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Resumo

Estrelas de neutrões constituem uma área de estudo fascinante, não apenas pelas in-

úmeras incógnitas em torno da sua composição interna, mas também por protagonizarem

alguns dos fenómenos astrofísicos mais misteriosos que se observa. Fenómenos extremos

tais como mudanças bruscas no frequência de rotação, glitches, e as erupções expon-

tâneas de enormes quantidades de energia, flares, acreditam-se estar associados à região

da crosta das estrelas de neutrões. Estrelas de neutrões possuem campos magnéticos

intensos e podem exibir frequências de rotação extremamente altas. Estes dois atributos

fazem com que certas considerações de simetria, deixem de ser válidas, o que exige um

tratamento que tenha em consideração todas as particularidades da relatividade geral.

Neste trabalho pretende-se estudar os efeitos da rotação e de campos magnéticos intensos

nas propriedades da crosta de estrelas de neutrões. Para isso recorremos à biblioteca,

em código aberto, de relatividade numérica LORENE.

É sabido que, devido aos efeitos de campos magnéticos intensos, a transição da região

da crosta para o núcleo é marcada por uma zona intermédia onde coexiste matéria

estável e instável, à que nós chamamos de crosta alargada. Neste trabalho pretendemos

perceber de que forma esta região se relaciona com as propriedades globais da estrela, e

de que forma depende dos parâmetros da equação de estado. Em particular, pretendemos

averiguar se a crosta, incluindo a região alargada, contém a zona onde a força de Lorenz

muda de sinal. Para além disso, pretendemos verificar se o máximo da força de Lorenz

ocorre na região da crosta. Acreditamos que ao responder à estas perguntas, poder-se-ão

elucidar alguns aspetos relativos aos fenómenos extremos típicos da crosta.
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Abstract

Neutron stars provide an exciting field of study, not only for the many open questions

regarding their internal composition, but also for some of the most puzzling astrophysical

phenomena, not observed in other types of stars. Extreme phenomena such as rapid

changes in the rotational frequency, glitches, and the sudden release of huge amounts

of energy, flares, are believed to be associated with the crust region of neutron stars.

Neutrons stars are highly magnetized objects and can also show very high rotation

frequencies. Those two features restrict some of the symmetry considerations that we

could take advantage of, and claim for a fully general relativistic treatment. In this

thesis we study the effects of strong magnetic fields and of rotation on the properties

of neutron stars’ crust under a fully general relativistic framework. In order to achieve

that, we make use of the open source numerical relativity library LORENE.

It is understood that, due to the effects of strong magnetic fields, the transition from

the crust region to the core is characterized by an intermediate region where stable and

unstable matter interchange, that we here call the extended crust. In this work we try

to understand how this region relates to the global properties of the star, and how does

it depend on the parameters of the equation of state. In particular we ascertain whether

the crust, equipped with its extended region, contains the region where the Lorenz force

changes sign. In addition to that, we ask whether the Lorenz force takes a maximum

inside the crust region. We believe that by answering those questions we might shed

some light onto the extreme phenomena associated with the crust region of neutron stars.
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Chapter 1

Introduction

[...] the density of matter becomes so great that atomic nuclei come in close

contact, forming one giant nucleus.

Lev Landau

1.1 Neutron Stars

Neutrons stars are the remnants of the collapse of a giant star: from a star with more

than eight solar masses and a radius bigger than 108 km, emerges a smaller star of 10

km, with a mass comparable to that of our Sun. Matter inside these stars reach the

highest values of density permitted in Nature – neutron stars are 1014 times denser than

Earth.

In addition to their extreme densities, neutron stars also posses strong magnetic

fields, ranging from 108 – 1015 G and can rotate at frequencies up to at least 700 Hz

[3, 4].

The structure of neutron stars can be subdivided into five regions: the atmosphere,

the outer crust, the inner crust, the outer core and the inner core (cf. Figure 1.1).
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2 1.1. Neutron Stars

Figure 1.1: Structure of a neutron star. Figure taken from [1].

The atmosphere is a thin layer of plasma that varies from some ten centimetres to

a few millimetres. The outer crust extends for some hundred meters, starting from the

atmosphere bottom layer to the region where the density, ρ, is is equal to the density at

which free neutrons drip from nuclei (neutron drip density) : ρ = ρND ≈ 4 · 1011 g cm−3.

The inner crust occupies most of the crust region, with a thickness of about one kilometre.

It starts from ρND to about one half of the saturation density of nuclear matter, ρ0, the

density of nucleon matter in heavy atomic nuclei. In the inner crust, just below nuclear

saturation density, nuclear matter may be found in a variety of geometrical shapes, other

than the spherical one [5]. These different phases of matter are called pasta phases and

include gnocchi-like semi-spherical geometries, spaghetti-like rods, and lasagna-like slabs

– hence the name pasta.

The outer core comprehends densities from approximately 0.5ρ0 to ∼ 2ρ0. This

region is populated by neutrons, protons , electrons and possibly muons . The electrons

and muons form almost ideal Fermi gases, whilst neutrons and protons form a strongly



interacting Fermi liquid, that might as well be in a superfluid state. The inner core starts

from around 2ρ0. There is no yet a consensus regarding its internal composition. The

many hypothesis include the presence of hyperons, pion condensates, kaon condensates

and even quark matter [1].

1.2 Outline

In this thesis we focus on the effects of strong magnetic fields and rotation on the

properties of the crust. We start, in Chapter 2, by presenting the model that we use to

describe the neutron star matter. We also discuss the formalism from which we obtained

the range of densities that correspond to the crust-core transition, when strong magnetic

fields are involved.

The calculation of rotating highly magnetized stars demands a fully general relativistic

treatment. In Chapter 3 we introduce the basic concepts of numerical relativity. In

Chapter 4 we present a numerical relativity framework for calculations of rotating and/or

magnetized stars.

Finally, in Chapter 5 we present the results of our work. These results were obtained

through a set of numerical simulations performed with the open access library LORENE

[6].
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Chapter 2

Neutron Star Matter

The astrophysical properties of the star, such as radius and mass, are obtained by

solving Einstein’s equations. Our solution will depend on the model that we use to

describe the matter inside the star, i.e., the particles that we suspect to exist there

and their interactions. Such information is contained in the form of a thermodynamical

equation relating state variables of the system – the equation of state (EOS). In the

case of neutron star matter, such equation is normally written in the form p (ε) or ε (p),

where p is the pressure and ε is the energy density. Supplied with an EOS, one can

then construct the energy-momentum tensor that acts as source for the gravitational

field. When spheric symmetry is applicable (when we ignore both rotation and magnetic

fields), we can use our EOS to obtain the mass and radius of the star by solving the,

much simpler, Tolman–Oppenheimer–Volkoff (TOV) system of equations:


dp
dr = − (ε+p)(m+4πr3p)

r(r−2m)

dm(r)
dr = 4πr2ε

(2.1)

In this chapter we will discuss the main properties of the EOS that we have used in

our calculations. For the description of the low density region (the outer crust) we use

the model devised by Baym, Pethick, and Sutherland (BPS) [7]. Since there is relative

consensus on the description of the outer crust, the many neutron star models available

5



6 2.1. The σ − ω model: an introduction to relativistic mean field models

on the market differ on their approach towards the inner crust and core. Therefore, we

shall not delve into the BPS model but, rather, will highlight some of the properties of the

unified model for the inner crust and core that we use here – the NL3ωρ model. Lastly,

we shall discuss briefly the effects of the inclusion of magnetic field on the crust-core

transition region.

2.1 The σ − ω model: an introduction to relativistic mean field

models

The NL3ωρ model that we use in our calculation is a more sophisticated version of the

σ−ω, the simplest of the relativistic mean field models. Therefore, we find it pedagogical

to discuss it here with some depth, in order to introduce some general techniques that

are used in more complicated models and for construction of an equation of state in

general. Our discussion follows that of [8], which we recommend for more details.

The σ − ω model is constructed using the fields of 4 particles: the nucleons (protons

and neutrons), ψ, a scalar meson, σ, and the omega vector meson, ωµ. The Lagrangian

of the theory is simply the sum of the free Lagrangians of each fields plus the interaction

Lagrangian:

L = Lnucl + Lσ + Lω + Lint , (2.2)

where,

Lnucl = ψ
(
i/∂ −m

)
ψ, with ψ ≡

ψp
ψn

 , (2.3)

Lσ = 1
2
(
∂µ∂

µσ −m2
σσ

2
)

(2.4)

Lω = −1
4ωµνω

µν + 1
2m

2
ωωµω

µ (2.5)

Lint = gσσψψ − gωωµψγµψ. (2.6)



7 2.1. The σ − ω model: an introduction to relativistic mean field models

In the equations above, all fields are function of x (x ≡ xµ ≡ (t, x, y, z) ). ψp

and ψn are, respectively, the proton and neutron fields. ωµν is the tensor defined as

ωµν = ∂µων − ∂νωµ.

The quantities gσ and gω are the coupling constants of σ and ωµ to the nucleon

fields. mσ and mω are their respective masses, whilst m is related to the mass of the two

nucleons:

m =

mp 0

0 mn

 (2.7)

.

2.1.1 Dynamical equations

The dynamical equations for each field can be obtained from the Euler-Lagrange

equation1:

∂µ

(
∂L

∂ (∂µφ)

)
− ∂L
∂φ

= 0 , (2.8)

where φ stands for any of the fields. By doing this we obtain the three following equations:

(
� +m2

σ

)
σ (x) = gσψ (x)ψ (x) (2.9)(

� +m2
ω

)
ωµ (x)− ∂µ∂νων (x) = gωψ (x) γµψ (x) (2.10)

[γµ (∂µ + gωω
µ (x))− (m− gσσ (x))]ψ (x) = 0 (2.11)

2.1.2 Mean-field approximation

The mean field approximation consists in replacing the meson fields (in this case σ

and ω) by their mean values measured in the ground state:

1� is the d’Alembertian operator defined as � := ∂µ∂µ.



8 2.1. The σ − ω model: an introduction to relativistic mean field models

σ → 〈σ〉 ; ωµ → 〈ωµ〉.

According to Equations (2.9) and (2.10), these values are obtained by solving two

differential equations where ψψ and ψγµψ act as source currents. In uniform static

matter these currents are independent of x and, therefore, the expected values of the

meson fields are also independent of x (hereafter we are going to represent these expected

values simply as σ and ωµ). In light of this, the derivatives of the meson fields vanish

from their respective dynamical equations:

m2
σσ = gσ〈ψψ〉 (2.12)

m2
ωωµ = gω〈ψγµψ〉 (2.13)

As for the fermionic fields, the uniform static matter assumption means that we can

treat the meson fields appearing in Equation (2.11) simply as constants. By doing so,

we see that Equation (2.11) is the Dirac equation with a redefined mass term and a shift

in the energy eigenvalue. Therefore, the fermion fields are momentum eigenstates:

ψ (x) = ψ (k) e−ikµxµ , (2.14)

so that we obtain

[γµ (kµ + gωω
µ)− (m− gσσ)]ψ (k) = 0. (2.15)

If we introduce the following definitions
Kµ = kµ − gωωµ

m∗ (σ) = m− gσσ,
(2.16)

we can rewrite Equation (2.11) as
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(
/K −m∗

)
ψ (k) = 0 , (2.17)

which has a more familiar form. This equation is verified if

(
/K −m∗

) (
/K +m∗

)
= 0⇒ K0 =

√
K2 +m∗2 . (2.18)

With Equations (2.16) and (2.18) we can now write the nucleon eigenvalues for

particle and antiparticle :


e (k) = E (k) + gωω0

e (k) = E (k)− gωω0

, (2.19)

with

E (k) =
√

(k − gωω)2 + (m− gσσ)2 . (2.20)

2.1.3 Evaluating the source currents

In order to calculate the currents that appear in Equation (2.12) and (2.13), one

could write the nucleon spinors explicitly and perform the integration. Here we will

exemplify a less cumbersome method, which does not require construction of the spinors.

This method can also be applied in more complicated models, such as the NL3ωρ that

we will discuss afterwards.

First we note that a single nucleon state is characterized by the momentum k and

its quantum numbers (in this case, the spin and isospin projection), κ. Following the

same notation as in [8], we will represent the expectation value of a single-particle state

as
(
ψΓψ

)
kκ
. The expectation value of this same operator in the ground state of the

many-particle system is
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〈ψΓψ〉 =
∑
κ

∫ dk
(2π)3

(
ψΓψ

)
kκ

Θ [µ− ε (k)] , (2.21)

where Θ is the Heaviside step function and µ is the chemical potential.

The trick consists in finding the single-particle expectation value of any operator

from the Hamiltonian. From Equation (2.15) we identify the Dirac Hamiltonian as

HD ≡ k0 = γ0 (γk − gωγµωµ −m∗) . (2.22)

The single-particle expectation value of the Hamiltonian is

(
ψ†HDψ

)
kκ

= K0 (k) = E (k) + gωω0 . (2.23)

Derivating by an arbitrary variable of the Hamiltonian ξ we obtain

∂

∂ξ

(
ψ†HDψ

)
kκ

=
(
ψ†
∂HD

∂ξ
ψ

)
kκ

+ k0 (k) ∂

∂ξ

(
ψ†ψ

)
kκ

=
(
ψ†
∂HD

∂ξ
ψ

)
kκ

.

(2.24)

The second term in Equation (2.24) vanishes because ψ (k) is an eigenfunction. Our

task is now to find the right ξ such that ∂HD
∂ξ = Γ.

For example, if we wanted to calculate 〈ψ†ψ〉, then ξ should be ω0. In this case,

∂

∂ω0

(
ψ†HDψkκ

)
=
(
ψ†
∂HD

∂ω0
ψ

)
kκ

⇔ gω =
(
ψ†
∂HD

∂ω0
ψ

)
kκ

⇔ gω =
(
ψ†gωψ

)
kκ

⇔
(
ψ†ψ

)
kκ

= 1 ,

(2.25)

and, from Equation (2.21), we obtain the baryon density:
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ρ = 〈ψ†ψ〉 = 4
∫ k

0

dk
(2π)3 Θ [µ− ε (k)] . (2.26)

The calculation of other expectation values are not so trivial, but they follow the

same procedure. In the end we obtain



〈ψγiψ〉 = 4
∫ dkidkjdkk

(2π)3

(
∂
∂ki
E (k)

)
Θ (µ− ε (k)) = 0, repeated indices do not imply sum

〈ψψ〉 ≡ ρs = 2
π

∫ k
0 k

2dk m−gσσ√
k2+(m−gσσ)2

〈ψ†ψ〉 ≡ ρ = 4
∫ k

0
4πk2 dk
(2π)3 = 2k3

3π2

(2.27)

2.1.4 Obtaining the equation of state

The results that we obtained for the source currents allow us to rewrite the dynamical

equations for the meson fields as



gσσ =
(
gσ
mσ

)2 2
π2
∫ k
0 k

2dk m−gσσ√
k2+(m−gσσ)

gωω0 =
(
gω
mω

)2
ρ

m2
ωωk = 0

(2.28)

In order to obtain the equation of state we are going to write the energy density,

ε, and pressure, p as function of parameters of the model. We achieve this by first

computing the energy-momentum tensor from the Lagrangian that describes our model:

Tµν = ∂L
∂ (∂µφ) − η

µνL, (2.29)

where φ stands for each of the fields in our theory. We model the stellar matter as a

perfect fluid, thus the energy-momentum tensor can also be written as
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Tµν = −pηµν + (p+ ε)uµuν . (2.30)

The expressions for ε and p are obtained by equating Equation (2.29) with Eq. (2.30):

ε = −〈L〉+ 〈ψγ0k0ψ〉 (2.31)

p = 〈L〉+ 1
3〈ψγikiψ〉 (2.32)

After calculating the expectation values in Equations (2.31) and (2.32) we obtain the

integral equations for ε and p, which, together, form our equation of state.

2.2 The NL3ωρ model

The model that we are going to use in our calculations includes a series of improve-

ments over the ω− ρ [9]. The NL3ωρ model satisfies a series of experimental constraints

for nuclear matter [10], including those of the recent gravitational waves event GW170817

[11]. First, the Lagrangian of the scalar field σ is modified to include self-interaction

terms, as proposed by [12]. This allows a better description of the compression mod-

ulus and nucleon effective mass at saturation density. These self-interaction terms are

associated with the coupling constants κ and λ.

Lσ = 1
2
(
∂µσ∂

µσ −m2
σσ

2
)
− κ

3!σ
3 − λ

4!σ
4 (2.33)

We also include a new field – the ρµ meson – which allows for a better description of

nuclear asymmetric matter [8]:

Lρ = −1
4BµνB

µν + 1
2m

2
ρρµρ

µ , (2.34)

where
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Bµ = ∂µρν − ∂νρµ − gρ (ρµ × ρν) , (2.35)

and gρ is a constant. The field ρµ is a three component vector field, ρµ = (ρµ1 , ρ
µ
2 , ρ

µ
3 ),

whose components share the same mass, but have different isospin charges (±1, 0). Al-

though, as discussed in [8], only the 0-isospin component, ρµ3 , is relevant for the description

of the ground state, since the components have vanishing mean values.

The ω − ρ term, from which the model gets its name, is introduced to improve the

description of the density dependence of the symmetry energy above the saturation

density [13]:

Lωρ = Λωρg2
ωg

2
ρ

(
ρλ · ρλ

)
(ωµωµ) . (2.36)

Finally, we include the contribution of the electrons, whose importance in the de-

scription of the stellar matter was noted by [14]:

Le = ψ [γµ (i∂µ + eAµ)−me]ψe . (2.37)

In this model the mass matrix of the nucleons must be change to m∗ = m − gσσ .

Plus, the derivative operator that appears in the nucleon Lagrangian must be replaced

by the following covariant derivative:

iDµ = i∂µ − gωωµ −
gρ
2 τ · ρ

µ − eAµ 1 + τ3
2 , (2.38)

where e stands for the electron charge and τ = (τ1, τ2, τ3) is the vector containing the

Pauli matrices:

τ1 =

0 1

1 0

 ; τ1 =

0 −i

i 0

 ; τ1 =

1 0

0 −1

 . (2.39)
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The full Lagrangian of the theory is going to be the sum of all contributions that

we have discussed above and the construction of the equation of state follows the same

techniques exemplified for the σ − ω model.

L = Lnucl + Lσ + Lω + Lρ + Lωρ + Le (2.40)

It is important to note that we do not include the purely electromagnetic contribution

LA = −1
4FµνF

µν on the equations of state that we use in our LORENE simulations.

However, this contribution is important when we study the instability region of the inner

crust, as we discuss next.

In this work we focus on two parameterizations of the NL3ωρ model: one with the

value of the slope of the symmetry energy, L, equal to 55 MeV and another with L = 88

MeV. The parameters for each case are presented in Table 2.1.

Table 2.1: Parameters of the NL3ωρ model.

Parameter Value

mσ (MeV) 508.194

mω (MeV) 782.5

mρ (MeV) 763

gσ 10.217

gω 12.868

κ (fm−1) 20.868

λ -173.31

gρ, for L = 55 MeV 11.2756

gρ, for L = 88 MeV 9.5363

gωρ, for L = 55 MeV 0.03

gωρ, for L = 88 MeV 0.01
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2.3 Inner crust: collective modes and instability region

In this section we summarize the method described in [2], and based on the formal-

ism discussed in [15], that allows for the calculation of the crust-core transition region

taking in account the effects of strong magnetic fields. In a nutshell, this is achieved

by considering small oscillations around the equilibrium state of the fermion and meson

fields; the dispersion relation of the resulting collective modes is then obtained from an

eigenvalue problem; the spinodal section for a given wave vector k corresponds to the

region of the space (ρp, ρn) for which ω = 0, where ω is an eigenmode.

We will consider the same model described by the Lagrangian in Eq.(2.33), except

that now we include the purely electromagnetic contribution LA:

L = Lnucl + Lσ + Lω + Lρ + Lωρ + Le + LA/, . (2.41)

We will consider a static electromagnetic field with Aµ = (0, 0, Bx, 0), so thatB = Bẑ

and ∇ ·B = 0. In the presence of a magnetic field, the nucleon Lagrangian becomes

Lnucl = ψi

[
γµiDµ −m∗ − 1

2µNκbσµνF
µν
]
ψ, (2.42)

where µN is the nuclear magneton and σ = i
2 [γµ, γν ]. κb mesures the strenght of the

interaction of the nucleons (b stands for either n or p) with the anomalous magnetic

moment (AMM).

In this formalism, the composition of matter is described by a distribution function:

f (r,p, t) = diag (fp, fn, fe) , (2.43)

where the labels p, n and e stand, respectively, for proton, neutron and electron. The

distribution function is defined as a function whose integral over the phase space gives

the number density of particle, i.e.,
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ni (r, t) = 1
(2π)3

∫
fid3p ; i = n,p, e. (2.44)

The distribution function obeys the following evolution equation (Vlasov equation):

∂fi
∂t

+ {fi, hi} = 0 i = n, p, e, (2.45)

where {, } denotes the Poisson brackets and h is the one body Hamiltonian defined as

h = diag (hp, hn, he). As consequence of inclusion of the magnetic field, these quantities

are quantized [16] [17]:

hi = εi + V i0, εi =
√(
piz
)2 +m2

i , i = p, e (2.46)

hn = εn + Vn0 , εn =
√

(pnz )2 +
(
εn⊥ − sµNknB

)2 (2.47)

where we have introduced the following definitions:

pi = p− V i, (2.48)

Vnµ = gωωµ −
gρ
2 ρµ, (2.49)

Vpµ = gωωµ + gρ
2 ωµ + eAµ, (2.50)

Ve
µ = −eAµ, (2.51)

mp =
√
m∗2 + 2νeB − sµNκpB, (2.52)

me =
√
m∗2e + 2νeB, (2.53)

εn⊥ =
√
m∗2 +

(
pn⊥
)2
. (2.54)

The discrete character of the Hamiltonian is introduced via the quantity ν =

n + 1
2 − sgn (q) s2 = 0, 1, 2, . . . , which enumerates the Landau levels of the fermions

with electric charge q, and spin projection s (along the direction of the magnetic field,

ẑ).
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As before, the evolution equations for the fields are obtained from Euler-Lagrange

equations:

∂2φ

∂t2
−∇2φ+m2

σφ+ κ

2φ
2 + λ

6φ
3 = gs [ρps + ρns ] , (2.55)

∂2ωµ
∂t2

−∇2ωµ +m2
ωωµ + 2Λωg2

ωg
2
ρρ3µρ

3µωµ = gω
[
jpµ + jnµ

]
, (2.56)

∂2ρ3µ
∂t2

−∇2ρ3µ +m2
ρρ3µ + 2Λωg2

ωg
2
ρωµω

µρ3µ = gρ
2
[
jpµ − jnµ

]
, (2.57)

∂2Aµ
∂t2

−∇2Aµ = e
[
jpµ − je

µ

]
, (2.58)

where the scalar densities and source currents for the fields are given by the following

expressions:

ρps (r, t) = eB
(2π)2

∑
ν,s

∫
dpzfp

mpm
∗

(mp + sµNκpB) εp
, (2.59)

ρns (r, t) = 1
(2π)3

∑
s

∫
d3pfn

1− sµNκnB√
m∗2 + p2

⊥

 m∗

εn
(2.60)

ji0 (r, t) = ρi = eB
(2π)2

∑
ν,s

∫
fi (r,p, t) dpz, i = p, e, (2.61)

jn0 (r, t) = ρn = 1
(2π)3

∑
s

∫
fn (r,p, t) d3p, (2.62)

ji (r, t) = eB
(2π)2

∑
ν,s

∫
fi (r,p, t) p

i
z

εi
dpz, i = p, e, (2.63)

jn (r, t) = 1
(2π)3

∑
s

∫
fn (r,p, t) d3p×

pnz
εn

+ pn⊥
εn

1− sµNκnB√
m∗2 +

(
pn⊥
)2
 (2.64)

The ground state at zero temperature is characterized by the neutron, proton and

electron Fermi momenta, P iF (i = p, n, e), and the distribution function (Equation (2.43))

now reads

f0 (r,p) = diag
[
Θ
(
P p2F − p

2
)
,Θ
(
Pn2
F − p2

)
,Θ
(
P e2
F − p2

)]
, (2.65)
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where

P pF =
√
εpF −m2

p, (2.66)

PnF =
√
γ −

√
γ2 − β, (2.67)

P e
F =

√
εeF −m2

e , (2.68)

with

γ = α+ 2 (sµNκnB)2
(
1− x2

)
, (2.69)

α = εn2
F −m∗2 − (sµNκnB)2 , (2.70)

β = α2 − 4 (sµNκnB)2m∗2 (2.71)

In Equation (2.69), x = cos θ′, where θ′ is the polar angle. In the ground state the

evolution equations (2.55) – (2.58) reduce into the followings:



m2
sφ0 + κ

2φ
2
0 + λ

6φ
3
0 = gσρ

(0)
s ,

m2
ωω

(0)
0 + 2Λωg2

ωg
2
ρω

(0)
0 ρ

(0)2
0 = gωj

(0)
0 ,

m2
ρρ

(0)
0 + 2Λωg2

ωg
2
ρω

(0)2
0 ρ

(0)
0 = gρ

2 j
(0)
3,0 ,

ω
(0)
i = ρ

(0)
i = A

(0)
0 = A

(0)
i = 0,

(2.72)

where ρ(0)
s , j(0)

3,0 and j(0)
0 are the corresponding scalar density, nuclear density and isospin

density, respectively. In the equations above, and throughout the rest of this chapter,

we have omit the subscript labelling the third component of the ρµ field.

The collective modes are obtained by considering small deviations from the equilib-

rium state:
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fi = f0i + δfi,

φ = φ0 + δφ,

ω0 = ω
(0)
0 + δω0, ωi = δωi,

ρ3 0 = ρ
(0)
3 0 + δρ3 0, ρ3 i = δρ3 i,

A0 = A0, Ai = δAi.

(2.73)

The fluctuations δfi are obtained from a generating function S (r,p) = diag (Sp, Sn, Se)

in the following way:

δfi = {Si, f0 i} = −{Si, p2}δ
(
P i2F − p2

)
. (2.74)

The components of the generating function Si obey the following evolution equation

[18] :

∂Si
∂t

+ {Si, h0i} = δhi, i = p,n, e, (2.75)

where hi are the one-body Hamiltonians for the proton, neutron and electron states at

equilibrium.

We are going to consider longitudinal perturbations with momentum k, along the

direction of the magnetic field, and frequency ω. This can be introduced through the

following ansatz:



Sj (r,p, r)

δφ

δξ0

δξi


=



Sjω (p, cos θ)

δφω

δξ0ω

δξi ω


e(ωt−kr); j = p,n, e, (2.76)

where j = p,n, e, ξ stands for each of the vector fields (ξ = ω, ρµ, A) and θ is the angle

between p and k.
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With this ansatz, δωxω = δωy ω = 0, δρxω = δρy ω = 0 and δAxω = δAy ω = 0.

Therefore we can simplify the notation by calling δωz ω = δωω, δρz ω = δρω and δAz ω =

δAω.

Replacing the ansatz into Equation (2.75) we obtain a set of 7 evolution equations

for each of the components of S (r, t) and for the scalar and vector fields [2]. This

set of equations can be rearranged into a set of 5 independent equations of motion in

terms of the amplitudes of the proton and neutron scalar density fluctuations, Apsω,ν,s and

Ansω,s, and in terms of the amplitudes of the proton, neutron and electron vector density

fluctuations, Apω,ν,s, Anω,s, Aeω,ν,s, respectively.

The set of 5 equations for the amplitudes of the scalar and vector density fluctuations

can be written in a matrix form [2]:



a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 0

a41 a42 a43 a44 0

0 a52 0 0 a55





∑
ν,sA

ps
ω,ν,s∑

ν,sA
p
ω,ν,s∑

sA
ns
ω,s∑

sA
n
ω,s∑

ν,sA
e
ω,ν,s


= 0 (2.77)

The dispersion relation for the collective modes are then obtained by equating the

determinant of the coefficients matrix to zero.

The density fluctuation of each species can be written in terms of respective ampli-

tudes in the following way:


δρn
δρp

= Anω,s
eBApω,ν,s

,

δρe
δρp

= Aeω,ν,s
Apω,ν,s

.

(2.78)

The set of points in the (ρp, ρn) space, for a given k, for which ω = 0 constitutes

the dynamical spinodal surface. This surface defines the frontier of stable (outside the

surface) and unstable (inside the surface) matter. The inclusion of strong magnetic fields

induces the comb-like pattern of the spinodal surface (Figure 2.1), which is associated

with the Landau levels of the energy eigenvalues.
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Figure 2.1: Dynamical spinodal for NL3ωρ, a moment transfer of k = 75 MeV, with AMM (green)

and without AMM (red) , for B = 4.41× 1017 G. The β equilibrium curve is represented in blue.

Figure taken from [2]

As we said before, we are interested in this formalism to calculate the crust-core

transition taking into account the effects of magnetic fields. The densities at which this

transition occurs is given by the intersection of the (ρp, ρn) curve at β equilibrium with

the spinodal. For B = 0 this intersection corresponds to a single point, as can be seen in

Figure 2.1, where the spinodal for B = 0 is represented by a black line. For B 6= 0, we

can see that the β equilibrium line crosses the spinodal (green lines for calculations with

anomalous magnetic moment, AMM, and red lines without AMM) multiple times before

reaching a zone where there are no more intersections. Physically, this means that before

one reaches a zone of stable matter, there is an intermediate region where stable and

unstable matter interchange (cf. Figure 2.2) . We call this region the extended crust-core

transition zone. Throughout this work ρ1 stands for the lower bound of this region and

ρ2 stands for the upper bound.



Figure 2.2: Extended crust-core transition zone.
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Chapter 3

Numerical Relativity

The challenges of solving Einstein’s equations on a computer arise from two directions.

First, Einstein’s equations are a set of 10 coupled nonlinear differential equations and, as

such, there is not an unified framework to deal with every problem [19]. However, this

feature is not particular to Einstein’s equations, but it is shared by many other equations

encountered in physical theories, the Navier-Stokes’s equation being, perhaps, the most

famous case.

The most peculiar feature of Einstein’s equations arises from the geometrical nature

of the theory. The problem of solving Einstein’s equations can be stated as finding the

components of the metric tensor, gµν , for the given energy-momentum tensor Tµν . But in

order to work with the components of the metric tensor one has to choose some coordinate

system and, thus, the components gµν are sensible to change of coordinates. Since there

are four spacetime coordinates, there are also four arbitrary degrees of freedom to ten

gµν and, for that reason, it should be impossible to determine all ten gµν from any initial

data – the coordinates to the future of the initial moment can be changed arbitrarily

[20]. This property is expressed by the Bianchi identities

Gµν;β = 0, (3.1)

23
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where Gµν stands for the Einstein tensor. The Bianchi identities imply that there are

are only six independent differential equations among the ten Gµν .

The properties of the Einstein’s equations discussed above do not prevent one from

solving these equations numerically in the form of a well posed initial-value problem.

Instead it only means that in order to solve General Relativity numerically, one has

to construct a framework in which the coordinate freedom in gµν does not spoil the

evolution scheme from an initial set of conditions. This can be achieved by treating

space and time coordinates as they were independent from each other. In LORENE this

is implemented according to the 3 + 1 formalism, which we will briefly discuss in this

chapter.

3.1 Einstein’s equations in a brief

In this section we summarize the main results of the theory of general relativity that

are going to be relevant for our discussion. We are going to use units such that G = 1

and the {− + + +} convention for the Minkowski metric. Throughout this chapter greek

indices run from 0− 3, whilst roman indices go from 1− 3.

The essence of the theory of general relativity is all condensed in the form of Einstein’s

equations:

Gαβ = 8πTαβ, (3.2)

where Gαβ are the components or the Einstein tensor and Tαβ the components of the

energy-momentum tensor.

The Einstein tensor is a symmetric tensor defined as

Gαβ ≡ Rαβ − 1
2g

αβR, (3.3)
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where gαβ are the components of the metric tensor and R is called the Ricci scalar,

also constructed from elements of the metric tensor and its derivatives. Therefore, the

left-hand side of Equation (3.2) contains the information regarding the curvature of

spacetime, whereas the right-hand side describes the energy source responsible for such

curvature.

The Ricci scalar is the result of the contraction of the Riemann tensor:

R := gµνRµν = gµνgαβRαµβν . (3.4)

The Riemann curvature tensor is defined in the following way:

Rαβµν = Γαβµ,ν − Γαβµ,ν + ΓασµΓσβν − ΓασνΓσβµ, (3.5)

where we have introduced the Christoffel symbols:

Γαµν = 1
2g

αβ (gβµ,ν + gβν,µ − gµν,β) . (3.6)

3.2 3+1 Formalism

The 3 + 1 formalism is the most common approach to numerical relativity and it

consists in decomposing the four-dimensional spacetime into three-dimensional surfaces

(hypersurfaces) [21]. Other approaches include the 2 + 2 formalism [22], the conformal

field equations [23] , as well as other approaches applied particularly in black hole mergers

[24, 25]. Our discussion of this topic follows closely that presented in [21].
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Foliation of spacetime

The spacetime of general relativity is a 4-dimension manifold, i.e., a topological space

such that around each point there is a neighbourhood which is homeomorphic to an

open subset of R4. In the 3 + 1 formalism, this manifold, M, is sliced by a family of

hypersurfaces (Σt)t∈R:

M =
⋃
t∈R

Σt, (3.7)

with Σt ∩ Σt′ = ∅ for t 6= t′. The hypersurfaces (Σt) are 3-dimensional submanifolds of

M, and every vector in it (i.e, tangent to it) is spacelike. Only the so-called globally

hyperbolic spacetimes allow for such type of decomposition, but this class encompasses

many of the spacetimes generated by compact stars [21].

Figure 3.1: 3 + 1 decomposition of the four-dimensional spacetime.

Each hypersurface Σt is labelled by a parameter t which we identify as a time

coordinate. t is a scalar field on M such that 〈∇, ~v〉 = 0 for any vector ~v tangent to

Σt. Equivalently, the vector ~∇t associated with the 1-form 1 ∇t is normal to Σt, i.e,
1The vector whose components are ∇αt = gαβ∇βt
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~∇t · ~v = 0, for all ~v tangent to Σt. The association of our scalar field, t, with the time

coordinate is made by requiring that ∂αt = δ0
α. Since every hypersurfaces is equipped

with its own time, the arrow of time can be identified with the unit timelike normal

vector ~n:

~n · ~n = −1. (3.8)

Since ~∇t is also normal to Σt, we have that:

~n = −N ~∇t, (3.9)

where N is a proportionality coefficient called the lapse function. The minus sign is

chosen so that N ≥ 0 if the scalar field t is increasing towards the time.

If g is the metric function onM, then one can construct a metric function for each

of the hypersurfaces Σt. This metric, γ, is the restriction of g on Σt (i.e, the metric

induced by g onto Σt), and it is definite positive 2:

∀~v ∈ Tp (Σt) , ~v 6= 0 =⇒ γ (~v,~v) > 0. (3.10)

The components of the induced tensor γ, in terms of the components of g, are

γαβ = gαβ + nαnβ. (3.11)

On the other hand, the tensor γαβ acts as the orthogonal projector onto Σt, which we

denote by ~γ:

γαβ = δαβ + nαnβ. (3.12)
2In Eq. (3.10), Tp (Σt) denotes the tangent space of Σt at the point p, i.e., the set of all tangent vector

of Σt at p.
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Eulerian observer

We call by Eulerian observers or zero angular-momentum observers (ZAMO),the set

of observers whose 4-velocity is ~n. The wordlines of these observers are the field lines of

~n and are orthogonal to the hypersurfaces Σt.

The time measured by a ZAMO is

dτ = Ndt, (3.13)

and its acceleration is given by [26]:

~a = ∇~n~n = ~γ
(
~∇ lnN

)
. (3.14)

The energy-density E, the momentum-density ~p and the stress tensor ~S, as measured

by the ZAMO are given by:

E = Tαβn
αnβ (3.15)

pα = −Tµνuνγµα (3.16)

Sαβ = Tµνγ
µ
αγ

ν
β . (3.17)

With the above results, the energy-momentum tensor in the 3 + 1 decomposition

reads:

Tαβ = Enαnβ + pαnβ + nαpβ + Sαβ. (3.18)

Adapted coordinates

A coordinate system {xα} is said to be adapted to the foliation (Σt)t∈R if and only

if x0 = t [21]. The remaining coordinates (the spatial coordinates) {xi} constitute the

coordinate system in Σt. The set of vectors {~∂t} form a basis in TpM called the natural
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basis. In a 3 + 1 structure this basis is decomposed into a part along ~n and another

tangent to Σt:

~∂t = N~n+ ~β with ~n · ~β = 0. (3.19)

The spacelike vector ~β is called the shift vector and it has only spacial components:

~β = βi~∂i. (3.20)

In short, in the 3+1 formalism, each basis vector ~∂t is decomposed into one temporal

part, ~n, and a spatial part, ~β (Figure 3.2). The components of each of these vectors are

related in the following way (which comes directly from Eq. (3.19)):

nα =
(

1
N
,−β

1

N
,−β

2

N
,−β

3

N

)
. (3.21)

Figure 3.2: Decomposition of the basis vector ~∂t.
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Finally, the spacetime interval, ds, in terms of components of the induced metric γ,

the shift vector and the lapse function is given by:

ds = gαβ = −N2dt2 + γij
(
dxi + βidt

) (
dxj + βjdt

)
(3.22)

Intrinsic and extrinsic curvature

When one deals with a geometric structure that is embedded in a broader geometric

structure, which is the case for the hypersurfaces Σt with respect to the manifoldM, it

is important to distinguish between the notion of intrinsic and extrinsic curvatures. By

intrinsic curvature we refer to the curvature that in the non-decomposed manifoldM is

measured by the Riemann curvature tensor (Equation 3.5). The intrinsic curvature of the

hypersurfaces Σt can be contructed in an analogous way, by replacing the 4-dimensional

metric gαβ by the induced metric γij , and writing the corresponding connection coeffi-

cients for the 3-dimensional space [27]. Hereafter, we are going to identify these reduced

3-dimensional quantities with an upper left index 3 placed on the usual symbols (i.e, 3R

for the 3-dimensional Ricci scalar, 3Rij for the Riemann tensor, etc. )

The notion of extrinsic curvature emerges only when we consider a slice of an envelop-

ing structure, and it measures how this slice is curved with respect to the full geometry.

In our case the slices are, of course, the Σt hypersurfaces and the enveloping geometric

structure is the spacetimeM. Borrowing the example from [27]:

A vector lying on the equator of the Earth and pointing toward the North

Star, transported parallel to itself along a meridian to a point still on the

Earth’s surface, but 1000 km to the north, will no longer lie in the [same]

2-geometry of the surface of the Earth.

By the same reasoning, as an interval of time dt passes, a vector lying in the hy-

persurface Σt will no longer be parallel to it, but will instead be part of a hypersurface

Σt+dt and, therefore, the intrinsic curvature γij defined on Σt is no longer applicable.

Just like the Christoffel symbols allow to express the parallel transport of a vector on
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a manifold M, the exterior curvature tensor is introduced to account for the parallel

transport across the hypersurfaces ofM.

Figure 3.3: The notion of extrinsic curvature.

Heuristically 3, the extrinsic curvature tensor can be introduced by considering a

vector lying at a point P of Σt which is parallel transported to the point P + δP (Figure

3.3). The difference between the result of the parallel transport and the normal vector

(of same magnitude) at the point P + δP is vector δ~n, which is parallel to Σt. The

exterior curvature is the linear operator such that:

δ~n = K (δP) . (3.23)

In more explicit way [21]

∀ (~u,~v) ∈ Tp (Σt)× Tp (Σt) , K (~u,~v) := −~u · ∇~v~n, (3.24)

where the operator ∇~v stands for the directional derivative along ~v. K is a symmetric

tensor and its components with respect to the coordinates {xi} of Σt are given by
3A more rigorous treatment can be found in [27, 28]
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Kij = − 1
2N

(
∂γij
∂t
− L~βγij

)
= 1

2N

(
−∂γij
∂t

+ βk
∂γij
∂xk

+ γkj
∂βk

∂xi
+ γik

∂βk

∂xj

)
, (3.25)

where L~βγij stands for the Lie derivative 4 of γij along ~β. The trace of K with respect

to Σt is written as:

K := γijKij = −∇µnν (3.26)

Einstein’s equations in the 3 + 1 formalism

In this formalism, the Einstein’s equations are obtained from Equation (3.2) through

a series of projections onto Σt and along ~n [21]:

∂Kij

∂t
− L~βKij = −DiDjN +N{3Rij +KKij − 2KikK

k
j + 4π [(S − E) γij − 2Sij ]},

(3.27)

3R+K2 −KijK
ij = 16πE, (3.28)

DjK
j
i −DiK = 8πpi. (3.29)

The quantities E, pi and Sij are the same quantities introduced in Equations (3.15)

to (3.17). S is the trace of ~S with respect to the metric γ: S = γijSij . Di are the

components of the covariant derivative; with respect to the spatial coordinates {xi} of

Σt, these can be written as:

DiDjN = ∂2N

dxidxj −
3 Γkij

∂

∂xk
, (3.30)

DjK
j
i = ∂Kj

i

∂xj
+3 ΓjjkK

k
i −3 ΓkjiK

j
k, (3.31)

DiK = ∂K

∂xi
. (3.32)

4The components of the Lie derivative of a field ~v along ~u in an arbitrary coordinate system can be

written as L~uvα = uµ ∂v
α

∂xµ − vµ ∂u
α

∂xµ
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3.3 Evolution Strategies

The 3 + 1 Einstein’s equations can be divided into two categories [29]:

• Evolution equations. This category corresponds to Eq. (3.27), and they govern

the time evolution of the dynamical fields {γij ,Kij}.

• Energy and momentum constraints. Given by Equations (3.28) and (3.29) respec-

tively. These are constraints on the extrinsic curvature components Kij and their

spacial derivatives.

The structure of these equations resemble that of the Maxwell’s equations in the

non-covariant form:

∇ ~E = 4πρ (3.33)

∇ ~H = 0 (3.34)

−∂t ~E +∇× ~H = 4π~j (3.35)

∂t ~H +∇× ~E = 0. (3.36)

This is not a mere coincidence. In fact, the same way the dynamical fields {γij ,Kij}

emerge when one splits the manifold of general relativity into space and time, the fields

{ ~H, ~E} are only defined when one splits the spacetime manifold into space and time.

Otherwise one has to work with the more general electromagnetic 2-form F [30].

The similarities between the 3 + 1 system and Maxwell’s equations suggests that we

borrow the equation-solving strategies from electromagnetism. More precisely, that we

start by solving the constraint equations (which are first integrals of the evolution system)

and, thus, obtaining four5 of the six dynamical degrees of freedom (which correspond to

the components of K ). The remaining degrees of freedom could then be obtained from

Equation (3.27). This is known as the constrained evolution approach [29].

5Note that K is a symetric tensor.
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The constrained evolution approach is analogous to electrostatics in the sense that

the time evolution of the fields is not provided by the equations. Until recently, this

approach was only used in 2D cases or when general relativity effects are considered

lower corrections on Newtonian gravity [31]. In a simplified way, the constraint equations

contain all of the dynamical degrees of freedom, except the ones related to gravitational

radiation and with the coordinate gauge freedom [29]. Since there is no general way of

algebraically singling out the dynamical degrees of freedom corresponding to gravitational

radiation , a more general approach for solving the 3 + 1 system is needed.

The predominant evolution approach for the 3 + 1 system is known as the free

evolution approach. This strategy consists in relying solely on Equation (3.27) to solve

all the degrees of freedom, usually with either finite difference or finite element methods.

The constraints (3.28) and (3.29) are solved only to get the initial data, but are not

enforced during evolution (although they can be used as error indicators).

As for what concern us in this work, the calculation of the global properties of

neutrons stars is a static problem 6 and therefore it is enough to solve the constraint

equations (unlike the cases of mergers or Supernova collapses).

6That is why it was possible to perform our calculations on a simple laptop.



Chapter 4

Rotating Magnetized Stars

In order to apply our formalism to a real problem, we have to choose the coordinate

system and, thus, the form of the metric tensor that we are going to work with. The

convenience of a coordinate system is dependent upon the symmetries present in our

system (in this case, in our spacetime manifold M). Symmetries of the spacetime

manifold are described in a coordinate-independent way by means of a symmetry group

G acting onM, and we require that the metric g remains invariant under such operation.

The coordinate system that we are going to use is constructed on the assumption that

that our spacetimeM, equiped with a metric g, is both stationary and axisymmetric. A

spacetime is said to be stationary if and only if there exists a group action onM such

that:

1. the group is isomorphic to the group of unidimensional translations;

2. the orbits 1 are timelike curves inM;

3. the metric is invariant under the group action, which equivalent to

L~ξg = 0, (4.1)

1The orbit of a point p ∈M is the set {g (p) , g ∈ G} ⊂ M, i.e. the set of points that are connect to

p by some group transformation g .

35
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where L~ξg stands for the Lie derivative of g along the vector field ~ξ, which is the generator

of G associated with some parameter t.

A spacetime is said to be axisymmetric if and only if there exists a group action on

M such that:

1. the group G is isomorphic to SO(2), the group of rotations in the plane;

2. the set of points that remain invariant under G is a 2-dimensional surface ofM;

3. the metric is invariant under the group action, i.e.,

L~χg = 0, (4.2)

where ~χ is the generator of G associated with some parameter φ. We will also consider

our spacetime to be circular stationary which, if we choose spherical coordinates, allows

one to write the spatial part of the metric tensor as a diagonal matrix [21].

4.1 Maximal slicing quasi-isotropic coordinates (MSQI)

In a stationary and circular axisymetric spacetime we may use adapted coordinates

{t, rθ, φ} such that the components of the metric tensor become:

gαβdxαdxβ = −N2dt2 +A2
(
dr2 + r2dθ2

)
+B2r2 sin2 θ

(
dφ−Nφdt

)2
(4.3)

where N , A, B and Nφ are functions of (r, θ), sometimes represented by their logarithms:

ν := lnN ; α := lnA; β := lnB. (4.4)

By comparing with Equation (3.22) one concludes that in this coordinate system

the lapse function corresponds to the function N (r, θ) and that the shift vector has the

following components:
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βi =
(
0, 0,−Nφ

)
. (4.5)

We also identify the components of the induced metric γ:

γijdxidxj = A2
(
dr2 + r2dθ2

)
+B2r2 sin2 θdφ2, (4.6)

or simply

γij = diag
(
A2, A2r2, B2r2 sin2 θ

)
. (4.7)

From Equation (3.25) we can obtain the components of the extrinsic curvature tensor

K of the hypersurfaces Σt:

Kij = 1
2N

− ∂γij∂t︸ ︷︷ ︸
=0

−Nφ ∂γij
∂φ︸ ︷︷ ︸
=0

−γφj
∂Nφ

∂xi
− γiφ

∂Nφ

∂xj

 . (4.8)

In the above equation the two derivatives vanished because of our symmetry consid-

erations. The non-vanishing components of K are:

Krφ = Kφr = −B
2r2 sin2 θ

2N
∂Nφ

∂r
(4.9)

and

Kθφ = Kφθ = −B
2r2 sin2 θ

2N
∂Nφ

∂θ
. (4.10)

The maximal slicing term stands for the fact that the trace of K, as defined in

Equation (3.26), vanishes identically [21]:
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K = γijKij = 1
A2 Krr︸︷︷︸

=0

+ 1
A2r2 Kθθ︸︷︷︸

=0

+ 1
B2r2 sin2 θ

Kθθ︸︷︷︸
=0

. (4.11)

4.2 Einstein’s equations in MSQI coordinates

The 3 + 1 system of equations (3.27) to (3.29) can be written with MSQI coordinates

by replacing the components of K and γ with their corresponding expressions in MSQI.

By doing so, and after reorganizing the equations, one obtains [32]:

∆3ν = 4πA2 (E + S) + B2r2 sin2 θ

2N2 ∂Nφ∂ (ν + lnB) (4.12)

∆̃3
(
Nφr sin θ

)
= −16πNA

2

B2
pφ

r sin θ + r sin θ
(
Srr + Sθθ

)
(4.13)

∆2 [(NB − 1) r sin θ] = 8πNA2Br sin θ
(
Srr + Sθθ

)
(4.14)

∆2 (lnA+ ν) = 8πA2Sφφ + 3B2r2 sin2 θ

4N2 ∂Nφ∂Nφ − ∂ν∂ν. (4.15)

In order to make the above equations less cumbersome, the following definitions were

used:

∆2 := ∂2

∂r2 + 1
r

∂

∂r
+ 1
r2

∂2

∂θ2 , (4.16)

∆3 := ∂2

∂r2 + 2
r

∂

∂r
+ 1
r2

∂2

∂θ2 + 1
r2 tan θ

∂

∂θ
(4.17)

∆̃3 := ∆3 −
1

r2 sin2 θ
. (4.18)

Also, for any scalar fields u and v,

∂u∂v := ∂u

∂r

∂v

∂r
+ 1
r2
∂u

∂θ

∂v

∂θ
. (4.19)
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Equations (4.12) to (4.14) form a system of elliptic partial differential equations and

in order to be solved one has to impose the boundary conditions. Here we require that

as r →∞ , the metric tensor tends towards the Minkowski metric, which implies that:



N (r, θ)

A (r, θ)

B (r, θ)

Nφ (r, θ)

−→ 1, as r −→∞. (4.20)

4.3 Inclusion of rotation

As we have said in Chapter 2, the matter of stars is modeled as a perfect perfect

fluid. Therefore, the description of a rotating star in general relativity consists in the

description of a perfect fluid.

The circularity condition introduced in the discussion of the symmetries of our space-

time implies that the fluid 4-velocity can be written as [21]:

~u = ui
(
~ξ + Ω~χ

)
, (4.21)

where ~ξ and χ are the Lie vectors associated to the stationarity and axisymmetry, i.e,

~ξ = ~∂t; ~χ = ~∂φ. (4.22)

by expressing ξ in terms of the unit vector timelike vector ~n (the 4-velocity of the

ZAMO), the fluid 4-velocity can be written as:

~u = Γ
(
~n+ ~U

)
, (4.23)

with



40 4.3. Inclusion of rotation

Γ = Nut, (4.24)

~U = 1
N

(
Ω−Nφ

)
~χ. (4.25)

From the metric tensor in Equation (4.3), we conclude that ~χ · ~χ = B2r2 sin2 θ. Since

~n is an unit timelike vector, then ~n · ~n = −1 and ~n · ~U = 0. If we now define

U := B

N

(
Ω−Nφ

)
r sin θ =⇒ ~U · ~U = U2, (4.26)

the normalization2 ~u · ~u = −1 implies that

Γ =
(
1− U2

)−1/2
. (4.27)

The remaining task consists in writing the quantities that act as source terms for the

Einstein’s equations, i.e, E, pφ, Srr , Sθθ and Sφφ . This can be achieved by substituting in

Equations (3.15) to (3.17), the 4-velocity ~u expressed in terms of Γ and the components

of ~U . As result one obtains:

E = Γ2 (ε+ p)− p, (4.28)

pφ = B (E + p)Ur sin θ, (4.29)

Srr = Sθθ = p, (4.30)

Sφφ = p+ (E + p)U2, (4.31)

S = 3p+ (E + p)U2, (4.32)

where we also used the general form for a perfect fluid energy-momentum tensor [20]:

Tµν = (ε+ p)uµuν + pgµν . (4.33)
2This consequence of the unit choice.
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Fluid conservation laws

The equations of motion for the fluid are the energy-momentum conservation law

∇µTµν = 0, (4.34)

and the baryon number conservation law:

∇µ (nb uµ) = 0. (4.35)

From those equations we can obtain the general relativity equivalent of Bernoulli’s

equations which, for the rigid rotation case, has the following form:

H + ν − ln Γ = const. , (4.36)

where H is the logarithm of the enthalpy per baryon, i.e,

H := ln
(
h

mb

)
. (4.37)

Numerical procedure

We are now in condition to sketch the numerical procedure3 used in LORENE in

the calculations of rotating stars. Inside the LORENE library, the code that calculates

the global properties of non-magnetized rotating stars is under the name of Nrotstar.

A review on the topic as well a "side by side" comparison of the different methods for

rotating stars’ calculations can be found in [33].

The inputs of the code are the following:
3The title "numerical procedure" is a bit misleading , since the actual code is going to be much more

complex than what we present here (we do not even dwelve on the numerical methods for the partial

differential equations). An accessible discussion on the actual implementation of the 3+1 formalism can

be found in [29].
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• Equation of state in the form ε = ε (H) and p = p (H) ;

• central value Hc of the log-enthalphy H. This also equivalent to fixing the total

baryonic mass of the star;

• the value of the angular velocity , Ω.

The calculations are then performed in the following way [21]:

1. The quantities N , Nφ, A and B receive initial guesses; U is set to zero, and ε and

p are calculated from the EOS.

2. The Einstein’s equations sources terms are calculated from U , Γ, ε and p.

3. Using the initial guesses, the Einsteins equations are solved in order to obtain new

values for N , Nφ, A and B.

4. U and Γ are calculated with the new values of N , Nφ, A and B.

5. H is calculated from Equation (4.36), with Hc as the constant.

6. Go to step 2.

4.4 Inclusion of magnetic field

The self consistent method for calculation of magnetized rotating stars that we discuss

here was introduced in [34]. In a nutshell, the inclusion of magnetic field contribution

is achieved by adding the electromagnetic field tensor to the energy-momentum tensor

(previously described only by the perfect fluid energy-momentum tensor). By doing so,

in addition to Einstein’s equations one has to solve to solve Maxwell’s equations too.

We will consider the same metric tensor given by Equation (4.3) and we will also work

with the MSQI coordinate system. The most general form for the electric 4-current that

satisfies our symmetry consideration has the following components: jα =
(
jt, 0, 0, jφ

)
.
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The corresponding electromagnetic tensor F is obtained from a potential 1-form A with

components Aα = (At, 0, 0, Aφ):

Fαβ = Aβ,α −Aα,β. (4.38)

From the components of F one obtains the components of the electric, E, and

magnetic, B, fields. In respect to the ZAMO, these components read:

Eα = Fαβn
β

=
(

0, 1
N

[
∂At
∂r

+Nφ∂Aφ
∂r

]
,

1
N

[
∂At
∂θ

+Nφ∂Aφ
∂θ

]
, 0
) (4.39)

and

Bα = −1
2εαβµνn

βFµν

=
(

0, 1
A2Br2 sin θ

∂Aφ
∂θ

,− 1
A2B sin θ

∂Aφ
∂r

, 0
)
,

(4.40)

where εαβµν is the Levi-Civita tensor associated with the metric g.

The dynamics of the electromagnetic field is governed by Maxwell’s equations. The

homogeneous equation is satisfied automatically from the form of F (Equation 4.38).

The remaining equations, Fαβ;β = µ0j
α, become:

∆3At =− µ0
A4

B2

(
gttj

t + gtφj
φ
)
− A4B2

N2 Nφr2 sin2 θ

∂At∂N
φ −

(
1 + A4B2

N2 r2 sin2 θ
(
Nφ
)2
)

∂Aφ∂N
φ −

(
∂At + 2Nφ∂Aφ

)
∂ (2α+ β − ν)

− 2N
φ

r

(
∂Aφ
∂r

+ 1
r tan θ

∂Aφ
∂θ

)
,

(4.41)

and
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∆̃3Ã
φ =− µ0A

8
(
jφ −Nφjt

)
r sin θ + A4B2

N2 r sin θ∂Nφ
(
∂At +Nφ∂Aφ

)
+ 1
rsinθ

∂Aφ∂ (2α+ β − ν) ,
(4.42)

where

Ãφ := Aφ
r sin θ , (4.43)

and we have used the definitions introduced in Equations (4.16) – (4.19).

4.4.1 Lorentz force and condition for stationary motion

Taking into account the electromagnetic field on the fluid, Bernoulli’s equation be-

comes:

H (r, θ) + ν (r, θ)− ln Γ (r, θ) +M (r, θ) = const. (4.44)

The function M is called the magnetic potential and is a function of Aφ only and

can be written as [32]

M (r, θ) = M (Aφ (r, θ)) = −
∫ Aφ(r,θ)

0
f (x) dx, (4.45)

where f is an arbitrary function that we call the current function. The gradient of the

magnetic potential, M , is proportional to the Lorenz force [35]:

F L ∼ ∇M (r, θ) (4.46)

4.4.2 Perfect conductor relation

If we assume that the fluid has infinite conductivity, then the following relation holds

[36]:

∂At
∂xi

= −Ω∂Aφ
∂xi

, (4.47)
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where Ω is the rotation frequency. It can be shown that a stationary configuration with

a magnetic field is necessarily rigidly rotating, i.e, Ω = const. [32], which implies that

At = −ΩAφ + C, (4.48)

where C is a constant that determines the total electric charge of the star.

Numerical procedure

Inside the LORENE library, the code that calculates the global properties of rotating

magnetized stars is under the name of Mag_eos_star. In addition to the inputs discussed

in the non-magnetized case, one has to specify the following quantities:

• Total electric charge, Q. In our calculations we have required that Q = 0.

• Choose a current function , f . In LORENE f is constant value function, i.e, f = f0,

where f0 is called the current function amplitude.

The iterative procedure is also similar to the non-magnetized case, except that now

one has to calculate the fields At and Aφ (similarly to N , Nφ, A and B):

• In the first step Aφ is set to zero and At is calculated from Equation (4.48). The

components of ~j are calculated using Maxwell’s equations

• With the components of ~j obtained in the previous steps, we obtain new values for

Aφ and At.

4.5 Global properties of stars

In this section we present the definitions of some general relativity quantities that

are relevant for the understanding of our results.
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Baryon mass

The baryon mass of the star is defined as:

Mb := mbN , (4.49)

where mb is the mean baryon mass (mb ≈ 1.66× 10−27 Kg) and N is the total baryon

number.

If nb represents the baryon number density in the fluid frame and ~u is the fluid

4-velocity, then the baryon 4-current can be expressed as:

~jb = nb~u. (4.50)

The baryon number density nb is related to the EOS and to the log-enthalpy H in

the following way:

nb = ε+ p

mb
exp (−H) . (4.51)

The conservation law of the baryon 4-current, ~jb can be expressed as:

∇µjµb = 0. (4.52)

By applying the divergence theorem one obtains:

N := −
∫

Σt
~jb · ~n

√
γdxidx2dx3, (4.53)

where √γ is the square root of the determinant of the tensor γ in MSQI coordinates,

i.e, √γ = A2Br2 sin θ. This definition of N is independent on the slicing {Σt} of the

spacetime.
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Mass

The observable mass of a star is what we call as gravitational mass, M . This mass is

related to the baryon mass through the following relation

M = Mb + Ebind, (4.54)

Where Ebind is called the binding energy and is the amount of energy required to

hold the system of N particles together through gravity. The way we define M depends

on the properties of the system. For any asymptotically flat spacelike hypersurface Σt

one can use the ADM mass introduced by Arnowitt, Deser and Misner in [37]. In MSQI

coordinates this mass can be written as:

MADM = − 1
16π lim

S

∮
S

[
∂

∂r

(
A2 +B2

)
+ B2 −A2

r

]
r2 sin θdθdφ. (4.55)

Coordinate radius and circumferential radius

In the discussion of our results we are going to use what is called as coordinate

radius of the star. This quantity is simply the coordinate r that corresponds to the

surface of the star, defined as the point at which the value of the enthalpy reaches zero.

The radius defined this way is coordinate dependent. This is not a problem in our

discussion as we compare results measured with the same coordinates. A coordinate-

independent definition of the star radius is the circumferential radius. This quantity can

be understood as the radius associated with a circumference of length l:

Rcirc := l

2π . (4.56)

In MSQI coordinates, this quantity can be written in terms of the coordinate radius,

R, in the following way:

Rcirc = B (Req, π/2)Req. (4.57)



48



Chapter 5

Results

The results1 that we present in this section were obtained through a set of numerical

simulations performed with LORENE library, whose mathematical building blocks were

already discussed in Chapters 3 and 4. In order to use LORENE’s output to calculate

the quantities that interest us, we have written a set of auxiliary python routines, which

we organized in the form of a GitHub repository [38]. These Python routines also served

as a more practical interface for LORENE.

As discussed in Chapter 2, by calculating the dynamical spinodal of magnetized

nuclear matter we conclude that between the core and the inner crust there is a region

where stable and unstable matter interchange (Fig. 2.2), identified by the densities

ρ1 and ρ2. We shall denote the radii that correspond to each of these densities as R1

and R2, respectively (cf. Figure 5.1). In this notation the thickness of the extended

crust is defined as (∆Rt = R1 − R2), whilst the total size of the crust is given by the

difference ∆R2 = R−R2 (with R being the coordinate radius of the star). The difference

∆R1 = R−R1 corresponds to the size of the crust without the extended region.

1The raw data can be found in https://github.com/ivoabs/IS_MSThesis_data
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Core

Crust

Figure 5.1: Definition of the quantities R1 and R2 (not in scale).

Table 5.1: Crust-core transition densities for NL3ωρ with L = 55 MeV. Here ρ1 = ρ (R1) and

ρ2 = ρ (R2).

B (4.41× 1015 G) ρ1 (fm −3) ρ2 (fm −3)

0 0.084 ———–

1 0.0837 0.1044

5 0.08116 0.10996

10 0.0827 0.1096
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Table 5.2: Crust-core transition densities for NL3ωρ with L = 88 MeV. Here ρ1 = ρ (R1) and

ρ2 = ρ (R2).

B (4.41× 1015 G) ρ1 (fm −3) ρ2 (fm −3)

0 0.063 ———–

1 0.05951 0.12977

5 0.05485 0.12955

10 0.04874 0.13069

In a previous work [39], the authors have also studied the structure of neutron stars

under the effect of strong magnetic fields, where they have used three EOS with different

compositions. Here we restrict our study to two models of the NL3ωρ family: one with

the symmetry energy slope L = 55 MeV and other with L = 88 MeV. These models are

able to generate two-solar-mass stars. The properties for symmetric nuclear matter at

saturation density for these two models are shown in Table 5.3.

Table 5.3: Properties of the two models of the NL3ωρ family for symmetric nuclear matter at

saturation density (ρ0 = 0.148 fm−3 ).

L Binding energy, B/A Incompressibility, K Symmetry energy, Esym
(MeV) (MeV) (MeV) (MeV)

55 -16.24 270 31.47

88 -16.24 270 34.88

5.1 Magnetic field effects on the crust

In this section we focus on the effects of strong magnetic fields on the geometry of

the star and, particularly, of the inner crust. This is achieved by evaluating how the

quantities R1, R2 and R vary with the magnetic field. As explained in Chapter 4, the

configuration of the magnetic field on the star, as well as its magnitude, can be imposed

by choosing the appropriate current function. In LORENE, such a function is a constant
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function and it gives rise to a poloidal magnetic field. The magnitude is determined

by the value of this constant, which we will, thereafter, designate by current function

amplitude or, simply, CFA.

Since we could only fix the magnetic field by choosing the CFA value, we first needed

to obtain a correspondence between the imposed CFA value and the actual value of

the magnetic field measured inside the star. This was achieved by plotting the value of

the surface field (the radial coordinate measured at the pole) as function of CFA. The

CFA value that gives the desired value magnetic field amplitude could then be found by

means of a numerical interpolation.

In Figure 5.2 we show – for three stellar mass values and for the two models considered

– how the crust size varies with the magnetic field. We immediately note that the bigger

the mass is, the smaller is the crust size. This is not a particular feature of the crust, but

of the star as a whole: for the same family of stars, the high-mass stars are smaller than

lower-mass stars [8]. Gravitation attraction is stronger for high masses and, therefore,

they become more "shrunk". We can see that for BS = 0 the results for the two models

do not differ much from each other in comparison with the case where BS 6= 0. However

a small difference does exist as discussed in [40], where it was shown that the larger the

slope L, the smaller the transition density, ρ2, to the core. This, in turn, reflects itself

on the thickness of the crust: a thinner crust corresponds to a larger L. A much greater

difference is verified for BS 6= 0. This is because the value ρ2 (from which we define the

crust size) depends on the proton fraction value which, in turn, depends on the value of

the slope of symmetry energy [41]. Therefore, even though both models might have some

resemblances at B = 0, they will respond differently with the inclusion of the magnetic

field.

Still looking at figure 5.2 and taking as reference the values obtained with Mb =

1.5 M�, we estimate that for the model with L = 55 MeV there is a variation of 13%

from BS = 0 to BS = 4.4 · 1015 G. From BS = 4.4 · 1015– 4.4 · 1016 G the variation is

roughly 2%. The model with L = 88 MeV shows a much bigger sensitivity on the increase

of the magnetic field: from BS = 0 – 4.4 · 1015G there is a variation of 88%, whilst from
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BS = 4.4 · 1015 – 4.4 · 1016G the variation is of approximately 1.5%. The reason lies in

the fact that for densities below saturation density, the fraction of protons is smaller for

larger values of L and, therefore, more sensitive to a given value of magnetic field (cf.

Figure 5.3).

Although the overall trend is an increase of the crust size with the magnetic field, it

is important to note that this behavior is not monotonic. In fact, from BS = 4.4 · 1015 –

4.4 · 1016G the variation on the L = 88 MeV model is negative.This is in agreement with

the way the densities ρ1 and ρ2 vary with the field (Tables 5.1 – 5.2) and, as noted in

[2], this is due to the discrete feature of the Landau levels (from which we calculate such

densities). This effect is also present in Figure 5.4, where we show the size of the stable

matter zone. Here the overall trend is that the size of the stable matter is reduced as the

magnetic field increases, but this behavior is also not monotonic. Besides, this effect is

much more monotonical for the L = 88 MeV model, due to the smaller proton fraction.

Figure 5.5 puts even more in evidence the fact that the effects introduced by the

magnetic field are dependent on the symmetry energy slope, L. For the model with

L = 88 MeV, we note that the extended crust occupies about one third of the total crust

zone. This is more evident in Figure 5.8, where we plot the profile of each star that we

have considered and, in each of them, we identify the extended zone. The main effect is

an increase of the equatorial radius with respect to the polar one.

In Figure 5.6 we have used the results obtained with the stronger magnetic field value

(B = 4.41 · 1016 G at the surface ) to show how the crust varies along the polar angle

θ. We normalized the curves with the values obtained with B = 0: for both R1 and

R2, we divide the values obtained with BS = 4.41 · 1016 G by the corresponding values

(i.e. same mass and same L) obtained at B = 0. Since the values ρ1 and ρ2 do not have

any spatial dependency, the results that we observe here are only consequence of the

overall deformation of the star induced by the magnetic field. In fact, the way the crust

is deformed is quite similar to the deformation of the radius (i.e., coordinate radius) of

the star itself, as shown in Figure 5.7.
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From figure 5.6 it is clear that the effect of the magnetic field is much stronger in the

L = 88 MeV model: the difference between the equatorial and polar radii is larger; the

extended crust extends much more into the interior of the star.
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Figure 5.2: Total size of the crust as function of the magnetic field. Full lines correspond to the

model with L = 55 MeV, whilst dashed lines come from the L = 88 MeV model. The colours red,

blue and green correspond to baryon masses 1.2M�,1.5M� and 1.8M�, respectively.
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Figure 5.3: Symmetry energy as function of density, ρ, for the models with L = 55 MeV and

L = 88 MeV.
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Figure 5.4: Size of the crust without the extended zone, plotted as function of the magnetic field.

Full lines correspond to the model with L = 55 MeV, whilst dashed lines come from the L = 88

MeV model. The colours red, blue and green correspond to baryon masses 1.2M�,1.5M� and

1.8M�, respectively.
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Figure 5.5: Thickness of the extended crust as function of the magnetic field. Full lines correspond

to the model with L = 55 MeV, whilst dashed lines come from the L = 88 MeV model. The

colours red, blue and green correspond to baryon masses 1.2M�,1.5M� and 1.8M�, respectively.
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Figure 5.6: Normalised R1 and R2. In the top panel, each line represents, for a particular

model and mass value, how R1 varies with θ. In each case, the value of R1(θ) obtained with

BS = 4.4 · 1016 G is divided by the corresponding value when the magnetic field is turned off. In

the bottom panel we do the same for R2 (notice that R2 (B = 0) = R1 (B = 0)). As before, Full

lines correspond to the L = 55 MeV, whilst dashed lines come from the L = 88 MeV model. The

colours red, blue and green correspond to baryon masses 1.2M�,1.5M� and 1.8M�, respectively.
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Figure 5.7: Here we show how R, the coordinate radius, varies with θ. In each case, the value

of R(θ) is divided by the corresponding value when the magnetic field is turned off. Full lines

correspond to the model with L = 55 MeV, whilst dashed lines come from L = 88 MeV. The

colours red, blue and green correspond to baryon masses 1.2M�,1.5M� and 1.8M�, respectively
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Figure 5.8: Baryon density as function of the radial coordinate. The top panel corresponds to

L = 55 MeV whilst the bottom one corresponds to L = 88 MeV. The colours red, blue and

green correspond to baryon masses 1.2M�,1.5M� and 1.8M�, respectively. The vertical bands

correspond to the instability zones of the crust-core transition.

5.2 Magnetic potential

In this section we analyze the magnetic potential and how it relates to the instability

region of the crust discussed previously. We are interested in this quantity because, as

explained in Chapter 4, the gradient of the magnetic potential is proportional to the

Lorenz force. All of the results presented in this section were obtained by setting the

CFA to the one that gives a surface field of 4.4× 1016 G.

In Figure 5.9 we show how the profile of the magnetic potential, M , varies along the

star for the three masses and each model considered. We see that the magnitude of M
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is larger inside the lighter stars. On the other hand, we also see that the magnitude of

M is larger for the L = 55 MeV model. This might be because the core is larger for the

L = 55 MeV model.

In Figures 5.10 to 5.12 we only consider the magnetic potential along the equatorial

plane (θ = π/2) and we identify the extended region, as well as the onset points of

the different pasta phases of the crust matter. By doing so we want to ascertain if the

points at which the Lorenz force changes sign, i.e., at which the function M (r, θ) has a

minimum, and the points where the Lorenz force is maximum, i.e., the derivative of M

has maximum, ever fall into the extended crust region. Figures 5.10 – 5.12 tell us that is

not the case for the minimum of M for both models considered. One could wonder if the

fact that the minimum of M does not fall into the extended crust (or the interior of the

inner crust) is only a feature of the plane in which we are evaluating the function (since

the position of the minimum depends on θ) . We have written a simple routine (which

can be found on the same repository [38]) to verify if that is the case and the answer

was negative: for the models and masses that we have considered, the minimum of the

magnetic potential always falls into the core of the star. The fact that the minimum

of M is located in the core is consistent with the results obtained in [2]. But we were

expecting that by including the effects of the magnetic field on the spinodal, and thus

having a more accurate description of the size of the crust, we would find out that this

point was in fact part of the inner crust.

But, on the other hand, one of the maximums of the Lorenz force does fall inside the

extended crust whilst the other fall well inside the crust, as can be seen in Figures 5.13 to

5.15. We may assume that a maximum of the Lorenz force inside the non-homogeneous

region of the star may cause the matter to fract or break. On the right panels of Figures

5.10 – 5.15 we identify the location of the pasta phases. In the case of the L = 88 MeV

model, no inner crust configurations besides droplets exist. However for the L = 55 MeV

the maximum of the Lorenz force occurs near the region of rod like configurations, which

may be easier to deform.
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Figure 5.9: Magnetic potential, M , as function of the radial coordinate. Results obtained with

BS = 4.4× 1016 G. On the left panel we present the results obtained with L = 55 MeV and on

the right the ones corresponding to L = 88 MeV. The colours red, blue and green correspond to

baryon masses 1.2M�,1.5M� and 1.8M�, respectively. Notice the difference in the scale from the

left to the right panels.
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Figure 5.10: Magnetic potential, M , as function of the radial coordinate for a Mb = 1.2M� star

with BS = 4.4 × 1016 G. Full lines correspond to the model with L = 55 MeV, whilst dashed

lines come from the L = 88 MeV model. In the plots on the right we have amplified the region

inside the crust and identified the location of the transition between the different pasta phases.
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Figure 5.11: Magnetic potential, M , as function of the radial coordinate for a Mb = 1.5M� star

with BS = 4.4 × 1016 G. Full lines correspond to the model with L = 55 MeV, whilst dashed

lines come from the L = 88 MeV model. In the plots on the right we have amplified the region

inside the crust and identified the location of the transition between the different pasta phases.
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Figure 5.12: Magnetic potential, M , as function of the radial coordinate for a Mb = 1.8M� star

with BS = 4.4 × 1016 G. Full lines correspond to the model with L = 55 MeV, whilst dashed

lines come from the L = 88 MeV model. In the plots on the right we have amplified the region

inside the crust and identified the location of the transition between the different pasta phases.
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Figure 5.13: Derivative of the magnetic potential, as function of the radial coordinate for a

Mb = 1.2M� star with BS = 4.4× 1016 G. Full lines correspond to the model with L = 55 MeV,

whilst dashed lines come from the L = 88 MeV model. In the plots on the right we have amplified

the region inside the crust and identified the location of the transition between the different pasta

phases.



65 5.2. Magnetic potential

-0.0008

-0.0006

-0.0004

-0.0002

 0

 0.0002

 0.0004

 0  2  4  6  8  10  12

d
M

(r
)/

d
r

r [km]

L55
L88

 0.0002

 0.00032

 9.5  10  10.5  11  11.5  12

d
ro

p
le

ts

ro
d

s
sl

a
b

s

co
re

o
u
te

r 
cr

u
st

d
M

(r
)/

d
r

r [km]

L55

0.00010

0.00030

 9  9.5  10  10.5  11  11.5  12  12.5  13

d
ro

p
le

ts

co
re

o
u
te

r 
cr

u
st

d
M

(r
)/

d
r

r [km]

L88

Figure 5.14: Derivative of the magnetic potential, as function of the radial coordinate for a

Mb = 1.5M� star with BS = 4.4× 1016 G. Full lines correspond to the model with L = 55 MeV,

whilst dashed lines come from the L = 88 MeV model. In the plots on the right we have amplified

the region inside the crust and identified the location of the transition between the different pasta

phases.
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Figure 5.15: Derivative of the magnetic potential, as function of the radial coordinate for a

Mb = 1.8M� star with BS = 4.4× 1016 G. Full lines correspond to the model with L = 55 MeV,

whilst dashed lines come from the L = 88 MeV model. In the plots on the right we have amplified

the region inside the crust and identified the location of the transition between the different pasta

phases.
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5.2.1 Inclusion of rotation

The study of the effects of both rotation and magnetic fields on the microscopical

properties of the star and, as well, on its geometry are not new and they trace back

to the work by [34]. Here, we are interested on evaluating these effects on the inner

crust of the star. We begin by showing, in Figure 5.16, how the crust size is altered

by the inclusion of magnetic field. We compare, using the same masses and models as

before, the deformation of a star with a surface field of BS = 2.6× 1016G in two different

scenarios:

• without rotation – for each case we chose the CFA that gives a field of 2.6× 1016G

at the surface;

• with rotation – we chose the right combination of both the frequency and CFA

that resulted in a star with BS = 2.6× 1016 G. These pairs of results can be found

in Table 5.4

Table 5.4: frequency, f , and CFA used in the calculations of magnetized rotating stars.

L (MeV) Mb (M�) f (Hz) CFA

55 1.2 548.055913471 7293.37264983

55 1.5 594.038994537 5690.64096289

55 1.8 639.312646658 4658.81936968

88 1.2 520.739975764 7658.41016529

88 1.5 575.814541748 5943.18027505

88 1.8 625.044983051 4843.77960609

Such approach was necessary because if we fix the CFA value or, equivalently, the

magnetic moment, the magnetic field measured inside the star will vary as we increase

the rotation frequency. This phenomenon can be seen in Figure 5.17.
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Turning our attention back to Figure 5.16, we see that, even though in both scenar-

ios the stars possess the same magnetic field value, the rotating stars are much more

deformed.

We followed the same strategy used in Figure 5.16 in order to analyze the effects of

rotation on the magnetic potential. These results are shown in Figure 5.18. We wanted in

particular to see, as we did in the non-rotating case, where the minimum of the potential

would be located in respect to the crust. Surprisingly we found out that when we include

rotation the convex shape of the magnetic function disappears and, thus, there is no

local minimum.

It is important to note that in both cases shown in Figure 5.18 the stars have the same

surface magnetic field, but they were calculated with different CFA values (for the same

reasons discussed before). Therefore, one could wonder whether the differences shown

in Figure 5.16 are not simply because of the fact that we are considering different CFA

values. In order to eliminate this possibility, in Figure 5.19 we used the same current

function amplitude 2 (the ones shown in Table 5.4) and, as before, the non-rotating case

presents the convex shape, with its very noticeable minimum.

As we said before, in the rotating case we chose a combination of both CFA and

frequency values that would originate a star with a field of 2.6 × 1016G at its surface.

The frequencies that verified that condition were in the range of 548 – 626 Hz. We ob-

served that for lower frequencies the magnetic potential function still possess a minimum.

Therefore, there exists a critical frequency at which the magnetic potential minimum

disappears and the Lorenz force points always in the same direction throughout the star.

It would be interesting to understand whether this effects is relevant for the description

of extreme phenomena in the crust of the star, and how this critical frequency might

depend on the EOS.

2In the previous case, the CFA values used in the non-rotating case were such that BS = 2.6 · 1016 G,

and were obtained by interpolating a BS VS CF A curve.
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(b) L = 88 MeV

Figure 5.16: Comparison between the effects of both magnetic fields and rotation with those of

magnetic field only. In both cases the surface field is 2.6 × 1016 G. On the left panel we have

results with L = 55 MeV and on the right L = 88 MeV.
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Figure 5.18: Magnetic potential for magnetized rotating stars (panels on the left) and stars

without rotation (on the right), setting Mb = 1.5M�. As before, in both cases magnetic field at

the surface is 2.6× 1016 G. The rotation frequencies are those presented in Table 5.4.
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Figure 5.19: Magnetic potential for magnetized rotating stars (panels on the left) and stars

without rotation (on the right),setting Mb = 1.5M�. Here the current function amplitude is fixed

for each model (we used the values presented in Table 5.4).
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Chapter 6

Conclusion

In this thesis we studied the effects of strong magnetic fields and rotation on the

properties of the neutron star crust. We have taken into account the intermediate zone

at the crust-core transition that were introduced in [2], which consists in a region where

stable and unstable matter interchange. We have studied stars of three different baryon

masses: 1.2, 1.5 and 1.8 M�. The neutron star matter was described using two different

parameterizations of the NL3ωρ model: L = 55 and L = 88 MeV.

As expected, we verified that the lightest stars become more deformed in the presence

of magnetic fields. We also verified that the model with L = 88 MeV is more sensible to

the presence of magnetic fields, which might be because of its greater proton fraction.

The total size of the crust is model dependent, which is consequence of the fact

that the densities from which the crust-core transition is defined depend on the proton

fraction which, in turn, is directly related to the symmetry energy slope, L [41]. We

verified that both the total crust and the extended region have smaller values for the

model with L = 88 MeV.

Our most interesting results come from the study of the magnetic potential function,

M , whose gradient is proportional to the Lorenz force. In [35] it was verified that the

Lorenz force changes sign inside the neutron star. Here we verified that for both models

and for the three masses considered, the points at which this change of sign occur are

always located in the core. In other hand we verified that, when we exclude the effects
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of rotation, the Lorenz force possess two local maximums: one of them falls into the

core and the other is located in the crust, which might be linked with the breaking

of matter in the region. For the L = 55 MeV model this maximum falls in the zone

populated by droplets. Although, this maximum is also near the rod like configurations,

which are easier to deform. In our study of the pasta phases we have only considered M

evaluated at the equatorial plane. It would be interesting to see if, for other directions,

the maximum is located in other pasta phases.

Finally, we verified that the minimum of the magnetic potential, and thus the change

of sign point, vanishes for rotating frequencies higher than a certain critical value. When

this frequency is reached, the Lorenz force no longer posses a local minimum. It would

be interesting to understand whether this effect is relevant for the description of extreme

phenomena in the crust of the star, and how this critical frequency might depend on the

EOS.
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