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Resumo

A indústria farmacêutica é uma das atividades mais inovadoras e regulamentadas,

sendo a distribuição dos componentes terapêuticos no corpo humano, com a quali-

dade desejada, um dos grandes focos da investigação nesta área. Para garantir que a

qualidade final dos medicamentos seja uma preocupação em todas as etapas do seu

desenvolvimento, as entidades reguladoras têm incentivado as empresas a adotarem

prinćıpios de qualidade pelo design, o que promove mais conhecimento sobre o pro-

cesso e permite reduzir os recursos necessários, o que, em última instância, torna os

cuidados de saúde mais acesśıveis para todos.

Neste trabalho, são analisados dados experimentais do processo de fabrico de um

medicamento genérico complexo, a ser atualmente desenvolvido pela Bluepharma

- Indústria Farmacêutica. Estes produtos são conhecidos por implicarem um es-

forço adicional, pois o seu desenvolvimento envolve tarefas mais complicadas do que

os medicamentos convencionais. Além disso, neste problema, pretende-se que seis

respostas diferentes, discretas e cont́ınuas, sejam otimizadas simultaneamente.

Um novo método para identificar efeitos ativos em experiências de triagem é pro-

posto, envolvendo o uso de regressão passo-a-passo com a implementação de heredi-

tariedade de efeitos, modelos lineares generalizados e validação através do critério de

informação de Akaike corrigido. Esta abordagem é mais simples do que as sugeridas

na literatura com objectivos semelhantes e apresenta resultados muito melhores do

que as técnicas padrão utilizadas normalmente na indústria farmacêutica.

Além disso, alguns outros procedimentos são realizados para extrair informações

importantes dos dados dispońıveis, como o estudo dos melhores ńıveis de cada fator

para cada resposta, otimização de várias respostas simultaneamente, análise dos

fatores não controlados e a criação de modelos preditivos. A combinação de todos

estes métodos permite uma maior compreensão do processo de desenvolvimento e

fornece novas técnicas auxiliares, ajudando a atingir as carateŕısticas pretendidas

do produto muito mais eficientemente.
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Resumo

Palavras chave: qualidade farmacêutica pelo design, medicamentos genéricos com-

plexos, experiências de triagem, hereditariedade de efeitos, otimização simultânea

de múltiplas respostas
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Abstract

The pharmaceutical industry is one of the most innovative and regulated activities,

and the delivery of the therapeutic components with the desired quality is one of the

biggest concerns in pharma R&D. In order to ensure that the final quality of the drug

products is a focus in all stages of the development, the regulatory agencies have

encouraged the companies to adopt quality by design principles, which promotes

more knowledge about the process and allows to reduce the required resources, and

ultimately to make the healthcare more affordable for everyone.

In this work, it is analyzed the experimental data of the production process of a

complex generic drug, being currently developed by Bluepharma - Indústria Far-

macêutica. These products are known for implying an additional effort as their

development comprises harder tasks compared to conventional drugs. Besides, in

this problem, six different responses, both discrete and continuous ones, are expected

to be simultaneously optimized.

A new method to identify active effects in screening experiments is proposed, in-

volving the use of stepwise regression with the enforcement of effects heredity, gen-

eralized linear models and corrected Akaike information criterion validation. This

approach is simpler than the same-purpose ones suggested in the literature and it

was found to perform much better than the standard techniques executed usually

in the pharmaceutical industry.

Besides, some other procedures are considered to retrieve important information

from the available data, such as the study of the best levels of each factor for each re-

sponse, optimization of multiple responses simultaneously, analysis of non-controlled

factors, and creation of predictive models. The combination of all these methods

provides a better understanding of the development process and make available new

auxiliary techniques, aiding to achieve the targets much more efficiently.

Keywords: pharmaceutical quality by design, complex generic drug products,

screening experiments, effects heredity, multiple response optimization
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1

Introduction

1.1 Contextualization

The innovation in pharmaceutical industry is driven mainly by two areas of research

and development (R&D): drug discovery and drug delivery. The first one is focused

on new active pharmaceutical ingredients (APIs), i.e. new chemical entities respon-

sible for the therapeutic effect. However, in order to ensure that it will reach the

target site, the drug product contains along with the API, the excipients, phar-

maceutically inert substances that contribute to achieve the attributes included in

the target product profile, such as, pharmacokinetic profile, stability, patient com-

pliance, etc. Drug delivery R&D aims at designing and formulating better drug

delivery systems able to improve the safety/efficacy ratio of drug products.

The quality of the final drug product is a major focus of drug development in ei-

ther case. In 2002, the Food and Drug Administration (FDA), the United States

federal agency responsible for drug approval, launched a new initiative, Pharma-

ceutical Current Good Manufacturing Practices (cGMPs) for the 21st century: A

Risk-Based Approach [1], whose purpose was to modernize the pharmaceutical de-

velopment and manufacturing in order to improve the quality of pharmaceutical

products. This document, along with some others released by the FDA [2, 3] and

by the International Conference on Harmonisation [4–6], represented a shift in the

pharmaceutical industry philosophy. This new ideology is consistent with the quality

by design (QbD) concept that was first developed by Dr. Joseph M. Juran [7].

The QbD is a systematic approach that moves from the more standard experience-

based methodology to a more scientific and risk-based approach. These principles

promote then a higher understanding of the product and manufacturing process by

the industry from the start, building quality into the product instead of testing it

(quality by testing) [8]. Therefore, QbD became a way to aid both the pharmaceu-

tical companies and the regulatory authorities, assuring drug product quality and
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facilitating the process of approval.

One of the main objectives of QbD is to find the subspace of input parameters (the

variables that experimenters can manipulate) which had proven to guarantee that

the final goals are met, the so called design space (DS) [6]. Basically, the DS defines

the ranges of critical material attributes and process parameters that ensure that

the final drug product meets consistently the desired quality requirements.

1.2 Motivation

Movements within a submitted and approved design space do not require a new reg-

ulatory approval, only changes beyond it need a regulatory post-approval [6], as they

imply deviations that have not been proven before to maintain the output quality.

Some insights about the vital importance of a good definition of the DS during the

product’s process development in pharmaceutical QbD can then be considered.

It greatly facilitates the management of process operations and leads to the increase

of knowledge about the product and the process. This results in a more efficient

exploitation of the available resources and in reducing the costs associated with

quality failures and post-approval changes, during the development of the product.

Consequently, a lower product’s price for the final consumer is expected, which

leads to more affordable healthcare and make the products more competitive than

the existing ones – a particularly important factor in specific pharmaceutical market

segments such as the generic drug products one.

The development of more recent analytical equipments led to an increase in the

amount of recorded data, providing more opportunities to extract useful information

from it. The pharmaceutical industry has followed the trend to look for the available

data in order to improve its processes R&D, especially since that quality by design

was considered a reference methodology. The understanding of the relations between

the input and output variables has receiving increasing attention.

Even so, the pharmaceutical industry is still in its early stages of applying data

analysis techniques to support decisions when compared to other industries. Most

of the times, the companies do not have a specific team with the appropriate data

science background and rely on statistical software to perform simple statistical

analysis. However, sometimes more advanced methods are necessary to deal with

more complex formulations and manufacturing processes. Besides, few studies have

been published exploring novel methodologies in this area.
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Therefore, the informative potential of the pharmaceutical data remains vastly un-

explored, which offers a good opportunity for the study and application of machine

learning and advanced statistics for the improvement of pharma processes.

1.3 Objectives and Contributions

In this work, the general goal is to explore the available data from the R&D of a

generic complex drug and retrieve important information that can aid the devel-

opment of the process, improving the way how data is analyzed in pharmaceutical

industry. The work development resulted from a step-by-step progress, i.e. some

new objectives and challenges were being addressed as some others were being com-

pleted, contributing for that the discussions with the Bluepharma experimenters.

The initial goal was to identify important effects when the response is binary. In

fact, binary responses are rarely considered in this type of problems. Once a suitable

method was obtained, it was verified that it could be easily adapted to handle

continuous outcomes as well, and so it was extended to those responses and compared

with the traditional pharmaceutical approach that was already been performed by

the experimenters.

The identification of active effects, which corresponds to find the critical parameters

required to achieve the target responses, is indeed the main focus of the develop-

ment stage where data come from. However, some other possible objectives were

addressed, such as: evaluate non-controlled factors; build scale-independent models;

establish a relationship between intermediary responses and the final ones, design-

ing control points in each operation unit of the process, i.e. inline process control;

create models to guide future experiments, which includes the definition of the best

levels of the factors for each response and for all the responses simultaneously, and

the prediction of the outcome values of future trial combinations. Some of these

tasks were successfully completed, while others were not accomplished because the

approach is not possible at all or because the amount of data is too limited.

This work resulted in several contributions, both for the real-world problem being

discussed in this document and for other similar contexts. Regarding the experi-

ments analysis case, the main contribution is:

• Development of a new procedure to identify active effects in screening exper-

iments, which incorporates a modified stepwise regression to enforce effects

heredity, the generalized linear model and the corrected Akaike information

criterion validation. It has the advantages that it can be used for both discrete
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and continuous problems and for several different data structures. Further-

more, it is a very interpretable method which can be implemented and used

in a software of common practice by the experimenters, with little effort.

For the specific problem of the development of this complex generic drug product

by Bluepharma, the main contributions are:

• The use of the aforementioned method, which allows identifying important

interactions (taking their main effects in consideration) while the standard

pharmaceutical method (used by the experimenters) only allowed to identify

main effects. Besides, it also allows to use different response distributions;

• Getting better and more suitable models than the ones obtained using the

traditional approaches;

• The recommendation of the best levels of each one of the selected factors, for

each response, and the suggestion of a combination of values that theoretically

ensures that all the target responses are achieved simultaneously;

• The study of the non-controlled factors and identification of a possible impor-

tant variable, which allowed the experimenters to find new paths to meet the

project goals more consistently;

• The creation of predictive models to aid future experiments.

In general, all those achievements contributed to a larger knowledge about the pro-

cess and they are expected to guide the development to accomplish more effectively

the target product quality.

1.4 Document Structure

The document is organized to provide a sequential contextualization and learning

of the problem. In the chapter 2 - Background Concepts, several basic insights

are introduced, such as the implementation of quality by design methodology in the

pharmaceutical industry and some elemental knowledge about screening experimen-

tal design. It constitutes a very useful compendium for non-experimenters. The

chapter 3 - State of the Art, presents an extensive review about several method-

ologies proposed in the literature to identify active effects in screening experiments,

from more standard and simple approaches to more novel and complex ones.

In the chapter 4 - Problem Definition and Dataset, some useful information

about the specific case study is provided and the initial analysis of the problem is
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performed. The chapter 5 - Methodologies, defines the pipeline used to achieve

the stated objectives and a further description of all approaches is contemplated, in

order to better understand how and why they were implemented. It constitutes also

a very useful compendium for non-data scientists.

In the chapter 6 - Results and Discussion, the work results are shown and

interpreted and the whole process is discussed, contemplating achievements, lim-

itations and also a comparison between the proposed procedure and the standard

one. Finally, the chapter 7 - Conclusions, addresses some final remarks and some

considerations about future work.
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Background Concepts

In order to better understand the problem being studied and the methods further

used, it is useful to get some insights about the quality by design (QbD) approach

in the pharmaceutical industry and in the generic drug products pharma segment.

In a QbD methodology, data being analyzed results normally from experimental

trials. So, some knowledge about experimentation and design of experiments more

specifically is considered as well.

Many investigators in machine learning area only deal with observational data, so it

is important to focus on some central aspects of experimental data. Experimentation

is one of the most used activities in several industries. It allows to investigate how

purposeful changes in the settings of input variables in a system affect the output,

helping to get more and useful information of the system and how it can be improved.

These systems are mostly processes; nowadays, experiments are commonly used to

process modelling and its optimization.

2.1 Pharmaceutical Quality by Design

In the pharmaceutical area, the QbD approach starts with the identification of the

target product profile (TPP), beginning then with the final goals in mind. The

features of TPP may include description, indications and contraindications, dosage

and route of administration forms and adverse reactions, among others [9]. The TPP

is then a prospective summary of the medicinal product attributes for the intended

commercial product based on all customers and end users needs. It must also meet

the demands of payers and government agencies. Therefore, it constitutes a guide

for product development.

Based on it, a quality target product profile (QTPP) is established, where are also

identified the potential critical quality attributes (CQAs) of a drug product.
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A CQA is a physical, chemical or biological property or characteristic that should

have values between an appropriate limit, range or distribution in order to assure

that the desired quality defined by the QTPP is met [6]. The quality attributes of

a drug product can be drug content, content uniformity, dissolution ratio, stability,

etc. They can be extremely relevant to achieve the target quality (becoming a CQA)

or not (non-CQA). Their criticality is evaluated through a risk assessment, based

on the severity of something goes wrong, i.e. how harmful for the patient is if the

product is outside of the acceptable range for that attribute, and the uncertainty

level of the knowledge [10,11].

Once the CQAs are initially identified, the objective is to set up the group of input

parameters that have an impact on the desired quality attributes. These parame-

ters may be related with components of the formulation, critical material attributes

(CMAs), or process related, critical process parameters (CPPs). The CPPs refers

to parameters whose variability impacts the CQA and then should be controlled or

monitored to ensure that the target quality is achieved consistently [6]. Contrary to

CQAs and CPPs, CMAs are not defined by the International Conference on Har-

monisation. However they have been extensively used with a close definition to the

CQAs (physical, chemical or biological property or characteristic that should place

between an appropriate limit, range or distribution to ensure the desired quality)

but they are referred to input materials such as the drug substance or other ex-

cipients that are part of drug product composition [10]. The process parameters

may include features like blending, speed, temperature and pressure; the material

attributes can be, for example, particle size distribution, polymer grades, specific

surface area.

Again, it is necessary a methodology to determine if these material and process

attributes are critical or not. This is normally a data-driven approach, performed

through the analysis of experimental trials. In order to detect the complexities

and interactions when several input parameters are varied across its defined ranges,

multivariate techniques are usually applied to determine which ones are critical ones

and how they impact the CQAs.

A pharmaceutical manufacturing process is often composed by a series of unit op-

erations, which are discrete activities that comprise physical and/or chemical trans-

formations such as mixing, drying, filtration, evaporation or dilution. The output of

each unit operation becomes the input of the next one and the analysis of the process

can be performed on each individual unit operation or on the combination of all unit

operations of the manufacturing process. In fact, a given CQA may be a quality
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attribute of a specific unit operation (intermediate CQA) or may be a quality at-

tribute of the final medicinal product, resulting then from the joint-transformations

of all units [10]. The relationship between input and output variables is shown in

figure 2.1 for a single unit operation.

Pharmaceutical
Unit

Operation
CMAs

CPPs

CQA

CQA = f ( CPP1, CPP2, … , CMA1, CMA2, … )

Figure 2.1: Relationship between CPP, CMA and CQA. Adapted from Yu et
al. [10].

This relationship between input and output variables is known as the knowledge

space, which is expected to provide useful information about the design space (DS).

The DS establish then the multidimensional combination and interaction of input

variables (CMAs and CPPs) that should be respected to ensure that the CQAs have

values within the target limits [6].

However, the companies are encouraged by the regulatory agencies to work in a

narrower region inside the DS, which is a more optimized space around the target

- the control space. This region is also referred to as the normal operating range,

while the DS corresponds to the proven acceptable range. The relationship between

knowledge, design and control spaces is represented in figure 2.2.

design space

control
space

knowledge spacecontinuous improvement
without regulatory approval

normal operating range

Figure 2.2: Relationship between pharmaceutical quality by design spaces.
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2.2 Generic Drug Products

A generic drug product, as defined by FDA [12], is a pharmaceutical product that

is therapeutically equivalent to an already approved medicinal product, referred to

as the reference listed drug (RLD) or branded product. It is expected that the

clinical effect and the safety profile to be the equivalent when they are adminis-

tered to patients under the same conditions. In order to be considered as such, the

generic product must present two characteristics: pharmaceutical equivalence and

bioequivalence.

A product is pharmaceutically equivalent to the branded one if it is identical in terms

of dosage form, route of administration and active pharmaceutical ingredient (API)

[12]; basically, the TPP should be the same for both products. The bioequivalence

refers to the absence of a significant difference in the rate and extent of absorption

of the API of both generic and RLD products, under the same conditions [12], as

demonstrated in one or more clinical trials.

Once the performance is expected to be equivalent in terms of TPP, the CQAs of

the generic to be produced will then be the ones of the reference drug. However,

some characteristics such as manufacturing process, formulation or excipient may

be different from the original ones. Thus, in this type of drug products, the main

focus is on obtaining a set of critical material and process parameters, and define a

design space from it.

A special case of generic drug products are the complex ones. As it name suggests,

it is a generic drug that has some complex step during its development (may be a

complex API, formulation, dosage form or route of delivery, for example), such as

defined by FDA [13]. The development of these products tends then to be more

technically and scientifically challenging and resources-consuming than in typical

generic products, which leads to a much higher development risk. Positively, the

complex generic drug products tend to offer the opportunity to gain competitive

advantages.

2.3 Basic Concepts of Experiments

In experiments, the studied inputs variables are called factors. These variables are

controlled by the experimenter and they are expected to be independent variables.

The output variables are called responses (or outcomes) and they correspond to

the variables that are measured from the change of factor values and so they are
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dependent variables.

In order to study the effect of a given factor on the response variables, two or

more values of the factor are usually used. These values are called factor levels or

settings. Each factor can be quantitative (continuous range of values) or qualitative

(discrete number of values). On the one hand, there is more flexibility in choosing

the (number of) levels of quantitative factors than qualitative ones. On the other

hand, the levels of quantitative factor must be chosen with caution: they should have

values far enough so an effect can be detected but they should belong to a range

considered as acceptable due to chemical and physical properties [14]. Besides, when

choosing the levels of a factor, other constraints such as the associated cost may also

need to be taken into consideration [14]. All these intervals should then be chosen

to assure the feasibility of the experimental trials.

From the independent variables that are studied in a given experiment, only some

of them present a statistically significant impact on the system response. These are

referred to as active factors [15]. When evaluating the effects of a factor, we may

consider the effects of both main factors and interactions. The main effect is then

the effect of one of the independent variables on the dependent one, without taking

into consideration the effects of the remaining factors [15].

However, sometimes the impact of a change in the levels of one of the factors on

the response depends on the value of another independent variable (main factors

may influence each other) [16]. In fact, this joint effect is different from the sum of

the individual effects of those factors (the whole is greater than the sum of its parts

[attributed to Aristotle]). Often this type of effects is worth to study and it is said to

be an interaction effect. An interaction is modeled by the simple product of two or

more main factors. For example, an interaction that results from the joint effect of

two variables is called as a two-factor interaction. Similarly, an interaction resulting

from the combined effect of three variables is a three-factor interaction and so on.

The two-factor interactions can be visually inspected through the so called inter-

action plots. In these graphs, both variables (that compose the interaction) are

plotted simultaneously and it is analyzed how the relationship between each factor

and the response varies when the level of the other factor is changed. Examples of

interactions plots are displayed in figure 2.3 for arbitrary interactions AB, resulting

from factors A and B.
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Figure 2.3: Different types of interaction plots.

The presence or absence of an interaction effect is advised by the parallelism degree of

the two blue lines represented in figure 2.3: parallel lines suggest that no interaction

occurs, and the more the non-parallel the lines are, the stronger the interaction is

expected to be [16].

For figure 2.3, in the plot a) the lines are parallel and so there is no interaction. For

the remaining plots, the non-parallel lines suggest the presence of an interaction: a

small one in b), a moderated one in c) and a strong one in d); indeed, for the most

important interactions, the lines are expected to cross each other. For the plots

where an interaction exists, mainly the bottom ones, it is possible to observe that

the value of the response for a given factor depends on the other factor. However,

these assumptions should always be confirmed with statistical analysis.

2.4 Design of Experiments

The design of experiments (DoE), also referred to as experimental design, is a

planned set of experiments which aim is to obtain the maximum amount of informa-

tion in the smallest number of experimental runs possible. The general concept is to

change all the relevant independent variables, the factors, simultaneously through a
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group of trials in order to cover the area of interest [17]. The collected data is then

interpreted using mathematical models and statistical methods, allowing to retrieve

meaningful and valid conclusions from it.

The DoE is a more effective approach than the old one-factor-at-a-time: it can be

used to study interactions effects and it requires fewer experimental trials to obtain

the same level of statistical power [18]. In fact, DoE has been called the most

cost-effective method for optimization [19].

Two stages are usually performed when analyzing the relevant factors for a given re-

sponse in experimental designs: screening and response surface methodology (RSM).

The screening experiments are performed at the beginning of a DoE analysis. The

objective is to test a large number of prospective variables and get information of

which ones of those factors are the most important ones, i.e. the ones that are

more likely to have a significant impact in the response. After it, with the selected

factors, a second type of experiments, the RSM one, is typically used to optimize

the performance of the process and/or the composition of the product [10,20].

2.4.1 Screening Designs

In a screening design, for each one of the variables considered in the DoE, a maxi-

mum and a minimum values are attributed, based on pre-knowledge or constraints.

Therefore, in these type of designs, usually only two levels are considered (for con-

tinuous variables), the high level, coded as +1, and the low level, coded as -1 [16].

For RSM designs, more than two levels are typically used [21]. An experimental

design can be seen as a table where each row corresponds to one experimental trial

(commonly designed as a sample in machine learning) and each column corresponds

to one experimental factor (feature in machine learning). The values in the columns

indicate the levels (high or low) of the factors.

Often, center points are also included. These points correspond to trials where all

the factors are at their mean level (coded as 0) and they can be used to check

the linearity (detect curvatures) of the process in a simple way [19]. It is also

recommended to perform some replications, i.e. repeat some trials in order to get

higher statistical power [14, 19]; however, this is not possible many times due to

resources limitation.

When addressing experimental designs, two types can be contemplated: the full

factorial design (FFD) and the reduced ones. In a FFD, all the possible combinations

of factor levels are performed. The table 2.1 represents an example of a full factorial
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table with 3 factors and 2 center points. For a two-level (high and low) FFD, if there

are k factors, the total number of experiments is 2k; so, the number of necessary

trials grows exponentially with the increase of the number of variables. Thus, this

may not be feasible when we have a significant number of variables because it would

consume a lot of resources, and it has been considered that the cost of screening

runs must be at most 25% of the DoE’s total budget [19].

In fact, in these situations, a reduced design may be a more appropriate option.

Here, a lower number of experimental trials are performed. The trials are chosen

to maximize the variation (amount of different information) with a more economic

design. These designs allow then a good compromise between cost and information.

Figure 2.4 shows an example of both full factorial and reduced factorial designs for

an experiment with 3 factors. The corresponding FFD table is represented in table

2.1, where the trial number corresponds to the same vertex number in the figure.

Factor A

F
a

c
to

r
C5

1 8

6

7

4

2

9

Factor A
F

a
c

to
r

C5

8

7

9

Figure 2.4: Full factorial (left) and fractional factorial (right) designs with 3 fac-
tors. Adapted from Elazazy [20].
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Table 2.1: Example of a full factorial design with 3 factors and 2 center points.

Run Factor A Factor B Factor C Pattern
1 -1 -1 -1 —
2 -1 1 1 -++
3 0 0 0 000
4 1 -1 1 +-+
5 -1 -1 1 –+
6 1 1 -1 ++-
7 1 1 1 +++
8 1 -1 -1 +–
9 -1 1 -1 -+-
10 0 0 0 000

2.4.1.1 Reduced Factorial Designs

The more traditional reduced designs are the regular and the non-regular orthogonal

two-level fractional factorial designs. More recently, a new category, the optimal

designs, has been proposed. The orthogonal designs have the desired properties

that the estimated effects are totally independent of each other. However, a specific

number of trials is required, specifically a power of 2 for regular and a multiple of

4 for non-regular orthogonal designs. On the other side, the optimal design can be

used for any number of runs [22].

Besides, for traditional designs, a high resolution may be required. The resolution

refers to the number of terms which may be estimated in the regression equation

without aliasing: the higher the resolution, the more terms can be evaluated [21]. If

the resolution is not high enough, some effects will be totally confounded (or aliased)

with each other. To be completelly confounded basically means that the correlation

between two effects is equal to 1 and so it is not possible to distinguish those effects.

For instance, if we want to estimate the main effects and the two-factor interac-

tions, neglecting higher-order interactions (which is the most common procedure,

as explained in the next section about effect principles), a resolution of level V or

higher is necessary in order to those effects not be confounded [21,23]. For a process

with a significant number of factors, to consider that resolution type means that

a lot of experimental trials must be performed, which may not be possible due to

budget constraints as stated before: for example, 10 and 15 factors would require a

minimum of 128 and 256 runs, respectively [21].

The optimal experimental designs are non-orthogonal and computer-generated de-

signs. Once they are non-orthogonal, the estimates of the effects will be partially
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correlated, but that correlation is small: the effects will never be totally confounded

even when second-order interactions are considered and so it is possible to estimate

these effects if they are present; the detection of important interactions compensates

the variance inflation that is introduced by the non-orthogonality [22].

The optimal designs are, regardless of the number of runs, the ones that maximize

a given function of the information matrix, accordingly to some criterion, which is

typically the D-criterion or the I-criterion [22].

2.5 Effects Principles: Hierarchy, Sparsity and

Heredity

When studying factorial experiments, three fundamental principles are commonly

addressed: hierarchy, sparsity and heredity. They are very relevant for a successful

screening and they were well described and discussed by Wu and Hamada [14].

The first principle, the effects hierarchy, suggests that lower-order effects are more

likely to be important than higher-order ones, i.e. the main effects tend to be the

largest ones on average, then the two-factor interactions, then three-factor interac-

tions, and so on.

The second principle, the effect sparsity, states that only a small number of effects

are expected to be important, and it is sometimes referred to as the Pareto principle

in experimental design, based on the separation of the vital few from the trivial many

concept developed by the already mentioned Dr. Joseph Juran.

The last principle, the effects heredity, is related to the relationship between an

interaction and its parent factors. More specifically, it indicates that an interaction

can be active only if one (weak heredity) or both (strong heredity) main factors are

also active. For example, assuming a given interaction AB: according to the weak

heredity principle, at least one of its parents (factor A or factor B) should be active

in order the interaction to be active as well; following the strong heredity principle,

both factors A and B must be active. This principle has the advantage that a model

is more easily interpretable when the main factors are considered (interactions are

more difficult to interpret, and higher the order harder is that task).

The hierarchy and heredity principles are visually represented in figure 2.5, where

the effects of an arbitrary example are shown. In the same figure, the box size

of each effect is equivalent to its importance. It is possible to observe that more

significant main effects lead to more meaningful interactions (heredity) and that, on
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average, the lower the order, the bigger the impact of the effects (hierarchy).

A CB

main effects

two-order interactions

AB

ABC

AC BC

three-order interactions

Figure 2.5: Visual representation of the hierarchy and heredity principles. Adapted
from Li et al. [15].

Some studies, which took into account a significant amount of different datasets

from several engineering fields, were performed in order to analyze empirically these

principles, such as Li et al. [15] (113 datasets) and Bergquist et al. [24] (22 datasets)

and they had shown an empirical evidence for the support of the aformentioned

ideas. Even it is not guaranteed that these principles are true for any particular

situation, their assumption seems to be reasonable.

These principles can be especially important in screening experiments. Once they are

used to analyze the impact of a large number of factors with a small number of runs,

they are based on the sparsity and hierarchy principles. Besides, it is considered

that the three principles may improve the power of the analysis of non-replicated

experiments (which are common in the screening phase) and that effects heredity can

be advantageous when we investigate data from complex aliasing patterns, allowing

to identify possible important interactions without be necessary to resort to the

high-resolution designs [24].

17



18



3

State of the Art

Several methodologies have been proposed to identify active effects in screening

experiments, from some decades ago. In this chapter, an extensive review of such

techniques is contemplated, from the more standard to the recent ones. A special

case of screening experiments is the supersaturated design, which is an experimental

design where the number of runs is smaller than the number of main effects. This

type of design was not referenced in the previous chapter because it is not the

situation of the problem being studied: there are more trials than factors. However, a

large amount of studies about the detection of important effects in screening stages is

related to supersaturated designs, and so those researches are also reviewed because

they present approaches whose principles may also be applied to the remaining

screening designs. In the end, some applications related to the pharmaceutical

industry will also be presented. In order to have some chronological insights, the

years of the proposed methodologies are also indicated.

3.1 Analysis of Variance - ANOVA

The standard method for the detection of significant effects in factorial experiments

is the analysis of variance, typically referred to as ANOVA. ANOVA is designed

to evaluate a given continuous response based on one or more categorical predictor

variables. Therefore, it is the primordial technique to experimental studies because

these usually compare levels of treatment (categorical independent variables).

In fact, ANOVA is being extensively used to analyze factorial experiments in several

industries. Some case studies include synthesis of lactulose from whey permeate [25],

improvement of wire bonding quality [26], development of a nanomanufacturing

system for recycling of welding rod residuals [27] or reduction of energy consumption

[28]. In the last example, a least square model was used, which is equivalent to an

ANOVA approach when two-level independent variables are used. If the predictors
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have more than two categories, least square estimation and ANOVA can still be

equivalent, if dummy variables are created.

ANOVA can be used to estimate the main effects and all the interaction effects, but

replication is required for that. For unreplicated experiments, there are no degrees

of freedom to estimate the error, which implies that there is no residual sum of

squares and thus it is not possible to compute the ANOVA F-test [14]. In these

cases, two procedures can be followed: 1) to consider only some interactions; 2) to

remove unimportant factors.

In order to overcome this inconvenient, several methods were proposed to identify

active effects in designs without replication. Hamada and Balakrishnan [29] made

a very interesting review and comparison of several studies performed before 1998,

more specifically the studies carried by Daniel (1959) [30], Holms and Berrettoni

(1969) [31], Zahn (1975) [32], Seheult and Tukey (1982) [33], Box and Meyer (1986)

[34], Johnson and Tukey (1987) [35], Voss (1988) [36], Benski (1989) [37], Lenth

(1989) [38], Bissell (1989) [39], Berk and Picard (1991) [40], Bissell (1992) [41], Le

and Zamar (1992) [42], Juan and Pena (1992) [43], Loh (1992) [44], Dong (1993) [45],

Schneider, Kasperksi and Weissfeld (1993) [46], and Venter and Steel (1996) [47].

From all those studies, only the ones of Daniel, Box and Meyer, and Lenth will

be further discussed because they are the ones which receive more attention in the

literature, the remaining ones are barely referenced.

3.2 Normal and Half-Normal Probability Plots

One of the most commonly used methods to aid ANOVA in the detection of im-

portant effects is a graphical technique, the probability plot of effects, proposed by

Daniel (1959) [30]. This approach consists of plotting the factor estimates (that

result from a least squares estimation) on a normal probability plot (NPP) or half-

normal probability plot (HNPP): the order values of the estimates are plotted against

their corresponding coordinates on the normal or the half-normal probability scales,

respectively [14]. The basic idea is that the inactive effects fall along a straight line

while the significant ones fall off the same line.

The big difference between both is that in the HNPP approach, the values repre-

sented are the absolute effects. This is considered as advantageous comparing with

NPP, because the active effects appear in the upper right corner, overcoming the

visually misleading that sometimes the normal plots causes [14].

20



3. State of the Art

Figure 3.1 shows an example of the analysis of important effects through the obser-

vation of the half-normal probability plot. In the example, 3 factors (A, B and C)

are considered and all the main effects and interactions are analyzed on the HNPP.

It is possible to observe that 3 effects (B, C and BC) fall apart of the line and thus

they are suggested to be active effects.

Two-Level Factorial Design ◾ 49

Notice that the probability values are exactly the same as for the previ-
ous table on taste. In fact, these values apply to any three-factor, two-level 
design, if you successfully perform all 8 runs and gather the response data.

Figure 3.5 shows the resulting plot (computer generated) for bullets, with 
all effects labeled so you can see how it’s constructed. For example, the 
smallest effects, A and AC, which each have an absolute value of 0.05, are 
plotted at 7.1 and 21.4% probability. (When effects are equal, the order is 
arbitrary.) Next comes effect ABC at 35.7%, and so on.

Table 3.7 Values to plot on half-normal plot 
for bullets

Point Effect
Absolute 

Value of Effect
Cumulative 
Probability

1 A |−0.05| 7.14%

2 AC |−0.05| 21.43%

3 ABC |0.15| 35.71%

4 AB |−0.25| 50.00%

5 BC |0.80| 64.29%

6 B |−1.10| 78.57%

7 C |−1.80| 92.86%
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Figure 3.5 Half-normal plot of effects for bullets (all effects labeled).

  

Figure 3.1: Example of half-normal probability plot analysis. Adapted from An-
derson et al. [48].

The limitation of this method is that it only allows to visually judge the importance

of the effects, no statistical values are addressed. So, typically, once the important

effects are visually suggested, the remaining ones are removed and a statistical anal-

ysis is performed. For example, for the unreplicated problem, the removal of the

effects that are no detected through the HNPP analysis turns the problem into a

replicated one and therefore a simple ANOVA test is used to obtain the significance

values of those effects.

Once they rely on the analysis of plots, these types of approaches may depend

heavily on the skills of the people who are interpreting it.

The case study of shrinkage porosity in permanent mold casting is one example of

the application of this method in the industry [49].

3.3 Lenth’s Method

The method proposed by Lenth (1989) [38] is said to be simple, without too many

assumptions, and to perform generally well [14,15]. It is based on the computation
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of a pseudo standard error (PSE) given by

PSE = 1.5× median
|βi|<2.50·s0

|βi| , s0 = 1.5×median |βi| (3.1)

where βi corresponds to the estimated effects and s0 is a standard error parameter.

For each effect, a t-like statistic is obtained with

tPSE,i =
βi

PSE
(3.2)

and the effect βi is significant if the |tPSE,i| value is bigger than a critical value [14].

3.4 Bayesian Models

In bayesian methodologies, the probability of a given effect to be active, referred

to as posterior probability, depends on the prior probability, which is computed

through pre-knowledge.

Box and Meyer (1986) [34] were the first ones to propose a bayesian approach to

analyze experimental designs, more specifically fractional factorial ones. In their

work, two different parameters were used: α, which is the probability of an effect to

be declared as active, and k, which is computed as the ratio of the mean squared

significant effets over the mean squared inert effects. The authors computed these

values through the analysis of 10 examples of fractional factorial examples.

The α corresponds to the prior probability. In the work of Box and Meyer, the α

was set to 0.2 for all the effects, but a different value can be attributed to each effect,

based on prior information. A prior probability of 0.2 means that the probability of

an effect to be active is 20%, which is in according to the effect sparsity principle.

In fact, this concept was first presented in this work.

The remaining effect principles, the hierarchy and heredity ones, were not incor-

porated in the algorithm of Box and Meyer, but they were introduced in bayesian

procedures by Chipman (1996) [50]. In this work, the posterior probabilities were

obtained using the stochastic search variable selection (SSVS) algorithm of George

and McCulloch [51], which was modified to use hierarchical priors. The hierarchical

priors account for the dependence between related predictors, i.e. the prior proba-

bility of the two-way (and higher-order) interactions depends on if its parents are

active or not. More specifically, the probability that an interaction AB is active
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P (δAB = 1 | δA,δB) may take four different values:

P (δAB = 1 | δA, δB) =


p00 if {δA, δB} = {0,0}
p01 if {δA, δB} = {0,1}
p10 if {δA, δB} = {1,0}
p11 if {δA, δB} = {1,1}

(3.3)

where δA and δB are equal to 1 if they are active or equal to 0 if they are inert.

The conditional probabilities (p00, p01, p10, p11) are thus (0, 0, 0, p) for the strong

heredity, and (0, p1, p1, p2) for the weak heredity principles. The authors also

suggested the relaxed versions of both strong and weak heredity which attributes a

small probability instead of a zero one.

In this paper, the prior probabilty for a main effects was set to 0.5 (bigger than

in the study of Box and Meyer), and the interaction effect conditional probabilities

were set to: (0.00, 0.00, 0.00, 0.50) for the strong heredity; (0.00, 0.01, 0.01, 0.50)

for the relaxed strong heredity; (0.00, 0.25, 0.25, 0.50) for the weak heredity; (0.01,

0.25, 0.25, 0.50) for the relaxed weak heredity.

Chipman, Hamada and Wu (1997) [52] followed the relaxed weak heredity approach

of Chipman but used a prior probability of 0.25 for main effects and conditional

probabilities of (0.01, 0.10, 0.10, 0.25) for the interactions. They evaluated their

proposed procedure using fractional factorial and supersaturated designs, between

others.

Beattie, Fong and Lin (2002) [53] proposed a two-stage Bayesian model selection

strategy where they first applied the SVSS approach and then employed the intrinsic

Bayes factor method of Berger and Pericchi [54], to further select active effects from

the ones selected in the first stage.

Bergquist, Vanhatalo and Nordenvaad (2011) [24] proposed a three-steps method

where the sparsity, hierarchy, and heredity principles are successively added, by ad-

justing the prior probabilities. The goal was to compare the posterior probabilities

for each effect in each one of those three rounds. The hierarchy and heredity prin-

ciples were considered following the ideas of Chipman, but they were incorporated

into the less parameterized method of Box and Meyer; in fact, in the algorithms of

Chipman, several parameters need to be specified.

More specifically: in the first round, a prior of 0.2 was attributed to all effects

(sparsity); in the second round, it was considered a prior of 0.5 for main effects,
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0.1 for two-factor interactions and 0.01 for higher-order interactions (sparsity and

hierarchy); in the third round, it was given a prior of 0.5 for main effects, 0.3 for

two-factor interactions with strong heredity, 0.02 for two-factor interactions with

weak or no heredity and 0.01 for higher-order interactions (sparsity, hierarchy and

heredity).

The authors studied their approach in full and fractional factorial designs with a

resolution of at least IV. In each round, a factor was considered active if the posterior

probability was higher than 0.5.

The Bayesian approaches present a very interesting way to incorporate the effect

principles, but several model parameter must be specified before the analysis. Fur-

thermore, the use of Bayesian methods by practitioners is limited because usually

they are not available in the computational packages [24].

3.5 All-Subsets and Stepwise Approaches

If the number of effects (both main effects and interactions) is larger than the num-

ber of trials, no least squares estimation can be computed and so a variable selection

procedure is required. All-subset and stepwise-version selection techniques are com-

monly used procedures.

Hamada and Wu (1992) [55] proposed a 3-steps procedure which takes into account

the effects heredity principle to analyze fractional factorial designs. First, they

applied a standard technique on the main effects, such as ANOVA or half-normal

plot, to identify active first-order effects. Second, they expanded the model including

all the two-factor interactions whose at least one term is a significant main effect,

and applied a forward stepwise regression analysis on that larger model. Third, they

created a new model composed by the significant effects identified in the previous

step and all the remaining main effects, and they did again the forward stepwise

selection. They repeated steps 2 and 3 until the selected model stops changing.

Lin (1993) [56] and Westfall, Young and Lin (1998) [57] used forward stepwise re-

gression procedures to select important effects in supersaturated designs. Abraham,

Chipman and Vijayan (1999) [58] proposed the all-subsets regression as a better ap-

proach (in comparison to the forward one) to select active effects in supersaturated

experiments.

In the all-subsets selection, all the combinations of variables are tested, and thus it

is a very time-consuming method, which may be infeasible when a large number of
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independent variables are being considered. So, in those cases, forward stepwise se-

lection or a combination of forward and backward stepwise regression, known simply

as the stepwise regression, are typically preferable. Pinault (1988) [59] used step-

wise regression to analyze orthogonal designs and Lu and Wu (2004) [60] applied a

modified stepwise selection combined with staged dimensionality reduction to study

supersaturated designs.

3.6 Penalized Least Squares Methods

A more recent and alternative approach is the use of penalized least squares methods,

which shrink the estimates to zero and so they can be used as variable selection

procedures. The most well-known one is the least absolute shrinkage and selection

operator, or LASSO.

Xing, Wan and Zhu (2013) [61] proposed a LASSO procedure for supersaturated

problems where the value of the penalty was chosen based on a self-voting using

ordinary least squares estimation. Mohammed (2018) [62] proposed a robust LASSO

(Huber loss function with LASSO) to analyze factorial experiments whose response

follows an epsilon skew Laplace distribution.

Yuan, Joseph and Lin (2007) [63] proposed a modified least angle regression (LARS)

[64], which is very close to the LASSO. The method was modified by the authors

to incorporate the heredity principle, both in the weak and strong versions; for the

weak procedure, the main effect chosen to enter the model along with the interaction

was the one with the highest predictive score. The methodology was used in a

supersaturated design example and the authors showed that the enforce of effects

heredity leads to a better performance and it may decrease the ambiguity of the

aliased effects when compared to the ordinary LARS. The authors also highlighted

that even the LARS has a close connection with the LASSO, it is not clear how

their approach can be adapted to the LASSO algorithm.

Choi, Li and Zhu (2010) [65] proposed a LASSO variation that automatically en-

forces the heredity constraint, where an interaction term only is considered if the

corresponding main terms are already included in the model (strong heredity): this

implies that if a given main effect is shrunk to zero, the corresponding interactions

will be set to zero as well. The authors applied the algorithm to a design of exper-

iments problem in a simulation study and it showed better performance than the

standard LASSO.

Noguchi, Ojima and Yasui (2012) [66] proposed a procedure similar to the previous
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one, but they suggested the use of weak heredity instead of the strong one: for

a given interaction if at least one of corresponding main effects has an estimate

different of zero, then the interaction should have as well. The authors analyzed

the performance of their algorithm using data from a fractional factorial design

and a supersaturated design and they showed to obtain better results than LASSO

in its ordinary and strong heredity versions, and than the more standard forward

selection. However, the authors emphasized that both weak and strong versions of

the heredity principle should be considered because there is no a-priori reason to

choose one of them.

Jang and Cook (2017) [67] proposed the use of the LASSO plot as a graphical

tool for detection and ranking of the important effects of an unreplicated factorial

experiment. The authors compared it with the standard half-normal plots and

the LASSO approach showed to be more robust to different variance-covariance

structures and to the presence of outliers.

Although the LASSO is the most well-known and used penalized least squares

method for variable selection, other penalty types can be considered, such as the

smoothly clipped absolute deviation (SCAD) and the Dantzig selector.

Li and Lin (2012) [68] extended the concept of the nonconcave penalized likelihood

variable selection, proposed by Fan and Li [69], and they suggested to screen active

effects in supersaturated designs using a SCAD penalty. They compared it then

with the aforementioned bayesian approaches of Chipman et al. and Beattie et

al., and the SCAD procedure showed to perform better; however, only one dataset

example was used to establish the comparison. The same authors presented then,

in another article [70], a two-stages procedure where they first applied a stepwise

variable selection to the full model and next applied the SCAD method to the

selected variables.

Phoa, Pan and Xu (2009) [71] suggested the use of Dantzig selector, proposed by

Candes and Tao [72], to search for active effects in supersaturated designs. They

recommended identifying the important effects through the analysis of the profile

plots created varying the regularization parameter. They also proposed an auto-

matic variable selection procedure by choosing the tuning parameter based on a

model selection criterion: a modified version of Akaike information criterion for

supersaturated design.
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3.7 Some Other Procedures

Drosou and Koukouvinos (2019) [73] proposed a support vector machine with recur-

sive feature elimination algorithm adapted to analyze supersaturated designs with

continuous response. The magnitude of the weight of the variables is considered to

iteratively remove non-important factors, i.e. the variables with a small predictive

effect.

Zhang, Zhang and Liu (2009) [74] proposed a partial least squares selection method

for detect active effects in supersaturated designs, based on the variable importance

in projection of each factor.

Wolters and Bingham (2011) [75] proposed a simulated annealing search algorithm

coupled with the corresponding visualization methods to analyze non-regular screen-

ing experiments. Their method is intentionally non-convergent in order to generate

a large set of good models, instead of a single best solution; however, they also sug-

gested the use of an entropy criterion for an automated selection, i.e. to choose the

single best model. The procedure is based on sparsity principle and it also respects

the heredity one, dropping variables if they violate the weak version of this principle.

3.8 Information Criteria for Binary Responses

Although some of the aforementioned studies state that generalized linear models

can be used in their work, which means not-normally distributed responses can be

considered, none of them, for the best of our knowledge, use examples with Bernoulli

distributed responses, i.e. binary ones.

Balakrishnan, Koukouvinos and Parpoula (2011) [76] proposed a method for search-

ing active effects in supersaturated designs for a binary response, using the sym-

metrical uncertainty (SU) measure combined with an information gain measure.

They first performed an information theoretical approach based on entropy (Shan-

non, Rényi, Tsallis and Havrda–Charvát entropies were tested) and selected the half

variables with the highest information gain values. Then, they computed the SU

between each variable and the response and selected the ones whose SU value was

at least as large as the SU median of all values. The features selected in both proce-

dures were then considered as significant ones. The proposed algorithm was studied

using several supersaturated examples and only main effects were considered.

Drosou, Koukouvinos and Lappa (2017) [77] proposed a two-step approach to detect

active effects in two-level supersaturated designs for a response with Bernoulli dis-
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tribution. In the first phase, they computed the mutual information (MI) between

each independent variable and the response and they retained the factors whose MI

value was greater than a given threshold; based on simulations, the authors found

the geometric mean of the MI values as the best threshold. In the second phase, the

so-called Tabular Cusum was determined: for the features selected in the previous

step, the maximum likelihood estimation and the corresponding coefficients βI of

each factor were computed and taking those βI ’s as input, the statistics C+
I and C−I

were calculated; if any of those two statistics exceeded a given decision interval then

the I-factor was considered as significant.

The authors applied simulations for several models and for several supersaturated

designs. However, only main effects were analyzed. They also compared their al-

gorithm with other three variables selection methods: LASSO, conditional mutual

information maximization (CMIM) [78], and the minimal redundancy maximal rel-

evance (mRMR) [79]. The CMIM technique is based on the MI between the factors

and the output class, but conditional to the features already picked. The mRMR al-

gorithm looks for the maximization of the MI between the features and the response

and as well the minimization of the MI between the selected features. The perfor-

mance of the methods was analyzed through the geometric mean values between

type I and type II errors and the algorithm proposed by Drosou et al. outperformed

the remaining methods.

3.9 Some Pharmaceutical Case Studies

Rege, Gawel and Kou (2002) [80] used statistical experimental design to identify the

critical input variables that affect the content uniformity and loading of active agent

coated on tablets in an Accela-Cota machine. A fractional factorial screening design

with 16 runs (3 replicates each combination) was conducted to study the influence

of 6 different independent variables in 2 continuous responses. The effects of the

input parameters were analyzed by a linear model and the ones with a p-value lower

than 0.05 were considered as significant.

Zahel et al. (2017) [81] presented a workflow for the criticality assessment in a

biopharmaceutical process. One stage of that workflow is the identification of the

design of experiments’ factors that have an impact on the critical quality attributes of

the process. This procedure is performed using stepwise regression, where variables

with a p-value lower than 0.05 enter in the model and the ones with a p-value larger

than 0.1 are removed from the model.
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3.10 Final Remarks

As stated by Choi et al. [65], the literature on experimental design has a lot of

research about the construction of efficient designs, but do not invest the same

attention about methodologies to analyze such designs, and the more traditional

analysis techniques still dominate. In fact, even several methodologies have been

reviewed in this chapter, they are mostly applied in simulations or benchmark ex-

amples. When we look for industry case studies, the standard methods, such as the

ANOVA and least squares estimations or at most the stepwise procedures, are the

ones which are still applied.

It is possible to observe that the same happens in the pharmaceutical industry. The

adoption of quality by design (QbD) principles provided a way to develop new data

analysis strategies. However, the lack of works in the literature about the screening

phase suggests that few studies have been performed in this area. On the other side,

the further steps of pharma QbD (optimization after detection of important effects)

seems to have that focus, being easy to find application of several new methodologies,

including some more complex ones such as artificial neural networks.

Besides, it was verified that a lot of pharmaceutical case studies state that they

selected the critical process parameters and critical material attributes based on a

given software analysis but they do not specify which methods were used, which gives

the idea that the experimenters relied on the software and not on the techniques

itself.

On the one hand, the identification of important effects in screening experiments

must result from the analysis of very interpretable models, which may explain why

standard approaches prevail. One the other hand, the detection of active effects is

often not so hard to complete. In these cases, the traditional methods are suitable

because they provide an easy way to perform the objectives. However, in more

complex problems, such the one being studied in this document, a different analysis

may be required.

Relatively to effects heredity enforcement, it is possible to conclude that some ap-

proaches were already proposed to deal with it, but they considered it in different

ways. While some methods first select the interaction and then along with it the

corresponding main effects are also included in the model, other procedures only

select the interactions if the corresponding main effects are already in the model;

the majority of the examples are related to the last group. So, some algorithm looks

first for the interactions while other ones look first for the main effects, which present
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two different ways to incorporate this principle in the models. In this document,

the first methodology will be referred to as back-enforcement of heredity and the

second one will be referred to as fore-enforcement of heredity.
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Problem Definition and Dataset

The available data is property of Bluepharma - Indústria Farmacêutica, and it is

related to a complex generic drug product being currently developed by the company.

The manufacturing process of the drug product is divided into several stages (unit

operations), namely 5, and in each one of them some variables, material attributes or

process parameters, can be manipulated. The material attributes will be considered

as formulation parameters in this document from now on. The response variables,

i.e. the critical quality attributes (CQAs), are recorded at the end of the final stage.

Data comprises 32 experimental trials, from which 24 were design of experiment

(DoE) runs and the remaining 8 were validation runs. For the identification of

the active effects, only the DoE trials were considered once they correspond to a

planned screening experimental set which was conceived to retrieve the maximum

information possible. The validation trials contained information about very specific

combinations whose some values were outside of the ranges used in the DoE, and

so analyzing them together with the original runs would lead to misleading results.

These extra trials were used for further analysis of the problem.

4.1 Variables of the Process
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Figure 4.1: Manufacturing process of the complex generic drug product.
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Figure 4.1 shows a process chart representing the unit operations of the entire man-

ufacturing process of the product being developed.

The input variables are given by a two letters and two numbers code. The letters

give information about the factor type, namely FP if it is a formulation variable or

PP if it is a process parameter. The first number (1 to 5) gives information about

which of the 5 phases of the process each factor is related with. So, for example,

the factor FP-1.1 is a formulation parameter that is manipulable in the first stage

of the process. The last character is just a number to create an unique reference for

each one of the parameters from the same stage. The factor FP-1.1 is a categorical

(binary) one while the remaining ones are all continuous.

The output variables of the process are the product CQAs. There are 2 discrete

responses (more specifically binary ones), represented by CQA-D, and 4 continuous

responses, represented by CQA-C. The table 4.1 shows some important information

about each response. It presents the target for each CQA and the acceptable interval

for the continuous responses, based on the reference product.

Table 4.1: Information about the critical quality attributes.

Response Type Target Acceptable interval

CQA-D.1 Binary Positive class -

CQA-D.2 Binary Positive class -

CQA-C.1 Continuous Match interval [24 - 31]

CQA-C.2 Continuous Minimize [0 - 0.6]

CQA-C.3 Continuous Minimize [0 - 1.6]

CQA-C.4 Continuous Maximize [95 - 105] %

In addition to the factors and the CQAs, some other variables are recorded in each

unit operation, uncontrolled factors (UF in the process chart) or intermediary re-

sponses (IR in the process chart). The integer before UF or IR in figure 4.1 represents

the number of uncontrolled factors or intermediary responses, respectively, in that

stage.

The uncontrolled factors correspond to independent variables which values were not

manipulated during the experiments, i.e. they were not considered in the experi-

mental design, but even so they were measured. A non-controlled factor may be

either a variable that can not be controlled at all or a variable that is not expected

to impact the responses.
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The intermediary responses are dependent variables measured between each unit

operation. Their values are not considered critical to ensure that the final product

has the desired quality but they can be related to the final CQAs, and therefore

they can be used to predict or at least have an idea about the final outcomes in

early stages of the process, i.e. to be used for inline process control.

4.2 Preliminary Considerations About the Dataset

The 24 screening trials were performed based on an I-optimal design of experiments.

As a reference, in order to complete a full factorial experiment, 8192 runs would be

necessary, and for an orthogonal fractional factorial experiment with resolution V,

256 would be required [21], which is extremely costly and impossible to perform in

practice.

Although screening designs are mainly used for finding large main effects, interac-

tions are common, especially two-factor ones, as discussed before. If one or more

interactions are important and are not included in the model, their effect may bias

the estimates of the main effects, and so we not only not detect the true effects but

also the estimated ones will be influenced by those interactions.

The optimal DoE was generated considering an a-prior model containing only the

main effects. If interactions were considered when building that design, a very large

number of trials would be required, which was not feasible. However, as explained

in Background Concepts chapter, when using an optimal design there is no total

confounding and then it is possible to detect interaction effects even that some

correlation is introduced.

Following the effect hierarchy principle, it is most likely main effects and two-factor

interactions to be important. Besides, three-factor and higher-order interactions are

rare and 24 trials for 13 factors may not be suitable to detect them. So, we may

focus on the low-order effects, say main effects and two-factor interactions, assuming

that higher-order interactions are negligible.

The number of two-way interactions is given by

number of factors× (number of factors− 1)

2
(4.1)

which corresponds to 78 interactions when the number of factors is 13. So, in the

total, 91 predictors were considered.
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The nominal factor is binary and so it was coded as 0 or 1. Primarily, all the

factors were standardized and then each interaction was created multiplying the

standardized values of the corresponding parent factors.

4.3 Preliminary Analysis of the Responses Data

For the binary CQAs, the classes distribution is: for the response CQA-D.1, there

are 11 positive outcomes and 13 negatives ones; for the response CQA-D.2, there

are 12 positive outcomes and 12 negative ones. This means that the classes are

perfectly balanced for one response and almost balanced for the other one.

For the continuous CQAs, in order to get more insights about the distribution of

the data points, it was displayed the boxplots of the responses’ values, which are

represented in figures 4.2 to 4.5. For each response, the top sub-figure represents

the boxplot built from the DoE data and its outliers, and the bottom sub-figure is

a zoomed version of the latter one containing the boxplot and all the experimental

values that fall inside it. The points corresponding to validation trials are also

represented.

The blue points are related to the DoE trials (the ones used to built the boxplot).

The validation trials were also plotted to study the intra-variability of the process,

i.e. these runs correspond to sets of replicates which allows studying the variance of

the outcome when the same combination of factors values is repeated. Additionally,

the target interval for each response is also represented to get an idea of how close

or far the performed trials are from the desired outcome.

0 200 400 600 800 1000

Response CQA-C.1

0 20 40 60 80 100 120
Trials values

Target interval
DoE trials
Validation trials 1
Validation trial 2
Validation trials 3

Figure 4.2: Trials’ values for the response CQA-C.1.
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Figure 4.3: Trials’ values for the response CQA-C.2.
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Figure 4.4: Trials’ values for the response CQA-C.3.
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Figure 4.5: Trials’ values for the response CQA-C.4.
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For the response CQA-C.4, figure 4.5, two of the runs had output values outside of

the physically possible range, i.e. higher than 105%. Furthermore, it is possible to

observe that there is a very substantial intra-variability for the replicates. In fact, it

was confirmed by the experimenters that the quantification method of this response

is not the best one and thus the uncertainty associated with the measured values

and the consequent models is high. Therefore, the analysis of this response will not

be considered in this document.

For the remaining responses, figures 4.2-4.4, it is possible to inspect that the boxplots

are the typical ones of populations with a right-skewed distribution, i.e. the right

whisker is much longer than the left one and the median value moves towards the

left side of the box.
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The main goal of this work is the identification of active effects, the factors which

have an important impact in each one of the responses (critical quality attributes),

and therefore correspond to the critical input parameters. Once interactions are

often important, both main effects and interaction effects were considered. With

the addition of second-order interactions, the number of total independent variables

exceeds the number of experimental trials. So, a feature selection procedure is

required.

Additionally, a further analysis of the problem was also performed to get some

more useful insights and make available techniques that can be used in the future,

which includes the optimization of several responses simultaneously, the study of

non-controlled factors and the creation of predictive models.

This chapter is divided into three parts. The section 5.1 presents an overview of

the followed pipeline and a summarize of the used methods. The section 5.2 gives

a further theoretical explanation of those methods, which aids to understand the

reasons why each approach was followed and how it is incorporated in the pipeline.

The section 5.3 presents the software used in this work.

5.1 Proposed Pipeline

5.1.1 Identification of Active Effects

The screening experiments are performed to identifying important effects rather

than for prediction, therefore it is desirable to obtain not only a model with a good

fit but also one with a meaningful interpretation. Besides, the number of trials is

small, so due to some partial aliasing, interactions may dominate over main effects

in data analysis, which is not expected in reality. Thus, the proposed procedure

respect the effect principles, which leads to models that are more interpretable and
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agree more with the theoretical knowledge.

While the effects hierarchy is imposed by considering only main effects and two-

factor interactions, effects heredity must be enforced during the process of model

selection. As stated before, a variable selection approach is necessary. Besides, it is

preferable a method whose relations between main effects and interactions are easy

to model so the enforcement of heredity can be implemented.

Taking these assumptions into consideration, a stepwise regression selection pro-

cedure (composed of both backward and forward steps) with back-enforcement of

heredity was applied. An exhaustive explanation of how the effects heredity was

introduced in stepwise regression in this work will be provided in section 5.2.3. Such

procedure was implemented using the “Pruned Forward Selection” method and the

“Enforce Effect Heredity” option available in JMP Pro [82]. However, to the best

of our knowledge, there are no examples of its application in the literature.

To map the independent variables into the responses, regression-derived methods

were then applied. For the binary outcomes, logistic regression (LR) was considered.

For the continuous responses, as observed in the previous chapter, they have a right-

skewed distribution. Even though ordinary least squares (OLS) - the standard linear

regression approach - can be used for non-normal data, for very skewed distributions

some of the assumptions, such as normally distributed errors and homogeneity of

variance, do not typically hold. So, in these cases, it is often preferable to use

generalized linear models (GLM) that can be applied to other data distributions.

In fact, the LR is a special case of GLM. So, for continuous responses, GLM was

considered. However, the standard OLS was also applied in order to establish some

comparisons.

As validation method, to guide the stepwise regression variable selection and to

select the best models, it was used the corrected Akaike information criterion (AICc)

- lower the AICc, the better the model. However, due to the underlying uncertainties

of models selection, all the models with an AICc difference of less than 2 in relation

to the lowest AICc value were considered, i.e. the ones with

∆AICc = AICc(model)− AICc(minimal) ≤ 2 (5.1)

Burnham and Anderson [83] suggested that there is empirical support for the models

with ∆AICc ≤ 2, i.e. there is no substantial evidence that those models are worse

than the one with lower AICc value. The authors also state that this interval is
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invariant for different scales, so this assumption was used as a rule of thumb.

Figure 5.1 shows the example of the selection path by the stepwise selection, with

the AICc value as the validation method. The model with the minimal value of

AICc is taken as reference and then all the model with an AICc difference lower

than 2 are selected as well.
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Main Effects and Interactions
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 AICc <= 2

Response CQA-C.2

Figure 5.1: Example of the path of stepwise selection of the important effects with
AICc validation, for one of the responses.

From the list of selected models, the final chosen model was the one with higher R2,

when OLS was used, or generalized R2, when LR or GLM was used. This criterion

was considered for two main reasons. First, the model with higher R2 value will

be the one with a better fit from the set of models that are likely to be equally

good accordingly to the AICc criterion. Second, the R2 typically increases when

it is added a variable with some extra importance; in a standard machine learning

problem, the model with lower number of predictors is often preferable, but in this

problem the main goal is to detect active effects, so the main concern is to not miss

any potential active effect, even it is found to not be important in posterior analysis.

In fact, in screening experiments, type II errors (considering an active factor as an

inactive one) are more problematic than type I errors (considering an inactive factor

as active one), so it is better to keep a larger number of factors in a first step, even

if they result in redundant cost in follow-up experiments [57].
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5.1.1.1 Investigation of Distribution of Continuous Responses

Several different distributions can be modeled by the GLM methodology. In order to

evaluate which one is more suitable to the responses data, four positive right-skewed

distributions were fitted to the data: lognormal, exponential, gamma and Weibull.

The fit was performed using maximum likelihood estimation and the goodness of fit

was then evaluated through the Kolmogorov-Smirnov statistical test and the AICc

value.

It can be already disclosed that the lognormal distribution was confirmed to be the

best-fitted one for all continuous reponses. Data with a lognormal distribution or

a close-lognormal one should have a normal or a close-normal distribution when

a log-transform is applied. Therefore, the log10 of the values of those 3 responses

was computed and the normality of the transformed data was evaluated using the

Shapiro-Wilk and D’Agostino-Pearson.

Figure 5.2 shows a schematic representation of the workflow used to identify impor-

tant effects.

Response

Stepwise Regression with Back-
Enforcement of Effects Heredity, 
Generalized Linear Models and

AICc Validation

Binary

Continuous

Fit Continuous Distributions
with Maximum Likelihood

Estimation

AICc Kolmogorov-
Smirnov

evaluate the fit with

Predictors

select best-fitted distribution

Selected all the
Models with Δ AICc ≤ 2

select the one with

higher R² / generalized R²

Best
Model

Figure 5.2: Workflow used for identification of active effects.

5.1.2 Recommended Levels for Important Factors

Once the active effects were identified, it was studied the levels which important

factors should have to achieve the desired response values, through the analysis of

three components: Wald statistical test p-values, parameters estimates and interac-

tion plots.
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For the main effects, the first step was to verify the Wald test result which evaluates

if a given effect is significant or not in the selected model. If the main effect is

significant according to the Wald test, then it recommended level can be analyzed

through its coefficient estimate obtained using the generalized linear model. A

positive coefficient means that the response increases when the higher value of the

factor is used, and it decreases for the lower value. So, in order to maximize the

response, if the coefficient is positive then the high level is suggested, if it is negative

then the low level is recommended. Otherwise, in order to minimize the response,

the opposite happens.

If the main effect is not significant according to the Wald test, it means that the

effect only entered in the model because the factor is a parent of one or more selected

two-factor interactions. In this case, the corresponding interaction plots must be

analyzed.

5.1.3 Multiple Response Optimization

The study of the recommended levels is an individual analysis for each response.

However, five different responses are being considered and it is very likely that those

suggested levels may be contradictory in some situations, e.g. a given factor can

affect different responses in opposite ways (for one of the CQAs a high level may be

recommended and for other CQA a low level may be better).

So, in these cases, a multiresponse optimization procedure is often executed. How-

ever, it is an approach performed on data from more advanced steps of the de-

velopment process specially designed for optimization, typically response surface

methodology experiments, and not in the screening stage. In this work, a multiob-

jective optimization is implemented to be used as a proof of concept of the proposed

procedure.

For that purpose, desirability functions were used: from the regression formulas

obtained previously, an individual desirability (a value in the interval [0,1]) is com-

puted for each response and after that an overall desirability was calculated as the

geometric mean of the individual desirabilities. The goal is then to maximize the

overall desirability and find possible combinations of independent variables’ values

which ensure that all the CQAs targets are met simultaneously.
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5.1.4 Predictive Models

Although the main goal was to detect important effects and then recommend the

best values to achieve the target outcome, it may be advantageous to have models

that can predict (with the best precision possible) the future outcomes of a given

new combination of values. The regression formulas obtained before can be used

exactly for that purpose. In fact, those models were obtained using the AICc value

as validation criterion, which incorporates a way to control both underfitting and

overfitting, and therefore assures they are good generalizations.

However, it is possible to implement other algorithms for prediction than the ones

used for variable selection. For the binary responses, besides the logistic regression,

two other methods were considered: logistic ridge regression (LRR) and support

vector machine (SVM) with a linear kernel. Once the important variables were se-

lected while identifying the important effects and it already includes interactions,

non-linear methods are not necessary. In order to evaluate the predictive ability, a

500 times repeated 10-fold-stratified cross-validation was used as validation proce-

dure, because the application of AICc to SVM is not direct. For the LRR and SVM

methods, the penalization parameter was varied through grid search in the interval

[-6, 6] in the logarithmic scale, i.e. in the interval [2−6, 26], with unitary exponential

steps.

For the continuous responses, at this stage of the process development, instead of

the single mean value of the outcome for a new trial, it is more interesting to know

the interval where the response is expected to fall, i.e. the prediction interval (PI).

However, the PI is traditionally formulated based on the normality assumption of the

errors distribution, which as stated before it is not usually valid for the non-normal

generalized linear models.

As the distribution of the responses is lognormal, the standard approach is to log-

transform the response, compute the PI in the transformed scale and then back-

transform it to the original scale, i.e. if a log10x transformation is applied, then the

back-transformation is 10x. The transformation of the response is not as suitable

as the use of GLMs, even both approaches are close to each other, but there is no

standard way to compute the PI in the GLM approach. A possible method could

be to calculate bootstrapping PIs. However, once we can compute the predicted

mean using both transformation and GLM procedures, it is possible to have an idea

of the differences between the values obtained with each one. Therefore, using that

difference as a reference, we can calculate the PI using the transformation method
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and have a total understanding of the results.

Furthermore, as we are more interested in the prediction intervals, no other methods

as linear ridge regression or support vector regression were considered because they

would only optimize the mean value. Besides, considering the limited available

information and the intrinsic data intra-variability, those methods are not expected

to bring extra useful information at this stage of the process.

5.2 Theoretical Background

5.2.1 Probability Distributions

In tables 5.1 (continuous distributions) and 5.2 (binomial distribution), it is dis-

played information about the probability distributions contemplated in this work.

Table 5.1: Continuous distributions considered in this work.

Distribution Parameters Probability Density Function
Population

Mean

Normal
µ ∈ R (location)
σ > 0 (scale)

f(x | µ,σ2) = 1√
2πσ2

e−
(x−µ)2

2σ2 µ

Lognormal
µ ∈ R (location)
σ > 0 (scale)

f(x | µ,σ2) = 1

x
√

2πσ2
e−

(log(x)−µ)2

2σ2 eµ+σ2

2

Exponential β > 0 (scale) f(x | β) = 1
β
e−

x
β β

Gamma
k > 0 (shape)
θ > 0 (scale)

f(x | k,θ) = 1
Γ(k)θk

xk−1e−
x
θ kθ

Weibull
k > 0 (shape)
λ > 0 (scale)

f(x | k,λ) = k
λ

(
x
λ

)x−1
e−( x

λ
)k λΓ

(
1 + 1

k

)
Table 5.2: Binomial distribution considered in this work.

Parameters Probability Mass Function
Population

Mean
n ∈ N (number of trials)

p ∈ [0,1] (success probability of
each trial)

f(x | n,p) =
(
n
k

)
pk(1− p)n−k np

Some notes related to these tables: x represents the data being evaluated; Γ is the

gamma function; for the lognormal distribution, the location and scale parameters

of x are related to the logarithm of x and not to x itself; the Bernoulli distribution

is a special case of the binomial distribution, for n=1.
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5.2.2 Maximum Likelihood Estimation

The maximum likelihood estimation (MLE) is a statistical method for estimating the

parameters of a given distribution by maximizing the likelihood function L(θ | x),

which is a function that describes the probability of obtaining the observed data

(x), for all values of the parameters (θ) within the parameters space (Ω) [84].

The likelihood function is given by

L(θ | x) =
n∏
i=1

f(xi | θ) (5.2)

where f(xi | θ) is the probability density function (PDF) of the sample. For example,

observing the normal PDF in table 5.1, it is possible to state that if we are trying

to fit the data to the gaussian distribution, two parameters are being considered,

mean (µ) and standard deviation (σ), and the parameters space is defined by

Ω = (µ,σ) : −∞ < µ <∞ and 0 < σ <∞ (5.3)

The maximation of the likelihood function is then equivalent to find the values of

these parameters that best explain the observed data.

5.2.3 Stepwise Regression with Enforcement of Heredity

The stepwise regression is a technique that can be used to select a group of important

variables in a regression procedure. In this feature selection method, the statistical

significance related to entering or removing of a given variable is analyzed.

The method is composed of a mixture of two methods: forward selection and back-

ward selection. It starts with a model containing only the intercept. Then, in the

first step, the variable with the most significant effect is added to the model [82].

After that, in the following steps, the algorithm considers three different possibilities:

1. Forward selection: from the variables that are not in the model, add the one

whose effect is the most significant one (usually based on the score test [85]).

2. Backward selection: from the variables that are in the model, remove the one

whose effect is the least significant one (usually based on Wald test [85]).

3. Do both backward and forward selections in a single step.
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In order to choose which one of the above actions is performed at each step, the

algorithm takes into consideration a given validation method, which was AICc in

this work. The best final model is the one that grants the best solution taking that

validation method.

When interactions are considered, the effects heredity was imposed using the “En-

force Effect Heredity” option of JMP Pro [82].

In a forward action, if the most significant effect is an interaction and one or both

of its parent factors are not included in the model, a compound effect is created,

containing the interaction and any other inactive effect necessary to satisfy the

heredity principle. If this compound effect is the most significant one, then all the

effects of the compound are added to the model in a single step.

This is a very interesting approach because it allows to add an interaction to the

model even if both parents are not active effects (it means that the interaction has

a very strong effect), but the probabilites of it happening are reduced as its parents

must also enter in the model.

In a backward action, if a parent of one or more interactions is the less significant

effect, another compound is created, containing the main effects and its interac-

tion(s).
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Figure 5.3: Schematic representation of the stepwise procedure with back-
enforcement of heredity.

45



5. Methodologies

Figure 5.3 shows a schematic representation of the procedure used to select the

effects to be removed or to enter in the model at each step.

It is important to highlight that the best of the three possible actions is taken even

if the AICc value of the new model is higher than the AICc of the current model,

in order to enlarge the search space. The search will stop when the AICc does not

decrease after 10 steps, comparing to the minimal value already obtained, as it is

possible to observe in figure 5.1.

5.2.4 AICc: corrected Akaike Information Criterion

The Akaike information criterion (AIC) [86], estimates the relative quality of sta-

tistical models based on the principle of maximum likelihood (ML) and it is given

by

AIC = −2logL(θ) + 2k (5.4)

where L(θ) is the ML function for the model and k is the number of estimated

parameters in the model.

Observing equation 5.4, it is easy to understand that the first term tends to get

lower as more parameters are added to the model while the second terms always

increase as more parameters are considered. This can be seen as a trade-off where

AIC looks simultaneously for both the goodness of fit (GoF) of the model to the

data and the simplicity of the model.

Using AIC is then possible to evaluate the fitting of the data (in terms of the bal-

ance between underfitting and overfitting) using all points simultaneously, without

the need to split the data into groups as it happens with the cross-validation or

bootstrapping techniques, for example. In a problem like the one being studied,

this characteristic is very suitable because of two main reasons: 1) the sample size

is small; 2) for an optimal experimental design, the trials are planned to contribute

with the biggest amount of information possible and so it is favorable to consider

all the trials together. The split of the data would mean that a given feature-space

would be neglected in each group. So, the AIC can be seen as a better validation

method for variable selection than the other two techniques.

It is important to notice that, when evaluating the models, the AIC values itself are

not important but the relative values, i.e. the comparison of those values between

different models. Given a set of models built from the same data, the one with a
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lower AIC value is typically considered as the one with best fitting [86].

It was also verified that AIC may not perform well when the number of parameters

(predictors) is small in relation to the sample size [87,88]. In order to overcome this

issue, a second-order variant of AIC with small-sample adjustment was proposed

[87,89], known as corrected Akaike Information Criterion (AICc). In the AICc, the

term that penalizes the model complexity is multiplied by a correction factor:

AICc = −2logL(θ) + 2k · n

n− k − 1
(5.5)

which is equivalent to

AICc = AIC +
2k(k + 1)

n− k − 1
(5.6)

where n is the sample size. Due to the small sample size nature of the problem being

studied, AICc was used.

In the context of the problem, the AICc value was used as validation method to

select the action to take at each step of the stepwise regression approach (either

backward, forward or both actions) and to evaluate the GoF of skewed distributions

to the data of continuous responses.

5.2.5 Statistical Tests

5.2.5.1 Kolmogorov-Smirnov

The Kolmogorov-Smirnov (K-S) is a non-parametric statistical test that can be used

as a GoF measure to determine if whether two distributions differ, or whether a given

empirical distribution differs from a hypothesized distribution [90]. In this case,

the hypothesized distributions are the right-skewed distribution considered. More

specifically, it statistic quantifies the distance between the empirical distribution

function (EDF) of the data sample being evaluated and the cumulative distribution

function (CDF) of that reference distribution:

K-Sstatistic = sup
x
|EDF (x)− CDF (x)| (5.7)

where supx is the supremum of the set of distances.
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For the K-S test, the null hypothesis is then that the data follow a specified distri-

bution; the alternative hypothesis is that the data do not follow that distribution.

Even K-S is often used to test the normality of the sample, it is a general-purpose

test, i.e. it can be used to test any distribution, not being personalized for Gaussian

distribution as it happens with the Shapiro-Wilk and D’Agostino-Pearson tests. In

fact, it has been noted that the K-S test has low statistical power and it should not

be considered to test normality [91].

5.2.5.2 Shapiro-Wilk and D’Agostino-Pearson

The Shapiro-Wilk (S-W) [92] and the D’Agostino-Pearson (D-P) [93, 94] are statis-

tical tests used to evaluate if a given population is normally distributed.

The D-P test, also known as D’Agostino K2, calculates the kurtosis and skewness

of data and combine that statistics to produce an omnibus 1 test which determines

how far the asymmetry and shape of the data distribution diverge from the values

expected from a gaussian distribution:

D-Pstatistic =
√
Z1(g1)2 + Z2(g2)2 (5.8)

where g1 and g2 are the sample skewness and kurtosis, respectively, and Z1 and Z2

are transformations of those measures.

The S-W test is a more commonly used test to perform normality assessment, but

has a less interpretable procedure compared to the D-P test. It statistics results

from some calculations which envolve rearrange of the data in ascending order and

some tabled coefficients:

S-Wstatistic =
[
∑m

i=1 ai(xn+1−i − xi)]2∑n
i=1(xi − x̄)2

(5.9)

where xi are the ordered data values and ai are weights from the the Shapiro-Wilk

table based on the value of n, the sample size. If n is even, m = n/2, while if n is

odd, m = (n–1)/2.

For both the Shapiro-Wilk and D’Agostino-Pearson tests, the null hypothesis is that

the data population is normally distributed; the alternative hypothesis is that data

do not follow a gaussian distribution.

1It is considered an omnibus test because it is able to detect deviations from normality due to
either skewness or kurtosis.

48



5. Methodologies

5.2.5.3 Wald

The Wald test [95, 96] is a hypothesis test which evaluates how far an estimated

parameter β̂ is from a given value β0 under the null hypothesis H0 : β̂ = β0:

Waldstatistic =
β̂ − β0

SE(β)
(5.10)

where SE is the standard error. It can be extended multiple parameters to simul-

taneously compare the MLE estimators with the hypothesized value:

Waldstatistic = (β̂ − β0)′[cov(β̂)]−1(β̂ − β0) (5.11)

where cov(β̂) is the variance-covariance matrix which is equivalent to the inverse of

the information matrix.

In regression problems, it can be used to access the significance of the explanatory

variables used to build a given model. In this case, it evaluates the estimated

parameters in reference to the null hypothesis (H0) that states the parameters have

a zero value, β0 = 0, and so the predictors are not statistically significant [97].

Therefore, if the H0 is rejected for a given parameter estimate, that predictor will

be statistically significant, which in the context of the problem corresponds to be

an active effect.

5.2.5.4 Significance Level (Alpha)

For the four aforementioned tests, in order to reject or not the null hypothesis, a

reference value of 0.05 was used for the alpha value, i.e. if the p-value of the test is

higher than α, we can not reject the H0.

5.2.6 Generalized Linear Model

The generalized linear model (GLM) concept was developed by Nelder and Wedder-

burn [98] and further discussed by McCullagh and Nelder [99]. This approach is an

extension to the standard linear regression.

A GLM is composed of three main components. The first one is the random compo-

nent, which is the distribution probability of the dependent variable (response), i.e.

normal, lognormal, Weibull, beta, exponential, binomial, etc. The second one is the
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systematic component, which corresponds to a parameterized function of predictors:

ηi = β0 + β1xi1 + β2xi2 + ...+ βkxik = βXT (5.12)

where β0 is the intercept, which corresponds to the mean value of the outcome when

all X=0 and the βj are the coefficients for the xj variables, calculated from the data.

The third element of GLM is the link function, which specifies the link between the

two previous components. It describes the linear relationship between the mean of

the response Y, E(Y ) = µi, and the linear predictors:

f(µi) = ηi = βXT (5.13)

In fact, in GLM, instead of using Y as the outcome, it is used a function of its mean.

The βj parameters can be obtained using maximum likelihood estimation.

5.2.6.1 Binary Responses

Binary dependent variables belongs to the binomial family. In GLM regression, the

link function for binomial dependent variables can be either a logit or a probit link

function, being the first one the more used one. The logit link is given by

f(µi) = logit(µi) = log

(
µi

1− µi

)
(5.14)

In this case, the mean of the Y values is equivalent to the probability π, which is the

success probabibility (Y=1), i.e. the probability of the positive class. Then, GLM

for binomial distributions with a logit link is equivalent to the more well-known term

logistic regression:

πi =
eβ0+β1xi1+β2xi2+...+βkxik

1 + eβ0+β1xi1+β2xi2+...+βkxik
(5.15)

5.2.6.2 Continuous Responses

For continuous responses, several link functions may be used, depending on the data

distribution. For the distributions being considered, the log identity link f(µi) =

log(µi) is used for the gamma distribution, and the identity link f(µi) = µi is used

for the remaining ones, i.e. normal, log-normal, Weibull and exponential [82]. In
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the identity link, the mean is model directly, as no function was used. The mean of

these distributions are the ones represented in table 5.1.

Under the assumption that the errors are normally distributed, which is typically

used when the response is gaussian, the MLE results coincide with the ordinary least

squares (OLS) algorithm, i.e. to maximize the likelihood function is equivalent to

minimize the squared residuals.

5.2.7 Confidence and Prediction Intervals

The confidence and the prediction intervals correspond to the uncertainty in the

estimation of the mean response and in the prediction of the response of a new

observation in a regression problem, respectively. While the confidence interval (CI)

refers to yi = β0 + β1x1 + β2x2 + ... + βnxn, the prediction interval (PI) refers to

yi = β0 + β1x1 + β2x2 + ... + βnxn + εi, which means that the PI accounts for an

extra variability and therefore it will be always wider than the CI.

Figure 5.4 shows an arbitrary example of a linear regression fit for a single predictor.

The best-fit line is the blue one, the CI is the grey shadow and the PI is defined by

the dashed red lines.

R
e

sp
o

n
se

Predictor

Figure 5.4: Simple linear regression with the best-fit line and the
corresponding confidence and prediction intervals. Adapted from
http://www.sthda.com/english/articles/40-regression-analysis/

166-predict-in-r-model-predictions-and-confidence-intervals/.
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For a multiple linear regression, the (1-α)·100% prediction interval is computed as

follows:

PI = y0 ± t∗α/2,n−2 · sy·x ·
√

1 + x0(X ′X)−1x′0 (5.16)

where t∗α/2,n−2 is the z-value for the chosen α level (which is equal to 1.96 for α = 0.05,

i.e. a PI of 95%), x0 is the row-vector with the predictors values of the new sample,

y0 is the predicted mean value for that x0, X is the matrix with the predictors’

values used to compute the best-fit line, and sy·x is the standard deviation of the

residuals, given by

sy·x =

√∑n
i=1(residuali)2

n− k
=

√∑n
i=1(ŷi − yi)2

n− k
(5.17)

where n is the sample size and k is the number of parameters (the intercept and the

selected effects).

5.2.8 Logistic Ridge Regression

The ridge regression is a penalized least squares method that besides the minimiza-

tion of the sum of squared residuals (performed in simple OLS), imposes a penalty

to the regression coefficients β, shrinking the less important parameters towards

zero [100]:

β̂Ridge = arg min
β


d∑
i=1

(
yi − β0 −

p∑
j=1

xijβj

)2

+ λ

p∑
j=1

β2
j

 (5.18)

where the first term is the standard least squares loss function, being y the n-

dimensional outcome vector and X the n× p design matrix, and the second term is

the additional penalization imposed by ridge. The β is the p-dimensional vector of

the estimated parameters and λ is the (non-negative) tuning parameter that controls

the degree of regularization, i.e. the larger the λ value, the greater the shrinkage.

The penalization term is also known as L2-norm.
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Similarly, the logistic ridge regression is defined as follows:

β̂Log.Ridge = arg min
β

{
d∑
i=1

[
yi

(
β0 +

p∑
j=1

xijβj

)
+ log

(
1 + eβ0+

∑p
j=1 xijβj

)]
+ λ

p∑
j=1

β2
j

}
(5.19)

The method is said to provide a good balance between overfitting and underfitting

and to deal well with multicollinearity problems [100].

5.2.9 Support Vector Machine

Support Vector Machine (SVM), introduced by Vapnik and Chervonenkis, is a su-

pervised machine learning algorithm that can be used for both regression and classi-

fication problems, but it is mostly used for classification tasks, in which it was used

in this document.

The goal of the method is to find the hyperplane in the n-dimensional space (where

n is the number of predictors) that best classifies the data points, i.e. that best

differentiate the two classes of a binary problem. This hyperplane is the one that

maximizes the distance between the nearest points of each class: those points are

known as support vectors and the distance is referred to as margin.

The hyperplane corresponds then to a decision boundary, where data points falling

on opposite sides of it are attributed to different classes. Figure 5.5 shows a graphical

representation of the SVM mechanism for two predictors. The margin is defined as
2
||w|| , where w is the weight vector of the figure.

[ 24 ]

Figure 5.5: Hyperplanes and support vectors in SVM. Extracted from Raschka et
al. [101].
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For non-perfectly separable problems, the width of the margin is controlled by the

C parameter, as represented in figure 5.6: a larger value of C leads to a smaller

margin, and a smaller value of C to a larger margin. This parameter states the

trade-off between to set a larger margin and to lower the misclassification rate (how

many points are misclassified by the model).

[ 25 ]

Figure 5.6: Trade-off in the choose of the C value. Extracted from Raschka et
al. [101].

The SVM technique can be also extended to non-linear problems through the use of

a kernel function, but it will not be discussed in this document as only linear SVM

is used.

5.2.10 Repeated k-Fold-Stratified Cross Validation

In k-fold cross-validation (CV), the dataset is splitted into k approximately equal-

sized groups of samples, named as folds. For each one of those k subsets, the samples

are predicted using the model fitted (trained) considering the remaining k-1 subsets.

Therefore, each sample is validated exactly once and it is used to fit the data k-1

times. For each fold, a prediction error is estimated and a total prediction error

is obtained averaging the errors of all k folds, giving then information about the

general prediction ability of the model.

For a high k value, the bias tends to be low because a big part of the total dataset

is used to train the model, so it will be closer to the real one. However, the variance

tends to increase because a smaller number of data points is used to validate the

model each time, mainly when outliers are present. For a low k value, due to opposite

reasons, the bias tends to be higher and the variance tends to be lower. Generally,

k=5 or k=10 are recommended as good bias-variance compromise [102,103]. Figure

5.7 represents the 10-fold CV procedure, where E are the errors.
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Figure 5.7: Representation of 10-fold cross-validation. Extracted from http://

karlrosaen.com/ml/learning-log/2016-06-20/.

Due to the small sample size nature of the dataset and the characteristics of the

optimal experimental design, the estimated error of a k-fold CV would rely too much

on the samples used in each one of the folds. To overcome this issue, two approaches

were taken into account: stratification and repetition.

Using stratification, the proportion of each class in the full dataset is approximately

maintained in each one of the folds. One the one hand, this ensures that each fold

is a good representative of the problem, which is suitable in such small dataset.

One the other hand, it guarantees that some metrics used to evaluate the models

(sensibility and specificity) can be calculated, which would not be possible if, for

example, all the samples in the test set belonged to a unique class.

Using repetition, the CV is repeated N times with different and random distribution

of the samples in the folds, in each run. In the context of the problem being studied,

different folds may lead to a very different performance, and this approach leads to

a more stable and robust procedure for performance estimation.

More specifically, in order to get a trustful result, it was performed 500 repetitions

of 10-fold-stratified cross-validation.

5.2.11 Performance Measures

5.2.11.1 R2 and Generalized R2

The coefficient of determination, most known as R-squared or simple R2, represents

the proportion of the variance in the dependent variable that is explained by the
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independent variable(s), in a regression model. It can be used as a goodness of fit

and it is given by

R2 = 1− Explained Variance

Total Variance
= 1− SStotal

SSresiduals
= 1−

∑n
i=1(Yi − Ŷi)∑n
i=1(Yi − Ȳ )

(5.20)

where SStotal is the total sum of squares and SSresiduals is the sum of squares of the

residuals.

Although the R2 can have negative values in some cases (when the fit is worse than

the mean of the data), it ranges normally from 0 to 1, where a higher value typically

indicates a better fit to the outcome: a R2 equal to 1 means that the fit is perfect.

For regression models others than ordinary least squares, a normalized pseudo-R2,

which will be referred to as generalized R-squared, was used [82]. This adjusted

pseudo-R2, also known as the Nagelkerke R2 or the Craig and Uhler R2, is a nor-

malized version of Cox and Snell’s pseudo-R2 [104].

The generalized R2 compares the likelihood of the fitted model (LM) to the likelihood

of the intercept-only model (L0) and it is scaled to have a maximum value of 1. For

a binomial response distribution, the generalized R2 is given by

Generalized R2 =
1−

(
L0

LM

)2/n

1− (L0)2/n
(5.21)

and for the remaining distributions it is defined as

Generalized R2 = 1−
(
L0

LM

)2/n

(5.22)

where n is the sample size.

As the traditional R2, it ranges from 0 to 1, and for normal responses it is simplified

to the standard R-square.

It is very important to highlight that once the generalized R2 value is based on the

intercept-only model, we must not compare those values for models built on different

response distributions.
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5.2.11.2 Accuracy, Sensitivity and Specificity

The performance of a given classifier is normally evaluated based on a confusion

matrix. This matrix represents the distribution of the true versus the predicted

classes of validation or test samples, and it is composed by four different values:

true positive (TP), positive samples correctly classified; true negative (TN), negative

samples correctly classified; false positive (FP), negative samples wrongly classified;

false negative (FN), positive samples wrongly classified. Recapping, in this problem,

the positive class is the target response and the negative class is the not desired one.

From those values, several evaluation metrics can be calculated, namely accuracy,

sensitivity and specificity.

The sensitivity represents how well the classifier correctly predicts the positive cases:

Sensitivity =
TP

TP + FN
(5.23)

The specificity represents how well the classifier correctly predicts the negative cases:

Specificity =
TN

TN + FP
(5.24)

The accuracy is a summary of the former two metrics and represents the general

ability of the classifier to correctly predict a random sample:

Accuracy =
TP + TN

TP + TN + FP + FN
(5.25)

Due to the binary and balanced nature of the dataset, the combination of the referred

metrics gives a robust analysis of the problem.

5.2.12 Desirability Functions

The desirability function approach, firstly proposed by Harington [105], is one of

the most simple and widely used methods in the industry to simultaneous opti-

mization of several different responses. The basic idea is to transform the model

prediction equation of each response into an individual desirability on a scale [0,1]

and then combine the individual desirabilities into a single value, denoted by overall

desirability, using the geometric mean.

So, if a given experiment is associated to n responses Y = (y1, ..., yn), to each fitted
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response ŷi will be assigned a desirability function 0 ≤ di ≤ 1, where di=0 represents

a completely undesirable value of yi and di=1 a completely desirable one. The overall

desirability D is then given by

D =

(
n∏
i=1

di

)1/n

= (d1 × ...× dn)1/n (5.26)

which can be extended to give different importances to each response, originating a

weighted geometric mean:

D =

(
n∏
i=1

dwii

)1/
∑n
i=1 wi

= dw1
1 × ...× dwnn (5.27)

The geometric mean has the desired property that if any response is completely

undesirable (di=0), then the overall desirability will be also inadmissible (D=0).

For the individual desirabilities, several different functions can be used. For the

continuous responses, the most standard ones are the functions proposed by Der-

ringer and Suich [106]. In the CQAs whose goal was to minimize the response, their

transformation with a unitary scale was applied:

dminimizei =


0 if ŷi > U

ŷi−L
U−L if L ≤ ŷi ≤ U

1 if ŷi < L

(5.28)

For the CQAs whose objective was to achieve a given target, a smoother transfor-

mation than their suggestion was considered:

dtargeti =
PDFnormal

(
ŷi | µ = T,σ = −∆2

2·ln(0.01)

)
PDFnormal

(
T | µ = T,σ = −∆2

2·ln(0.01)

) , ∆ = L− T = U − T (5.29)

where PDFnormal is the probability density function of the normal distribution, L is

the lower bound, U is the upper bound, and T is the target. These transformations

are represented in figure 5.8. The upper and lower bounds for each response were

defined from the intervals described in table 4.1, and the target one was establish

as the media value of the two bounds, as shown in table 5.3.
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(a) Minimize. (b) Match target.

Figure 5.8: Individual desirabilities functions for continuous responses.

Table 5.3: Control points of the desirability functions.

Response Goal
Lower bound

L
Upper bound

U
Target
T

CQA-C.1 Match target 24 31 27.5
CQA-C.2 Minimize 0 0.6 -
CQA-C.3 Minimize 0 1.6 -

For the binary responses, the probability of obtaining the positive class was consid-

ered as the individual desirability because it is already a value in the range [0,1],

and so it can be directly used without any transformation. For those responses, the

desired value was set to 1, i.e. the goal is to maximize the response.

In this work, the same importance was given to each CQA. In order to determine

the factor settings (i.e. the values of the predictors) that maximize the overall de-

sirability function, an optimization procedure is required. In this case, the gradient

descent algorithm is used.

5.3 Software

The effects selection through stepwise regression, generalized linear models and AICc

validation was implemented using the JMP Pro 14 (Generalized Regression person-

ality [82]) and the JMP Scripting Language; the desirabilities functions were also

performed using this software. The fitting of continuous distributions, the statis-

tical analysis, the classifiers and prediction intervals construction, and all the data

visualization were implemented in Python.
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Results and Discussion

In this chapter, all the results of the aforementioned procedures are presented and

discussed. For the identification of important effects, the models built using only

main effects will be also referred to as first-order models and the ones that also

considered two-factor interactions will also be designed as second-order models. Only

the best selected models, the ones with higher R2 from the models selected through

∆AICc criterion, will be discussed; the remaining ones may be consulted in the

Appendices.

6.1 Distribution of Continuous Responses

Figure 6.1 shows a graphical representation of the fit of the four positive skewed

distributions to each one of the continuous responses. The normal distribution was

also considered to establish a comparison. The best parameters (location, shape

and scale) obtained using the maximum likelihood estimation for each distribution

are also present in each sub-figure.

The goodness of fit values of the fitted distributions are shown in tables 6.1 (response

CQA-C.1), 6.2 (response CQA-C.2) and 6.3 (response CQA-C.3). Both corrected

Akaike Information Criterion (AICc) value and Kolmogorov-Smirnov (K-S) p-value

are presented. For each response, the best values, i.e. higher p-value for K-S test

and lower value for AICc, are in bold.
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Figure 6.1: Fit of the distributions to the continous responses.

Table 6.1: Goodness of fit for the response CQA-C.1.

Normal Lognormal Exponential Gamma Weibull
K-S p-value 0.006 0.955 0.023 0.192 0.490
AICc value 334.646 270.716 282.034 280.259 277.401

Table 6.2: Goodness of fit for the response CQA-C.2.

Normal Lognormal Exponential Gamma Weibull
K-S p-value 0.115 0.636 0.224 0.256 0.368
AICc value 155.646 124.581 125.359 128.359 128.172

Table 6.3: Goodness of fit for the response CQA-C.3.

Normal Lognormal Exponential Gamma Weibull
K-S p-value 0.016 0.116 0.002 0.046 0.115
AICc value 255.837 169.863 180.257 179.630 177.440
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From table 6.1, related to response CQA-C.1, the K-S null hypothesis (H0) is rejected

for both normal and exponential distributions. For the 3 remaining distributions,

the lognormal is the one whose H0 is not rejected with more confidence (very high

confidence for instance) and it is also the one with an AICc value significantly lower

than the other distributions.

About table 6.2, related to response CQA-C.2, the K-S H0 is not rejected for all

distributions. Even so, the lognormal one is the one whose non-rejection is more

trustful and also the one with a lower AICc value.

From table 6.3, related to response CQA-C.3, only for the Weibull and lognormal

distributions the K-S H0 is not rejected, even that for these distributions the p-value

is substantially small. Similarly to the first response, the AICc value is significantly

lower for the lognormal distribution.

Taking into account these observations, which result from the evaluation of two

different goodness of fit measures, the lognormal distribution seems to be the most

suitable one to represent all the three responses data. The results of Shapiro-Wilk

(S-W) and D’Agostino-Pearson (D-P) statistical tests for the analysis of normality

of the log10 transformation are shown in table 6.4.

Table 6.4: The p-values for the normality statistical tests after the log-
transformation of the responses data.

Response S-W p-value D-P p-value
CQA-C.1 0.625 0.453
CQA-C.2 0.254 0.265
CQA-C.3 0.007 0.160

The results of table 6.4 agree with the previous observations. The data of response

CQA-C.1 have clear evidence of following a lognormal distribution while there are

some doubts about the response CQA-C.3. In fact, for this response, the H0 of

normality is rejected for the Shapiro-Wilk test. Even so, the D’Agostino-Pearson

test result supports the idea of normality of the log-transformation of the data.

Therefore, the most suitable approach seems to be the use of GLM for the lognormal

response, which will be referred to as lognormal-GLM, from now on. However, in

order to analyze the benefits of the proposed approach, the standard least squares

method without any type of transformation will be applied as well.
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6.2 Important Effects in Binary Responses

6.2.1 Detection of Active Effects for Binary Responses

The information about the best selected models for the two binary responses is

presented in tables 6.5 (response CQA-D.1) and 6.6 (response CQA-D.2). The

measures of fit, AICc and generalized R2 values, are shown for each model. The

proposed procedure is represented in the tables by ‘SR BEH LR AICc’, which stands

for ‘Stepwise Regression with Back-Enforcement of Heredity, Logistic Regression and

AICc validation’.

Table 6.5: Best selected models for response CQA-D.1.

Selection
Method

Effects type Selected effects
AICc
value

Gener.
R2

SR BEH
LR AICc

1st order
FP-1.1, PP-2.2, FP-3.5, FP-2.1,

FP-5.1
22.41 0.91

2nd order
FP-1.1, PP-2.2, FP-3.5, FP-2.1,

FP-5.1
22.41 0.91

Table 6.6: Best selected models for response CQA-D.2.

Selection
Method

Effects type Selected effects
AICc
value

Gener.
R2

SR BEH
LR AICc

1st order FP-3.4, FP-4.1 34.55 0.292

2nd order
PP-2.2, PP-3.1, FP-4.1,

PP-2.2*PP-3.1, PP-2.2*FP-4,1
26.93 0.828

Analyzing the table 6.5, it is possible to observe that both first-order and second-

order models are equal, which means that for this response, even when two-factor

interactions are considered, only main effects are selected. This is an important

consideration because it shows that the methodology only select interactions if they

are indeed more important than the main effects, otherwise only main factors are

selected.

About table 6.6, it is clear the benefits of taking into consideration the two-factor

interactions, as a much better model is obtained for this case, i.e. the AICc differ-

ence value between first and second-order models is very significant. Besides, the

objective measure, the generalized R2, is very low for the first-order model and it

has a very good value for the second-order one.

Therefore, the models selected as the ones that better describe the dependent vari-

ables are then the second-order one for the latter response and the only one that
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was shown for the former response, the ones in bold.

6.2.2 Recommended Levels for Response CQA-D.1

The parameters estimates obtained for the selected effects for this response are

shown in table 6.7.

Table 6.7: Estimates and p-values for selected effects for response CQA-D-1.

Effect Estimated coefficient Wald p-value
PP-2.2 10.9177 <0.0001
FP-3.5 -11.5785 <0.0001
FP-1.1 3.4058 <0.0001
PP-5.1 -6.7781 <0.0001
PP-2.1 -6.9034 <0.0001

From table 6.7, there are only main effects and so all of them are selected because

they are statistically significant. Taking into consideration that the target response

is the positive class, which can be seen as response maximization, it is possible to

observe that the high level is suggested for the factors PP-2.2 and FP-1.1, and the

low level is recommended for the other ones, the factors PP-2.1, FP-3.5 and PP-5.1.

6.2.3 Recommended Levels for CQA-D.2

The parameters estimates obtained for the selected effects for this response are

shown in table 6.8 and the interaction plots of the selected two-factor effects are

displayed in figure 6.6.

Table 6.8: Estimates and p-values for selected effects for response CQA-D.2.

Effect Estimated coefficient Wald p-value
PP-2.2 6.5963 <0.0001
FP-4.1 8.5315 <0.0001
PP-3.1 -0.4319 0.3472

PP-2.2*FP-4.1 8.3962 <0.0001
PP-2.2*PP-3.1 1.3790 0.0012

From table 6.8, it is possible to observe that the main effects PP-2.2 and FP-4.1 are

statistically significant, while the effect PP-3.1 only enter in the model because it

belongs to one of the selected interactions.

Taking into consideration the estimates, and knowing that the goal is to have a

positive response, i.e. to maximize the response, it is suggested a high level for
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both PP-2.2 and FP-4.1 factors. The analysis of their interaction is not required

because their levels are already defined by their individual impact, but studying the

sub-figure 6.2b it is clear that when there is an interaction of the parameters at their

high level the response is equal to one, which supports the aforementioned idea.

In contrast, the suggested level for the factor PP-3.1 derives from the analysis of

its interaction. From subfigure 6.2a, it is possible to observe that there are two

combinations that maximize the response: 1) both parent factors at their high level

or 2) both parent factors at their low level. The other parent of the interaction is

the factor PP-2.2, which is individually significant and so its suggested level must

be followed, which is the high one. So, the first option is the most suitable one and

the factor PP-3.1 should be at the high level too.
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Figure 6.2: Interaction plots of selected interactions for response CQA-D.2.

6.3 Important Effects in Continuous Responses

6.3.1 Detection of Active Effects for Continuous Responses

For the continuous responses, the lognormal distribution was the one with best fit

to the data of the three outcomes being considered, and so lognormal-GLM seems

to be the best approach to model the independent variables into the dependent one.

However, in order to analyze the benefits of the suggested procedure, the stepwise

regression with back-enforcement of heredity using the ordinary least squares (OLS),

without any type of transformation, was applied as well. Those procedures will

be referred to in the tables as ‘SR BEH lognorm-GLM AICc’, which stands for

‘Stepwise Regression with Back-Enforcement of Heredity, lognormal Generalized

Linear Model and AICc validation’, and ‘SR BEH OLS AICc’, which stands for
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‘Stepwise Regression with Back-Enforcement of Heredity, Ordinary Least Squares

and AICc validation’.

As stated before, the Bluepharma experimenters had already performed an analy-

sis on the continuous responses, using a standard approach commonly executed in

the pharmaceutical industry: combination of least squares estimations and ANOVA

measures, considering only the main effects and without any type of response trans-

formation. Those results will also be displayed to establish some comparisons be-

tween the traditional technique and the proposed procedure, and will be referred to

in the tables as ‘Standard Approach’.

Tables 6.9 (response CQA-C.1), 6.10 (response CQA-C.2) and 6.11 (response CQA-

C.3) show the information about the selected effects considering all the approaches

aforementioned. The same measures of binary responses are shown: in this case,

Gen. R2 (generalized R2) is referring to the lognormal-GLM method and R2 is

related to the OLS methods (both OLS with stepwise procedure and the standard

analysis).

The results of tables 6.9-6.11 show again the importance of considering the interac-

tion effects. There is a general improvement of both AICc values (they decrease)

and generalized R2 or R2 (they increase) when we go from the first-order models

(only main effects) to the second-order ones (both main effects and interactions),

for both OLS and lognormal-GLM approaches.

Table 6.9: Selected models for response CQA-C.1.

Selection

Method
Effects type Selected effects

AICc

value

Gen. R2

or R2

SR BEH

lognorm-

GLM AICc

1st order FP-1.3, PP-3.1, FP-4.1, FP-1.2 266.20 0.51

2nd order
FP-1.3, PP-2.2, FP-3.4, PP-5.1,

FP-1.3*PP-5.1, PP-2.2*FP-3.4
265.73 0.66

SR BEH

OLS AICc

1st order FP-1.3, FP-4.1, FP-3.3 333.33 0.34

2nd order

FP-1.3, PP-2.2, FP-3.4, PP-5.1,

FP-1.3*PP-5.1, FP-1.3*PP-2.1,

PP-2.1*PP-5.1, FP-3.4*PP-5.1

320.36 0.85

Standard Approach FP-1.3, FP-4.1, FP-3.3 333.33 0.34
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Table 6.10: Selected models for response CQA-C.2.

Selection
Method

Effects type Selected effects
AICc
value

Gen. R2

or R2

SR BEH
lognorm-

GLM AICc

1st order
FP-1.3, PP-2.1, FP-3.1, FP-3.3,

FP-4.1
116.31 0.64

2nd order
FP-1.3, PP-2.1, FP-3.3, FP-3.5,
FP-4.1, PP-5.2, FP-3.3*PP-5.2

113.80 0.79

SR BEH
OLS AICc

1st order
FP-1.1, PP-2.1, FP-3.3, FP-3.5,

FP-4.1
145.74 0.67

2nd order

FP-1.1, PP-2.1, FP-3.5, FP-4.1,
FP-1.1*FP-2,1, FP-1.1*FP-3.5,
FP-2.1*FP-3.5, FP-2.1*FP-4.1,

FP-3.5*FP-4.1

132.82 0.93

Standard Approach PP-2.1, FP-3.3, FP-3.5, FP-4.1 145.92 0.60

Table 6.11: Selected models for response CQA-C.3.

Selection
Method

Effects type Selected effects
AICc
value

Gen. R2

or R2

SR BEH
lognorm-

GLM AICc

1st order PP-3.1, FP-4.1, PP-5.2 168.55 0.34

2nd order
PP-2.1, PP-2.2, PP-3.2, FP-3.4,

PP-5.1, PP-2.2*PP-3.2,
PP-2.2*FP-3.4, PP-2.1*PP-2.2

153.05 0.87

SR BEH
OLS AICc

1st order FP-2.1, FP-3.1, FP-3.5, FP-4.1 225.57 0.41
2nd order PP-2.2, PP-5.1, PP-2.2*PP-5.1 222.21 0.40

Standard Approach PP-2.1, FP-3.3, FP-3.5, FP-4.1 225.57 0.41

It is possible to note that the standard approach gives similar results to the first-

order stepwise OLS (it gave equal models for two responses and an almost equal one

to the other response).

The analysis of the same tables also allows to observe that the AICc values are

significantly lower for the method using the lognormal-GLM, and then it is pos-

sible to conclude that it is a much better approach than the standard OLS and,

consecutively, it is much more suitable than the methodology followed typically in

the pharmaceutical industry. It is important to remember that the R2 values of

lognormal-GLM and OLS must not be directly compared because they are based

on the intercept-only model; however, the AICc value can be considered for that

purpose as it was used in other works [107,108].

An interesting observation is that not only the AICc values are lower for the lognormal-

GLM but also the selected models agree more with the effect principles, more specif-

ically with the hierarchy one, mainly for the two first responses. For the response
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CQA-C.1, using lognormal-GLM are selected 4 main effects and 2 interactions while

using OLS are selected 4 main effects and 4 interactions. For the response CQA-C.2,

are chosen 6 main effects and 1 interaction using lognormal-GLM, while using OLS

are selected 4 main effects and 5 interactions. So, the proposed procedure not only

gives a better practical solution but also a better theoretical one.

These considerations already present some meaningful conclusions. In order to

get some more insights, it was displayed the predicted versus real value points of

those responses using the best models, i.e. the second-order ones of both OLS and

lognormal-GLM stepwise approaches, presented in the previous tables.

Figures 6.3 (response CQA-C.1), 6.4 (response CQA-C.2) and 6.5 (response CQA-

C.3) show the comparison of those fits. The left block of sub-figures is related to the

OLS fitted model and the right block is related to the lognormal-GLM fitted model.

The top sub-figures show all the predicted versus real points while the bottom sub-

figures show a zoomed version of the top ones, in the area closer to the target values.

For the zoomed plots, it is also represented the confidence intervals for each point,

in vertical bars.
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Figure 6.3: Fit for response CQA-C.1, using both OLS and lognormal-GLM meth-
ods. Top sub-figures: zoom out (all points); bottom sub-figures: zoom in (target
points).
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Figure 6.4: Fit for response CQA-C.2, using both OLS and lognormal-GLM meth-
ods. Top sub-figures: zoom out (all points); bottom sub-figures: zoom in (target
points).
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Figure 6.5: Fit for response CQA-C.3, using both OLS and lognormal-GLM meth-
ods. Top sub-figures: zoom out (all points); bottom sub-figures: zoom in (target
points).

For all of the responses, it is possible to observe that more than the fit to be better in

general, it is especially much better in the points that are close to the desired values:

inside the interval [0, 50] for response CQA-C.1, and lowest values for responses

CQA-C.2 e CQA-C.3. This is mainly observed for the first response but is also
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evident for the other two responses.

For the two first outcomes, the number of predictors is lower for the lognormal-GLM

and even so the fit is better. For the last response, the number of predictors is lower

in the OLS method so a direct comparison should not be performed, as it is expected

to get a better fit as more predictors are considered. However, it is possible to see

that when the OLS is used, the predicted values are far away from the real ones for

the points close to the desired interval (only one point appears in the zoomed plot).

Another important remark is that the confidence intervals are much lower for the

points close to the target when the lognormal-GLM method is used. It informs that

not only the fit is better, but also the precision and certainty of it.

These observations are very relevant for the problem being studied as it shows that

when lognormal modeling is considered, it is obtained a model whose predictors

explain much better the response values closer to the target ones than if a standard

method is used. In this type of problem, where the main goal is to achieve the

combinations of values that lead to the desired output, this is extremely important

because it suggests that the target can be achieved much more efficiently, which is

a major concern in pharmaceutical R&D.

The models selected as the ones that better describe the dependent variables are

then the second-order lognormal-GLM ones for the three continuous responses, the

ones in bold in the tables.

6.3.2 Recommended Levels for Response CQA-C.1

The parameters estimates obtained for the selected effects for this response, using

the lognormal-GLM, are shown in table 6.12 and the interaction plots of the selected

two-factor effects are displayed in figure 6.6.

Table 6.12: Estimates and p-values for selected effects for response CQA-C.1.

Effect Estimated coefficient Wald p-value
FP-1.3 -0.5653 <0.0001
FP-3.4 -0.3525 0.0096
PP-2.2 -0.1255 0.3400
PP-5.1 0.0104 0.9433

FP-1.3*PP-5.1 0.8319 <0.0001
PP-2.2*FP-3.4 0.4723 <0.0001
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Figure 6.6: Interaction plots of selected interaction for response CQA-C.1.

From table 6.12, it is possible to observe that the main effects FP-1.3 and FP-3.4 are

statistically significant, while PP-2.2 and PP-5.1 only enter in the model because

they are parents of important interactions. From this table and the interactions plots

of figure 6.6, it is visible how the effects influence the response. In this particular

case, the goal is neither to minimize neither to maximize the response, but achieve

a specific target interval. So, it is harder to indicate which is the desired level for

each factor because several different combinations can lead to it.

One possible solution to overcome it is to invert the regression model and find the

null space, i.e. the collection of combinations of factor values that are expected to

lead to the desired response values. However, this is beyond the scope of this work.

Besides, from those possible combinations, it would be infeasible to experiment all of

them, and once several other responses are being evaluated, the levels of the selected

factor may be chosen to simultaneously satisfy the remaining CQAs, which limits

that null space. This approach will be further discussed.

6.3.3 Recommended Levels for Response CQA-C.2

The parameters estimates obtained for the selected effects for this response, using

the lognormal-GLM, are shown in table 6.13 and the interaction plot of the selected

two-factor effect is displayed in figure 6.7.

From table 6.13, it is possible to observe that all main effects are statistically sig-

nificant. The goal is to minimize the response, and so the recommended levels are:

high level for factors PP-2.1 and PP-5.2; low level for factors FP-1.3, FP-3.3, FP-3.5

and FP-4.1.
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Table 6.13: Estimates and p-values for selected effects for response CQA-C.2.

Effect Estimated coefficient Wald p-value
FP-4.1 0.6697 <0.0001
FP-3.3 0.4249 <0.0001
PP-2.1 -0.3151 0.0008
FP-3.5 0.2637 0.0011
FP-1.3 0.3054 0.0034
PP-5.2 -0.1891 0.0290

FP-3.3*PP-5.2 0.4345 <0.0001

The parent factors of the selected interaction are both individually significant, so

the evaluation of the interaction plot was not necessary. However, analyzing the

figure 6.7, the minimal value for the response is obtained when the factor FP-3.3 is

at the low level and the factor PP-5.2 is at the high level, which is consistent with

the aforementioned ideas, as expected.
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Figure 6.7: Interaction plots of selected interaction for response CQA-C.2.

6.3.4 Recommended Levels for Response CQA-C.3

The parameters estimates obtained for the selected effects for this response, using

the lognormal-GLM, are shown in table 6.14 and the interaction plots of the selected

two-factor effects is displayed in figure 6.8.

From table 6.14, it is possible to observe that the main effects PP-2.1, FP-3.4 and

PP-5.1 are all statistically significant. Taking into consideration that the goal is to

minimize the values of the response, a high level is recommended for all of them.

The effects PP-2.2 and PP-3.2 are not significant which indicates that they only

enter in the model because they are parents of important interactions, and therefore

their recommended level will depend on those interactions, which are represented in

figure 6.8.
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Table 6.14: Estimates and p-values for selected effects for response CQA-C.3.

Effect Estimated coefficient Wald p-value
PP-2.1 -0.4497 <0.0001
FP-3.4 -0.3947 <0.0001
PP-5.1 -0.5653 <0.0001
PP-2.2 -0.1109 0.1339
PP-3.2 -0.0085 0.9005

PP-2.2*PP-3.2 -0.8912 <0.0001
PP-2.2*FP-3.4 -0.7767 <0.0001
PP-2.1*PP-2.2 -0.4673 <0.0001
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Figure 6.8: Interaction plots of selected interactions for response CQA-C.3.

From sub-figure 6.8a, it is inspected that the interaction PP-2.2*FP-3.4 minimizes

the response value for the pair of a high level of FP-3.4 and a high level of PP-2.2,

which is feasible because as stated before the factor FP-3.4 should be at the high

level. From sub-figure 6.8b, it is possible to see that, in order to have the minimum

response value, as long as the PP-2.1 is at the high level, the level of PP-2.2 is

not very significant. Finally, from sub-figure 6.8c, can be visualized that are two
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possible approaches: 1) both parent factors at their high level and 2) both parent

factors at their low level. As concluded for the first interaction, the factor PP-2.2

should be at the high level, and so the first option should be considered. Therefore,

taking into consideration these observations, for this response, it is suggested the

high level for both factors that are not significant by itself, PP-2.2 and PP-3.2, in

order to approach the desired response.

6.4 Multiple Response Optimization

Table 6.15 presents a resume of the recommended levels for each response, identified

in the previous sections. From this table, it is suggested that the factor FP-1.2 may

be neglected in follow-up experiments. Besides, as expected it could happen when

several responses are analyzed, some factors have contradictory levels, namely the

factors PP-2.1, FP-4.1 and PP-5.1.

Table 6.15: Resume of the recommended levels of each factor for each response.

Factor CQA-D.1 CQA-D.2 CQA-C.1 CQA-C.2 CQA-C.3
FP-1.1 high
FP-1.2
FP-1.3 * low
PP-2.1 low high high
PP-2.2 high high * high
PP-3.1 high
PP-3.2 high
FP-3.3 low
FP-3.4 * high
FP-3.5 low low
FP-4.1 high low
PP-5.1 low * high
PP-5.2 high

The multi-response optimization procedure was applied to verify if it was possible

at this stage of the process to obtain a combination of values which satisfy all the

CQAs targets simultaneously. The nominal factor, FP-1.1, was identified for only

one response and the recommended level was also considered by the experimenters as

the suitable one in terms of safety. Therefore, its value was replaced by the suggested

level value (1), so it can be considered in the analysis but not as a continuous factor,

allowing the gradient descent algorithm to be freely used.

The results of the maximization of the overall desirability function of the obtained

models are shown in table 6.16.
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Table 6.16: Results of the maximization of the overall desirability.

Response Goal Target Predicted value Overall desirability
CQA-D.1 Positive class (1) 1

D= 0.713
CQA-D.2 Positive class (1) 0.908
CQA-C.1 Match target [24, 31] 27.521
CQA-C.2 Minimize [0, 0.6] 0.430
CQA-C.3 Minimize [0, 1.6] 0.462

As it is possible to observe in table 6.16, it is possible to obtain a combination of

values such that the predicted values for the responses are very satisfactory. For the

continuous CQAs, all the values are inside the target interval, and for the binary

CQAs, the predicted probabilities of obtain the target class are equal to 100% for

one response and 90.8% for the other one.

It is important to highlight that the overall desirability value is dependent on the

functions chosen to model each response and that the objective was just to find a

good set of settings that met all the goals, and the desirability functions are merely

mathematical methods to find an optimum value. In fact, it was impossible to obtain

an overall desirability of 1 as it would imply that the predicted values of CQA-C.2

and CQA-C.3 are 0, which is physically impossible.

Besides, the optimization is not a screening procedure and it was applied here as a

proof of concept of the proposed models. In order to establish a comparison with the

models obtained by the company practitioners using the standard pharmaceutical

methodology, the desirability functions were also applied to those models, but the

overall desirability was equal to 0. This means that with the standard methods

it is not possible, at least at this stage, to get a theoretical combination of values

that satisfy all the CQAs, which is another evidence of the benefits of the proposed

methodology and the consequent obtained models.

6.5 Uncontrolled Factors

After the identification of important effects from the controlled factors, the proce-

dure (stepwise regression with back-enforcement of heredity, with logistic regression

for binary responses and lognormal-GLM for continuous ones) was repeated extend-

ing the models to account for the uncontrolled factors. It was verified that it is

obtained the exactly same models for all the responses, except to the binary CQA-

D.2.

The results for this response are shown in table 6.17, where the uncontrolled factor
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which was selected is represented by the coded name UF.

Table 6.17: Selected models for CQA-D.2 with uncontrolled factors.

Selection
Method

Effects type Selected effects
AICc
value

Gener.
R2

SR BEH
LR AICc

1st order
FP-3.4, FP-4.1, PP-2.1, PP-3.1,

UF
33.44 0.67

2nd order
PP-2.2, PP-3.1, FP-4.1,

PP-2.2*FP-4.1, PP-3.1*UF
25.12 0.94

From table 6.17, it is possible to see that a given non-controlled independent variable

was selected in both first and second-order models (being statistically significant),

and it even participates in one selected interaction. Comparing the evaluation mea-

sures with the ones obtained only with the controlled factors, table 6.6, it is verified

a decrease in the AICc value and an increase in the generalized R2.

These observations suggest that there is a possibility that this variable may have a

significant impact on the response and may be necessary to turn it in a controllable

factor. In fact, these considerations were presented to the Bluepharma experimenters

and it was a very important information to them, who, based on it, found a new

path to the variability control between different batches and to achieve the target

result more consistently.

6.6 Classification of Binary Responses

Three classifiers were considered to build binary prediction models: simple logistic

regression (LR), logistic ridge regression (LRR) and support vector machine (SVM)

with a linear kernel. They were modeled from the selected effects in section 6.2; the

uncontrolled variable detected as possibly significant in response CQA-D.2 was not

considered.

The results of the 500 times repeated 10-fold-stratified cross-validation are shown

in tables 6.18, for response CQA-D.1, and 6.19, for response CQA-D.2. The values

correspond to the mean ± standard deviation of the 500 replications.

For the LRR and SVM approaches, the presented values are the best ones from the

models created varying the penalization hyper-parameter (λ in LRR and C in SVM)

through the logarithmic grid search, and taking the accuracy values as the selection

metric. All the grid search results are represented in Appendices.
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Table 6.18: Results of the best classifiers, for response CQA-D.1.

Classifier
Penalization
Parameter

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

LR - 83.17 ± 4.07 77.20 ± 7.17 90.22 ± 3.31
LRR λ = 0.03125 92.87 ± 3.98 95.58 ± 5.72 89.98 ± 3.33
SVM C = 16 94.26 ± 3.32 98.14 ± 3.98 89.94 ± 3.49

Table 6.19: Results of the best classifiers, for response CQA-D.2.

Classifier
Penalization
Parameter

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

LR - 82.30 ± 3.98 83.64 ± 4.17 80.96 ± 6.72
LRR λ = 1 86.80 ± 3.08 82.82 ± 4.63 90.78 ± 3.79
SVM C = 0.125 80.50 ± 4.87 77.34 ± 3.98 83.66 ± 6.28

Even though the cross-validation may provide an underestimated evaluation of the

models prediction ability, the results show that the classifiers have a very good

performance, especially taking into consideration the small number of samples used

to train them. It also supports the idea that the selected effects are indeed good

predictors.

The consideration of the accuracy, sensitivity and specificity metrics is also relevant

because they allow to analyze the binary models using measures that are much

more common than AICc or generalized R2. The performance of the classifiers

suggests that they can be used to predict pretty well the response values of the

binary outcomes in future trials, i.e. to know if a given combination of factors

values is likely to achieve the target, mainly the ones that present best results:

SVM for response CQA-D.1 and LRR for response CQA-D.2.

6.7 Validation Results

As it was mentioned before, data about some validation trials was also available and

it was considered to further evaluate the selected methods, as an external validation

source. However, those trials contain some factors with values outside of the design

of experiment (DoE) ranges, which may be troublesome because the behavior of the

process was not evaluated in those new intervals and some kind of extrapolation of

the trained models will be required, which is very likely to lead to misleading results.

Therefore, only the trials whose all the selected factors for a given response have

values inside the DoE ranges will be discussed. Besides, it is considered that the not

selected factors are not only unimportant in the DoE ranges but also in general, so
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they have no influence in a given response and they can be neglected.

For the binary responses, all the trials had values inside the DoE ranges for the

selected factors of the response CQA-D.1. The real outcome of those trials was the

positive class, which was the class predicted by the built classifiers.

For the continuous responses, one of the validation trials had values inside the

DoE ranges for the selected factors of two responses, CQA-C.1 and CQA-C.2. The

information about the observed (real) and the predicted values (mean and its 95%

prediction interval) is shown in table 6.20. As a reference, it is represented in

table 6.21, the values predicted for the same trials using the models which were

obtained by the pharma company experimenters using the standard pharmaceutical

methodology.

Table 6.20: Observed and predicted values for a validation trial, considering the
proposed models.

Response
Observed

value

Predicted
with GLM

Predicted with
log-transformation

Mean Mean Interval
CQA-C.1 40.31 23.39 17.47 [2.63 , 115.90]
CQA-C.3 1.78 0.75 0.68 [0.19 , 2.44]

Table 6.21: Observed and predicted values for a validation trial, considering the
models obtained using the standard approach.

Response
Observed

value

Predicted
with OLS

Mean Interval
CQA-C.1 40.31 -54.38 [-478.27 , 369.50]
CQA-C.3 1.78 -10.06 [-56.97 , 36.68]

Comparing the results of the tables 6.20 and 6.21, it is possible to observe big

differences between the models obtained using the methodology proposed in this

work and the ones obtained using the standard one. The first consideration is

related to the predicted mean values and the observed ones. While the proposed

models have means close to the real values, the standard methods’ models obtain

a value far away from the observed one. In fact, for those models, the predicted

value is negative, which is physically impossible. This is another advantage of the

lognormal procedure, it is implicit that only positive values may occur.

The second consideration is about the predicted intervals (PI). It is easily visible

that the PIs are very much shorter in the proposed models. As expected, the PIs
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are larger for response CQA-C.1 than response CQA-C.3 as a result of the larger

interval and scale of values in DoE trials.

These observations confirm that the proposed models are more suitable than the

ones obtained before in Bluepharma from the use of standard techniques.

About the remaining validation trials, i.e. the trials with values outside of the DoE

ranges, it was verified that even some observed values were inside the prediction

intervals, other ones were not. However, this was already expected because the

extrapolation of the trained models to new ranges is not a correct approach. If the

experimenters want to extend the ranges, then a new planned experiment must be

performed to retrieve the appropriate information. In fact, this is one of the reasons

why changes outside the design space require a new regulatory approval.

In order to complete the analysis of these results, two additional notes are addressed,

both related to the results of table 6.20. The first one is that the prediction intervals

are not symmetrical, which is a consequence of the skewed nature of lognormal distri-

bution and the exponential computing of PI after back-transformation. The second

one is that the predicted mean obtained with the log-transformation is smaller than

the one obtained with lognormal-GLM, which is due to the fact that the arithmetic

mean (calculated on non-transformed data) is more sensitive to the individual large

values than the geometric mean (computed after data transformation) [109,110].
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Conclusions

This work provides an extensive analysis of the available data of a real-world problem

being currently developed by a pharmaceutical company. The main focus at this

stage of the development process was to get the factors that most impact each one of

the responses being considered, i.e. the critical formulation and process parameters.

A new methodology to obtain such models was proposed and it was shown to achieve

better results than the standard techniques, which had been implemented before.

The methodology suggested in this study not only consider interactions but it can

also be applied to both discrete and continuous responses, and it is even possible

to use it with right-skewed distributions that may occur and do not respect the

ordinary least squares assumptions. Particulary, it was considered a continuous

response distribution which is much more suitable to this problem than the normal

one, and it was verified the importance of consider the interactions.

In fact, some of the factors that are included in the second-order models, which are

the ones who provide a better explanation of the responses, were not selected in the

first-order models, and so their importance would be missed if we did not look to

interactions as well. Besides, this is an advantage of consider a back-enforcement of

heredity instead of a fore-enforcement one.

Furthermore, the procedure conforms to the effect principles, incorporating the

heredity one in a simpler but very interpretable and efficient way when compared

to the literature approaches that explicitly consider that principle: it requires fewer

parameters and assumptions than the Bayesian models, it is easier to implement

and interpret than penalized least squares methods and it is more complete than

the forward selection approach of Hamada and Wu [55].

For the 5 responses being considered, it was obtained a total of 18 main effects, 2

strong heredity interactions, 5 weak heredity interactions and 1 interaction without

heredity (hierarchy and heredity principles), with a mean of 5.2 active effects per
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response (sparsity principle).

Those results agree with what was theoretically expected and make the models more

interpretable too. Although it is not presented in this document, it was verified that

if no heredity was imposed in the stepwise regression procedure, the selected models

would be larger and composed mostly by non-hereditary interactions, and so the

data-driven modeling results would diverge from what happens in reality.

Other analyses were also performed, including the study of uncontrolled factors

whose results led the experimenters to find new useful paths to meet more consis-

tently the defined objectives, and the creation of predictive models that can be used

to guide future planned experiments. The investigation of external validation trials

supports the idea that the models proposed in this work are better and more precise

than the ones obtained using traditional methods.

Finally, the multi-objective optimization using desirability functions showed that

with the suggested models, it is possible to obtain a combination of factor values

that in theory ensures that all the targets are simultaneously achieved, something

that was not possible with the standard approach models, being a proof of concept

of the proposed methodology.

Some limitations must be highlighted as well, like the small sample size and the

lack of replicates in the design of experiments trials. Although the absence of such

constraints would probably lead to better models, it is important to note that those

are intrinsic characteristics of screening experiments, and the goal is precisely to get

the maximum knowledge possible with such small number of trials, due to resources

constraints. Taking this into consideration, the approaches used in this work provide

arguably great progress and the results give confidence that the final objectives of

the project can be achieved and that it can be done more efficiently.

7.1 Future Work

The problem being studied in this work is related to the identification of important

effects in screening experiments and the indication of guidelines for the next steps of

the process development. Therefore, it is expected that these analyses can be used

to better advise the follow-up experiments where more data will be collected to be

then employed in optimization procedures.

The increase of experimental data can also be considered for the improvement of

some performed approaches, such as the predictive models, and for the execution
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of new procedures that are not possible to accomplish with the amount of data

available at this stage, such as the creation of an inline process control.

Regarding the identification of the important effects, the selection procedure can be

enhanced to include physical and chemical first principles, i.e. the known theoreti-

cally relations between the factors. The incorporation of effect heredity is already a

way to introduce prior and physical knowledge to the data-driven modeling but it

states only the structure relations and not the semantics ones.
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A

Selection Paths

A.1 Effects Selection
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Figure A.1: Stepwise regression selection path, for response CQA-D.1.

Table A.1: All the selected models for response CQA-D.1.

Effects type Selected effects AICc Generalized R2

only main
effects

FP-1.1, PP-2.2, FP-3.5 21.79 0.789
FP-1.1, PP-2.2, FP-3.5, FP-2.1,

FP-5.1
22.41 0.914

FP-1.1, PP-2.2, FP-3.5, FP-5.1 22.85 0.805
main effects

and
interactions

FP-1.1, PP-2.2, FP-3.5 21.79 0.789
FP-1.1, PP-2.2, FP-3.5, FP-2.1,

FP-5.1
22.41 0.914

FP-1.1, PP-2.2, FP-3.5, FP-2.1,
FP-5.1

22.85 0.805
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A.1.2 Response CQA-D.2
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Figure A.2: Stepwise regression selection path, for response CQA-D.2.

Table A.2: All the selected models for response CQA-D.2.

Effects type Selected effects AICc Generalized R2

only main
effects

- 33.27 -
FP-3.4, FP-4.1 34.55 0.292

FP-4.1 34.76 0.161
main effects

and
interactions

PP-2.2, PP-3.1, FP-4.1,
PP-2.2*PP-3.1, PP-2.2*FP-4,1

26,93 0.828
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A.1.3 Response CQA-C.1

A.1.3.1 Generalized Linear Model - Lognormal
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Figure A.3: Stepwise regression selection path, for response CQA-C.1, using
lognormal-GLM.

Table A.3: All the selected models for response CQA-C.1, obtained using
lognormal-GLM.

Effects type Selected effects AICc Generalized R2

only main
effects

FP-1.3, PP-3.1, FP-4.1 265.30 0.446
FP-1.3, PP-3.1, FP-4.1, FP-1.2 266.20 0.505
FP-1.3, PP-3.1, FP-4.1, FP-3.4 267.27 0.483

main effects
and

interactions

FP-1.3, PP-5.1, FP-1.3*PP-5.1 264.77 0.458
FP-1.3, PP-2.2, FP-3.4, PP-5.1,
FP-1.3*PP-5.1, PP-2.2*FP-3.4

265.73 0.662
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A. Selection Paths

A.1.3.2 Ordinary Least Squares
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Figure A.4: Stepwise regression selection path, for response CQA-C.1, using OLS.

Table A.4: All the selected models for response CQA-C.1, obtained using OLS.

Effects type Selected effects AICc R2

only main
effects

FP-1.3, FP-4.1 332.36 0.278
FP-1.3, FP-4.1, FP-3.3 333.33 0.343
FP-1.3, FP-4.1, PP-3.1 334.08 0.322

FP-1.3 334.16 0.122

main effects
and

interactions

FP-1.3, PP-2.2, PP-5.1,
FP-1.3*PP-5.1, PP-1.3*PP-2.1,

PP-2.1*PP-5.1
320.05 0.773

FP-1.3, PP-2.2, FP-3.4, PP-5.1,
FP-1.3*PP-5.1, PP-1.3*PP-2.1,
PP-2.1*PP-5.1, FP-3.4*PP-5.1

321.89 0.847
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A. Selection Paths

A.1.4 Response CQA-C.2

A.1.4.1 Generalized Linear Model - Lognormal
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Figure A.5: Stepwise regression selection path, for response CQA-C.2, using
lognormal-GLM.

Table A.5: All the selected models for response CQA-C.2, obtained using
lognormal-GLM.

Effects type Selected effects AICc Generalized R2

only main
effects

FP-3.3, FP-4.1 115.22 0.462
FP-3.3, FP-4.1, PP-2.1 115.39 0.527
PP-2.1, FP-3.3, PP-3.1 115.54 0.524

PP-2.1, FP-3.3, PP-2.1, PP-3.1 115.65 0.588
PP-2.1, FP-3.3, PP-2.1, PP-3.1,

FP-1.3
116.31 0.643

main effects
and

interactions

FP-1.3, PP-2.1, FP-3.3, FP-3.5,
FP-4.1, PP-5.2, FP-3.3*PP-5.2

113.80 0.787

FP-1.3, PP-2.1, FP-3.3, FP-4.1,
PP-5.2, FP-3.3*PP-5.2

113.90 0.733

FP-3.3, FP-4.1 115.22 0.462
FP-1.3, FP-3.3, FP-4.1, PP-5.2,

FP-3.3*PP-5.2
115.28 0.658

FP-3.3, FP-4.1, PP-5.2,
FP-3.3*PP-5.2

115.71 0.587
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A.1.4.2 Ordinary Least Squares
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Figure A.6: Stepwise regression selection path, for response CQA-C.2, using OLS.

Table A.6: All the selected models for response CQA-C.2, obtained using OLS.

Effects type Selected effects AICc R2

only main
effects

FP-1.1, PP-2.1, FP-3.3, FP-3.5,
FP-4.1

145.86 0.665

PP-2.1, FP-3.3, FP-3.5, FP-4.1 145.92 0.602
PP-2.1, FP-3.3, FP-4.1 147.40 0.508

FP-1.1, PP-2.1, FP-3.3, FP-3.5,
FP-4.1, FP-5.1

147.74 0.700

main effects
and

interactions

FP-1.1, PP-2.1, FP-3.5, FP-4.1,
FP-1.1*FP-3.5, FP-1.1*FP-3.5,
FP-2.1*FP-3.5, FP-2.1*FP-4.1,

FP-3.5*FP-4.1

132.82 0.925
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A. Selection Paths

A.1.5 Response CQA-C.3
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Figure A.7: Stepwise regression selection path, for response CQA-C.3, using
lognormal-GLM.

Table A.7: All the selected models for response CQA-C.3, obtained using
lognormal-GLM.

Effects type Selected effects AICc Generalized R2

only main
effects

PP-3.1, FP-4.1 167.01 0.295
PP-3.1 167.88 0.175

PP-3.1, FP-4.1, PP-5.2 168.55 0.343
PP-3.1, FP-4.1, FP-1.1 168.73 0.338

main effects
and

interactions

PP-2.1, PP-2.2, PP-3.2, FP-3.4,
PP-5.1, PP-2.2*PP-3.2,

PP-2.2*FP-3.4, PP-2.1*PP-2.2
153.05 0.871
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A. Selection Paths

A.1.5.2 Ordinary Least Squares
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Figure A.8: Stepwise regression selection path, for response CQA-C.3, using OLS.

Table A.8: All the selected models for response CQA-C.3, obtained using OLS.

Effects type Selected effects AICc R2

only main
effects

PP-3.1, FP-4.1 167.01 0.295
PP-3.1 167.88 0.175

PP-3.1, FP-4.1, PP-5.2 168.55 0.343
PP-3.1, FP-4.1, FP-1.1 168.73 0.338

main effects
and

interactions

PP-2.1, PP-2.2, PP-3.2, FP-3.4,
PP-5.1, PP-2.2*PP-3.2,

PP-2.2*FP-3.4, PP-2.1*PP-2.2
153.05 0.871
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A. Selection Paths

A.2 Classifiers Grid Search
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Figure A.9: Grid search optimization for penalization parameter of classifiers, for
response CQA-D.1.
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Figure A.10: Grid search optimization for penalization parameter of classifiers,
for response CQA-D.2.
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