

Rui Pedro de Matos Fernandes

ROBOTIC TELEMANIPULATION FOR SURFACE POLISHING

Master’s Dissertation in MIEEC, supervised by Prof. Dr. Rui Pedro Duarte Cortesão
and presented to the Faculty of Science and Technology of the University of Coimbra

February 2019

Faculty of Science and Technology of the University of Coimbra

ROBOTIC TELEMANIPULATION FOR
SURFACE POLISHING

Rui Pedro de Matos Fernandes

Master’s Dissertation in MIEEC, in the Automation specialization, supervised by Prof. Dr. Rui

Pedro Duarte Cortesão and presented to the Faculty of Science and Technology of the University

of Coimbra.

February 2019

Acknowledgments

Primeiro, quero agradecer aos meus pais, António e Nazaré, por me terem criado e sempre

acreditado em mim ao longo deste percurso, também quero agradecer ao meu irmão, João, pela

paciência em certas situações.

Segundo, agradeço ao meu orientador, o Professor Doutor Rui Cortesão, por me ter orientado

e partilha de experiência ao longo do trabalho.

Terceiro, quero agradecer à Leticia Simon pela infinita compreensão que teve comigo emmuitas

situações e por me apoiar até ao fim.

Quarto, agradeço aos meus colegas de laboratório, Hélio Ochoa, Luís Santos e João Pereira,

pelas ideias que me deram, a ajuda, a partilha de experiência e amizade.

Finalmente, quero agradecer aos meus colegas de curso, nomeadamente ao Manel Abrantes,

Ricardo Lopes, João Palhinha, Rui Baptista e Miguel Maranha, pela amizade e apoio ao longo deste

trabalho.

i

Abstract

The polishing process of a mold is still applied manually by skilled workers who are capable

of adjusting the polishing motion and force according to the workpiece conditions based on their

own experience. This work is going to focus in the development of a control architecture and an

algorithm to execute a desired pattern to perform a polishing task of a surface via telemanipulation.

For that, an extensive study is going to be made to find a feasible control architecture and

to develop an intuitive telemanipulation system that can complement the operator’s work and the

Kinova JACO², the robot that is going to be used to execute the polishing task and where all the

control architectures are tested beforehand.

The control architectures are going to be implemented in simulation and real environment and

correspond to computed torque control in the joint and task space. Then, the different impedance

controls are implemented and tested in both environments. The results taken in free-space with

the impedance control were not satisfactory because of coupling problems between the position and

orientation control, since in this robot the actuator’s friction in the last 3 joints is dominant as opposed

to the first 3 where the mass is.

To bypass this problem, two more controls are developed that decouples the position and ori-

entation control in two different controllers. One of this controllers takes into consideration the

null-space of the position control when computing the torque for orientation. This is the chosen

control for the polishing task, which is also tested in simulation and real environment.

The results taken show that this control can be effectively used for executing the polishing task,

even though the orientation still needs a little more work. Also, the developed algorithm gives the

possibility of an operator to execute the task once and then the robot replicates as many times as the

operator desires.

KEYWORDS: polishing, control, algorithm, telemanipulation, JACO², joint space, task space,

impedance control, null-space, SpaceMouse

iii

Resumo

O processo de polimento de um molde ainda é realizado manualmente por trabalhadores ex-

perientes que são capazes de ajustar o movimento e força do polimento dependendo das condições

da peça de trabalho e baseando-se na sua própria experiência. Este trabalho vai-se focar no desen-

volvimento de uma arquitetura de controlo e num algoritmo para executar um padrão desejado para

realizar a tarefa de polimento de uma superfície via telemanipulação.

Para isso, um estudo intensivo vai ser realizado para encontrar uma arquitetura de controlo

viável e desenvolver um sistema de telemanipulação intuitivo que consegue complementar o trabalho

do operador e o Kinova JACO², o robô que vai ser utilizado para executar a tarefa de polimento e

onde todas as arquiteturas de controlo são testadas antecipadamente.

As arquiteturas de controlo vão ser implementadas em ambiente de simulação e em ambiente

real e correspondem a um controlo do torque computado no espaço das juntas e de tarefa. De seguida,

os diferentes controlos de impedância são implementados e testados em ambos os ambientes. Os

resultados retirados em espaço-livre com o controlo de impedância não foram satisfatórios devido a

problemas de acoplação entre o controlo de posição e orientação, visto que, a fricção dos atuadores

do robô nas últimas 3 juntas é dominante, ao contrário ao que acontece nas primeiras 3 onde a massa

é que é a componente dominante.

Para ultrapassar este problema, mais dois controlos foram desenvolvidos para desacoplar o

controlo de posição e orientação em dois controladores diferentes. Um destes controladores tem

em consideração o espaço-nulo da posição quando é computado o torque para a orientação. Este

controlo é o escolhido para a tarefa de polimento, que também é testada em ambiente de simulação

e real.

Os resultados obtidos mostram que este controlo pode ser usado, efetivamente, para executar

uma tarefa de polimento, apesar de a orientação ainda precisar um pouco mais de trabalho. O al-

goritmo desenvolvido dá a possibilidade do operador executar a tarefa uma vez e de seguida o robô

replica as vezes que o operador desejar.

PALAVRAS-CHAVE: polimento, controlo, algoritmo, telemanipulação, JACO², espaço das jun-

tas, espaço de tarefa, controlo de impedância, espaço-nulo, SpaceMouse

v

Contents

Contents vii

List of Figures ix

List of Tables xi

List of Acronyms 1

1 Introduction 3

1.1 Background . 3

1.2 Objectives . 4

1.3 Contributions . 4

1.4 Organization . 4

2 State of the Art: The Kinova Jaco² Robotic Arm 5

2.1 System Overview . 5

2.2 Communication Modes . 7

2.3 Kinova-ROS . 8

2.4 JACO² Kinematics and Dynamics . 10

3 State of the Art: The 3Dconnexion SpaceMouse Compact 13

3.1 System Overview . 13

3.2 Communication Modes . 14

3.3 Motion Control . 14

4 Control Architectures 17

4.1 Computed torque control in the joint space . 17

4.2 Computed torque control in the task space . 19

4.3 Impedance Control . 21

4.3.1 Impedance Control without force sensing and inertia shaping 22

4.3.2 Impedance Control with force sensing . 23

4.3.3 Impedance Control with force sensing for redundant robots 24

4.4 Hybrid Controllers . 26

4.4.1 Hybrid Controller with Null-Space . 29

vii

Contents

5 Experimental Results 33

5.1 Gazebo Simulator . 33

5.1.1 Computed torque control in the joint space (simulation) 33

5.1.2 Computed torque control in the task space (simulation) 35

5.1.3 Impedance Control without force sensing and without inertia shaping (sim-

ulation) . 36

5.1.4 Impedance Control with force sensing (simulation) 37

5.1.5 Impedance Control with force sensing for redundant robots (simulation) . . 37

5.1.6 Hybrid Controller (simulation) . 38

5.1.7 Hybrid Controller with Null-Space (simulation) 39

5.2 Real Kinova JACO² Robot . 40

5.2.1 Computed torque control in the joint space (robot) 41

5.2.2 Computed torque control in the task space (robot) 42

5.2.3 Impedance Control without force sensing and without inertia shaping (robot) 43

5.2.4 Impedance Control with force sensing (robot) 44

5.2.5 Impedance Control with force sensing for redundant robots (robot) 45

5.2.6 Hybrid Controller (robot) . 46

5.2.7 Hybrid Controller with Null-Space (robot) 47

6 Polishing Task 49

6.1 Algorithm . 49

6.2 Polishing Task in Gazebo Simulator . 50

6.3 Polishing Task in Real JACO² Robot . 53

7 Conclusions 57

7.1 Future Work . 57

Bibliography 59

Appendices 61

A Kinova JACO² Specifications . 61

B Kinova JACO² Actuators and Controller Specifications 63

C Photo Gallery . 66

viii

List of Figures

2.1 The Kinova JACO² system. 5

2.2 Kinova Controller that came with the robot arm. 6

2.3 Joystick control modes. 7

2.4 SDK main menu. 7

2.5 Diagram of the kinova_driver package general architecture from low level up. . . . 9

2.6 The Kinova JACO² Robot in Gazebo simulator. 10

2.7 Data flow of ros_control and Gazebo. 10

3.1 The 3Dconnexion SpaceMouse Compact. 13

4.1 PID computed torque control in the joint space. 18

4.2 PD computed torque control in the task space (FK means forward kinematics and

DK dynamic kinematics). 20

4.3 Impedance control scheme without force sensing. 21

4.4 Impedance control scheme without force sensing and inertia shaping. 22

4.5 Impedance control scheme with force sensing. 23

4.6 Impedance control scheme with force sensing for redundant robots. 25

4.7 ”Hybrid” controller schemewith impedance control with force sensing for redundant

robots for position control and joint space torque control with task space posture

reference for orientation control. 27

5.1 PID computed torque control in the joint space (simulation). 34

5.2 PD computed torque control in the task space (simulation). 35

5.3 Impedance Control without force sensing and without inertia shaping (simulation). 36

5.4 Impedance Control with force sensing (simulation). 37

5.5 Impedance Control with force sensing for redundant robots (simulation). 38

5.6 ”Hybrid” Controller (simulation). 39

5.7 ”Hybrid” Controller with Null Space (simulation). 40

5.8 PD computed torque control in the joint space (robot). 42

5.9 PD computed torque control in the task space (robot). 43

5.10 Impedance Control without force sensing and without inertia shaping (robot). . . . 44

5.11 Impedance Control with force sensing (robot). 45

5.12 Impedance Control with force sensing for redundant robots (robot). 46

5.13 ”Hybrid” Controller (robot). 47

ix

List of Figures

5.14 ”Hybrid” Controller with Null Space (robot). 48

6.1 Polishing task flow charts. 50

6.2 Polishing tool and steel mold in Gazebo. 50

6.3 Polishing task environment in both simulators. 51

6.4 Polishing tool comes into contact with the steel mold, the critical point of the pol-

ishing task (simulation). 51

6.5 Polishing task pose results (simulation). 52

6.6 Polishing task end-effector plus contact force (simulation). 52

6.7 Area polished as shown in Rviz. 52

6.8 Polishing tool and steel mold in the real world. 53

6.9 Polishing task setup. 53

6.10 Polishing tool comes into contact with the steel mold, the critical point of the pol-

ishing task (robot). 53

6.11 Polishing task pose results (robot). 55

6.12 Polishing task end-effector plus contact force (robot). 55

x

List of Tables

2.1 JACO² General Specifications . 6

3.1 SpaceMouse Compact Technical Specifications 13

5.1 Table with the gains used for this controller. 34

5.2 Table with the gains used for this controller. 35

5.3 Table with the gains used for this controller. 36

5.4 Table with the gains used for this controller. 37

5.5 Table with the gains used for this controller. 37

5.6 Tables with the gains used for this controller. 38

5.7 Tables with the gains used for this controller. 39

5.8 Table with the gains used for this controller. 41

5.9 Table with the gains used for this controller. 42

5.10 Table with the gains used for this controller. 43

5.11 Table with the gains used for this controller. 44

5.12 Table with the gains used for this controller. 45

5.13 Tables with the gains used for this controller. 46

5.14 Tables with the gains used for this controller. 47

6.1 Table with the gains used the polishing task in simulation. 51

6.2 Tables with the gains used for the polishing task in the robot. 54

xi

List of Acronyms

API Application Programming Interface.

CAD Computer-aided design.

COM Center of Mass.

DK Dynamic Kinematics.

DOF Degree of Freedom.

DSP Digital Signal Processing.

FK Forward Kinematics.

GUI Graphical User Interface.

KDL Kinematics and Dynamics Library.

PD Proportional-Derivative.

PID Proportional-Integrative-Derivative.

ROS Robot Operating System.

SDK Software Development Kit.

URDF Unified Robot Description Format.

USB Universal Serial Bus.

XML eXtensible Markup Language.

1

Chapter 1. Introduction

1.1 Background

Polishing is a kind of finishing process that can effectively eliminate or reduce the processing

defects caused by manufacturing procedures and improve surface quality and form accuracy, which

in turn makes it a vital role to ensure the product quality and the service life [1]. The polishing

process of a mold not only affects the final appearance and its quality, but it also occupies the total

production time and can cost up to 40% of it [2]. This process is still applied manually by skilled

workers who are capable of adjusting the polishing motion and force according to the workpiece

conditions based on their own experience.

Nowadays, the number of skilled workers is decreasing as the current workforce ages. In ad-

dition, the polishing process can be harmful to the operator’s health because of the scattering of

abrasives and buffed materials. Furthermore the surface quality is dependent on the proficiency

level of the worker [3]. Therefore, it has become a hot topic in the field of engineering and aca-

demics. In the research of polishing automation, a critical and difficult problem is how to precisely

plan the tool-path, namely the trajectory planning for the polishing process, in order to achieve the

quality requirements [1].

A bilateral telemanipulation system allows a human operator to interact without direct physical

contact with the environment using a master-slave pair of manipulators. A scaled bilateral telema-

nipulation system scales the amount of power transferred between the human and environment that

has length, force and power scales that are very different from those of the human. Ideally, such a

system may scale but would otherwise preserve the ”feel” of the environment with which the op-

erator interacts. In reality, however, the system cannot completely preserve this information, but

rather will filter and, thus, alter the perceived dynamic character of the environment.

The extent to which the manipulator system preserves the feel of the environment is character-

ized by the ”transparency” of the system. In addition, a bilateral telemanipulator system should relay

the feel of the environment to the operator in a robustly stable manner. As such, the control system

should be such that the human-telemanipulator-environment loop remains stable when subjected to

significant perturbations in the environmental or human dynamics [4].

3

Chapter 1. Introduction

1.2 Objectives

This work is going to focus in the development of a control architecture and an algorithm to

execute a desired pattern to perform a polishing task of a surface via telemanipulation.

In order to achieve that feat, an extensive study is going to be made to find a feasible control

architecture and to develop an intuitive telemanipulation system that can complement the operator’s

work and the Kinova JACO²’s behavior, the robot that is going to be used to execute the polishing

task and where all the control architectures are tested beforehand.

In the end, a demo that validates this concept is shown.

1.3 Contributions

With this work it is possible test the control architectures and the polishing task in Gazebo, the

simulator used to test them which has Robot Operating System (ROS) support, and also in the real

JACO² robot.

It also introduces telemanipulation to the polishing task and the developed algorithm can be

used to for a multitude of surfaces and encourages the human-machine interaction.

1.4 Organization

• Chapter 1: Introduces the work, including background, objectives, contributions and organ-

ization (1);

• Chapter 2: Covers the JACO² robot developed by Kinova Robotics, including the robot’s

system, its communication modes and its preferred one and a general view of the robot’s kinematics

and dynamics (2);

• Chapter 3: Covers the SpaceMouse navigator developed by 3Dconnexion which was the

peripheral used for telemanipulation during this work, it includes an overview of the system, the

communication modes and how the motion control of the robot was developed with said peripheral

(3);

• Chapter 4: Presents the control architectures studied and the chosen one for the polishing

task (4);

• Chapter 5: Analyses the results from the control architectures presented in the previous

chapter both in the Gazebo simulator and the real JACO² robot (5);

• Chapter 6: Explains the algorithm developed for the polishing task and shows the results in

the simulator and the real robot (6);

• Chapter 7: Concludes the work developed and features future projects (7).

4

Chapter 2. State of the Art: The Kinova Jaco²
Robotic Arm

In this chapter, it is given a general overview about the JACO² Robotic Arm, as well as its main

characteristics and functionalities.

2.1 System Overview

The JACO² Robotic Armwas developed by Kinova Robotics1, a Canadian company that devel-

ops assistive/rehabilitation devices. The first version, called JACO Rehab Edition, was launched in

2010 and was aimed to assist people with reduced mobility and upper limb impairments. An updated

version was developed in 2012 for scientific purposes called the JACO².

In this work the version used is the JACO² Research Edition (figure 2.1a) which is a 6 degrees

of freedom (DOF) manipulator with a Kinova Gripper KG-3 (figure 2.1b) coupled in the last joint.

This gripper is composed of three fingers and it can be entirely removed from the robot.

(a) JACO² 6 DOFRobot without the gripper
[5].

(b) Gripper KG-3 that is coupled to the
JACO² robot [6].

Figure 2.1: The Kinova JACO² system.

The robot is composed of six carbon fiber links interconnected with each other, which are

jointed together by six aluminum brushless direct current actuators. To note that the actuators do

not possess any mechanical limitation, which means that it allows each actuator to have unlimited

rotation around their axis. Due to the carbon filter, the main structure of the robot becomes very

lightweight.

The Gripper KG-3 consists of three plastic fingers which can be controlled individually. Be-

cause of its material composition, the fingers can adjust to many different types of objects.

1https://www.kinovarobotics.com/

5

https://www.kinovarobotics.com/

Chapter 2. State of the Art: The Kinova Jaco² Robotic Arm

In table 2.1 there are some general specifications about the JACO² robot that are taken directly

from the robot’s specifications user guide. In appendix A some more of the robot’s specifications

are presented [7].

Table 2.1: JACO² General Specifications

General Specifications
Total Weight 4,4 Kg

2.6 Kg (mid-range continuous)Payload capabilities 2.2 Kg (full-reach peak/temporary)

Materials Carbon fiber (links)
Aluminum (actuators)

Maximum Reach 90 cm
Joint Range after start-up (Software Limitation) ± 27.7 turns
Maximum Linear Arm Speed 20 cm/s
Power Supply Voltage 18 to 29 VDC, 24 VDC Nominal
Peak Power 100 W

Average Power 25 W (Operating Mode)
5 W (Standby Mode)

Communication Protocol RS-485
Communication Cables 20 pins flat flex cable
Expansion pins 2 (on communication bus)
Water Resistance IPX2
Operating Temperature -10 ºC to 40 ºC

The robot comes with a controller (figure 2.2) which can be used to manipulate the arm. It is

composed by a three-axis joystick, five independent push-buttons and four external auxiliary inputs

placed at its back side. The buttons on the front side are the power button, the HOME button and

the other five buttons are for switching between different operation modes. The blue light shows the

current operation mode while the green light displays that the robot is powered and ready to be used.

Figure 2.2: Kinova Controller that came with the robot arm [8].

TheHOMEbuttonsmoves the robot to a preprogrammed pose. The other buttons are for switch-

ing between three-axis and two-axis mode. There are a number of modes that are included in the

robot, which are: translation mode, wrist mode, ”drinking” mode and finger mode. While using the

joystick, the user can control the Cartesian position or orientation of the gripper.

As mentioned before, in translation mode the robot hand can be controlled in the three-axis

Cartesian coordinate system. In wrist mode, the arm is controlled around a reference point which is

set in the middle of the end-effector. While in ”drinking” mode, it allows the wrist of the robot to

execute a rotation around another point in the space with a set offset in height and length from the

6

Chapter 2. State of the Art: The Kinova Jaco² Robotic Arm

reference point. Finally, in finger mode the user can open and close the gripper’s fingers. In figure

2.3a it is shown the joystick control when the robot is in three-axis mode, while in figure 2.3b shows

the joystick in it is in two-axis mode.

(a) Joystick controls in three-axis mode. (b) Joystick controls in two-axis mode.

Figure 2.3: Joystick control modes [9].

The arm has temperature, voltage, current and torque sensors to monitor its condition. In terms

of hardware, the robot has inputs for the power supply, joystick and ethernet and universal serial

bus (USB) ports in order to connect the robot to a personal computer (PC) or laptop for using it with

the software development kit (SDK) [10] [11]. In appendix B specifications about the actuators and

controller are presented that are taken directly from the actuator’s specifications user guide [12].

2.2 Communication Modes

There are three alternatives to communicate with the JACO² robotic arm. The first one is

through the SDK user interface (figure 2.4) [13] that enables the user to control the robot in tra-

jectory and torque control without the need to use the joystick.

Figure 2.4: SDK main menu.

7

Chapter 2. State of the Art: The Kinova Jaco² Robotic Arm

The second form of communication is the Kinova Application Programming Interface (API).

TheAPI hasmany built-in functions programmed in C++ that allows the user create specific software

programs. The internal protocol communication used to control de actuators is the RS485 [10].

The third and final form of communication is the Kinova Robot Operating System (Kinova-

ROS) [14]. This is the preferred communication mode for this work, because ROS is very flexible

in terms of programming robot software and it simplifies the task of creating a desired robot beha-

viour. The Kinova-ROS stack provides a ROS interface for the JACO, JACO² and MICO robotic

manipulator arms which were all developed by Kinova Robotics. This stack was developed with the

Kinova C++ API functions, which communicates with the digital signal processor (DSP) which is

located inside the robot base.

The recommended configuration for this communication mode is by using ROS Indigo paired

with Ubuntu 14.04 64-bit operating system, however for this work it is utilized the ROS Kinetic with

Ubuntu 16.04 64-bit because it is the more recent version. The Kinova-ROS supports two types of

programming languages, C++ and python. For this work it is used C++, despite beingmore complex,

it is thought that it would lead to better results.

The control system frequency varies depending on what communication method is used. If

it is high level, like via USB, the rate is between 100 Hz and 500 Hz, but the refresh rate of the

DSP controller is 100 Hz. If the communication is made directly with the actuators, in other words,

the low level approach, the communication rate is 500 Hz. For this work, it is made using high

level, which means that all the control architectures are developed with the refresh rate of the DSP

controller [11].

2.3 Kinova-ROS

During this section there is a brief explanation about the contents of the Kinova-ROS stack [14],

since it was the communication mode used throughout this work (section 2.2).

File System

This stack has many files that were divided into several packages:

• kinova_bringup: This package contains the launch file for the kinova_driver and also applies

some other configurations

• kinova_driver: In this package it is included the most essential files in order to run the kinova-

ros stack. In the include folder, it is defined both the Kinova C++ API headers and the ROS pack-

age header files, the first one in the kinova folder and the former in the kinova_driver folder. The

kinova_api source file is a wrap of the Kinova C++ API, while the kinova_comm builds up the fun-

damental functions. To access some advanced settings regarded to force/torque control are only

provided by kinova_api. Most parameters and topics are created in kinova_arm. In figure 2.5 it is

8

Chapter 2. State of the Art: The Kinova Jaco² Robotic Arm

shown a diagram that summarizes the general architecture of the kinova_driver from low level up.

Figure 2.5: Diagram of the kinova_driver package general architecture from low level up.

• kinova_demo: This package contains the python scripts for the actionlibs in joint space and

task space.

• kinova_messages: In this package all the messages, servers and actionlib format are defined

here.

• kinova_description: This package provides the Unified Robot Description Format (URDF)

models for the robots and their respective meshes.

• kinova_docs: This final package has html files for the kinova_comm reference which were

generated by doxygen.

Controllers

This stack came with a Joint Position Control and a Cartesian Position Control. There is

also a Finger Position Control in order to open and close the robot’s fingers and aVelocity Control

for both joint space and task space.

It is also possible to switch between position control and torque control, and publish torque

commands, which is important during the development of this work. Because of the nature of the ac-

tuators, sometimes the robot needs to be re-calibrated, since switching between torque and position

control and sending torque commands creates an offset in its torque sensors.

Gazebo

The Gazebo simulator was the simulator used to develop the robot controllers and to analyze

its behavior before executing them on the robot. The stack came with a Gazebo package [15],

kinova_gazebo. In figure 2.6 it is represented the Kinova JACO² 6 DOF robot in the Gazebo simu-

lator environment.

9

Chapter 2. State of the Art: The Kinova Jaco² Robotic Arm

Figure 2.6: The Kinova JACO² Robot in Gazebo simulator.

This package uses ros_control to control the robot, as such there exists three types of controllers

that can be used: effort, position and velocity. All the configuration files needed to control the robot

using ros_control are located in the kinova_control package. In figure 2.7 there is a diagram that

gives a general overview simulation, hardware, controllers and transmission.

Figure 2.7: Data flow of ros_control and Gazebo [16].

The inertial parameters have been added to all meshmodels. Each link has the inertial model for

the link and half of the actuator on one end of the link and half on the other end of it. The Center Of

Mass (COM) positionmass of the links are accurate in order to get correct torque readings. However,

the inertia matrix is an approximation to uniform cylinders for the links. The joint dynamics, like

damping, friction and stiffness do not accurately represent the hardware [11] [15].

2.4 JACO² Kinematics and Dynamics

In this last section, it is explained how the JACO²’s kinematics and dynamics models are ob-

tained. It is not gonna be given any theoretical background about kinematics and dynamics in gen-

eral, since other master thesis [10] [11] were made using this robot that focus on this theoretical

background.

10

Chapter 2. State of the Art: The Kinova Jaco² Robotic Arm

To get the kinematics and dynamics of this robot it was used the Orocos Kinematics and Dy-

namics Library (KDL)2. With this library it is possible to use solvers in order to compute the forward,

inverse and differential kinematics and the dynamics, like the Inertia Matrix and the Gravity Vector.

It is also possible to create a KDL chain from an eXtensible Markup Language (XML) URDF file.

As previously mentioned, the Kinova-ROS stack provides these files (section 2.3).

To obtain said kinematics and dynamics, it is developed a class in C++ called jaco_kdl. In

this class it is developed its constructor and many other functions. In the constructor is where it is

created the chain based on the URDF file.

The functions developed are in order to obtain the kinematics and dynamics of the robot based

on its chain. These are: forward_kinematics, jacobian, dynamic and quaternion. It is possible to

find each of these parameters based on current joint positions and velocities or by giving arbitrary

values. In the quaternion function it is used another ROS library called tf, which can be used to

execute operations between quaternions, since they are more complex than the usual operations.

From the forward_kinematics function the following 4x4 homogeneous matrix can be extrac-

ted:

b
eT (q) =

b
eR(q)3x3

b
et(q)3x1

01x3 1

 (2.1)

where:

• b
eT (q) is the end-effector transformation relatively to the robot’s base in reference to its joint

positions;

• b
eR(q) is the end-effector rotation relatively to the robot’s base in reference to its joint posi-

tions;

• b
et(q) is the end-effector translation relatively to the robot’s base in reference to its joint pos-

itions.

The jacobian function retrieves the following 6x6 matrix:

J(q) =

Jvn

Jwn

 (2.2)

where:

• J(q) is the robot’s jacobian in reference to its joint positions;

• Jvn is the robot’s linear jacobian for joint n (n = 1 . . .6), each of these values is 3x1 vector

with each line referring to x, y and z.

• Jwn is the robot’s angular jacobian for joint n (n = 1 . . .6), each of these values is 3x1 vector

with each line referring to x, y and z.

2http://www.orocos.org/kdl

11

http://www.orocos.org/kdl

Chapter 2. State of the Art: The Kinova Jaco² Robotic Arm

The dynamic function retrieves the Mass, or Inertia, and Coriolis matrix, both with dimensions

6x6, and the gravity termwith dimension 6x1. These three parameters are calculated in the following

way:

M(q) =
6

∑
i=1

[miJT
vi(q)Jvi(q)+ JT

wi(q)Ri(q)IiRT
i (q)Jwi(q)] (2.3)

where:

• M(q) is the mass matrix of the robot in reference to its joint positions;

• mi is the mass of link i;

• Jvi(q) is the linear jacobian of link i in reference to its joint positions;

• Jwi(q) is the angular jacobian of link i in reference to its joint positions;

• Ri(q) is the rotation matrix of link i relatively to the robot’s base in reference to its joint

positions;

• Ii is the inertia tensor of link i;

C(q, q̇) = Ṁ(q)− 1
2

q̇T ∂M(q)
∂q

(2.4)

where:

• Ṁ(q) is the mass matrix derivative in reference to its joint positions;

• q̇ is the joints velocities;

• ∂M(q)
∂q is the partial derivative of the mass matrix with respect to its joint positions;

g(q) =
∂U(q)

∂q
(2.5)

where:

• ∂U(q)
∂q is the partial derivative of the robot’s potential energy with respect to its joint positions.

12

Chapter 3. State of theArt: The 3Dconnexion
SpaceMouse Compact

This next chapter is going to focus in the SpaceMouse navigator, which is the chosen peripheral

in order to manipulate the JACO² robotic arm, via telemanipulation.

3.1 System Overview

The SpaceMouse Compact (figure 3.1) was developed by 3Dconnexion1, which is an American

company that develops peripherals for manipulation in Computer-aided design (CAD) applications

and their respective software.

Figure 3.1: The 3Dconnexion SpaceMouse Compact [17].

The SpaceMouse has a 6 DOF sensor that allows the user to manipulate an environment in the

X, Y and Z axis and also in their orientation. It is also has two programmable buttons on each side

that allows the user to do amultitude of features. In table 3.1 it is shown some technical specifications

of the SpaceMouse device that are taken from its website [17].

Table 3.1: SpaceMouse Compact Technical Specifications

Technical Specifications

Main Features 3Dconnexion Six-Degrees-Of-Freedom (6DOF) sensor
2 Programmable buttons

Dimensions (LxWxH): 77 x 77 x 54 mm (3.03 x 3.03 x 2.13 in.)Dimensions & Weight Weight: 480 g (16.93 oz)
Supported Operating Systems Microsoft Windows, MacOS, Linux, SUN Solaris, AIX, HP-UX

1https://www.3dconnexion.com/

13

https://www.3dconnexion.com/

Chapter 3. State of the Art: The 3Dconnexion SpaceMouse Compact

This is the selected device for the robot manipulation because, based on its description and

specifications, it is a very lightweight device and with enough practice and the right software devel-

opment it can be very easy to use and achieve the required task.

3.2 Communication Modes

One of the communication modes for the SpaceMouse is the 3DxWare 10 software that is

compatible to almost all the devices developed by 3Dconnexion. This form of communication is not

explored during the duration of this work so it is not going to be covered in any detail.

The preferred method of communication with the SpaceMouse is using the spacenav_node

package [18] which has a ROS interface with the device. This package comes with three launcher

files, but during this work only one of them is relevant: the classic_launcher. With this file the

following ROS topics are created:

• spacenav/offset ⇒ publishes the linear component of the joystick’s position (approximately

normalized to a range of -1 to 1).

• spacenav/rot_offset ⇒ publishes the angular component of the joystick’s position (approx-

imately normalized to a range of -1 to 1).

• spacenav/twist ⇒ combines offset and rot_offset into a single message.

• spacenav/joy ⇒ outputs the spacenav’s six degrees of freedom and its buttons as a joystick

message.

During this work only the spacenav/joy topic is relevant since it is the one that reads the six degrees

of freedom and the button presses from the SpaceMouse.

3.3 Motion Control

In order to retrieve the values from the SpaceMouse and use them in the robot, the following

functions are developed: MotionControl and joy_callback both are present in the jaco_spacenav

class.

In the joy_callback is where the software related actions when the user utilizes the SpaceMouse

are recognized. If the user uses the 6DOF sensor, depending on what degree it is pressed, a value is

stored in a vector called spacenav_motion. It has the following structure:

spacenav_motion =
[
tx ty tz α ϕ γ

]T
(3.1)

where:

• tx is the translation in the x axis;

• ty is the translation in the y axis;

• tz is the translation in the z axis;

14

Chapter 3. State of the Art: The 3Dconnexion SpaceMouse Compact

• α is the rotation around the x axis (this value is also used to open and close fingers, however

it is not the value that is injected in the SpaceMouse, instead there is a predefined threshold in order

to do that);

• ϕ is the rotation around the y axis;

• γ is the rotation around the z axis.

If the user presses the left button of the SpaceMouse there is a flag (flag_mode) that gets incre-

mented, from 0 to 3, which represents the mode that the SpaceMouse is working in reference to the

robot. This are the following modes programmed in the SpaceMouse:

• f lag_mode= 0 ⇒ operating in polishing mode, it only permits to control the robot in position

in reference to the base axis which is the most important movements that the robot should execute

in order to achieve the polishing task, hence the name given;

• f lag_mode = 1 ⇒ operating in rotation in robot’s end-effector and in translation in its base

(this is a more intuitive mode for starters);

• f lag_mode = 2 ⇒ operating in robot’s base;

• f lag_mode = 3 ⇒ operating in robot’s end-effector;

• f lag_mode= 4⇒ operating robot’s fingers (this mode was not implemented for the polishing

task because the fingers were removed in favor of a proper polishing tool).

In the MotionControl function is where the desired pose of the end-effector is calculated in

order for the robot to try to achieve it, depending on its developed controller. In this function, there

are all the necessary transformations to obtain the desired movement that the user effected in the

SpaceMouse, depending on the mode that is selected. The mode that the SpaceMouse is currently

on can be viewed in a computer terminal.

15

Chapter 4. Control Architectures

During this chapter, it is given an overview of the control architectures that are developed to

determine which one could achieve a better performance for the polishing task by telemanipulation,

which is the objective of this work.

4.1 Computed torque control in the joint space

As a general rule in robotics, the robot’s dynamics is given by the following equation:

M(q)q̈+υ(q̇,q)+g(q) = τ (4.1)

where:

• M(q) is the mass matrix (n × n);

• n is the number of the robot’s joints;

• υ(q̇,q) represents the Coriolis and centripetal forces (n × 1);

• g(q) is the gravity vector (n × 1);

• τ is the generalized torque acting on q.

This generalized torque (τ) is calculated through the following equation:

τ = τc + τ f + τe (4.2)

where:

• τc is the computed commanded torque;

• τ f is the friction torque;

• τe is the external torques.

Throughout this work τ f and τe are going to be neglected, which means that :

τ = τc (4.3)

with this approximation τ can be computed in through the following equation:

τc = M̂(q)q̈+ υ̂(q̇,q)+ ĝ(q) (4.4)

where (·̂) means that the dynamic values are an estimation computed through the KDL library (sec-

tion 2.4).

17

Chapter 4. Control Architectures

Equation 4.4 illustrates a system nonlinearly dependent upon the joint velocities. Because of

that, feedback linearization and decoupled must be applied in order to cancel nonlinear effects. For

that, it needs to be linearized by using a nonlinear feedback law. This law can bewritten the following

way:

τc = M̂(q)w+ υ̂(q̇,q)+ ĝ(q) (4.5)

where w = q̈ is the new control variable. For the purpose of this work, the estimated Coriolis term

(υ̂(q̇,q)) is going to be neglected since the robot is not going to perform any movements with high

velocities. Through equation 4.5 it can be seen that the computed torque (τc) directly depends of the

joint accelerations (q̈), which means that it can be used for joint space control techniques.

In figure 4.1 it is presented the block diagram for the joint space torque control. From the

figure it can be seen that the joints will be controlled by a PID (Proportional-Integrative-Derivative)

controller.

Figure 4.1: PID computed torque control in the joint space.

The computation of M̂(q) and ĝ are executed in real time, while w is calculated through the

following equation:

w = q̈d +Kp(qd −q)+Kd(q̇d −q)+Ki

∫ t

t0
(qd −q)dλ (4.6)

where:

• qd , q̇d and q̈d are vectors for the desired joint positions, velocities and accelerations, respect-

ively, each of this vectors is of size n that corresponds to the number of joints;

• q, q̇ and q̈ are vectors for the current joint positions, velocities and accelerations, respectively,

this vectors are also of size n;

• Kp, Kd and Ki are n× n positive diagonal matrices with the proportional (Kp j), derivative

(Kd j) and integrative (Ki j) gains, where j corresponds to the number of the joint.

18

Chapter 4. Control Architectures

Finally, in order to find the proper Kp and Kd values, the following rule is used which is based

in the systems natural frequency (ωn):

Kp j = ω2
n j

Kd j = 2ωn j

(4.7)

As for the Ki values, they are put manually as needed.

4.2 Computed torque control in the task space

The next proposed controller is a dynamic torque control in the task space. Through the KDL

Library (section 2.4) the Jacobian J can be applied in the following equation in order to compute the

task space velocities Ẋ :

Ẋ = Jq̇ (4.8)

With this, the robot’s dynamics (4.1) can be written as follows:

M(q)J−1(Ẍ − J̇q̇)+υ(q̇,q)+g(q) = τ (4.9)

The control law that linearizes and decouples the task space equations is given by:

τc = M̂(q)J−1w+ ĝ(q) (4.10)

The Jacobian derivative (J̇) has a small contribution to the control process, so it is omitted, as

well as the Coriolis term (υ(q, q̇)) for the same reasons as before. Once again, all the friction and

external torques are neglected, so the control variable becomes:

w = Ẍ (4.11)

In figure 4.2 it is shown the diagram of the PD (Proportional-Derivative) controller used to

control the robot in the task space.

19

Chapter 4. Control Architectures

Figure 4.2: PD computed torque control in the task space (FK means forward kinematics and DK
dynamic kinematics).

From the diagram, to note that the orientation control is computed using the quaternions, where

η corresponds to its scalar part and εx, εy and εz corresponds to the vectorial part, and this is used

in every controller throughout this work. In order to compute them it is used the tf library which is

capable of making all the operations between them. Also, it can be seen that:

w =

wp

wo

 (4.12)

with:

wp = Kp,p∆pcd −Kd,p ṗc

wo = Kp,oεcd −Kd,oωc

(4.13)

where:

• Kp,p and Kd,p are 3×3 diagonal matrices for position control with proportional and derivative

gains, respectively;

• Kp,o and Kd,o are 3×3 diagonal matrices for orientation control with proportional and deriv-

ative gains, respectively;

• ∆pcd is a 3×1 vector with the position error between the desired (pd) and current (pc) posi-

tions, each line corresponds to a different DOF (px, py, pz);

• ṗc is a 3×1 vector with the current linear velocities, each line corresponds to a different DOF

(ṗx, ṗy, ṗz);

• εcd is a 3×1 vector with the vectorial part of the quaternion error, each line corresponds to a

different DOF (ox, oy, oz);

• ωc is a 3× 1 vector with the current angular velocities, each line corresponds to a different

DOF (ωx, ωy, ωz).

20

Chapter 4. Control Architectures

4.3 Impedance Control

The first two controllers were developed in order to test the SpaceMouse control and to get

familiarized with the robot and its ROS interface. This section is going to focus on the controller

that would become the basis for the robot’s control during the polishing task. The idea of this control

is to assign a prescribed robot dynamic behavior in the presence of external interactions, matching

the dynamics of mass-spring-damper systems [19].

In order to assign this control to the robot’s end-effector velocity (Ẋ) and its force (Fe) are

related by a mechanical impedance (Z). In the Laplace domain, it can be written as such:

−Fe(s) = Z(s)Ẋ(s) (4.14)

with:

sZ(s) = As2 +Ds+K (4.15)

where A, D andK are the mass-spring-damper system gains, respectively. In figure 4.3 it is presented

a general impedance control scheme in the task space.

Figure 4.3: Impedance control scheme without force sensing [19].

The overall dynamics of this controller when in contact can be written as:

M(q)q̈+υ(q̇,q)+g(q) = τc − JT Fe (4.16)

with

τc = JT [A(Ẍd − Ẍ)+D(Ẋd − Ẋ)+K(Xd −X)]+g(q) (4.17)

Neglecting the robot dynamics effects, equations 4.16 and 4.17 gives:

A(Ẍd − Ẍ)+D(Ẋd − Ẋ)+K(Xd −X)≈ Fe (4.18)

where Fe is the force applied by the robot. If there is no contact, the robot under impedance control

generates a forceFc according to themass-spring-damper system, based onX , Ẋ and Ẍ displacements

around the equilibrium point [19].

21

Chapter 4. Control Architectures

4.3.1 Impedance Control without force sensing and inertia shaping

In figure 4.4 it is shown the impedance control scheme without force sensing and inertia shap-

ing. This one is the most basic impedance control and it can be seen that the mass term A is not

present because of its complex implementation. It can be seen that, unlike the previous task space

controller (section 4.2), this system has velocity tracking, both for the linear and angular velocities.

Figure 4.4: Impedance control scheme without force sensing and inertia shaping.

Similarly to the previous controllers a feedback control law for τc can be computed:

τc = JT w+ ĝ(q) (4.19)

with w being, once again, the control variable which has the following structure:

w =

wp

wo

 (4.20)

where its components are calculated through the following expressions:

wp = Kp∆pcd +Dp∆ṗcd

wo = Koεcd +Do∆ωcd

(4.21)

where:

• Kp and Ko are 3×3 diagonal matrices with the spring gains for position (p) and orientation

(o) control, each value corresponds to a DOF (x, y, z);

• Dp and Do are 3×3 diagonal matrices with the damper gains for position (p) and orientation

(o) control, each value corresponds to a DOF (x, y, z);

• ∆ṗcd is a 3×1 vector with the linear velocities error between the desired (ṗd) and the current

(ṗc) linear velocities, each line corresponds to a different DOF (ṗx, ṗy, ṗz);

• ∆ωcd is a 3× 1 vector with the angular velocities error between the desired (ωd) and the

current (ωc) angular velocities, each line corresponds to a different DOF (ωx, ωy, ωz).

22

Chapter 4. Control Architectures

4.3.2 Impedance Control with force sensing

This section introduces force sensing into the impedance controller of the previous section

(section 4.3.1). With force sensing the robot’s dynamics are considered when computing τc. Once

again, starting with the robot dynamics in contact:

M(q)q̈+υ(q̇,q)+g(q)+ JT Fe = τc (4.22)

where:

A(Ẍd − Ẍ)+D(Ẋd − Ẋ)+K(Xd −X) = Fe (4.23)

which can be rewritten as:

Ẍ = Ẍd +A−1[D(Ẋd − Ẋ)+K(Xd −X)−Fe] (4.24)

In figure 4.5 it is shown the control scheme with force sensing. From the scheme it can be

deduced that this controller needs the implementation of the J−1 which is impossible for redundant

robots, that means that for them a different type of controller in order to achieve force sensing has

to be developed. To note, that this system has acceleration tracking unlike the previous one (section

4.3.1), as seen by the inclusion of the term ad .

Figure 4.5: Impedance control scheme with force sensing.

For this system the control law can be computed as:

τc = M̂(q)J−1w+ ĝ(q)+ JT Fe (4.25)

with the control variable w being, once again:

w = Ẍ (4.26)

23

Chapter 4. Control Architectures

and it is computed the following way:

w = ad +A−1

wp − fe

wo −µe

 (4.27)

where:

• ad is a 6× 1 vector with the desired linear and angular end-effector accelerations, each line

corresponds a different DOF (adx, ady, adz, αdx, αdy, αdz);

• A−1 is a n×n matrix of the inverse mass term, with n being the number of joints;

• fe and µe are 3×1 vectors corresponding the force and torque in the end-effector, respectively,

each line represents a different DOF (fex, fey, fez, µex, µey, µez).

To start off, the inverse mass term A−1 is going to be calculated the following way:

A−1 = JM−1JT (4.28)

with this approximation it means that there is no inertia shaping in the task space. In this case, the Fe

term in equations 4.25 and 4.27 are eliminated, which means that no force feedback is needed [19].

With this the control variable w can computed through the following expression:

w = ad +A−1

Kp∆pcd +Dp∆ ṗcd

Koεcd +Do∆ωcd

 (4.29)

4.3.3 Impedance Control with force sensing for redundant robots

As it was mentioned in the previous section (section 4.3.2) the computation of J−1 is impossible

for redundant robots, so a different approach must be implemented in order to achieve force sensing

in the end-effector with an impedance control.

In robotics, a redundant robot is one that has a different number of joints than his DOF. This is

not the case for the JACO² robot, but it is interesting to study its performance and this controller is

going to be useful for the implementation of the final two controllers in this chapter (section 4.4).

Starting again from the robot dynamics in contact:

M(q)q̈+υ(q̇,q)+g(q)+ JT Fe = τc (4.30)

and pre-compensating υ(q̇,q), g(q) and JT Fe:

M(q)q̈ = τ ′ (4.31)

24

Chapter 4. Control Architectures

with:

τc = τ ′+υ(q̇,q)+g(q)+ JT Fe (4.32)

By shiftingM(q) to the right side in equation 4.31 andmultiplying both sides by J, the following

expression can be written:

Jq̈ = JM(q)−1τ ′ (4.33)

Since:

Ẋ = Jq̇ → Jq̈ = Ẍ − J̇q̇ (4.34)

and by applying a Cartesian force Fc through τ ′, equation 4.33 becomes:

Ẍ − J̇q̇ = JM(q)−1JT Fc (4.35)

The inertia matrix in the task space Λ(q) has the following inverse:

Λ(q)−1 = JM(q)−1JT (4.36)

which always exists for any kind of robot, even if J is a non-square matrix, while M(q) is always a

square because is a n×n matrix, with n being the number of joints, so its inverse is always possible.

Therefore, from equations 4.35 and 4.36, the dynamic equation in the task space can be written as:

Λ(q)Ẍ −Λ(q)J̇q̇ = Fc (4.37)

In figure 4.6 it is presented the impedance control scheme with force sensing for redundant

robots. This figure demonstrates that this controller is similar to the previous one (section 4.3.2)

with the exception of utilizing JT instead of J−1 and Λ(q) instead of M(q).

Figure 4.6: Impedance control scheme with force sensing for redundant robots.

25

Chapter 4. Control Architectures

The control law for this controller ends up being:

τc = JT Λ(q)w+g(q)+ JT Fe (4.38)

with the control variable w being:

w = Ẍ (4.39)

which is computed the following way:

w = ad +A−1

wp − fe

wo −µe

 (4.40)

The A−1 is calculated the sameway has equation 4.28 whichmeans that, once again, there exists

no inertia shaping, which in turn means that the Fe term is eliminated from equations 4.38 and 4.40,

so no force feedback is needed [19]. In conclusion, the control variable w becomes:

w = ad +A−1

Kp∆pcd +Dp∆ ṗcd

Koεcd +Do∆ωcd

 (4.41)

4.4 Hybrid Controllers

This next section is going to cover two ”hybrid” controllers. For reasons that are going to be

explained later in chapter 5 it is necessary to separate the robot’s position and orientation control

into two different controllers.

In order to do that, the robot’s position is going to use the impedance control with force sensing

for redundant robots, since the robot’s DOF that are going to be controlled are only 3 (px, py, pz).

As for the robot’s orientation, the chosen controller is the joint space control with task space posture

reference. With this, the orientation error in the task space are converted into velocity references for

joint control [20].

In figure 4.7 it is shown the scheme for the ”hybrid” controller. During the development of

this controller, special care must be taken so that the position parameters are not mixed with the

orientation ones and vice versa. Also, the influence of each joint for the dynamics [M̂(q) and ĝ(q)]

and forward kinematics calculation must be considered for both controls, so that its influence for

each control is not neglected.

26

Chapter 4. Control Architectures

Figure 4.7: ”Hybrid” controller scheme with impedance control with force sensing for redundant
robots for position control and joint space torque control with task space posture reference for ori-
entation control.

For this controller τc has the following expression:

τc = τp + τo + ĝ(q)+ JT
v fe (4.42)

where:

• τp is a n× 1 vector, n being the number of joints, with the computed torque for position

control;

• τo is a n× 1 vector, n being the number of joints, with the computed torque for orientation

control;

• Jv is a 3×n matrix, n being the number of joints, representing the linear velocities Jacobian.

The following expression gives the control law for τp:

τp = JT
v Λp(q)w (4.43)

where:

• Λp(q) is 3×3 matrix, which represents the inertia in the task space for position control;

this matrix is computed through the following equation:

Λp(q) = (JvM(q)−1JT
v)

−1 (4.44)

The control variable w for this portion of the controller is, once again:

w = Ẍ (4.45)

which it is computed through the following equation:

w = ad +A−1
p (wp − fe) (4.46)

27

Chapter 4. Control Architectures

with:

wp = Kp∆pcd +Dp∆ṗcd (4.47)

The A−1
p represents the inverse mass gain parameter for position control and is calculated the

following way:

A−1
p = Λp(q)−1 (4.48)

As before, there exists no inertia shaping, so the fe term is eliminated from equations 4.42 and

4.46 which means that no force feedback is needed. Because of this, the control variable w becomes:

w = ad +A−1
p (Kp∆pcd +Dp∆ṗcd) (4.49)

As for the orientation control, it has the following control law:

τo = M̂(q)α (4.50)

with α being the control variable:

α = q̈ (4.51)

The control variable α is going to be computed the following way:

α = Kp,o∆q̇cd +Kd,o
d∆q̇cd

dt
(4.52)

where:

• ∆q̇cd is a 3×1 vector with the error between the desired joint velocities (q̇d) and the current

joint velocities (q̇c).

The current joint velocities (q̇c) are taken directly from the robot’s sensors, in real time, while

the desired joint velocities (q̇d) are computed through the following equation:

q̇d = K1J#
ωεcd (4.53)

where:

• K1 is a n×n diagonal matrix, n being the number of joints, whose elements are set independ-

ently for each joint;

• Jω is a 3× n matrix, n being the number of joints, representing the angular velocities Jac-

obian, the # symbol represents the pseudo-inverse, since this matrix is non-square so the inverse is

impossible to compute.

28

Chapter 4. Control Architectures

The J#
ω matrix is computed the following way:

J#
ω = M(q)−1JT

ω Λo(q) (4.54)

where:

• Λo(q) is a 3×3 matrix, which represents the inertia in the task space for orientation control;

this matrix is computed through the following equation:

Λo(q) = (JωM(q)−1JT
ω)

−1 (4.55)

4.4.1 Hybrid Controller with Null-Space

The last controller that it is going to be covered for this work is gonna be the same one as in

section 4.4 except that the orientation control is going to be designed in null-space [21].

The computed torque control τc is going to be as follow:

τc = τp + τo|p + ĝ(q)+ JT
v fe (4.56)

where:

• τo|p is the torque to perform orientation control constrained by position control.

In terms of position control, τp is computed the same way as equation 4.43 with the control

variable w being calculated through equation 4.49, which means that no inertia shaping is considered

so that no force feedback is needed. So, equation 4.56 becomes:

τc = τp + τo|p + ĝ(q) (4.57)

Next step, is going to be the formulation of τo|p which is the main difference between the

previous controller (section 4.4). The manipulator dynamics with gravity in the joint space can be

given by:

M(q)q̈ = τp + τo|p (4.58)

by setting τo|p as:

τo|p = NT
p M(q)α (4.59)

and multiplying both sides of equation 4.58 by JT
ω J̄T

ω it leads to:

JT
ω J̄T

ω M(q)q̈ = JT
ω J̄T

ω τp + JT
ω J̄T

ω NT
p M(q)α (4.60)

29

Chapter 4. Control Architectures

where:

• Np is a n×n matrix, n being the number of joints, which represents the null-space projector

of the robot’s position;

• J̄ω is a n×3 matrix, n being the number of joints, which represents the dynamically consistent

generalized inverse matrix of Jω .

These two matrices are calculated through the following equations:

Np = I − J̄vJv

J̄ω = M(q)−1JT
ω Λo(q)

(4.61)

where:

• I is a n×n identity matrix, n being the number of joints;

• J̄v is a n×3, n being the number of joints, which represents the dynamically consistent gen-

eralized inverse matrix of Jv and it is computed in a similar way as J̄ω in equation 4.61.

Projecting equation 4.60 through NT
p , the torques acting on the orientation control without af-

fecting the position are given by:

NT
p JT

ω J̄T
ω M(q)q̈ = NT

p JT
ω J̄T

ω τp +NT
p JT

ω J̄T
ω NT

p M(q)α (4.62)

Left multiplying both sides by M(q)−1 and using the commutation properties:

M(q)−1NT
p = NpM(q)−1

M(q)−1JT
ω J̄T

ω = J̄ωJωM(q)−1
(4.63)

the corresponding joint acceleration for orientation control is given by:

NpJ̄ωJω q̈ = NpJ̄ωM(q)−1τp +NpJ̄ωJω|vα (4.64)

where:

• Jω|v is a 3× n matrix, n being the number of joints, which combines the position control

null-space operator with the angular Jacobian;

and it is computed the following way:

Jω|v = JωNp (4.65)

Setting the control variable α as:

α = J̄ω|vJω(β −M(q)−1τp) (4.66)

30

Chapter 4. Control Architectures

and replacing equation 4.66 in equation 4.65, the orientation control closed-loop dynamics becomes:

NpJ̄ωJω(q̈−β) = 0 (4.67)

where:

• β is a vector of size n, n being the number of joints, which corresponds to the new control

variable;

• J̄ω|v is a n×3matrix, n being the number of joints, which represents the dynamically consistent

generalized inverse matrix of Jω|v.

A linear and decoupled joint acceleration in the position null-space shows up, performing the

orientation control without inducing any motion in the position [21]. Plugging equation 4.66 in

equation 4.59 and replacing J̄ω|v by:

J̄ω|v = M(q)−1Jω|vΛo|p(q) (4.68)

τo|p becomes:

τo|p = JT
ω|vΛo|p(q)Jω(β −M(q)−1τp) (4.69)

where the null-space idempotent property NT
p = (NT

p)
2 has been used and Λo|p(q) is given by:

Λo|p(q) = (JωM(q)−1JT
ω|p)

−1 (4.70)

Substituting equations 4.69 and 4.43 in equation 4.57, the computed torque control to perform

both controls is given by:

τc = JT
v Λp(q)w+ JT

ω|vΛo|p(q)Jω(β −M(q)−1τp)+ ĝ(q) (4.71)

In the above formulation, there are present algorithmic singularities when both controls are in

conflict, which causes JT
ω|v to drop rank [21]. To correct this issues with such singularities, α is

going to be computed the following by:

α = J̄ωJω(β −M(q)−1τp) (4.72)

where, the only difference from equation 4.66 is the replacement of term J̄ω|v for J̄ω . Since Jω is the

angular Jacobian without any constraints from the force controller. Due to the manipulator structure,

Jω only loses rank at the external boundary of its reachable workspace, having no ill-condition issues

near internal singular conditions, when both controls are in conflict [21]. With this approach and

using the following commutation property:

31

Chapter 4. Control Architectures

NT
p M(q) = M(q)Np (4.73)

equation 4.71 becomes:

τc = JT
v Λp(q)w+ JT

ω|vJ̄T
ω(M(q)β − τp)+ ĝ(q) (4.74)

The problem of this approach is that the closed-loop system found in equation 4.67 is no longer

achieved. For this reason, tracking errors might arise in the orientation control, since the forces given

by J̄ω [M(q)β − τp] might have components that are influenced by the position control, which are

minimized by Np.

Still, in order to do the polishing task, the tracking of orientation control is not very important,

however it is relevant that it stays almost constant throughout the task, so this controller is the most

suitable one to do it.

32

Chapter 5. Experimental Results

The first section of this chapter is going to be focused on the experimental results from the con-

trol architectures described in chapter 4 taken from the Gazebo simulator, while the second section

is going to be from the real physical robot.

Before starting the experimental results, it is going to be given a brief overview of the project’s

organization. A package called kinova_spacenav is created, which containsmany folders and scripts.

Two of this folders, src and include, contain the source code and header files, respectively, for

classes jaco_kdl and jaco_spacenav, which were covered briefly in sections 2.4 and 3.3.

There is also a folder called launchwhich contains the launcher files in order to launch a server

with all the ROS topics, among other things, which can be accessed during implementation of the

controllers. It is created launch files for the simulator and robot, all based on what was provided by

the kinova_ros stack (section 2.3).

5.1 Gazebo Simulator

In the kinova_spacenav a folder called controllers_simulator contains the algorithms developed

for the controllers mentioned in chapter 4 for use in the simulator. The basis behind each controller

is that, before beginning the control loop there is a switch between position and effort control, so

that each 1ms torques are computed by the controller and sent to robot.

5.1.1 Computed torque control in the joint space (simulation)

For this controller the SpaceMouse is not used, so to study its performance and stability arbitrary

trajectories are given to study it. The robot is going to execute a trajectory based on cubic polynomial

between ti = 5s and t f = 15s, t being the simulation elapsed time. The robot’s initial and final joint

positions (qi and q f) are as follows:

qi =
[
4.8046852 2.924825 1.002 4.2031852 1.4458 1.3233

]T

q f =
[
π π π π π π

]T (5.1)

The polynomial trajectory uses the following equation:

qd = qi +
3(q f −qi)(t − ti)2

(t f − ti)2 −
2(q f −qi)(t − ti)3

(t f − ti)3 (5.2)

with qd being the desired joint positions.

33

Chapter 5. Experimental Results

From ti = 20s until t f = 80s the robot is going to perform a sine wave with the following

amplitude (A) and period (T):

A =
[

π
4

π
4

π
4

π
4

π
4

π
4

]T

T = 10s
(5.3)

The sine wave has the following equation:

qd = qi +Asin
(

2πt
T

)
(5.4)

Finally, between ti = 85s and t f = 95s the robot returns to its home position (qi in equation 5.1),

following the same cubic polynomial equation as 5.2.

As it was mentioned in section 4.1 the proportional (Kp) and derivative (Kd) gains were com-

puted by following equation 4.7 while the integrative gains (Ki) was introduced manually. The

following table shows the natural frequency (ωn) and Ki values that best suited this controller:

Table 5.1: Table with the gains used for this controller.

Joint j ωn j Ki j

1 35 0.005
2 10 0.005
3 15 0.005
4 35 0.015
5 30 0.005
6 40 0.025

In figure 5.1 it is shown the results of the procedure described during this section with the gains

used in table 5.1.

Figure 5.1: PID computed torque control in the joint space (simulation).

34

Chapter 5. Experimental Results

It is important to underline that this controller achieves a good joint position tracking, a small

steady-state error and also the small oscillation in the beginning of the controller. This is due to the

switch between position and effort control, which introduces a slight delay before the controller is

activated. This is more noticeable in the simulator, in the robot (section 5.2) is less noticeable and

sometimes it does not even happen.

5.1.2 Computed torque control in the task space (simulation)

Starting from this controller, all the experiments will be made by using the SpaceMouse, in-

stead of giving an arbitrary trajectory to the robot. This is due to the fact that the SpaceMouse can

control the robot in its 6 DOF and also because one of the objectives of this work is to introduce

telemanipulation to the polishing task.

So, in terms of experiment, it will be performed movements in all 6 DOF so that the stability

and performance of the controller can be evaluated. This is going to be true to all the controllers

hereafter. The gains for this controller are shown in the following table:

Table 5.2: Table with the gains used for this controller.

DOF Kp Kd

px 300 50
py 300 50
pz 450 50
ox 350 20
oy 350 20
oz 350 20

In figure 5.2 it is shown the results of the experiment described with the gains shown in table

5.2. The orientation results are presented in euler angles with the Yaw and Pitch wrapped between

[−π,π] and the Roll between [0,2π], although the control was made with quaternions, this happens

to all task space controllers.

0 10 20 30

s

0.1

0.15

0.2

0.25

0.3

0.35

0.4

m

X Position

X

X
d

0 10 20 30

s

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

m

Y Position

Y

Y
d

0 10 20 30

s

0.2

0.25

0.3

0.35

0.4

0.45

0.5

m

Z Position

Z

Z
d

0 10 20 30

s

0

0.5

1

1.5

2

2.5

3

ra
d

X Orientation

Yaw

Yaw
d

0 10 20 30

s

-3

-2

-1

0

1

ra
d

Y Orientation

Pitch

Pitch
d

0 10 20 30

s

0

1

2

3

4

5

6

ra
d

Z Orientation

Roll

Roll
d

Figure 5.2: PD computed torque control in the task space (simulation).

35

Chapter 5. Experimental Results

It can be seen that, once again, the robot achieves a very good tracking and a small steady-state

error, but with the absent of an integrative part the error is not being corrected as time goes by.

5.1.3 Impedance Control without force sensing and without inertia shaping (simulation)

Once again, the experiment in this controller is going to be made by evaluating the robot’s

performance and stability in all its DOF with values taken from the SpaceMouse.

During the development of this controller it is necessary to enhance virtually the inertia tensor in

the last joint, which in turn influences the estimated mass matrix [M̂(q)], because the values returned

are too small. This is due to the fact that the actuators friction is more dominant in the last 3 joints on

the opposite of what happens in the first 3, where the mass is the most influential. The gains utilized

for this controller are as follow:

Table 5.3: Table with the gains used for this controller.

DOF K D
px 100 20
py 100 20
pz 200 20
ox 20 2
oy 20 2
oz 20 2

In figure 5.3 represents the results for this controller with the gains shown in table 5.3. The

results prove that the controller has a good tracking and small steady-state error.

0 10 20

s

-0.1

-0.05

0

0.05

0.1

0.15

0.2

m

X Position

X

X
d

0 10 20

s

-0.5

-0.4

-0.3

-0.2

-0.1

m

Y Position

Y

Y
d

0 10 20

s

0.3

0.35

0.4

0.45

0.5

0.55

m

Z Position

Z

Z
d

0 10 20

s

0.5

1

1.5

2

2.5

3

ra
d

X Orientation

Yaw

Yaw
d

0 10 20

s

-2.8

-2.6

-2.4

-2.2

-2

-1.8

-1.6

ra
d

Y Orientation

Pitch

Pitch
d

0 10 20

s

0

1

2

3

4

5

6

ra
d

Z Orientation

Roll

Roll
d

Figure 5.3: Impedance Control without force sensing and without inertia shaping (simulation).

36

Chapter 5. Experimental Results

5.1.4 Impedance Control with force sensing (simulation)

A similar procedure was done to test the performance and stability of this controller as it was

used in the previous ones. The following table shows the gains used:

Table 5.4: Table with the gains used for this controller.

DOF K D
px 200 24
py 200 24
pz 350 24
ox 180 3
oy 180 3
oz 180 3

With the gains in table 5.4, the results shown in figure 5.4 were obtained. It can be seen that

the steady-state error is even smaller with this controller, while the tracking stays very good.

0 10 20 30

s

-0.1

0

0.1

0.2

0.3

m

X Position

X

X
d

0 10 20 30

s

-0.5

-0.4

-0.3

-0.2

-0.1

m

Y Position

Y

Y
d

0 10 20 30

s

0.25

0.3

0.35

0.4

0.45

0.5

0.55

m

Z Position

Z

Z
d

0 10 20 30

s

0

0.5

1

1.5

2

2.5

3

ra
d

X Orientation

Yaw

Yaw
d

0 10 20 30

s

-3

-2.5

-2

-1.5

ra
d

Y Orientation

Pitch

Pitch
d

0 10 20 30

s

0

1

2

3

4

5

6

ra
d

Z Orientation

Roll

Roll
d

Figure 5.4: Impedance Control with force sensing (simulation).

5.1.5 Impedance Control with force sensing for redundant robots (simulation)

With a similar procedure described in the previous controllers a study was made for the stability

and performance of this controller. The following table shows the gains used:

Table 5.5: Table with the gains used for this controller.

DOF K D
px 200 24
py 200 24
pz 400 24
ox 180 3.5
oy 180 3.5
oz 180 3.5

37

Chapter 5. Experimental Results

With the gains in table 5.5 the results in figure 5.5 were obtained. Very similar, to the previous

controller, the steady-state error continues to be smaller, compared to the others and it achieves a

very good tracking.

0 10 20 30

s

-0.05

0

0.05

0.1

0.15

0.2

0.25

m

X Position

X

X
d

0 10 20 30

s

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

m

Y Position

Y

Y
d

0 10 20 30

s

0.25

0.3

0.35

0.4

0.45

0.5

0.55

m

Z Position

Z

Z
d

0 10 20 30

s

0.5

1

1.5

2

2.5

3

ra
d

X Orientation

Yaw

Yaw
d

0 10 20 30

s

-3

-2.5

-2

-1.5

ra
d

Y Orientation

Pitch

Pitch
d

0 10 20 30

s

0

1

2

3

4

5

6

ra
d

Z Orientation

Roll

Roll
d

Figure 5.5: Impedance Control with force sensing for redundant robots (simulation).

5.1.6 Hybrid Controller (simulation)

A similar task was done to test this controller performance and stability. The following tables

show the gains used:

Table 5.6: Tables with the gains used for this controller.

(a) Table with gains used for position control.

DOF K D
px 600 22
py 600 22
pz 600 22

(b) Table with gains used for orientation control.

Joint j K1 j Kp j Kd j

1 5 10 0.02
2 5 10 0.02
3 5 10 0.02
4 25 10 0.02
5 25 10 0.02
6 25 10 0.02

With the gains displayed in tables 5.6 the results shown in figure 5.6. Once again, the robot

achieves a very good tracking and small steady-state error. Sometimes it can be seen that there is a

little oscillation in all DOF which is going to be mitigated with the introduction of null-space in the

end-effector’s position.

38

Chapter 5. Experimental Results

0 10 20 30

s

-0.05

0

0.05

0.1

0.15

0.2

0.25

m

X Position

X

X
d

0 10 20 30

s

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

m

Y Position

Y

Y
d

0 10 20 30

s

0.25

0.3

0.35

0.4

0.45

0.5

0.55

m

Z Position

Z

Z
d

0 10 20 30

s

0

0.5

1

1.5

2

2.5

3

ra
d

X Orientation

Yaw

Yaw
d

0 10 20 30

s

-3

-2.5

-2

-1.5

ra
d

Y Orientation

Pitch

Pitch
d

0 10 20 30

s

0

1

2

3

4

5

6

ra
d

Z Orientation

Roll

Roll
d

Figure 5.6: ”Hybrid” Controller (simulation).

5.1.7 Hybrid Controller with Null-Space (simulation)

With a similar procedure as the previous controllers and with the following tables a study of

the robot’s stability and performance was made for this controller:

Table 5.7: Tables with the gains used for this controller.

(a) Table with gains used for position control.

DOF K D
px 200 22
py 200 22
pz 400 22

(b) Table with gains used for orientation control.

Joint j K1 j Kp j Kd j

1 5 10 0
2 5 10 0
3 5 10 0
4 30 10 0
5 30 10 0
6 30 10 0

With the gains shown in tables 5.7 the results shown in figure 5.7 were obtained. Once again,

the robot achieves a good tracking and a small steady-state error. More noticeable is the absence of

the little oscillations that were present in the previous controller results (section 5.6).

39

Chapter 5. Experimental Results

0 10 20 30

s

-0.05

0

0.05

0.1

0.15

0.2

0.25

m

X Position

X

X
d

0 10 20 30

s

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

m

Y Position

Y

Y
d

0 10 20 30

s

0.2

0.25

0.3

0.35

0.4

0.45

0.5

m

Z Position

Z

Z
d

0 10 20 30

s

0

0.5

1

1.5

2

2.5

3

ra
d

X Orientation

Yaw

Yaw
d

0 10 20 30

s

-4

-2

0

2

4

ra
d

Y Orientation

Pitch

Pitch
d

0 10 20 30

s

0

0.5

1

1.5

2

2.5

3

ra
d

Z Orientation

Roll

Roll
d

Figure 5.7: ”Hybrid” Controller with Null Space (simulation).

5.2 Real Kinova JACO² Robot

In the kinova_spacenav package there is a folder called controllers_robot that contains the

algorithms developed for the controllers described in chapter 4 for use on the robot.

Before making the experimental tests in the robot some preparation has to be done. In the

kinova_driver package is created a node called kinova_api_funcs. In this node some API functions

are accessed to change some of the robot’s parameters, namely:

• SetTorqueActuatorGain: this functions sets the actuators feedback gain, which is changed

all to 0.0 for all actuators;

• SetTorqueSafetyFactor: this function is a safety feature used to specify the velocity threshold

over which the robot will stop and return to position control, this is a safety feature to prevent the

arm from performing undesired and/or dangerous motions, the value set is 1.0.

• SetTorqueVibrationController: this function is used to set the vibration observer/controller

level, this is important for when the robot is in contact with a stiff environment which is the case for

the polishing task (chapter 6), the value set is 1.0 which corresponds to its maximal level;

• SetGravityOptimalZParam: this function is used to set the gravity parameters using the

optimal mode, these values are found by running the function RunGravityZEstimationSequence

which is done when the robot has the standard end-effector and the polishing tool (figures 2.1b and

6.8a);

• SetGravityType: this function sets the gravity type to MANUAL_INPUT or OPTIMAL, the

choice is the latter in concordance to the previous point.

40

Chapter 5. Experimental Results

Also, a python script called calibration_robot found in the kinova_spacenav package is de-

veloped to calibrate the robot’s torques, this can also be done through the Kinova SDK via the

”Torque Zero” found in the ”Advanced Menu”. This has to be done sometimes when the user wants

to work in effort control. For the calibration to be successful the robot’s joint positions have to be

as follows:

q =
[
π π π π π π

]
(5.5)

5.2.1 Computed torque control in the joint space (robot)

Like in the simulator, in this control the SpaceMouse is not used and instead a trajectory is

defined for the robot to execute in order to study its performance and stability.

Between ti = 5s and t f = 15s the robot is going to execute a cubic polynomial from the following

initial and final joint positions:

qi =
[
4.8046852 2.924825 1.002 4.2031852 1.4458 1.3233

]T

q f =
[
4.8046852 π π

2 4.2031852 1.4458 1.3233
]T (5.6)

The cubic polynomial is defined by equation 5.2. From ti = 20s until t f = 80s the robot is going

to perform a sine wave, that is defined by equation 5.4, with the following parameters:

A =
[

π
6

π
20

π
20

π
20

π
20

π
6

]T

T = 10s
(5.7)

Finally, between ti = 85s and t f = 95s the robot is going to perform a cubic polynomial, defined

by equation 5.2, from it’s current joint positions until the home position (the first vector in equation

5.6).

For this experiment the mass matrix in the last 3 joints are not considered because the gains

that had to be given are too large for the joints to execute any kind of movement. Instead, only a PD

controller is going to be considered for this joints. Differently fromwhat was shown in the simulator,

the Kp and Kd gains for each joint are given manually and the Ki is completely removed. With that,

the gains used for this control are shown in the following table:

Table 5.8: Table with the gains used for this controller.

Joint j Kp j Kd j

1 200 20
2 300 20
3 300 20
4 30 5
5 30 5
6 30 5

41

Chapter 5. Experimental Results

With the gains presented in table 5.8 the results shown in figure 5.8 were obtained. First of all,

it can be seen that the steady-state error and performance of this control in the robot is not as good

as in the simulator, which is to be expected, since in the simulation environment is mostly designed

to achieve almost ”perfect” results. Still, the steady-state error is not very significant and the robot

achieves a very good tracking. Also to note that the switch between position and effort control is not

as noticeable as in the simulation, this is due to the fact that the robot already has a gravity vector

implemented inside.

Figure 5.8: PD computed torque control in the joint space (robot).

5.2.2 Computed torque control in the task space (robot)

For this control a similar procedure is used as it was in the simulator (section 5.1.2). It is

important to underline that the experiment to test the performance and stability of the control is done

by using the SpaceMouse in all 6 of the robot’s DOF.

The main difference is that in the robot the inertia tensor that was used in all the controllers

after the first impedance control (section 5.1.3) was also used for this one, so as to achieve better

results. The following table shows the gains used:

Table 5.9: Table with the gains used for this controller.

DOF Kp Kd

px 200 24
py 200 24
pz 200 24
ox 150 6
oy 150 6
oz 150 6

42

Chapter 5. Experimental Results

With the gains in table 5.9 the results in figure 5.9 are obtained. Just to remind that the Yaw

and Pitch angles are wrapped between [−π,π] and the Roll between [0,2π].

To note that this control also achieves a good tracking even though the steady-state error is

not as good as in the simulation and there some coupling problems with the position control, which

means that when the operator is controlling the robot in orientation, it will affect the its position and

vice versa. This problem is more significant in the robot’s X and Z orientation and also inY position.

Because of the robot’s last 3 joints the dominant physical aspect is the actuators frictions instead

of their mass, which is more relevant in the first 3. This is the reason why it is opted to separate the

position from the orientation control, thus the existence of the ”hybrid” controllers (section 4.4).

Still, the robot achieves an acceptable steady-state error and the robot is capable of correcting its

pose, derived from the coupling problems.

0 10 20 30 40

s

-0.2

-0.1

0

0.1

0.2

0.3

m

X Position

X

X
d

0 10 20 30 40

s

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

m

Y Position

Y

Y
d

0 10 20 30 40

s

0.1

0.2

0.3

0.4

0.5

m

Z Position

Z

Z
d

0 10 20 30 40

s

0.5

1

1.5

2

2.5

3

ra
d

X Orientation

Yaw

Yaw
d

0 10 20 30 40

s

-4

-2

0

2

4

ra
d

Y Orientation

Pitch

Pitch
d

0 10 20 30 40

s

0

1

2

3

4

5

6

ra
d

Z Orientation

Roll

Roll
d

Figure 5.9: PD computed torque control in the task space (robot).

5.2.3 Impedance Control without force sensing and without inertia shaping (robot)

For this control a similar experiment is made in order to study the robot’s performance and

stability. The gains used for this control are as follow:

Table 5.10: Table with the gains used for this controller.

DOF K D
px 200 10
py 200 10
pz 200 10
ox 25 1.5
oy 25 1.5
oz 25 1.5

43

Chapter 5. Experimental Results

With the gains in table 5.10 the results shown in figure 5.10 are obtained. Once again, the

performance is not as good as in the simulation environment and there are still coupling problems

between the position and orientation controls, more noticeable in the X and Z orientation and Y

position. However, the steady-state error continues to be small and the robot is capable of correcting

its posture to match the reference, mostly, derived from the coupling problems.

0 10 20 30 40

s

-0.2

-0.1

0

0.1

0.2

0.3

m

X Position

X

X
d

0 10 20 30 40

s

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

m

Y Position

Y

Y
d

0 10 20 30 40

s

0.1

0.2

0.3

0.4

0.5

0.6

m

Z Position

Z

Z
d

0 10 20 30 40

s

0.5

1

1.5

2

2.5

3

ra
d

X Orientation

Yaw

Yaw
d

0 10 20 30 40

s

-4

-2

0

2

4

ra
d

Y Orientation

Pitch

Pitch
d

0 10 20 30 40

s

0

1

2

3

4

5

6

ra
d

Z Orientation

Roll

Roll
d

Figure 5.10: Impedance Control without force sensing and without inertia shaping (robot).

5.2.4 Impedance Control with force sensing (robot)

For this control the same procedure is made to test the robot’s stability and performance. The

gains utilized for this control are shown in the following table:

Table 5.11: Table with the gains used for this controller.

DOF K D
px 150 22
py 150 22
pz 150 22
ox 15 0.1
oy 15 0.1
oz 15 0.1

With the gains in table 5.11 the results shown in figure 5.11 are obtained. The steady-state error

continues to achieve an acceptable value and the coupling problems are a little mitigated in some

portions of the experiment, especially in Y position but still noticeable in X and Z orientation.

44

Chapter 5. Experimental Results

0 10 20 30 40

s

-0.2

-0.1

0

0.1

0.2

0.3

m

X Position

X

X
d

0 10 20 30 40

s

-0.55

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

m

Y Position

Y

Y
d

0 10 20 30 40

s

0.1

0.2

0.3

0.4

0.5

0.6

m

Z Position

Z

Z
d

0 10 20 30 40

s

1

1.5

2

2.5

3

ra
d

X Orientation

Yaw

Yaw
d

0 10 20 30 40

s

-4

-2

0

2

4

ra
d

Y Orientation

Pitch

Pitch
d

0 10 20 30 40

s

0

1

2

3

4

5

6

ra
d

Z Orientation

Roll

Roll
d

Figure 5.11: Impedance Control with force sensing (robot).

5.2.5 Impedance Control with force sensing for redundant robots (robot)

In this control a similar task is given to the robot in order to study the its stability and perform-

ance. The following table shows the gains used for this controller:

Table 5.12: Table with the gains used for this controller.

DOF K D
px 150 22
py 150 22
pz 150 22
ox 20 0.1
oy 20 0.1
oz 20 0.1

With the gains shown in table 5.12 the results shown in figure 5.12 are obtained. The coupling

problems are still noticeable like in the previous control (section 5.2.4), but the robot is still capable

of correcting its pose to achieve the reference, while the steady-state error continues to have a small

acceptable value.

45

Chapter 5. Experimental Results

0 10 20 30 40

s

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

m

X Position

X

X
d

0 10 20 30 40

s

-0.6

-0.5

-0.4

-0.3

-0.2

m

Y Position

Y

Y
d

0 10 20 30 40

s

0.1

0.2

0.3

0.4

0.5

0.6

m

Z Position

Z

Z
d

0 10 20 30 40

s

0

0.5

1

1.5

2

2.5

3

ra
d

X Orientation

Yaw

Yaw
d

0 10 20 30 40

s

-4

-2

0

2

4

ra
d

Y Orientation

Pitch

Pitch
d

0 10 20 30 40

s

0

1

2

3

4

5

6

ra
d

Z Orientation

Roll

Roll
d

Figure 5.12: Impedance Control with force sensing for redundant robots (robot).

5.2.6 Hybrid Controller (robot)

A similar procedure is taken to study the performance and stability of this controller. The gains

used in this controller are shown in the following table:

Table 5.13: Tables with the gains used for this controller.

(a) Table with gains used for position control.

DOF K D
px 500 10
py 500 10
pz 500 10

(b) Table with gains used for orientation control.

Joint j K1 j Kp j Kd j

1 5 10 0.3
2 5 10 0.3
3 5 10 0.3
4 25 10 0.3
5 25 10 0.3
6 25 10 0.3

With the gains shown in table 5.13 the results shown in figure 5.13 are obtained. The steady-

state error is even smaller than in this previous controls and the coupling problems are mitigated in

all of the components previously mentioned, proving that by controlling the position and orientation

with different controllers it is possible to achieve a better stability.

46

Chapter 5. Experimental Results

0 10 20 30 40

s

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

m

X Position

X

X
d

0 10 20 30 40

s

-0.55

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

m

Y Position

Y

Y
d

0 10 20 30 40

s

0.1

0.2

0.3

0.4

0.5

0.6

m

Z Position

Z

Z
d

0 10 20 30 40

s

0

0.5

1

1.5

2

2.5

3

ra
d

X Orientation

Yaw

Yaw
d

0 10 20 30 40

s

-4

-2

0

2

4

ra
d

Y Orientation

Pitch

Pitch
d

0 10 20 30 40

s

0

1

2

3

4

5

6

ra
d

Z Orientation

Roll

Roll
d

Figure 5.13: ”Hybrid” Controller (robot).

5.2.7 Hybrid Controller with Null-Space (robot)

For this control a similar procedure is executed to study the robot’s stability and performance.

The gains used are shown in the following table:

Table 5.14: Tables with the gains used for this controller.

(a) Table with gains used for position control.

DOF K D
px 150 10
py 150 10
pz 150 10

(b) Table with gains used for orientation control.

Joint j K1 j Kp j Kd j

1 5 7.5 0
2 5 7.5 0
3 5 7.5 0
4 25 7.5 0
5 25 7.5 0
6 25 7.5 0

With the gains shown in table 5.14 the results shown in figure 5.14 are obtained. It can be seen

that the coupling problems are less noticeable in the components that were more relevant previously

and steady-state error is even smaller.

47

Chapter 5. Experimental Results

0 10 20 30 40

s

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

m

X Position

X

X
d

0 10 20 30 40

s

-0.55

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

m

Y Position

Y

Y
d

0 10 20 30 40

s

0.1

0.2

0.3

0.4

0.5

0.6

m

Z Position

Z

Z
d

0 10 20 30 40

s

0.5

1

1.5

2

2.5

3

ra
d

X Orientation

Yaw

Yaw
d

0 10 20 30 40

s

-4

-2

0

2

4

ra
d

Y Orientation

Pitch

Pitch
d

0 10 20 30 40

s

0

1

2

3

4

5

6

ra
d

Z Orientation

Roll

Roll
d

Figure 5.14: ”Hybrid” Controller with Null Space (robot).

Although, not ”perfect” it is the best control that was developed during this work, so it is the

one that is going to be used for the polishing task.

48

Chapter 6. Polishing Task

This chapter is going to start with a brief explanation about the algorithm that is developed for

the robot to achieve the polishing task. Then, there will be some tests in both the simulation and the

real robot environment.

6.1 Algorithm

To start off, the algorithms for the polishing task in the simulator and the real robot are identical.

To achieve the polishing task there are actually two algorithms developed, one of them is to ”train”

the robot to achieve a certain trajectory and other one is for it to replicate the movements previously

executed with the first algorithm. This is useful because the operator can teach the robot to polish

an arbitrary surface only once and then it can replicate the same trajectory to an identical surface.

In the train algorithm the robot initializes in torque control with a control loop that stabilizes

the robot in its home position. When the user is ready he/she can press the ”R” key in their personal

computer’s keyboard to start ”recording” the robot’s trajectory. When the ”R” key is pressed the

user then uses the SpaceMouse to move the robot and at the same time its current poses (px, py, pz,

εx, εy, εz and η) are stored in a file called desired_poses.txt. When the user is satisfied, he/she can

press the ”E” key to close the file and turn off the controller. The robot then changes to position

control and returns to its home position. If the user is not satisfied or something goes wrong with the

robot he/she can cancel anytime by pressing the ”Space” key.

The execute algorithm opens the file previously created by the train algorithm and stores all

its poses in a dynamic vector which are going to be the desired poses in the control loop. Then, the

robot enters the control loop where it stays in the home position until the user presses the ”Enter” key

and the robot initializes the trajectory previously trained. As it was in the train algorithm, the user

can interrupt anytime he/she wants by pressing the ”Space” key. The figures 6.1a and 6.1b illustrate

the flow charts for both the train and execute algorithm.

49

Chapter 6. Polishing Task

(a) Train flow chart. (b) Execute flow chart.

Figure 6.1: Polishing task flow charts.

6.2 Polishing Task in Gazebo Simulator

To prove the concept and test the polishing task an environment is going to be developed. First

off, the robot’s end-effector is going to be replaced by a polishing tool and a steel mold is going to

be added to which its surface is where the tests are going to be executed, both in gazebo and in the

real robot. Also, the same environment is shown in Rviz that permits the use of markers which can

be activated to show the areas in the mold that were polished. Figures 6.2a and 6.2b demonstrate

the polishing tool and steel mold in Gazebo and in figures 6.3a and 6.3b both of these models are

represented in Gazebo and Rviz environment, respectively.

(a) Polishing tool in Gazebo. (b) Steel mold in Gazebo.

Figure 6.2: Polishing tool and steel mold in Gazebo.

50

Chapter 6. Polishing Task

(a) Polishing task environment in Gazebo. (b) Polishing task environment in Rviz.

Figure 6.3: Polishing task environment in both simulators.

The controller used in simulation is the impedance control with force sensing (section 4.3.2).

Also, the end-effector’s axis is changed tomatch the tip of the tool. The critical point for the polishing

task is when the tool comes in contact with the surface which is shown in figure 6.4.

Figure 6.4: Polishing tool comes into contact with the steel mold, the critical point of the polishing
task (simulation).

For the polishing task in the simulator the following gains are used:

Table 6.1: Table with the gains used the polishing task in simulation.

DOF K D
px 200 24
py 200 24
pz 200 24
ox 9.5 1.2
oy 9.5 1.2
oz 9.5 1.2

With the gains in 6.1 the results shown in figures 6.5 and 6.6 are obtained. It is important to

recall that the Yaw and Pitch angles are wrapped between [−π,π], while the Roll angle between

[0,2π].

Firstly, it can be seen that the robot’s performance and stability stays very acceptable throughout

the whole process.

In time interval between t = 20s and t = 40s in figure 6.5 it can be seen that the reference in

the Z position is lower than the robot’s position, that’s when the polishing tool is in contact and it

stays this way throughout the experiment. The polishing task is performed in the Y axis, this can

51

Chapter 6. Polishing Task

be seen because its position is going back and forth while the X axis is only used to move to a new

section of the surface in order to continue the polishing. The robot’s orientation stays almost the

same throughout the task, this is important so that the angle of the tool does not change too much

during the process.

Finally, in figure 6.6 to note the sudden changes in the end-effector’s and contact force in the

Y axis during the polishing task which is where it is more relevant.

Figure 6.5: Polishing task pose results (simulation).

0 20 40 60 80

s

-5

-4

-3

-2

-1

0

1

N

End-Effector + contact force in X

Fe
x

0 20 40 60 80

s

-5

0

5

10

N

End-Effector + contact force in Y

Fe
y

0 20 40 60 80

s

-24

-22

-20

-18

-16

-14

-12

N

End-Effector + contact force in Z

Fe
z

Figure 6.6: Polishing task end-effector plus contact force (simulation).

In figure 6.7 it can be seen which area of the mold was actually polished during the task by

recurring to the Rviz visualization markers.

Figure 6.7: Area polished as shown in Rviz.

52

Chapter 6. Polishing Task

6.3 Polishing Task in Real JACO² Robot

A similar setup is going to be made to prove the concept with the real robot. Figures 6.8a and

6.8b contain the real polishing tool and steel mold, respectively, which are going to be used to build

the setup for the polishing task in the real world. In figure 6.9 it is shown the complete setup for the

task.

(a) Polishing tool in the real world. (b) Steel mold in the real world.

Figure 6.8: Polishing tool and steel mold in the real world.

Figure 6.9: Polishing task setup.

Unlike in the simulator, the controller that is used for the polishing task is the ”hybrid” controller

with null-space (section 4.4.1) because it was the one studied that had the best performance and

results (section 5.2.7). Once again, the critical point of the polishing task is when the tool comes

into contact with the surface, that is shown in figure 6.10.

Figure 6.10: Polishing tool comes into contact with the steel mold, the critical point of the polishing
task (robot).

53

Chapter 6. Polishing Task

For the polishing task in the robot the gains that are shown in the following table are used:

Table 6.2: Tables with the gains used for the polishing task in the robot.

(a) Table with gains used for position control.

DOF K D
px 180 10
py 180 10
pz 350 10

(b) Table with gains used for orientation control.

Joint j K1 j Kp j Kd j

1 5 7.5 0
2 5 7.5 0
3 5 7.5 0
4 25 7.5 0
5 25 7.5 0
6 25 7.5 0

With the gains in table 6.2 the results shown in figures 6.11 and 6.12 are obtained. From t = 0s

and t = 10s the robot performs a third degree spline (equation 5.2, with the joint being cartesian

positions instead) to a ready position near the surface where the robot waits for a command to start the

task, depending on the algorithm that is executed. While the robot waits for the operator’s command,

he/she can adjust the surface their own away, which in turn satisfies the philosophy of collaboration

between human and machine.

After t = 10s is when the polishing task initiates, like in the simulator, the Z position reference

is lower than the robot’s current which permits that tool stays in contact with the surface even if

there are movements in the other DOF. The polishing task in performed in the Y axis has shown by

the reference going back and forth with the X axis only changing the sections of the surface to be

polished.

Contrarily to what happened in the simulation, the robot’s orientation does not stay the same

in the robot. This can be problematic because for the polishing task to be well executed, the tool

should not change its angle to much. In the robot, its orientation does not stay the same, even with

this control that tries to completely decouple the position from the orientation control. Still, these

results prove that the concept can work in the real robot.

Just like in the simulator, the force in the Y axis has sudden changes between positive and

negative values signify that it is the axis where the polishing is more relevant, also the change of the

force in the Z axis when the tool comes into contact with the surface. In appendix C there are some

photos of the work developed during this project, including a pick and place environment developed

in Gazebo to test the SpaceMouse manipulation.

54

Chapter 6. Polishing Task

0 20 40 60

s

-0.05

0

0.05

0.1

0.15

0.2

m

X Position

X

X
d

0 20 40 60

s

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

m

Y Position

Y

Y
d

0 20 40 60

s

-0.1

0

0.1

0.2

0.3

0.4

0.5

m

Z Position

Z

Z
d

0 20 40 60

s

0

0.5

1

1.5

2

2.5

3

ra
d

X Orientation

Yaw

Yaw
d

0 20 40 60

s

-4

-3

-2

-1

0

1

2

ra
d

Y Orientation

Pitch

Pitch
d

0 20 40 60

s

0

1

2

3

4

5

6

ra
d

Z Orientation

Roll

Roll
d

Figure 6.11: Polishing task pose results (robot).

0 20 40 60

s

-8

-6

-4

-2

0

2

4

6

N

End-Effector + contact force in X

Fe
x

0 20 40 60

s

-10

-8

-6

-4

-2

0

2

4

N

End-Effector + contact force in Y

Fe
y

0 20 40 60

s

-35

-30

-25

-20

-15

-10

-5

0

5

N

End-Effector + contact force in Z

Fe
z

Figure 6.12: Polishing task end-effector plus contact force (robot).

55

Chapter 7. Conclusions

Despite difficulties found throughout this work, themain objectives were achievedwith average

to good results. The following topics show some remarks about the work developed:

• The results in the Gazebo simulator permitted the test of the various controls before being

tested on the robot, giving a general idea of the robot’s behavior when subjected to the control. That

way there was little trouble in damaging the robot when testing;

• The results in the real robot are very promising and show that by making more effort and

spending more time many controls can be developed for a variety of applications;

• The algorithm developed makes it possible for operators to use the robot to fully polish a

surface and then just use the given movements for the robot to replicate them in its entirety. That

way, the operators only have to execute the polishing task once, for each surface, and then the robot

can safely do the work for as many molds as they want;

• The polishing task results in the Gazebo simulator prove that the concept can be applied with

telemanipulation, while the results in the real robot still need more work specially in the part of fixing

its orientation so that the tool’s angle stays the same throughout the task.

• Finally, as the experimental results in the robot went on, it was found that the robot was only

getting the computed values at a rate of approximately 50 Hz which is about half of the control

cycle loop rate, which means that the robot was skipping some computed values. That problem was

mitigated by removing some unneeded API functions from the file kinova_arm which is found in

the kinova_driver package and the rate got to approximately to 100 Hz but sometimes it still drops

too low, at about 60 Hz.

7.1 Future Work

Many different works and experiments can come from this work, so presented next are some

future works that can come from this one:

• The controls implemented, although with average to good results, should be more explored

and also implement new ones that could benefit the robot’s performance;

• The algorithm for the polishing task could be modified so that the robot could execute the

polishing task by only knowing the object’s shape recurring to its CAD file;

• The inclusion of a camera near the tool can be a good way for the operator to execute the

polishing task and can also be used for the robot to execute a better task;

57

Chapter 7. Conclusions

• An extensive study should be made about the force that can be applied to the polishing tool

before it breaks since it is important for an operator to know the full extent that the tool can go before

breaking;

• Change the telemanipulation peripheral to one that includes an haptic sensor so that the op-

erator is capable of feeling the force that is being applied to the surface by the tool;

• Development of a Graphical User Interface (GUI) with a database for various different sur-

faces and molds where the operator can choose which one the user wants and then the robot executes

the task.

58

Bibliography

[1] B. Chen, J. Qi, and X. Hu. Polishing trajectory planning method based on the geometry and

physics. 2016 IEEE International Conference on Information and Automation (ICIA), pages

1461–1466, 2016. doi: 10.1109/ICInfA.2016.7832049.

[2] M. J. Tsai, Jou-Lung Chang, and Jian-Feng Haung. Development of an automatic mold polish-

ing system. IEEE Transactions on Automation Science and Engineering, 2(4):393–397, 2005.

doi: 10.1109/TASE.2005.853723.

[3] R. Asaga, S. Yamato, and Y. Kakinuma. Analysis of tool posture control method on curved

surface using polishing machine with 5-axis serial-parallel mechanism. IECON 2017 - 43rd

Annual Conference of the IEEE Industrial Electronics Society, pages 2979–2984, 2017. doi:

10.1109/IECON.2017.8216503.

[4] J. E. Speich and M. Goldfarb. An implementation of loop-shaping compensation for

multidegree-of-freedom macro-microscaled telemanipulation. IEEE Transactions on Control

Systems Technology, 13(3):459–464, 2005. doi: 10.1109/TCST.2004.839576.

[5] Kinova Robotics. Kinova ultra lightweight robotic arm webpage.

https://www.kinovarobotics.com/en/products/robotic-arm-series/

ultra-lightweight-robotic-arm, 2018.

[6] Kinova Robotics. Gripper kg-3 webpage. https://www.kinovarobotics.com/en/

products/gripper-series/gripper-kg-3, 2018.

[7] Kinova Robotics. KINOVA Ultra lightweight robotic arm 6 DOF - Specifications, 2018.

[8] Kinova Robotics. Kinova controllers webpage. https://www.kinovarobotics.com/en/

accessories/controllers, 2018.

[9] Kinova Robotics. KINOVA JACO Prosthetic robotic arm - User Guide, 2018.

[10] Miguel Pereira Mendes. Computed torque-control of the kinova jaco² arm. Master’s thesis,

University of Coimbra, 2017.

[11] Hélio José Batista Ochoa. Compliant control of the kinova robot for surface polishing. Master’s

thesis, University of Coimbra, 2018.

[12] Kinova Robotics. KINOVA Actuator Series KA-75+ KA-58 - Specifications, 2018.

59

https://www.kinovarobotics.com/en/products/robotic-arm-series/ultra-lightweight-robotic-arm
https://www.kinovarobotics.com/en/products/robotic-arm-series/ultra-lightweight-robotic-arm
https://www.kinovarobotics.com/en/products/gripper-series/gripper-kg-3
https://www.kinovarobotics.com/en/products/gripper-series/gripper-kg-3
https://www.kinovarobotics.com/en/accessories/controllers
https://www.kinovarobotics.com/en/accessories/controllers

Bibliography

[13] Kinova Robotics. Kinova sdk webpage. https://drive.google.com/file/d/17_

jLW5EWX9j3aY3NGiBps7r77U2L64S_/view, 2018.

[14] Kinova Robotics. Kinova-ros github webpage. https://github.com/Kinovarobotics/

kinova-ros, 2018.

[15] Kinova Robotics. Gazebo for kinova robots github webpage. https://github.com/

Kinovarobotics/kinova-ros/wiki/Gazebo, 2017.

[16] Gazebo. Gazebo: Tutorial: Ros control. http://gazebosim.org/tutorials/?tut=ros_

control, 2014.

[17] 3Dconnexion. Spacemouse compact webpage. https://www.3dconnexion.com/

spacemouse_compact/en/, 2018.

[18] ROS. Spacenav_node package webpage. http://wiki.ros.org/spacenav_node, 2017.

[19] Rui Cortesão. Medical robotics, 2016.

[20] Luís Santos and Rui Cortesão. Joint space torque control with task space posture reference

for robotic-assisted tele-echography. 2012 IEEE RO-MAN: The 21st IEEE International Sym-

posium on Robot and Human Interactive Communication, 2012.

[21] Luís Santos and Rui Cortesão. Computed-torque control for robotic-assisted tele-echography

based on perceived stiffness estimation. IEEE Transactions On Automation Science And En-

gineering, Vol. 15, No. 3, July 2018, 2018.

60

https://drive.google.com/file/d/17_jLW5EWX9j3aY3NGiBps7r77U2L64S_/view
https://drive.google.com/file/d/17_jLW5EWX9j3aY3NGiBps7r77U2L64S_/view
https://github.com/Kinovarobotics/kinova-ros
https://github.com/Kinovarobotics/kinova-ros
https://github.com/Kinovarobotics/kinova-ros/wiki/Gazebo
https://github.com/Kinovarobotics/kinova-ros/wiki/Gazebo
http://gazebosim.org/tutorials/?tut=ros_control
http://gazebosim.org/tutorials/?tut=ros_control
https://www.3dconnexion.com/spacemouse_compact/en/
https://www.3dconnexion.com/spacemouse_compact/en/
http://wiki.ros.org/spacenav_node

Appendices

A Kinova JACO² Specifications

61

TM Registered trademarks of Kinova inc.
© 2018 Kinova inc. All rights reserved.

+1 514-277-3777 kinovarobotics.com    

GENERAL

NO	GRIPPER	 2	FINGERS	(KG-2)	 3	FINGERS	(KG-3)

Total weight 4.4 kg 5.0 kg 5.2 kg
Payload capabilities Mid-range continuous 2.6 kg 1.8 kg 1.6 kg

Full-reach peak/temporary 2.2 kg 1.5 kg 1.3 kg

Materials Links Carbon fiber
Actuators Aluminum

Maximum reach 90 cm
Joint range after start-up (sotware limitation) ±27.7 turns
Maximum linear arm speed 20 cm/s
Power supply voltage 18 to 29 VDC, 24 VDC nominal
Peak power 100 W
Average power Operating mode 25 W

Standby mode 5 W
Communication protocol RS-485
Communication cables 20 pins flat flex cable
Expansion pins 2 (on communication bus)

Water resistance IPX2
Operating temperature -10 °C to 40 °C

CONTROLLER

Ports Joystick 1 Mbps Canbus
Power supply 18 to 29 VDC, 24 VDC nominal
USB 2.0 (API) 12 Mbps
Ethernet (API) 100 Mbps

Control system frequency High level (API) 100 Hz
Low level (API) Up to 500 Hz

CPU 360 MHz
SDK APIs High and low level

Compatibility Windows, Linux Ubuntu & ROS
Port USB 2.0, Ethernet
Programming languages C++

Control Force, cartesian & angular

SPECIFICATIONS

Actuators #1, #2 & #3 KA-75+
Actuators #4, #5 & #6 KA-58

KINOVA™

Ultra lightweight
robotic arm

6 DOF

Tech Specs

U
LW

S-R
A

-JA
C

-6D
-SP-IN

T-EN

201804-1.2

Appendices

B Kinova JACO² Actuators and Controller Specifications

63

Ø58 mm, 3.6 Nm nominal, 7.7 Nm peak
Brushless DC motor, ratio 110 Harmonic Drive™

Ø74.5 mm, 12.0 Nm nominal, 37 Nm peak
Brushless DC motor, ratio 160 Harmonic Drive™

GEARED MOTOR (WITH 24V SUPPLY)

 KA-75+ KA-58

No load speed 12.2 rpm 20.3 rpm
Nominal torque 12.0 Nm 3.6 Nm
Nominal speed 9.4 rpm 15.0 rpm
Peak torque (software limitation) 30.5 Nm 6.8 Nm
Max motor efficiency 83% 81%
Max gearing efficiency 76% 69%
Torque gradient 13.8 Nm/A 7.8 Nm/A
Backdriving torque 1.7 to 5.2 Nm 0.8 to 7 Nm

SENSORS

 KA-75+ KA-58

Position sensor resolution 3,686,400/turn 2,534,400/turn
Motion before position indexation ±2.25° ±3.27°

Absolute position sensor precision at start-up (before indexation) ±1.5°
Torque sensor precision (room temperature) ±0.4 Nm
Torque sensor temperature drift (-10 °C to 40 °C) ±0.3 Nm
Torque sensor cross-axis torque sensitivity 0% to 8%
Accelerometers range and bandwidth (x, y and z) ±3g, 50 Hz
Motor current sensor range and bandwidth ±5 A, 140 Hz
Temperature sensor range and precision -40 °C to 125 °C, ±2 °C

MECHANICAL

 KA-75+ KA-58

Weight 570 g 357 g
Motion range after start-up (software limitation) ±27.7 turns ±27.7 turns
Max axial, radial and flexion moment loads (static) 7.6 kN, 3.0 kN, 87 Nm 4.7 kN, 1.8 kN, 39 Nm
Dynamic axial, radial and flexion moment loads ratings
of the main bearing 3.5 kN, 1.5 kN, 41 Nm 2.1 kN, 0.8 kN, 17 Nm

THERMAL

Operating temperature range -10 °C to 40 °C
Max frame temperature (overheat protection triggered) 75 °C

 KA-75+ KA-58

Thermal time constant of the winding 22 s 16 s
Thermal time constant of the frame 39 min. 35 min.

KINOVA™ Actuator series

KA-75+ KA-58

KA-58KA-75+

Tech Specs

TM Registered trademarks of Kinova inc.
© 2018 Kinova inc. All rights reserved.

+1 514-277-3777 kinovarobotics.com    

ELECTRONIC

Power supply voltage 18 to 29 VDC, 24 VDC nominal
Communication protocol RS-485
Communication cables 20 pins flat flex cable
Expansion pins 2 (on communication bus)

CONTROLLER

Ports Joystick 1 Mbps Canbus
Power supply 18 to 29 VDC
USB 2.0 (API) 12 Mbps
Ethernet (API) 100 Mbps

Control system frequency High level (API) 100 Hz
Low level (API) Up to 500 Hz

CPU 360 MHz
SDK APIs High and low level

Compatibility Windows, Linux Ubuntu & ROS
Port USB 2.0, Ethernet
Programming languages C++

Control Force, cartesian & angular

REFERENCE

A

Absolute position sensor precision at start-up
(before indexation):
The absolute position measurement precision at
power-up, before an index is detected (see Motion
before indexation below).

Accelerometers range and bandwidth (x, y
and z):
The range and bandwidth of the tri-axis accelerom-
eter with signal conditioning.

B

Backdriving torque:
The load torque that causes an unpowered unit to
backdrive. This value varies depending on of factors
that include temperature and wear.

C

Communication cables:
The cables used to link each actuator in a daisy
chain.

Communication protocol:
The communication protocol used between the
actuators and controller.

D

Dynamic axial, radial and flexion moment loads
ratings of the main bearing:
The actuator main bearing dynamic loads capacity.

E

Expansion pins (on communication bus):
The pins that are available to transmit signals
through all the actuators to the controller with the
output on the joystick port. 24V and ground pins
are also available.

M

Max axial, radial and flexion moment loads (static):
The actuator main bearing static loads capacity.

Max frame temperature (overheat protection
triggered):
The temperature measured at the frame at which
a progressive current limitation starts to be applied
by software. Torque loads above nominal should
always be brief; this protection cannot guarantee
the integrity of the motor under loads significantly
higher than the nominal.

Max gearing efficiency:
An indicator of the gearing performance at input
speed 500 rpm and temperature 30 °C. The effi-
ciency of the gearing depends on factors including
speed, load and temperature.

Max motor efficiency:
An indicator of the motor performance at its ideal
operation torque and velocity. The efficiency of the
motor depends on factors including friction and
Joule power losses.

Motion before position indexation:
The max required output motion (after power-
up) before an index is detected. When this preci-
sion index is detected, the position information is
updated to the precise value.

Motion range after start-up
(software limitation):
The motion range (software limitation).

Motor current sensor range and bandwidth:
The motor current measurement range and
bandwidth.

N

No load speed:
The maximum speed (no payload, 24 VDC power
supply).

Nominal speed:
The maximum speed under Nominal torque load.

Nominal torque:
The continuous torque output that causes the
actuator frame to heat up to Max frame temper-
ature (tested at 23 °C with the actuator enclosed
in a plastic shell). Loadings above this value should
always be brief.

O

Operating temperature range:
Actuator safe operating temperature range.

P

Peak torque (software limited):
The maximum torque output (in the direction of
motion) with the motor current limited by software.

Position sensor resolution:
The position sensing resolution measured at the
input and calculated for the output.

Power supply voltage:
The rated range of power supply tension of the
actuator drive.

T

Temperature sensor range and precision:
The range and precision of the temperature sensor
mounted on the actuator chassis.

Thermal time constant of the frame:
An indicator of the thermal response time (first
order system approximation) of the frame. When a
torque load is applied, the winding heats first and
then start to heat the more massive frame (which
has thus a slower response).

Thermal time constant of the winding:
An indicator of the thermal response time (first
order system approximation) of the winding.

Torque gradient:
The ratio of torque output to motor current calcu-
lated without gearing losses. The actual torque
applied on the load depends on motion direction
and gearing efficiency.

Torque sensor cross-axis torque sensitivity:
The effect of torque applied perpendicularly to
the actuator axis on the measured torque (torque
measure bias / cross-axis torque).

Torque sensor precision (room temperature):
The precision of the sensor at 23 °C under a pure
moment loads.

Torque sensor temperature drift (-10 °C to
40 °C):
The maximum effect of temperature on torque
measurement precision.

W

Weight:
The weight of the actuator module.

A
S-A

C
T-KA

58-KA
75-SP-IN

T-EN
 201804-1.2

Appendices

C Photo Gallery

66

	Acknowledgments
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Background
	Objectives
	Contributions
	Organization

	State of the Art: The Kinova Jaco² Robotic Arm
	System Overview
	Communication Modes
	Kinova-ROS
	JACO² Kinematics and Dynamics

	State of the Art: The 3Dconnexion SpaceMouse Compact
	System Overview
	Communication Modes
	Motion Control

	Control Architectures
	Computed torque control in the joint space
	Computed torque control in the task space
	Impedance Control
	Impedance Control without force sensing and inertia shaping
	Impedance Control with force sensing
	Impedance Control with force sensing for redundant robots

	Hybrid Controllers
	Hybrid Controller with Null-Space

	Experimental Results
	Gazebo Simulator
	Computed torque control in the joint space (simulation)
	Computed torque control in the task space (simulation)
	Impedance Control without force sensing and without inertia shaping (simulation)
	Impedance Control with force sensing (simulation)
	Impedance Control with force sensing for redundant robots (simulation)
	Hybrid Controller (simulation)
	Hybrid Controller with Null-Space (simulation)

	Real Kinova JACO² Robot
	Computed torque control in the joint space (robot)
	Computed torque control in the task space (robot)
	Impedance Control without force sensing and without inertia shaping (robot)
	Impedance Control with force sensing (robot)
	Impedance Control with force sensing for redundant robots (robot)
	Hybrid Controller (robot)
	Hybrid Controller with Null-Space (robot)

	Polishing Task
	Algorithm
	Polishing Task in Gazebo Simulator
	Polishing Task in Real JACO² Robot

	Conclusions
	Future Work

	Bibliography
	Appendices
	Kinova JACO² Specifications
	Kinova JACO² Actuators and Controller Specifications
	Photo Gallery

