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Resumo 
Nesta tese, foram estudados steady-state visual evoked potentials (SSVEP) com o 

objectivo de implementar um protótipo de controlo através de uma interface cérebro-

computador (BCI), de modo a estabilizar oscilações da actividade cerebral induzidas 

a uma frequência específica e medidas com equipamento encefalográfico (EEG), que 

estão potencialmente relacionadas com activação de sinapses e com dinâmicas de 

sincronização na região cerebral do córtex visual primário. Com este propósito, 

foram calculados modelos matemáticos da resposta SSVEP cerebral, de modo a 

realizar simulações de sistemas de controlo e reunir resultados que suportem 

experiências em humanos. Foi alcançado um controlo marginal das variáveis de 

potência dos modelos SSVEP em diversos valores de referência de controlo para 9 

modelos cerebrais, suportando assim o desenvolvimento de um protótipo. A 

configuração do protótipo é mostrada, funcionando com equipamento de EEG. A 

hipótese biológica diz que a potência instantânea a uma dada frequência está 

relacionada com a activação de sinapses e sincronização entre elas. Esta hipótese é 

proposta de acordo com as evidências fornecidas pela literatura consultada. Em 

futuras experiências é pretendido estabilizar SSVEPs em humanos. 

 
Abstract 

In this thesis, brain’s steady-state visual evoked potentials (SSVEP) were 

studied to implement a BCI control system prototype to stabilize frequency specific 

induced oscillations in electroencephalogram (EEG) measured brain signals, which 

may be related to synapse activation and synchronization dynamics happening in the 

primary visual cortex. For this purpose, brain SSVEP mathematical models were 

estimated to perform control system simulations and collect results to support the 

development of prototype to use in human experiences. Marginal control in specific 

control reference values was accomplished for 9 human brain SSVEP models, 

supporting the BCI controller prototype implementation. The prototype setup is 

demonstrated and tested, functioning with EEG equipment in loop. The biological 

hypothesis states that the frequency specific instantaneous power is related with 

synapse activation and synchronization between activated synapses. This hypothesis 

is proposed according to evidence given by the reviewed literature. In future 

experiments is intended to stabilize SSVEP responses in humans. 
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Chapter 1:  
 

Introduction 
 

The way in that complex structures of atoms and molecules interact to form 

neural networks whose dynamics originate consciousness, learning and memories 

can be overwhelming for our understanding. That’s why the Human brain is one of 

the most remarkable biological structures in the known universe. Although the 

brain’s anatomy and constitution are relatively well identified, the roles of structure, 

functions and connectivity between neural circuits are still not fully understood. 

Some hypotheses state that the anatomic structure has a major role in neuronal 

networks, but the overall functional connectivity of neuronal circuits in the brain 

cannot be explained solely by its anatomy [1] [2] [3] [4]. Elements like timing and 

spatial resolutions between excitatory and inhibitory ‘avalanches’ of action potentials 

considerably influence the functional and structural connectivity of brain areas [5]. 

Discoveries like these give insight into the complexity of dealing with brain 

dynamics. The human brain is composed by networks of neurons which generate 

neural oscillations that can be described as the change of field potentials in the 

extracellular region, promoted by the action potentials of synchronized neurons. 

These neural oscillations can be recorded into brain signals by non-invasive methods 

like Electroencephalography (EEG), thus facilitating the study of brain dynamics, 

mechanisms and the implementation of brain signal applications [6]. Delimited local 

regions of the brain can present oscillations at various frequencies, with each 

frequency being originated by several synchronized neurons. Phase synchronization 

of neural oscillations originating from short-range and long-range neural networks 

support the hypothesis that synchronization is of major importance in neuronal 

mechanisms involved in cognition, memory and motor function [6] [7] [8] [9]. 

Unbalanced synchronization patterns and lack of time precision in local network 
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firing within brain circuits and between specific interdependent brain regions can 

trigger several neuropsychiatric and neuro-motor pathologies such as epilepsy, 

dementia, schizophrenia and Parkinson’s. [9] [10] [11] [12] [13] [14]. Having the ability 

to induce oscillations and consequently phase synchronization could be a potential 

approach to mitigate the consequences of neuropsychological diseases and even to 

enhance some physiological features of the human brain. The limitation is that 

brain’s dynamics are still not fully understood and documented. It’s not yet fully 

understood which amplitudes and oscillatory frequencies influence which brain 

mechanisms neither is the influence of synchronization dynamics in the 

neurophysiological and neuropsychological mechanisms. There is still a long way to 

go to accomplish such outstanding achievements. Besides, is necessary to prove if 

neural oscillations and specific synchronization related EEG signals features can be 

induced and controlled, and to document the implications of such procedures. 

 

1.1 Background Research 

In previous research conducted by Soares et al [15], the delivery of visual 

stimulation based on steady-state visual evoked potentials (SSVEP) was used to 

influence a frequency domain EEG variable recorded in the visual cortex region 

(occipital region of the scalp). This variable of interest corresponds to a specific 

frequency instantaneous power calculated at the stimulation frequency and can be 

interpreted, in biological terms, as a complex measurement of two important 

physiological parameters: the number of synapses activated at the stimulation 

frequency; and the degree of synchronization between those specifically activated 

synapses [16] [17]. In the experiments it was possible to induce oscillations in the 

instantaneous power with frequency of ~1 Hz, in counter phase with the stimulation 

onset. This showed promising evidence that it is possible to influence, in a non-fully 

controlled way, the amplitude of neural oscillations recorded above the primary 

visual cortex using non-invasive techniques both to induce and to record brain 

potentials. 
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1.2 Contextualization 
In the world of Brain-Computer Interfaces (BCI), the majority of applications 

focus on recording brain signals containing information about the subject’s intentions 

or mental state. Common definitions state that BCIs measure the brain activity, 

isolate raw signal features or event-related potentials (ERP), use the information to 

bypass physiological pathways of peripheral nerves, and interact directly with 

external devices through brain signals [18] [19] [20]. Common applications are 

normally dependent upon subject’s intentions and aim to restore alternative motor 

capabilities to disabled individuals with unharmed brain function [21] [22]. 

On the other hand, there is a need to develop clinical applications to restore or 

enhance neural function in patients with neurophysiological diseases. The 

understanding that neurological patients may present a small chance for 

improvement of functional neurological conditions turned some attentions to the 

rehabilitation potentialities of BCIs, where most solutions resort to subject’s learning 

to change brain activity with help of neurofeedback indications by real-time BCI 

applications [19] [23] [24]. 

 
Figure 1.1) Assistive vs rehabilitative oriented BCIs. Two potential fields of application for 

BCI systems: the most conventional assistive approach, where specific brain signals and/or 

features encode instructions of external devices to bypass physiological motor action (left); and 

rehabilitation oriented approach, where brain signal recordings are used in algorithms in order to 

perform brain activity dependent stimulation with therapeutic goals (right). Adapted from: Krucoff 

et al [25]. 
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This project proposes following research in the field of rehabilitative BCIs, as it 

is intended not to encode brain information to hardware commands, but rather to 

record real time brain activity and use extracted information to induce alterations in 

the oscillatory patterns of specific brain regions (in the case of this study, the primary 

visual cortex). The pharmacological difficulty in finding solutions to 

neurophysiologic and neuropsychiatric injuries/conditions, combined with the 

development of computational processing capacities and electrophysiological 

recording techniques turned the attention of researchers to the possibility of using 

BCIs as tools to improve patient’s conditions [19].  Ultimately, it is intended to make 

a statement that neural oscillation and synchronization can be induced and 

marginally controlled using visual stimulation techniques. These objectives diverge 

from the majority of rehabilitative BCI also, because it requires no voluntary action or 

training from the subject who is interfaced with the system. In opposition to studies 

where brain stimulation is supported by the patients efforts to perform a task, the 

line that this project tries to draw is to create incentives and provide proof that it is 

possible to develop rehabilitative and/or function enhancing solutions that require 

no voluntary efforts from the patient. If this project shows successful, there is hope 

that similar researches can follow on the work developed. 

 

1.3 Objectives 
In continuance of Soares et al research [15], the project’s objective is to develop a 

BCI control system to manipulate a periodic visual stimulus onset and offset, in order 

to stabilize the amplitude of induced neural oscillations at the stimulation frequency 

recorded in the scalp through EEG. In other words, the EEG data recorded in the 

brain will be continuously processed and used as feedback to a control system that 

commands the stimulation, with the goal of stabilizing a specific oscillatory 

instantaneous power component at the output of the EEG. First, SSVEP mathematical 

models based on averages of previously obtained experimental EEG data will be 

calculated. The models are expected to reproduce brain responses to the specific type 

of stimuli delivered. Then, a control system to stabilize frequency-specific 



5 
 

oscillation’s amplitude of those models will be implemented and tested. Simulation 

results will evaluate concept performance and will justify if the system can be 

adapted to perform real-time closed-loop experimental tests. The final objective is to 

develop a working BCI prototype in humans. In this approach the neurofeedback is 

to be non-voluntary, meaning the Experimental Subject (ES) only has to gaze at the 

center of the stimulation screen. The work developed is meant to serve as proof of 

concept, stating that it is possible to control brain oscillations measured through EEG 

using a simple non-invasive feedback control loop. In this thesis, all the simulations, 

software and hardware frameworks used to implement a functioning BCI setup will 

be exposed. Experimental trials using the systems implemented will be performed in 

future work. It is expected that, if proven successful after experimental trials, this 

approach can be discussion opener and an incentive for future studies in the area of 

non-invasive induced synchronization, which ultimately can be used to improve 

communication dynamics in target brain networks and/or the introduction of novel 

neuro-therapeutic strategies. 

 

1.4 Basic Concepts and Definitions 
In this section some basic definitions of concepts that will be considered during 

the course of the thesis are introduced. 

Neurons: 
Neurons are electrically excitable cells [26] that compose the nervous tissue, 

communicating and transmitting nervous pulses through synapses. 

Action Potentials: 
Action potentials in neurons are characterized by rapid depolarizations 

followed by repolarization in specific locations of the cell’s membrane, giving rise to 

nerve impulses along the axon’s membrane [27]. 

Synapses: 
Synapses are structures of communication between individual pre- synaptic 

neuron(s) and one or more post- synaptic neuron(s). These can be chemical 

(neurotransmitters) or electrical and are the ‘bridge’ that enables the transmission of 
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nerve pulses. Also these structures can be excitatory or inhibitory, respectively 

promoting or demoting spike trains depending on the specific functions or 

characteristics of those spike trains. 

Neural Circuit/Network: 
Neural circuits are composed by interconnected, function specific neurons. 

Several low-range and long-range neural circuits connect by means of interneurons 

to exchange distributed information and to form larger networks [28]. 

Event-Related Potentials (ERP): 
Electrical activity recorded in the brain as a result of cognitive/motor defined 

events or sensory inputs. ERPs are characterized in terms of amplitude and time 

delay between the ‘event’ and the recording of the related brain response [29]. These 

‘events’ are characterized by being isolated, giving enough time for the brain system 

to resume a ‘homeostatic state’ before the next stimulus is presented [30]. ERPs can be 

easily estimated through averages of events present in EEG’s single trial data, in the 

case of this study, averages of the periods in which the stimulation is ON/OFF. 

Steady-State Visual Evoked Potentials (SSVEP): 
Brain potentials that can be measured with EEG equipment in the occipital 

region of the scalp. These potentials are associated to long periods of continuous 

stimulation, originating potentials than are correspondent in frequency and phase 

with the visual stimulation presented [30]. 

Brain-Computer Interface (BCI): 
Computational systems that bypass conventional efferent physiological 

pathways through the recording of brain signals directly from the scalp (non-

invasive methods) or from implanted electrodes (invasive methods). The recorded 

brain signals possess information about subject’s intentions, attention, 

neurophysiological states or pathology related features [19].  

Control Systems: 
A closed-loop control system is characterized by the determination of system’s 

inputs based on the outputs of that same system, in order to stabilize the system’s 

response in desired and calculated values. These systems often recur to feedback 

from sensors or system state estimators to fulfill their purpose [31]. 
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1.5 Thesis Outline 
In Chapter 2, an introduction to some basics regarding the mechanisms 

involved in brain functioning and in neural oscillations will be made, with the 

objective of building a better understanding about the complexity and dynamics of 

the brain. Some of the content justifies decisions and system components along the 

way. An introduction to brain-computer interfaces (BCI), steady-state visual evoked 

potentials (SSVEP), programs and functionalities used, calculations, control theory 

and control strategies will also be made. Subsequently, selected research and state of 

the art rehabilitative BCI related frameworks will be exposed, in order to perform 

comparisons and establish differences between existing approaches and the goal of 

this project. In Chapter 3, the methods used are explained in a chronological way, 

pointing out problems faced during the course of the project and solutions 

encountered to work around them. Failed results will be pointed out in order to 

justify the search for alternative solutions to the specific problems encountered 

during conception and implementation of simulation systems. This chapter includes 

brain SSVEPs computational modeling strategies, validation of the computed 

models, for purposes of brevity model selection will be made according to correlation 

results with experimental data and implementation and testing of several 

prototypical control designs. In Chapter 4, the selected models are embedded in the 

control prototypes that showed the best results in Chapter 3. The results obtained 

with every model are analyzed and compared. Their discussion will be performed to 

justify the development of a real-time framework to undergo experimental trials. In 

Chapter 5, a real-time BCI prototype will be presented, developed with the goal of 

performing real-world validation of the neurofeedback system described in the 

previous chapter, the difficulties encountered during conception and limitations. In 

the final Chapter 6, some conclusions about the work developed will be exposed, 

limitations, comparisons to other approaches and suggestions for the future work in 

this field. 
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Chapter 2:  
 

Fundaments & Literature 
 

Understanding physiological dynamic systems allied with hardware and 

software knowledge is of maximum importance to implement systems that interact 

with biological networks. In this chapter, biological and technical concepts, related 

with the implementation of the proposed solution, are exposed in order to build a 

better understanding about mechanisms involved in such solutions. Some brain 

dynamic concepts are discussed in relation to available scientific literature, since 

some derive from theories and couldn’t be proven till the present day due to the 

difficulties involved in the study of the human brain. 

 

2.1 Neurophysiologic Fundamentals 

2.1.1 Introductory Description 
Neurons in the brain function within networks, in which one neuron is 

influenced by multiple pre- and post- synaptic connections to neighbor neurons, 

forming circuits that fire in synchronized rates. The synchronization phenomenon 

presupposes the existence of an excitatory and/or inhibitory coordination between 

neurons present in the same network, leading to the generation of Local Field 

Potentials (LFP) that can be measured in the scalp with EEG techniques [32]. 

Excitatory synapses induce action potentials in the post-synaptic neurons that in turn 

generate electrical activity. The synaptic interaction between neurons within a small 

volume of nervous tissue gives rise to coordinated patterns of neuron’s activity. This 

coordination causes the neurons to fire in synchronized patterns, with each 

individual neuron producing electrical activity with millisecond scale differences 

between action potentials. The electrical potentials from individual neurons interact 
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in constructive ways (constructive interference) originating electrical fluctuations 

with greater amplitudes, commonly referred as neural oscillations [33]. As a result of 

synchronized firing patterns, neural oscillations in one network can act as input to 

nearby cortical areas, following the same principle of constructive interference and 

giving place to oscillations with even greater amplitude, the LFPs. These principles 

reflect that scalp electrodes do not measure electrical activity of single neurons, 

neither the activity of individualized neural networks, but rather the summed 

activity of synchronized networks that are composed by millions of individual 

nervous cells [34]. The totality of individual neurons present in networks of cortical 

regions (where specific frequency neural oscillations are recorded) do not necessarily 

present the same frequency firing patterns, given that individualized neurons are 

often activated under specific physiological conditions and that networks in common 

cortical areas can be synchronized in different ways [35]. Such findings support the 

conclusion that brain activity measured with scalp electrodes can be characterized by 

the sum of endogenous electrical fluctuations (due to excitatory and/or inhibitory 

connections between local neurons) and in particular Sensory Evoked Potentials 

(SEP), represented as fluctuations in LFPs due to the stimulation of sensory organs 

that send pulses to the brain via efferent pathways [36] [37]. LFPs recorded in 

localized regions of the scalp presenting spectral power (frequency domain of the 

EEG signal) at a wide range of frequencies is supporting evidence that the EEG brain 

activity measured is due to several simultaneously occurring phenomena. 

 

2.1.2 Neural Plasticity 
Oscillations in the brain’s electrical activity are based on spatial and temporal 

relations of connectivity between networks, relations which are constantly changed 

due to sensory inputs and feedbacks from engaged networks. These dynamic 

relations induce modifications mainly in the functional connectivity of the brain 

networks, reinforcing or undermining the specific connection’s strength based on 

individual neurons ‘firing’ timings. This principle is referred to as Spike-Timing-

Dependent Plasticity (STDP), which explains the strengthening of synaptic 
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connections to potentiate ‘communication’ of active networks, characterized by time-

based patterns of pre- and post- synaptic action potentials in the neurons of 

interconnected regions [25] [38] [39]. 

As stated by Donald Hebb [40]: 

“Let us assume that the persistence or repetition of an activity tends to induce lasting 

cellular changes that add to its stability.” 

Dr. Hebb introduced the concept of STDP, which led to further studies about 

the subject, reporting that synaptic connections are strengthened based on repeated 

post- synaptic induced activity in intervals of 0 to ~50 ms after pre- synaptic firing. 

The STDP model shows promise in very simplistic in vitro conditions, however fails 

to perform in more complex and reality-close environments [39]. The Bienenstock-

Cooper-Munro (BCM) model [41] defends that neural plasticity is not only post- 

synaptic firing dependent but also relies on a non-linear selectivity of post- synaptic 

neurons to drive specific pulses, model which show contradictory results against the 

STDP, even in simple conditions [39]. The lack of consensus, variable explicatory 

mechanisms and the existence of numerous theories with contradictory results are a 

glimpse to the complexity involving functional plasticity. Plasticity can occur 

structurally and functionally. Since structural plasticity relates to neuron ‘wiring’ and 

genesis of synaptic structures in maturation stages of the brain neurons [42], the 

focus of most studies is on functional plasticity. Functional plasticity can incorporate 

modifications in synaptic connections, strengths and changes in neuron intracellular 

properties, creating adaptive and/or maladaptive changes in the highly structured 

dynamic networks of the brain [42] [43] [44]. Maladaptation can be one of the bigger 

obstacles to rehabilitative efforts since it can induce unwanted modifications in the 

dynamics of target networks. Nevertheless, correctly induced plasticity can be a 

gateway to recover or improve function in patients who’ve experienced neurological 

injuries, given that the Central Nervous System (CNS) promotes adaptation and 

increases possibility for synaptic strengthening in the aftermath of injury [44] [45]. 

Plasticity is not a mechanism by itself, but rather a consequence/finality of several 

coordinated mechanisms that are involved in the physiological dynamics of the brain 

(see Figure 2.1 in section 2.1.4) The Role of Phase Synchronization). 
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2.1.3 Neural Synchronization 
The definition of ‘neural synchronization’ depends on the context in which the 

expression is used. At microscopic scale (individual neurons), ‘neural 

synchronization’ refers to the time sensitive induction of post-synaptic action 

potentials, in order to synchronize pre- and post-synaptic firing patterns [6] [38]. At 

mesoscopic scale (local neuron’s networks), ‘neural synchronization’ is used to 

describe oscillation phase relations between neural circuits in local cortical areas. 

Translating into EEG recordings, refers to an enhanced EEG power at a specific 

frequency in one cortical region, power which varies depending on the number of 

synapses activated and on the degree of phase synchronization between the neurons 

involved in the generation of such frequency specific oscillations [6] [38] [46]. At 

macroscopic scale (cortex regions), ‘neural synchronization’ refers to matching 

oscillatory phase in the LFPs of distant cortical regions, phenomenon that is 

facilitated by the strengthening of synaptic pathways and repetitive communication 

[6] [38]. 

Different stimuli can have different representations in synchronization patterns, 

ultimately increasing or decreasing the amplitude of specific frequency oscillations, a 

phenomenon described as event-related synchronization and event-related 

desynchronization, respectively [6]. 

 

2.1.4 The Role of Phase Synchronization 
Several studies defend that the overall brain functioning is based on 

information sharing through several long-range cortical regions, based on the fact 

that random samples of neurons in the cortex contain motor information [25] [47] [48] 

[49]. One can infer that the brain may function as a distributed system, where specific 

networks interact to perform specific tasks, being the structural and functional 

communication between those networks one of the keys for normal system 

performance. The synchronization of oscillations originated from different networks 

assumes a major role in driving communication between active brain zones by 

supporting the coordinated arrival of inputs at post-synaptic neurons [50]. 
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Synchronization drives the overall communication between brain regions, acting as 

the link between networks of a distributed system, enabling each network to send 

and receive feedback from phase matched networks and providing information 

integration [51]. Normal motor control, for example, depends on precise long-range 

communication that is achieved through oscillatory synchronization between the 

brain’s regions involved in generating specific movements [9]. Moreover, a dynamic 

time-precise relation between synchronization and desynchronization of different 

short- and long-range networks is likely fundamental to the development and 

maintenance of cognitive function [52]. 

In terms of pathological significance, abnormalities in synchronization/ 

desynchronization patterns can cause failures in neurophysiological performance. 

Neuropsychiatric conditions have been associated with defects on brain 

synchronizations, ultimately resulting in tremors, seizures and difficulties in motor 

action [9], with studies showing that alterations in normal oscillatory and 

synchronization patterns in neurons within the basal ganglia associated with 

defective long-range network communication are key aspects in the pathophysiology 

of patients with Parkinson’s disease [53]. 

Phase synchronization has also been acknowledged as important to induce 

functional plasticity [6] [9] [54]. The repeated synchronization of firing rates in 

interconnected regions enables the maintenance of individual neurons potential near 

the threshold, making these more likely to fire and facilitating the repeated 

excitability pathway, leading to the plasticity characteristic strengthening of synaptic 

connections that are often excitatory, in opposition to the deterioration of connections 

that aren’t so often excitatory [45]. 
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Figure 2.1) Brain dynamics schematic representation. Simple schematic representation of 

brain dynamic’s related with phase synchronization of network firing patterns. It is consensual in 

several studies that phase synchronization is related to synaptic strengthening and communication 

between cortical regions. Adapted from: Fell et al [6]. 

Some studies postulate that plastic changes strongly rely on the specific latency 

between pre- and post- synaptic firing [39] [55], providing more supporting evidence 

that neural synchronization driven communication and coordination mechanisms are 

important in the induction of neural plasticity. 

 

2.1.5 Visual Pathways 
We perceive the world thanks to the light that is reflected or refracted from 

surrounding objects. The human eye contains approximately 125 million 

photoreceptors. These photoreceptors are nervous cells specialized in converting 

visible light (electromagnetic waves within the visual spectrum of the human eye) 

into electrical signals that can be transmitted through neurons’ action potentials [56] 

[57]. The retina is the eye structure where the photoreceptors are found, making it the 

fundamental entity of photo transduction. When light stimuli are formed in the 

retina, the photoreceptors generate electric pulses that travel to the brain via the optic 

nerve [56]. These structures form the half of the visual pathway that is located 

outside the Central Nervous System (CNS). The optic nerve transmits the impulses 

generated in the retina to the Lateral Geniculate Nucleus (LGN), a thalamic structure 
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present in both hemispheres, directly connected to the primary visual cortex. The 

LGN receives sensory inputs directly from the retina, sending and receiving feedback 

information from the visual cortex, being defined as an interconnection center 

between the eyes and the brain structures that perceive sight [58]. 

The visual system possesses several parallel processing pathways, where 

multiple stimulus characteristics such as bright, contrast or depth are transmitted 

and processed (see Figure 2.1). The LGN acts as a re-transmission center to direct the 

characteristic-specific pulses to the respective pathway. The primary visual region of 

the cerebral cortex is the sensory pulse final destination, where the visual 

information will be processed [57]. 

 
Figure 2.2) Visual pathways schematic representation. Simplified schematic representation 

of the visual pathway starting with the absorption of light by the photoreceptors in the retina, 

followed by generation of impulses (action potentials), transmission through the optic nerve to the 

LGN, relay of visual information in the LGN through the parvocellular and magnocellular 

pathways and information processing in the primary visual cortex. Adapted from: Cotrina et al [57]. 

The magnocellular pathway (MC) is responsible for motion and depth 

perceptions, preferably driving color-neutral and high temporal frequency reverse 

contrast information, while the parvocellular pathway (PC) is responsible for color 

distinction and spatial contrasts, preferably carrying color, spatial luminance and low 

temporal frequency reverse contrast information [37]. 

The electrical responses of the occipital region of the scalp due to light 

stimulation are called Visual Evoked Potentials (VEP) and can be measured using 
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non-invasive techniques such as EEG. VEPs are due to the synchronized firing of 

several neural networks in the V1 cortex region, being characterized by low 

amplitudes and difficulty in being isolated from the background EEG [16] [17]. 

In previous research, after performing EEG recordings in the occipital region of 

the scalp, it was estimated that the visual pathway introduces a physiological retina-

visual cortical transmission delay, since the stimuli onset and the initial 

corresponding EEG feature were separated by a delay of approximately 55 

milliseconds [15]. Additionally, the possibility of refractive repercussions in the cases 

where experimental subjects present weak visual acuity must be considered. Lack of 

visual acuity can lead to noisy and delayed VEP readings and correspondences [57].  

 

2.2 Recording and Modulating Brain Signals 

2.2.1 Electroencephalography 
Electroencephalography is a non-invasive technique to record real-time 

electrophysiological brain potentials. The EEG equipment possesses electrodes that 

are positioned on the intended scalp regions. EEG electrodes capture not the action 

potentials of individualized neurons, but rather the summed activity of 

neurophysiological processes (such as neural firing). It is thought that scalp 

electrodes mainly represent postsynaptic potentials [59]. The EEG techniques are 

characterized by having high temporal resolution but very poor spatial resolution, so 

during recording it cannot be assumed that the source of the signal is directly below 

the recording region but rather that the output signal is a combination of desired 

events and background brain activity, considered as noise [59]. For the purposes of 

this project, the high temporal resolution is very important, given that the BCI 

system to be developed strongly depends on time precision. The spatial resolution is 

the major issue. The brain signals recorded originate from various constructive 

interferences of several LFPs, so the relation between the target potentials and the 

target brain dynamics can turn out to be not so direct. Still, given that the 

microscopic brain dynamics are very poorly understood, the marginal control of 

potentials can be advantageous for future studies. 
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Figure 2.3) LFPs origin schematic representation. Example of different post- synaptic 

potentials (PSP) synchronization in a local cortical network. The network is characterized in EEG 

recordings by its local filed potentials (LFP) and not by the activity of single neurons. Adapted 

from: Schnitzler et al [9]. 

The raw EEG data can be interpreted as a measurement of sinusoidal waves 

combination that are individually generated by large populations neurons, so a 

spectral decomposition and frequency analysis are pertinent to perform studies and 

extract features. EEG has a large range of applications in BCIs due to the advantages 

of having good temporal resolution and being non-invasive, facilitating prototype 

implementation. It has often been used in spellers [21], motor recovery/assistive 

studies from controlling the movement of wheelchairs [60] to robotic limbs [61] and 

in environment control systems [62]. 

 

2.2.2 The Steady-State Visual Evoked Potentials 
When implementing BCIs, the brain signals recorded can present transient 

responses (ERPs), associated to single events that can be delivered in stimulation 

trains or by isolated stimulus; or steady-state responses, associated to continuous 

stimulation during long periods of time, originating potentials that are 

correspondent in frequency and phase with the delivered stimulus [30]. The brain 

electrophysiological recordings used in this study will be steady-state visual evoked 

potentials (SSVEP), characterized by the frequency and phase correspondence with 

the visual stimulation flicker that originated those same potentials, maintaining its 

parameters constant for relatively long periods of time when analyzed in the 
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frequency domain. The recorded potentials possess power at the fundamental 

frequency and also at the respective harmonics, so if the frequency of a flickering 

stimulus is 10 Hz, the SSVEP responses will have powers at 10 Hz (fundamental 

frequency/first harmonic), 20 Hz (second harmonic), 30 Hz (third harmonic) and so 

on.  The SSVEP responses present excellent signal-to-noise ratio in comparison with 

transient visual evoked potentials (VEP), are very resistant to recording artifacts and 

are also possible to measure with EEG, making the use of these potentials very 

tailored for real-time BCI applications. Drawbacks of this technique include 

habituation to the stimulus induced and subject’s visual and attention fatigue. In 

terms of system implementation and simulation, the SSVEP can be challenging 

because the visual stimulus has to be converted to an electrical signal that can be 

used as input for computer modulated brain systems. The frequency range of 

SSVEPs can go from 3 to 50 Hz [63]. If the frequency of the flicker is higher than 10 

Hz, the SSVEPs recorded are sinusoidal, being described as external induced 

oscillations in the local-field potentials (LFP) [64]. This corroborates the hypothesis 

that SSVEPs can drive synchronization, consequently originating sinusoidal like 

neural oscillations in the LFP. The SSVEP can be induced through several methods: 

flashing lights, which shows great variability across subjects; pattern reversal, which 

presents the lowest variability in delays and waveforms; pattern onset/offset, which 

shows a little more variability than the previous [37]. The origin and distribution of 

visually evoked responses are not yet completely understood. In the review of 

Vialatte et al [37] are exposed theories that try to explain the generation and 

propagation of the SSVEP responses. According to these theories the SSVEPs are 

generated in the primary visual cortex and then transmitted or propagated to 

neighboring networks. The potentials’ propagation implies that the involved regions 

are connected and communicate. If the potentials’ communication and propagation is 

made through phase synchronization of interconnected neural networks oscillations 

as explained earlier then, in theory, it’s possible to induce inputs into several brain 

regions through the induction of controlled potentials in the visual primary cortex 

(see Figure 2.4). 
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Figure 2.4) SSVEPs propagation in the brain. Schematic representation of the propagation 

of the SSVEPs after generation in the primary visual cortex. Adapted from: Vialatte et al [37]. 

The only conclusion that might be taken from the existence of propagation 

theories and from the difficult comprehension of the SSVEP potentials dynamics 

within the brain networks is that these processes are driven by non-linear 

mechanisms, as are all major brain dynamics. 

Potentialities and applications of SSVEP range from the very common spellers, 

[21] study of cognitive mechanisms such as visual attention [65] and working 

memory [66], to neuropsychiatric studies of social cognition [67]. 

 

2.2.3 Brain-Computer Interfaces & 

Neurofeedback 
Neurofeedback BCI system components encompass electrophysiological signals 

recording, signal processing and feature extraction, feedback signals generation and 

subject’s adaptive training to interpret real-time feedback signals, working in a 

‘symbiotic’ way between subject’s efforts and machine recordings and processes. 

Approaches like these are found in visual attention studies, where repeated sessions 

of learning aim to give patients the control over own-brain activity through feedback 

signals visualization. It has been reported that these approaches induce network 

plasticity after several training sessions and ultimately improve subject’s attention 

[42]. The opinions about neurofeedback approaches are divided among researchers. 

Some critics defend that studies conducting neurofeedback BCIs use very controlled 
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conditions and low number of samples to support their conclusions, while others 

criticize the experimental setups and experimental designs [19]. These evidences 

show that there is still a long way to go to have conclusive and acceptable results 

regarding induction of biological functional changes through neurofeedback 

approaches. There should be more investment in this type of research and in 

different attempts to induce neurophysiological changes, starting by the more basic 

mechanisms and building the way to the most complex. 

 

2.3 Dynamic Systems and Control 
This section covers some definitions and methods used in computational 

models calculation, control theories and strategies. The purpose is to provide a very 

basic understanding about the concepts involving the systems to be implemented 

further in this thesis (Chapter 3: Methods & Control Designs). 

 

2.3.1 Linear & Time-Invariant (LTI) Systems 
Linear & time-invariant (LTI) systems are defined by their linearity and time 

invariance properties. System’s linearity is characterized by homogenous and 

addictive properties, defined in continuous time by the following representations 

(Equations 2.1 and 2.2): 

𝐼𝑓  𝑥(𝑡) → 𝑦(𝑡), 𝑡ℎ𝑒𝑛  𝛼𝑥(𝑡) → 𝛼𝑦(𝑡)    (ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦)     (2.1) 

𝐼𝑓  𝑥1(𝑡) → 𝑦1(𝑡)  𝑎𝑛𝑑  𝑥2(𝑡) → 𝑦2(𝑡),

𝑡ℎ𝑒𝑛  𝑥1(𝑡) + 𝑥2(𝑡) → 𝑦1(𝑡) + 𝑦2(𝑡)     (𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑖𝑡𝑦)     (2.2)     

System’s time invariance is characterized by the ability of the system in giving a 

specific response to a specific input independently of the time T in which the input 

enters the system (Equation 2.3). 
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𝐼𝑓  𝑥(𝑡) → 𝑦(𝑡), 𝑡ℎ𝑒𝑛  𝑥(𝑡 − 𝑇) → 𝑦(𝑡 − 𝑇)    (𝑡𝑖𝑚𝑒 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒)    (2.3) 

LTI systems are more amenable to perform analysis. That is why non-linear 

systems can be often approximated to LTI systems to implement complex control 

systems for real life applications. 

 

2.3.1.1 Transfer Function Systems [68] 
LTI systems represented as transfer functions use a polynomial ratio to describe 

relationships between system’s input signal(s) and respective output(s). The transfer 

function parameters are the poles (roots of the denominator), the zeros (roots of the 

numerator), transport delay and noise factor. In continuous time, the system’s output 

is given by the convolution between the system’s impulse response and the system’s 

input (see Equation 2.4): 

𝑦(𝑡) = ℎ(𝑡) ∗ 𝑥(𝑡)     (2.4) 

where 𝑥(𝑡) is the input, 𝑦(𝑡) is the output and ℎ(𝑡) is the impulse response of the 

system. This is the most simplistic way of representing the relations between 

dynamic system’s inputs and outputs. The transfer function in continuous time 

domain 𝐻(𝑠) can be obtained by rearranging the previous equation variables and 

performing Laplace Transforms to the input and output signals (see Equation 2.5): 

𝑦(𝑡) = ℎ(𝑡) ∗ 𝑥(𝑡)    (=)   ℎ(𝑡) =
𝑦(𝑡)

𝑥(𝑡)
    (=)   ℒ{ℎ(𝑡)} =

ℒ{𝑦(𝑡)}

ℒ{𝑥(𝑡)}
 

(=)   𝐻(𝑠) =
𝑌(𝑠)

𝑋(𝑠)
    (2.5) 

where 𝑋(𝑠) and 𝑌(𝑠) are the Laplace transforms of the input, output and noise factor, 

respectively. The system’s order is defined by the transfer function’s order of the 

denominator polynomial. 
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2.3.1.2 System/Model Identification 
With resource to the System Identification ToolboxTM application from MatlabTM, it 

is possible to obtain identified linear & time-invariant (LTI) system models using 

measured input and output signals in the real process. The resulting models/systems 

are represented by continuous time transfer functions. Number of poles, number of 

zeros, delay and initialization method parameters are defined accordingly to the 

desired model outcome (see Figure 2.5). 

 
Figure 2.5) System Identification ToolboxTM application interface. The blocks on the left 

(Trial1, Trial2, …, ERPONLum1) represent the uploaded input and output measured data for 

different experiments/trials. The blocks on the right (tf1, …, tf12) represent the estimated models, 

each generated with different parameter specifications and, consequently, possessing different 

percentage fittings to the measured output data. 

The Instrumental Variables (IV) initialization method is used for the estimation of 

initial conditions of single-input single-output (SISO) LTI transfer function models 

that have a non-identified type of noise. 

 

2.3.2 Control Theory 
Control theory resorts to mathematical operations to deal with dynamic 

systems management, in order to come up with strategies to control outputs of such 

systems in desired ways. These strategies must ensure the stability of the system, 

prevent overshooting and work around the existence of delays that might occur in 

some system components or are inherent to the real process. 
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Figure 2.6) Controller example. Schematic representation of an actuator (normally a 

controller) and a plant (process which output is to be controlled) in a closed-loop system design. 
A closed-loop system is characterized by the inputs determination based on 

output responses of the system, given by sensors or system state estimators feedback 

measurements (see Figure 2.6). Control designs are used to accomplish reduced 

errors and satisfactory dynamic responses for systems comprising continuous and 

time sampled signals. The “regulator approach” to control systems aims at 

stabilizing a physical variable with disturbances (in the case of neurophysiological 

systems: measurement noise and non-desired sensory evoked potentials that 

influence the interest features) in a desired value [31]. 

2.3.2.1 PID Controller [69]  

 
Figure 2.7) PID controller structure.  r(t) is the reference value, M(t) is the measured value 

of the output, y(t) is the output of the plant process, e(t)=r(t)-M(t) is the value of the error used as 

input to the PID controller and u(t) is the control variable. The Plant block represents the system 

which output is desired to stabilize in the reference value. 

A Proportional-Integrative-Derivative (PID) controller continuously calculates 

an error (e(t)) defined by the difference between a defined reference value (r(t)) and 

the measured value at the system’s output (M(t)). The error value e(t) is corrected by 

the PID’s three branches, characterized by the best proportional, integral and 

derivative gains combination, in an attempt to minimize the error by application of a 

control variable (u(t)) to the input of the system’s plant (Figure 2.7). 
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𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡′)𝑑𝑡′
𝑡

0

+ 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡
     (2.6) 

The overall control function, in order to the control variable u(t), can be 

mathematically represented as shown in Equation 2.6, where 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 are the 

proportional, integrative and derivative controller gains, respectively. The different 

terms complement each other. The proportional control term is the trivial method of 

control, driving the error to 0, but fails when the system possesses disturbances, 

causing overshooting and instability in the control. The integrative control term takes 

in account the time passed in which the error is non-zero, forcing the control variable 

to increase the output of the system accordingly. The derivative control term 

considers not the absolute value of the error but rather the variation of the error 

(Δe(t)), trying to bring the variable Δe(t) to zero. The system stability relates to the 

control system capability in maintaining the output stable over time. If the system 

has to perform repetitive overshoot corrections (positive and negative), the output 

oscillates. If the oscillation’s amplitude decreases over time, the system is considered 

stable. If the oscillation’s amplitude increases, the system is considered unstable. If 

the oscillation’s amplitude remains constant, the system is considered marginally 

stable. 

The PID controller transfer function in discrete time domain is represented in 

Equation 2.7: 

𝐻𝑃𝐼𝐷(𝑧) =
𝛽0 + 𝛽1𝑧−1 + 𝛽2𝑧−2

(1 − 𝑧−1)
    (2.7) 

𝛽0 = 𝐾𝑝 (1 +
𝑇𝑠

𝐾𝑖

+
𝐾𝑑

𝑇𝑠

) ;   𝛽1 = −𝐾𝑝 (1 + 2
𝐾𝑑

𝑇𝑠

) ;   𝛽1 = 𝐾𝑝

𝐾𝑑

𝑇𝑠

 

where 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 are the controller proportional, integrative and derivative gains 

and 𝑇𝑠 is the sampling period. The PID tuning can be accomplished in loop and 

depends on the mechanisms involved in the system, on the method to obtain the 

variable M(t) and on system/control delays. There are several phenomena that can 

drive system instability, such as non-linear blocks, functions, algorithms and 

transport or pure delays in the loop. 
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2.3.2.2 Smith-Predictor Controller [69] [70] 
The Smith-Predictor works as a predictive controller for systems that possess a 

pure time delay. This type of controller uses two feedback loops (see Figure 2.8). The 

Process that is to be controlled is in the outer loop, with all the delays associated. The 

novelty, when compared with the PID structure, is the introduction of an inner loop 

that uses a replicative model of the original process (GP), with the advantage of 

mathematically separating the process and respective delays incurred (e-τs) into two 

separate functions/blocks.  

 
Figure 2.8) Filtered Smith-Predictor controller structure. The GP block is a replicated 

mathematical model of the real process, e-τs is the real process delays mathematical representation, d 

are process disturbances and F is a first order filter. 

The outer feedback loop calculates the difference between the output of the real 

process and the output of the delayed mathematically replicated model of the 

process (Gp+e-τs). It’s easy to observe that, if the process replication model is 100% 

successful, the outputs will be correspondent (ydiff ≈ 0), and the maximum 

performance of the controller is achieved.  

𝑒(𝑡) = 𝑟(𝑡) − (𝑦𝐺𝑝 + 𝑦𝑑𝑖𝑓𝑓)     (2.8) 

The inner feedback drives the output of the replicated model. The real process 

and model outputs (ydiff(t) and yGp(t), respectively) are summed and the resulting 

value is subtracted to the reference value (r(t)) to obtain the error variable (e(t)) to be 

used at the input of the control (see Equation 2.8). 
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𝐻𝐹𝑆𝑃(𝑧) =
𝐻𝑃𝐼𝐷(𝑧)

1 + 𝐻𝑃𝐼𝐷(𝑧)𝐺𝑃(𝑧)(1 − 𝑧−𝑑𝐹(𝑧))
    (2.9) 

𝐹(𝑧) =
(1 − 𝛼)𝑛

(1 − 𝛼𝑧−1)𝑛
    (2.10) 

𝛼 = 𝑒
−𝑇𝑠
𝑇𝑓  

𝑇𝑓 = 𝑡𝑖𝑚𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑙𝑡𝑒𝑟;    𝑛 = 𝑓𝑖𝑙𝑡𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑟𝑑𝑒𝑟 

Equation 2.9 represents the system’s discrete time transfer function for the use 

of a PID controller in the Smith-Predictor scheme. The digital filter (see Equation 

2.10) placed in the outer feedback loop allows the system to have an extra degree of 

freedom when dealing with disturbances that cannot be measured and with model 

GP lack of replicative capabilities. 

 

2.4 State of the Art in Rehabilitative BCIs 
There is a very short list of studies regarding BCI neuro-rehabilitative 

approaches. Some researches include brain spikes dependent stimulation (BSDS) of 

efferent nerves and muscles in spinal injured patients; [71] paired associative 

stimulation (PAS) non-invasive techniques to induce nerve plasticity in human 

subjects through the combination of transcranial magnetic stimulation (TMS) and 

stimulation of damaged peripheral nerves; [39] and combination of brain signal 

recordings in monkeys with functional electrical stimulation (FES) of nerves and 

muscles to induce plasticity in injured pathways and consequently restore motor 

function in limbs. [72] [73] 

Gharabahi et al [71] findings show that BSDS application using TMS promotes 

increased excitability in the motor cortex. Such discovery may present advances in 

artificially driven plasticity of efferent nerves and improve the recovery of patients 

with nerve or spinal cord lesions, but does not relate with cortical dynamics 

alteration required in cases of neuropsychiatric or neurophysiologic disorders. Ethier 

et al [39] found that correctly time coordination between TMS and motor-neurons 

electrical activation increase corticospinal inputs strength to those specific motor-

neurons, and that the intervals between stimulations play a decisive role in the 
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process. Still this doesn’t demonstrate palpable changes in cortical dynamics, only in 

the relations between the CNS and the peripheral neurons that transmit motor 

information.  

 On the other hand, Guggenmos et al [24] implemented a brain function restoring 

strategy in rat models focusing on communication mechanisms. After inducing 

injuries in the primary motor cortex of rat models to interfere with the 

somatosensory and motor cortical areas communication dynamics, a spike 

identifying neural prosthesis was implanted in the injured area of the motor cortex to 

trigger control somatosensory cortex electrical stimulation. This BSDS post- 

experimental analysis provided evidence of improved functional connectivity 

between the two target areas in comparison with the injury aftermath condition. The 

exposed study shows a lot of promise in terms of research but not in terms of 

applicability, because the strategies implemented rely on invasive techniques which 

are complex and dangerous to experiment on human subjects. Rebesco et al [55] 

accomplished changes in spontaneous neuron activity in vitro and also in rats using 

spike triggered electrical stimulation, ultimately reaching plastic changes in the rat 

models forelimb sensorimotor cortex. Evidence supports that plastic changes 

strongly depend on the precise timing between trigger-spikes and the stimulated 

activity. Once more the stimulation and spike detecting methods involved invasive 

procedures in animals, failing to prove that the experiments can be replicated in 

human subjects. 

In a completely different approach, Garcia-Molina et al [74] enhanced 

synchronization of oscillations at low frequencies (slow waves) with auditory 

stimulus during sleep in humans. The auditory stimulation is applied during EEG 

controlled stages of subject’s sleep, to ensure correct timing in the stimulus delivery. 

The strategy showed an increase in slow wave activity during stimulus delivery 

periods for a younger group of subjects tested in the study. This clearly is a strategy 

to enhance synchronization of frequency specific band linked oscillations with 

resource to non-invasive stimulation (auditory) and brain signal recording (EEG).  

Such approach coordinated with other strategies to possibly enhance long-range 
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synchronization can turn out to be very promising for the overall comprehension of 

the brain synchronization mechanisms. 

The use of invasive methods for BCI rehabilitative research is the most common 

approach to induce plastic changes given the better performances both in stimulation 

techniques and recording demonstrated by this kind of equipment. The downside is 

the difficulty of implementing such strategies in humans, due to the need of surgical 

procedures to implant electrodes. The findings of Garcia-Molina et al [74] can be the 

proverbial light at the end of the tunnel in rehabilitative non-invasive research. 
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Chapter 3:  
 

Methods & Control Designs 
 

In this chapter, all the steps taken to implement the neurofeedback control 

prototype will be described, from EEG recordings, obtaining the variable of interest, 

and presentation of the final prototype. Furthermore, some results are presented and 

commented to justify the failure of some approaches and the need for new ones. All 

the EEG data used to simulate and test the system where recorded in Soares et al 

previous experiences [15] (see Appendix A for database description). To know the 

exact simulation instants in which the stimulation frames are shown on the screen (at 

a one millisecond scale), a light sensor (photodiode) is used to differentiate the 

frames that are shown in the screen and to know exactly when each frame appeared. 

First we present the calculations and algorithms used throughout the study, in order 

to have a better understanding about the calculations present in the control designs. 

All calculations, algorithms and software scripts are performed using MatlabTM 

environment and functions, including SimulinkTM and Matlab ToolboxesTM. All the 

amplitude values of signals present in the database and obtained in simulations are 

presented in arbitrary units (a.u.), because in the database it wasn´t specified the 

recorded electrical potentials units. 

 

3.1 Calibration Techniques 
As SSVEP potentials are generated in the primary visual cortex, the 10 most 

posterior EEG channels were recorded, to cover the occipital region (directly above 

the interest region). All the channels were bandpass filtered between 1 and 100 Hz. 

The aim was to induce an EEG recordable signal in the brain, so the solution was to 

compare the combination of the 10 previously calibrated channels (Fit) with the 
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stimulation signal (Photo), obtained via the light sensor. Therefore, the calibration 

and posterior combination of the channels would be made according to the best 

correlation results between channels and sensor’s signal. The Fit which presents the 

best correlation with the light sensor’s signal corresponds to a signal denominated 

Time Best Fit (TBF).  

In every trial a very simple behavioral task is delegated to the subjects. The 

subject is asked to uninterruptedly fixate a symbol that appears in the center of the 

stimulation screen. The symbol can have three different forms: ‘+’, ‘○’ or ‘□’. When 

the ‘+’ is present in the center of the screen, the subject must press a computer key 

when the ‘+’ is replaced by the ‘○’ in one frame period. This binds the subject’s 

attention to the center of the screen. When the ‘□’ is present in the center of the 

screen, the subject must react and keypress at the moment of checkerboard reversal 

onset, ignoring the symbol ‘○’. This binds the subject attention to the periphery of the 

screen. This task didn’t induce alterations in the SSVEP response when the attention 

was varied between center and periphery of the screen, so in this case it was only 

used to bind the subject’s attention to the stimulation screen, in order to avoid 

distractions that can consequently alter the output of the EEG. All the calculations 

and algorithms exposed in section 3.1) Calibration Techniques were introduced in 

Soares et al previous research. [15]  

 

3.1.1 Canonical Correlation Analysis 

The canonical correlation analysis (CCA) intends to find calibration coefficients 

for every EEG channel in order to obtain the Fit signal that best correlates to the Photo 

signal. [75] The vector Theta contains 10 elements that will be multiplied respectively 

by each EEG channel before the combination. For this purpose, the signals from each 

channel are incorporated into a matrix, which contains 10 columns (number of 

channels) and n lines (n corresponds to the number of data samples) denominated 

DataMat. Various circular shifts are performed in the Photo signal in order to cover 

delays incurred during the trials. 
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For the next calculations, only the middle indices of the vectors are selected to 

prevent discontinuities caused by the circular shifts. All vectors are normalized to 

zero (each element is subtracted by the mean (�̅�) and divided by the standard 

deviation (𝜎), as shown in equation 3.1) using the function zscore(). 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =  
𝑥 − �̅�

𝜎
     (3.1) 

To obtain the Theta values, the equation 3.2 is used, incorporating a pseudo 

inverse function pinv(): 

𝑇ℎ𝑒𝑡𝑎 = 𝑝𝑖𝑛𝑣(𝐷𝑎𝑡𝑎𝑀𝑎𝑡′
[20,𝑛] × 𝐷𝑎𝑡𝑎𝑀𝑎𝑡[𝑛,20]) × 𝐷𝑎𝑡𝑎𝑀𝑎𝑡′

[20,𝑛] × 𝑆𝑒𝑛𝑠𝑜𝑟𝑆𝑖𝑔𝑛𝑎𝑙[𝑛,1]    (3.2) 

NOTE: 

 Canonical correlation analysis (CCA) finds linear combinations of two vectors that have 

the highest correlation with one another. [75] 

 Circular shift (CS) is a cyclic permutation operation that rearranges the elements in a 

vector, moving the final element of the vector to the top and shifting the other elements to the next 

index position. 

 For any matrix A, there is only one pseudo inverse (A
+
) that satisfies the conditions 

proposed by the definition. Pseudo inverse is a generalization of the inverse (A
-1

). [76] The pseudo 

inverse conditions are: 

 AA
+
A = A; 

 A
+
AA

+
= A

+
; 

 (AA
+
)* = AA

+
 (A* is the conjugate transpose of A); 

 (A
+
A)* = A

+
A. 

 

 Correlation coefficient (CC) is a statistical method that evaluates the relation strength 

between the instantaneous values of two ‘moving’ variables. The covariance is used in the 

calculation of the correlation coefficient and relates to the directional relationship between the two 

variables. 

𝜌𝑥𝑦 =
𝑐𝑜𝑣(𝑥, 𝑦)

𝜎𝑥𝜎𝑦
 

𝑐𝑜𝑣(𝑥, 𝑦) =
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑛

𝑖=1

𝑛 − 1
 

where 𝜌𝑥𝑦 and 𝑐𝑜𝑣(𝑥, 𝑦) are the correlation coefficient and covariance representations, 

respectively, �̅� and �̅� are the mean values of the variables, 𝜎𝑥 and 𝜎𝑦 are the standard deviation 

values of the variables and  𝑛 is the number of samples of the two variables. 
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The resulting Theta vectors possess calibration coefficients that give the best Fit 

signal correlation for each Photo signal shift. So, there is one Theta vector with 10 

elements (and consequently one Fit signal) for each of the Photo signal shifts. To 

evaluate which of the shifts better accounts for the delays, a correlation coefficient 

calculation is performed for every shift, to select the best correlated shift’s 

correspondent Theta vector and Fit signal, which corresponds to the signal 

denominated TBF. 

 
Figure 3.1) Canonical correlation analysis correlation coefficients for two different 

checkerboard configurations. Coefficient of correlation values (y axis) between the EEG channels 

combination (Fit) and the sensor’s signal for every circular shift performed (x axis) for the 

respective stimulation screen above. Adapted from: Soares et al. [15] 

3.1.2 Calibration Trials 

The calibration prior to experimental trials is composed by two steps: a 

retinotopic mapping session and a full calibration that consists in two calibration 

sessions: a first session consisting of CCA at 1000 Hz and a second session consisting 

of CCA at 20 Hz. 

3.1.2.1 Retinotopic Mapping/Calibration 
The retinotopic mapping consists in 2 minutes (120 seconds) of 15 different 

visual stimulation screens sequential presentation (see Figure 3.1) for a total of 8 

seconds each, in randomly ordered 1 second periods. 
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Figure 3.2) Checkerboard configurations available. Fifteen possible checkerboards to be 

used as visual stimulation screens. In the lower right corner of each panel there is a square which 

identifies the frame. The light sensor will be placed in the screen directly above the square so it is 

possible to identify when each frame was presented by means of Photo signal analysis. Adapted 

from: Soares et al. [15] 
This calibration process ensures which retinal position of the checkerboard 

presents the most relevant data for each subject. After the 120 second trial, a 1 

millisecond resolution CCA is performed using the light sensor signal (Photo) as 

target vector to define each subject most appropriate stimulation checkerboard. 

3.1.2.2 Full Calibration 
In this session, the stimulation onset is alternated between ON and OFF states. 

The variable Contrast encodes the current stimulation state (ON or OFF), assuming in 

most cases the values of 0 or 1 (all or nothing) for the OFF set and ON set, 

respectively. In some representations exposed in this thesis, the absolute value of 

Contrast can acquire different values from the previously referred. What is important 

is that this variable alternates between two fixed values, the smaller value encoding 

the OFF state and the higher value the ON state. The ON state corresponds to the 

presentation of the checkerboard selected in the retinotopic calibration, inverting at 

60 Hz between three frames, and the OFF state corresponds to a homogeneous gray 

screen (see Figure 3.3). 
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Figure 3.3) Visual stimuli frames representation. Schematic representation of the stimulus 

delivered in OFF state (frames B) and ON state (frames A and Ã). Both stimulation states (ON and 

OFF) are delivered in time periods of 50 milliseconds, so between each stimulation decision there 

are always at least three frames presented. 

It is important to verify if the stimulation potentiates the target frequency 

specific potentials, because a discrepancy between the potentials induced and the 

algorithms defined frequencies can be damaging to the system development efforts. 

In this case, EEG recordings verified that the stimulation design presented effectively 

originates an increase in the 20 Hz SSVEPs amplitude and correspondent harmonics 

(40 Hz, 60 Hz, …). 

The purpose of the first calibration is to obtain the TBF as explained in section 

3.1.1) Canonical Correlation Analysis, with resource to a 1 millisecond resolution CCA 

(1000 Hz). To perform the second calibration, vectors of 500 TBF signal samples are 

extracted, with overlaps of 450 samples. As the EEG recording samples at 1000 Hz, 

the vectors correspond to the latest 500 samples selected at a rate of 20 Hz (intervals 

of 50 milliseconds between extractions). These vectors are used to perform spectral 

analysis of the TBF signal. The vectors’ power spectral density estimation is obtained 

using the pwelch() function which resorts to the Welch’s method. This method is an 

improvement of common periodogram spectrum estimates, enabling a noise 

reduction in the power spectrum with frequency resolution sacrifice. The frequency 

resolution sacrifice is justifiable due to the strong presence of noise in EEG 

recordings. The frequencies of interest are 20 Hz (fundamental stimulation 

frequency) and 40 Hz (2nd harmonic of the stimulation frequency). 
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Figure 3.4) SSVEPs power graphics at 20 and 40 Hz oscillation frequencies. Comparison 

(c) between the magnitudes of the power at 20 Hz (a) versus the power at 40 Hz (b). The power 

calculation is performed at a rate of 20 Hz and is obtained using the most recent 500 samples of the 

TBF signal.  

The objective is to obtain the instantaneous power at these two frequencies for 

each of the 500 sample vectors, then perform a CCA with Contrast signal circular 

shifts to find the two frequencies power combination that best correlates with the 

shifted Contrast signal. The resulting frequency power combination that best 

correlates with the Contrast is denominated Frequency Best Fit (FBF). The FBF is the 

project’s variable of interest, which relates to the number of synapses activated at the 

frequency of 20 Hz and the degree of synchronization between the firing patterns of 

the induced post-synaptic potentials. The FBF is meant to be the control designs’ 

ultimately controlled variable, as it will be shown in further sections of this Chapter. 

From this point forward, all the simulations, operations and models built use 

TBF signals obtained in the available dataset. The FBF will be calculated from the 

TBF signals and from the output of model’s blocks. For the control systems presented 

in the next sections, the second calibration presented previously will not be 

performed, so the variable FBF is defined only by the power at 20 Hz in the 500 

sample vectors. 

 
3.2 Brain SSVEP Models Estimation 

Before developing frequency specific SSVEPs control strategies, it is necessary 

to obtain models that can faithfully replicate the SSVEPs response to the specific 

induced type of stimulation. The approach consisted in using the existing stimulation 

signal (artificially generated accordingly to the frames presented during actual trials) 
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and SSVEP data as input and output, respectively, to a system estimation algorithm 

(System Identification ToolboxTM), so that a calculated mathematical model could 

respond in a brain similar fashion when presented with a signal correspondent to the 

visual stimulation presented to subjects in experimental trials. The approximation of 

brain processes (see sections 2.1.5) Visual Pathway and 2.2.2) The Steady-State Visual 

Evoked Potentials) to LTI systems can possibly show very inaccurate results, because 

the dynamics involved in the brain’s information processing are anything but linear. 

Yet, the SSVEP responses are characterized, as the denomination SSVEP indicates, as 

steady-state responses that have very high correlation in amplitude, phase and 

frequency with the stimulus presented, so the approximation of the processes that 

originate these responses to LTI oscillatory systems be more reliable than one might 

expect. SSVEPs are induced through visual stimulation and the goal is to obtain 

models of the brain’s SSVEPs so, given the limited resources, it is not possible to 

create computational models that receive light stimulus as input. So, one of the 

challenges is constructing stimulation signals which provoke model’s similar 

reactions to the brain reactions provoked by light stimulus, being the stimulation 

signals correspondent to the light stimulus.  

All the graphics and results in this section refer to the model estimated using 

the first trial of experimental subject 1 data (model denomination: tf2040_1_1), unless 

otherwise indicated. 

 
3.2.1 Raw & Filtered ON ERPs Approaches to 

Model Estimation 
To calculate models through the existing dataset, the TBF signal was selected to 

model outputs, since for the purpose of this experiment these are considered the raw 

output of the EEG. In a first approach, ON and OFF stimulation states corresponding 

ERPs were calculated and used as system measured output in the System Identification 

ToolboxTM application. The ERPs calculated were composed of 400 samples, so a 400 

sample stimulation signal was used as measured input (see Figure 3.5). Only the 

ERPs for the ON state were used since the OFF state input signal is a constant 0. 
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Figure 3.5) Raw TBF signal ERPs and corresponding stimulation. The System Identification 

ToolboxTM requires inputs and outputs with the same number of samples: 400 milliseconds of the 

stimulation signal were selected (a) to match the ERPs number of samples (b). 

In preliminary attempts of calculating models, the TBF was not filtered, 

possessing all the frequency powers between 1 and 100 Hz, which justifies the noise 

present in the ERPs (see Figure 3.5b). The same protocol of input/output was used in 

posterior attempts, with an additional 2nd order Butterworth bandpass filter for the 

TBF signal, comprising frequencies around 20 and 40 Hz (see Figure 3.6 & 3.7). 

 
Figure 3.6) Raw & filtered experimental TBF signals. a) Raw TBF signal obtained in 

experimental trials compared with the stimulation signal presented; b) Filtered TBF signal, 

comprising only the frequencies of interest (20 & 40 Hz). The filtering enables to obtain more 

relevant data for models’ calculation. 

Several models were simulated and the output compared with the ERPs 

(measured outputs), models which varied in the number of poles and zeros of the 

transfer function that defines each simulated model.  
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Figure 3.7) Filtered TBF signal ERPs and corresponding stimulation. a) The stimulation 

signal used as input; b) ERPs calculated using the TBF filtered data. In comparison with the ERPs 

obtained with the raw data, these show o lot of reduction in noise, having a higher percentage of 

relevant data.  

For these models’ estimation, the instrumental variables (IV) initialization 

method was used, while the System Identification ToolboxTM automatically applied the 

non-linear least squares algorithm (NLLSA) to estimate the LTI transfer functions. 

The NLLSA is a regression analysis method that approximates non-linear relations 

between inputs and outputs to a linear model and uses successive iterative processes 

to rectify the parameters of the approximated linear model. The objective function 

(f(x)) of the NLLSA is represented by an m number of nonlinear auxiliary 

functions/equations (fi(x)) that correspond to regression residuals resultant from 

data fitting iterations. 

min
𝑥

𝑓(𝑥) = ∑ 𝑓𝑖(𝑥)2

𝑚

𝑖=1

     (3.3) 

The algorithm minimizes the sum of the auxiliary functions squares (see 

Equation 3.3), hence the denomination of least squares.  
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Figure 3.8) Raw TBF signal obtained models output comparison. Measured output (ON 

ERPs calculated from raw TBF) compared with 6 simulated models’ output. The model which 

showed the best fit to the measured data presented a fit of 76,21 % (11 poles and 11 zeros). 

 
Figure 3.9) Filtered TBF signal obtained models output comparison. Measured output (ON 

ERPs calculated from filtered TBF) compared with 6 simulated models’ output. The model which 

showed the best fit to the measured data presented a fit of 89,09%  (4 poles and 1 zeros). 

In Figures 3.8 and 3.9 are represented the estimated models outputs versus the 

uploaded measured outputs (stimulation ON state ERPs) for the raw and filtered 

TBF signals, respectively. To validate the estimated models, a SimulinkTM model was 

implemented to replicate the database experiments [15] (see Figure 3.10). The 

simulation has 180 seconds (3 minutes) duration and uses the exact stimulation onset 

used in the original experiences. The simulated FBF signal calculation is performed 

both for the 20 & 40 Hz powers combination and for the isolated 20 Hz power. The 

simulated FBF signals are then compared with the experimental FBF, using a 

correlation coefficient calculation and visual analysis. 
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 Figure 3.10) Estimated models validation SimulinkTM scheme. Inclusion a zero-order-

hold block to sample the simulation, because the estimated models are continuous time LTI transfer 

functions and the calculations branch needs to be discrete. The Buffer selects the latest 500 samples 

at every 50 milliseconds (overlap of 450 samples; 20 Hz sampling) to calculate the powers at 20 & 

40 Hz. The coefficients used to combine the powers at the two interest frequencies are the same 

used in experimental trials of Soares et al. [15] 

Although experiments have shown delays both in the physiological and data 

transmission mechanisms, the experimental FBF signals are corrected for the 

observed delays, justifying the validation model non-inclusion of delay blocks. All 

the following representations of model results concern the first trial of the first 

experimental subject (Exp1; Trial1) from the database. 

 
Figure 3.11) Experimental vs simulated FBF variables of the raw TBF signal model. 

Plotting experimental FBFs (black line) versus simulated FBFs (blue line) for the estimated model 

using raw TBF data ON state ERPs; a) 20 Hz power FBF signal; b) 20 & 40 Hz combined power FBF 

signal. 
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Figure 3.12) Visual inspection of Figure 3.11. Zoom in on Figure 3.11 plots, to perform 

visual analysis and experimental and simulated FBF comparison. 

Analysis results from the models estimated with stimulation ON state ERPs 

from the raw TBF data present elevated correlation coefficients with the experimental 

FBF for the simulated 20 Hz power and for the combination of 20 & 40 Hz powers 

(67,8% and 67,7%, respectively). The correlation coefficient calculation resulting 

values do not necessarily mean that these models are good replicas of the SSVEP 

mechanisms in the brain, only that the variation of the two compared values presents 

an approximated linear correlation. A closer analysis of the plots (see Figures 3.11 

and 3.12) reveals very little variation in interest frequencies power amplitude, 

combined with simulated FBF very repetitive patterns for both FBF power 

calculation alternatives (20 Hz and 20 & 40 Hz combination). 

 
Figure 3.13) Experimental vs simulated FBF variables of the filtered TBF signal model. 

Plotting experimental FBFs (black line) versus simulated FBFs (blue line) for the estimated model 

using filtered TBF data ON state ERPs; a) 20 Hz power FBF signal; b) 20 & 40 Hz combined power 

FBF signal. 
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Figure 3.14) Visual inspection of Figure 3.13. Zoom in on Figure 3.13 plots, to perform 

visual analysis and experimental and simulated FBF comparison. 

Analyzing the models estimated with stimulation ON state ERPs from the 

filtered TBF data, these showed lower correlation values compared to the previous 

approach (54,9% for 20 Hz; 54,7% for 20 & 40 Hz). The models from this approach 

showed a little more variability in amplitude, but continue to present repetitive 

patterns. To better evaluate the performance of the models, the simulated TBF signal 

was also analyzed (see Figure 3.15). 

 
Figure 3.15) Model’s TBF response comparison. Simulated TBF variable from raw (left) and 

filtered (right) ERP estimated models. 

The raw ERP estimated model is very noisy (Figure 3.15 (left)), not allowing 

relevant conclusions about the 20 Hz TBF variable evolution with the stimulation 

onset. On the other hand, the filtered ERP estimated model (Figure 3.15 (right)) 

shows a desired power increase in response to stimulation onset, but also presents 

saturation baselines and an excessively rapid power decrease in response to 

stimulation offset, not corroborating with power decrease tendencies observed in 

experimental results (see Figure 3.6b). 
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The overall results for the two approaches are non-satisfactory. The previous 

model estimation approaches problems may be related to the solely use of ON ERPs, 

failing to perform when the stimulation is turned OFF. Such results led to search and 

study of different protocols to obtain sufficiently reliable SSVEP models. 

 
3.2.2 TBF Reconstruction Approach to Model 

Estimation 
In a new approach to obtain brain SSVEP acceptable models, the objective was 

to use the ON and OFF ERPs for the purpose of reconstructing the TBF expected 

reaction to the stimulation onset and offset, respectively. The reconstructed TBF was 

then used as measured output to estimate models. Better results were expected in 

comparison to the previous protocol (see section 3.2.1) Raw and Filtered ON ERPs 

Approaches to Model Estimation) since this new protocol included the OFF ERPs and 

comprised uploaded inputs and outputs with more than 400 samples.  

The TBF data is firstly filtered (2nd order Butterworth bandpass filter) around 

the interest frequencies (20 and 40 Hz), ‘equipping’ the reconstructed signals only 

with relevant information (see Figure 3.16). Since the background EEG can possess 

frequencies at 20 and 40 Hz that were not induced by the visual stimulation, the TBF 

value was set to zero (0) 300 milliseconds after every stimulation offset (see Figure 

3.17) to account for background 20 and 40 Hz irrelevant activity. 

 
Figure 3.16) Raw vs filtered experimental TBF comparison. Plotting raw TBF signal (left) 

and bandpass filtered TBF signal (right) versus the Contrast signal. 
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Figure 3.17) Filtered TBF processing. Bandpass filtered TBF signal with value setting to 

zero (0) 300 milliseconds after stimulation offset. 

The resulting processed TBF signal is used to calculate the stimulation onset 

and offset ERPs (see Figure 3.18) that is later used to estimate the brain SSVEP 

response. 

 
Figure 3.18) ERPs for Figure 3.17 TBF signal. ON and OFF ERPs obtained from the 

processed TBF signal presented in Figure 3.17. 

For the TBF signal reconstruction, a 120 second simulation experiment was 

performed. A stimulation signal generated for alternating periods of 5 seconds 

between ON and OFF stimulation states was used as measured input in the 

estimation algorithm. Later, it was also simulated for alternating periods of 3, 2 and 1 

seconds, to evaluate the ON and OFF period’s length impact in estimated model’s 

calculations. 
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Figure 3.19) TBF signal reconstruction. Combining the stimulation onset and offset with the 

ON and OFF ERPs, respectively. 

The ON ERPs were then expanded for the time course of the Contrast signal, 

thus defining a saturation value for the reconstructed TBF. The reconstructed signal 

is then put against a corresponding stimulation signal sequence and both signals are 

uploaded as measured output and input, respectively, in the System Identification 

ToolboxTM application to obtain a TBF reconstructed data LTI transfer function model. 

In the System Identification ToolboxTM app, the IV initialization mode was performed 

and after some experiments and simulations, the transfer function’s number of poles 

and zeros settings were defined as 4 and 3, respectively (4th order models that 

showed the best fit percentiles for the reconstructed TBF data). The nonlinear least 

squares algorithm (NLLSA) was used to calculate estimated model’s mathematical 

equations. 
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Figure 3.20) System Identification ToolboxTM application interface. One 4th order model is 

estimated for each trial of each experimental subject’s data. a) ‘Trial_n’ corresponds to the 

reconstructed input/output data (left blocks) and ‘tf2040_1_n’ corresponds to the estimated 4th 

order LTI models for each trial (right); b) Comparison of the responses presented by each estimated 

block with the reconstructed TBF signal uploaded as measured output, in the case of this figure the 

validation data is from ‘Trial_1’. 

In Figure 3.20 is shown a model estimation protocol example. After Figure 3.20b 

close examination it’s easy to observe that, for this particular experimental subject, 

the saturation amplitude value decreases throughout experimental trials estimation 

data. This means that the ERP values used to reconstruct the TBF signal are 

attenuated in amplitude over time. Such phenomenon can be associated with a 

certain subject’s brain ‘adaptation’ to the stimulus presented. This variation in results 

over the trials may occur in different ways for different subjects. The same validation 

procedure presented in 3.2.1) Raw and Filtered ON ERPs Approaches to Model 

Estimation (see Figure 3.10) was used to examine the estimated models robustness 

and replicative capabilities in comparison to the SSVEP experimentally measured. 

 
Figure 3.21) Experimental vs simulated FBF variables using the reconstructed TBF 

estimated model. Plotting experimental FBFs (black line) versus simulated FBFs (blue line) for the 

reconstructed TBF data estimated model; a) 20 Hz power FBF signal; b) 20 & 40 Hz combined 

power FBF signal. 
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Figure 3.22) Visual inspection of Figure 3.21. Zoom in on Figure 3.20 plots, to perform 

visual analysis and comparison between experimental and simulated FBF. 

When analyzing the new estimated models’ FBF response, it is possible to 

observe more amplitude variability in comparison to the estimated models using the 

previous section protocol (see 3.2.1) Raw and Filtered ON ERPs Approaches to Model 

Estimation). Also, there is an increase in the correlation coefficient values (73,59% and 

73,66% for FBF 20 Hz and FBF 20 & 40 Hz, respectively). There are still palpable 

differences between experimental and modulated responses, probably arising by the 

fact that the models are linear approximations of a dynamic and nonlinear biological 

system (brain SSVEP responses). Comparing experimental TBF with simulated TBF, 

the two present a 84,1% correlation coefficient value, and after visual evaluation of 

the signals, stands out the stimulus offset power response considerable 

improvements in comparison to the results obtained for the ON ERPs protocol (see 

Figure 3.23). 

 
Figure 3.23) Experimental vs simulated TBF variables. Experimental (black line) and 

simulated (blue line) TBF signals. There is clearly an amplitude difference between the two, but the 

main focus is the response to the stimulus onset/offset, which shows considerable improvements 

in comparison with the ON ERPs approach. 
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Although the protocol does not generate perfect brain SSVEP experimental 

response models, the validation results observed support the conclusion that the 

models satisfactorily replicate amplitude variations and responses evoked by 

stimulation onset/offset, so the control system’s implementation models will be 

obtained following the TBF reconstruction model estimation approach. 

 
3.2.3 Models Validation  

Models were estimated for 4 trials of the 10 experimental subject’s available 

data. All the models were subject to validation to inquire which ones are eligible for 

implementation in control strategies. The validation is performed using the same 

SimulinkTM model as presented in section 3.2.1) Raw and Filtered ON ERPs Approaches 

to Model Estimation (see Figure 3.10). The criteria defined to select the models that will 

be subject to control simulations are as follows: 

 Trial number corresponding model that possesses the highest correlation with the 

respective experimental data for the four TBF signal reconstruction modalities used (5, 3, 2 & 

1 second stimulation onset/offset alternating periods); 

 The models selected using the first criteria must have a minimum of 60% correlation 

with the experimental data; 

 After implementation of the first two criteria, one trial number corresponding model 

is selected for each experiment and for every TBF signal reconstruction modality. The final 

criteria states:  

 focusing on individual experiments, if for the four reconstruction 

modalities the estimated models trial number selected is the same, then only one 

model is selected, the one having the highest correlation with experimental data; 

 Models corresponding to non-repetitive trial numbers are automatically 

selected (see Table 3.5).  

 

In the following tables every model experimental and simulated FBFs 

correlation values are presented. 
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Table 3.1) Validation results 1. Correlation coefficient values between experimental and simulated 

FBF signals using the 5 second stimulation onset/offset alternating periods modality for TBF 

reconstruction. The two primary selection criteria are implemented in this table: the model presenting the 

highest correlation coefficient for each experimental subject; the correlation coefficient value of the best 

model needs to be ≥ 60%. The selected models are highlighted in blue. 

Trial 
Number 

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 

20 Hz 
20&40 

Hz 
20 Hz 

20&40 
Hz 

20 Hz 
20&40 

Hz 
20 Hz 

20&40 
Hz 

20 Hz 
20&40 

Hz 

1 0,7359 0,7366 0,5556 0,5497 0,5430 0,5432 0,4589 0,4578 0,6324 0,6463 

2 0,7317 0,7327 0,6084 0,6017 0,6330 0,6333 0,4509 0,4508 0,4645 0,4683 

3 0,6872 0,6884 0,5060 0,4993 0,5957 0,5957 0,1168 0,1154 0,5607 0,5505 

4 0,6866 0,6880 0,6212 0,6261 0,6640 0,6644 0,1266 0,1262 0,5736 0,5749 

�̅� 0,7104 0,7114 0,5728 0,5692 0,6089 0,6092 0,2883 0,2876 0,5578 0,5600 

 Trial 
Number 

Exp 6 Exp 7 Exp 8 Exp 9 Exp 10 

20 Hz 
20&40 

Hz 
20 Hz 

20&40 
Hz 

20 Hz 
20&40 

Hz 
20 Hz 

20&40 
Hz 

20 Hz 
20&40 

Hz 

1 0,6425 0,6458 0,6262 0,6307 0,4434 0,4421 0,7119 0,7119 0,7117 0,7306 

2 0,6962 0,6991 0,6571 0,6620 0,3624 0,3618 0,6759 0,6759 0,7397 0,7588 

3 0,6757 0,6786 0,5666 0,5704 0,4534 0,4519 0,6565 0,6564 0,7670 0,7768 

4 0,6832 0,6850 0,5815 0,5831 0,5032 0,5018 0,7599 0,7599 0,7380 0,7448 

�̅� 0,6744 0,6771 0,6079 0,6116 0,4406 0,4394 0,7011 0,7010 0,7391 0,7528 

 

 

Table 3.2) Validation results 2. Correlation coefficient values between experimental and simulated 

FBF signals using the 3 second stimulation onset/offset alternating periods modality for TBF 

reconstruction. The two primary selection criteria are implemented in this table: the model presenting the 

highest correlation coefficient for each experimental subject; the correlation coefficient value of the best 

model needs to be ≥ 60%. The selected models are highlighted in blue. 

Trial 
Number 

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 

20 Hz 
20&40 

Hz 
20 Hz 

20&40 
Hz 

20 Hz 
20&40 

Hz 
20 Hz 

20&40 
Hz 

20 Hz 
20&40 

Hz 

1 0,6988 0,7001 0,5554 0,5489 0,5439 0,5441 0,4591 0,458 0,6330 0,6467 

2 0,7312 0,7323 0,6088 0,6015 0,6338 0,6341 0,4509 0,4508 0,4649 0,4689 

3 0,6869 0,6881 0,5145 0,5086 0,5968 0,5967 0,1162 0,1151 0,5549 0,5449 

4 0,6859 0,6873 0,6218 0,6259 0,6650 0,6654 0,1383 0,1381 0,5614 0,5651 

�̅� 0,7007 0,7020 0,5751 0,5712 0,6099 0,6101 0,2911 0,2905 0,5536 0,5564 

 Trial 
Number 

Exp 6 Exp 7 Exp 8 Exp 9 Exp 10 

20 Hz 
20&40 

Hz 
20 Hz 

20&40 
Hz 

20 Hz 
20&40 

Hz 
20 Hz 

20&40 
Hz 

20 Hz 
20&40 

Hz 

1 0,6415 0,6448 0,6256 0,6301 0,4444 0,4431 0,7115 0,7115 0,7134 0,7322 

2 0,6953 0,6982 0,6565 0,6614 0,3643 0,3636 0,4181 0,4181 0,7411 0,7600 

3 0,6749 0,6779 0,5661 0,5700 0,4550 0,4534 0,6555 0,6555 0,7689 0,7787 

4 0,6823 0,6841 0,5807 0,5823 0,5056 0,5043 0,7563 0,7563 0,7397 0,7466 

�̅� 0,6735 0,6763 0,6072 0,6110 0,4423 0,4411 0,6354 0,6354 0,7408 0,7544 
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Table 3.3) Validation results 3. Correlation coefficient values between experimental and simulated 

FBF signals using the 2 second stimulation onset/offset alternating periods modality for TBF 

reconstruction. The two primary selection criteria are implemented in this table: the model presenting the 

highest correlation coefficient for each experimental subject; the correlation coefficient value of the best 

model needs to be ≥ 60%. The selected models are highlighted in blue. 

Trial 
Number 

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 

20 Hz 
20&40 

Hz 
20 Hz 

20&40 
Hz 

20 Hz 
20&40 

Hz 
20 Hz 

20&40 
Hz 

20 Hz 
20&40 

Hz 

1 0,7003 0,7016 0,5562 0,5492 0,5451 0,5453 0,4599 0,4587 0,6343 0,6475 

2 0,7324 0,7334 0,6100 0,6023 0,6349 0,6351 0,4512 0,4510 0,4658 0,4696 

3 0,6884 0,6897 0,5161 0,5097 0,5983 0,5982 0,1167 0,1159 0,5491 0,5394 

4 0,6875 0,6888 0,6233 0,6267 0,6664 0,6668 0,1227 0,1218 0,5534 0,5495 

�̅� 0,7022 0,7034 0,5764 0,5720 0,6112 0,6114 0,2876 0,2869 0,5507 0,5515 

 Trial 
Number 

Exp 6 Exp 7 Exp 8 Exp 9 Exp 10 

20 Hz 
20&40 

Hz 
20 Hz 

20&40 
Hz 

20 Hz 
20&40 

Hz 
20 Hz 

20&40 
Hz 

20 Hz 
20&40 

Hz 

1 0,6432 0,6465 0,6272 0,6316 0,4417 0,4401 0,7122 0,7122 0,7157 0,7343 

2 0,6966 0,6994 0,6581 0,6629 0,3640 0,3627 0,4261 0,4261 0,7430 0,7619 

3 0,6772 0,6800 0,5679 0,5716 0,4536 0,4519 0,6555 0,6554 0,7715 0,7813 

4 0,6843 0,6861 0,5825 0,5841 0,4861 0,4845 0,7562 0,7562 0,7423 0,7493 

�̅� 0,6753 0,6780 0,6089 0,6126 0,4364 0,4348 0,6126 0,6126 0,7431 0,7567 

 

 

Table 3.4) Validation results 4. Correlation coefficient values between experimental and simulated 

FBF signals using the 1 second stimulation onset/offset alternating periods modality for TBF 

reconstruction. The two primary selection criteria are implemented in this table: the model presenting the 

highest correlation coefficient for each experimental subject; the correlation coefficient value of the best 

model needs to be ≥ 60%. The selected models are highlighted in blue. 

Trial 
Number 

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 

20 Hz 
20&40 

Hz 
20 Hz 

20&40 
Hz 

20 Hz 
20&40 

Hz 
20 Hz 

20&40 
Hz 

20 Hz 
20&40 

Hz 

1 0,7071 0,7083 0,5650 0,5554 0,5501 0,5503 0,4671 0,4659 0,6402 0,6512 

2 0,7375 0,7385 0,6179 0,6084 0,6389 0,6391 0,4402 0,4398 0,4281 0,4239 

3 0,6953 0,6965 0,5249 0,5169 0,6040 0,6039 0,1074 0,1057 0,5156 0,5074 

4 0,6980 0,6991 0,6314 0,6326 0,6729 0,6732 0,1173 0,1166 0,5283 0,5260 

�̅� 0,7095 0,7106 0,5848 0,5783 0,6165 0,6166 0,2830 0,2820 0,5281 0,5271 

 Trial 
Number 

Exp 6 Exp 7 Exp 8 Exp 9 Exp 10 

20 Hz 
20&40 

Hz 
20 Hz 

20&40 
Hz 

20 Hz 
20&40 

Hz 
20 Hz 

20&40 
Hz 

20 Hz 
20&40 

Hz 

1 0,6513 0,6543 0,6337 0,6379 0,3556 0,3541 0,6599 0,6598 0,7250 0,7426 

2 0,7031 0,7058 0,6644 0,6690 0,3041 0,3027 0,6746 0,6745 0,7520 0,7698 

3 0,6869 0,6895 0,5747 0,5781 0,3636 0,3620 0,6513 0,6511 0,7835 0,7921 

4 0,6930 0,6946 0,5898 0,5912 0,4207 0,4193 0,7481 0,7480 0,7557 0,7615 

�̅� 0,6836 0,6861 0,6157 0,6191 0,3610 0,3595 0,6835 0,6834 0,7541 0,7665 
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After analyzing the results, (see Tables 3.1, 3.2, 3.3 and 3.4) we found that only 

the 4th and 8th experimental subject’s data did not provide satisfactory results. This 

can be related to problems in these two experimental data-sets. For all the other 

experimental trials, the results are much better than might have been originally 

expected for such a simple modulation protocol. In terms of reconstruction 

modalities used (5, 3, 2 & 1 second stimulation onset/offset alternating periods), all 

showed much approximated results, with the ‘1 second’ modality standing out. This 

can be related to the stimulation patterns presented in the experiments, which may 

be more approximated to 1 second differences between stimulation onsets and 

offsets. It can also be related to the reconstructed TBF shorter saturation periods, 

which are reduced with the onset/offset alternation time period reduction. 

 
Figure 3.24) Models validation results. Model percentiles and absolute quantity numbers 

(blue) which showed experimental data correlation coefficient (CC) values ≥ 55% and < 55%. These 

results were obtained for all the experimental data, including experiences 4 and 8 which make up 

for 66.67%, 57.14%, 53.33% and 66.67% of the refused models (red) for the 5, 3, 2 and 1 second 

modalities, respectively. 

The accepted models selection is made using the third selection criteria (see 

Table 3.5) before implementation in control systems. 
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Table 3.5) Estimated models selection for control system simulations. Estimated model’s trial 

numbers for each experience (rows), each TBF reconstruction modality and correspondent correlation 

values with experimental data (columns). In this table the third and final selection criteria is applied. The 

models selected for posterior control implementation and testing are highlighted in green. 

Experience 
Number 

Trial #’s 
(5 second) 

CorrCoef 
20&40 Hz 

(%) 
Trial #’s 
(3 second) 

CorrCoef 
20&40 Hz 

(%) 
Trial #’s 
(2 second) 

CorrCoef 
20&40 Hz 

(%) 
Trial #’s 
(1 second) 

CorrCoef 
20&40 Hz 

(%) 

1 1 73.66 2 73.23 2 73.34 2 73.85 

2 4 62.61 4 62.59 4 62.67 4 63.26 

3 4 66.44 4 66.54 4 66.68 4 67.32 

4 NaN - NaN - NaN - NaN - 

5 1 64.63 1 64.67 1 64.75 1 65.12 

6 2 69.91 2 69.82 2 69.94 2 70.58 

7 2 66.20 2 66.14 2 66.29 2 66.90 

8 NaN - NaN - NaN - NaN - 

9 4 75.99 4 75.89 4 75.62 4 74.80 

10 3 77.68 3 77.87 3 78.13 3 79.21 

There are very slight differences between the models obtained using the four 

TBF reconstruction modalities, with TBF reconstruction ‘1 second’ modality models 

standing out in terms of correlation percentiles. Even so, the correlation values and 

responsive behavior to stimulation differences are very faint for all four cases, 

meaning that satisfactory models can be obtained for the majority of subjects, 80% in 

the case of the used database experimental subjects. The models to be used are 

defined by their transfer functions (see Table 3.6). 

Table 3.6) Estimated models selected characteristics. Selected model’s denominations, respective 

transfer functions and percentile fit to the TBF reconstruction data uploaded to System Identification 

ToolboxTM application.   

Models Selected 
(Denomination) 

Transfer Functions 
(Continuous Time) 

Fit to 
Reconstruction 

Data 

tf2040_1_1 
−8.625 𝑠3  +  464.2 𝑠2  −  5.064𝑒05 𝑠 −  1.521𝑒07

𝑠4  +  26.63 𝑠3  +  8.043𝑒04 𝑠2  +  1.072𝑒06 𝑠 +  1.032𝑒09
 88.24 % 

tf2040_9_4 
14.89 𝑠3  +  2450 𝑠2  +  4.235𝑒05 𝑠 +  3.303𝑒05

𝑠4  +  363 𝑠3 +  2.098𝑒04 𝑠2 +  5.566𝑒06 𝑠 +  5.994𝑒05
 87.30 % 

tf2040_1_2_1s 
−9.096 𝑠3  +  410.5 𝑠2 −  5.777𝑒05 𝑠 −  1.669𝑒07

𝑠4  +  28.98 𝑠3 +  7.881𝑒04 𝑠2 +  1.182𝑒06 𝑠 +  9.995𝑒08
 83.95 % 

tf2040_2_4_1s 
9.809 𝑠3  +  1217 𝑠2 +  3.153𝑒05 𝑠 +  2.777𝑒07

𝑠4  +  24.2 𝑠3 +  7.97𝑒04 𝑠2 +  9.335𝑒05 𝑠 +  1.018𝑒09
 81.55 % 

tf2040_3_4_1s 
−0.5485 𝑠3  −  1662 𝑠2 +  1.783𝑒04 𝑠 −  7.607𝑒07

𝑠4  +  24.07 𝑠3 +  7.99𝑒04 𝑠2 +  1.005𝑒06 𝑠 +  1.02𝑒09
 84.55 % 

tf2040_5_1_1s 
1.184 𝑠3  +  1987 𝑠2 +  3.962𝑒05 𝑠 +  9.108𝑒07

𝑠4 +  39.58 𝑠3  +  7.885𝑒04 𝑠2 +  1.782𝑒06 𝑠 +  1.009𝑒09
 75.67 % 
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tf2040_6_2_1s 
−6.238 𝑠3  +  598.4 𝑠2 −  5.333𝑒05 𝑠 +  3.355𝑒07

𝑠4  +  29.56 𝑠3  +  7.902𝑒04 𝑠2  +  1.384𝑒06 𝑠 +  9.931𝑒08
 79.62 % 

tf2040_7_2_1s 
−4.134 𝑠3  +  208.9 𝑠2 −  4.899𝑒05 𝑠 −  8.608𝑒06

𝑠4  +  28.57 𝑠3  +  7.873𝑒04 𝑠2 +  1.195𝑒06 𝑠 +  9.864𝑒08
 84.61 % 

tf2040_10_3_1s 
8.456 𝑠3  −  4048 𝑠2 +  4.451𝑒05 𝑠 −  1.355𝑒08

𝑠4  +  28.12 𝑠3  +  7.997𝑒04 𝑠2 +  1.201𝑒06 𝑠 +  1.029𝑒09
 80.81 % 

 

3.3 Control System Design 
After obtaining brain SSVEPs response replicative models, the following 

objective was to simulate real-life approximated experimental conditions and 

limitations in control models to proof that it is possible to stabilize the output of the 

replicated models. In this section, several approaches to control design will be 

exposed together with problems faced, limitations and simulation results. All the 

representative graphics and results in this section refer to the model estimated using 

the first trial of experimental subject 1 data (model denomination: tf2040_1_1), unless 

otherwise indicated. If it is not possible to stabilize the output of estimated LTI 

systems with approximated conditions to the experimental setup, than surely is not 

possible to stabilize the output of the brain real SSVEP responses. On the other hand, 

it may be possible to stabilize the output of the LTI systems. But if these do not 

faithfully replicate brain responses in real time closed-loop, then probably it can be 

very complex to stabilize a human brain SSVEPs. Anyways, the proof that these 

estimated LTI systems can be stabilized, or partially stabilize will serve as required 

condition to perform human experiments using the control designs developed. 

 

3.3.1 PID Control Design 
The Proportional-Integrative-Derivative controller design is one of the simplest 

approaches to control system implementation, so it was the trivial first choice to test 

the control of the estimated models (see section 2.3.2.1) PID Controller for more 

detailed information about the PID controller). Figure 3.25 shows the SimulinkTM PID 

control model used for testing. 
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Figure 3.25) PID controller design SimulinkTM model. In the scheme stands out the contrast 

switch, responsible for the stimulation onset & offset, which output is controlled by the control 

variable u(t) input. The system possesses two sampling rates (20 Hz and 1 kHz) defined by the 

zero-order-hold blocks, both used as discretizers. 

For the control design, was included a contrast switch responsible for the 

stimulation onset & offset, which output is controlled by the control variable u(t) 

input, zero-order-hold blocks acting as discretizers with sampling rates of 20 and 1000 

Hz to define two sampling rates within the system (for the FBF calculation and EEG 

sampling, respectively), a FBF calculation block composed by the signal 500 sample 

selector buffer and MatlabTM functions to calculate the 500 sample windows 

frequency specific powers (20 Hz and 20 & 40 Hz combination). A fixed transport 

delay of 55 milliseconds is introduced in the model to approximate the physiological 

delays observed experimentally. To test the system, 10 second simulations were 

performed, reference value r(t) and the PID tunings (proportional, integrative and 

derivative gains) were altered between simulations. The FBF variable was constantly 

monitored (see PID results in Figures 3.26, 3.27 & 3.28). 

 
Figure 3.26) PID control design results 1. Variables e(t) and u(t) values (top), simulated TBF 

variation with the stimulation signal (middle), and FBF variable vs contrast signal (bottom).  

Reference value =0,015; Proportional gain =0.5; Integrative gain =0; Derivative gain =0; 
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Figure 3.27) PID control design results 2. Variables e(t) and u(t) values (top), simulated TBF 

variation with the stimulation signal (middle), and FBF variable vs contrast signal (bottom).  

Reference value =0,015; Proportional gain =0.5; Integrative gain =0; Derivative gain =1; 

 
Figure 3.28) PID control design results 3. Variables e(t) and u(t) values (top), simulated TBF 

variation with the stimulation signal (middle), and FBF variable vs contrast signal (bottom). 

Reference value =0,015; Proportional gain =0.5; Integrative gain =1; Derivative gain =0; 

Reference value and PID gains variation did not show improvements in the FBF 

variable control. The FBF variable followed a tendency already observed in Soares et 

al experimental results, [15] namely ~1 Hz FBF oscillations. A reference value 

increase provoked increase of FBF oscillatory variable maximum amplitude value, 

making no difference for the control purpose (Figure 2.29).  
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Figure 3.29) PID control design results 4. Variables e(t) and u(t) values (top), simulated TBF 

variation with the stimulation signal (middle), and FBF variable vs contrast signal (bottom). 

Reference value =0,025; Proportional gain =0.5; Integrative gain =0; Derivative gain =0; 

A ~125 milliseconds delay was measured in Soares et al experimental trials, [15] 

due to data transfer between EEG amplifier and signal analysis computer. Once there 

is no absolute certainty about this control design delay magnitude, several delays 

were tested in system simulations (Figure 3.29). The results were worrying because 

the system remained unstable throughout all the simulation length, even in the 

absence of delays. 

 
Figure 3.30) PID control design delay variation results. FBF outputs comparison for 

different system enforced transport delays. The system remains unstable even when there is no in 

loop delay. Reference value =0.015; Proportional gain =0.5; Integrative gain =0; Derivative gain =0; 
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The instability observed even in the absence of delays can be due to delays 

provoked by the FBF calculations. This assumption will be put to the test in 

following simulations, comprising different control system designs. A stand-alone 

PID controller is a very simplistic method to control process outputs, therefore is 

very vulnerable to disturbances, delays and non-linear components. After system 

analysis (see Figure 3.25), it is possible to infer that the contrast switch is a non-linear 

behavior inductor in the system, not allowing the control variable u(t) to act directly 

as a process input. This means the PID tuning turns out to be somehow irrelevant for 

the FBF variable control, being the contrast switch the main controller of the system 

(all or nothing control). This experimental setup limitation is bounded with visual 

stimulation mechanisms, where the stimulation is performed by a flickering screen 

and not directly by a controller outputted signal. Also, the stand-alone PID controller 

design does not consider delays incurred in loop (55 millisecond transport delay to 

account for physiological pathways and not calculated delays incurred in the FBF 

calculations). The stand-alone PID simulation trials were considered very important 

to understand the roles and limitations of the system components when placed in a 

control loop, thus working as starting point to the design approaches that followed. 

 

3.3.2 Smith-Predictor Control Design 
To bypass the delays present in loop, the solution was the implementation of a 

Filtered Smith-predictor (FSP) control design. The FSP places the real process in an 

outer loop and a real process model LTI system in an inner loop, to isolate delays 

measured in the real process. For more detailed information about the FSP controller 

see section 2.3.2.2) Smith-Predictor Controller. The SimulinkTM FSP control model used 

for testing is represented in Figure 3.31. 
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Figure 3.31) FSP control design SimulinkTM model. The model possesses two summed 

feedback loops: one containing the real process; the other a real process estimated model 

(experimental setup).  

For the simulations, the real process and the model are exactly the same. In both 

blocks is to be used the estimated models selected in section 3.2.3) Models’ Validation, 

so the FSP control system (see Figure 3.31) can be considered as in ideal condition 

simulation. Given that the controller is mostly the contrast switch (all or nothing 

control), the PID only possesses a proportional gain of 1, which means that the 

variables e(t) and u(t) are equal over the simulation time course. 

 
Figure 3.32) FSP control design results. TBF and stimulation signal variables (top), variation 

of the simulated FBF with the contrast variableG for the non-delayed model and for the real process 

model (bottom). Reference value =0.015; Proportional gain =1; Integrative gain =0; Derivative gain 

=0; 

The results are very similar to the stand-alone PID system design, even with 

reference value and PID tuning variations. It’s possible to observe by the FBF and y(t) 

variables time difference (see Figure 3.32) that the FSP controller design is accounting 
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for the 55 millisecond delay, but the real process output remains unstable. Closer TBF 

and FBF variables evaluation explains the instability origin (see Figure 3.33). 

 
Figure 3.33) TBF vs FBF FSP control design results plot. Real process TBF vs FBF variables 

plotting. Matching color asterisks represent real time correspondent point of the two signals, 

demonstrating that there is a delay incurred between the real process TBF output and the FBF 

calculation containing block output. 

Analysis show a massive delay induced by in FBF calculations, fact that was 

already suspected and now proved by the FSP design testing. The instantaneous 

power of a signal’s specific frequency is bounded to the signal oscillations envelope 

at that same frequency, so the greater the oscillatory amplitude at 20 Hz frequency 

oscillations, the greater the value of the instantaneous power at 20 Hz frequency. 

This means that the TBF’s signal maximum amplitude point must correspond in time 

with the FBF’s maximum value. The asterisks in Figure 3.33 point the maximum 

values of the TBF and FBF variables in two different time points (red and blue 

asterisks). If the FBF calculation did not induce delays, the two red asterisks would 

be correspondent in time, and the same for the blue asterisks. The current calculation 

induces a ~5 FBF samples delay in the system. Given the FBF variable sampling at 20 

Hz, this means that the calculation induces a ~275 ms delay in control, which makes 

the system impossible to stabilize. This delay cannot be isolated in the FSP design 

because it is not associated with transport/transmission delays incurred in the real 

process, but rather is associated with signal processing outside of the process. 
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3.3.2 TBF Envelope Linear Extrapolation 
The TBF bandpass filtered signal around 20 Hz envelope is related to the power 

calculated to obtain the FBF variable. This new approach focuses on making an 

estimated ‘prediction’ of the direction in which the TBF envelope is evolving, so the 

contrast switch can deliver the stimulation based on real-time approximated 

conditions and avoid calculation delays. 

 
Figure 3.34) TBF variable linear extrapolation algorithm SimulinkTM model. The blocks 

highlighted in blue will be implemented in the control loop were the FBF calculation was present in 

previous designs. 

The TBF signal is firstly 2nd order butterworth bandpass filtered around 20 Hz 

(FiltTBF), rectified (|FiltTBF|) and then the oscillations peaks are identified (see 

Figure 3.35). 

 
Figure 3.35) TBF variable signal processing steps. The TBF variable processing methods 

necessary to implement the proposed linear extrapolation algorithm. 
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The algorithm uses |FiltTBF| variable 100 sample vectors with 50 sample 

overlap, calculates the peaks present in the sample vectors and performs the linear 

extrapolation from the two last peaks in each sample vector. The linear extrapolation 

algorithm defined delay (LEADD) is set depending on the delays to use in each 

simulation. If the LEADD value set is 0 milliseconds, the algorithm aims the 

extrapolation at the end of the 100 sample vector. If the delay is D the algorithm aims 

the extrapolation at D milliseconds ahead of the last sample (see Figure 3.36). 

 
Figure 3.36) Linear extrapolation algorithm 1. Example of the linear extrapolation 

algorithm application in a |FiltTBF| variable 100 sample vector.  Specific cases of 0 milliseconds 

(left) and 55 milliseconds (right) LEADD settings. 

The algorithm gives a TBF amplitude absolute value prevision. The prediction 

absolute value is not really relevant for the control purpose, because the control switch 

(all or nothing mechanism) reacts when the error variable e(t) crosses a defined 

threshold. The linear extrapolation algorithm real advantage is the direction 

prevision in which the delayed TBF variable at the EEG output is evolving, enabling 

an educated predictive control of the brain’s present 20 Hz SSVEP amplitude value. 

Given the TBF variable is measured with a physiological delay in the best case 

scenario, what the algorithm tries to accomplish is not really a prediction (because 

the SSVEPs are being generated at the same time in the brain) but rather a estimation 

of the brain SSVEP response present value, based on the delayed recordings at the 

EEG output. 
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Figure 3.37) Linear extrapolation algorithm 2. Exemplified representation of the control 

loop linear extrapolation algorithm’s purpose. The envelope estimated absolute value is not precise, 

but indicates that the potentials amplitude is rising, which gives the control a trigger reaction to 

signals that were not even recorded in the EEG. 

Theoretically, this solves the problem of the in loop delays induced by the FBF 

calculation and can also be important in the physiological and hardware delay’s 

effect reduction in the control loop. 

 
Figure 3.38) Linear extrapolation algorithm 3. Linear extrapolation values observed for 

different LEADD settings. The estimated absolute value precision increases for lower LEADD 

settings (tending to o ms). In the case of 0 ms LEADD setting (left) the resultant linear extrapolation 

value follows the envelope almost precisely, while in the case of 125 ms LEADD setting (right) the 

envelope absolute values are clearly over- and under- shoot by the linear extrapolation. 

The linear extrapolation algorithm blocks were implemented in the filtered 

Smith-predictor (FSP) control design (Figure 3.39). 
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Figure 3.39) FSP & linear extrapolation algorithm control design. FSP with in loop 

incorporated linear extrapolation algorithm SimulinkTM model. This design uses a constant block 

with a definable delay to use for the algorithm calculation. The linear extrapolation algorithm 

replaces the in loop FBF calculation, although this calculation is still performed at the real process 

output. 

In this new control design, the reference value is related to the TBF variable 

amplitude. Now, the EEG TBF 20 Hz oscillations envelope is the variable controlled. 

The FBF is simultaneously calculated outside the control loop, for analysis purposes. 

 
Figure 3.40) FSP & linear extrapolation algorithm control design results 1. Results 

observed after linear extrapolation algorithm incorporated FSP simulation. Reference value =0.23; 

Proportional gain =0.5; Integrative gain =0; Derivative gain =0; LEADD =55 ms; FBF Stabilization 

Value =0.0121. 

The new control system design simulation results are encouraging (linear 

extrapolation algorithm incorporated in the FSP control design). In Figure 3.40, is 

observable a clear manipulation of both the TBF and FBF variables. The linear 
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extrapolation algorithm resultant variable y(t) is subtracted to the reference value r(t) 

setting obtaining the proportional controller  error e(t) (PID tuning with proportional 

gain only). However, the TBF 20 Hz amplitude oscillates around the reference value 

r(t), so the system is marginally stable. This does not diminish the importance of the 

results, given the previous control system simulations repetitive unsuccessful 

outcomes and difficulty in bypassing system delays. Also, the PID tuning provokes 

alterations in stabilization as presented in the following figures.  

 
Figure 3.41) FSP & linear extrapolation algorithm control design results 2. Derivative gain 

variation results. Reference value =0.23; Proportional gain =0.5; Integrative gain =0; Derivative gain 

=0.5; LEADD=55 ms; FBF Stabilization Value =0.0121. 

For an inclusion of a 0.5 gain in the PID’s derivative branch, there are clear 

alterations in the TBF variable response (see Figure 3.41 and compare with Figure 

3.40). The system FBF variable oscillates around a stabilization step value maintained 

at 0.0121, with this tuning modification considerably reducing the FBF variable 

oscillations. However, the system enters in a steady state. Reference value setting 

variations do not influence the FBF stabilization step value, so the derivative gains 

inclusion will be avoided. Integral gain alterations also provoke unwanted 

modifications (instability) in the FBF variable, however with a 0.5 integral gain and a 

0.29 reference value, the system outputs a very stable FBF variable and the reference 

value setting increase presents an interesting output evolution (see Figure 2.42). 
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Figure 3.42) FSP & linear extrapolation algorithm control design integral gain variation 

results. Reference value ranging from 0.01 to 0.48; Proportional gain =0.5; Derivative gain =0; 

LEADD =55 ms. 

The FBF signals obtained for a 0.5 integral gain are much more unstable than 

the ones obtained using only a proportional gain. Analyzing Figure 3.42b it’s possible 

to observe that, for some sequential reference values the stabilization step does not 

change (I=0 tuning). This phenomenon can be linked with unknown estimated 

models characteristics/properties when stimulated with the variables generated by 

the contrast switch. It is not expected that this phenomenon occurs in the brain. For 

the case of I =0.5 (Figure 3.42d), the FBF stabilization step varies exponentially. 

Analyzing the FBF variables (Figure 3.42c), several instabilities are present for almost 

all of the reference values tested, except for the reference value of 0.29, which 

satisfactorily stabilizes at 0.0174 (see Figure 4.43).  

Setting the LEADD to 0 milliseconds has an impact on stability and on FBF 

stabilization step absolute values for each reference value setting, but maintains the 

FBF 20 Hz variable oscillating reference value (see Figure 3.44). The LEADD setting 

can be defined accordingly to the delays observed in a specific experiment, adjusting 

the algorithm to each individual case. This is important given the inter- and intra- 

individual variability observed in SSVEP responses observed throughout 

experimental trials. 
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Figure 3.43) FSP & linear extrapolation algorithm control design results 3. Integral gain 

presence result for a 0.29 reference value. Reference value =0.29; Proportional gain =0.5; Integrative 

gain =0.5; Derivative gain =0; LEADD =55 ms; FBF Stabilization Value =0.0174. 

 
Figure 3.44) FSP & linear extrapolation algorithm control design results 4. Results for the 

variation of defined delay value in the algorithm. Reference value =0.29; Proportional gain =0.5; 

Integrative gain =0.5; Derivative gain =0; LEADD =0 ms; FBF Stabilization Value =0.0158. 

After obtaining such results it can be confidently stated that the designed 

system successfully manipulates the estimated model tf2040_1_1 and can be tested 

for all the models selected in section 3.2.3) Models’ Validation. If these results are 

replicable for all the models, then a real time experimental prototype can be 

developed to test the control system in real-time experiences with humans. Based on 

the previously presented results, the simulations will include reference value and 

linear extrapolation algorithm defined delay (LEADD) setting throughout 

simulations.  
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Chapter 4:  
 

Results & Discussion 
 

In this chapter, all the estimated models selected in section 3.2.3) Models 

Validation will be tested for various reference value settings and algorithm 

parameters. The goal is to evaluate if the results observed in section 3.3.2) TBF 

Envelope Linear Extrapolation are replicable for several models obtained with section’s 

3.2.2 TBF Reconstruction Approach to Model Estimation protocols and if the design is 

suited for real-time closed loop experiments in human. 

 
4.1 Simulation Results 

Every estimated model possesses a saturation reference value which makes the 

system present a continuous stimulation ON state. This saturation value was 

measured for every model and is presented in Table 4.1. 

Table 4.1) Models simulation parameters. TBF saturation corresponding reference values and 

estimated models maximum reference values tested. 

Models Selected 
(Denomination) 

Maximum Reference Value 
to be Tested (TBF) 

Saturation Reference Value 
(TBF) 

tf2040_1_1 0,48 0,49 

tf2040_9_4 0,36 0,37 

tf2040_1_2_1s 0,50 0,51 

tf2040_2_4_1s 0,30 0,31 

tf2040_3_4_1s 0,49 0,50 

tf2040_5_1_1s 0,47 0,48 

tf2040_6_2_1s 0,39 0,40 

tf2040_7_2_1s 0,44 0,45 

tf2040_10_3_1s 0,79 0,80 

 

The models will be simulated in loop for 0.01 spaced reference values settings 

between 0.01 and their respective maximum reference value (see Table 4.1). These 
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stimulations will give a FBF stabilization step variation perspective with the increase 

of the reference value setting for each individual simulation. Models results will 

present: a graphic containing all the individual simulations FBF variables, each 

corresponding to a reference value setting; a detailed result analysis for an individual 

reference value setting. For purposes of brevity, only the detailed analysis will 

contain linear extrapolation algorithm defined delay (LEADD) setting variations. The 

PID controller is tuned with a proportional gain of 1, given the instability induced by 

the derivative and integral branches observed during system design. To replicate the 

physiological delays incurred in the visual pathway (see section 2.1.5) Visual 

Pathways), a 55 milliseconds transport delay is applied in loop. 

 
Figure 4.1) Simulations control system design. SimulinkTM model used to perform 

simulations with the estimated models. This model makes use of a level-2 MatlabTM s-function 

comprising all the signal analysis and control calculations and algorithms. 

 

Model tf2040_1_1 

 
Figure 4.2) Model tf2040_1_1 simulation results 1. Model tf2040_1_1 reference values 

variation results. Proportional gain =1; Integrative gain =0; Derivative gain =0; LEADD=55 ms. 
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For model tf2040_1_1, the FBF variable presents similar stabilization steps 

values for sequential reference values (see Figure 4.2 right). This phenomenon can be 

related with the estimated models stimulation response, which is a visual stimuli 

approximation. Most important is that the FBF stabilization step values increase with 

the reference values setting increase throughout simulations (see Figure 4.2 left). This 

proves that the estimated brain models output can be controlled using the proposed 

control system design (see sections 3.2.2) TBF Reconstruction Approach to Model 

Estimation and 3.3.2) TBF Envelope Linear Extrapolation). The above results were 

obtained with a 55 ms LEADD to enforce the system output stabilization, given that 

the in loop transport delay is set to 55 milliseconds. The procedure is repeated for all 

models simulation. 

 
Figure 4.3) Model tf2040_1_1 simulation results 2. Model tf2040_1_1 results for the LEADD 

of 0 (left) and 55 (right) milliseconds, in a 0.29 reference value simulation. Proportional gain =1; 

Integrative gain =0; Derivative gain =0; FBF stabilization step (LEADD=0ms) =0.0158; FBF 

stabilization step (LEADD=55ms) =0.0174. 

Analyzing the 0.29 reference value setting results, by comparison of left and 

right simulation graphics presented in Figure 4.3, it is possible to observe the LEADD 

setting influence in the FBF and TBF variables. The LEADD setting influences the 

FBF variable both oscillatory behavior and stabilization step value. Such findings 

sustain that the algorithm’s LEADD setting is of major importance in the efforts to 

control and improve the FBF variable stabilization. The LEADD setting must be 

defined accordingly to the hardware and physiological processes’ delays observed 

experimentally. 
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Model tf2040_9_4 

 
Figure 4.4) Model tf2040_9_4 simulation results 1. Model tf2040_9_4 reference values 

variation results. Proportional gain =1; Integrative gain =0; Derivative gain =0; LEADD =55 ms. 

A model tf2040_1_1 similar behavior is observed for the model tf2040_9_4 

responses. Some reference values swept generated very unstable FBF responses, so 

not all reference values can be considered suited to accomplish model output 

stabilization. Nonetheless, these results are again very encouraging, given this model 

results coherence with the model results analyzed so far. 

 
Figure 4.5) Model tf2040_9_4 simulation results 2. Model tf2040_9_4 results for the LEADD 

of 0 (left) and 55 (right) milliseconds, in a 0.29 reference value simulation. Proportional gain =1; 

Integrative gain =0; Derivative gain =0; FBF stabilization step (LEADD=0ms) =0.0134; FBF 

stabilization step (LEADD=55ms) =0.0152. 

Also the LEADD setting variation produced a model tf2040_1_1 similar 

behavior, with the output oscillatory amplitude being attenuated and the 

stabilization step value lightly increasing. 
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Model tf2040_1_2_1s 

 
Figure 4.6) Model tf2040_1_2_1s simulation results 1. Model tf2040_1_2_1s reference values 

variation results. Proportional gain =1; Integrative gain =0; Derivative gain =0; LEADD =55 ms. 

Given that the estimation data of model tf2040_1_2_1s is from the same 

experimental subject as model tf2040_1_1, the stabilization step values similarities 

were already expected, demonstrating coherence in the results (comparison of 

Figures 4.2 & 4.6). Only by performing new experimental trials is possible to evaluate 

which of the model estimation techniques is best suited for each individual, but these 

evidences support both models are stabilization possibilities and are prepared to be 

implemented in loop. 

 
Figure 4.7) Model tf2040_1_2_1s simulation results 2. Model tf2040_1_2_1s results for the 

LEADD of 0 (left) and 55 (right) milliseconds, in a 0.29 reference value simulation. Proportional 

gain =1; Integrative gain =0; Derivative gain =0; FBF stabilization step (LEADD=0ms) =0.0170; FBF 

stabilization step (LEADD=55ms) =0.0188. 

Once again, the LEADD setting to 55 milliseconds enforces FBF response 

stability (see Figure 4.7). 
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Model tf2040_2_4_1s 

 
Figure 4.8) Model tf2040_2_4_1s simulation results 1. Model tf2040_2_4_1s reference values 

variation results. Proportional gain =1; Integrative gain =0; Derivative gain =0; LEADD =55 ms. 

  
Figure 4.9) Model tf2040_2_4_1s simulation results 2. Model tf2040_2_4_1s results for the 

LEADD of 0 (left) and 55 (right) milliseconds, in a 0.19 reference value simulation. Proportional 

gain =1; Integrative gain =0; Derivative gain =0; FBF stabilization step (LEADD=0ms) =0.0054; FBF 

stabilization step (LEADD=55ms) =0.0044. 

Model tf2040_2_4_1s behaves differently from the previous models. When 

varying the LEADD from 0 to 55 milliseconds, the stabilization is enforced (as 

expected), but the model responded with a lower stabilization step value, presenting 

an opposite behavior to the previous models results. Also, this is the only model 

which detailed analysis was performed using a 0.19 reference value setting (all the 

other models were observed at 0.29 reference value), given that the use of a higher 

reference value for this model throws the system very close to saturation. 
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Model tf2040_3_4_1s 

 
Figure 4.10) Model tf2040_3_4_1s simulation results 1. Model tf2040_3_4_1s reference 

values variation results. Proportional gain =1; Integrative gain =0; Derivative gain =0; LEADD =55 

ms. 

 
Figure 4.11) Model tf2040_3_4_1s simulation results 2. Model tf2040_3_4_1s results for the 

LEADD of 0 (left) and 55 (right) milliseconds, in a 0.29 reference value simulation. Proportional 

gain =1; Integrative gain =0; Derivative gain =0; FBF stabilization step (LEADD=0ms) =0.0161; FBF 

stabilization step (LEADD=55ms) =0.0178. 

 

Model tf2040_3_4_1s presents a similar behavior to models tf2040_1_1, 

tf2040_9_4 and tf2040_1_2_1s, with the FBF variable presenting stabilization steps for 

various reference value settings. With 55 ms LEADD enforced stability, the FBF 

variable stabilization step value slightly increased, showing coherence with the 

majority of models already simulated. 
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Model tf2040_5_1_1s 

 
Figure 4.12) Model tf2040_5_1_1s simulation results 1. Model tf2040_5_1_1s reference 

values variation results. Proportional gain =1; Integrative gain =0; Derivative gain =0; LEADD =55 

ms. 

 
Figure 4.13) Model tf2040_5_1_1s simulation results 2. Model tf2040_5_1_1s results for the 

LEADD of 0 (left) and 55 (right) milliseconds, in a 0.29 reference value simulation. Proportional 

gain =1; Integrative gain =0; Derivative gain =0; FBF stabilization step (LEADD=0ms) =0.0122; FBF 

stabilization step (LEADD=55ms) =0.0122. 

Stabilization step values evolution was coherent with previous results (see 

Figure 4.12). A new behavioral tendency is observed in model tf2040_5_1_1s detailed 

analysis. The o ms LEADD setting performs FBF variable stabilization at the value 

0.0122, with a slight overshoot (see Figure 4.12 left). The 55 ms LEADD setting 

corrects the overshoot and stabilizes the FBF output at the value of 0.0122, behavior 

not coherent with the stabilization step value increase observed in previous cases for 

a 55 ms LEADD.  
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Model tf2040_6_2_1s 

 
Figure 4.14) Model tf2040_6_2_1s simulation results 1. Model tf2040_6_2_1s reference 

values variation results. Proportional gain =1; Integrative gain =0; Derivative gain =0; LEADD =55 

ms. 

 
Figure 4.15) Model tf2040_6_2_1s simulation results 2. Model tf2040_6_2_1s results for the 

LEADD of 0 (left) and 55 (right) milliseconds, in a 0.29 reference value simulation. Proportional 

gain =1; Integrative gain =0; Derivative gain =0; FBF stabilization step (LEADD=0ms) =0.0108; FBF 

stabilization step (LEADD=55ms) =0.0147. 

Model tf2040_6_2_1s presents a similar FBF variable behavior to models 

tf2040_1_1, tf2040_9_4, tf2040_1_2_1s and tf2040_3_4_1s, which presents increasing 

stabilization step values for various reference value settings. With 55 ms LEADD 

enforced stability, the FBF variable stabilization step value slightly increases once 

more, showing coherence with the majority of models already simulated. 
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Model tf2040_7_2_1s 

 
Figure 4.16) Model tf2040_7_2_1s simulation results 1. Model tf2040_7_2_1s reference 

values variation results. Proportional gain =1; Integrative gain =0; Derivative gain =0; LEADD =55 

ms. 

 
Figure 4.17) Model tf2040_7_2_1s simulation results 2. Model tf2040_7_2_1s results for the 

LEADD of 0 (left) and 55 (right) milliseconds, in a 0.29 reference value simulation. Proportional 

gain =1; Integrative gain =0; Derivative gain =0; FBF stabilization step (LEADD=0ms) =0.0137; FBF 

stabilization step (LEADD=55ms) =0.0152. 

Model tf2040_7_2_1s presents a similar FBF variable behavior to models 

tf2040_1_1, tf2040_9_4, tf2040_1_2_1s, tf2040_3_4_1s and tf2040_6_2_1s, were the FBF 

variable presents increasing stabilization step values for various reference value 

settings. With 55 ms LEADD enforced stability, the FBF variable stabilization step 

value slightly increases once more, showing coherence with the majority of models 

already simulated. 
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Model tf2040_10_3_1s 

 
Figure 4.18) Model tf2040_10_3_1s simulation results 1. Model tf2040_10_3_1s reference 

values variation results. Proportional gain =1; Integrative gain =0; Derivative gain =0; LEADD =55 

ms. 

Model tf2040_10_3_1s presents the highest saturation value in comparison to all 

the other selected estimated models responses, supporting the inter-individual 

variability presented by brain SSVEP responses. 

 
Figure 4.19) Model tf2040_10_3_1s simulation results 2. Model tf2040_10_3_1s results for 

the LEADD of 0 (left) and 55 (right) milliseconds, in a 0.29 reference value simulation. Proportional 

gain =1; Integrative gain =0; Derivative gain =0; FBF stabilization step (LEADD=0ms) =0.0163; FBF 

stabilization step (LEADD=55ms) =0.0142. 

Similarly to model tf2040_2_4_1s, the 55 ms LEADD setting stabilization step is 

lower than for the 0 ms LEADD setting. What is evident is that the LEADD enforced 

stabilization, observable both in the TBF and FBF signals (see Figure 4.19). 
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Figure 4.20) FBF variable stabilization results. Comparison between all the models 

stabilization step values evolution with reference value setting increase (LEADD= 55 ms and 0.01 

reference value increase between simulations). The plot does not include all the data for model 

tf2040_10_3_1s, given the significant difference in stabilization step values magnitude when 

compared to the other models. See Appendix B for model tf2040_10_3_1s magnitude comparison 

with remaining models. 

With the exception of models tf2040_2_4_1s and tf2040_10_3_1s significant 

stabilization step values magnitude differences, the models present similar 

evolutions with the reference value increase. All the models present stabilization 

steps with equal absolute value for sequential reference values. Given that the 

models are estimated with resource to recorded brain signals, it is possible to 

differentiate three groups of individuals based on the TBF signal amplitude. Also, 

models can be distinguished by responses to the 55 ms LEADD setting. The 55 ms 

LEADD setting enforces stability in all models, but the models responses differ in 

terms of stabilization step values variation in consequence of LEADD increase from 0 

to 55 ms. Models tf2040_1_1, tf2040_9_4, tf2040_1_2_1s, tf2040_3_4_1s, tf2040_6_2_1s 

and tf2040_7_2_1s present the most common behavior, with the 55 ms LEADD 

setting enforced stability slightly increasing the FBF variable stabilization step value. 

Models tf2040_2_4_1s and tf2040_10_3_1s response to 55 ms LEADD set include 

stabilization enforcement and a slight decrease in the stabilization step value.  
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4.2 Results’ Discussion 
The interpretation of results must not only be made in light of the FBF variable. 

As previously presented, the FBF variable is a discrete calculation performed in 500 

sample FBF variable vectors at a 20 Hz rate. This means that the FBF variable is an 

instantaneous power measurement of system’s state, performed every 50 ms, while 

the brain reactions and responses to visual stimulus information arrival at the 

primary visual cortex can happen at much lower time orders. The instantaneous 

power is related with the TBF 20 Hz oscillations amplitude. So, the FBF variable is an 

approximation to the system real state, while the TBF variable gives a more complete 

understanding about the brain SSVEP responses current state. This means the TBF 20 

Hz envelope analysis is more efficient for studies related with brain SSVEPs. When 

comparing system’s TBF and FBF variables, it is possible to observe that even if the 

FBF variable is stabilized in one specific value, the TBF variable from which the FBF 

was measured presents oscillations in amplitude (see Figures 4.3, 4.5, 4.7, 4.9, 4.11, 

4.13, 4.15, 4.17 and 4.19). From Soares et al [15] results observation and interpretation, 

it was never expected to obtain absolute stabilizations of the TBF 20 Hz envelope due 

to several facts: firstly, the all or nothing stimulation design used makes it very 

difficult to induce and maintain oscillatory activity given the physiological 

mechanisms involved in generating brain SSVEPs; secondly, the SSVEPs driven by 

long periods of visual stimulation are often attenuated throughout experimental 

trials (and even during individual trials) due to subject light stimulus habituation 

and/or eye fatigue. However, prior to these control strategies implementation, it was 

not even possible to stabilize the FBF variable. It can be confidently said that the 

primary objective was successfully accomplished. Also, the stabilization step values 

variation with the reference value setting increase is also a very important 

observation (see Figure 4.20), giving space to study several system stabilizations and 

opt for reference value settings that best suit each experimental individual case. All 

the models tested presented coherent results. However, each individual case presents 

slightly different characteristics and behavior to the same type of stimulation, so the 

system parameters must be adjusted by analysis of each case individually.  
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It’s important to underline that these results relate to simulated SSVEP brain 

models, which do not consider physiological noise levels or intra-individual brain 

activity variability throughout experimental trials. Despite that, the elevated 

validation percentile correlations with experimental data are convincing about the 

reliability of the brain models. The frequency specific SSVEPs amplitude stabilization 

setup is expected to present experimental results similar to simulation results, with a 

marginally stable FBF variable and a low oscillatory TBF frequency specific (20 Hz in 

this case) variable around a reference value. Moreover, the system successful 

performance strongly depends on the models capability to replicate the real-time 

brain SSVEPs induced by visual stimuli. One of the observation conclusions is that 

different models present different behaviors with reference value setting increase. 

This inter-individual variability of brain responses along with an observed intra-

individual SSVEPs variability through experimental trials (results not presented in 

this thesis) represent the need to study each individual independently, which adds 

complexity and time necessity to the control experimental trials fulfillment. 

The validation results obtained for the models and the successful stabilization 

of models outputs massively supports the implementation of the designs exposed in 

this thesis for BCI experimental trials, to attempt the stabilization of EEG measured 

SSVEPs. There are still tests that may be advantageous to undertake. The system can 

be tested with EEG noise magnitudes to evaluate the resistance of the system to EEG 

background noise. Giving the SSVEPs elevated signal-to-noise ratio, it is expected 

that the system endures the noise addition. The simulations were successfully 

terminated. The experimental setup hardware & software designs necessary to 

validate the simulation results are justified.  
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Chapter 5:  
 

BCI Prototype Framework 
 

In this chapter, the MatlabTM systems design application to experimental setup 

for performing real-time experiments will be exposed. The experimental setup will 

comprise EEG equipment and visual stimulation screens. The BCI system is intended 

to be used in human experiments to evaluate system’s responsiveness to the presence 

of real-time brain signals, measurement noise and physiological delays. Due to the 

time-length and complexity involved in performing such experiments, the 

procedures are intended to take place in future work, not being covered in this thesis. 

 

5.1 Hardware & Software 
The experimental setup is based on MatlabTM applications, namely SimulinkTM 

for control system implementation; Psychophysics Toolbox 3TM (PTB3) to design and 

present visual stimulation on target screens; MatlabTM s-functions that extend 

capabilities of SimulinkTM models by being compiled as MEX files and functioning as 

dynamically linked subroutines which can be automatically loaded and executed by 

MatlabTM; UDP/TCPIP Ethernet communication protocols for Matlab-Matlab 

command; a ThorlabsTM SM1PD1A photodiode to have measurable signals from the 

stimulation screen and to evaluate the performance of the system by comparison of 

visual stimuli presentation; a LCD screen and a gUSBamp SNR.: 2007.10.06 16 channel 

(active electrodes) EEG  amplifier from g.TecTM. 
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5.2 Experimental Setup 
The designed approach consisted in two simultaneously running MatlabTM 

instances, connected through an Ethernet communication protocol. The first instance 

contains a control system SimulinkTM model connected to the EEG output. The second 

instance runs PTB3, which generates and presents the visual stimulation in a LCD 

screen. After several failed attempts to real-time connect the MatlabTM instances, a 

UDP communication protocol was accomplished. The communication protocol 

purpose is to send system state information from the control model to the 

stimulation software. One of the challenges is the real time implementation of the 

communication procedure between two simultaneously running MatlabTM instances. 

As it is not known beforehand, if one computer can successfully run two 

communicating MatlabTM instances (mainly due to the PTB3 software), simulations 

will also be performed for two Ethernet communicating computers (see Figure 5.1). 

 
Figure 5.1) Experimental control system setup. Closed-loop real-time experimental setup 

schematic representation. Two approaches were successfully tested, both using two MatlabTM 

instances running simultaneously, one running PTB3 and the other running SimulinkTM. One 

approach uses a single computer for both instances and the other uses separated computers to run 

each instance. 
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The EEG amplifier is directly connected to the SimulinkTM model via USB, so 

there are expected no EEG data transfer delays. All the blocks containing functions 

and calculation algorithms were compiled in one single level 2 MatlabTM s-function. 

S-functions are MatlabTM executable subroutines that can be automatically loaded and 

executed, simplifying the processes execution. The signal conditioning and 

processing is performed outside of the s-function, using the same blocks presented in 

Chapter 3 (see Figures 3.10 for FBF variable conditioning and Figure 3.34 for Linear 

Extrapolation variable conditioning). 

 
Figure 5.2) BCI experimental SimulinkTM control model setup. This model differs from the 

simulations model in the inclusion of an EEG amplifier (g.USBamp), an s-function, a communication 

socket and EEG sample counters. 

 
Figure 5.3) g.USBamp SimulinkTM interface. Closer inspection at the g.USBamp block. This 

block contains an unbuffer block, a ‘double type’ data conversion block and a 1000 Hz discretizer 

due to the sampling rate of the amplifier (1200 Hz). 

The experimental subject wears a 10 channel EEG cap, with all electrodes 

positioned in the most occipital are of the scalp. A LCD screen presents a system 

controlled onset & offset visual stimulation (see section 3.1.2.2) Full Calibration), 

consisting of three alternating checkerboards (see Figure 3.3). Simultaneously, a 

stimulation signal is generated inside the SimulinkTM model by the contrast switch. 
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The contrast switch generates the visual stimulation signal used as calculated brain 

SSVEP model input (see Figure 5.2). The EEG amplifier output is processed to extract 

the TBF variable (see section 3.1.2) Calibration Trials) which possesses the interest 

features used in algorithm calculations. It is important to record the specific time 

moments at which each stimulation checkerboard is presented in the screen. This can 

be achieved by means of a photodiode attached to the screen lower right corner, 

which records a calibrated luminous signal accordingly to a specific defined square 

present in the lower inferior corner of the screen. The photodiode is directly 

connected to the g.USBamp, so the time stamp of the photodiode signal is in 

accordance with all the control system’s signals. For the purpose of system analysis 

and performance measurements, a counting block is added to record the data 

measured volume in every onset stimulation, so it is possible to perfectly time and 

correct delays for all the involved variables. The counter and the contrast signal are 

used as input to the UDP socket block. This block connects with PTB3 MatlabTM 

instance, instructing and managing the stimulation software. The g.USBamp 

sampling rate is set to 1200 Hz, given the limited sampling rates available for this 

equipment (256 Hz, 600 Hz, 1200 Hz). All system components and calculations were 

designed aiming at a 1000 Hz EEG sampling rate, so a discretizer is included at the 

g.USBamp output to solve this issue (see Figure 5.3). For BCI experimental setup 

montage, see Appendix B. 

 
5.3 Closed-Loop Testing 

System testing is fundamental to evaluate efficiency, namely communication 

processes (correctly functioning and not influencing software processes), and the 

time delays present in the BCI system. Moreover, there is the need to evaluate if all 

control model components are compatible with the g.USBamp real-time acquisition 

and which (individual or dual CPU) approach is more suited. It is necessary to 

perform stimulation frames (checkerboards) construction. This is accomplished with 

MatlabTM code from Soares et al [15] experiences. Both the checkerboards and the 

PTB3 code are prepared for system implementation. A UDP client socket is 
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incorporated in the PTB3 code to receive commands from the SimulinkTM control 

model. The tests don’t include the use of an EEG cap, so calibrations aren´t needed 

for these. This means there is no EEG signal to perform feature extraction. To close 

the loop, the photodiode signal was used in the input designed for the EEG output, 

which enables to communication between control model and PTB3 software 

evaluation. In the estimated model’s block is defined a simple oscillatory first order 

transfer function to minimize the influence of the process model during testing. 

 
Figure 5.4) Visual stimulation frames. There are three stimulation screens/frames available 

for presentation: a) grey screen (frame B) presented for stimulation offset; b) first checkerboard 

(frame A), presented during one period of 16.67 ms for stimulation onset; second checkerboard 

(frame Ã), presented in two consecutive periods of 16.67 ms after frame A (see Figure 3.3 for 

stimulus description). 

The g.USBamp manages the timing of the system, so all the signals recorded are 

coordinated in time (photodiode signal and the signals originated from the control 

model). The PTB3 is run first and waits for control model commands, which are 

sampled and sent at 60 Hz through the UDP socket. After testing it is possible to 

evaluate control model command generation and first frame presentation delays 

(timed by filtered photodiode signal’s frame identifying peaks). 

 
Figure 5.5) Experimental setup delay analysis results 1. Delays’ evaluation through 

stimulation signal and photodiode signal time difference measurements (the first peak corresponds 

to the first frame onset). Results obtained for a 3 minute trial (180 seconds), using 1 computer 

running the two MatlabTM instances and a 0 ms LEADD. 
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After command and screen presentation delay successful evaluation, the first 

observation is that the photodiode montage is proven fundamental for system 

analysis. Secondly, the control system command generation and the screen 

stimulation onset & offset time differences (delays) increase throughout a single 

simulation session. In the simulation trial beginning, the delay is already problematic 

for experience purposes, measured at around 260 ms (see Figure 5.8). This means the 

screen is presenting the first frame 260 ms after the control command was generated. 

The same results were replicated for longer simulation courses and parameter 

variation like the linear extrapolation defined delay (LEADD), which showed no 

significant improvements in the delay results. The elevated initial delays and 

corresponding increase over the simulation course are believed to be strongly linked 

to the communication algorithm. The UDP protocol used to connect the two 

instances possesses a very simplistic code which could influence the PTB3 

performance. To evaluate if the delays are due to the communication or to the 

presence of two instances running in the same computer, the same test was 

performed using two instances running in independent computers . 

 
Figure 5.6) Experimental setup delay analysis results 2. Delays’ evaluation through 

stimulation signal and photodiode signal time difference measurements (the first peak corresponds 

to the first frame onset). Results obtained for 3 minute trial (180 seconds), using 2 independent 

computers running each of the MatlabTM instances and a 0 ms LEADD. 

The use of a two computer Ethernet cable connection only increases the delay. 

So the system functions by means of one computer running both MatlabTM instances, 

confirming that the two computer Ethernet connection ping increases the PTB3 

command delay.  
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In the following figures (Figures 5.7 & 5.8) is shown the delay between each 

control command and frame presentation.  

 
Figure 5.7) Experimental setup delay analysis results 3. These results refer to a 3 minute 

simulation using the two MatlabTM instances running in the same computer. The absolute delay 

values between control commands and frame presentation increases throughout single simulations 

(a). The absolute delay values magnitude is between 250 ms and 500 ms (b). 

 
Figure 5.8) Experimental setup delay analysis results 4. These results refer to a 3 minute 

simulation using the two MatlabTM instances running in independent computers. The behavior is 

similar to the observed using only one computer (a). The absolute delay values magnitude is 

significantly higher (b), with delays between 300 ms and 550 ms. 

The results support the delay increase phenomenon throughout individual 

simulations (see Figures 5.7a & 5.8a) and confirm that the control system and 

stimulation software can run simultaneously in the same computer with significantly 

better delay performance than with two computers. The hypothesis that the UDP 

connection is causing these massive delays is sustained by these findings. The most 

important elations taken from BCI experimental setup testing trials are: proof that the 

closed-loop works through communication of two MatlabTM instances; the 

photodiode montage allows a thorough system performance evaluation. In future 
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work, there is the need to improve the communication algorithm between the two 

running instances for delay reduction. The first frame peak identifier algorithm used 

is very advantageous to analyze system performance, automatically identify all the 

first frames corresponding peak in the photodiode signal and calculating the 

correspondent command delay. The algorithm must be adaptable to different 

experiments in order to identify the specific photodiode time stamps in which each 

frame was presented, facilitating analysis. 
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Chapter 6:  
 

Conclusions & Future Work 
 

Inducing dynamic changes in physiological brain potentials through non-

invasive stimulation and recording techniques is clearly unpaved ground. Most 

rehabilitative BCI studies use invasive techniques (methods which enable precise 

stimulus delivery and recording), such as FES, to influence neuron activity in desired 

brain areas. Some of these efforts actually accomplished to induce intended and 

calculated activity alterations in specific brain areas (see section 2.4) State of the Art in 

Rehabilitative BCIs). In contrast, the hypothesis of accomplishing neuronal activity 

manipulation using non-invasive methods both to record and stimulate presents 

several drawbacks, mainly the characteristic poor spatial resolution associated to 

EEG equipment. The lack of precise non-invasive technology to study the brain 

discourages researchers to pursuit solutions such as the ones we’re trying to 

introduce. The advantage of using EEG equipment is the temporal resolution 

presented by this method. Some invasive methods can present better spatial 

resolution, but require more logistics to perform experiences and can present 

deficiencies in temporal resolution, which is fundamental for this approach. It is 

important to understand that the objective of this study is not to implement short-

term rehabilitative solutions, given that even complex approaches cannot present 

palpable rehabilitative results. What is trying to be achieved is proof that, with 

resource non-invasive low-resolution equipment in a very simple experimental setup 

with elevated delay disturbances, it is possible to influence measured brain potentials 

in a controlled and calculated way. Till now, the hypothesis was only proven using 

brain SSVEP mathematical models, but a prototype system is almost set to observe 

system’s performance in humans. There is still some work needed to accomplish the 

final objective, but the simulations results and the confirmation that the experimental 
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setup can perform real-time experiences are encouraging to pursue the proposed 

goal. The challenges are clear, overcome hardware delays, given the already 

prejudicial intrinsic physiological delays associated with SSVEP and consider EEG 

measurement noise. In case the brain models fail to perform in real time experiences, 

mathematical models improvements must be achieved, maybe through introduction 

of intra-individual specific variability. In this thesis case, given the highly satisfactory 

validation results, it is believed that even the simplistic models used can produce 

interesting results when placed in loop. The control model’s prejudicial delay 

sensitivity brings the need to considerably reduce hardware delays, mainly in data 

and command transfer/transmission. In future work, a combination of brain signals 

recording methods would be advantageous to combine the temporal resolution 

capabilities of EEG with the spatial resolution capabilities of other methods. The 

spatial information would be important to relate the controlled power variables with 

the brain dynamics that originate them, since this relation cannot be observed with 

resource to EEG. 

In conclusion, the objective of this thesis was clearly and unequivocally 

accomplished: stabilization of simulated brain SSVEP models to be used in BCI 

experiences. There is the need to evaluate if this SSVEP control can be accomplished 

in humans. The biological hypothesis presented in this thesis is proposed in light of 

evidences collected in reviewed literature. The hypothesis that relates the SSVEP 

potentials with synapse activation and synchronization is one of the many questions 

that still need to be answered when the subject is brain dynamics and signals. 

Nevertheless, the marginal control of brain signals is one unprecedented 

achievement, and can be put to the test with a system like the one presented on this 

document. 
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A 

Database description 

The database used in this thesis (referring to the reasearch of Soares et al [15]): 

 Contains 10 experimental subjects, each one performing 6 data acquisition 

trials; 
 Contemplated data from 64 channel EEG equipment from Brain ProductsTM; 

 The 20 electrodes used (Figure 1) were acquired at 1 kHz, hardware-filtered 

between 0.1-250 Hz; 

 All the signals are normalized so there are no units associated with the EEG 

signals in the database; 

 The database also contemplates calibration trials. 

 
Appendix A Figure 1) actiCap 64Ch Standard-2 electrodes used in the data recording of the 

database [15]. 
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B 

Magnitude comparison of different experimental 
trials estimated models response 

 
Appendix B Figure 1) Magnitude comparison of different model’s FBF stabilization 

responses with the reference value increase (0.01 between simulations and LEADD= 55 ms). 

 
Appendix B Figure 2 Departamento de Física) Magnitude comparison of different 

model’s FBF stabilization responses with the reference value increase (0.05 between simulations 

and LEADD= 55 ms). Given that in this graphic the reference value increase between simulations is 

0.05, some of the values present may be related to model’s saturation steps. 
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C 

BCI experimental setup montage 

 
Appendix C Figure 1) System montage using one computer running both MatlabTM 

instances. The photodiode is placed on the lower right corner of the screen, coinciding with a frame 

identifying square imbued in each stimulation frame.  

 
Appendix C Figure 2) System montage using two computers, each running one MatlabTM 

instance. The computers are connected through an Ethernet cable with an associated data transfer 

ping (in the millisecond scale). 

 
Appendix C Figure 3) Designed system components. a) Photodiode and respective 

connector cables, enabling g.USBamp direct connection; b) Photodiode montage on the screen; c) 

g.USBamp EEG amplifier device, connects to the EEG cap, photodiode and control model. 

 


