)+C(2,1),  C(3,1)+C(1,3);

     C(3,1)-C(1,3),  C(1,2)+C(2,1),  -C(1,1)+C(2,2)-C(3,3),  C(2,3)+C(3,2);

     C(1,2)-C(2,1),  C(3,1)+C(1,3),  C(2,3)+C(3,2),  -C(1,1)-C(2,2)+C(3,3)];

#Rotation is the quaternion from the N matrix Eigenvector with greater Eigenvalue

[EigenVectors, EigenValues] = eig( C )

rotation = Quaternion( EigenVectors(max(EigenValues)) )

translation = W_centroid + rotate( inverse(rotation), C_Centroid )
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Since ROS internally uses Quaternions, then the algorithm presented in [23], which

estimates the rotation directly in quaternions, becomes the obvious choice for the rigid body

transformation estimation, named Horn algorithm in subsequent parts of this dissertation. 

To  serve  as  comparison,  with  the  Pupil  stationary,  100  iterations  of  the

aforementioned  Horn  algorithm  and  the  PNP algorithm  implemented  in  OpenCV  are

computed. With these it is possible to obtain a relative comparison between the two using

the resulting standard deviation. For completion purpose, the 100 iterations are executed

with different number of observable markers,  4 Markers (#3, #5, #8, #10),  10 Markers

(#1, #3, #5, #6, #8, #10, #12, #14, #15, #16), and 17 Markers (all markers).

Table 5: Relative comparison between the results obtained using the PNP and Horn algorithms.

Nr of Markers 4 10 17

Horn (RGB-D)

Translation (mm) (1.2, -0.776, 0.74) (1.177, -0.759, 0.758) (1.18, -0.762, 0.76)

STD (mm) (9.2, 9.05, 7.53) (7.07, 7.56, 4.35) (4.3, 4.68, 2.47)

Rotation (Uq) (-0.318, 0.083, 0.908, 0.259) (-0.327, 0.08, 0.907, 0.254) (-0.327, 0.084, 0.906, 0.256)

STD (Uq x0.001) (3.29, 1.92, 1.47, 2.67) (2.23, 3.23, 0.86, 2.27) (1.16, 1.07, 0.57,1.69)

Time Spent (us) 26.53 µs 32 µs 29.04 µs

PNP (RGB)

Translation (mm) (1.066, -0.7, 0.689) (1.174, -0.773, 0.739) (1.171, -0.771, 0.732)

STD (mm) (320, 210, 210) (5.03, 4.93, 6.62) (1.15, 1.46, 1.79)

Rotation (Uq) (-0.301, 0.078, 0.83, 0.321) (-0.322, 0.076, 0.907, 0.259) (-0.321, 0.078, 0.907, 0.260)

STD (Uq x0.001) (90, 20, 250, 200) (2.25, 1.41, 1.12, 2.33) (0.737, 0.53, 0.37, 0.67)

Time Spent (us) 162.26 µs 367.68 µs 437.59 µs

From the results it is possible to conclude that both algorithms are very precise,

with the predominant difference being the computation time and the lower precision of the

PNP algorithm for low number of markers. It must be noted that, although the computation

time displayed serves as a comparison between the algorithms, the time spent detecting the

markers using the Aruco Library is not included, given that both algorithms use it. This is

also the heavier operation which greatly affects the final results since it takes on average

0.076 seconds to compute a single frame, including the previously noted communication

and processing latency then the maximum pose estimation becomes less than 3 FPS.

Must be noted that although the previous table serves has a comparison between the

two algorithms, the accuracy cannot be compared since a baseline does not exist.
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 4.3 Blink and Fixation Detection

Taking into consideration that all the necessary data created by the Pupil Software

has been extracted and transformed into the respective custom message types and published

into the ROS server, then it is finally possible to use the ROS framework to create modular

programs to process the aforementioned data. For which is important to first define the

specific eye movements that the system should recognize as commands and actuate. Since

the perceptible types of movements the eye can make are rather limited,  and that  it  is

undesirable to have the robot end-effector tracking the gaze pose, then the eye blinks is the

simplest  method to use as  a control  system. To accomplish this a  ROS nodelet  named

blink_detection is designed with the objective of preprocessing the  gaze_datum message

data, placing the following results into a new custom ROS message named eye_status.

First it is necessary to define the various desired eye states to detect for which to

populate the new  ROS message (12). This is constructed with copies of the  confidence,

gaze_normal_3d and  eye_center_3d found  in  gaze_datum message  plus  the  newly

computed parameters.

Note that although the confidence value obtained directly from the Pupil Software

could  also  be  used  to  estimate  the  eye  closure  and  blink  detection,  it  is  an  artificial

confidence value which is highly noisy and depends on the quality of the Pupil Software

calibration which ends up resulting in lower quality of blink detection. This can easily be

seen in the figure (13), where the confidence values provided by the Pupil Software are
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presented. A caveat must be made in relation to the confidence values observed in (13)

which are the result of an excellent calibration and can be considered unusually stable, usual

values tend to have higher noise.

Figure 13: Example of the confidence values obtained directly from the Pupil Software for the previous

double blink experiment.

Still,  the  observed  confidence  values  serve  to  show  the  inconsistency  of  the

confidence values from the Pupil Software. Considering that the double blink detection is

crucial, then it is not possible to use the confidence values observed, as can be seen from

the lack of detail regarding the double blink occurring at 20 seconds, then a new blink

detection system is necessary.

As such, the parameters that compose the custom ROS message (12), are obtained

as follows:

The is_closed flag, represents the closure of the eye, is calculated using the average

of the grayscale values inside a circular window of size shade_window_size pixels around

the detected pupil center, this window is displayed by a red circle in the blink demo figure

(14). The resulting grayscale average is normalized, , and then filtered using a low pass

filter (4.2), where the  is the parameters named shade_lowpass_alpha. Finally the filtered

values, , are validated using a threshold, parameters named shade_threshold, since the

pupil is darker than the rest of the observed features when the eye is closed, which results in

the figures (15) (16), where the detected average grayscale are represented in junction with

the locations where the threshold is exceeded.

(Equation 4.2)
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The blink flag, represents a valid eye closure duration. As such, if the duration of

the  eye  closure  obtained  using  the  is_closed flag  is  within  the  parameters

minimum_blink_duration and maximum_blink_duration then the blink is triggered once.

The double_blink flag, just like the blink flag is triggered if two sequential blinks

are detected and the duration between these falls  within a predefined acceptable range,

which  is  defined  by  the  blink  detector  parameters  minimum_double_blink_wait and

maximum_double_blink_wait.

To test the accuracy of both the single and double blink detection, an experiment

where the user is asked to change focus and blink once when a 5 second period sound signal

occurs is implemented, this is repeated with double blinks. The resulting data can then be

used  to  improve  the  detection  parameters  until  the  detection  results  are  considered

acceptable.

Monitoring of Ocular Data for Robotic Control 26

(a) (b) (c)

(d) (e) (f)
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Finally the  is_fixating flag uses the normalized 2D gaze point in the gaze_datum

message  to  calculate  the  2D  gaze  dispersion  considering  a  temporal  window  of

minimum_fixation_duration seconds, from which results the selection of N points in the

image plane, . This dispersion is defined by the norm of a two axis weighted

standard deviation, weighted by the confidence from the Pupil Software gaze detection that

is represented by  in (4.3). This standard deviation is obtained for both  and  values

from the normalized gaze position and the estimated 2D dispersion corresponds to (4.4). 

(Equation 4.3)

(Equation 4.4)

The  is_fixating flag is then obtained using a threshold on this dispersion values,

parameter  named  dispersion_threshold.  Considering  that  in  the  experiment  for  blink

detection the user is also asked to change focus then, from the previous experiment results,

the fixations can also be estimated from the resulting dispersion curve, as observed in (17).

Monitoring of Ocular Data for Robotic Control 27

Figure 15: Normalized average grayscale detected in a circular window with radius N pixels around the

detected pupil center during the single blink experiment. The locations where the defined threshold are

presented shaded in red.

Figure 16: Normalized average grayscale detected in a circular window with radius N pixels around the pupil

center during the double blink experiement. The locations where the defined threshold are presented shaded in

red.



Important to note that this weighted standard deviation will reduce the effect the eye

closure has on the dispersion calculation since the Pupil Software confidence will drastically

drop. 

The blink detector parameters used previous are,

Table 6: Parameters used in the blink detector module.

Parameter Name Value

shade_window_size 10 (px)

shade_lowpass_alpha 0.4

shade_threshold 0.15

minimum_blink_duration 0.03 (s)

maximum_blink_duration 0.35 (s)

minimum_double_blink_wait 0.04 (s)

maximum_double_blink_wait 0.5 (s)

minimum_fixation_duration 1.0 (s)

dispersion_threshold 0.07

These parameters serve only as reference since these are user-specific, as such the

corresponding results can not be duplicated. For each new user a new blink detection profile

must be calibrated.
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Figure 17: Calculated 2D gaze dispersion for the blink detection displayed in the figure 15. Locations shaded

in red represent threshold excedance which means lost of fixation. 



 4.4 Gazebo Simulation

As mentioned in the section (1.3), a simulation environment is also implemented

using Gazebo by mimicking the work done in the Pupil Software, section 3.3, the Pupil to

ROS communication,  section  (4.1),  and  the  Pose  estimation,  section  (4.2),  programs.

Resulting in the following 3 major components of the simulation:

• Gazebo RGB-D camera simulation;

Modified version of the Kinetic camera simulation plugin for gazebo, used to

synthesize the depth stream, it is notable that the this visual plugin has a noise

function included for which the values obtained in the section (3.2.2) are used.

• Simulation of the Pupil movement in the world using a Space Mouse;

It is important for the simulated camera to be mobile, mimicking the mobility

of the user, which can be easily achieved using a space mouse, a 6DOF joystick

to directly control the velocity of the simulated camera pose.

• Simulation of the Eye movement, using a normal mouse;

The most important component of this simulation is obviously the synthesis of a

fake eye gaze. In the Pupil Software the 3D gaze vector is projected into the

RGB image for display purposes, however to do so it is necessary to consider

the intersection of such gaze vector with an artificial orthogonal plane, in this

case  the  RGB image  plane.  However,  for  correct  function  of  such

transformation  it  is  necessary  that  the  origin  of  the  gaze  vector  and  the

considered plane coordinate system is the same, which means that the eye center

is placed in the origin of the camera coordinate system. From this results a gaze

vector that is simply the line projection of the image pixel were the computer

cursor is placed. Furthermore, pressing the mouse button is configured to mimic

the eye closure by modifying the necessary confidence parameters and boolean

flags in the synthetic eye_status message.
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Considering a similar workspace arrangement as defined in section (4.2), and that

the robot is also spawn into the simulation, with either a jointspace torque or jointspace

position controller, then the simulation interface becomes a 2D image from which the gaze

line  can  be  controlled  using  the  computer  cursor,  and  a  3D view,  using  Rviz,  of  the

generated pointcloud and projected 3D gaze.

Figure 18: RGB image generated from the gazebo plugins, where the cursor position (circled in

red) is used to simulate the eye focus point.

Figure 19: Corresponding views using Rviz. In the Top-Left view the RGB image published into the ROS. In

the Bottom-Left view the depth image published into the ROS. In the Right view the generated pointcloud,

where the 3D gaze is visualized by the green line intersection the pointcloud as chosen by the cursor in (18).
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 5 ROS Gaze Package

Considering the eye information as preprocessed both in the simulation and real

environments  then  it  is  now  necessary  to  start  the  processing  of  such  data  into  the

requirements for robot control,  which means the requires the complete definition of the

chosen control method and the robot in which these are applied.

The robot used is the Jaco2 developed by Kinova Robotics [24], a company which

focus on assistive/rehabilitation devices. This robot has 6 DOF with a 3 finger removable

end-effector.  Its  most  notable  characteristics  are  the  unlimited  actuators  rotation,  its

lightweight construction, less than 5 Kg, its low power consumption, less than 25W average

and  its  exceptional  low  footprint.  This  robot  also  has  several  controllers  implemented

internally  as  seen  in  (21.b),  these  are  hard-coded  into  the  robot  firmware  and  can  be

adapted using specific API functions, which remove the necessity of a real-time enabled

computer for correct robot control. As such the only requirements, considering the cartesian

position controller as the desired control method, are the desired end-effector pose and a

duration for the robot to complete the respective movement.

As an alternative to the internal  trajectory controllers,  it  is  also  viable to  use a

custom controller by using the direct torque control mode, however while in the torque

control mode, the Kinova Joystick (20) is disabled, which is not desired thus the previous

mentioned selection.

It is worth noting that the aforementioned joystick only has 3 degrees of control,

requiring the switching between modes to achieve control of the complete 6  DOF of the

robot plus an additional mode for control of the gripper. This results in 3 separate modes,

position, orientation and finger modes, and considering the joystick assembly (20), none of

the above modes are fully intuitive. As an example, in the position mode, the robot X-Y is

controlled  using  the  respective  linear  joystick  displacements  while  the  its  Z  axis  is

controlled using the rotation of the joystick. 
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(a) (b)

 Figure 20: Kinova Joystick description and control movements. (a) Description of the most important

buttons. (b) Example of the control movements of the Kinova Joystick.

(a)     (b)

 Figure 21: Control diagrams in reference to the Jaco Robot. (a) Computer to robot communication

structure. (b) Types of internal controllers hardcoded into the robot firmware, all types have both

angular and cartesian versions.

Further information about the Kinova Jaco2 robot and its specification can be seen

at [D].

As mentioned before the internal controller chosen for this task, shaded in green, is

the cartesian trajectory controller,  which simplifies the requirements to a cartesian end-

effector pose and a span of time for the robot to complete the motion.
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 5.1 Gaze Intersection Pose

Considering the aforementioned requirements then it is necessary to extract a 3D

pose  from the  gaze  information  obtained  from the  Pupil  Software.  Which  can,  if  the

blink_detector recognizes  the  correct  commands,  be  used  to  operate  the  robot.  As

described previously,  the data extracted from the Pupil  Software has already been pre-

processed from which results the ROS message names eye_status where all the necessary

variables have been compacted including the 3D gaze vector,  , that represents the gaze

line that passes through the 3D eye center, also present in the message.

Considering that the desired output is the intersection pose between the gaze line

and the  point  cloud then,  considering the  depth noise  which has  been observed in  the

section  (3.2.2),  it  is  necessary  to  consider  more  than  one  point  when  resolving  this

intersection, which means the definition of a maximum acceptable minimum distance from

each considered point to the gazeline for which it is considered part of the intersection. This

is analogous to a cylinder of acceptable points with the gaze line as its center axis and

radius equal to the aforementioned maximum distance. To accomplish this, it is necessary

to compute the minimum distance from every point in the pointcloud to the gaze line,

which, considering the gaze line vector as  and that   represents the vector constructed

from the eye center to the  point in the pointcloud, can be resolved by solving the following

equation.

(Equation 5.1)

Now, considering as observed points only those for which the distance   is less

than the predefined value, then using this new list of valid points it is possible to estimate

the 3D intersection point, between the gaze and the point cloud, as its positional average

and the respective orientation by analysing its local features.

Since the desired pose Z axis should be orthogonal to the observed plane and off-

setted by a predefined distance. The observed plane, equivalent to the best fitted plane to

the  observed  points,  can  be  estimated  using  the  Principal  Component  Analysis  (PCA)

algorithm from which results 3 vectors, which define the orientation of the observed point

distribution axes, and respective vector magnitudes, these are the resulting eigenvectors and

eigenvalues from the covariance matrix of the previous points.
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This results in the following pseudo-code:

Pseudo-Code for estimate_plane_normal()

[valid_points] = check_distance_to_gazeline( [pointcloud], gazeline, 

valid_distance)

centroid = calculate_centroid( [valid_points] )

covariance = calculate_covariance( centroid, [valid_points] )

# Estimated plane normal is the Eigenvector of the smallest Eigenvalue

[EigenVectors, EigenValues] = eig( covariance )

plane_normal = EigenVectors[min(EigenValues)]

Considering a planar distribution then the points will have two axes with similar

magnitudes, eigenvalues, and axes with smaller magnitude which represents the observed

plane estimated normal vector. However, a single plane normal can not be resolved into a

singular pose since not only does the plane normal  and  represent the same plane but

there is also a degree of freedom represented by the  vector own rotation.

To resolve this, first it is important to note that the 3D points considered for the

PCA algorithm are represented  in  the camera  coordinate  system which has  its  Z axis,

camera optical axis, orthogonal to the image plane, as such the estimated plane normal is

relative to it.  From this it  is  intuitive to select  the plane normal that  is  opposed to the

camera optical axis, the camera can only see what is facing the user, which is equivalent to

choose from,  and , the normal that has negative  component.

As such considering the rotation matrix that defines the gaze intersection pose with

the point cloud in the camera coordinate system as,

(Equation 5.2)

Then, the pose with the Z axis normal to the observed plane can be represented by

defining the rotation matrix third column as the aforementioned plane normal.

(Equation 5.3)

Now,  to  fill  the  rest  of  the  rotation  matrix  it  is  necessary  to  eliminate  the

aforementioned degree of freedom, which can be done by forcing the projection of the

intersection pose X axis into the X-Y base coordinate system plane to coincide with its X
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axis. This can be achieved using the rotation matrix orthogonality characteristics resulting

in following steps,

(Equation 5.4)

(a)     (b)

 Figure 22: Gaze intersection pose generation process. (a) Correcting the plane normal. (b) Gaze intersection

pose definition by forcing the pose  X axis projection into the X-Y base plane to be coincident to its X axis.

Which can then be grouped together according to  (5.2).  Finally  since a similar

rotation matrix  exists that defines the camera coordinate system in the world, generated

from the pose estimation algorithm in section (4.2), then the desired pose becomes fully

defined, . 

Now,  considering  the  depth  noise  observed  in  the  section  (3.2.2),  there  is  a

minimum valid distance to the gaze line for which the resulting plane normal has acceptable

error. To test this, the previously described procedure is simulated using the observed depth

noise for a 2m distance from the camera. The intersection between a fake gaze line and this

plane is then estimated according to the defined procedure.

(a) (b) (c)

 Figure 23: Different views of a simulated gaze intersection pose estimation. Original plane generated from

the quaternion pose (0.118 - 0.299i - 0.024j – 0.946k). Dashed coordinate system represents the initial

orientation extracted from the PCA, and solid line coordinate system the refined orientation. 
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In the figure (23), the chosen points for the PCA can be visualized in red, and the

correct processing of the initial orientation estimation, according to the previously defined

method, can be observed. First, in (23.a) the plane normal flipping to the desired normal

opposed to the camera optical axis, dashed blue to solid blue. And in both (23.b) and (23.c)

the initial intersection pose is rotated to force its X axis, dashed red to solid red, to project

into the base coordinate system X axis.

From this the considered valid distance can now be modified to estimate the plane

normal error, for the depth noise considered which is respective to a distance of 2m to the

depth camera considering the noise observed in (3.2.2), relation to the valid distance used.

Also important to define the error convention used in the figure (24) which is the angular

error between the estimated plane and original plane normals. Averaging the error for each

distance with the results from 100 random planes, then the resulting average and standard

deviation  can  be  used  to  select  the  distance  that  provides  the  better  balance  between

minimum size of the objects that can be detected and the accuracy of the plane orientation

estimation.

(a)     (b)

 Figure 24: Angle error expected between the real planes and the estimated planes normals. (a) Definition of

the angle error between the original plane normal and the estimated plane normal, shaded plane. (b) Angular

error observed for the depth noise at 2m in relation to the distance to the gaze line used to estimated the plane

normal.

To verify  the accuracy of  the aforementioned process,  in  a  real  environment,  a

sound beep with a 5 second period is used to signal the user to change focus between a

predefined sequence of known locations, 3D points and expected normal. Which in this

experiment are the marked locations in the following figure (25).
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Figure 25: Photo of the arrangement for the goal pose accuracy experiment. The predefined

locations and sequencing marked in red.

It is also important to note that the error present in both the table (7) and the figure

(26) come as a consequence of the propagation of the gaze vector error with the errors

from the eye tracker pose estimation algorithm and the innate depth noise,  which also

affects the pose estimation. As such it is clear that the lowest error achievable is limited by

the stability of the depth values which has been previously been stated to have a standard

deviation of 0.5 to 2 cm at usual working distances. Considering the angular error expected

from the Pupil Software to be lower than 1º degree then the respective gaze error generated,

in an orthogonal plane at 2m, adds another ~1 cm error to the gaze pose position. The

results and errors presented in the following table correspond to the average obtained of the

steady-state for each of the predefined locations.

Table 7: Expected, observed and error position and orientation of the estimated gaze intersection pose.

#1 #2 #3

Position
Expected (m) (-0.584, -0.3, 0.144) (0, -0.6, 0) (0.35, 0, 0.3)

Result (m) (-0.566, -0.346, 0.145) (0.026, -0.609, 0.031) (0.44, 0.023, 0.287)

Error (m) (-0.018, 0.046, -0.001) (-0.026, 0.009, -0.031) (-0.094, -0.023, 0.003)

Orientation
Expected (0.584, 0, 0.812) (0, 0, 1) (0, -1, 0)

Result (0.506, 0.019, 0.862) (-0.018, -0.020, 0.998) (-0.026, -0.998, -0.058)

Error (0.088, -0.019, -0.050) (0.018, 0.020, 0.001) (0.026, -0.002, 0.058)

Monitoring of Ocular Data for Robotic Control 37



(a) (b) (c)

(d) (e) (f)

 Figure 26: Gaze intersection pose experiment results for 3 predefined locations. (a)(b)(c) Position in x, y and

z world coordinate system axis. (d)(e)(f) Resulting x, y and z components of the intersection pose Z axis

vector. With valid fixation period signaled in green and double blink occurance time in vertical solid red line. 

The previous results serve as a proof of concept for the generation of a pose, from

the  eye  gaze  and  point  cloud,  eligible  for  robot  control.  Although  errors  are  clearly

observable  in  these  results,  considering  the  direct  influence  of  both  the  depth  noise

observed in section (4.2) and the error of the eye tracker pose estimation algorithm, then

the stationary error seen above can be considered acceptable. A delay is also noticeable in

the  generated  pose,  however,  this  is  an  intended  result  of  a  higher  temporal  period

considered  for  the  pose  average,  in  this  case  the  used  period  for  pose  stability  was  2

seconds. Considering a lower period results in faster responses to the eye gaze however

considering the low  FPS of  the  depth frame this  parameter  is  increased.  Similarly  the

fixation detection also  has  a  slight  delay  which  also results  from the  temporal  window

considered, in this case a period of 1.0 seconds and a dispersion threshold of 0.03. 

The lower FPS from the depth frame also limits the system allowing only slow head

movements and even these will introduce extra errors. These are mitigated by halting any

head movements before fixation and goal selection is desired.

Now considering the resulting plane normal,  and the aforementioned method to

create a complete pose orientation then the desired goal pose can be constructed using a

simple transformation from the plane normal to the orthogonal and offseted desired pose.
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 5.2 Closest Marker Pose

Now, although the desired pose,  orthogonal to the observed local  plane with an

offset, can be extracted as demonstrated previously, the quality and stability depends on the

depth camera noise,  the amount of points considered for the gaze intersection with the

pointcloud and the accuracy of the camera pose estimation. It is also important to note that

the points used for the orientation estimation must be similar to a plane which is analogous

to define a limit of the curvature allowed for which a correct orthogonal pose can still be

extracted  correctly  this  means  that  using  the  previously  defined  algorithm  for  pose

generation from the gaze intersection with the pointcloud will  consider small objects as

noise.

A resolution to this problem is achievable by replacing the previously desired pose

estimation method,  with  a  list  of  predefined poses  from which the  correct  selection is

attained by using the detected Aruco markers. In other words, for each single or group of

aruco markers there is a predefined desired pose which can be chosen if the 3D intersection

point between the gazeline and the pointcloud is inside a fixed-size bounding box around

the  selected  marker.  Important  to  note  that  the  bounding  box  is  defined in  the  world

coordinate system orientation for static markers, and for groups of markers in their local

coordinate system, groups require +3 markers as demonstrated by the box in figure (29). 

Figure 27: Static markers in the world coordinate system, with corresponding bounding boxes and respective

plane normals.
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Figure 28: Static markers in the world coordinate system and respective predefined desired poses.

As  mentioned  an  additional  mobile  group  of  markers  were  placed  around  a

22x19x6cm box to test  for mobile objects.  The respective Aruco markers locations are

applied to a Horn algorithm, analogous to the method used in the section (4.2), to obtain

the pose of the box in the camera coordinate system and subsequently the box pose in the

world coordinate system.

(a)      (b)      (c)

 Figure 29: Photo and diagrams of the box used for the closest markers method. (a) Photo of the marked box.

(b) Diagram of the box, respective bounding box and local coordinate system. (c) Desired pose if box is

selected.

Since the selection procedure is based on bounding boxes then the position accuracy

of the gaze intersection with the point cloud observed previously in the table (7), can be

used to choose the limits of the bounding box. As such a bounding box of 15x15x15cm
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was chosen for the static world markers and a 32x29x16cm bounding box for the in the box

group of markers, which represents a 7.5cm acceptable error for each side. 

To verify the accuracy of the aforementioned method, the resulting gaze 3D point is

evaluated when the user double blinks while focusing in each of the static world markers.

This  is  repeated  several  times,  each  time  with  a  new  Pupil  calibration,  resulting  in  a

heatmap which can be visualized by projecting the resulting points into the world X-Y

plane which corresponds to the figure (30). The selection of the box is only displayed in the

final results in the pick-and-place demo.

The  previous  results  serve  as  demonstration  of  the  percentage  of  the  correct

selection of a marker, from this it is possible to infer the functionality of this approach

which considering the correct select of the desired marker, the respective pose can then be

feeded directly into the robot controller.

From the previous experiment, in which 70 selections of markers are attempted, 52

are accepted and the remaining 18 denied as these fall  outside the respective bounding

boxes, this results in a 74.3% selection success rate. Worth noting that the least success rate

is observed in the leftmost markers, according to the figure (30). These correspond to the

markers with least depth precision, according to the depth analysis in the section (3.2.2),

since they occur in the left side of the depth image. 
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Figure 30: World static marker selection heatmap projecting the 3d gaze points into the world X-Y plane. The

process is repeated 5 times for each of the world markers. Green points represent accepted selections and red

represent invalid selections using a bounding box of 15x15x15cm for each marker.



 6 Results

Considering  the  complete  system  as  defined  in  the  figure  (1),  then  with  the

individual modules as defined in the previous chapter the final results and robot control can

finally  be  executed.  Considering  the  extensive  testing  of  each  of  the  components,  this

chapter serves only as a demonstration of the complete system in operation.

Considering the different options for generating a desired pose then this chapter is

also divided accordingly resulting in 2 different applications, gaze extraction directly from

the pointcloud and pose generation from the static markers and the mobile box, which is

used in a pick-an-place demo.

 6.1 Gaze Intersection Pose

Using a similar workspace arrangement as seen in (25), with the vertical wall moved

to  accommodate  for  the  robot  movements.  Then  the  expected  results,  since  the  robot

control is external and assumed to have limited error, will be consistent with the former

results (26) with the main difference being a transformation to the observed plane pose to

obtain the previously mentioned robot goal which is desired to have its Z axis vector normal

to the plane and be offsetted by 15cm. This pose can then be directly feeded into the

internal robot control, when the user signals as such.

Identical to the experiment aforementioned, a 5 seconds period sound signals the

user to change focus according to predefined locations. Using the following image (31) as

reference, the sequence adopted follows the marked locations as #1 -> #2 -> #3. 

− Location  #1 with position (-0.496, -0.3, 0.266) and orientation (-0.584, 0,  -

0.812).

− Location #2 with position (0, -0.6, 0) and orientation (0, 0, -1).

− Location #3 with position (0.70, -0.3, 0.3) and orientation (-1, 0, 0).
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Figure 31: Photo of the arrangement for the final demo of the gaze intersection pose generation method.

Sequence of locations used for the final results marked in red.

Important  to  note  that  the  results  displayed  use  the  pose’s  Z  axis  vector  as  an

orientation indicator, since the rotation in the Z axis of the end-effector is redundant, since

it is produced in relation to the user world location.

(a) (b) (c)

(d) (e) (f)

 Figure 32: Gaze intersection pose final demo results for 3 predefined locations, includes the robot curves. (a)

(b)(c) Position in X, Y and Z world coordinate system axis of the gaze intersection, robot end-effector and

robot desired poses. (d)(e)(f) Resulting X, Y and Z components of the intersection, robot end-effector and

robot desired poses Z axis vector. With valid fixation period signaled in green and double blink occurance

time in vertical solid red line.
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It can be noted that, from the current robot pose curves presented in the figure (32),

the time span specified to the the robot controller is 5 seconds, this is used internally to

interpolated a desired pose trajectory. It is also important to note that the gaze intersection

pose is free to move about the workspace completely decoupled from the control loop,

though the double blink action signals the system to update the robot goal according to the

offseted pose to the gaze intersection pose. Hence in contrast to the previous results seen in

(5.1) where the gaze pose should coincide with the expected position, in this demo the

position is supposed to have an offset depending on the respective pose orientation. This

can mostly be seen in the Z axis position curves in the figure (32).

 6.2 Closest Marker Pose

Now, similar to the results obtained from the previous section (5.2), the robot goal

pose will be controlled by the eye gaze, however in this module the resulting robot pose is a

pose predefined for each of the world static markers and for the marker group placed on the

mobile box.

To demonstrate the final results, including the previously excluded mobile box, the

user is tasked with a sequence of movements. This task mimics a common pick-and-place

where the user is required to move the marked box to one of the static markers locations,

which results in following actions:

− Focus on the box and signal the system to move to the corresponding desired

pose, in relation to the current box pose;

− Robot control using the joystick to grab the box;

− Focus on a static world markers  and signal  the system to the corresponding

pose, while end-effector is grabbing the aforementioned box. 

For  testing  purposes  the  box  is  placed  in  a  known location  which  corresponds

approximately to a desired pose with (0.3, -0.35, 0.21) position and (1, 0, 0) orientation Z

axis vector.

Considering that the chosen marker is the marker identified with #7 in (27) and (28)

then the desired pose corresponds to the position (0,-0.6, 0.2) and orientation vector of (0,

0, -1).
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Figure 33: Photo of the arrangement for the final demo of the closest marker pose generation

method.

(a) (b) (c)

(d) (e) (f)

 Figure 34: Closest marker final demo results for a pick-and-place action, includes the robot curves. (a)(b)(c)

Position in X, Y and Z world coordinate system axis of the gaze intersection, robot end-effector and robot

desired poses. (d)(e)(f) Resulting X, Y and Z components of the intersection, robot end-effector and robot

desired poses Z axis vector. With valid fixation period signaled in green and double blink occurance time in

vertical solid red line.

The previous curve demonstrate the correct detection of the predefined pose for the

box,  according  to  the  its  expected  physical  location.  From  the  figure  it  can  also  be

visualized the user manipulation, blue shaded area, where the motion to grab the box is
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executed,  after  the  system placement  of  the  robot  pose  into  a  desirable  pose  for  such

operation. After the motion grabbing motion is completed and the box is manually moved

higher, to lower the probability of collisions, after which the user inputs a new pose through

the system, placing the box into the desired final pose.

As a  baseline  the  same experiment  is  also  executed  using only  joystick  inputs,

manual  telemanipulation,  resulting  in  the  figure  (35)  where  is  can  be  observed  the

corresponding manual approach takes longer to complete, around ~60 seconds averaged

from multiple tests and users, while the mixed operation takes ~40 seconds. Considering

that the joystick only has 3 simultaneous degrees of control then it is necessary to change

between control modes to access the 6 degrees of freedom and the additional end-effector

closure control.  This switching operation increases the required time and complexity of

each operation.

(a) (b) (c)

(d) (e) (f)

 Figure 35: Manual manipulation version of pick-and-place demo. (a)(b)(c) Position in X, Y and Z world

coordinate system axis of the robot end-effector pose. (d)(e)(f) Resulting X, Y and Z components of the robot

end-effector pose Z axis vector. With visualization of the current actions and modes while operating the robot.

Comparing just manual manipulation curves with the previous mixed manipulation,

the resulting time benefits become obvious. This is prevalent considering the wasted time

switching between the different modes to achieved the same result.
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 7 Conclusion

Reviewing the results, it is evident that this type of system has several limitations,

especially considering the heavy dependence on a correct detection of both the world and/or

the box markers as a prerequisite to the correct function for all of the detailed methods.

This  of  course  removes  the  most  important  particularity  of  the  system,  which  is  the

mobility of the eye tracker by confining it to a predefined and limited workspace.

Taking  into  consideration  that  the  control  methods  detailed  are  directed  to  the

assistive field, such as users with mobility disabilities, then these can be evaluated from an

functional point of view.

In regard to the gaze intersection pose method, the resulting accuracy is higher than

expected. It is important to highlight that the gaze pose is generated from a gaze vector with

an associated error which is further propagated by the errors from the eye tracker pose

estimation process and the intrinsic noise of the depth camera. The results obtained validate

the potential of this or derived control systems for some applications, however this method

functionality  is  extremely  limited,  considering  the  robot  used,  since  most  objects  with

suitable size, for correct orientation estimation of the goal pose, are too wide and can not be

grabbed by this robot’s end-effector. 

Considering the alternative, the closest marker pose, as a solution to the minimum

object  size  limitation of  the previous method,  then this  method functionality  is  higher.

However,  since it  has the markers detection as a prerequisite,  it  only works for objects

prepared  beforehand.  However  the  resulting  benefit  from  this  system  is  clear  when

considering the difference in the time spent executing the pick-and-place demo between

just manual telemanipulation and mixed manipulation, respectively ~60 and ~40 seconds.

The  comparison  between  these  control  systems  and  manual  manipulation  is  of

course biased. Since these compare a specifically design system with the generic manual

manipulation which has a unrestricted functionality. Nevertheless, the obtained results can

serve as a validation to this type of gaze guided control systems, and are compelling enough

to warrant further research.
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 7.1 Future Work

Since the base of the system is completed in this dissertation, most of the future

work resolves around the addition of extra functionality or the resolution of the problems

found  during  the  aforementioned  processes.  These  problems  are  mainly  the  high

computation cost, which results in low FPS, and the required preparation of the workspace

for the methods developed to work. From this the resulting suggestions are:

• Single marker orientation for the box, possible using the Aruco Library, however

the use of several markers is still advised, using the excess information to refine the

resulting orientation, reducing the possibility of errors and the effect of occlusions.

• Use of a SLAM algorithm for the estimation of the pose of Pupil. Since most of the

computation cost is derived from the use of the Aruco Library functions its removal

would result  in  higher  FPS.  However  this  SLAM approach should use only  the

depth stream, since this is not distorted and has higher frame rate, 90 FPS instead

of the RGB 30 FPS.

• The use of and object detection system, such as the YOLOv3 which is based on

neural networks and as real-time capable, to obtain the portions of the point cloud

which represent each of the detected objects. Finally the use of this portions and 3D

models of the respective objects to estimate the object orientation in the world.

Each object should also have a grasping motion in case they are selected using a

similar approach to this dissertation.
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A  ZEROMQ

ZeroMQ is a network library, allowing various transport types such as intra-process,

inter-process, TCP and multicast. From the ZeroMQ documentation: “We took a normal  TCP

socket,  injected  it  with  a  mix  of  radioactive  isotopes  stolen  from  a  secret  Soviet  atomic  research  project,

bombarded it with 1950-era cosmic rays, and put it into the hands of a drug-addled comic book author with a

badly-disguised  fetish  for  bulging  muscles  clad  in  spandex.  Yes,  ZeroMQ  sockets  are  the  world-saving

superheroes of the networking world.“

This library library allows for several  communication paradigms such as one-to-

many, many-to-one, or many-to-many. This generic asynchronous I/O model provides a

concurrency framework base for scalable multicore applications.

ZeroMQ library most basic communications are represented by a socket pair, REQ-

REP, which is is a one-to-one, client-to-server, with request-reply pattern, and the PUB-

SUB pattern where the subscriber is constantly waiting new messages. The latter is the basis

of the implementation in Pupil Software, where the communication backbone is a server

which receives messages relays said information in a one-to-many pattern to the available

subscribers.

Figure 36: Pupil Software IPC structure using ZeroMQ

library.

The use of this library allows, most importantly, for asynchronous communication,

automatic dropping of non consumed messages, garanted delivery of the complete message

or  dropping  of  said  message  if  this  is  not  possible  and  automatic  repair  of  broken

connections.
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B  MSGPACK

MsgPack is an efficient binary serialization format. This allows simple and compact

serialization of complex data structures without lost of its structure, it is not required to

have knowledge in advance of the data structure for its correct parsing since the data tags

compressed along side the actual data. The official implementation of this library has also

been ported to a variety of different programming languages.

This library has  several  methods for  either  pack() and  unpack() data  structures,

considering that only the latter is required then the conversion process from the bytes data

receive using the ZeroMQ Library can be unpacked resulting in a  msgpack::object, which

has list of tupples with the each of the compressed variables tag names and actual data.

From  this  msgpack::object the  conversion  to  the  desired  custom  type  requires  the

implementation of a convert() method .

Figure 37: Conversion process from bytes to custom

types, using msgpack library.

Example of the implementation of the non-intrusive convert() method

namespace msgpack {

MSGPACK_API_VERSION_NAMESPACE(MSGPACK_DEFAULT_API_NS) {

namespace adaptor {

template<>

struct convert<type> {

    msgpack::object const& operator()(msgpack::object const& o, type& msg)const{

        // Parsing the msgpack::object into the custom type msg           

        return o;

    }

};

}}}
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C  ROS OVERVIEW

ROS is  an  open-source,  meta-operating system direct  to  robotic  applications.  Ir

provides services expected in an operating system, including hardware abstraction, low-level

device control,  implementation of  commonly-used functionalities,  inter-process  message

transmission, and package management.

The ROS runtime is a peer-to-peer network of processes that are loosely coupled

using the  ROS communication infrastructure. This includes implementations of different

styles  of  communication  such  as,  RPC-style  using  the  ROS services,  asynchronous

streaming  of  data  using  topics,  and  data  storage  on  a  global  ROS parameter  server.

Important to note that ROS is not a realtime framework.

The ROS can be divided mainly in the following components:

Nodes –  Modular  processes for  computation,  these can be seen as  functions  in

which the inputs are the messages to which each node has subscribed;

Master –  The  actual  server  which  takes  has  a  list  of  all  the  current  ROS

components  in use and takes care of the connection between each of the components as

required, it provides lookup information for the nodes atempting communication, similar to

a DNS server.

Messages – Data structures passed from node to node, can either be generic ROS

messages, or custom generated messages;

Parameter Server – Global data storage of key elements of run-time configurations

for the nodes;

Topics – Name identifying the origin or destination of the ROS messages, these can

be used in a Many-to-Many communication paradigm. A node can publish a message to a

specific topic, and likewise, a node can also receive a message from said topic. Only the

Master  has knowledge of the run-time topics,  and a  connection request  is  required for

nodes to use a specific topic name for communication.

Services – Request/reply communication, used as alternative to the ROS Topics.
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Since the ROS is simply a server connecting different processes, then each node has

to copy/fill the desires messages with data before publishing, which means a undesired copy

information that can, especially in high throughpu data, become a limiting factor. To resolve

this issue a  ROS package,  nodelets, was introduced. These add an additional node type

where  the  previous  nodes  are  meshed  together  into  the  same  process  eliminating  the

required message copy step. These require only a specific code structure and knowledge of

the name of the parent process/nodelet and are highly advised for image processing.  

A nodelet is simply a base class which has the necessary methods for intra-process

communication by spawning threads which runs a specific  init() method, from which is

possible to request connection to other nodes/nodelets, through the ROS topics, and iterate

through each of the respective callbacks.

Figure 38: Example of ROS communication structure using both nodes and nodelets.

Example of the implementation of a nodelet class

namespace package_name {

class NodeletName : public nodelet::Nodelet {

private:

    ros::Subscriber sub_;

public:

    NodeletName(){}

    ~NodeletName(){}

    virtual void onInit() {

        ros::NodeHandle nh = getNodeHandle();

        sub_ = nh.subscribe("/topic_name", 1,

                            package_name::NodeletName::callbackFun, this);

    }

    void callbackFun(/* message_type */) {

        // Process received message

    }

};

}

PLUGINLIB_EXPORT_CLASS(package_name::NodeletName, nodelet::Nodelet);
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E  INSTALLATION REQUIREMENTS

• Installation of the Linux 16.04;

• Installation of the required kernel version;

$ sudo apt-get install linux-image-generic-lts-xenial

$ sudo reboot  # Choose kernel version 4.4.0-135-generic in boot menu

• Installation of ROS Kinetic, as per online instructions;

• Installation of the librealsense;

$ sudo apt install libusb-1.0-0-dev pkg-config libglfw3-dev

$ cd ~/ && git clone https://github.com/IntelRealSense/librealsense.git

$ cd librealsense && git checkout v1.12.1

$ mkdir build && cd build

$ cmake .. -DBUILD_EXAMPLES:BOOL=false

$ make -j4 && sudo make install

• Patch linux kernel;

$ sudo cp config/99-realsense-libusb.rules /etc/udev/rules.d/

$ sudo udevadm control --reload-rules && udevadm trigger

$ sudo apt-get install libusb-1.0-0-dev

$ sudo apt-get install linux-headers-generic build-essential

$ git clone git://kernel.ubuntu.com/ubuntu/ubuntu-xenial.git --depth 1

$ cd ubuntu-xenial

$ sudo patch -p1 < ../scripts/realsense-camera-formats_ubuntu16.patch

$ sudo cp debian/scripts/retpoline-extract-one scripts/ubuntu-retpoline-extract-

one

$ cd .. && sudo ./scripts/patch-uvcvideo-16.04.simple.sh

• Checking correct Intel Realsense camera detection;

Before connecting the camera usb, clean the kernel log.
$ sudo dmesg –-clear

Connect the camera and check the kernel log. Output should be similar to:
$ dmesg

[   12.933984] usb 2-1.3: new SuperSpeed USB device number 5 using xhci_hcd

[   12.952802] usb 2-1.3: New USB device found, idVendor=8086, idProduct=0a80

[   12.952806] usb 2-1.3: New USB device strings: Mfr=1, Product=2, 

SerialNumber=3

[   12.952809] usb 2-1.3: Product: Intel RealSense 3D Camera R200

[   12.952811] usb 2-1.3: Manufacturer: Intel Corp

[   12.952812] usb 2-1.3: SerialNumber: SN_2461010333

Where it  is possible to see correct detection of the camera information. Similar

approach with:
$ usb-devices | grep Product

(…)

S:  Product=Intel RealSense 3D Camera R200

(…)
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F  PICK AND PLACE DEMO PHOTOS

Figure 39: Video frames of the Pick and Place demo manual telemanipulation.
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Figure 40: Video drames of the Pick and Place demo mixed manipulation.
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