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Abstract

Many classes of lifetime distributions can be characterized by their ageing properties, which can be
described by their survival function or by their failure rate function. These ageing properties will
allow us to compare in some sense two distributions within the same family, giving rise to ageing
orderings. In this work, we start by presenting two ageing notions related to the monotonicity of
the failure rate function and study some of their properties. We also define two ageing orders, the
s-IFR and s-IFRA, for which we will present some equivalent conditions and results that facilitate
the comparison between two distributions. Furthermore, we present a criterium for the s-IFR order
based on the s-IFRA ordering, which will be the “key” result for comparing two parallel systems
with two exponentially distributed components. In the last chapter of this monograph, we aim to
apply the criterium in order to prove that, in terms of the s-IFRA order, a parallel system with three
homogeneous, independent and exponentially distributed components ages faster than a parallel
system with three heterogeneous, independent and exponentially distributed components.






Resumo

Muitas classes de distribui¢des que representam o tempo de vida de um sistema sio caracterizadas pelas
suas propriedades de envelhecimento, que podem ser descritas através da fungdo de sobrevivéncia
ou da func@o de taxa de falha. Estas propriedades permitem-nos estabelecer comparacdes entre
distribuicdes dentro da mesma familia, dando origem as ordenacdes de envelhecimento. Neste
trabalho, comecamos por apresentar duas nogdes de envelhecimento, relacionadas com a monotonia
da funcio de taxa de falha, bem como algumas propriedades da mesma. Definimos, também, duas
ordenacdes de envelhecimento, s-IFR e s-IFRA, e apresentamos algumas condi¢des equivalentes e
resultados que facilitam a comparacgdo entre duas distribuicdes. Para além disso, um critério para
a ordenacdo s-IFR é apresentado que serd o resultado “chave” para a comparagdo entre sistemas
paralelos com duas componentes com distribui¢des exponenciais. No dltimo capitulo deste trabalho, o
nosso objectivo € provar, em termos da ordem s-IFRA, que um sistema paralelo de trés componentes
independentes, identica e exponencialmente distribuidas envelhece mais rdpido do que um sistema
paralelo com trés componentes idependentes e exponencialmente distribuidas, com taxas de falha

diferentes.
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Chapter 1

Introduction

Ageing and ordering notions between random variables have been quite popular in many areas of
probability and statistics, such as, reliability theory, insurance, survival analysis, etc. Ageing notions
are usually expressed in terms of the monotonicity of the survival or failure rate functions, while
the orderings between the distributions of the variables are defined through relations between this
type of functions. The simplest orderings notions are based on a direct comparison between the
survival functions or failure rate functions. However, more interesting ordering notions are based
on the comparison of the tail (survival) functions through the convexity between the inverse of these
functions. These orderings are known as convex orderings and they were introduced by Hardy,
Littlewood and Pélya [5]. In Shaked and Shantikumar [9] and in Marshal and Olkin [7], a compilation
of orderings and ageing notions, including the convex orderings, can be found, as well as relations
between them.

In the case of two random variables that represent the lifetime of two different systems, it is often
useful to know which one ages faster. The ageing orderings allow us to compare, in some sense the
age of systems, by analysing the behaviour of the distributions associated to their lifetimes. Some
of these orderings are based on the behaviour of distributions defined iteratively (see Definition 9),
that were studied by Avarous and Meste [3]. These notions can be found in Fagiuoli and Pellerey
[4] and in Nanda et. al. [8], where the main concern was establishing different relations between
several orderings, with no explicit examples. However, the actual verification of these relations is very
difficult, given that they are defined via iterated distributions and, naturally, the computational side of
the problem becomes increasingly difficult. This problem was studied in Arab and Oliveira [1] for
Weibull and Gamma distributions and for a specific ageing order, the s-IFR order, which compares two
distributions through the relative convexity of the survival functions (see Definition 13 for a precise
statement). As referred, one of the most important orderings studied by the aforementioned authors is
the s-IFR order which is a generalization of the so-called convex transform order (see Definition 3),
introduced by Van Zwet [12]. Interestingly, these ideas were used in [12] to introduce and compare
skewness between distributions with support in (0, +oc0).

Kochar and Xu [6] proved that a parallel system with exponential component lifetimes with
different hazard rates is more skewed than a parallel system with exponential component lifetimes, but
with equal hazard rates, according to the convex transform order (or 1-IFR order, which is the same
as the IFR order). In other words, they proved that the second system ages faster then the first one,
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with respect to the IFR order. Arab et. al. [2] extended this result for the s-IFR ordering for parallel
systems with two exponentially distributed components.

Our aim is to extend the result established in Arab et. al [2] for parallel systems with three
exponentially distributed components. This monograph is structured as follows. In Chapter 2, some
stochastic orders and relations between them are presented. We begin by introducing the so called
transform orders i.e. the convex, star and superadditive orders. In Section 2.2, a special case of the
star order is introduced and a result that relates this and the convex transform orders is established.
Finally, in the last section of this chapter, we explore alternative characterizations of monotonicity and
convexity described through the study of the sign variation of the relevant functions. The definitions
and results presented here are based on Shaked and Shantikumar [9] and on Arab and Oliveira [1].

In Chapter 3, iterated distributions are defined as well as iterated failure rate function. These two
definitions give rise to ageing notions that are characterized by the monotonicity of the iterated failure
rate function, presented in Section 3.1. In Sections 3.2 and 3.3, hereditary properties of ageing notions
are studied. In Section 3.4, we introduce the s-IFR and s-IFRA orderings defined by Nanda et al. [§8]
and prove some of their properties as well as provide alternative characterizations. We also compare
two Weibull distributions using the established characterizations. In Section 3.5, we analyse whether
the hereditary property is satisfied by the s-IFR ordering. Finally, in the last section, a criterium for
the s-IFR order, through the s-IFRA order is proved, that facilitates in some cases the comparison
between two distributions. The definitions and results established in this chapter are mostly based on
Arab et. al [2] and on Arab and Oliveira [1].

The last chapter is divided in three sections. In the first one, a comparison between two parallel
systems with two exponentially distributed components is presented, according to the s-IFR order.
The results proved in this section are based on Arab et. al. [2]. In order to establish a similar result
for parallel systems with three exponentially distributed components it is necessary to prove that the
criterium presented in Section 3.5 (see Theorem 13 for a precise statement) is valid. Section 4.2 is
devoted to the comparison of two parallel systems with three exponentially distributed components
according to the s-IFRA order in order to establish a result similar to the one presented in Section
4.1. However, due to the fact that there are 3 components, the difficulty is significantly increased
and therefore the desired result was obtained only for a number of cases. Thus, in the last section of
Chapter 4, a difficult case, which is not yet solved, is presented, showing the difficulties that can arise.
Finally, in Section 4.4, some considerations about future work are presented.



Chapter 2

The transform orders

Throughout this chapter we will assume that X and Y are nonnegative absolutely continuous random
variables with distribution functions F' and G, and density functions f and g, respectively. Furthermore,
we denote by .# the family of distributions such that the distribution function at 0 is equal to 0 and
the corresponding density function has support in [0, o). The results presented here are based on [7]
and [9].

The ageing orderings presented in this chapter belong to a particular class of stochastic orders,
namely the transform orders. They compare random variables with respect to the skewness of the
density functions in .%. In the sections that follow, the definitions of the different transform orders
will be presented as well as their equivalent characterization.

2.1 Transform orders: convex, star and superadditive orders

The notion of skewness is intended to represent the departure of a density from symmetry, where one
tail of the density is more “stretched out” than the other. If the mode of such a density is to the left of
the center and the right-hand tail is relatively long, then the density is said to be skewed to the right.
This is the kind of skewness that is encountered in the family of distributions in .%.

There are many ways to measure the skewness of a distribution, however an alternative way of
measuring this, is to find an ordering for which, when comparing two distributions, F and G, the
inequality “F < G” captures the meaning of F' being less skewed than G. This gives rise to the
so-called convex transform order. Since this ordering is defined through the convexity of a given
function we start by recalling the notion of a convex function.

Definition 1. A real-valued function f defined on [0,+eo) is said to be convex if, for a. € [0,1],
floxi+(1—o)x2) < o0f(x1) + (1 —a)f(x2) for every x; >0 and x; > 0.

Moreover, we also need to recall the definition of quantile through the right continuous inverse of
a distribution function, in order to define the convex transform order.

Definition 2. Let X be a random variable with distribution function F. Then the right continuous
inverse of F, F1 s defined by

F~'(u) = sup{x: F(x) < u}, for everyu € [0,1].

3



4 The transform orders

Now, if we consider X to be a nonnegative random variable with distribution function F and
Y =G !(F(X)), i.e., another nonnegative random variable with distribution function G, an interesting
question would be what properties does G~! o F must have so that ¥ has a more skewed distribution?
Let us suppose that the density function of X, f, is made with rubber material and that becomes thinner
and thinner toward the right. If we stretch out the right-hand edge of the rubber the density function
will change. In fact, f is transformed in another density, g, that has a relatively longer right-hand
tail. This flexibility that is required, simply means that the horizontal axis has been transformed
by an increasing function G~! o F, with increments that increase as one moves to the right, that is,
G Y (F(x+38))— G (F(x)) is increasing in x > 0, for § > 0. But it is possible to prove that this is
equivalent to having that G~! o F is convex.

Definition 3. Let X and Y be two nonnegative random variables with distribution functions F and G,
respectively. Then X is said to be smaller than Y in the convex transform order, denoted by X <.V, if
G~ (F(x)) is convex.

Therefore, if X <. Y, we have that X is less skewed than Y, that is F is less skewed than G. Note
that, if F(x) = 1 — F(x), denotes the survival function of a random variable with distribution function
F, we have that G~ (F (x)) = G (F(x)), for x > 0, so we can also study the convex transform order
by analysing the convexity of G (F(x)).

Another transform order, the star order, is defined in a very similar fashion to the convex order,
but instead of the convexity condition we have the condition introduced in the following definition.

Definition 4. A real-valued function f defined on [0,+) is said to be starshaped if @ is increasing
for x> 0.

Having introduced this new class of functions we can now define the star order. Note that this
order also compares the skewness of two different distributions.

Definition 5. Let X and Y be two nonnegative random variables with distribution functions F and G,
respectively. Then X is said to be smaller than Y in the star order, denoted by X <. Y, if G~ (F(x)) is
starshaped.

It is easy to prove that, for F,G € .7, w is increasing for x > 0 if and only if G~ (F (1x)) <
AG~Y(F(x)), for every A € [0, 1]. Therefore, we can interpret the star order as a generalization of the
convex transform order. A simple characterization of this order is given in the following result.

G (u)
F 1 (u)

Theorem 1. X <. Y if and only if is increasing for u € (0,1).
Proof. The conclusion follows immediately by choosing u = F(x) in Definition 5 and by taking into
account that F is an increasing function. O

Finally, we present another transform order that also compares the skewness of distributions.
However, the particular order will not be part of this study and it is presented here only for the sake of
completeness. To define this stochastic order we first need to introduce a new class of functions, the
superadditive functions.
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Definition 6. A real-valued function f defined on [0,4o0) is said to be superadditive if

fx+y) 2 f(x)+ f(y), forx=0andy=0.
Therefore, the superadditive order is defined as follows.

Definition 7. Let X and Y be two nonnegative random variables with distribution functions F and G,
respectively. Then X is said to be smaller than Y in the superadditive order, denoted by X <, Y, if
G Y(F(x)) is supperaditive.

Having defined the three transform orders, the first question that arises is whether these orders can
somehow be related. In fact, if we think about the star and convex transform orders, their relation can

easily be revealed as an immediate consequence of the following proposition.

Theorem 2. [7, Proposition 21.A.11] Let f be a real valued function, such that f(0) <O0. If f is
convex for x > 0 then f is starshaped.

Proof. If f is convex for x > 0 then for all x1,x, € [0,0) and for all o € [0, 1],
floxi+(1—a)x) <af(x)+(1—a)f(x).

Taking x, = 0 in the previous inequality we obtain f(ax;) < af(x;). Since a € [0,1] and x > 0, we
have that otx; < x;. Thus,

flox) _af(x) _ flx)
ax; —  axp X
Hence, @ is increasing for all x > 0, that is, f is starshaped. O

Corollary 1. If X <.Y then X <, Y.

Proof. If X <.Y we have that G~!(F(x)) is convex for x > 0. Moreover, since F(0) = G(0) =0
and both variables have density functions, we can conlude that G~!(F(0)) = 0. Hence, G~ ! (F (x)) is
starshaped, i.e., X <, Y.

O

Analogously, we have that the star order implies the superaditive order.

Theorem 3. [7, Proposition 21.A.11] Let f be a real valued function, such that f is starshaped. Then
f is superadditive.

Proof. As f is starshaped, we have that

flalxty)) _ flety) _ af(x+y)

,Vx,y > 0,Va € [0, 1],

alx+y) T xty  a(x+y)
that is, f(a(x+y)) < of(x+y). Choosing a = +1y- the previous inequality can be re-written as
flx) < ﬁyf()ﬂ—y), while choosing o = )%} we have f(y) < )%yf(x—i-y). Summing these two
inequalities, we have f(x) + f(y) < f(x+y), that is, f is superadditive. O

Corollary 2. If X <,Y then X <, Y.
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Therefore, we may conclude that the convex transform order, also implies the superadditive order,
since the first one implies the star order and this in turn implies the superadditive order. Thus, we have
established a relation between all the transform orders.

2.2 DMRL order

We will now introduce another order that compares normalized mean values of the tail probabilities
above a given quantile.

Definition 8. Ler X and Y be two nonnegative random variables with distribution functions F and G,
respectively. Then X is said to be smaller than Y in the DMRL order, denoted by X <pygrp Y, if

1 e
m / » G(x) dx
i o (®) is increasing for u € [0, 1].
_ / Flx)dx
EX) Jrw
In what follows, we will denote F( f, (x)dx and G,( ft G(x)dx

Remark 1. The DMRL order is in fact a special case of the star order. In fact, observe that

—= (=1
= s increasing for u € [0,1] < Ge<G_1(u)>
e (F~1(u)) F (F (u))

is decreasing for u € [0,1]

—=—1
But this is equivalent to ,(57,1())
Ge(G () B

is decreasing, we have that X <pygr Y if and only if 7%7((6)())) is decreasing for x > 0. Now,
observing that ée_l is also decreasing and taking x = 6;1 (v), we have that X <pygrr Y is equivalent
F.(F'(G(G, ()
Y
distribution functions, we may conclude that the DMRL order is a star order.

being increasing for u € [0,1]. Taking u = G(x) and since G

to being increasing for y € (0, 1]. Therefore, noting that Eoﬁgl and Fof?l are

It is important to mention that, although the convex transform order implies the star order, we
cannot conclude immediately that the convex transform order implies the DMRL order. In fact, if
Z and W are random variables with distribution functions fofgl and 606;1, respectively, we
can conclude that X <pyp Y is equivalent to W <, Z, but we cannot conclude directly that X <.Y
implies X <pyrr Y. However, these two orders are indeed related as we can see in the following
proposition.

Proposition 1. Let X and Y be two nonnegative random variables with distribution functions F and
G, respectively. If X <. Y then X <pyrr Y.

Proof. Define a(x) = G~ (F(x)), for x > 0, and y(u) = Fo(or"! (@;l (u))), for u € [0, 1]. Differenti-
ating 7y, we obtain, ¥ (u) = % (%ail(x))?l(u) . Since X <. Y, we have that « is convex. Noting

that & is increasing, it follows that ~! is concave. In fact, if we denote a = ' (Ax; 4 (1 — A)x2)

and b= Aa(x;)+ (1 —A)a(xz), for A € [0,1], we have that,

a(a)=2Ax;+(1=)xy =Aa(a " (x)+ (1 -A)a(a ! (x)) > a(da " (x)+ (1 —l)ofl(xz)),
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1

since ( is convex. Thus, because « is increasing, it follows that a > b, i.e., ™" is concave. But this

4

dx ’

that 7 is a convex function. But, by Proposition 2, this implies that 7y is starshaped, that is,
y(u)

D)
= isincreasing for u € [0,1] &

u u

is equivalent to %a_l (x) being decreasing. So, (4o ! (x))5;1 W is increasing and we may conclude

is increasing for u € [0,1]. (2.1)

Now, taking u = G,(x), since G, is decreasing, (2.1) is equivalent to %((XG)(X))) being decreasing for

x > 0. Analogously, taking x = G~!(y), since G is increasing, we have that (2.1) is also equivalent to
Fe(F~'(y))
1
y

Ge(G™(y))

(e being decreasing for y € [0, 1]. Hence, the conclusion follows. O

2.3 A different characterization of transform orders

It is obvious that the characterization of these type of orders is mostly based on the study of the
monotonicity or convexity of the relevant functions. However, this kind of analysis is not always
simple, since the functions may have complicated expressions or may even not have explicit closed
representations. So it is of interest to have results that provide us with new tools that facilitate this kind
of analysis. In the following we will introduce two results, without proof, that characterize increasing
and convex functions, respectively. These results will allow us to characterize in a different way the
previous orders as well as the orders that will be presented in the next chapter.

Proposition 2. [1, Lemma 8] A function g : R — R is increasing (resp., decreasing) if and only
if for every a € R, g(x) —a changes sign at most once when x traverses from —oo to +oo and if the

change occurs it is in the order “—,+"” (resp., “+,—").

Proposition 3. [1, Theorem 14] Let f be a continuous function. The function f is convex if and only
if for every real numbers a and b, f(x) — (ax+ b) changes sign at most twice when x traverses from

—oo to +oo and if the change of sign occurs twice, it is in the order “+,—,+".

The next proposition provides a characterization of the crossing of two graphical representations.
This result will allow us to describe the sign variation of the functions mentioned in Propositions 2
and 3, based on a simpler function.

Proposition 4. [1, Lemma 15] Let f and g two real-valued functions, and { be a strictly increasing
(resp., decreasing) and continuous functions defined on the range of f and g. For any real number
¢ >0, the functions f(x) —cg(x) and {(f(x)) — {(cg(x)) have the same (resp., reverse) sign variation
order as x traverses from —oo to oo

The next result describes the sign variation of a function, after performing integration. This result
also provides a way to facilitate the study of the functions when trying to analyse their sign variation.

Proposition 5. [1, Lemma 18] Ler f and g be two real-valued functions defined on [0,+o0) such that
g(x) = [ f(¢)dt. Assume that, as x traverses from 0 to +oo, f(x) changes sign in one of the following
orders “— 4" or “+,="or “+,—,+" or “— ,+,—,+". Then g(x), as x traverses from 0 to 4o has
sign variation equal to every possible final part of the sign variation of f(x).

The results given above lead to the following characterization of the star order.
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Theorem 4. Let X and Y be two nonnegative random variables, with distribution functions F and G
respectively. Then, X <. Y if and only if, for every a > 0, F(-) — G(a-) changes sign at most once and

if the change occurs it is in the order “—,+".

Proof. We know that F' and G are nonnegative functions, thus we can apply Proposition 2 for a > 0.
Hence, for every a > 0, X <, Y if and only if w is increasing for x > 0, that is, G~ (F (x)) —
ax changes sign at most once and if the change occurs it is in the order “—, 4. As G is an increasing
function, by applying Proposition 4 with G = £, the result follows. O

Finally, the following theorem is a direct consequence of Proposition 3 and Proposition 4.

Theorem 5. Let X and Y be two nonnegative random variables with distribution functions F and G,
respectively. Then X <.Y if and only if, for every constant a and b, F(-) — G(a - +b) changes sign at
most twice and if the changes occurs twice it is in the order “+,—, +.

As an application of the previous results, the next example compares two Weibull distributions,
according to the convex transform order. We will denote by W (¢, 0) the Weibull distribution with
shape parameter & and scale parameter 6.

Example 1. Let X and Y be two random variables, with W(a,0:1) and W (o, 6,) distributions,
respectively, such that a; > 0 and 01,60, > 0. In order to prove that X <. Y, according to Proposition
3, we need to analyse the sign variation of the function F(x) — G(ax+ D), for every constant a and
b, and prove that it changes sign at most twice and if the changes occurs twice it is in the order
“4,—,4". Note that, by Proposition 4, it is possible to conclude that this is equivalent to prove that
H(x) = G(x) — F(ax+b) changes sign at most twice and if the change occurs twice it is in the order
“+,—, 4", for every constant a and b.

X

For the distributions under study, we have that, F (x) = e )™ ana G(x)=e (5, * . Therefore,
we want to analyse the sign variation of the function H(x) = e ()% o elh) ', The direct control
of the sign variation of H is not easy, but we can use Proposmon 4 to transform our function in a
function easier to study. Hence, taking £ (x) = log(x), we now want to analyse the sign variation of the
function P(x) = —(3.)% + (%)“'. Assume that a,b > 0. Applying, again, Proposition 4, we know
that the sign variation of P is the same as the sign variation of Q(x) = —oplog(x) + oplog(6,) +
oy log(ax+b) — oy log(6y). Differentiating Q, we obtain, Q' (x) = W
that (ax+b)x > 0. Moreover, lim,_,o+ ax(0; — 0z) — b < 0 and lim,_, . ax(a) — 0) — 0pb = +o0.

. For x > 0 we have

Hence, Q' changes sign once in the order “—,+". Therefore, the monotonicity of Q is \ . Given
that, lim,_,o+ Q(x) = limy_, 1 Q(x) = +oo, we conclude that the sign variation of Q, which is the
same as the sign variation of P and, consequently, of H, is “+,—,+". The other cases are proved in

an analogous way, and we may conclude, by Proposition 3, that X <.Y.



Chapter 3

s-IFR and s-IFRA orderings

In this chapter two ageing notions and the corresponding orders will be discussed. In the sequel we
consider X to be a nonnegative random variable with distribution function Fy € .%, survival function
(or tail function) Fy = 1 — Fx and density function fx. The definitions and results that follow are
based mostly on [1] and [2].

3.1 [Iterated Distributions

Let X be a random variable that denotes the lifetime of a system. By applying the iteration procedure
that will be defined below, we manage to re-adjust the probabilities of the tails, recursively. Moreover,
these probabilities, as it will be seen, correspond to the normalized moments of the residual life of the

system.

Definition 9. For each x > 0, define
Tol) = fil) and fixo= | Tro)di=1.

For each s > 1, we define the s-iterated distribution, Tx s, by their tails Tx,s = 1—Tx s as follows,

_ 1 o . o __
Txs(x) = T / Tx s—1(t)dt, where Jix s :/0 Txs—1(t)dt,

assuming that these integrals are finite. Moreover, we extend the domain of definition of each Tx s
defining Tx 4(x) = 1, for x < 0.

Remark 2. Fors=1,Tx(x) = Fy.

Although this function is defined in an iterated way, it can also be expressed by means of a closed
formula.

Lemma 1. [1, Lemma 2] The s-iterated distribution, Tx,s may be represented as

- B 1 = (t—x)!
TXJ(x)—H;;% " / A0 (3.1)

9
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Proof. From Definition 9,

— 1 e I B
TX’S(X) = = / TXVS_l(Z)dZ = = / = / TX./S_z(u) dudt.
Hx s—1 Jx Hx s—1 Jx HUx s—2 Jt

Reversing the order of integration, we have that

_ 1 too pu_ 1 oo _
Tsx:#/ /T& udtdu:#/ u—x)Txs_2(u)du.
xs(%) Ux s 1Mx s—2 Jx  Jx xs-2(u) Ux s—1Mx s—2 Jx ( Jxs-2(u)

Repeating this process k times we obtain

— 1 oo (l» —x)k’I o
T N 1 Txs—x(t)dt. 32
B (X) Hljzl Hx s—j ‘/x (k— 1)! X, k( ) (3.2)

For k = s and taking into account that ﬁx,o =1, we conclude that

- I e I
Txs(x) = - Txo(t)dt = _ dr.
vl H“}_iux,sj/x sy X0 Hj-_%ux,j/x o

This closed representation will allow us to introduce and use a method that permits the derivation
of properties for specific families of distributions.

Remark 3. From (3.1) we can obtain another closed representation for Tx s. In fact, choosing x =0
and taking into account that Tx (0) = 1, we have that

s—1
EX) = (s— )] fix.;-
j=0

Hence, replacing this expression in (3.1) it follows that

Tos(x) = E(Xll) /x ) fx(t)(t —x) " Ldr. (3.3)

This may also be rewritten as,

Tys(x) = E(Xlsl)E((X —x) L

We will be using these iterated distributions to establish ageing properties of distributions and
ageing relations between different distributions within the same family.

We now discuss some definitions of ageing notions. Many ageing notions of a distribution are
fx(x) _ Txol)
Fx(x) — Tx1(x)
system indicates the frequency with which that system fails. Since the iterated distributions have been

based on the failure rate function of a distribution, given by . The failure rate of a

defined, it becomes natural to define the iterated failure rate.
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Definition 10. For each s > 1 and x > 0 we define the s-iterated failure rate function as

_ Txs1(x) _ Txs—1(x)
fx‘” TX?AY*I (t)dt .aX,SflTX,S ()C) '

rx s(x)

The next lemma provides an example of computation of the iterated distribution and failure rate
functions.

Lemma 2. [8, Theorem 2.7] Let X be a random variable with exponential distribution with hazard
rate A. Then, for s > 1, Tx s = e and rxs(x) =A7.

The monotonicity of the failure rate function is a relevant property satisfied by many distributions.
Given that the monotonicity of the failure rate of a distribution is expressed by the monotonicity of

rx,1, we may extend this monotonicity notion to the s-iterated failure rate.

Definition 11. Let X be a nonnegative random variable with survival function F x and density function

Ix.

1. Then X is said to be IFR (resp., DFR) if Fx is logconcave (resp., logconvex), i.e., if log(Fx) is

concave (resp., log(Fx) is convex).

2. Then X is said to be IFRA (resp., DFRA) if —log(F (x)) is starshaped (resp., antisharped, that

is —@ is deacresing for x > 0).

3. Then, fors=1,2,..., X is said to be s-IFR (resp., s-DFR) if rx s is increasing (resp., decreasing),
forx>0.

4. Then, fors=1,2,..., X is said to be s-IFRA (resp., s-DFRA) lf;lc Jo rx.s(t)dt is increasing (resp.,
decreasing), for x > 0.

It is easy to see that that the statements above can be considered as generalizations of the
monotonicity of the failure rate. In fact, having that log(Fx) to be concave is equivalent of having

that its derivative, —%, is decreasing. Moreover, —log(F(x)) = [ %dt. Hence, —log(F(x)) is

starshaped if and only if i Io % dt is increasing, for x > 0.

Most of the times, studying the monotonicity of these functions is not a simple task, since the
expression of Tx s does not always have an explicit closed representation or a manageable one.
Nevertheless, we are able to prove that the Weibull distribution is 1-IFR, as its distribution and density

functions have explicit closed formulas.

Theorem 6. Let X be a nonnegative random variable with Weibull distribution with shape parameter
« and scale parameter 0 and s > 1 an integer. If o0 > 1 (resp., o0 < 1), then X is 1-IFR (resp., I-DFR).

Proof. We have that, for the Weibull distribution,

mi=5(2)""

So if o > 1 we have that ry ; is increasing, that is, X is s-IFR, and if & < 1 we have that ry ; is
decreasing, that is, X is s-DFR. O
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3.2 Hereditary of the s-IFR monotonicity

Once proved the monotonicity of the failure rate for a family of distributions, it is natural to try to
prove the same for the s-iterated failure rate. The following definitions and results from Fagiuoli and
Perelley [4] will allow us to establish an hereditary property for the s-IFR monotonicity.

Definition 12. [4, Definition 2.10] Let Y be a nonnegative random variable with distribution function
Fy and density function fy. Then X is said to be smaller than Y in the s-FR order if
for x > 0 and it is denoted by X <,_prY.

Trs®) 4 increasing
Tx s(x)

Proposition 6. [4, Theorem 3.4] Let Y be a nonnegative random variable with distribution function
Fy and density function fy. If X <, prY then X <y 1)_pgr Y, for every s > 0.

Proof. We have that X <;_pg Y if and only if % is increasing for x > 0. By Proposition 2, this is

equivalent to having that Ty ; — aT x ; changes sign at most once and if the change occurs it is in the
order “—,+”, for every a € R. Given that

— — 1 oo — ﬁyﬁi
Tron@-aTren@=z— [ (Trl)-a>Ty (o)) ar
I'LY,S X ,uX,s

by Proposition 5 we have that Ty s (x) —aT x s+1(x) changes sign at most once and if the change

occurs it is in the order “—, +”. Again, by Proposition 2, we conclude that % is increasing, that
S+

iS,X S(S—H)—FR Y. O

Proposition 7. [4, Theorem 4.3] Let X be a random variable representing the lifetime of a system and
let X, = X —t/X >t denote the residual lifetime of that system at age t, fort > 0. Then X >,_pr X;
(resp., X <;_rr X;), for everyt > 0, if and only if X is s-IFR (resp., X is s-DFR).

We may now establish the hereditary property of the monotonicity of the iterated failure rate.

Lemma 3. [1, Lemma 6] Let X be a nonnegative random variable with moment of order s > 1. If X
is s-IFR (resp., s-DFR) then X is (s+ 1)-IFR (resp., (s+ 1)-DFR).

Proof. By Proposition 7, X is s-IFR (resp., s-DFR) if and only if X >;_gg X, (resp., X <,;_pgr X;), for
every t > 0. But X >;_pgr X; (resp., X <;_gg X;) implies that X > (s+1)-FR Xt (resp., X <(sy1)_pr X1)
for every s > 0, by Proposition 6. Again, by Proposition 7 we conclude that X is (s+1)-IFR (resp.,
(s+1)-DFR). O

After establishing the hereditary monotonicity of the s-IFR property in Lemma 3, it is easy to
describe the iterated failure rate monotonicity of the Weibull distributions.

Theorem 7. Let X be a nonnegative random variable with Weibull distribution with shape parameter
«a and scale parameter 0, and s > 1 an integer. If o0 > 1 (resp., & < 1), then X is s-1FR (resp., s-DFR).

Proof. By Lemma 3 it is enough to prove the result for s = 1. But that was already proved in
Theorem 6. O
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The previous lemma implies that for most distributions it is sufficient to verify the 1-IFR or 1-DFR
property. However, there are cases for which this property only becomes true after a few iterations,
that is, the lower monotonicity order does not hold in either direction. Exhibiting distributions that
do not have lower iterated monotonicity but verify it after a few iteration steps, usually requires a
suitable modification of known families of distributions. In what follows we provide an example of

such modification, using fattened tail Pareto distributions.

/log x+c

Example 2. [1, Example 9] Consider a random variable X with density fx(x) = ¢ forx >0,

where c,c’ € R. Integrating we have that,

_ 2log(x+c)+1 c 2log(x+c)+3
T == 7 d T .
T T DT
Thus,
4log(x+¢) 2log(x+c)+1
) = GG+ M 2 = G 2leger o) +3)

. . BTV |
We can verify that if c € (e7'+7 Je2), rx,1 is not monotone, while rx > is decreasing. In fact, differen-

tiating rx 1 we have that

—log(x+c¢) —2(log(x+c¢))*+1
(x+c)2(2log(x+c)+1)2

rg(,l(x) =

1 —1+

S

. . _ 1 1
Therefore, rgm(x) =0ifandonly ifx=e¢"" —corx=e2 —c. So, forc € (e ,e2) the roots of
r& | are positive and rx | is decreasing at first, until it reaches its minimum, then, it starts increasing,

and finally, after reaching its maximum, it decreases again. Differentiating now rx » we have that

—8log(x+c) —4(log(x+c))* + I

/ —
%2 = T P (log(x - 0) 1 3)°
Hence, 1’y ,(x) = 0 if and only if x = e 1=F —corx=e"F —c Force (e*Hé,e%) one of the

roots is negative and the other one is positive. Since we are only interested in nonnegative values, we
can conclude that rx > is decreasing for x > 0. Thus, we obtain that the 1-IFR or I-DFR properties
are not satisfied but the 2-DFR is. One can see that the density considered has finite expectation but
the second order moment does not exist. Thus, by Remark 3, the 3-iterated distribution is no longer

definable. So, if we want to obtain examples of distributions that have higher orders finite moments,
/log(x+c
(x+c)

the 3-iterated distribution to be definable, we may choose f(x) = ¢

, for o0 > 0 sufficiently large. In our case, if we want
rlog(x+c)
(x+c)*
expected value and the second order moment are finite. Hence, the 3-iterated distribution is definable.

we can consider densities of the form c

. It is easy to see that the

Analogously to the previous case, it is not possible to define the 4-iterated distribution. In this case,

! M If we do this successively, it is possible to see, that we

(x+c)3
are able to define T  if we choose densities of the type ¢/ l(oi(x;ﬁ In the same way as before, we can

we would need to consider f(x) = ¢

find an interval for c where rx g is not monotone for a small s, but, for s sufficiently large, rx ; is.
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There are families of distributions whose survival functions are not always expressed by a closed
explicit representation. So, it is difficult to analyse the monotonicity of the iterated failure rate directly,
as it was done for Weibull distributions. Therefore, one way to overcome this obstacle is by applying
the characterization of increasing functions stated in Proposition 2, in order to prove the increasing
property of the iterated failure rate function.

Theorem 8. Let X be a nonnegative random variable with distribution I" (¢, 0), and s > 1 an integer.
If o > 1 (resp., @ < 1) then X is s-IFR (resp., s-DFR).

Proof. Again, by Lemma 3 it is enough to prove the result for s = 1, that is, it is enough to prove that

— &
rx.1 (x) = Fx
explicit closed representation, for this family of distributions, we are going to use Proposition 2 to

is either increasing or decreasing for x > 0. Since, in general, Fx does not have an

prove the monotonicity of the failure rate. As fy and Fx are nonnegative, we only need to consider

the case where a > 0, while applying Proposition 2. Hence, we want to analyse the sign variation of
% ((i)) — a, for every a > 0. Observe that studying the sign of % ((J;)) — a is the same that as describing

the sign of H(x) = fx(x) —aFx(x), for x > 0. Let us consider the case & > 1. It is easy to observe
that H(0) = —a < 0 and lim,_,.. H(x) = 0. Furthermore, differentiating H, we have that

_ X
X% le 3

)= gairie)

((a0—1x—0(1—)).

The sign of H is determined by ¢(x) = ((a® — 1)x— 6(1 — a)), since x > 0. For x = 0 we have that
£(0) = —0(1 — ). Given that o > 1, we conclude that £(0) > 0. Consequently, if a6 — 1 > 0 then
£(x) > 0, for every x > 0. Hence, H' is positive and H is increasing. Knowing that H(0) < 0 and

lim,_,.. H(x) = 0, we obtain that the sign of H is “—". If a@ — 1 < 0, the sign variation of ¢, for
x>0, is “+,—". Thus, H' changes sign exactly once, that is, H has a maximum. Since H(0) <0
and lim,_,. H(x) = 0, we have that H has a sign variation in the order “—,+”. By Proposition 2

the conclusion follows. In the case a < 1, taking into account that lim,_,o H (x) = oo, the proof is
analogous. O

3.3 Non-hereditary of the s-IFRA monotonicity

Having established the hereditary property of the s-IFR monotonicity, it becomes natural to ask
ourselves if the s-IFRA monotonicity also has the same property. Unlike the s-IFR monotonicity, the
s-IFRA monotonicity does not have the hereditary property. This will be proved using parallel systems,
with exponentially distributed components. The lifetime of these kind of systems is expressed as the
maximum of the lifetimes of each component, hence, the distribution functions of the system lifetime
is expressed as a linear combination of exponential terms. In order to prove the non-hereditary of the
s-IFRA monotonicity it is important to be able to count the roots of such expressions. Therefore, the
following result, which first appeared in Tossavainen [11] and then it was also proved in Shestopaloff
[10], is presented without proof.

Proposition 8. [10, Theorem 1] Let n >0, po > p1 > ... > p, > 0,and o;; #0, j=0,1,...,n, be real
numbers. Then the function f(t) = ):;?:0 o ptj has no real zeros if n =0, and for n > 1 has at most as
many real zeros as there are sign changes in the sequence of coefficients 0, 0, 0y, ..., Ol
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Proposition 9. [2, Proposition 3.1] Let Y| and Y, be independent exponential random variables with
hazard rate 1 and A # 1, respectively, and define Y = max(Y,Y,). Then Y is 1-IFRA, but it is neither
2-1FRA nor 2-DFRA. Moreover; there exists sy > 2 such that Y is s-DFR for every s > s.

Proof. Since Y; and Y> have exponential distributions, applying Lemma 2, we have that fiy, ; = 1 and
fy, s = % Additionally, taking into account (3.3), we may conclude that,

- 1 L eM s
HE\C T T Ay )

where, ¢(s,A) = 1+ - + . To prove that Y is 1 —IFRA we need to verify that —t; (x) =
A

A1y T
, L
M is decreasing for x > 0, i.e., that w

means that we need to prove that H(x) = e~ +e ** — ¢~ (

is decreasing, for x > 0. By Proposition 2, this
A+1)x _ g% changes sign at most once, and if
the change occurs it is in the order “+-, —”, when x traverses from —oo to 4-o. Observe that, for x > 0,
TY,I (x) > e™*, so it is sufficient to consider the case a < 1. In addition, we only need to consider the
case where A > 1. In fact, if we consider A < 1 it is enough to divide the variables by A, since the
order relation does not change. So, by Proposition 8, we may conclude that H has at most two roots.
Moreover, limy,_, 4 H(x) =07, H(0) = 0 and H'(0) = a > 0. Therefore, the second root exists and it
is positive. Consequently, the sign variation of H is “+, —", meaning that ¥ is 1-IFRA. To prove that
Y is neither 2-IFRA nor 2-DFRA, we need to verify that 7,(x) = —M is not monotone. We can

1

see that limx_>() 153 (.x) = W
1

1 1 —Ax —x(A+1)
tz(x):1<:>P(x):<—>ex+e—e —0.

< 1 and limy_, ;1 (x) = 1, since A > 1. Now, observe that

A+1 A A A+1

By Proposition 8, we have that P has at most two real roots. Given that P(0) =0, P'(0) = 5 — %ﬂ >0

and lim,_, ;. P(x) = 07, the second root exists and is strictly positive. Thus, since lim, 0% (x) < 1,
limy_, 4o f2(x) = 1 and exists x > 0 such that #,(x) = 1, we conclude that #;(x) is not monotone,
and, therefore, the second statement is proved. For the final statement we want to prove that ry s is
decreasing, for x > 0. But, the monotonicity of ry s coincides with the monotonicity of

A S watis
Nix) — A (A+1)°
(x) = —x e M Gy
¢ T T

Differentiating N, we have that the sign of N’ is the same as the sign of its numerator,

A1) i A e 1 —(2A+1)x
Q(X) - A1 ¢ + (l + 1)s—1 € + (AZ—F)L)S_] ¢ ’

For both, A > 1 and A < 1, it is easy to see, by Proposition 8, that Q has at most one real root.
Furthermore,

_ e _l”l—i-l—()t—l)z(ﬂ,—l—l)sfl
Jim Q(x) =07 and - 0(0) = AT D)y '
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So, if Q(0) > 0, Q has sign variation “+, —”, when x > 0, and if Q(0) < 0, Q is negative, for x > 0.
Since, Q(0) as a function of s becomes negative, as the numerator has a negative coefficient for A°,
the largest power in that expression, there exists so > 2, such that for s > s9, Q(0) is negative, and,
consequently ry s is decreasing. 0

3.4 Iterated failure rate ordering

We finally present the s-IFR and s-IFRA orderings. These orders compare different distributions with
respect to their iterated failure rate.

Definition 13. Let X and Y be two random variables with distribution functions Fx, Fy € %, respec-
tively, and s > 1 an integer. Then

1. X (orits distribution Fx) is said to be smaller than Y (or its distribution Fy) in the s-IFR order
if cs(x) = T;i (Tx 5(x)) is convex and it is denoted by X <,_jpr Y (or Fx <s_irg Fy).

2. X (or its distribution Fx ) is said to be smaller than Y (or its distribution Fy ) in the s-IFRA order
ifts(x) = %cs (x) is increasing and it is denoted by X <;_jrr Y (or Fx <s_1rr Fy).

As it was previously mentioned, the s-IFR order is a convex transform order and the s-IFRA order
is a star order, since saying that ¢ is increasing is the same as saying that c; is starshaped. Furthermore,
since the convex transform order implies the star order, we may conclude that the s-IFR order implies
the s-IFRA order.

It is possible to define an equivalence relation for the s-IFR order.

Definition 14. [8, Definition 2.2] Let X and Y be two random variables with distribution functions Fy,
Fy € Z, respectively. Then X and Y are said to be s-IFR equivalent if there exists a constant k > 0
such that Fx (x) = Fy (kx), for all x > 0 and we denote this relation by X ~s_ipr Y (or Fx ~s_1rr Y ).

The above equivalence relation was instrumental for Nanda et al [8] to prove that both of these
orders are in fact partial orderings of the equivalence classes of .%.

Theorem 9. [8, Theorem 2.1] Let X and Y be two random variables with distribution functions Fy,
Fy € Z, respectively.

1. The relationship Fx <, _jrr Fy is a partial order relation on the equivalence classes of F with

respect to ~s_JFR.

2. The relationship Fx <;_jrra Fy is a partial order relation on the equivalence classes of . with

respect to ~s_JFR.

Corollary 3. [1, Corollary 1] Let X and Y be two nonnegative random variables with distribution
functions Fx,Fy € %, s > 1 an integer and &1,0p > 0. Then X <;_jrr Y if and only if X <, _jrr
Y.

Proof. We have that Fx (x) = P(X <x) =P(ouX < aix) = Fyx(0t1x), for every x > 0. So, X ~;_jrg
a1 X. Analogously, Y ~;_jrg Y. By Theorem 9, the s-IFR order defines a partial order relation on
the equivalence classes of .%, hence a1 X <; ;rr Y. ]
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So, when comparing parametric distributions with a scale parameter, we may assume that this
parameter is equal to 1.

The exponential distribution plays an important role when dealing with ageing notions. In fact, it is
possible to establish a relation between the s-IFR or s-IFRA orders and s-IFR or s-IFRA monotonicity,
when one of the variables has an exponential distribution.

Theorem 10. [8, Theorem 2.2 and Theorem 3.3] Let X be a random variable with distribution
function Fx € .% and Y with exponential distribution with hazard rate A. Then,

1. X <s_irrY (resp., Y <;_1rr X) if and only if X is s-IFR (resp., X is s-DFR).

2. X < grra Y (resp., Y <;_irra X) if and only if X is s-IFRA (resp., X is s-DFRA).

Proof. We will only present the prove for the case where X <;_;rg Y. By Definition 13, X <;_;rrY
if and only if Ty, i (Tx s(x)) is convex. Since Y is random variable with exponential distribution,
applying Lemma 2, we have that Ty N(Tys(x) = —+1og(Tx s(x)). Therefore, X <, ;g Y if and
only if —% log(Tx 5(x)) is convex, i.e., - log(Tx s(x)) is concave. We know that a function is concave

X.5-1(%)
Tx

if and only if its derivative is decreasing, hence X <;_;rg Y if and only if — a is decreasing. But

the last expression is equivalent to having that ry g is increasing, that is, X is s-IFR. O

The characterization of convex and increasing functions through their sign variation provides an
alternative way to characterize both the s-IFR order and s-IFRA order.

Theorem 11. [8, Proposition 2.1 and Proposition 3.1] Let X and Y be two random variables with
distribution functions Fx,Fy € % . Then

1. X <,_irr Y if and only if for any real numbers a and b, Ty s(x) — Tx s(ax+ b) changes sign at
most twice and if the change occurs twice it is in the order “+,—,4", as x traverses from 0 to
o0

2. X <,_yrra Y if and only if for any real number a, Ty s(x) — Tx s(ax) changes sign at most once

and if the change occurs it is in the order “—,+", as x traverses from 0 to +oo.

Proof. By Proposition 3, X <, ;rg Y if and only if for any real numbers a and b, 7;7 l (Tx s(x)) — (ax+
b) changes sign at most twice and if the change occurs twice it is in the order “+, —,+". Since, Ty,
is decreasing, applying Proposition 4, we have that X <;_;rg Y if and only if Tx s(x) — Ty s(ax+b)
changes sign at most twice and if the change occurs twice it is in the order “—,+,—"". But this
is equivalent to having that Ty (ax+ b) — Tx ;(x) changes sign at most twice and if the change
occurs twice it is in the order “+, —, 4. Taking y = ax + b, it follows that X <, _;rg Y if and only
if Tys(y) —Tx (2 — g) changes sign at most twice and if the change occurs twice it is in the order
“+,—,+". Given that this happens for every a,b € R, the conclusion follows. The case for the s-IFRA
ordering is similar to the previous, but we consider b = 0 and take into account Proposition 2. O

Remark 4. When applying Theorem 11 we only need to consider the case a > 0. In fact, considering
the s-IFR order and denoting by Vy(x) = Ty (x) — Tx s(ax +b), for every a,b € R, we have that
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V5(0) = 1 —Tx 4(b) and from the definition of the iterated tails,

1 a
Vs/(x) =—= Tys—1(x)+ = Txs—1(ax+Db).
Uy s—1 x s—1

Ifa <0, since Ty and Tx 5 are nonnegative for every integer > 1, we have that V) (x) < 0. Moreover,
by Definition 9, limy_,, Vs(x) = —1. Thus the sign variation of Vs is “+,—" when b > 0 and “—"
when b < 0. Therefore, for a < 0, the condition described in Theorem 11 is always satisfied. For
the s-IFRA order the conclusion is the same, since the only difference is that we consider b = 0, and
therefore, V(0) = 0 and Vy is negative for a < 0.

The above characterization requires explicit expressions of the tails of the iterated distributions,
which are often not available. The following theorem, provides a complement for the previous result,
when the expressions of the distributions functions are not available.

Theorem 12. [1, 2, Theorem 19 and Theorem 2.4] Let X and Y be two random variables with
densities fx, fy and distribution functions Fx,Fy € .7, respectively. Define, for some positive integer
k < s, and real numbers a and b, the function
1 — ar _
Hi(x) = ———Tysk(x) — —————Txs-r(ax+b).
ITj—1 fys—j [T5=1 fxs—j
1. If Hy changes sign at most twice, for every a > 0 and b € R, and if the change occurs twice it is
in the order “+4,—,4", as x traverses from 0 to +oo, then X <;_jrr Y.

2. If Hy changes sign at most once, for every a > 0 and b = 0, and if the change occurs it is in the
order “—,+7, as x traverses from 0 to +oo, then X <;_jpra Y.

Proof. We only need to prove the result for the s-IFR order, since for the s-IFRA the proof is analogous.
From (3.2) we have that

Yoo (4 k=1 oo (4 k—1
Vs(x) = %/ %Ty_’s_k(l) dt — %/ (t (ax+b)) TX.s—k(t) dr.
Hj:l Uys—j Jx (k—1)! Hj:1 Ux s—j Jax+b (k—1)! '

Taking y = =2 in the second integral, we obtain

1 oo (p—x)k=1 a* oo (y —x)k=1
Vi(x) = — / Tys—(t)dt — ————— / ~———Tyxk(ay+b)dt
Hlj:1 fys—jJx  (k=1)! Hﬁ:l Hxs—jJx  (k=1)! '

oo —x k—1 o pt
Vs(x):/: Hﬂk(z)dz:/: /x(k—n(ul—x)kfz (ff(?)!duldt.

Reversing the order of integration and repeating this process k — 1 times, we have that

_ [ 2 _Hi(0) TR Sl B e
Vs(x)—/x / (k1) (i =)' 2 i = _/x / [ () dra -y -dun,
3.4
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Applying Proposition 5, iteratively, we conclude that V; has sign variation equal to “+, —, +” or “—, +”
or “+”, i.e., V5 changes sign at most twice and if the change occurs twice it is in the order “+, —,+".

From Theorem 11 we conclude that X <,_;rr Y. OJ

As we can see, it is enough to study the sign variation of Hj, when we are analysing the sign
variation of V.

As mentioned before, the expressions of the iterated tails are not always explicit. Therefore, in
most cases we are interested in applying the previous theorem for k = s, in which case we are working
with density functions, or k = s — 1, in which we are using survival functions. Taking now into account

Remark 3, we have that

1 a’
=B g

fx(ax+b)

and
1 - a !

mH;—l(X):mFy(x) B ————Fx(ax+D).

Note that the factor = ) has no influence on the sign variation. Using Proposition 4 with
{(x) = logx, we can have a similar result to Theorem 12. This transformation is useful, since in most
cases it is difficult to analyse the sign variation of H and H;_;.

Corollary 4. [2, Theorems 2.3 and 2.4] Let X and Y be two random variables with densities fx
and fy and distribution functions Fx,Fy € %, respectively. Define, for every constants a and b, the

functions,

s—1
P9 =Toe(f () log(flax+5) +1og )

and

s—1
Fo-1(x) = log(Fy (x)) —log(Fx(ax+b)) +log (ngy% ) |

1. Iffor every a > 0 and b € R, either of the functions, P; or P;,_| changes sign at most twice when

x traverses from 0 to +oo, and if the change occurs twice it is in the order “+,—,+", then
X <s-1rrY.

2. Iffor every a > 0 and b = O, either of the functions, P; or P;_| changes sign at most once when
x traverses from 0 to +oo, and if the change occurs it is in the order “—,+”, then X <,;_jrpa Y.

Having established these results we are able to compare two Weibull distributions. Observe that
this is, in fact, a generalization of Example 1.

Proposition 10. [1, Proposition 3] Let X and Y be two random variables with W(ay,0;) and
W (aw, 0,) distributions, respectively, and let oy > 0p > 1 and 61,60, > 0. Then X <;_jrrY.

Proof. In order to prove that X <; ;rr Y we need to study the sign variation of H,_;, which is
equivalent, by Proposition 4, to study the sign variation of P;_;. Note that, as proved in Corollary 3,
we may consider 6; = 6, = 1. Hence,

E(Y$ 1
nyl(X) = —xaz + (ax—i—b)o‘l —|—10g (ab—](E‘()(szl)> y fora > Oand b c R.
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Differentiating this expression, we have

P (x) = —ax® '+ a0y (ax+ )M 1.

S

The direct control of the sign variation of this function is difficult, so we will apply Proposition 4,
with {(x) = log(x), one more time, to P_,. Thus, analysing the sign variation of P/_, is the same as
studying the sign variation of

Os—1(x) =log(aoy) + (a; — 1)log(ax+b) —log(a) — (0 — 1) log(x).

Differentiating Q;_1, we obtain,

, _a(ag—1)x—(p—1)(ax+b)
Os1 (%) = (ax+b)x

Now, as we only need to analyse the sign variation for a > 0, we will separate the cases where b > 0
and b <0.

Assume, that b > 0. Here, we need to study the sign variation for x > 0. We have that, for x > 0,
the denominator of Q! _, (x) is positive and lim,_,o+ a(a; — 1)x— (o — 1) (ax+b) = (1 — )b < 0.
Thus, since limy_, ya(t) — 1)x — (0 — 1)(ax+ b) = oo, the sign variation of 0/, is “—,+” and,
consequently, the monotonicity of Q;_ is, in the same interval, \, 7. Since, lim,_,g+ Q;_| = +oo
and lim,_, 1 Q1 = +oo and applying Proposition 2, we have that P,_,, which has the same sign
variation of Q,_1, changes sign at most twice and if the change occurs it is in the order “+, —,+”.
Hence, the monotonicity of P,_; is "\ . Again, by Proposition 4 and , given that a; > @, implies
that lim,_, ;.. = +o0, we conclude that the most sign varying possibility for P_; is “—, 4, —,4".
Since, P;_; has the same sign variation has H;_j, taking into account (3.4) and Proposition 5, we
conclude that V; changes sign in one of the following orders: “—,+,—,+" or “+,—,+” or “—,+” or
“4+”. Remembering that V,(0) > 0, it follows that the possible choices for the sign variation of V; are
“+,—,+7 or “+7.

Assume, now, that b < 0. For x < —%, Vs(x) = Tys(x) —1 <0, since ax+ b < 0. Hence, we
only need to study the sign variation of V; for x € (—%, +o0). Given that » < 0 and x > —2 >0
we have that Q) | (x) > 0, thus Q,_; is increasing in (0,+o0). As oy > & > 1, it follows that
lirnx_> (-2)* Qs-1(x) = —eo and limy ;. Qs 1(x) = oo, hence, the sign variation of P/_, which
coincides with the sign variation of Q;_; is “—,+", thus the monotonicity of P_; is N\, . By
Proposition 2 and by the fact that lim,_, ;o Ps— (x) = oo, it follows that if P, (—%) > 0 the most
sign varying possibility of Py_; is “+,—,+", while if P,_;(—2) < 0, P,_; changes sign at most once
in the order “—, 4. Taking into account that the sign variation of P;_ is equal to the sign variation of
Hy_1, (3.4) and Proposition 5, V; changes sign, in (— Z, +09), in one of the following orders: “+, —,+”
or “—,+" or “+”. Since, Vs(—g) < 0 we have that the sign variation of V; is “—, 4.

Therefore, we may conclude that the possible sign variations for Vi, as x traverses from 0 to +oo,
are “4,—,+” or “— 4" or “+”. By Theorem 11, it follows that X <; ;g Y. O

Proposition 11. [1, Proposition 4] Let X and Y be two random variables with W (o, 0;) and
W (o, 0,) distributions, respectively, and let oy > 1> 0p > 0and 0,,6, > 0. Then X <;_jrgY.
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Proof. Since o > 1, by Theorem 7, we have that X is s-IFR. But, taking into account Theorem
10, this is equivalent to have X <;_;rg Z, where Z has an exponential distribution. Analogously, by
Theorem 7, given that o < 1, we have that Y is s-DFR. Again, by Theorem 10, Y is s-DFR if and only
if Z <;_jrr Y. Since, <;_jrg is a partial ordering, it is transitive. Hence, X <, jpgp Zand Z <, _jrr Y

implies that X <, _jrg Y. L]

Analogous results for the Gamma family of distributions were proved in Arab and Oliveira [1].
However, the technicalities are much longer to handle so we will not include their proof here.

3.5 Non-hereditary of the s-IFR ordering

We now have a look at the hereditary properties of the s-IFR ordering. Unlike the s-IFR monotonicity,
we will see that the ordering relation is not an hereditary property. In order to prove that, we need to

— =1
recall Definition 8. Observe that, saying that % (defined on Page 6) is decreasing is equivalent
e u

= el
Ty (T : . ~ i
TraTyi) 4o decreasing. Moreover, note that having X <. Y is the same as

Txa(Tx 1 (%))
having X < _;rr Y, and, therefore, Proposition 1 relates the 1-IFR and DMRL orders.

Nanda et. al [8] mention, without proof, that the DMRL order is equivalent to the 2-IFR order.
However, this is true only under the condition that one of the random variables is exponentially

to saying that d(x) =

distributed. In fact, this equivalence is, in general, not true.

Proposition 12. [2, Proposition 5.1] Let X be a random variable with distribution function Fx € F
and Y a random variable with exponential distribution. Then X <,_jrr Y if and only if X <pyrr Y.

Proof. Taking into account that the exponential distribution has a scale parameter, it is enough

to consider the case where Y has mean 1. Then, Ty(x) = Ty, (x) = ¢*, by Lemma 2. Hence,
X <pmre Y is equivalent to d(x) = ﬁ being decreasing. On the other hand, X <,_;rg Y if and
x2U x 1 (X
only if ¢2(x) =Ty E(Tx,z(x)) is convex, or equivalently, if and only if ¢} is increasing. Differentiating,
we obtain ¢ (x) = —— Trlx) = 210 Hence, having that ¢ is increasing is the same as
BxaTyi(Tya(Txo(x)  HxaTxa2
TX,I ()C)
T

X2

. . . N . =1 .
having that ¢(x) = is increasing. Observe now that, since Ty ; is decreasing,, ¢(Tx ;(x)) is

decreasing. But, C(T;l (x)) = d(x), so the conclusion follows. O

As a consequence of this proposition we have the hereditary property of the s-IFR ordering, when
one of the random variables is exponentially distributed.

Corollary 5. [2, Corollary 5.1] Let X be a random variable with distribution function Fx € % and Y
a random variable with exponential distribution. If, for some s > 1, X <;_pr Y, then X <(; 1) g Y.

Proof. Define X with tail Tx,s and Y;" with tail Ty’s. So, X <;_jrr Y is equivalent to having that
X{ <i1—irr Y. By Proposition 1, this implies that X;" <pyrz Y|, which is equivalent to X;" <o_;rg Y,
by Proposition 12. But this is just a rewriting for X <(,,1)_rg Y. O

However, the same hereditary does not hold when comparing random variables with other distri-
butions.

Proposition 13. [2, Proposition 5.2] Neither the 1-IFR or the DMRL orders imply the 2-1FR order.
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Proof. Given ay,a > 0, we say that X has a branched Pareto distribution, X ~ BP(oy, 0p), if its
survival function is

2 2

= o (on+ o)
=—1 D o .
X,l( ) (x+a ) [0,061](x)+ 4(X—|—a2)2 (ap,+ )(X)

Integrating, we obtain
4 a? o — Q (0 + )2
T ! 1 1
Txa(x) = 300+ 0 <x+ o + 4 > 0.c0) () + Boy+ ) (x+ ) (en ) (%),

— o+ 0 o

Ty, 1( )= ( 2K O‘1> ]1[0,%}()‘) + <\/); - a1> ]1(%,+m)(x)a

=1, [ (atm)? 40 B

Txo(x)= <(3a1 P Otz> ]1[07302]%22}&) + <(3a1 Fo)r— (0 — o) o 11(30211‘222 oo )(X).

Moreover,

TeaTxh0) = 2o 1 )+ 3o (v 232 1 o)

3ag+an s 30y 4o
and
= (3(11—|—(X2) 2 ((3061+062>x—(062—061))2
Tx1(Tx ——Sx 1« 1, o+a .
x1(Txa() = 4o+ 0p)2" D0 30311032]( %)+ 1603 (s ey e =) (%)
Considering now that X ~ BP(5,10) and Y ~ BP(2,6), we find
10 25(2vx+1)
d(x) = j]l[o,g)( x)+ 2(5va+3 )]1 +w)(x)'
It is easy to see that this function is decreasing. In fact, for x € [0, ) dis constant Forx € [} 10T,

we have that the sign of the derivative of d is given by the sign of N(x) = which is negative for

4{7

x > 0. Hence, d is decreasing. Furthermore, based on what we have seen before, we have that ¢; is
. . 1 : :

convex if and only if ¢j(Ty 5(x)) is decreasing. Note that,

—1 81 ox? 4(3x—1)?
A (Tx(x)) = 100 Loy (0 + Wﬂ(g,g](x) Wﬂ(%,l](x)'

This function is not monotone: for x € [0, 2], ¢} (7;12 (x)) is constant; for x € (2, 3], differentiating we
can see that ¢ (T;lz (x)) is increasing; and for x € (%, 1], differentiating again this function, we may
conclude that ¢/ (7;2 (x)) is decreasing. Therefore, c; is not convex. Hence, we have proved that the
DMRL order does not imply the 2-IFR order. Finally, in order to prove that the 1-IFR order does not
imply the 2-IFR, we need to prove that c; is a convex function. In fact,

1) = (255 -2 ) o0+ (55 -6) 1500,
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which is clearly convex. O

3.6 A criterium for the s-IFR ordering

It is obvious that when studying the sign variation of P;_; in Proposition 10, significant difficulties
arise for the case where b < 0. Therefore, it would be useful if we only needed to verify the sign
variation of these functions for a > 0 and » > 0. In fact, with the help of the s-IFRA ordering a
simplification of this analysis may be obtained.

Theorem 13. [2, Theorem 6.1] Let X and Y be random variables with distribution functions Fx,Fy €
F, respectively. If X <, _irra Y and the criterium from Theorem 11 is satisfied for b > 0, then
X <sirrY.

Proof. In order to prove that X <, ;rg Y, we need to prove that cs(x) = T;l (Tx s(x)) is convex,
or equivalently, that ¢; ! (x) = T;}S (Tys(x)) is concave. But this is equivalent to prove that V;(x) =
T;S (Tys(x)) — (ax+ b) has, at most, the sign variation “—,+,—", for every real numbers a and
b. On the other hand, X <; ;rpa Y means that C‘)(C—x) is increasing for x > 0, or equivalently, that
&) is decreasing for x > 0. Observe now that the sign variation of V; is the same as @ =
(Tx,‘m‘s(x))

< — a) - %, for x > 0. The expression in parenthesis is decreasing, given that X <, jrpa Y.

For b < 0, % is increasing. Thus, @ has at most one root and, therefore, changes sign at most once

for b < 0. Since Theorem 11 is verified for b < 0 and, by the hypothesis, for b > 0, we have that
X <s—rrY. O

‘We may now complete the comparison within Weibull distributions when the shape parameters
are less than 1.

Proposition 14. Let X and Y be two random variables with W (ay, 01) and W (0, 6) distributions,
respectively, and let 1 > o1 > 0p > 0and 61,0, > 0. Then X <;_rr Y.

Proof. We will begin by proving the s-IFRA ordering. For that we consider a > 0 and b = 0 on the
definition of V;(x) = Ty s(x) — Tx s(ax+b) and of the expressions computed in the course of the proof
of Proposition 10. We want to prove that V; changes sign at most once and if the change occurs it is in
the order “—,+”, as x traverses from 0 to +o. Since, o > o, we have that 0, (x) > 0, for x > 0.
Hence, Q,_ is increasing and, given that lim, o+ Qs_1(x) = —oo and limy_, 4 Qs—1 (X) = oo, has
sign variation “—, +”. Therefore, P;_; has monotonicity “~, 7. Moreover, limy_ o Ps_1 (x) = +oo,
which implies that the most sign varying possibility for P_; is “+,—,+”. Thus, by applying
Proposition 5 and (3.4), we may conclude that V has the possible sign variations, “+, —,+” or “—,+”
or “+”. But V5(0) = 0 so, V, at most, has sign variation “—,+”. Thus, X <;_;rg4 Y. Now, in order to
apply Theorem 13, we only need to prove that V; changes sign at most twice in the order “+, —,+",
as x traverses from O to oo, for every a > 0 and b > 0 (since when b = 0 we already showed that V;
changes sign at most once in the order “—,4""). Note that, now we consider again the expressions
of of Q! _,, P/_, and P,_ in Proposition 10. Taking into account that &, < 1, we may conclude that

" _1(x) >0 for x > 0. Furthermore, lim, o+ Qs (x) = —co and lim,_, . Qs (x) = +oo. Hence,
since Q,_ is increasing, we have that Q;_; has sign variation “—, +”. Thus, P,_; has monotonicity
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“N,/"". Given that lim,_, o Ps_1 (x) = +o0, it follows that the most sign varying possibility for P;_; is
“+,—,+". But, by Proposition 5 and (3.4), it follows that this is also the most sign varying possibility
for V;. By Theorem 13 we may conclude that X <, _jrg Y. OJ

Once again, it is possible to establish a similar result for Gamma distributions, but the proof is
omitted for brevity. The interested reader is referred to Arab et. al [2] for a detailed proof.



Chapter 4

Failure rate properties of parallel
systems

As referred in Section 3.3, the lifetime of a parallel system is expressed as the maximum of the
lifetimes of each component. Kochar and Xu [6] proved that a parallel system where the components
have the same exponential distribution ages faster, with respect to the 1-IFR order, than a same sized
parallel system where the components have exponential lifetimes with different hazard rates. We will
apply the results established so far to extend this result to the s-IFR ordering.

4.1 Failure rate ordering of parallel systems with two exponentially
distributed components

We now apply the criterium introduced in Theorem 13 to compare two parallel systems with exponen-
tial distributed lifetimes, with respect to the s-IFR ordering. Throughout this section we will consider
the following random variables

X = max(X;,X;), where X; and X, are independent random variables,
exponentially distributed with hazard rate 1
Y =max(Y},Y2), whereY; and ¥, are independent random variables,

exponentially distributed with hazard rate 1 and A > 1, respectively.
4.1)

Remark 5. Assume that Y| and Y, are two random variables with exponential distributions with
hazard rates Ay and A, respectively. Since A and A, are scale parameters, we can normalize the
variables by dividing all the parameters by A, and take A = % where A is assumed to be a constant
larger than 1. So it is always possible to reduce a general case to the present case.

e Ax e—(A+1)x

As it was stated in Proposition 9, we have that Ty,s = ﬁ (e_x + T AT

) , where,

> 1 T
that X <;_;rr Y, for every s > 1. However, we need to prove a few auxiliary results.

c(s,A) =1+ ﬁ + W Similarly, we have that Tx ; = 27 (e fzx) . We want to prove

Proposition 15. [2, Proposition 7.1] Let X and Y be two random variables defined as in 4.1. For
every s > 1 and x > 0, we have that Tx s(x) > Ty s(x).

25
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Proof. Define

s 1 ) e 2 e e~ (A+1)x

LM@ZTXA@_TMOj:éﬁ<T—1_c@l) 31 AT AT

Since we are considering A > 1 we have that the sign of the coefficients of U, after ordering them
decreasingly with respect to the exponents, are “+4-,—, —, 4. So, Uy has at most 2 real roots, by
Proposition 8. One of the roots is easily located, since U;(0) = 0. Note also that the sign pattern of the
coefficients implies that lim,_, . Us(x) = +o0 and lim,_, o Uy(x) = 0. In order to locate the other
root, we need to study the sign variation of the derivatives of orders k < s and s of U;. Differentiating
U; we have

_2s —x _ nkp—2x 1 —Ax —(A+1)x T
U0 = (0 | )(ex : . ,

31 A& TATE T Aoy E

and i 5 .

(s) s e -2 1 ( —x —Ax —(l—}—l)x)

U =(-1 — A —(A+1

s (x) ( ) 2 _ 1 C(S,)y) e "+ Ae ( —+ )e |
It is easy to see that US(S) (0) = 0. Moreover, if k is even we have that the sign pattern given by the
coefficients of Us(k) is “4, —, —, 47, implying that Us(k) has at most two real roots, lim,_, ., Us(k) = oo
and lim,_, Us(k) = 0", If k is odd then the signs of the coefficients of Us(k) are “—,+,+,—".
Therefore, Us(k) has again at most two real roots, lim,_, Us(k) = —oo and lim,_, 1o Us(k) =0".1In

order to analyse the sign variation of these functions we need to separate into two cases, as done in
the analysis of the signs of the coefficients of Us(k).

s even: The sign pattern given by the coefficient of U_v(s) is “4,—,—,4+”. Therefore, by

Proposition 8, this function has at most two real roots and the behaviour of US(S) is the same

as the behaviour of Us(k) , for k even, when x — oo . As US(S)(O) = 0 we only need to locate
one more root. Observe that, due to the limits computed above and the maximum number

of possible roots, US(S) has one of the following sign variations, “+” or “—,+”. Additionally,

Us(sfl) (0) = 23;1:1? + ﬁ whose sign depends on s and A. Hence, we need to analyse what

happens to the sign variation of Us(s_l) when Us(s_l) (0) is positive or negative.

sign variation of U{" “_ oy oy
monotonicity of U " N “
US(S_U(O) positive | negative | positive negative
sign variation of Us(sfl) in (0,4e0) | “4, =7 | “=7 not possible | “—”

Thus, there are only two possible sign variations for Us(s_l), when x € (0,+o0): “4, =" or “4”.

Since, U % (0) = 552 2 ﬁ(l +1- ﬁ), again we cannot decide about its sign. So,

when analysing the sign variation of Us(sfz) we need to consider both possibilities.
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sign variation of US(‘Y*U oy «_»
monotonicity of U 2 “ N NG

U, S(Siz) (0) positive | negative | positive | negative
sign variation of Us(s_z) in (0,4c0) | “47 R not possible

So, Us(s_z) has the same possible sign variations as U, in (0, 4cc). Repeating now this process,

we are able to conclude that the sign variation of U; has the same behaviour as the sign variation
of UV, Remembering that U,(0) = 0 and that lim,_, ;. Us(x) = 0T, we have the following

sign variation table:

sign variation of U; wpo | e
monotonicity of Uy “ AN N
sign variation of U in (0, +-o0) | “+” not possible

Therefore, we may conclude that U (x) > 0, for x > 0.

s odd: In this case, we have that the sign pattern given by the coefficients of US(S) is“—,+,4+,—".
Thus, lim,_, o U") = —oo, lim, oo U =0~ and U has at most two real roots. Given that
Uy (0) =0, we may conclude that the sign variation of U is at most “+, —”, when x € (0, +o0).
But this coincides with the case s — 1, when s even, so we can repeat the previous arguments to
conclude that Uy(x) > 0, for x > 0.

O
Corollary 6. [2, Corollary 7.1] Let X and Y be two random variables defined as in (4.1). Then
771 —
7TY'S(TXX’X(X)) < 1, for every x > 0.

Proof. Taking into account what was proved in Proposition 15 and that Ty is decreasing, the
conclusion follows. 0

Proposition 16. [2, Proposition 7.2] Let X and Y be two random variables defined as in (4.1). For
everys > 1, X <;_jrra Y.

Proof. We need to prove that #,(x) =
variation in (0, +o0) of #;(x) —a is, at most, “—,+”, for a > 0. But, by Corollary 6, we only need

771 —

Tyy(Txs(x) . . . . .
M is increasing, for x > 0, or, equivalently, that the sign
to consider the case where 0 < a < 1. So, proving that X <;_;rp4 Y is equivalent to proving that
Tx 5(x) — Ty s(ax) changes sign at most once for 0 < a < 1, and if the change occurs it is in the order
“4,—7, as x traverses from 0 to +oo. But, this is still equivalent to proving that the sign variation of
Vi(x) = Ty(x) — Tx s(ax) is, at most, “—,+”, for a > 1. Writing the expression of V; explicitly, we

v 1 . e—lx e—(l-i—l)x S p—ax _ p,—2ax
WG\ T AT T o

have

The arguments to characterize the sign variation of V; will be analogous to what was done in Proposi-
tion 15, so we need the derivatives of orders k < s and s of V;. Thus,

—Ax —(A+1)x s,k ,—ax _ ~k k_,—2ax
k 1 .. € e 2'a"e 2%a*e
4 )(x) = (-1} S N 1k | 5 g
c(s,A) A (A+1) 25—1
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and

K=y [c(;m (e + A = (a4 1)e 1)

IS qSe—0x _ zsase—Zax

25 —1

Note that VS(S> (0) = 0. In order to apply Proposition 8, we need to order decreasingly, with respect to
the exponents, the exponential terms in the previous functions, which means we need to separate our
analysis into several cases, depending on the location of a with respect to A.

Case 1: 1 <a <2a<A <A+ 1. In this case, we have that the sign of the coefficients of V; are
“+,—,+,+, =", implying that V; has at most three real roots. Additionally, lim,_, . Vy(x) = —eo,
lim, o Vi(x) = 07 and V;(0) = 0. Observe that when k is even we have that the signs
of the coefficients of Us(k) are “+,—,+,+,—". By Proposition 8, we conclude that %(k) (x)
has at most three real roots. Furthermore, lim,_, . Vs(k) (x) = —co and limy_, 4o Vs(k) (x)=0%.
When £ is odd, the sign pattern given by the coefficients of Vs(k) (x)is “—,4,—,—,+. Hence,
lim,_s_o Vs(k) (x) = +oo, limy ;4 Vs(k) (x) =0~ and Vs(k) (x) has at most three real roots. As it
was done previously, we need to separate our analysis into two cases.

s even: The sign pattern given by the coefficients of Vs(s> is “4,—,4,4,—", which

implies that lim,_, _.. v (x) = —oo, limy o0 v (x) =07 and vV.*) has at most three real

roots. Hence, the most sign varying in (0,+o0) case for Vsm is “+,—,+”. Given that

— s—1_s—1 . . .
VS(S D (0) = % — C(;ﬁ), we cannot determine its sign, so we need to study the case

where it is positive and negative as it is presented in the table bellow.

sign variation of VS(S) -4 “_ 47 «yr
monotonicity of VS(FI) “ NS N «

Vs(s_l) (0) positive | negative | positive | negative | positive | negative
sign variation of Vs(sfl) T S I not pos- | “—”

in (0,+4-o0) sible

Now, proceeding with the analysis of Vs(sfz), we have that VX(SQ) 0) = ﬁ(l + % +

1 2.ra.v72_2s72ax72
A+1 )— 251

order s — 2 of V; at 0. By analysing the possible cases we obtain

. So, once more we cannot determine the sign of the derivative of

sign variation of v e, =" =7 w7

monotonicity of Vs(s_z) NN\ “ N\ N

VS(S_Z) (0) positive negative | positive | negative | positive | negative

sign variation of Vs(sfz) “,— | = | 7 “— | 4 not pos-

in (0,+4o0) sible
We may conclude that the most sign varying possibility for VS(FZ) is the same as for VS(S).

Hence, we may resort on the same argument to conclude that the most sign varying in
(0,4o0) case for V, is “—, 4, —".
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sign variation of VS’ ZENSRNE ISR I
monotonicity of Vj SN [N e
sign variation of Uy in (0, +0) | “—, +7 g not possible

We may conclude that V; changes sign at most once in (0, +o0), and if the change occurs
it is in the order “—,+".

s odd: The sign of the coefficients of v are “—,+,—,—,+”. Thus, limy_e Vi (x) =
o0, limy, 4o Vs(s) (x) =0~ and VS(S) has at most three real roots. This implies that the sign
variation of VS(S) in (0,4c0) is, at most, —,+, —, which corresponds to the behaviour of
the derivative of order s — 1 when s is even. So repeating the previous arguments, the
conclusion still holds.

Case 2: 1 <a < A <2a< A+ 1. The sign pattern of the coefficients of V; coincides with the one
observed in the previous case, so the result also holds.

Case 3: 1 <a <A <A+1 < 2a. After ordering decreasingly, with respect to the exponents, the
exponential terms in V; we have that the sign pattern of the coefficients is “+,—,+,—,+".
Hence, by Proposition 8, V has at most four real roots. Once again, since V;(0) = 0, we only
need to locate the other three roots. Given the number of possible roots, a direct usage of
the previous arguments does not allow to conclude about a sign variation compatible with the
s-IFRA order. However, note that a > 231, so, V,(x) > Ty,(x) — Tx(2x) = V. (x), for
every fixed x > 0. So, if we prove that V; . > 0, for every x > 0, it follows that V;(x) > 0, for
every x > 0. Rewriting V , with the exponentials already ordered decreasingly with respect to
the exponents, we obtain,

Vi (x) = e 2 P N . S L ! e~ (A
o c(s,A) 25—1 c(s,A)As—1 25—1  c(s,A)(A+1)571 ’
The coefficient of e~ (A1) is positive, since, the sign of ﬁ — W is the same as the

sign of A(s,A) = c(s,A)(A + 1)*~1 — 25 — 1. If we differentiate A(s,A) as a function of A, we
can see that this function is increasing. Noting that A(s, 1) = 0, it follows that the coefficient is
positive. Therefore, the sign pattern is “+, —, +, +. Hence, besides VH(O) = 0, we have that
V.. has at most two real roots, lim_, . Vs (x) = +c0 and lim,_, ;. V; .(x) = 0T. Observe now
that,

1 25k

(k) (1)K —x k—2Hx 1 —Ax
Vs,* (x)—( 1) [c(s,),)e 23_1(14-1)8 : +c(s,l)ls_1_ke

1 1 k—(A+1)x
+<2s—1 c(s,z)(/lﬂ)s—l)(“])e ’
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1 1
_ s ,—(A+1)x
+<2s—1 c(s,z)(zﬂ)s—l)(“l) ¢ ]
®

Note that, when k is even, we have that the sign pattern given by the coefficients of V.’ is
“+,—,+,+". Hence, lim,_, o Vsli) (x) = oo, limy_, oo Vv(,]i) (x) =0" and Vé@ has at most two
real roots. When k is odd the sign pattern is “—, +, —, —”, and, therefore, the sign of the limits

is reversed, when x — +oo. Now, we need to analyse what happens for s odd or even.

s even: Repeating the arguments above, the sign pattern of the coefficients of ngi) is the
same as for V; ., so the limits when x — £oo coincide. Moreover, Vs(i) (0) =0, so we only

need to locate one more root.

sign variation of Vs(i) “_ 47 “p
monotonicity of Vs(ﬁffl) o, “
VS(;I)(O) positive | negative | positive negative
sign variation of ngi_l) in (0,400) | “4,—=7 | “=7 not possible | “—~

Thus, the possibilities for the sign variation of Vs(ffl), in (0,4o0) are “+4,—" or “—".

Doing the same analysis for Vs(’ffz), we have

sign variation of Véff” “p w_»
monotonicity of VS(;_Z) “ AN NG

Vs(;_m (0) positive | negative | positive | negative
sign variation of Vi > in (0,4e0) | “4” | “=,4” | “+” | not possible

(s)

(5=2) s the same as for V.

We may conclude that the behaviour of the sign variation of Vg

5

Once again, we may conclude that VS’7* has one of the following sign variations in (0, +co):
4‘+’ _” Or _7’.

sign variation of VS/.* “p v | e
monotonicity of Vi , NN
sign variation of V; , in (0, 40) | “4” not possible

Hence, V; . (x) > 0, for x > 0, which implies that V(x) > 0, for x > 0.

s odd: This corresponds to the behaviour of the derivative of order s — 1 of V; ., when s is
even, so the conclusion still holds.

Case4: 1 <A <a<2a< A+ 1. The sign of the coefficients in this case is “+,+, —, +, —", meaning
that, at most, there are three real roots. This is exactly the same sign pattern that we found in
Case 1. So, we can repeat the arguments to conclude that the sign variation of Vj, in (0, +e0), is
at most “—, +”.

Case5: 1 <A <a<A+1<2a. This case is very simple to analyse. In fact, the sign pattern given
by the coefficients of V is “+,+, —, —,+”, so, taking into account Proposition 8, it has at most



4.1 Failure rate ordering of parallel systems with two exponentially distributed components 31

two real roots. Moreover, lim,_, . V;(x) = 4o and lim,_, .. V;(x) = 0". But this behaviour is
compatible to the following sign variations in (0, +e0): “— +” or “+”.

Case 6: 1 <A <A+ 1 <a<2a. The signs of the coefficients of Vj, in this case, are the same as in
the previous case, so the result holds.

Therefore, we have shown that, in all the possible cases, the sign variation of V is, at most, “—, 4" so,
t, is increasing and, consequently, X <; ;rra Y. O

Theorem 14. [2, Theorem 7.1] Let X and Y be two random variables defined as in 4.1. For every
s>1, X < yrrY.

Proof. In order to prove that X <, ;rg ¥, we will be applying similar arguments as the ones used
in Proposition 16. However, we now want to prove that c(x) = Ty, ; (Tx s(x)) is convex. Taking
into account Theorem 11 and Theorem 13, it is enough to prove that Vs(x) = Ty s(x) — Tx s(ax+b)
changes sign at most twice, in the order “+, —, 4+, for every a > 0 and b > 0, since we have already
proved that X <, _;rg4 Y (note that this is also the case where b = 0, so we do not need to study it).
Observe that, now, V,(0) = 1 — Tx 5(b) > 0. Furthermore,

AT A1)y

=6 21 ’

1 - e~ Ax e~ (A+1)x 28— (ax+b) _ ,—2(ax+b)
(s, )\

1 oy e—/lx e*(}ﬂ“l)x zsakef(aerb) _ 2kak672(ax+b)
As—I=k (L4 1)1k 25 1 ’

—(ax+b) __ ,—2(ax+D)
(s) —(_1)$ —x —Ax —(A+1)x) _Hs s€ €
v x) = (~1) [C(M) (e FAe M (A +1)e ) 2a —_ ]

We need to order decreasingly the exponential terms of these functions, with respect to the exponents,
in order to apply Proposition 8. So, once again, we need to consider different cases according to the
(=11 25a%e P (1—e?)

location of a with respect to the hazard rate A. Note that Vs(s) (0) = 5T , which has the
same sign as (—1)*™!, as b > 0.

Case 1: 1 <a <2a <A <A+ 1. This sign pattern given by the coefficients of V; is “+, —, +,+, —,
so Vi has at most three real roots. Moreover, lim,_, o V;(x) = —c0 and lim,_, ;. Vs(x) = 07,
Taking into account that V,(0) > 0, it follows that the sign variation of V; in (0, +c0), is either
“4,—,+7 or “47.

Case 2: | <a < A <2a< A+ 1. In this case, the signs of the coefficients of V; are “+, —, 4+, —, =",
implying that V; has at most three roots, lim,_, . V;(x) = —eo and lim,_, 1o, Vy(x) = 0. So the
behaviour of V; is the same as the behaviour in the previous case. Therefore, the conclusion
holds.

Case 3: 1 <a< A <A+1<2a. The sign pattern of the coefficients of Vy is “+, —,+, —, 4", so V; may
have, at most, four real roots. We also have that, lim,_, . V;(x) = 40 and lim,_, ;o Vs(x) = 0.

For Vs(k) , when k is even the signs of the coefficients coincide with the coefficients’ signs
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of V; and, therefore, the limits when x — +oo, also coincide. On the other hand, when k is
odd the sign pattern given by the coefficients of Vs(k) is “—, 4+, —,4+,—", which implies that
limy o V¥ (x) = —oo and limy_, 100 V¥ (x) = 0~

s even: In this case, the signs of the coefficients of Vx(s) are the same as the coefficients of

Vs, s0 ‘/S(S) has, at most, four real roots. Moreover, VS(S) < 0. So the possible sign variations
in (0,+°°) for ‘/S(S) are “—7+7 _7+” or “_’_'_”.

sign variation of V" e =+
monotonicity of yD NN N
Vs(s—l) (0) positive negative positive | negative
sign variation of /S ECNRpRp ) PR (O

in (0, 4-o0)

. . “1) . , , » , .
So the sign variation for VS(S )i “ —, 4+, =" or“— +, =" or “+,—="or “=7, in (0, 4eo).

sign variation of Vs(s*l) “r =+, A B
monotonicity of Vs(sfz) “ NN\ NN\
v (0) positive negative positive negative
sign variation of VS(S_Z) in (0,400) | “4,— 47 | “— 4+, —,+7 | “+,—,+" | “—, 47
sign variation of Vs(s*l) “t, =7 “_»
monotonicity of Vs(sfz) “ N\ N

v, (0) positive | negative | positive | negative
sign variation of V" in (0, +) “pr “— |4 not possible

Hence, the most sign varying possibiblity, in (0, +eo), for VS(S_Z) is the same as for VS(S),

so we repeat the argument to obtain that the most sign varying possibility in (0, 4oo) for
V! is “4,—,4, —". Therefore, the monotonicity of V; is /", which implies that
the sign variation for V; may be “+” or “+, —,+”, since V,(0) > 0.

s odd: Now we have that VS(S)(O) > 0 and the sign pattern of the coefficients of VS(S) is

“—,4,—,4,—". Taking into account that lim,_, VS(S) (x) = —loo and limy_, 4 oo Vs(s) (x)=
0~, we conclude that the sign variation of this function in (0,+) may be “+,—" or
“4,—,4,—". But this is what we found when analysing the derivative of order s — 1 of Vj,

when s was even, so the result holds.

Case 4: 1 <A <a<2a< A+1. This case coincides with Case 1, given that the signs of the

coefficients of Vs “+,+, —, 4+, —", so the conclusion remains valid.
Case 5: 1 <A <a<A+1 < 2a. The sign pattern of the coefficients of Vj, after ordering the
exponentials decreasingly, with respect to the exponents, is “+, +, —, —, 4+, implying that there

are, at most, two real roots, lim,_, o Vy(x) = +o0 and lim,_, 1. Vs(x) = 07. As V;(0) > 0, the
only possibility for the sign variation of V, in (0, 4-o0), is “+, —,+” or “+”.
Case 6: 1 <A <A+ 1 <a<2a. In this case we have that the signs of the coefficients of V are

“4,+,—,—,+". But this coincides with the previous case.
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Case 7: 0 < a < 1. In this case, we have three different possibilities, according to the value of
2a being less or greater than 1: a <2a<1<A<A+1l,a<1<2a<A<A+1 and
a<1<A<2a<A+1. But, for all of these cases the sign pattern of the coefficients of V
is “— 4, 4,4, =" So, lim,_, o Vy(x) = —co, lim,_; 1o V5(x) = 0~ and Vj has, at most, two real
roots. Therefore, as V5(0) > 0, the only possible sign variation, in (0, +eo), is “+,—".

So, for all the possible cases, we have that Vs changes sign at most twice, and if the change occurs it is
in the order “+, —,+", as x traverses from 0 to +oo, so, by Theorem 13, since we have proven that
X <;_irra Y, in Proposition 16, we may conclude that X <;_;rr Y. ]

Remark 6. The previous theorem is only a partial extension of the result that Kochar and Xu [6]
proved, referred at the beginning of this section, since we are working with parallel systems with two
components, instead of an arbitrary number of components. This is due to the inherent difficulty of

working with iterated distributions.

4.2 Failure rate ordering of parallel systems with three exponentially
distributed components

After having established the s-IFR order for parallel systems with two components, it is also of interest
to study what happens for parallel systems with three components. In order to apply Theorem 13, we
need first to prove that the s-IFRA order is satisfied, when comparing these two systems. In what
follows, reproducing the approach used in the previous section, some progress with respect to the
s-IFRA order, when comparing two exponentially distributed parallel systems with three components,
are presented as well as some difficulties, which we were not able to solve. In the sequel we will
consider

X = max(X;,X,X3), where X, X, and X3 are independent random variables,
exponentially distributed with hazard rate 1
Y =max(Y,,Y2,Y3), whereY), Y, and Y3 are independent random variables,

exponentially distributed with hazard rates 1,1 and m < 1, respectively.
(4.2)

We want to prove that X <;_;rg4 Y. For that, we will follow the arguments used for the analysis of
parallel systems with two components.

Remark 7. Assume that Y| and Y, are two random variables having an exponential distribution with
hazard rate Ay and Y3 is another random variable also exponentially distributed with hazard rate A5.
Since Ay and A, are scale parameters, we can normalize the variables by dividing all the parameters

by A and take m = %, where m is assumed to be a constant smaller than 1.

By (3.3) we may conclude that

. 1 3 —2x —3x
Ty (x)= a0 <3€_x— ¢ + e' ) ;

(5)
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where d(s) =3 — % + %, and

. 1 e mx 26—(111—1—1)): e~ 2x e—(m+2)x
Tys(x)= — [ S 42e7— -
() c(s,m) \ m~1 e (m+1)s—1 2571 * (m+2)s-1 )7
where c(s,m) =2+ ﬁ - W - % + W We will denote by V;(x) the difference Ty s(x) —

TX,S(ax), a > 0. In order to prove that X <;_;rgp4 ¥ we need to show that V; changes sign at most
once and if the change occurs it is in the order “—, 4", as x traverses from 0 to +oo, for every a > 0.
The study of the sign variation for V; starts with the case where a = 1.

Proposition 17. Let X and Y be two random variables defined as in (4.2). For s > 1, x > 0 we have
that Vy(x) = Ty (x) — Tx 5(x) changes sign at most once and if the change occurs it is in the order
“— 47, as x traverses from 0 to +oo.

Proof. In this case, Vi can be written as

1 e~ mx e~ (m+1)x e e (m+2)x 1 3o—2x
V)= — | & yoe - - - 3¢ —
S(x) (msl +2e (m—{—l)“l 2s—1 + (m_|_2)s71 d ) < ¢ + )’

that is,

Vlx) = e <c(jm) - dé)) " ;—21 (d?@ - c(s?m)) - 355‘;@

1 e mx ef(m+2)x 2ef(m+1)x
+ 7 T —1 -1 |-
c(s,m) \ mS (m+2)s (m+1)s
Note that since we are considering m < 1 the only case that we need to study is the case where
m<1<m+1<2<m+2< 3. We will start by analysing the sign of the coefficients of e * and e~ >*.

X

For e™*, we have that the sign of its coefficient is the same as the sign of A(s,m) = 2d(s) — 3c(s,m).

3 1 1 1 2 1
A(s,m) =2 (3_231—’_351) -3 <2+m51 + (m+2)5*1 B (m_|_1)571 - 231)

(23 43 2 1 1 <3 2 1 1
S\ 6! (m+1)=1 (m+2)s~1  ms! (m+1)=1  (m+2)s~t m=1)"

Observe now that if we denote h(m) = (

m+21)H — (m+12)H , we have, for m € (0, 1), that & is decreasing

and h(1) < 1. Hence, we may conclude that h(m) < #, for m € (0,1). Therefore, the coefficient of

—2x

e " is negative. Analogously, we may conclude that the sign of the coefficient of ¢~ * is the same as

the sign of B(s,m) = 3c(s,m) —d(s).

1 1 2 1 3 1
B =312 — — — (3=
(S’m) < + ms—1 + (m_}_z)sfl (m+ l)sfl 2sl> < 2571 + 331)

1 2 1 1
=3- -3 — — ,
351 (m+1)s=1 (m+2)s1 m!
which, using the argument above, is positive. Thus, we may conclude that the signs of the coefficients
of Vs are “+,—, —, 4,4, —". So, V; has at most three real roots and we have that lim,_, . V;(x) = —eo
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and lim,_, ;. Vs(x) = 0T. One root is easily located, since V;(0) = 0. In order to locate the other two
roots, we need to study the sign variation of the derivatives of orders k < s and s of V;. Differentiating

V; we have

V() = (-1t {e_x (c(jm) - d<3s)> + 25—12; (d(3s) - c(sfm)> - 3“‘?_2;(5)

| [ em emidx gt 1)
+C(S,m) ms—1-k + (m—|—2)s_1_k o (m+ I)S—l—k )

and

W= [ (=) 2o (@) i

1

—mx —(m+2)x _ —(m+1)x
o) (me + (m+2)e 2(m+1)e )] .

Hence the signs of the coefficients of V; alternate with each differentiation step and VX(S) (0)=0.1In
order to analyse the behaviour of these functions we need to separate the analysis into two cases:

when s is even and when s is odd.

s even: The sign pattern given by the coefficients of Vs(s) is “+, —,—,+,+,—". This implies
that lim,_, .. Vs(s) (x) = —oo, limy_; 4o VS(S) (x) = 07" and that VS(S) has at most three real roots.
Since VS(S) (0) = 0, the sign variation of V_V(S), in (0,4e0), may be “+,—,+" or “—, 47 or “+”.
Analysing Vs(sfl) we have that the signs of its coefficients are “—, 4,4, —, —, 4", implying that
limy o Vs(sfl) (x) = o0, limy—, 4 oo VS(FI) (x) =0~ and that Vs(sfl) has at most three real roots.

Now, observe that,
1 1

+ -
c(s,m)  d(s)’
and, therefore, we cannot determine its sign. Hence, we need to analyse what happens to the
sign variation of Vs(sfl) when Vs(sfl) (0) is positive or negative.

VS(S71) (0) -

sign variation of V,* “y— 47 “_ 47 P
monotonicity of VS(S_1> “© N NS “« oo
Vs(s_l)(o) positive | negative | positive | negative | positive | negative
sign variation of Vs(kl) R T I N not pos- | “—”
in (0, +oo) sible

Thus, VS(FI) has three possible sign variations, when x € (0, 4o0), which are “—,+, =" or

“4,— or “—". Proceeding to the analysis of VS(sz) we have that the signs of its coefficients are
“+,—,—,+,+.—". Hence, lim,_, ., Vs(sfz) (x) = —oo, limy_; 4 oo VS(S*Z) (x) =0" and Vs(sfz) has
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at most three real roots. Since

: ~c(s,m) \m m+1 2 m+2) 6d(s)

we cannot determine its sign. Once again we need to analyse what happens when Vs(sfz) (0) is
positive and negative.
sign variation of yD e, “q, =7 o
monotonicity of V{* NN © N N
Vs(s_z) (0) positive negative | positive | negative | positive | negative
sign variation of A B e e ERE S B o “— 47T not pos-
in (0, +oeo) sible

We may conclude that there are three possible sign variations for Vs(sfz) when x € (0, +eo):
“+,—,+7 or “—, 47 or “+”. As itis possible to see, we have that the sign variation of VS(S*

has the same behaviour has the sign variation of VS(S). So repeating this process, we are able to

(3]
~

conclude that the sign variation of VS, has the same behaviour as the sign variation of VS(S*I).
Remembering that V;(0) = 0 and that lim,_, ;. Vs(x) = 0T, we have the following table:

sign variation of Vs’ B R B T
monotonicity of Vg NN N | N
sign variation of V; in (0, +o0) | “—,+” “+7 not possible

Hence, we may conclude that V; changes sign at most once, and if the change occurs it is in the
order “—,+”, when x traverses from O to +oo.

s odd: In this case, the sign pattern given by the coefficients of VS(S) is “—,4+,+,—,—,+". This
implies that VS(S) has at most three real roots and that lim,_, _., Vs(s> (x) = +eoand limy_, 4 VS(S) (x)=
0~. Therefore, VS(S) can have the following sign variations: “—, 4, —"" or “4-,.” or “—”. But this
is the same behaviour that we find for the derivative of order s — 1, when s is even. Applying
similar arguments, the previous conclusion holds. O

In order to prove that X <;_;rga Y, we also need to analyse the sign variation of V; for @ > 1 and
a<l.

Proposition 18. Let X and Y be two random variables defined as in (4.2). Fors > 1, x> 0and a > 1
we have that V(x) = Ty (x) — Tx s(ax) changes sign at most once and if the change occurs it is in
the order “—,4", as x traverses from 0 to +oo.

Proof. In this case we have that

Vi) = 1 e ™ e 2e~(mt1)x B e N e~ (mt2)x 1 3= _ 3e 20 +e_3“"
’ ms—! (m+1)s—1 2571 (m+2)s-1 d(s) 25-1 31 )

To see how many roots this function has at most, we need to order decreasingly with respect to the
exponents of the exponential terms in V;, which means we need to separate our analysis into different
cases, depending on the location of a with respect to m + 1 or m + 2. Recall that for m < 1.
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Case l: m<1l<m+1<2<m+2<a<2a<3a. The sign pattern given by the coefficients of
Vsis “+,+,—,—,+,—,+,—", hence there could exist up to 5 roots. One of the roots is easily
located, since V5(0) = 0. Due to the number of possible roots a direct usage of those arguments
does not allow us to conclude anything about a sign variation compatible with the one we want.
Note that, in this case, a > m+ 2, so, for every fixed x > 0, Tx s(ax) < Tx s((m+2)x), since
Tx s is a decreasing function. Therefore, Vs(x) > Ty s(x) — Tx s((m+2)x) =V (x). Our aim
is to prove that V; , is positive. The function V; , can be written as

1 e~ x e (m+1)x e~ (m+2)x
Vi = —— +2e " = -
(%) c(s,m) (m“l e (m+1)s-1 * (m+2)s-1

_L 36—(m+2)x B 3872(m+2)x N 673(m+2)x ‘
d(s) 251 351

Now, we need to determine the sign of the coefficient of e~ ("2)¥

as the sign of A(s,m) = d(s) — 3c(s,m)(m+2)*"!. But,

. Note, that its sign is the same

3 . 1 1 2 1
Al =3 g3 (24 e 3 =
3 o 6(m+2)t 3(m+2) 3(m+4-2)5!
=g T 6m+2) I S = <0.

Hence, the coefficient of e~ (m+2)x

is negative and the signs of the coefficients of Vj , are
“+,+,—,—,—,+,—". This implies that Vj . has at most three real roots, lim,_, o,V ,(x) = —oo
and lim,_, o, V; «(x) = 0". Moreover, we have that V; ,(0) = 0, so one root is already located.
As we have done before, we will look at the derivatives of orders k < s and s, in order to find

the remaining roots. Differentiating we have

(k) k 1 e ™ x De—(mt1)x e 2x e~ (m+2)x
Vs* = (-1 2 _ _
(=) c(s,m) (ms—‘—k e (m+ 1)1k 21k T (mt 2y 1%
1 b iy 3(mA2)ke 2mEDE (4 DYke=3(mt 2
~d) (3(m—|—2) e (mt2x _ . N 2 |

|

Hence the signs of the coefficients of V; , alternate with each differentiation and Vx(i) (0) =0.

)

As before we need to analyse separately the cases depending on the oddity of s.

s even: In this case, the signs of the coefficients of Vs(i) are “+,4+,—,—,—,+, —, implying
)

that Vs(i has at most three real roots and that lim,_, _ . Vs(i) (x) = —coand limy_, 4 oo Vs(,i) (x)=
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0*. Therefore, Vs(i) has three possible sign variations, when x € (0,+o0): “+, — +” or

“— 47 or “4”. Analysing VS(,‘i_l), we have that the sign pattern given by its coefficients is
“_ — +,+,+,—,+. This means that lim,_, .. V., " (x) = oo and lim,_, .. V.o (x) =

0~. Moreover, the sign of Vs(‘i*l)(O) is the same as the sign of B(s,m) = —d(s) +c(m+

)

2)~!. Note that we only need to study the sign of B(s,m) for s > 2, given that for s = 1
we have Vs(,ffl) (0) = 0. Therefore,

3 1 o1 1 1 2 1
B(S,Wl) :73+F—F+(m+2)‘ (2+ 1 + (m_i_z)sfl - (m_i_l)xfl B 251)
> —2+2(m+2)s —?—i-(m—i-Z)s ms_] - (m+ l)s—l

= (m+2)"! (‘ TR zsl—l) e (msl-l ) <m+21>5‘1>

e (- edye) - S )

m= (m+1)! m’ (m+1)s—1

. . . . . 1 1 . 1
The first inequality is obtained by noting that 5= > 5. Furthermore, since T <
1 3

51> and 577 < %, the second inequality follows. Let h(m) = <1 — %) ,me (0,1).
It is easy to see that & is a decreasing function and that 2(0) = 1 and 0 < h(1) =1— 23—,1 <

1, since s > 1. Hence, h(m) > 0 for m € (0, 1), which implies that B(s,m) > 0. So,
Vs(jfl) (0) > 0. Thus, we have the following possibilities for the sign variation of Vs(ffl),

sign variation of Vs(i) RN R i
mOnOtOHiCity Of Vs(jfl) “/\\‘/pa “\N/w “/m
sign variation of Vv(,i_l) in (0,+e0) | “4, -7 “+,—" | not possible

Therefore, V; . has one possible sign variation when x > 0: “+, —”". Observe that, when k is

even, the sign pattern given by the coefficients of Vs(fk) is “4,+,—,—,—,+, =", implying
that limy_ _e nglfk) (x) = —oo and lim,_, Vs(fi) (x) = 07". On the other hand, when k is
odd the signs of the coefficients of the derivative of order k are “—, —, +,+,+,—,+".

which implies that lim,_, o, VS(,]fk) (x) = oo and limy_, 4 oo Vs(fi) (x) = 0~. However, the sign
of the derivatives of order k < s — 1 of the function that we are studying at O cannot be
determined, hence, we need to analyse what happens when that value is negative and

positive. We will start by analysing the sign variation of Vyg‘i_z).

sign variation of Véff” “, =7
monotonicity of \/SS‘i_z) N
ng‘i_z) (0) positive | negative
sign variation of Vs(ﬁfz) in (0,400) | “4” “—, 7

Thus, Vs(ffz), when x € (0,-+e0), has two possible sign variations: “—, 4" or “+”. Taking

this into account, for Vs(jf3) we have the following table:
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sign variation of Vé‘iﬁz) “— 47 “y
monotonicity of Vs(;%) N “
VS(;%) (0) positive | negative | positive negative
sign variation of V5 in (0, +e0) | “4 =7 | “—7 not possible | “—”
So, Vs(,i%) has two possible sign variations as x traverses from 0 to +oo: “+4, =" or “—".
Finally, we analyse the sign variation of Véff“, when x > 0.
sign variation of Vs(vff3) =7 “r
monotonicity of ngff“) “ N\ N
ngf:“) (0) positive | negative | positive | negative
sign variation of Vv(./‘i_“) in (0,4c0) | “47 T N not possible
So, Vs(;_“) has two possible sign variations, when x € (0, 4c0): “— +” or “4”. We may

conclude that the sign variation of Vs(,i_él)

Vy(,‘i_Z). Hence, repeating this process we find that the behaviour of the sign variation of

Vs(,‘f;_g is the same as for the sign variation of V;*. Taking into account that V; ,(0) =0
and limy_, 4 V. (x) = 0™, we have that V; . (x) > 0, for x > 0. This implies that V,(x) > 0,

for x > 0.

has the same behaviour has the sign variation of

s odd: The signs of the coefficients of VSEi) are “—, —,+,4+,+,—,+”. This implies

(s)

that lim,_, o ngi) (x) = 40 and lim,_, ;o fo) (x) = 0~. Hence, V;3 has three possible

: . . 113 113 113 : -'_1
sign variations when x > 0: “— 4, —" or “+, =" or “—". Since, for s even Vs(l )(0) >

)

0, for s odd Vyg‘i_l)(O) < 0. Moreover, when k is even, the sign pattern given by the

coefficients of ngli) is “+,+,—,—,—,+,—", implying that lim,_, . Vs,(’lfﬁ) (x) = —o0 and
limy 4o Vs(,li) (x) = 0". On the other hand, when k is odd the signs of the coefficients of
the derivative of order k are “—, —, +, 4+, 4, —,+”. which implies that lim,_, VS(I,? (x) =

o0 and lim,_ 1o Vs(,]i) (x) = 0~. The table bellow summarizes the sign variation of the

derivative of order s — 1.

sign variation of Vs(,i) B e B T
monotonicity of V5 " SN N e
sign variation of Vs(jfl) in (0,4e0) | “— 47 “— 4" | not possible

We conclude that, when x > 0, Véiﬁl)

the order “—,+”. The possible sign variations for Vs(,id) are described in the following

changes sign exactly once and the change occurs in

table.
sign variation of vai_l) e
monotonicity of Vé‘i_ﬂ N
Vv(,‘i_z) (0) positive | negative
sign variation of VS(,i_z) in (0,400) | “4, =" | “=7

So, Vs(jfz) has to possible sign variations, “+,—" or “—”, when x € (0,c0). But this

(s-3)

coincides with the behaviour of the sign variation of Vs,ff , when s is even. Applying the

previous arguments, we may conclude that V; , > 0, for x > 0.



40 Failure rate properties of parallel systems

Case2: m<l<a<m+1<2<2a<m+2 <3a. The signs of the coefficients of V; are
“+,+,—,—,—,+,+,—". Hence, we have that lim,_, . V(x) = —oo, lim,_, 1. V;(x) = 0" and
V, has at most three real roots. So, we may repeat the arguments used in the course of Proposition
17 to conclude that V; changes sign at most once and if the change occurs it is in the order
“—,+7, as x traverses from 0 to +oo.

Case3: m<1<a<m+1<2<m+2<2a < 3a. This case coincides with the behaviour observed
in the previous case, so the conclusion holds.

Cased: m<1<m+1<a<?2<2a<m+2 < 3a. We can observe that the sign pattern given by
the coefficients of V; is “+,4+,—, —, —, 4,4, —". Hence, the analysis to be done in this case is
the same as the analysis done in Case 2 above. Therefore, the conclusion holds.

CaseS:m<1<m+1<a<?2<m+2<2a<3a. The behaviour in this case for the sign pattern
given by the coefficients of V; is the same as the one observed in the previous case. Once again,
we may conclude that V; changes sign at most once and if the change occurs it is in the order
“—, 47, as x traverses from O to +oo,

Case 6: This case coincides with the behaviour observed in the previous case, so the conclusion
holds.

We have proved that, for @ > 1 and for all the cases, depending on the location of a with respect to
m+ 1 and m+ 2, Vs changes sign at most once and if the change occurs it is in the order “—,+", as x
traverses from 0 to +oo. ]

The only case left to study, now, is when a < 1. However, this case is not simple, because of the
large number of possible cases.

Proposition 19. Let X and Y be two random variables defined as in (4.2). Then, for each of the

following cases,

Casel: a<m<1<2a<m+1<2<3a<m+2,

Case2: a<m<1<2a<m+1<3a<2<m+?2,

Case3:a<m<1<2a<3a<m+1<2<m+2,

Cased: a<m<2a<l1<3a<m+1<2<m+2,

Case5: a<m<2a<3a<l<m+1<2<m+2,
Vi(x) =Tys(x) —Tx s(ax) <0, fors >1,x > 0.

Proof. Recall that,

1 —mx 7~ (m+1)x —2x —(m+2)x 1 3o~ 2ax —3ax

c(s,m) \ m—1 B (m+1)5—1 ool (m+2)5—1 d(s 2s-1 + 3s-1

Therefore, the derivatives of V; of orders s < k and s, have the following expressions

V(k) (x) — (_1)k 1 e et e (m+1)x B e 2x N e~ (m+2)x
’ c(s,m) \ ms—1-k (m+1)—1-k — 25-1=k " (- 2)s—1-k
—2ax —3ax
k — K € e
_W <3a e “—3a T +a 3S_1_k)] ,

).
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s , 1 _ _ _ _ _
A )(X) =(=1)° [ ) (me M2 —2(m+1)e” MY _ 267X 4 (m4-2)e (””2))‘)

c(s,m

_d(ls) (3ase*‘”‘ —6d’e 2 + 3ase3‘”‘)} )

Casel: a<m<1<2a<m+1<2<3a<m+2. The sign pattern of the coefficients of V is
“—,+,+,+,—,—,—,+". Therefore, lim,_, . Vi(x) = 4o0, lim,_, 1 Vs(x) = 0~ and V; has at
most three real roots. One of the roots is easily located, since V;(0) = 0. Observe that for k
even, the signs of the coefficients are the same as for Vj, so the limits at x — +oo will also be
the same, while for k£ odd, the sign pattern given by the coefficients of the derivative of order
kis “+,—,—,—,+,+,-+,—, implying that lim,_, o V{¥) (x) = —c0 and lim,_, . V) (x) = 0.
So, in order to locate the other roots of V; we need to study what happens at the derivative of
order s, when s is even and odd.

s even: The signs of the coefficients of VS(S) are “—,+,+,+,—,—,—,+. Hence, VS(S)
has, at most, three real roots, lim,_,_.. V" (x) = +oo0 and lim,_, 4 v (x) =0". Since
VS(S) (0) = 0, we may conclude that there are three possible sign variations for this function,
in (0,4o0): “—, 4+, =" or “+, =" or “—". Now, we need to analyse the sign variation of
VS(S*U, but for that it is necessary to see if we can determine the sign of VS(‘PI). In fact,
given that a < m, we have that

VI (0) = —d(s) + @ els,m) < —d(s) +m*e(s.m)

3 1 ' msfl 2msfl msfl

=2 — 2m* ! — — .
+ 2s71 3s71 +2m + (m_'_z)sfl (m+ l)sfl 2s71
s—1 s—1 s—1 .
Let h(m) = -2+ 23,3,1 — 33%1 +2m ! 4 (mnlz)H — (rr%—":ll)s’l — %, form € (0,1). Differ-

entiating, we obtain

1 1 1
(m+2) (m+1)s 2¢

B (m) =2(s—1)m* > <1 + ) =2(s— )m* >N(m).

Differentiating N, we have that N'(m) = — R
and N(0) = 0, implying that N(m) > 0, for m € (0, 1). But this implies that 4’ (m) > 0, for

m € (0,1), i.e, that & is increasing. Moreover, #(0) = —2+ 253,. — 351—,. <O0Oandh(1)=0.

Therefore, h(m) < 0, for m € (0,1) and, consequently, VS(S_I)(O) < 0. The next table

shows the possible sign variations for VS(S_U, in (0,+o0), according to the possible sign
)

variations of V).

T > 0. So, N is increasing

. . . N
sign variation of Vs( ) “— =T T |

monotonicity Of ‘/S(Sil) cc\/{\” “/(\7’ “\‘”

sign variation of V* "V in (0,4-00) | “—,+" “—,4” | not possible

(s—1)

Hence, V; has one possible sign variation “—,+”, in (0, +e0). Since, the sign of the

derivatives of orders k < s — 1 at zero cannot be determined, we need to analyse what

VS(S*Z)

happens in each possible case. For we have that,
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(Sil) 13

sign variation of Vj —,+”
monotonicity of VS(‘FZ) N
v (0) positive | negative
sign variation of V" in (0, 4o0) | “4,—7 | “=”

So, the sign variation of VS(S_Z) is, at most, “+,—", as x traverses from 0 to +oo.
sign variation of Vs(sfz) “, =7 e
monotonicity of VS(FS) “ N\ N
yed) (0) positive | negative | positive | negative
sign variation of VS(S_3) in (0,4c0) | “47 “— 7 | 47 not possible

Therefore, the possible sign variations for the derivative of V; of order s — 3 are: “—, 4"

or “+7, for x € (0, 4o0). Finally, we study the sign variation of VS(S_4).

sign variation of v “_ 4 “ypr
monotonicity of V.* ) N “
VS(S_4) (0) positive | negative | positive negative
sign variation of Vs(s_4) in (0,4o0) | “4,=7 | “=7 not possible | “—”

We obtain the the most sign varying possibility for VS(S_4) is the same as for VS(S_Z). Thus,

applying the same arguments we may conclude that V] has sign variations “—, +" or “+”".
But, given that V;(0) = 0, lim,_, . Vs(x) = 0~, we conclude that V(x) < 0, for x < 0.

s odd: For this case, the sign pattern of the coefficients of Vs(s) is “4,—, —, —,+,+,+,—,
implying that lim,_, .. Vi) (X) = —co and limy_, 1, V;*) (x) = 0*. Furthermore, V,*’ has
at most three real roots, so the possible sign variations in (0, +oc0), are “+, —,+" or “—, 4"
or “+”. Here, we have that Vs(s_l) > 0. So, Vs(s_l) has only one possible sign variation,
as x traverses from 0 to +oo: “4-, —". The following table summarizes the possible sign

variations for V.2,

sign variation of V"~V “, =7
monotonicity of y2 “N

v (0 positive | negative
sign variation of V" 2 in (0, +0) | “+” =+

Hence, VX(S*Z) changes sign at most once, in the order “—, 4", as x traverses from 0 to +oo.
We find for Vs(sfz) the same behaviour as for the derivative of order s — 3, when s even, so

the previous conclusion holds.

Case 2: a<m<1<2a<m+1<3a<2<m+2. The sign of the coefficients of V; are
“— +,4+,4+,—,—,—,+". But this coincides with the previous case, so the result still holds.

Case3: a<m<1<2a<3a<m+1<2<m+2. This case is similar to Case 1, given that the
sign pattern of the coefficients of V; is the same.

Cased: a <m<2a<1<3a<m+1<2<m+2. The sign pattern given by the coefficients of V;
is “— +,+,+,—,—,—,+" so, once again, the conclusion holds.
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Case 5: a<2a<3a<m<1<m+1<2<m+2. Inthis case, the sign pattern given by the
coefficients of V; is “—, 4+, —,+,4+,—, —,+". By Proposition 8, V; has at most five real roots.
Therefore, the previous arguments will not allow us to conclude what we want. However, note
that 3a < m and 2 < m+2, implying that

1 —mx e (m+1)x —2x —2x
VS(X)<VS,*(X)=<6 4ot =2 ‘4 °

c(s,m) \ m~1 C(m+1)s—1 25717 (m42)!
1 Je—2ax  pmx
Y (e P S b
d(s) ( ¢ 2s—1 + 3s71 > )

for every fixed x > 0. Therefore, if we prove that V; . (x) <0, for x > 0, we have that V,(x) <0,
for x > 0. Since 2 < m+2, we have that the coefficient of e~ 2" is clearly negative. The sign of

e~"™ is given by the sign of h(m) = 3*"'d(s) —m*c(s,m).

3$ B st_l B msfl N 2msfl N msfl
1 (m—|—2)s*1 (m_i_l)sfl 2s71

h(m) =3"— 5T
If we look at A(m, s) has only a function of m, h(m), for m € (0, 1), and if we differentiate, we
have that

1 1 1

h/(m) _ —2(5— 1>ms—2 <_1 — (m—|-2)‘ + (m+ l)s +25) :Z(S— l)N(m)

But we have already seen that this function is positive, which implies that the coefficient

of e7™

is positive. We may now conclude that the signs of the coefficients of V. are
“—,+,4+,+,—,—". But this implies that V; , has at most two real roots, lim,_, o, Vj ,(x) = —oco
and lim,_, . Vs «(x) = 0~. We also have that V; ,(0) = 0. In order to locate the remaining root

we need to analyse the derivatives of orders k < s and s of V..

1 —mx e~ (m+1)x —2x 2k p—2x
Vv(,li)(x):(—l)k[c( ( T ey 2 )

s,m) \ m—1-k (m+1)-1-k Cos—1-k (m+2)s1

1 3 k ,—2ax k ,—mx
—— <3ake_“x— - T ﬂ )

d(S) 2s—1—k 33—1
s ,—2x
(s) _ 1 — - —(m+1 ) 2%e
e P e e s
1 B L mSe—Mmx
_m <3ase ux_6ase ax+ 3S_1 >:|7
Observe that for k even, the signs of the coefficients of Vs(@ are “—,+,+,4+,—,—". Hence,

limy_s oo Vs(fk) (x) = —co and limy_, 4o Vs(ffﬁ) (x) =0~. When k odd, both the signs of the coeffi-
cients and of the limits reverse. Now, we need to study what happens for s even and odd.
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s even: In this case, the sign pattern given by the coefficients of VSEi) is the same as for V.

(5)

Thus the limits when x — 400 of V) coincide with the limits when x — Zo0 of V.

V9(0) = C(;m) <_m_2_ = f;)s_]) B d(ls) <_3aS+ 3m_1> :

hence, we cannot determine its sign. Therefore, Vs(i) has three possible sign variations in

(0,400): “—,4,—="o0r “+,—"or “—". We need to study, now, the sign variation of Vs(ffl).

For that, it is important to see if we can determine its sign at zero.

Véi_l)(()):—SSZS_I+3S—2S_1—|—2ms_l(m+2)s_l—|—(m+2)s_l—i—ms_l

2ms—1(m_|_2)s—l ms—l(m+2)s—l
o (m+ l)sfl - 2s—1
Let h(m) = =321 435 = 25"V 4 2m* Y (m +2) "1+ (m+2) ' +-m*~1, form € (0,1).
Differentiating 4 we obtain #'(m) = 2(s — 1)m*2(m +2)* ' + 2m* ' (m +2)*"2 4 (s —
1)(m+2)""24 (s — 1)m*~2 > 0. Thus, A is increasing. Moreover, h(0) = —325"1 435 —
2571 < 0ahd (1) = —3%25"1 432 — 2571 4 1 < 0. Therefore, h(m) < 0, for m € (0,1),
SO Vé‘iﬁl) (0) is negative.

sign variation of Vs(i) R R B T
mOnOtOniCity Of ‘/S(i*l) cc\/{\” “/(\97 “\N”
sign variation of V.5V in (0, +0) | “—, 47 “—,+" | not possible
So, fof” has only one possible sign variation on (0, +c) “— +”. For Vsﬁi‘Z) we have

the following sign variation.

sign variation of VS(,i_l) e
monotonicity of VS(;_Z) N
Vs(7i_2> (0) positive | negative
sign variation of Vs(ffz) in (0,400) | “4,=" | “=7

Therefore, the possible sign variations for Vs(jfz), in (0,+e0) are “+,—" or “—".

sign variation of ngi—z) “p «
monotonicity of Vs(jf‘%) “ N ENE

Vs(,i%) (0) positive | negative | positive | negative
sign variation of Vs(,i%) in (0,+0) | “+” N e not possible

So, in (0,4-o0), the most sign varying possibility for the derivative of V; , of order s — 3

is “—,+”. The table bellow summarizes the sign variation of Vs(i_d')

possible sign variations of Vs(‘ff3).

, according to the

sign variation of VY(;%) “_ 47 “p
monotonicity of Vx(ﬁ‘ff‘t) o, “

Vs(,i%) (0) positive | negative | positive negative
sign variation of Véf;zl) in (0,400) | “4,—=7 | “=7 not possible | “—
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(s=4)

Thus, the possible sign variations for V. ', in (0,+e0), are “+,—"" or “—”. Repeating

iteratively this process, we may conclude that the sign variation of VS”* is “—,+"or “47, as
x traverses from 0 to +oo. Remembering that V; ,(0) = 0, and that lim,_, 1, V; . (x) =07,
we obtain that V . (x) <0, for x > 0, implying that V(x) < 0, for x > 0.

s odd: In this case the signs of the coefficients of Vs(i) are “4,—,—,—,+,+". So, Vs(i) has

at most two real roots, lim,_, e Vs(,i) (x) = 4oo and limy_, o Vs(i) (x) = 07". Remembering

that we cannot determine the sign of Vs(i) (0), we may conclude that the possible sign
variations for Vs(;), in (0,+o0), are “4,—,+” or “—,+” or “+”. Since s is odd, s — 1 is

even and, therefore, V. " (0) > 0.

sign variation of ngi) b= T T |
monotonicity of VS(;_U NN T
sign variation of VS(,f:l) in (0,4c0) | “4, =7 “+,—""| not possible
So, once again, VS(;_I) changes sign exactly once, but in this case in the order “+,—", in
(0,400).
sign variation of Véf” “q, ="
monotonicity of VS(;;_2> N
VS(;_Z) (0) positive | negative
sign variation of ngi_z) in (0,4-00) | “4+” =4

The behaviour for the sign variation of Vs(i_z) is the same as for Vs(,i_3)

, when s even, in
(0,4e0). So we can apply the same arguments used previously to conclude that V(x) <0,
for x > 0. O

4.3 A difficult case

In order to show the main difficulties when analysing the sign variation of V; and explain why
the analysis for a < 1 has not been completed, we will study what happens for the case a < m <
2a <3a<1<m+1<2<m+2. In this case, the sign pattern given by the coefficients of V; is
“— 4,4+, —,+,—,—,+". By Proposition 8, this implies that V; has at most five real roots. Moreover,
lim,—, o V5(x) = 400 and limy_, 1 Vi(x) = 0~. Due to the large number of possible roots, the direct
study of the derivatives of V; will not lead us to the desired result. However, taking into account the
limit of V; when x — +o0 and noting that @ < m, we have that Vy(x) < V; .(x) = Ty s(x) — Tx s(mx),
for every fixed x > 0. So,

1 —mx 2~ (m+1)x —2x —(m+2)x 1 3e—2mx —3mx
Vi (x) = (e 2o = ‘4 - )<3e"”— L 4L )
m

B (m+ 1)s71 T sl (m—1—2)5*1 d(s 95—1 35—1
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If we manage to prove that V; ,(x) <0, for > 0, we would have found a sign variation compatible
with the s-IFRA ordering. To do that we need to analyse the derivatives of orders k < s and s.

1 e Mx 2 2o (m+1)x e~ 2x N e~ (m+2)x
e —_— —_—
(m—i—l)s*l*k 2s—1—k (m_‘_z)sflfk

Vi () = (~1)F [

c(s,m) ms—1-k

1 —2mx —3mx
a0 <3mkemx—3mke — ks )],

1
—@ (3m’e™™ — 6m'e” > 4 3mse_3mx)] .
In order to apply Proposition 8 to V ., we need to order decreasingly the exponentials terms, with
respect to their exponents. This gives rise to different cases, according to the location of 2m and 3m
with respect to m + 1 and m + 2. Before analysing the cases that arise, let us study the sign of the
coefficient of e ™. Note that its sign is the same as the sign of h(m) = d(s) —3m*c(s,m).

3 1 3ms! 6m*~! 3m* !

h - _6 s—1 o )
(m) m 2571 + 3571 (m_|_2)s71 + (m_|_ l)sfl + 2s—1

Differentiating, we obtain

H (m) = 6(s — Lym' (-1— (miz)s + (miws +21>

Define N(m) = —1 — ﬁ + (m}ril)i + 5, for m € (0,1).  Differentiating, we have
N'(m)=s <(m +12)m — +11)x — ) < 0. Hence, N is decreasing. Since, N(0) = 0, we may conclude that
N(m) <0, for m € (0, 1) and, consequently, that & is decreasing. Moreover, h(0) = — 23,1 + y%l <0,

implying that 2(m) < 0, for m € (0, 1). Therefore, the coefficient of e™" is negative. Let us now
study the sign variation of V , for the possible different cases, according the location of 2m and 3m.

Case 1: m<1<2m<m+1<2<3m<m+2. In this case, the signs of the coefficients are
“—,+,+,—,—,—,+”, which implies that lim,_, o, V ,(x) = o0, limy_, 1oV, (x) =0~ and V.
has at most three real roots. Furthermore, V; .(0) = 0, so we only need to locate the other two
possible roots. For that, we analyse the sign variation of the derivatives of V; .. Observe that,
for this case, when k is even the signs of the coefficients of Vs(/i) is the same as for Vj ,, so the

limits when x — 4o are the same, as well as the possible number of real roots. When £ is odd,

the signs of the coefficients are reversed, as well as the signs of the limits. Now, we need to

analyse what happens for s even and odd.
s even: The sign pattern of the coefficients of Vs(,i) is “—,4+,+,—,—,—,+". Hence, Vs(i)
has at most three real roots, lim,_,_ o VSS? (x) = +oo and limy_; | oo VS(;) (x) =0~. Taking
into account that V; . (0) = 0, we have that the possible sign variations for this function, in
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(0,+4e0), are “—,+,—" or “+,—" or “—"". Note that, the sign of Vs(i_l) (0) is the same as

)

the sign of B(s,m) = —d(s) + c(s,m)m*~. If we now fix s > 1, we have that

3 1 ms—] 2~ 1 ms—l

= oS! — _
2s—1 3s71 +2m + (m+2)s71 (mle)sfl 2571 )

24

for m € (0,1). Differentiating, we obtain,

1 1 1

(m+2° (m+1y 2) =2(s— )m* *N(m).

h(m) =

2(s—1)m* 2 <1 +

But, we have already seen that —N(m) < 0, for m € (0,1), so A is increasing. Given that

h(0) =—-2+ 23,1 — 3S1,1 < 0and h(1) =0, we may conclude that 2(m) < 0, form € (0, 1),

that is, V5 (0) < 0.

sign variation of Vs(f) Co g e ey
monotonicity Of ‘/S(ifl) “\(/\\(” “/(\” “\‘”
sign variation of Vs(,i_l) in (0,+0) | “—,+” “—,4+” | not possible

The only possible sign variation for Vs(ffl), in (0,+4o0), is “—,+”. Although we could

(5-1) ’

determine the sign of Vg at zero, we cannot do that for Vs(ffz), do we need to analyse

)

what happens for Vs(ﬁfz) (0) negative and positive.

sign variation of Vs(ffl) “— 47
monotonicity of Vs(yi%) N
Vs(yf;z) (0) positive | negative
sign variation of Vs(ﬂ‘id) in (0,400) | “4, =7 | “=7
Thus, Vs(jfz), when x € (0,+e0), has two possible sign variations: “+4,—" or “—". Taking
this into account, for Vs(ifs) we have the following table:
sign variation of Vs(yffz) “, =7 e
monotonicity of VS(;%) “ N\ N
Vs(’i%) (0) positive | negative | positive | negative
sign variation of Vs(i%) in (0,+o0) | “4+” R S B not possible

So, Vs(f;” has two possible sign variations as x traverses from 0 to +oo: “—, +” or “+”.
Finally, we analyse the sign variation of Vs(jfﬁ'), when x > 0.
sign variation of Vs(jf3) “_ 47 i
monotonicity of Vs(aff“) N “
Vs(,iizt) (0) positive | negative | positive negative
sign variation of Vi in (0,40) | “4+,—7 | “= not possible | “~

So, Vs(ff4) has two possible sign variations, when x € (0,+o0): “+, —

2

or “—”, which

are the same possibilites as for Vs(f;z). Hence, repeating this process we find that the

behaviour of the sign variation of Vs(’i%) is the same as for the sign variation of VS,*
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Taking into account that V; .(0) = 0 and lim,_, ;o V; «(x) = 07, we have that V; .(x) <0,

forx >0
s odd: The signs of the coefficients of Vs(i) are “4,—, —, 4,4+, 4+, —". This implies that
limy—s oo VS(;) (x) = —oo and lim,_, ;o ngi) (x) = 0. Hence, VS(;) has three possible sign

variations when x > 0: “+, — 4" or “— 4" or “+”. Since, for s even %Ei_l) (0) <0, fors
odd VSEi_l) (0) > 0. The table bellow summarizes the sign variation of the derivative of

order s — 1.
sign variation of Vs(i) RN LU (LR ) VR
monotonicity Of Vs(iil) “/(\l/(” “\l/(” “/(”
sign variation of Vs(.,iil) in (0,+o0) | “+,-7 “4,—" | not possible

(f;l)

We conclude that, when x > 0, Vg changes sign exactly once and the change occurs in

the order “4-, —. The possible sign variations for Vs(,id) are described in the following
table.
. o . (S*l) 113 L2

sign variation of V) +,—

monotonicity of Vs(,ffz) “ N\

Vs(,ffz)(O) positive | negative

sign variation of Véfa in (0,+e0) | “+7 “_
So, %Ei_z) has to possible sign variations, “—, 4+ or “+”, when x € (0,00). But this

coincides with the behaviour of the sign variation of Vs(i_3), when s is even. Applying the

previous arguments, we may conclude that Vi, <0, for x > 0.

Case2: m <1<2m<m+1<3m<2<m+2. The sign pattern of the coefficients of V; , coincides

Case3: m<2m<1<3m<m+1<2<m+2. The sign of the coefficients of V; , are “—, +,+, —, —, —,+".

with the previous case, so the conclusion still holds.

So, this is the same as Case 1.

Case4: m <2m <3m <1 <m+1<2<m+2. The sign pattern given by the coefficients of Vj , is

“—,+,—,+,—,—,+". By Proposition 8, we may conclude that V , has at most five real roots.
Once again, a direct usage of the arguments as in the previous cases with V; , will not allow us
to conclude a sign variation compatible with the s-IFRA order. Nevertheless, note that m < %,
so we can define U (x) > V; .(x), for every fixed x > 0, such that,

1 P e 26—(m+1)x e 2% N e (m+2)x
e p— p—
(m+ 1)5—1 2s—1 (m+2)s—l

2
1 1 e 3 e
——— 3¢5 -3 — .
d(s) ( ¢ 2s—] +3s—l>

X

ms—l

Regardless of the sign of the coefficient of e™*, we may conclude that U has at most three real
roots,when%<m<%<1<m+1<2<m+2and%<%<m<1<m—i—l<2<m+2.

Moreover, lim,_, o, Us(x) = 400 and limy_, ;. Us(x) = 0~. The derivatives of U; of orders k < s
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and s can be written as

—mx —(m+1)x —2x —(m+2)x
()N _ [ 1\k 1 e o 2e e e
Us (X) - ( 1) [C( (mslk +2e (m+ l)sflfk 2s—1—k + (m_|_2)slk>

1 3 1, e e
Ty (3¢ T Tz e ) |

(me’mx +2¢ 7 —2(m+1)e” MDY _ 2672 4 (m 2)@’("”2)")

1 (3 1, 673 ¢
5]
Consider s even. For this case, we may conclude that Us(s) has at most three real roots,
lim,_s_o US(S) (x) = +o0 and lim,_, ;o US(S) (x) = 0~. Taking into account that US(S) (0) =0, the
possible sign variations are “—,+, —" or “+, =" or “—", in (0, +o0). Observing now that, for k
even lim,_, _.. Us(k) (x) = +oo and limy_, 4 oo Us(k) (x) =0~ and for k odd lim,_, Us(k) (x) = —o0
and limy_, o u (x) =07, and that we cannot determine the sign of U, (371)(0) = —#) +

S c(s,m
W, we obtain the following table for the derivative of order s — 1.

sign variation of U5<s) e 4, =7 “_r
monotonicity of U{* ") NN “© N N

US(S_ D (0) positive negative | positive | negative | positive | negative
sign variation of Us(sfl) “o— 47 | =+ | 47 “— 47 | 47 not pos-
in (0, 4o) sible

Thus, the possible sign variations for US(S*U, in (0,+e0) are “+, —,+” or “—, 4" or “4”.

sign variation of US(S*I) - 47 “_ 4 «pr
monotonicity of US(S*2) “ NS N «

U 5372) (0) positive | negative | positive | negative | positive | negative
sign variation of US(S_Z) e I O T not pos- | “—”

in (0, +-0) sible

Therefore, the possible sign variations for Us(s_z), in (0, 4-o0), are “—,+,—" or “+,—" or “—7,
which are the same as for Ué‘g). Consequently, we may conclude that U] has sign variation
“+,—, 47 or “—,+” or “4+”. Remembering that Uy(0) = 0,

sign variation of U/ RN I
monotonicity of Uy “« NN |
sign variation of Uy in (0,4oc0) | “4,—" « % not possible

Hence, U; has sign variation at most “+4-, —”. But this does not allows to conclude that V; ,(x) <0
for x > 0.
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As we can see, it is clear that the choice of V., was not the correct one. Note that, since, initially, we
had that a < m, 3a < 1 and 2 < m+ 2, we could have chosen V; . such that, for every fixed x > 0

c(s,m) \ m—1 C(m4 1)1 2]

1 3872ax e
—— (3 — 4 — ).
d(s) ( € 2s—1 + 3s—l>

However, a similar study would allow us to conclude that, once more, this was not the correct function

1 e mx B 26—(m+1)x e e
VA(X) < VS,*(X) = ( +2¢* + (m+2)s_1

to choose.

Remark 8. Although we were not able to prove the required result for this case, it does not mean that
the problem cannot be solved. A number of plots were made, that provide evidence that the result is
true, however there was not enough time for further experiments with different choices of functions.

Remark 9. If we were considering, for example, the casem <a <1 <m+1<2a <2 <m+2 < 3aq,
the signs of the coefficients of Vs would be “+,—,+,—,4+,—,+,—", implying that Vs would have
at most seven real roots. Since, limy_, 1o, Vy(x) = 0T, for this case, instead of choosing a inferior
function, we should choose a superior function to Vi, in order to prove that Vs(x) > 0, for x > 0, which
is compatible with a sign variation for the s-IFRA order. However, the difficulty in choosing this

function remains.

4.4 Future work

As referred in Remark 8, due to time constraints it was not possible to finish the problem that we were
studying. Therefore, for future work, we still need to prove, for the remaining cases, that Vs changes
sign at most once, in the order “—, 4", as x traverses from 0 to +co. However, the arguments used in
this work may not lead us to a sign variation compatible with the s-IFRA, so it becomes important to
search for new approaches that allows to establish the desired result. This may be an interesting topic
for a PhD thesis.

After proving that X <, ;rga Y, the next step is to prove that X <, ;rg Y. If we manage to prove
this, it would be interesting to study the same problem for a more general case: instead of having Y
as defined in (4.2), we would have Y = max(Y},Y»,Y3), where Y;, ¥, and Y3 are independent random
variables, with exponential distributions with hazard rates 1, A and m, respectively. Of course, this
problem is, at least with the present approach, much more difficult due to the large number of possible

cases, making the location of the roots even more complicated.
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