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Resumo

A evolução da tecnologia levou a um aumento exponencial da quantidade de dados

recolhidos e armazenados nas mais diversas áreas. No que diz respeito a estudos bioacús-

ticos, a tendência observada é semelhante, nomeadamente nos estudos desenvolvidos com

roedores. Para além disso, neste tipo de estudos tem-se feito sentir um crescente inter-

esse, visto que estes se apresentam como uma ferramenta simples e flex́ıvel que permite a

avaliação de modelos animais.

Ao longo dos anos, diversos estudos têm salientado a importância do estudo dos sons

produzidos por roedores sob o ponto de vista de serem usados como um biomarcador que

permita a avaliação da interação entre os animais, nomeadamente em estudos de ı́ndole

social. Assim, o estudo das vocalizações ultrassónicas tem sido utilizado por diversas

ocasiões como meio para caracterizar interação social. Contudo, o verdadeiro significado

dos sons produzidos pelos animais assim como que tipo de circunstâncias os levam a

produzir certos tipos de sons em detrimento de outros, permanecem desconhecidos.

Tipicamente, o número de vocalizações adquiridas em experiências de ı́ndole social

atinge facilmente a ordem das dezenas ou centenas por minuto, o que torna a tarefa de as

processar manualmente extremamente dif́ıcil. Desta forma, a fim de processar tamanhas

quantidades de dados em tempo útil, torna-se imperativo o desenvolvimento de software

computacional capaz de fazer esse processamento, sendo que deve ser capaz de reconhecer

e classificar as vocalizações dos sinais a processar. Desta forma, a principal motivação

desta tese está relacionada com necessidade de desenvolvimento de software com as car-

acteŕısticas anteriormente mencionadas.

Nesta tese uma nova metodologia, baseada na entropia espectral, capaz de segmentar

vocalizações ultrassónicas foi desenvolvida, sendo capaz de obter valores de recall de 97%.

Para além disso, foram também constrúıdos diversos modelos de classificação capazes de

discriminar entre dez classes diferentes de vocalizações, com 81.1% de taxa de acerto. Tal

facto constitui um avanço significativo que diz respeito ao estado da arte, em que são

apenas distinguidas cinco classes. Do trabalho desenvolvido neste projeto, resultou como

produto final uma aplicação desenvolvida em MATLAB que integra, quer os algoritmos

de segmentação desenvolvidos quer os de classificação. Assim, o software desenvolvido

permite o completo processamento de sinais áudio não processados, desde a extração de

informação relevante, passando pela classificação e reconhecimento de vocalizações. Todo

o processo funciona de forma automática.
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Abstract

The evolution of technology led to an exponential increase in the amount of data being

collected and stored in the most diverse areas. This is also true regarding bioacoustic

studies, namely in rodents. These bioacoustic studies have recently drawn increasing

attention since they present a simple and flexible tool to access animal models.

Over the years, several studies have emphasized the importance of studying the sounds

produced by rodents from the point of view of being used as a biomarker to evaluate the

interaction between animals, mainly in social related studies. Thus, the study of Ultrasonic

Vocalizations has been used on multiple occasions in order to characterize reduced social

interaction. However, the true meaning of the ultrasonic vocalizations produced by mouse

and which circumstances led the animals to vocalize certain sounds to the detriment of

others, still remains largely unknown.

During social experiments, the number of vocalizations acquired is typically in the order

of the tens or hundreds per minute, which makes it harder to process them manually. Thus,

in order to process such a big throughput of data, computer software is required. For this

reason, the need for computational software capable of process Ultrasonic Vocalizations,

namely recognize and categorize them, is the main motivation behind this work.

This thesis project presents a novel algorithm, based on spectral entropy, capable

of segmenting ultrasonic vocalizations, with a recall value up to 97%, as well as several

classification methods capable of discriminate among ten different vocalizations with 81.1%

accuracy. This presents a significant step forward in relation to the state of the art

classification methodologies, which only can classify five different classes. As the final

product, a software application was developed in MATLAB, integrating the proposed

segmentation and classification solutions in the same fully automated pipeline, capable of

processing raw audio files and extract meaningful information.

Keywords: USV Segmentation; USV Classification; Ultrasounds; Bio-Signals Process-

ing; Autism Rodent Models.
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Chapter 1

Introduction

This chapter briefly presents the motivation behind the thesis project project as well as

the main objectives. Furthermore, a summary of the main contributions is also presented.

1.1 Motivation

For a long time being rodents have been used in biomedical research and play, un-

doubtedly, an essential role in the progression of scientific knowledge. According to the

National Association for Biomedical Research, about 95% of all animals used in laborato-

ries are mice or rats 1. Therefore, is essential to understand how these animals interact

and behave in different circumstances in order to create good animal models of several

conditions and improve the scientific knowledge.

Despite the fact that is known for a long time that mice produce ultrasonic sounds

denominated as Ultrasonic Vocalizations (USVs) or syllables [1], it is still unclear what is

the relation between the types of sounds produced and the emotional state of the animals,

as well as the relation to the social or biological context in which the animals are inserted.

Thus, in this project, several experiments were conducted, under different circumstances

(described in chapter 4), in an attempt to submit two different animal models to several

emotional states, so that the types of sounds produced by the animals can be related to

each emotion or emotions. Furthermore, it also intended to correlate the USVs production

with the neurodevelopmental state of each model, in order to access how can USVs be

used as a biomarker to detect and describe autism in rodents.

The fundamental knowledge about rodents bio-acoustics has gained progressive interest

and can be a very useful and powerful tool in order to develop and formulate new animal

models in different behavioral studies, namely autism animals models, which were used in

this project. Furthermore, these type of studies also have as an advantage the fact that

neither they are invasive or harmful to the animals, as the only thing required to extract

the information is the audio recording of the sounds produced by the animals.

1https://www.nabr.org/wp-content/uploads/2015/05/Mice-Rats-In-Biomedical-Research-NABR.pdf

1
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1.2 Objectives

The main goal of this project is the development of a classification system that is able

to properly detect and categorize rodents USVs. In order to develop this system, several

steps must be considered, which lead to the partition of the project in multiple smaller

objectives. It is also intended to characterize the vocal repertoire of the two mouse species

used in the studies, C57BL/6 (wild type), Nf1+/− (autism model) and a control group,

as well as the relations of the produced sounds with the emotional states of the animals

and the assessment of the differences between the Nf1+/− and control groups.

The objectives can be listed as follows:

� Development of an algorithm that is able to recognize and segment vocalizations in

raw audio signals;

� Creation of an USVs database. This is a two steps process, in which the syllables

are isolated first, with the segmentation algorithm, and then, manually classified, so

that they can be used in supervised Machine Learning (ML) algorithms;

� Development of classification algorithms that are able to discriminate between the

ten different USVs classes (see section 2.4);

� Study the vocal repertoire of each species of rodents involved in this study, mainly to

uncover the relations between the types os sounds produced and the social paradigms,

among other factors.

� Development of a software capable of processing raw audio files and categorize the

syllables that they contain, using the trained machine learning models, as well as

the extraction of some relevant characteristics of the vocalizations, like maximum

and minimum frequencies, frequency bandwidth, spectral power and energy, among

others. The developed software is then intended to be made available online, in

Open-Source format.

1.3 Thesis Outline

The document describes all stages of the work developed during the project, from the

understanding of the problem to the developed algorithms and according results. The

document is organized in Chapters, whose content is briefly described bellow.

1. Introduction: Describes the problem that is trying to be solved and what is the

motivation and objectives of the project;

2. Background: Explains some basic concepts which are key to understand the prob-

lem;
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3. State of the Art: The State of the Art Chapter presents a review of the literature,

as well as the listing of some of the available software used in rodents bioacoustic

studies;

4. Dataset: Describes all the signals acquisition process as well as a the dataset con-

struction process and some statistical considerations regarding itself;

5. Methods: Describes all the developed algorithms in all project phases;

6. Results and Discussion: Presents the results obtained and reflects on the devel-

oped methods and what their potentialities and limitations are;

7. Conclusion: Reflects on all the work developed and and what contributions were

achieved regarding the main objectives of the work.

1.4 Contributions

This main contributions related to this work are the following ones:

� Creation of an audio signal database with rodents (wild-type and Nf1 groups) USVs

with signals acquired form several social paradigms;

� Creation of an USVs database;

� Development of a new method to segment USVs;

� Development of several methods to extract the time-frequency ridge from USVs

spectral representations;

� Development of multiple classification systems that are able to differentiate multiple

USVs classes;

� Development of a software application, which incorporates an automatic pipeline

capable of processing raw audio files and extract relevant characteristics of their

USVs.

1.5 Publications

D. Pessoa, L. Petrella, M. Castelo-Branco, C. Teixeira; “Automatic segmentation of

ultrasonic vocalizations in rodents”; IFMBE Proceedings, MEDICON 2019 - 15th Mediter-

ranean Conference on Medical and Biological Engineering and Computing (in printing).





Chapter 2

Background Concepts

In the Background Concepts Chapter several relevant concepts, related to this thesis,

are presented. These concepts allow to better understand the motivations behind the work

developed and also help the understatement of some key topics.

It starts with the presentation of the characteristics of the neurodevelopmental dis-

ease that is being studied and continues with the impact that rodents have in biomedical

research and how the study of the sounds they produce can impact improve the under-

standing of the animal models.

2.1 Autism

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder char-

acterized by repetitive or stereotyped behavior and impairments in communication and

social interaction [2,3]. Emotional processing is highly affected on ASD, explained in part,

at least, by abnormalities within the limbic system. Typically, people with this condition

show signs of anxiety and mental retardation, delayed learning of language, difficulty in es-

tablish conversations and eye contact, bad planning capacity, narrow and intense interests

and impaired sensory sensitivities.

The ASD diagnosis is usually based on behavioral analysis. In 2018, the USA Centers

for Disease Control and Prevention estimated that 1 in 59 children suffer from ASD1. Also,

in 2014, researchers estimated the lifetime cost of caring for an individual with autism is

as great as $2.4 million, which results in almost $90 billion spent annually in costs for

autism by the US government, says the Autism Society1.

2.2 Rodents in Biomedical Research

Rodents are mammals of the order Rodentia and compose one of the largest mammalian

taxa, representing more than 40% of all mammal species [4].

1https://www.autism-society.org/what-is/

5
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Rodents were the first animals to be used for scientific purposes and make up to 95% of

all the animal models used in laboratory [5]. This species is the most commonly used be-

cause their physiology and genetic closely resembles the human one and it does not present

significant constrains to its use in laboratory environment. Despite the substantial differ-

ences between human and rodents, the similarities are strong enough to give researchers a

powerful and versatile mammalian system in which to investigate human diseases [5]. Fur-

thermore, the sequencing of rodent genomes has allowed researchers to reproduce human

diseases in rodents through genetic engineering and manipulation. Moreover, the analysis

of the interaction between genes, environmental factors and human phenotype are not

feasible. This fact stresses the need of using cellular and animal models [3].

In this project, vocalizations from two rodents different strains have been analyzed:

the wild-type strain (C57BL/6) and a genetic mice model of autism or Nf1+/− mice (and

the non-mutant sibling used as control group). The Nf1+/− mice, developed as a model

of neurofibromatosis type I (through mutation in the neurofibromatosis gene), also mimics

diverse characteristics of ASD.

2.3 Rodent Bioacoustics

Even thought several studies have been conducted on rodents throughout the years,

there is still a lot to understand regarding mouse vocal communication and how it affects

interaction between them. Their social behavior can vary a lot from species to species,

and the study of Ultrasonic Vocalizations (USVs) would provide important insight about

how animals interact regarding their territory, sexual receptivity, food, predators, among

other aspects [4].

Mice produce a wide and complex repertoire of sounds in the most different social

contexts, ranging from the audible to the ultrasonic domain, i.e., up to 200 kHz or more.

Although these sounds are often used in biomedical and scientific research as an index of

sociability between animals, their biological significance is not fully understood [6–9].

As it happens with most terrestrial mammals, rodents produce sound with their larynx,

a organ located into the throat (see Figure 2.1), and through an external air stream. When

the air stream passes through the larynx, changes in the air particles are made and sounds

are produced. Besides that, the modulation of sounds produced can be controlled with the

combination of expiration, partial or full closure of the laryngeal glottis, and the use of a

supralaryngeal component of the vocal tract [4]. All of the mechanisms described above

are controlled by a total of forty muscles and their according nerves [4].

2https://doi.org/10.7554/eLife.19153.003
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Figure 2.1: Mouse larynx anatomy2. Abbreviations: (AC) Arytenoid Cartilage, (CC) Cricoid Cartilage,
(CT) Cricothyroid muscle, (E) Esophagus, (G) Glottis, (L) Larynx, (LCA) Lateral Cricoarytenoid muscle,
(PCA) Posterior Cricoarytenoid muscle, (T) Tongue, (TAM) Thyroarytenoid Muscle, (TC) Thryoid Car-
tilage, (TgCT) Thyroglottal connective tissue, (Tr) Trachea, (VL) Vocal Ligament, (VM) Vocalis Muscle,
(VF) Vocal fold. (V) and (D) indicate dorso-ventral axes..

2.4 USVs Classes Definition

One of the biggest difficulties when classifying USVs is that syllable types differ between

rodent strains. Furthermore, it has also been shown that vocalizations differ with the

environmental/social situation in which the animals are inserted, and also with the age

and sex of the animals.

Based on our acoustic records, we found out that the syllable types defined by Scattoni

[7] and Grimsley [8], offer a good coverage of the observed USVs repertoire. Thus, the

definitions given by these authors have been used in this study.

The classes considered in this work are listed and defined below.

� Complex: monosyllabic syllable with two or more directional changes in frequency

>6 kHz (Grimsley), Figure 2.1a;

� 1 Frequency Step: syllables with two elements, in which the second element was

≥10 kHz different from the preceding element and there was no separation in time

between steps (Grimsley), Figure 2.1b;



8 CHAPTER 2. BACKGROUND CONCEPTS

� Multiple Frequency Steps: syllables were two or more instantaneous frequency

changes appear as a vertically discontinuous “step” on the spectrogram, but with no

interruption in time (Adapted from Grimsley and Scattoni), Figure 2.1c;

� Upward: syllables with frequency upwardly modulated with a frequency change ≥6

kHz (Grimsley), Figure 2.1d;

� Downward: syllables with frequency downwardly modulated with a frequency

change ≥6 kHz (Grimsley), Figure 2.1e;

� Flat: syllable with constant frequency, with frequency modulation <6 kHz (Grims-

ley), Figure 2.1f;

� Short: syllables that lasts <5 ms (Grimsley), Figure 2.1g;

� Chevron: syllables shaped like an inverted U, where the highest frequency was at

least 6 kHz greater than the starting and ending frequencies (Grimsley), Figure 2.1g;

� Reverse Chevron: syllables shaped like a U, where the lowest frequency is at least

6 kHz lower than the starting and ending frequencies (Grimsley), Figure 2.1i;

� Composite: were formed by two harmonically independent components, emitted

simultaneously (Scattoni), Figure 2.1j.
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(c) Mult. Frequency Steps
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(d) Upward
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(e) Downward

5 10 15 20 25

Time (ms)

20

40

60

80

100

120

140

F
re

qu
en

cy
 (

kH
z)

-110

-105

-100

-95

-90

-85

P
ow

er
/fr

eq
ue

nc
y 

(d
B

/H
z)

(f) Flat
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(j) Composite

Figure 2.1: Time-frequency representation of the 11 types of USVs considered in this study.



Chapter 3

State of the Art

With the increase of computational power, which increased the capability of processing

large set of files, bioacoustic studies have drawn more and more attention. These types

of studies have been conducted in multiple animals species such as birds, frogs, whales,

dolphins, elephants, and many others [10–15], and have focused not only in distinguish

the different types of sounds produced by the animals and the according context in which

the they are produced, but also in discrimination between animal types within the species

themselves.

Throughout the course of the years, rodents bioacoustics studies have also experienced

an increasing demand, since mouse are the most used animals in laboratories. Several

researchers have unveiled the potential of mouse Ultrasonic Vocalizations (USVs) analysis

in further improvement of the knowledge about rodents and how they interact in different

circumstances, being a very interesting and powerful tool, namely, in social interaction

studies.

When talking about bioacoustic studies, there are usually two main steps involved,

being the signals segmentation and the study, processing and analysis of the sounds them-

selves. Even tough there are several tools available related to mouse USVs analysis, most

of them only allow to group vocalization based on clustering processes, and the ones which

allow to classify the vocalizations, can only distinguish a small number of sounds, which

is far from ideal since mouse can produce a wide and diverse spectrum of vocalizations in

the most different situations.

3.1 USVs analysis and Behavioral Patterns

Several studies have shown that rodents produce different types of sounds accordingly

to the social or environmental context, which led to the hypothesis that the repertoire

produced by the animals can be used as a biomarker in neuropsychiatric mice models of

neuropsychiatric disorders [7, 9].

Some of the more common experiments in USVs social and biological paradigms studies

are related to sexual behavior and courtship, and demonstrated that USVs are used either

11
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to attract and/or maintain close proximity to females and facilitate mating [16,17]. USVs

are also preponderant in social cohesion by triggering and maintaining the interaction

between two individuals of the same sex [18]. USVs production alterations have also been

associated to genetic abnormalities in several neurotransmitter systems [19].

3.2 USVs Segmentation

Typically, in studies related to bioacoustics analysis, the first step consists in the audio

signals segmentation, in order to isolate the syllables or calls produced by the animals. To

this end, several algorithms have been proposed in the literature, as listed in Table 3.1.

The segmentation process consists essentially in the partition of the audio signal in

smaller pieces containing the USVs, in order to isolate these specific events. This is a

critical step to undertake, since it will allow the individual processing and information

extraction of each vocalization on its own.

One of the major hurdles in automatic detecting of USVs is the very low Signal to

Noise Ratio (SNR), as USVs signals often have broadband interference or ambient noise,

which can partially mask the signals. Thus, powerful and general algorithms are required

to handle the task.

Table 3.1: Summary table of the different audio segmentation methods.

Method Authors

Faster R-CNN Coffey et al. 2019 [20]
Voice Activity Detector Ramirez et al. 2007 [21]

Harma’s Method Harma et al. 2004 [22]
STE & STAZCR Sakim et al. 2014 [23]
Signal Bandwidth Zala et al. 2017 [24]

Time varying parameters Holly et al. 2005 [25]
Hilbert Follower Potamitis et al. 2014 [26]

The Faster R-CNN, used in DeepSqueak [20] toolbox, uses a two stage methodology

to isolate the individual calls of the animals in the audio files. First, short segments of

audio files, with variable length previously defined, are converted into sonograms which are

then passed by an Faster-RCNN image object detector. This step detects all the possible

interest areas, which may or may not be vocalizations. Then, in the second stage, the

results produced by the Faster-RCNN are passed to a second network which will classify

the proposed regions into real vocalizations or background noise. Thus, both classification

networks used in each of the two stages need to be trained with annotated data.

The Voice Activity Detector, used in MUPET [27] software, is an audio activity de-

tector proposed by Ramı́rez et al. [21]. The syllable detector divides the audio segment

in multiple frames and then measures the SNR and other parameters of each one. Then,

with the use of a threshold it is determined whether a frame is voiced or unvoiced.

The Harma’s method was first proposed by Harma in 2004, and has been used in
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multiple studies of bioacoustic in different kinds of animals [28–31]. The method is a

syllable segmentation algorithm based on the iterative amplitude-frequency information.

Essentially, this method consists in the computation the spectrogram of an audio segment

using Short Time Fast Fourier Transform (S(f, t)) and then finding fn and tn, such that

|S(fn, tn)| is the maximum value in the spectrogram. Those values are stored as wn(0) =

fn and an(0) = 20log(|S(fn, tn)|). Then, starting from |S(fn, tn)| for t > t0 and for t < t0,

the maximum peak of S(f, t) is traced back and forward until a stopping criteria is met.

Once this criteria is met, the initial and final instants of the calls are stored. After that,

the process is repeated iteratively.

Short Time Energy (STE) and Short Time Average Zero Crossing Rate (STAZCR)

[32,33] is also an algorithm developed to segment bioacoustic signals. The STE is computed

in order to estimate, with a threshold, the pieces of the signal that contain sounds (voiced

segments) and then, STAZCR is employed as a part of the front-end processing. This

algorithm was also used in multiple bioacoustic studies [23].

The Signal Bandwidth algorithm is part of A-MUD interface [24] (Automatic Mouse

Ultrasound Detector), which is available for free. The first step of this segmentation

algorithm aims to reduce the noise in the signal with pre-whitening techniques. Then,

two specific thresholds, that constitute the narrowness of the signal’s bandwidth, are

estimated. The signal’s bandwidth is defined as the number of frequency bins for which

a certain ratio of the total spectrum energy was achieved. Lastly, using the bandwidth

previously determined, the vocalizations are identified, being that in the end of the process

several temporal corrections are applied.

In the method used by Holy and Guo [25], Ivanenko [34] and Arriaga [35], syllables are

segmented by computing three time-varying parameters from the audio spectrograms: the

mean frequency, the “spectral purity” (fraction of total power concentrated into a single

frequency bin), and the “spectral discontinuity”. After that, syllables are identified if those

three measured parameters met certain conditions.

The Hilbert follower [26] is essentially an audio activity detector which segments the

signals by following the characteristic shape of syllables envelop. This algorithm computes

the Hilbert envelope of the signal x(n), xh(n) = Hilbert(x(n)), and then, if the envelope

is above a threshold, it is considered to be audio activity, and, therefore, a vocalization.

Besides all the algorithms mentioned and briefly described above, there is also available

commercial software capable of segmenting USVs, such as Ultravox 1 and SASLab Pro2.

However, the algorithms used in these products are not disclosed.

The performance values presented in Table 3.2 for DeepSquek, MUPPET and UltraVox

were obtained from DeepSqueak article [20].

1https://www.noldus.com/animal-behavior-research/products/ultravox-xt
2https://www.avisoft.com/soundanalysis.html
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Table 3.2: Summary table of the different audio segmentation methods performance (N.a.-not avail-
able).

Tool Performance

DeepSqueak [20]
Precision≈0.97

Recall≈0.9

MUPPET [27]
Precision≈0.95

Recall≈0.93

UltraVox3 Precision≈0.95
Recall≈0.82

Time varying parameters [25]
Precision≈N.a.

Recall≈0.95

3.3 USVs Classification

Even tough there are several tools available to study and analyze mouse USVs, most

of them take a non unsupervised approach and use, mostly, clustering methodologies.

These means that these tools do not attribute a specific label to each USVs. Instead, with

clustering, it is possible to group the USVs into different clusters, or groups, based the

similarity of a certain set of descriptors, trying to maximize the inter-clustering separability

and minimizing the intra-clustering variability.

One of the major hurdles in USVs classification is the fact that it does not exist a

standard set of well defined vocalizations. Several authors in the literature define the

types of vocalizations that they observe in their own experiments with their own species

of rodents, which might or might not correspond to the ones observed in other species

of rodents by other authors. Furthermore, there are even some types of vocalizations

with different definitions depending on the author. Taking into account the previous

considerations, it is easy to understand why it is so difficult to establish and recognize all

types of vocalizations that exists, since they vary a lot, mostly between species.

In spite of being mainly a tool with clustering capabilities, the DeepSqueak software

[20] also provides supervised classifiers, namely neural networks. These networks are

able to distinguish between five types of different vocalizations (Split, Inverted U, Short

Rise, Wave, and Step), which are by no means comprehensive enough to describe the

full spectrum of sounds produced by mice, as the authors refer, since they were able to

recognize up to twenty different types of syllables with their clustering methods. Note

that the classes identified in [20] do not have a direct correspondence to the ones used in

this work. Holy and Guo [25] were also able to categorize the same 5 different syllables

identified with DeepSqueak, however, in neither of the cases is given any classification

metric or result that would allow to access the algorithms performance.

As it happens with the segmentation algorithms, there is also available commercial

software capable of classify USVs such as SASLab Pro4 and SONOTRACK 5. However,

4https://www.avisoft.com/soundanalysis.html
5https://www.metris.nl/en/products/sonotrack
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the algorithms used in these products are not disclosed, neither are the performance results

regarding the classification available.

3.4 USVs Software and Toolboxes

As mentioned before, there are some tools available used to support studies and re-

search on mouse USVs and bioacoustic studies in general. In this section, a brief de-

scription of these tools and the characterization of their features is made, as well as the

description of the main strengths and limitations of each one.

3.4.1 DeepSqueak

DeepSqueak is a fully graphical MATLAB package (see Figure 3.1) which allows for

the detection and classification of rodents USVs. The interface’s aims to allow non-experts

easy entry into USVs detection and analysis.

The interface allows the segmentation of audio signals (in .WAV or .FLAC format)

using Faster R-CNNN object detection networks and output syllable statistics in spread-

sheets for further analysis. It is possible to output to a spreadsheet characteristics of the

vocalizations such as the minimum, maximum and mean frequency of the vocalizations,

duration, slope, sinuosity and power. Besides that, to each vocalization is also given a

confidence score, that is, a score that translates the confidence of the system that it is a

real vocalization. DeepSqueak also offers the possibility to classify the vocalizations, as

was mentioned before. However, this classification is quiet limited, since it only allows to

discriminate between five different types (Split, Inverted U, Short Rise, Wave, and Step),

and is far from comprehensive, as the authors refer.

Notwithstanding, DeepSqueak excels due to its capability of unsupervised syllable

clustering. The interface offers the possibility of grouping, with two different clustering

techniques (k-means and adaptive resonance theory neural network), the vocalizations

which where detected in the segmentation phase. In order to be grouped, vocalizations are

characterized by three different features, shape, frequency and duration. These descriptors

are then passed to the clustering algorithm and the vocalizations are grouped according

to them. The weight for each of the features used can be adjusted by the user. With

k-means algorithm, the user has the possibility of choosing the number or clusters of it

can be chosen automatically estimated using the elbow method. On the other hand, the

algorithm of adaptive resonance theory neural network does not require any input.

6https://github.com/DrCoffey/DeepSqueak
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Figure 3.1: DeepSqueak Interface6.

3.4.2 MUPET

MUPET (see Figure 3.2), which stands for Mouse Ultrasonic Profile ExTraction, is

an open-access software that automatically generates mouse vocalization repertoires. The

software uses signal processing techniques to perform rapid, unsupervised analysis of mouse

ultrasonic vocalization repertoires, including unbiased syllable discovery [27]. The MUPET

software presents five fundamental capabilities that allow it to process and study the

sounds produced by rodents, being the syllable detection capability, acoustical dataset

analysis, syllable repertoire building, measure of the similarity between different syllables

repertoires and, at last, cluster analysis of the repertoires.

In order to segment the audio signals, the software uses a voice activity detector, based

on the work of Ramı́rez et al. [21], which will split the audio file in smaller pieces and classify

them into voiced or unvoiced segments. After the segmentation of the signals, it is possible

to build vocalizations datasets in which USVs can be grouped with clustering techniques

according to their frequency, duration, shape and amplitude. Furthermore, other of the

greatest features of MUPET is the possible of comparing the similarity between different

repertoires, which can be a very useful tool when comparing two different strains of mouse,

for instance.

Besides all of the functionalities mentioned above, the interface is also able to generate

.csv spreadsheets with several characteristics of the detected vocalizations, such as the

initial and final frequencies, the maximum and minimum frequencies, among others.

7https://sail.usc.edu/mupet/
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Figure 3.2: MUPET v2.0 Interface7.

3.4.3 A-MUD

A-MUD (Automatic Mouse Ultrasound Detector or A-MUD 1.0) in a segmentation

algorithm implemented in STx (S TOOLS-STx version 4.2.2), a software from the Acoustic

Research Institute (Austria), used to process large quantities of audio data [24]. The A-

MUD algorithm, as described above, is composed by a multi step process, which will

determine the start and ending point of each vocalization. Furthermore, the software is

also able to measure a series of parameters of each segmented vocalization, such as the

mean frequency, frequency bandwidth, mean amplitude, the frequency and amplitude,

accordingly, at the starting and ending points as well as the maximum and minimum

frequencies and amplitudes. The A-MUD algorithm performance values can be seen in

Figure 3.3

Figure 3.3: A-MUD performance results (Comparison between A-MUD and commercial software)8.

8https://doi.org/10.1371/journal.pone.0181200.g001
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3.4.4 Mouse Song Analyzer 1.3

Mouse Song Analyzer v1.3 is MATLAB program developed by Arriaga et al. (2012)

[35], modified from code originally written by Timothy E. Holy [25]. The software allows

to represent the sonograms of the mouse ultrasonic vocalizations as well as the extraction

of several characteristics and the classification according to Holy and Guo [25], Arriaga et

al [35] and Scattoni [7] classifications.

Figure 3.4: Mouse Song Analyzer 1.3 Interface.

3.4.5 VoICE

VoICE is a semi-autonomous pipeline, developed in MATLAB and R, which allows

grouping vocal elements through the creation of a high dimensionality datasets, using

spectral scoring similarity between all vocalizations within a recording session [36].

The method performs automated, hierarchical clustering of similar shapes. However,

the assignment of the classes to each vocalization is made manually, having the advantage

of the most similar syllables being already grouped. The identified vocalizations are based

on the ones described by Scattoni [7, 37].

One of the main weaknesses of the software, is the fact that the pipeline does not

have the capability of segment raw audios signals, whereby, all the vocalizations must be

previously selected and passed as individual separated files to the system.
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Chapter 4

Dataset Description and

Acquisition

In this chapter the system used to acquire the audio signals in this work is described,

as well as its equipment. The social paradigms considered in the project are also defined.

Furthermore, the dataset annotation process is also explained. Lastly, some statistical

tests were conducted, which are also presented.

4.1 Signals Acquisition System

The recording system used to acquire the mouse audio calls consists on a multi-channel

recording system (Avisoft-UltraSoundGate 416H, Avisoft Bioacoustics) with four channels

working with two microphones (microphone CM16 / CMPA, Avisoft Bioacoustics), one for

each test chamber (see Figure 4.1). The signals can be digitized at a maximum sampling

frequency of 700 kHz. Associated software allows the definition of the recording parame-

ters, the real time signal/spectrum visualization and the recording of the signals in the PC

memory. Moreover, a playback system, consisting of a speaker (Ultrasonic Speaker Vifa,

Avisoft Bioacoustics) and a D/A converter(UltraSoundGate Player 116 (single channel),

Avisoft Bioacoustics), was acquired from the same manufacturer. This playback system

is used to reproduce acoustic stimuli. Tests are video-recorded with a webcam positioned

at the top of the test cabin, and using a red light that enables video recording while min-

imizing undesired effects. The sound-attenuating cabin was projected with 55 cm x 50

cm x 70 cm (H x D x W), to provide enough space for the experimental montage. It was

constructed of acrylic plates with a wall thickness of 1.5 cm, to block the external sound.

Moreover, the internal side of the cabin was fully covered by sound absorbing foam. The

cabin was also designed with a frontal door and holes for ventilation and wiring. An addi-

tional acrylic cage was constructed, where mice are placed during tests. It is half separated

by an acrylic plate with holds in the inferior part. During tests two animals are placed one

in each compartment (with one microphone) for the identification of each mice Ultrasonic

Vocalizations (USVs), while the holes allow them to keep communicating. Preliminary

21
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tests confirmed the good performance and versatility of the assembled system.

Figure 4.1: USV recorder system.

4.2 Paradigms in Signal Acquisition

Having in consideration that multiple paradigms have been used in the literature to

record rodent’s social interaction, a set of experiments, was designed to induce and study

diverse emotional states. Some of the paradigms are common among the ones used in the

literature, while others present themselves as new approaches.

The basic emotions can be defined by Robert Plutchik’s wheel of emotions as; joy, trust,

fear, surprise, sadness, disgust, anger and anticipation. One paradigm was implemented

for seven of these basic emotions except for trust. Moreover, another paradigm for the

homeostatic emotion hunger was also conducted.

All the tests in which the signals were acquired were conducted in pairs were the

animals where separated by an acrylic plate and communicating through holes (except for

Joy in juvenile mice and for Anger test in adult mice). In all tests two audio channels

were recorded, having each mouse a microphone compartment (see Figure 4.1). For all

tests (except for Joy and Anger tests) mice are left 10 minutes for adaptation before start

recording.

Tests were implemented on both, males and females, and at two time-points: juvenile

mice (22-38 days of age) and adult mice (60-82 days of age), except for the anger test

that was only implemented in adult males, since neither juveniles nor females presented

aggressive behavior.

The tests for anticipation, surprise and sadness (or disappointment) are related with

each other. It is based in the well-known capacity of mice to anticipate (learn) situations

when trained with a repeated stimulus. Here, animals were trained with high-frequency

acoustic beeps (20 kHz beeps during 1 minute), followed by food introduction.

All the paradigms are defined bellow.
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Paradigms

� Joy: The test differs for juvenile and adult mice. Juvenile mice: mice are highly

social animals, and juvenile mice interact for play. To evoke vocalizations during the

test, animals are isolated on individual cages the day before. In the testing moment

the animals (of the same gender) are put together for free social interaction. Adult

mice: it is well known from the literature that mice vocalize to attract the couple.

On this sense for the test, male and female are simultaneously introduced in each

compartment of the cage. This test is repeated in two different days, to give the

animals the chance to familiarize with each other.

� Disgust: On this paradigm was used an olfactory stimuli to induce disgusting emo-

tion and related vocalizations. A previous study showed that benzaldehyde evokes an

adverse reaction in mice [38]. In this test, two familiar mice (of the same sex) are put

on each compartment of the cage, with suspended empty falcon tubes. After 120s of

recording the tubes are substituted by others containing cotton with benzaldehyde

(bitter almond essence).

� Fear: Mice shown emotional responses in the presence of predators odor [39]. Thus,

in this test was used cat’s urine to induce fear stimuli. Two familiar mice (same sex)

are put on each compartment of the cage, with suspended empty falcon tubes. After

120s of recording the tubes are substituted by others containing cotton soaked with

cat urine.

� Anger: Mice are highly territorial animals. Usually, after some minutes in a territory

they recognize and adopt it.When an unknown mouse tries to occupy the same space,

it is common for the resident to reacts violently in order to protect their space. This

adverse reaction to intruders has also been documented in several studies, being a

strong vocalization stimuli [40]. On this test, one male is putted in the recording

cage and left for habituation for 30 minutes. The record starts, and 120 s latter an

unfamiliar mouse (intruder) is introduced inside a cylindrical wire cage.

� Anticipation: In this test, the food is withdrawn from the cage ± 3h before the

test. At the test moment a pair of familiar mice is put in the cage. After 120s of

recording the acoustic stimulus is reproduced and after 15s interval a piece feed is

introduced on each compartment. Mice are trained along 3 days and the anticipation

is assessed at the 4th day, following the same procedure.

� Surprise: It is implemented in the consecutive day of anticipation test. The proce-

dure is similar, with the exception that, after the acoustic stimuli, sunflower seeds are

introduced (instead of mice feed). Mice were previously familiarized with sunflower

seeds, and it was choose since the animals have shown high interest for it.

� Sadness/Disappointment: It is implemented in the consecutive day of the surprise
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test. The procedure is similar, with the exception that, after the acoustic stimuli,

no food was introduced.

� Hunger: The food is withdrawn from the cage approximately 6h before the test.

Two familiar mice (same sex) are put on each compartment of the cage, with sus-

pended empty falcon tubes. After 120s of recording the tubes are substituted by

open tubes containing mice feed, but kept inaccessible, so that the mice just smell

it.

� Background: This test serves as background for disgusting, fear and hunger tests,

and is implemented to elucidate if the procedure of opening the frontal door and

changing the tubes induces vocalizations. Two familiar mice (same sex) are put on

each compartment of the cage, with suspended empty falcon tubes. After 120s of

recording the tubes are removed and place again.

4.3 Dataset Annotation

The labeling process of any dataset it is always a laborious and exhaustive task. How-

ever, in order to develop any kind of supervised classification algorithms or methodologies,

it is mandatory to have labeled data. So, it was necessary to manually annotate the vo-

calizations detected by the segmentation algorithm (see section 5.1). All the vocalizations

used in the classification algorithms were manually annotated.

Since two microphones are capturing the audio simultaneously, when the USV are

being annotated, the two channels must also be analyzed together. This is a crucial point

since most of the time the sound produced by a mouse is captured by the two microphones,

which may cause interpretation problems. This may happen when one of mouse vocalizes

to close too the communication hole or even when one of animals simply emit a very

powerful sound. In order to handle this problem, the signals from both channels were

analyzed at the same time and whenever a vocalization was present in both recordings it

was manually chosen which channel to keep, according to the quality of the vocalization

in each of the channels.

To annotate all the vocalizations, an application was developed using MATLAB 2018b

(see Figure 4.2). The interface allows to classify the vocalizations of only one signal at a

time, however, it also shows the complementary channel in the same temporal instants.

Even tough only a channel can be classified at a time, whenever it happens a vocalization

to be present in both channels, the user has the possibility to choose which vocalization to

keep, if the vocalization of the main channel being classified or the complementary channel.

When this happens, the start and end points of the vocalization on the complementary

channel are also shown, as it is possible to observe in Figure 4.2.

Furthermore, in order to facilitate the annotation process, there are two sub-windows

on the right side to give auxiliary information to the user. On the upper sub-window, it

is displayed a cleaner version of the time-frequency representation from the initial to the
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final instants of the vocalizations, while on lower sub-window it is used an algorithm to

extract the time-frequency ridge (contour) of the vocalization. With that contour vector

some useful parameters are determined, such as the initial, final, maximum and minimum

frequencies as well as the duration of each syllable, in order to facilitate the process of

manual association to a certain class.

Figure 4.2: Vocalizations Labeling Interface.

4.4 Dataset Analysis and Statistics

Using the described system in section 4.1, a total of 666 (.WAV ) audio signals were

acquired in different social conditions (see section 4.2) and the three different group of an-

imals with different ages, C57BL/6 and Nf1+/− and the according control group (autism

model group), young and adults accordingly. In total, almost 81 hours of social interaction

between mice were acquired, as listed in Table 4.1.

Table 4.1: Summary table of the recording hours by paradigm (hours).

Experiment Total Time (h) C57BL/6 (h) Nf1+/− (h) Adults (h) Youngsters (h)

Joy 11.3 5.72 5.58 6.94 4.35

Anticipation 28.52 12.15 16.37 15.76 12.76

Surprise 6.81 3.05 3.76 3.96 2.85

Fear 5.16 2.89 2.27 2.94 2.22

Hunger 6.62 2.57 4.05 3.69 2.93

Disgusting 6.25 2.71 3.54 3.12 3.13

Disappointment 7.27 3.04 4.23 3.96 3.30

Anger 2.57 1.50 1.07 2.57 0.00

Background 6.34 1.79 4.55 2.92 3.42

Total 80.83 35.42 45.42 45.87 34.97

From the total 666 signals, 357 were manually annotated, according to the process
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described in section 4.3. In Table 4.2, is possible to observe how many signals were

classified by social paradigm. With the manual annotation process, a dataset composed

by 4633 USVs was created. During the manual annotation process, dubious vocalizations

or with very low quality were excluded. The USVs database distribution by class and

paradigm is presented in Table 4.3.

Table 4.2: Number of acquired and classified signals by paradigm.

Paradigm Total Classified

Joy 72 65

Anticipation 236 30

Surprise 56 31

Fear 44 38

Hunger 60 43

Disgusting 60 51

Disappointment 60 41

Anger 22 16

Background 56 42

Total 666 357

Table 4.3: Vocalizations distribution by class and paradigm.

Classes Joy Anticipation Surprise Fear Hunger Disgusting Disappointment Anger Background Sum

Complex 40 0 0 2 0 3 0 0 1 46

1 Freq. Step 605 1 3 9 13 9 10 1 11 662

M. Freq. Steps 111 0 2 1 6 9 11 3 11 154

Up 1632 4 9 28 29 25 14 23 16 1780

Down 127 14 24 77 40 68 6 1 11 368

Flat 739 9 27 40 28 23 21 54 6 947

Short 223 4 13 46 54 23 4 4 19 390

Chevron 113 0 2 8 3 4 3 0 2 135

Rev. Chevron 33 0 5 9 0 5 1 0 1 54

Composite 22 11 6 23 15 4 11 0 4 96

Sum 3645 43 91 243 188 173 81 86 82 4632

14%

1%

3%

38%

< 1%

8%

2%

20%

8%

3%
1 Frequency Step
Reverse Chevron
M. Frequency Steps
Up
Complex
Down
Composite
Flat
Short
Chevron

Figure 4.3: Dataset classes distribution.
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Through the analysis of Figure 4.3, is evident that some classes have a small predomi-

nance in the whole dataset, resulting in an very unbalanced group of USVs. Furthermore,

it is clear that the paradigm from which more vocalizations where annotated, was the Joy

one, as presented Table 4.3. Note that this is also the paradigm with the higher number

of annotated signals.

In order to understand how the types of vocalizations produced are related to the social

paradigms and what paradigms lead the animals to vocalize more, some statistical tests

were carried.

The first analysis performed is related to the rates of vocalization per minute of record-

ing for each paradigm. This allows to understand which tests stimulate the most the

animals and lead them to vocalize.

Table 4.4: Vocalizations rate by groups of animals and paradigm (v/min-vocalizations per minute).

Paradigm
C57BL/6 Nf1+/− Nf1+/− Control

Max
(v/min)

Min
(v/min)

Mean
(v/min)

Max
(v/min)

Min
(v/min)

Mean
(v/min)

Max
(v/min)

Min
(v/min)

Mean
(v/min)

Anger 4.70 0.00 1.26 1.17 0.17 0.67 0.67 0.00 0.25

Anticipation 5.67 0.00 0.56 - - - - - -

Background 2.57 0.86 1.32 1.29 0.00 0.31 1.29 0.00 0.27

Disappointment 2.00 0.00 0.52 4.07 0.00 0.80 0.86 0.00 0.18

Disgusting 5.37 0.00 1.27 4.07 0.00 0.44 4.00 0.00 0.53

Fear 6.55 0.00 2.42 1.71 0.00 0.69 2.36 0.00 0.56

Hunger 4.71 0.00 2.39 2.14 0.00 0.64 1.71 0.00 0.55

Joy 80.71 0.00 7.48 20.31 0.00 2.72 16.65 0.00 3.18

Surprise 4.67 0.00 1.49 10.93 0.00 1.62 - - -

Through the analysis of Table 4.4, some conclusions can be drawn. In general, C57BL/6

mouse tend to vocalize more, presenting higher vocalization rates for all paradigms in

comparison to the remaining groups. Furthermore, the paradigm where all the animals

groups vocalized the most was the Joy one. Other observation to be made is related to the

fact that almost to every paradigm in each group of animals it existed signals where no

vocalizations were produced. Note that in this analysis only the signals that were manually

annotated were considered. In Table 4.4 the missing values means that no signals were

annotated for that particular experiments.

After analyzing the paradigms which produce more vocalizations, statistical tests were

conducted in order to understand if where there any relations between the used paradigms

and the according classes considered, that is, investigate if some types of USVs are asso-

ciated with some specific emotions. In order to study this relation, we used an N-Way

ANOVA in which the production rate of each vocalization class from each of the signals

classified is evaluated. This analysis was performed for each paradigm separately, and,

inside each paradigm, individually for each of the animals genotypes considered in the

study. Note that this analysis only contemplates the manually annotated signals.

The N-Way ANOVA test results are presented in Table 4.5. Besides the p-values

obtained with the ANOVA test, in Table 4.5 the more common class by paradigm for

each genotype is also presented. In these table, there are two columns with information

about statistical differences, however they are not referent to the same thing. The first
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one is referring to the statistical difference between all the classes distributions whereas

the second one is referring to the statistical difference between the most common class and

the reaming ones, in order to understand if the more common class is really associated

to a certain paradigm. The determination of the statistical differences between the most

common classes is made through the analysis of figures 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11

and 4.12. In those figures the statistical differences obtained with the N-War ANOVA are

presented and the vocalizations with higher production rate are highlighted in blue while

other classes that have significantly different distributions, in the case that there are any,

are marked in red.

Through the analysis of the Table 4.5 and all of the figures presented bellow, some

interesting conclusions emerge. One of the most prominent relations between the emotional

state and the types of vocalizations is visible in the Fear paradigm, where the class Flat

is clearly demarcated from all the others classes in all animal groups.

Aside from the Fear paradigm, no other presents the same class of vocalizations as

being more common across all the genotypes. However, other interesting observation is

related to the difference between the wild-type group and the Nf1+/− and according

control group, being that the Nf1+/− and according control groups typically presents as

more common vocalizations classes with more complex structures, such as the Multiple

Frequency Steps.

As it happens with the previous analysis, some of the experiments with the differ-

ent animal groups do not have annotated data, thus, in this cases, all the vocalizations

distributions present the value zero.
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Figure 4.4: Anger paradigm vocalizations rates distributions for each genotype.
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Figure 4.5: Anticipation paradigm vocalizations rates distributions for each genotype.
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Figure 4.6: Background paradigm vocalizations rates distributions for each genotype.
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Figure 4.7: Disappointment paradigm vocalizations rates distributions for each genotype.
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Figure 4.8: Disgusting paradigm vocalizations rates distributions for each genotype.
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Figure 4.9: Fear paradigm vocalizations rates distributions for each genotype.
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Figure 4.10: Hunger paradigm vocalizations rates distributions for each genotype.
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Figure 4.11: Joy paradigm vocalizations rates distributions for each genotype.
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Figure 4.12: Surprise paradigm vocalizations rates distributions for each genotype.



Chapter 5

Methods

The bioacoustic studies which involve classification, usually, tend to follow a similar

workflow to the one represented in Figure 5.1.

Raw Signals
Signals 

Segmentation

Vocalizations

Database

Feature 

Extraction

Vocalizations 

Manual 

Labeling

Classification 

System 

Development

Figure 5.1: General workflow overview.

In this section, the methods used in the segmentation and classification phases are

described.

35
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5.1 Segmentation

This section describes the segmentation algorithm based on the spectral entropy. Fur-

thermore, it also describes an image classification system, Bag of Visual Words (BOVW),

which was used as a post-processing “filter” technique to categorize the segmentation’s

algorithm output as real vocalizations or noise.

5.1.1 Spectral Entropy Segmentation Algorithm

Spectral entropy is a generalization of information entropy, which was a concept first

proposed by Shannon in an attempt to measure information’s uncertainty [41]. This

concept can be formulated by

H = −
N∑
m=1

P (m) log2 P (m) (5.1)

The spectral entropy of a signal is a measure of its spectral power distribution and deals

with the signal’s normalized power distribution in the frequency domain as a probability

distribution P (m)1. Thus, the Spectral Entropy corresponds to the Shannon Entropy of

that distribution and has been proposed to measure the distribution of frequencies of a

signal x(n) at a given instant t, defined as:

H(t) = −
N∑
m=1

P (t,m) log2 P (t,m) (5.2)

P (t,m) =
S(t,m)∑
f S(t, f)

(5.3)

where N is the number of signal samples, S(t,m) is the power spectrum and S(t, f) is the

time-frequency spectrogram.

The proposed segmentation algorithm was developed with MATLAB R2018b using an

Intel®i7-4700HQ processor and 8GB of RAM. The segmentation algorithm is essentially

composed by two parts: pre-processing and segmentation.

First the signal is filtered with a high-pass Butterworth filter of order 20 with a cut-off

frequency of 30 kHz. The high-pass filter aims essentially to reduce the interference of

low frequency noise, which can be generated by the mouse walking or touching the box,

among other external factors.

After the pre-processing phase, the signal is divided into multiple non overlapping

windows of 1 s and, for each window, the spectral entropy is computed on intervals of

1.9 ms (temporal resolution). Then, the values where spectral entropy vector are below

a certain threshold (threshold 1 Figure 5.2) are stored as the initial and final points of

a vocalization. In addition, the value of the spectral entropy must also be smaller than

a second threshold (threshold 2 Figure 5.2) at some point between the stored instants,

1https://www.mathworks.com/help/signal/ref/pentropy.html
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in order reduce the false positive rate of the algorithm. The way these thresholds were

estimated is described in subsection 6.1.1. Besides that, vocalizations that followed each

other at intervals <15 milliseconds were subsequently merged and considered as a single

vocalization [34]. This last step was considered, since in some vocalizations there was

a noticeable interruption of the vocalization or loss of power which make the algorithm

segment two or more different vocalizations instead of just one.

The output produced by the algorithm is represented in Figure 5.2, where the first

threshold corresponds to the green line and the second to the red line.
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Figure 5.2: Example of a Signal Segmentation.

Through the analysis of the segmentation results obtained with the multiple thresholds

(see Figure 6.1), it is possible to conclude that the higher the second threshold is, the higher

the recall value becomes, which means that algorithm can effectively recognize a higher

number of vocalizations. The second threshold is used to minimize the rate of false positive

detections of the algorithm, however, it has a negative impact on the true positive rate,

which is far from ideal, since in these kind of studies the main focus is trying to recognize

each and every sound produced by the animals.
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5.1.2 Bag of Visual Words

To tackle the false positives detection problem, another approach was taken, aside from

the use of the second threshold. After the segmentation process, using only threshold 1

(green line in Figure 5.2), all the syllables detected were then passed through an image

classification system in order to be classified as vocalizations or noise. The used classifier

was a BOVW.

The concept of image classification with BOVWs is an idea adapted from a methodol-

ogy originally developed in text classification and Natural Language Processing (NLP) [42].

In text classification applications, the Bag of Words (BOW) works by counting the number

of times each word appears in a document, and then, using the frequency of each word in

the document, a frequency histogram of all words is created to represent the document.

The concept is similar in images classification, differing only in the information used to

represent the objects to classify. While in text classification the objects are represented

by frequency histograms of the words, in image classification the objects are defined by

frequency histograms of visual words, which are descriptors used to characterize the im-

ages [43].

The first step in BOVW classification is the extraction of the features or key-points

from the images in order to build the features histograms (see Figure 5.3). Thus, this

process main propose is to recognize the key points of each image and their frequency.

In BOVW these points are represented by a set of descriptors. Several sets of features

can be used to create the bag of features, such as Speeded-Up Robust Features (SURF),

Scale-Invariant Feature Transform (SIFT), among others. However, KAZE features (see

subsubsection 5.2.3.5) were chosen, because there are the most adequate to detect the key

points in the Ultrasonic Vocalizations (USVs) time-frequency maps.

Figure 5.3: Example of features histogram creation2.
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After the descriptors have been extracted from the multiple images, the key points from

all the training images are grouped with clustering techniques, such as k-Means, being that

the center of each cluster corresponds to a different visual word [43] (see Figure 5.4). Thus,

the center of each cluster will be used as the visual vocabulary dictionary.

Figure 5.4: Visual Words Creation3.

The BOVWs are then trained using simple classifiers, such as Support Vector Machines

(SVMs). To train the classifiers, this method uses the bag of visual words object to encode

images in the image set into the histogram of visual words. After, the histograms of visual

words are used as the positive and negative samples to train the classifier. Given a new

image, the system extracts the key points, and using the trained bag of features encodes

the new images, converting it to a features histogram, and, lastly, to a feature vector (see

Figure 5.5).

Figure 5.5: New image feature vector creation4.

5.2 Feature Extraction

The feature extraction process translates, in some way, the passage from raw data to

machine algorithms interpretative data, which means the representation of raw data by a

set of descriptors or features. This process can be divided in multiple steps, starting by the

brainstorming about what features may or may not be useful to the problem in question.

During this initial phase, some concerns must be addressed. First, the adequation of the

features and their discriminate power must be considered, being that the higher is their

discriminate power, the easier is to unequivocally represent the data. After a certain set

of features has been selected, the features must then be extracted and tested with the

machine learning algorithms, in order to access their quality. If the performances obtained

2https://towardsdatascience.com/bag-of-visual-words-in-a-nutshell-9ceea97ce0fb
3https://www.mathworks.com/help/vision/ug/image-classification-with-bag-of-visual-words.html
4https://www.mathworks.com/help/vision/ug/image-classification-with-bag-of-visual-words.html
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are not good enough, the process must be repeated iteratively until satisfactory results

are achieved.

Nowadays, the process of feature engineering can somehow be avoided in newer clas-

sification methodologies, such as deep learning and artificial neural networks. In these

methodologies, raw data are usually directly fed to the classifiers. Then, the networks

try to extract patterns from data. However, using this approach may took away the

interpretability of how the classification works and how are the data being represented.

Summing up, the feature engineering process is one of the core and most, if not the

most, important elements regarding machine learning algorithms. If the data is well de-

scribed and represented, it will be possible to obtain good performance even with the

simplest Machine Learning (ML) algorithm.

Usually, in bioacoustic studies, one of the most frequent ways to extract information

from a certain sound produced by an animal is through the extraction of characteristics

from the time-frequency ridge, or contour, obtained from the time-frequency representa-

tions of the sounds. Furthermore, spectral features are also common.

In order to describe the USVs in a most complete way, several types of features were

extracted. Three main types of features were considered from: the time, frequency and

time-frequency domains.

5.2.1 Time Domain Features

5.2.1.1 Time Amplitude Related Features

The amplitude features are related to the raw signal in the time domain. Using the

signal in this domain, six descriptors were extracted from the signal amplitude, namely:

1. The mean;

2. The median;

3. The standard deviation;

4. The skewness;

5. The kurtosis;

6. The root mean square.

5.2.1.2 Zero Crossing Rate

The zero-crossing rate translates the rate at which the signal changes from positive to

zero to negative or from negative to zero to positive in a given window, thus, the higher

the crossing rate is the the more high-frequency content can be assumed to be in the

signal [44].

ZCR(i) =
1

2N

N−1∑
n=0

|sign[xi(n)]− sign[xi(n− 1)]| (5.4)
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where

sign[xi(n)] =

{
1, xi(n) ≥ 0

−1, xi(n) < 0
(5.5)

with N corresponding to the total number of frames used.

5.2.1.3 Short Time Energy

The Short Time Energy (STE) is the energy of short audio segment and is typically used

to detect voice or unvoiced segments [45]. The STE is given by the following expression:

En =
n∑

m=n−N+1

[x(m)w(n−m)]2 (5.6)

where x(m) is the signal in the temporal domain and w is the window used to determine

the energy.

5.2.1.4 Tonal Power Ratio

The tonal power expresses the relation between Tonal Energy (ET ) and the total Power

of the signal [44].

Tpr =
ET (n)∑k/2−1

i=0 |X(k, n)|2
(5.7)

The tonal power ratio is a value between 0 and 1, and low results hint toward a flat

(noisy) spectrum while high results indicate a tonal spectrum.

5.2.2 Frequency Domain Features

5.2.2.1 Tonality

The tonality of each vocalization corresponds to the subtraction from 1 of the geometric

mean of the power spectrum divided by its arithmetic mean [20].

Tonality = 1− e
1
N

∑N−1
n=0 ln(X(n))

1
N

∑N−1
n=0 X(n)

(5.8)

where X(n) is the power spectrum.

5.2.2.2 Signal Power

The Signal Power corresponds to the total power in decibels (dB) and is given by the

sum of Fourier Transform Spectrum.

5.2.2.3 Spectral Entropy

The Spectral Entropy concept is described in subsection 5.1.1. This feature gives infor-

mation regarding the continuity of the time frequency spectrum and its distribution. After
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estimating the spectral entropy distribution for each USV, the mean, median, maximum,

minimum and standard deviation of the distribution as well as non-instantaneous spectral

entropy values were determined.

5.2.2.4 Spectral Centroid

The Spectral Centroid is a measure used in digital signal processing to characterize the

spectrum. The centroid indicates where the center of gravity (COG) or “center of mass”

of the spectrum is located, and corresponds to the frequency-weighted sum of the power

spectrum normalized by its unweighted sum [44].

SC =

∑b2
k=b1

fksk∑b2
k=b1

sk
(5.9)

where fk is the frequency in Hz corresponding to bin k; sk is the spectral value at bin k;

b1 and b2 are the band edges.

5.2.2.5 Spectral Spread

The Spectral Spread, sometimes also referred to as instantaneous bandwidth, describes

the concentration of the power spectrum around the spectral centroid which can bee

seen as a measure of the average spread of the spectrum in relation to its centroid. It

can be interpreted as the standard deviation of the power spectrum around the spectral

centroid [44] .

SS =

√√√√∑b2
k=b1

(fk − SC)2sk∑b2
k=b1

sk
(5.10)

where fk is the frequency in Hz corresponding to bin k; sk is the spectral value at bin k;

b1 and b2 are the band edges; SC is the spectral centroid.

5.2.2.6 Spectral Slope

The Spectral Slope is a measure of the slope of the spectral shape and it is calculated

using a linear regression of the magnitude spectrum [44].

SSl =

∑b2
k=b1

(fk − µf )(sk − µs)∑b2
k=b1

(fk − µf )2
(5.11)

where fk is the frequency in Hz corresponding to bin k; µf is the mean frequency; sk is

the spectral value at bin k; b1 and b2 are the band edges; µs is the mean spectral value.

5.2.2.7 Spectral Rolloff

The Spectral Rolloff is defined as the frequency bin below which the accumulated

magnitudes of the STFT , X(k, n), reach a certain percentage of the overall sum of mag-
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nitudes [44]. The RolloffPoint = i is defined in such a way that

i∑
k=b1

|sk| = k

b2∑
k=b1

sk (5.12)

where sk is the spectral value at bin k; b1 and b2 are the band edges; k is a specified energy

threshold.

The result of the Spectral Rolloff is a bin index and it can be converted either to Hz or

to a parameter ranging between zero and one. Low results indicate insignificant magnitude

components at high frequencies and a low audio bandwidth [44], accordingly.

5.2.2.8 Spectral Flux

The Spectral Flux is a measure of how quickly the power spectrum of a signal is

changing, therefore it is defined as the average difference between consecutive STFT

frames [44].

SF (t) =

 b2∑
k=b1

|sk(t)− sk(t− 1)|p
1/p

(5.13)

where sk is the spectral value at bin k; b1 and b2 are the band edges; p is the norm type.

The Spectral Flux can be interpreted as an approximation to the roughness and varies

between 0 and A, representing A the maximum possible spectral magnitude [44].

5.2.2.9 Spectral Decrease

The spectral decrease estimates the steepness of the decrease of the spectral envelope

over frequency, which essentially represents the amount of decrease of the spectrum [44].

SD =

∑b2
k=b1+1

sk−sb1
k−1∑b2

k=b1+1 sk
(5.14)

where sk is the spectral value at bin k; b1 and b2 are the band edges.

5.2.2.10 Spectral Crest Factor

The Spectral Crest is a simple measure of tonalness which relates the ratio of the

maximum of the spectrum to the arithmetic mean of the spectrum [44].

SCr =
max(skε[b1,b2])
1

b2−b1
∑b2

k=b1
sk

(5.15)

where sk is the spectral value at bin k; b1 and b2 are the band edges.
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5.2.2.11 Spectral Flatness

The spectral flatness is the ratio of the geometric mean and arithmetic mean of the

magnitude spectrum. The metric is an indication of the peakiness of the spectrum [44]. A

higher spectral flatness indicates noise, while a lower spectral flatness indicates tonality.

SF =

(∏b2
k=b1

sk

) 1
b2−b1

1
b2−b1

∑b2
k=b1

sk
(5.16)

where sk is the spectral value at bin k; b1 and b2 are the band edges.

5.2.2.12 Spectral Skewness

The spectral skewness measures symmetry around the spectral centroid, thus it is a

measure of the symmetry of the distribution of the spectral magnitude values around their

arithmetic mean [44]. In phonetics, spectral skewness is often referred to as spectral tilt

and is used with other spectral moments to distinguish the place of articulation5.

SSk =

∑b2
k=b1

(fk − SC)3sk

SS3
∑b2

k=b1
sk

(5.17)

where fk is the freuqency in Hz corresponding to bin k; sk is the spectral value at bin k;

b1 and b2 are the band edges; SC is the spectral centroid; SS is the spectral spread.

5.2.2.13 Spectral Kurtosis

The spectral kurtosis measures whether the distribution of the spectral magnitude

values is shaped like a Gaussian distribution or not [44], and measures the flatness, or

non-Gaussianity, of the spectrum around its centroid. Conventionally, it is used to indicate

the peakiness of a spectrum.

SK =

∑b2
k=b1

(fk − SC)4sk

SS4
∑b2

k=b1
sk

(5.18)

where fk is the frequency in Hz corresponding to bin k; sk is the spectral value at bin k;

b1 and b2 are the band edges; SC is the spectral centroid; SS is the spectral spread.

5.2.2.14 Spectral Pitch Chroma

The Pitch Chroma is a histogram-like 12-dimensional vector with each dimension rep-

resenting one pitch class. To extract the pitch Chroma the frequency representation of the

audio signal block is grouped into semi-tone bands, then a measure of salience is computed

in each band, and lastly, the sum of all bands (over all octaves) corresponding to a specific

pitch class is calculated [4].

5https://www.mathworks.com/help/audio/ug/spectral-descriptors.html
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5.2.2.15 Spectral Edge Frequency

The Spectral Edge Frequency corresponds to the frequency bellow which a certain

percentage of the area under the power spectrum density is concentrated. Therefore,

it allows to estimate where the stronger frequencies of a vocalization are concentrated.

Typical values used for the percentage value are 70%, 90%, 95%, having the used value

been 70%.

5.2.2.16 Harmonic components

The harmonic components feature intends to translate the presence, or absence, of

harmonic components in the vocalizations. An harmonic component is a component whose

frequency is multiple of the main component of the vocalization. Thus, this is a binary

descriptor, in which the value 1 translates the presence of an harmonic component, and

the value 0, the absence.

This estimation is made through the Power Spectral Density (PSD) distribution, where

the frequency with maximum power is estimated. Afterwards, other frequencies with spec-

tral power above a certain percentage of the maximum spectral power are also estimated.

If one or more of these frequencies are multiple of the frequency with the highest power,

they are considered to be harmonic components.

5.2.2.17 Power Spectrum Related Features

Through the USVs PSD distribution, several features were also extracted. The ex-

tracted features from the PSD distribution were the following ones:

1. Maximum Value: Which corresponds to the maximum power value observed in

the PSD;

2. Most Powerful Frequency: Which corresponds to the frequency with the highest

power value of the PSD;

3. Minimum Value: Which corresponds to the minimum power value observed in the

PSD;

4. Least Powerful Frequency: Which corresponds to the frequency with the lowest

power value of the PSD;

5. Mean Power: Which corresponds to the mean power value of the PSD;

6. Median Power: Which corresponds to the median power value of the PSD;

7. Power Standard Deviation: Which corresponds to the standard deviation of the

power values of the PSD;

8. Mean Frequency: Which corresponds to the mean normalized frequency of the

PSD of a time-domain signal.
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5.2.3 Time-Frequency Domain Features

USVs are non-stationary signals, and thus methods based on time-frequency maps are

adequate to describe them.

In order to extract almost all the features presented in this section the time-frequency

representations of the vocalizations were determined using the Short-Time Fourier Trans-

form (STFT).

The STFT is a Fourier-related transform used to determine the amplitude of the os-

cillatory components as well as their phase at local sections of a signal as it changes over

time, and is defined as:

STFT (τ, ω) ≡ X(τ, ω) =

∫ +∞

−∞
x(t)w(t− τ)e−jwtdt (5.19)

where x(t) is the signal in the time domain, w is the windowed function and τ is the

window time location and determines the epoch under analysis.

In all STFT based methods presented, the spectrograms are generated using a Ham-

ming window with 256 points, 50% of overlap and 1024 sampling points to calculate the

discrete Fourier transform.

5.2.3.1 Contour Extraction

In bioacoustic studies and signals processing applications, it is usual to extract oscilla-

tory components and their properties from time–frequency representations of the sounds,

where multiple techniques to obtain the time–frequency contour can be used [46–50]. This

procedure is based on the search of the appropriate ridge curve, which consist in a sequence

of amplitude peak positions (ridge points), corresponding to the component of interest and

providing a measure of its instantaneous frequency alongside the time axis [51]. This ex-

traction presents a serious challenge, not only due to the amount of noise that the audio

signals contain, but also due to the fact that some vocalizations present some irregularities

in their time-frequency spectrum and lots of discontinuity points.

In this project, several techniques were developed and tested in order to extract the

contour of the vocalizations. These techniques can be divided in three main groups (see

Table 5.1), according to the approach that was used to extract the time-frequency ridge.

Furthermore, two different techniques were also used to determine the time-frequency

representations, namely the STFT and synchrosqueezing methods.

The synchrosqueezed time-frequency representation methods are reassignment meth-

ods. The reassignment process can be seen, conceptually, as a two-step process, being the

first step a smoothing step, whose main purpose is to eliminate oscillatory interference,

and the second stage a squeezing step, whose intention is to refocus the contributions

that survived the smoothing process [52]. Thus, synchrosqueezing is essentially a post-

processing method whose main objective is to sharpen the timescale representation [53],

and it can be used with multiple time-frequency estimation techniques, such as the STFT
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or wavelets, which were the two methods used.

The Fourier Synchrosqueezed Transform (FSST) is based on the STFT, typically gen-

erating sharper time-frequency estimations than the STFT. The FSST determines the

STFT of a signal f using a spectral window g, being defined as

Vg(t, η) =

∫ +∞

−∞
f(x)g(x− t)e−j2πη(x−t)dt (5.20)

The Wavelet Synchrosqueezed Transform (WSST) is also a reallocation method which

aims to“sharpen”the time-frequency representation. The WSST works by firstly determin-

ing the Continuous Wavelet Transform (CWT) of the input time domain signal. Then, the

instantaneous frequencies from the CWT are extracted using a phase transform. Lastly,

the CWT is “squeezed” over regions where the phase transform is constant. The result-

ing instantaneous frequency value is reassigned to a single value at the centroid of the

CWT time-frequency region. This reallocation process results in a sharper time-frequency

estimation.

In total, five different methods were developed to extract the USVs contour, which are

represented in Table 5.1, grouped accordingly to the approach taken.

Table 5.1: Contour extraction methods summary table.

Method TF estimation method

Maximum Time-Frequency
Ridge Extraction

Default STFT, FSST, WSST
Interpolation STFT

Tonality STFT

Best Path STFT

Image Based STFT

Maximum Time-Frequency Ridge Extraction

The Maximum Time-Frequency Ridge Extraction is a group of three different methods

developed to extract the USVs contour. All methods are based on the determination of

the maximum time-frequency ridge, as the name suggest. However, in two of them, some

of the points obtained from the maximum time-frequency ridge are excluded based on

specific criteria.

The firs step in all methods based on the Maximum Time-Frequency Ridge Extraction

is the determination of the time-frequency map of the vocalization, using the STFT or

the syncrosqueezing methods (FSST and WSST). After that, all algorithms iterate along

each temporal instant of the spectrogram and find the point of maximum power, which

are then stored in a vector containing the value of the maximum frequency per epoch. In

the example represented in Figure 5.6, the contour vector contains the frequency values

corresponding to every yellow square. This initial process is similar to all the five methods.
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Figure 5.6: Example of time-frequency ridge extraction.

In the second stage of the methods is where they differ. In the default Maximum

Time-Frequency Ridge Extraction Default methods all the values obtained from the time-

frequency ridge are kept, regardless of the time-frequency estimation method used. On the

other hand, for the two other methods (Maximum Interpolation Time-Frequency Ridge

Extraction and Maximum Interpolation Time-Frequency Ridge Extraction), some points

are removed.

In the Maximum Interpolation Time-Frequency Ridge Extraction method, using an

outlier identification method based on the median value of the frequencies vector, the

outlier points are removed (see Figure 5.7). After the removal process, the “gaps” in the

frequencies vector are replaced with points estimated with a linear interpolation method.
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Figure 5.7: Maximum Interpolation Time-Frequency Ridge Extraction outlier removal.
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In the Maximum Tonality Time-Frequency Ridge Extraction method, the tonality

vector for each vocalization is determined. Then, the points in which the tonality value

is bellow a certain threshold are excluded, and, in a similar away, the “gaps” produced by

this process (instants corresponding to the red dots in Figure 5.8) are replaced with points

estimated with a linear interpolation method.
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Figure 5.8: Maximum Tonality Time-Frequency Ridge Extraction outlier removal.

Lastly, after the determination of the vectors containing the frequency values deter-

mined with all five methods, a smoothing operation using a linear regression method

(‘rlowess’) was implemented on the methods which used the STFT, and a moving average

filter with an order equal to 10% of the size of all the frequency vector size on the methods

that used the FSST and WSST. Note that a different method for smoothing the final

contour vector was used depending on the method used to estimate the time-frequency

representation due to computational constraints. Since the time-frequency maps gener-

ated with syncrosqueezed method have a much bigger number of data points than the

ones obtained with STFT, the regression method (‘rlowess’) would be to expensive in

computational terms.

The output produced by the Maximum Time-Frequency Ridge Extraction methods is

presented in Figure 5.9.
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Figure 5.9: Maximum Time-Frequency Ridge Extraction outputs.

Best Path Time-Frequency Ridge Extraction

The Best Path Time-Frequency Ridge Extraction takes a different approach from the

previous described methods. First, the STFT is used to estimate the time-frequency repre-

sentation of the vocalizations. Then, the point of maximum spectral power is determined

(red square in Figure 5.10). Starting form this reference point, the spectrogram is traced

back and forward (see Figure 5.10). For each temporal instant, the N points of maximum

spectral power are determined, being that the frequency value that is chosen corresponds

to the one which is closer to the previous frequency value, his last neighbor. Lastly, the for-

ward and backward pieces of the contour are joined backed together, creating the complete

vector of frequencies, which is then smoothed with a linear regression method (‘rlowess’).
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Figure 5.10: Best Path Time-Frequency Ridge extraction.

Image Based Time-Frequency Ridge Extraction

This method is based on image techniques to extract the contour from USVs STFT

images. First, the STFT of each vocalization is converted to a gray image with 250-by-250

pixels (see Figure 5.10a). The image downsizing will not only decrease the computational

cost, but will also made the conversion from pixels to frequency values easier. Since the

signals sampled at 500 kHz, and, consequently, the spectrograms are represented from 0 to

250 kHz, using a 250-by-250 image, will allow direct conversion from pixels to frequency

values, being each pixel in the vertical axis equivalent to 1 kHz. Then, a median filter is

applied to the image in order to reduce the grain level (see Figure 5.10c).

In order to identify the regions, or pixels, of the image that constitutes the vocaliza-

tion, the Maximally Stable Extremal Regions (MSER) (see subsubsection 5.2.3.6) were

determined, resulting in the identification of regions with similar intensity. After these

regions have been computed, a binary image is created using all the pixels that are part

of the MSER previously identified (see Figure 5.10e). The binarization process can, some-

times, produce some “gaps” in the main structures of the vocalizations, which are regions

not identified by the MSER detection algorithm (see Figure 5.10e). In order to fill these

non-identified regions, a dilation process was used. Dilation is a basic morphology mathe-

matical operator. This morphological operator works by gradually enlarge the boundaries

of regions of foreground pixels (white pixels in the binary images), which leads to the

areas of foreground pixels grow in size while holes within those regions become smaller or

completely filled [54]. After the image have been dilated, it is then eroded to regain some

of its original shape, and to reduce the noise and irrelevant details. Similarly to dilation,

erosion is also a morphology mathematical operator. However, as the name indicates, the

erosion process has the reverse effect of the dilation one. The erosion operator works by

eroding away the boundaries of regions of foreground pixels (white pixels in the binary

image) [54]. This process results in the size shrinking of the foreground pixel areas and in

the enlargement of holes within those areas.

The next step is the determination of the properties of all the binary regions in the
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images. This step aims to remove the noise from the binary images. After determining

the regions properties, the ones which present an eccentricity inferior to 0.9 or an area

inferior to 10% of the area of the bigger region, are excluded (see Figure 5.10h).

Finally, the edge shapes of the remaining regions are determined and, consequently, the

vocalizations contours, which corresponds to the middle inner portion of the edge contours

of each element (see Figure 5.10i and Figure 5.10j).

(a) Original Image. (b) Processed Image. (c) Median Filter.

(d) MSER. (e) MSER Binary. (f) Image Dilation.

(g) Image Erosion. (h) Regions Removal. (i) Edge Contour.
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(j) Final Contour.

Figure 5.10: Image Based Time-Frequency Ridge Extraction method steps.

5.2.3.2 Contour Based Features

After the contour of the vocalizations has been extracted with the algorithms described

in subsubsection 5.2.3.1, several descriptors can be obtained from it (see Figure 5.11). The

contour based descriptors play an essential role in the description of the vocalizations, since

most USV classes (see section 2.4) are defined based on frequency variations on the time-

frequency ridges. Therefore, these group of features are intrinsic to the classes themselves,

demonstrating their discriminative power and importance on USVs analysis.

The features extracted form the vocalization contour were the following ones:

1. Peak frequency: Which corresponds to the highest frequency value;

2. Minimum frequency: Which corresponds to the lowest frequency value;

3. Initial frequency: Which corresponds to the frequency at the initial temporal

instant;

4. Final frequency: Which corresponds to the frequency at the final temporal instant;

5. Frequency bandwidth: Which corresponds to the difference between the highest

and the lowest frequency values;

6. Difference maximum and initial frequencies: Which corresponds to the differ-

ence between the peak frequency and the frequency at the initial instant;

7. Difference maximum and final frequencies: Which corresponds to the differ-

ence between the peak frequency and the frequency at the final instant;

8. Difference minimum and initial frequencies: Which corresponds to the differ-

ence between the lowest frequency and the frequency at the initial instant;

9. Difference minimum and final frequencies: Which corresponds to the difference

between the lowest frequency and the frequency at the final instant;
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10. Difference final and initial frequencies: Which corresponds to the difference

between the frequency the final and initial instants;

11. Number of directional changes: Which corresponds to the number of times the

trend of contour vector has changed direction;

12. Duration: Which correspond to the time between the initial and final instants;

13. Trend: Binary feature that translates the global behavior of th USV. Has the value

1 if the final frequency is bigger than the initial, -1 in the opposite situation, and 0

if both frequencies are equal.
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Figure 5.11: Example of contour features extraction.

5.2.3.3 Number of Frequency Steps

The number of frequency steps is a feature that translates the number of discontinuities

or “steps” in the time-frequency representation of the vocalizations. This is a very useful

descriptor since there are classes that are defined precisely according to the presence of

these “steps”. Yet, this is not trivial feature to extract, mostly due to the quality of the

vocalizations.

In order to estimate the number of “steps”, first, the probable instants (white lines

in Figure 5.12) in which might exist a discontinuity are determined with a change point

detection algorithm6. After that, the probable change points are iterated and their neigh-

borhood is analyzed, being determined the most powerful frequencies in a certain number

6https://www.mathworks.com/help/signal/ref/findchangepts.html
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of samples for each side, left and right. Then, an average value of the frequencies to the

left and right is computed and if they differ more than a certain established threshold,

that instant is considered to be a frequency step.
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Figure 5.12: Number of frequency breaks estimation (Example).

5.2.3.4 Local Binary Patterns

Local Binary Patterns (LBP) are a set of descriptors that encode local texture in-

formation typically used in computer vision problems. In order to compute this set of

descriptors, a gray-scale image with 250-by-250 pixels of the time-frequency map of the

USVs is determined using the STFT. Then, LBP features are computed through the anal-

ysis of neighborhood of each pixel in the image individually. Then, to each pixel is assigned

a binary code, with the same number of elements as neighbors, where each element has

the value 1 if its intensity value is bigger that the central pixel, or 0 if it is smaller. After

that, each pixel binary code is converted to a integer number, being the output result a

matrix where each element is the result of this conversion.

Therefore, these descriptors attempt to capture the texture of the image and are in-

sensitive to orientation and scaling.

5.2.3.5 KAZE Features

KAZE features are a multiscale 2D feature detection that exploit non-linear scale space

through non-linear diffusion filtering [55].

The KAZE features detector is based on the scale normalized determinant of Hessian

Matrix which is computed at multiple scale levels. Then, the points of maximum response

to the detector are selected up as feature-points using a moving window [56]. Feature
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description introduces the property of rotation invariance by finding dominant orientation

in a circular neighborhood around each detected feature. Then, the main orientation

of each key-point is determined as well as a rotation invariant using first order image

derivatives [55]. Therefore, KAZE features are invariant to rotation and scale.

In order to extract KAZE features, the USVs time-frequency maps were determined

with the STFT and converted to 250-by-250 pixels gray-scale images.

Figure 5.13: KAZE features example (Example).

5.2.3.6 MSER

In order to extract MSER, the USVs time-frequency maps were determined with the

STFT and converted to 250-by-250 pixels gray-scale images.

The MSER are used as a method of blob detection in images. MSER detection implic-

itly takes advantage of the robustness of boundary-related structures without detecting

them and is, in its essence, an intensity-based region detection dealing with connected

components and extracting extreme regions that are stable to intensity perturbations [57].

Plus, using the boundaries information in order to detect the MSER confers robustness

to the algorithm, and it also allows to capture relevant information of the useful image

parts [57].

Figure 5.14: MSER example (Example).
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Features Summary

All the features extracted which were used in these work, both in the segmentation

phase and in the classification phase, are represented in Figure 5.15.
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Figure 5.15: Features summary.

5.3 Classification

In this section the models used to build the classifiers are described, as well as some

pre-classification techniques typically use to maximize the performance of the classifiers.

5.3.1 Data Normalization

Usually in ML problems, a common practice is the normalization of the data. The

data normalization allows to represent the different characteristics in the same range of

values which might help to avoid the emergence of a negative trends in the classifiers.

In this work, the z-score normalization was used. The z-score measures the distance of

a data point from the mean, describing that distance in numbers of standard deviations.

Thus, the z-score normalization is given by:

z =
(x− µ)

σ
(5.21)

where µ is the mean value of the data and σ the standard deviation.
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5.3.2 Feature Selection

In ML, feature selection is the process where a subset of features/descriptors are iden-

tified from the original dataset in order to develop classification models. Feature selection

techniques are extremely useful in ML and are used, mainly, due to the following reasons:

1) Diminish the problem dimensionality, and, therefore, simplifying the models, making

them faster to train and preventing from overfitting; 2) Exclude some features which might

not contribute to the classification; 3) Exclude redundant features that provide the same

information; 4) And, mainly, find the best combination of features in order to achieve the

highest performance as possible in classification.

Feature selection methods can be classified in three main types: filters, wrappers or

embedded methods. Filter methods are independent of the used classifier and are fast and

generic methods. These types of methods present as main disadvantage the fact that they

are only based on the data itself, therefore, no classification performance assessment is

made. On the other hand, the wrapper and embedded methods may present better results

since the feature selection is performed together with a classifier. This solutions tend to

be heavier in computational terms, and provide a less general solution.

In this project, only filter methods were used to perform feature selection.

5.3.2.1 Kruskal-Wallis

Kruskal-Wallis is a non-parametric statistical test typically used to determine features

discriminative power. The test works by sorting the feature values and assigns ordinal

ranks in order to find their discriminative power. The sums of these ranks for the classes

are then used to compute the value of H statistics, which reflects the difference of the

ranks’ sums. The H values are given by:

H =
12

n(n+ 1)

c∑
i=1

ni(Ri − R̄)2 (5.22)

where Ri is the average of ranks for the samples belonging to class i, R̄ is the average of

all ranks for all classes, ni is the number of patterns belonging to class i and n is te total

number of patterns.

5.3.2.2 RelliefF

ReliefF is an attribute estimator algorithm which finds the weights of predictors in

single or multi-class categorical variable. This is a filter method typically robust and noise

tolerant [58]. This method determines a score for each feature which is then applied to

rank and select top scoring features.

ReliefF works by searching for k the nearest neighbors from the same class, called

nearest hits Hj, and also k nearest neighbors from the other classes, called nearest misses

Mj(C). After that, the weight value for each feature j is updated based on the following

expression:
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Wj =
Wdy∧dj
Wdy

−
Wdj −Wdy∧dj
m−Wdy

(5.23)

where Wdy is the weight of having different values for the response y; Wdj is the weight of

having different values for the predictor Fj and Wdy∧dj is the weight of having different

response values and different values for the predictor Fj.

5.3.3 Dimensionality Reduction

5.3.3.1 Principal Component analysis

Principal Component Analysis (PCA), is a feature transformation method that focus

on reducing data dimensionality while preserving its “variability”. Therefore, the main

goal of PCA is to represent a large set of descriptors into a smaller one while preserving

most of its relevant information quantified by data variance.

5.3.4 Classifiers and Models Description

In order to develop the classification models several classifiers were tested, which are

described bellow. All the classifications models are based on a supervised learning method-

ology, thus, all data provided to the classifiers were previously annotated.

5.3.4.1 Support Vector Machine

SVMs have been used in multiple bioacoustic studies, having shown successful results

[31]. SVMs are binary classifiers, which means that they can be used do discriminate

between 2 classes. However, they can also be used in multi-class problems using different

techniques to combine multiple two-class SVMs in order to build a multi-class classifier

[59, 60]. This classifier works by determining the decision hyperplane, which maximizes

the separation in data from different classes (see Figure 5.16), so it is a maximum margin

classifier [59].

Figure 5.16: SVM7
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SVMs determine the support vectors for each class, which are at a distance 1/||w||
from the separation hyperplane. Therefore, these vectors will determine the margin of

separation. The principle of SVMs is to maximize of the separation margin (2/||w||),
which is translated by the minimization of the criterion ψ(w), given by:

ψ(w) =
1

2
||w||2; subjected to yi(w

′xi + b) > 1, with : i = 1, .., n (5.24)

Even tough the fact that the typical SVM is a linear classifier, it can also be a non-

linear classifier with the use of a kernel function. The idea behind a kernel is the mapping

of non-linear separable datasets into a higher dimensional space where it is possible to find

a hyperplane that can linearly separate the samples. There are several kernels available,

being some of the more common the linear, polynomial, Gaussian, RBF and Sigmoid ones.

In their original formulation, SVMs are hard margin classifiers, which means that

the support vectors try to completely separate the data from the classes involved, not

allowing any misclassifications. The hard-margin approach, often leads to misfitted models

which lack generalization capability, since the decision borders are too strict and have low

tolerance to outliers or mislabeled data. There is, however, a parameter C (Cost), which

can be used to handle this problem. The parameter C, uses a soft-margin approach, giving

to model the possibility of allowing some missclassfied data when the data is being fitted.

The higher the C value is, the smaller is the classifier marging, and, therefore, the less

permissive to missclassifcation the model is, and vice-versa. This effect can be seen in

Figure 5.17.

Figure 5.17: Effect of C value in SVM model8

Moreover, multi-class SVMs can also use several coding matrices to create multiple

binary problems. A coding matrix is a matrix whose elements determine which classes are

trained by each binary learner, that is, how the multi-class problem is reduced to a series of

binary problems. Some of the more common coding designs are the One-vs-All and One-

vs-One. All SVM models used in the classification phase were designed with a One-vs-One

coding matrix. This means that for each binary learner, one class is positive, another is

negative, and the remaining ones are ignored. This design exhausts all combinations of

class pair assignments. In this process, a class is assigned to a pattern based on a majority

voting process.

7https://www.researchgate.net/figure/Classification-of-data-by-support-vector-machine-
SVM fig8 304611323

8https://towardsdatascience.com/support-vector-machine-simply-explained-fee28eba5496
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5.3.4.2 k-NN

k-NN models, which stand for k Nearest Neighbors, is a classification algorithm also

commonly used in bioacoustic studies [28,31,61]. k-NN is a non-parametric method, since

no assumptions regarding the data distribution are made. The general expression for

non-parametric probability density estimation is given by

p(x) ≈ k

nV
(5.25)

where V is the volume surrounding x, n is the total number of samples and k is the number

of patterns inside V . The k-NN method results of the fixation from the value k and the

determination of the minimum value for V .

The k-NN classifier assigns the class to a new pattern according to the class labels that

is found in majority among the k nearest neighbors. Thus, the value o k will affect the

algorithms’ performance. For example, in Figure 5.18, if k is equal to 3, the green circular

pattern will be classified as red, however if k is equal to 5, the pattern will be assigned

to the blue class, given the fact that there are more blue patterns in the neighborhood.

There are several metrics that can be used to determine the distance between data points,

such as Euclidean, Mahalanobis, Cityblock, among others, being that the metric must be

chosen according to the problem and its restrictions.

Figure 5.18: k-NN Example9

Furthermore, the values of k will also impact the shape and complexity of decision

boundaries. If the value of k is too small, the decision boundaries tend to be more complex,

which may lead to phenomenons of overffiting [59](see Figure 5.19). The inverse situation

is also verified, as higher values of k tend to form flatter decision boundaries that may

lead to underfitting.

9https://www.analyticsvidhya.com/blog/2018/03/introduction-k-neighbours-algorithm-clustering/
10https://i.imgur.com/dVYBfHo.png
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Figure 5.19: k-NN number of neighbors effect10.

5.3.4.3 Decision Tree

Decision trees are a non-parametric method used for both classification and regression

problems. The goal of these classification algorithms is to create a model that predicts

the value of a target variable based on several input variables, and, to do that, tree like

structures are built (see Figure 5.20), as the name indicates, with a “if . . . then . . . else

. . . ” construction. In these “trees”, each interior node represents a predictors, each branch

represents a decision rule and each leaf, being the terminal node, represents an output

(a categorical or continuous value). Thus, the classification process is done following the

chained decision rules until the terminal node is reached.

Decision Trees typically grow in a top-down way, and growing a decision tree involves

deciding at each step on which features to choose and what conditions to use for splitting,

along with knowing when to stop growing the tree itself. The decision rules, are based of

a single feature and threshold, which tries to look for the combination that splits the data

into the purest subsets. This keeps happening recursively, until the maximum depth of

the tree is reached, or until the data impurity can no longer be reduced. There are several

criteria used to measure impurity, such as the Gini impurity or the entropy value [62].

This type of models has as main advantages its interpretability, since they use sim-

ple chained decision rules. However, they may also be more susceptible to overfitting

phenomena.

11http://www.learnbymarketing.com/methods/classification-and-regression-decision-trees-explained/
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Figure 5.20: Decision Tree Example11.

5.3.4.4 Tree Ensemble

The Tree Ensemble classifier is an ensemble method which combines several decision

trees to produce better predictive performance than utilizing a single decision tree. The

ensemble models are based on the premise that when a group of weak learners is joined

together a strong learner is formed, which in this concrete case can be translated to the

performance of several decision trees joined together being better than each tree by itself.

There are two main techniques that are used to develop Tree Ensemble classifiers and

ensemble methods in general , which are Bagging and Boosting. The general idea behind

the Bagging process is to training a set of classification models in a parallel way, where each

model is trained by a random subset of the data, while in the Boosting process is to train

a set of classification models in a sequential way, where each individual model learns from

mistakes made by the previous model (see Figure 5.21). While Bagging ensembles are more

adequate to high dimensional data problems, Boosting methods are better in low dimen-

sional context and support multiple aggregation methods AdaBoost,GentleBoost,LSBoost,

among others.

Figure 5.21: Bagging vs Boosting12.
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5.3.4.5 Fisher Discriminant Analysis

Fisher Discriminant Analysis or Fisher’s linear discriminant is part of of a broader

type of classification techniques entitled Discriminant Analysis. This classification method

works by projecting the data into a smaller dimension where the separation between classes

and compactness within each class of the data are maximized (Fisher Criteria), as demon-

strated in Figure 5.22. Thus, a way to view a linear classification model like this, is in

terms of dimensionality reduction. After the data has been projected, according to the

Fisher criteria, a linear decision hyperplane is determined to separate the data from the

multiple classes. Note that this method is by default a binary classifier, however it can

also be used in multi-class problems using multiple binary classifiers in an One-Against-All

classification schemes [59].
188 4. LINEAR MODELS FOR CLASSIFICATION
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Figure 4.6 The left plot shows samples from two classes (depicted in red and blue) along with the histograms
resulting from projection onto the line joining the class means. Note that there is considerable class overlap in
the projected space. The right plot shows the corresponding projection based on the Fisher linear discriminant,
showing the greatly improved class separation.

is the mean of the projected data from class Ck. However, this expression can be
made arbitrarily large simply by increasing the magnitude of w. To solve this
problem, we could constrain w to have unit length, so that

∑
i w2

i = 1. Using
a Lagrange multiplier to perform the constrained maximization, we then find thatAppendix E
w ∝ (m2 −m1). There is still a problem with this approach, however, as illustratedExercise 4.4
in Figure 4.6. This shows two classes that are well separated in the original two-
dimensional space (x1, x2) but that have considerable overlap when projected onto
the line joining their means. This difficulty arises from the strongly nondiagonal
covariances of the class distributions. The idea proposed by Fisher is to maximize
a function that will give a large separation between the projected class means while
also giving a small variance within each class, thereby minimizing the class overlap.

The projection formula (4.20) transforms the set of labelled data points in x
into a labelled set in the one-dimensional space y. The within-class variance of the
transformed data from class Ck is therefore given by

s2
k =

∑
n∈Ck

(yn − mk)2 (4.24)

where yn = wTxn. We can define the total within-class variance for the whole
data set to be simply s2

1 + s2
2. The Fisher criterion is defined to be the ratio of the

between-class variance to the within-class variance and is given by

J(w) =
(m2 − m1)2

s2
1 + s2

2

. (4.25)

We can make the dependence on w explicit by using (4.20), (4.23), and (4.24) to
rewrite the Fisher criterion in the formExercise 4.5

Figure 5.22: LDA data projection (Adapted from [59]).

5.3.5 Evaluation Metrics

There are several metrics that can be used to access classification algorithms perfor-

mance, however, not all of them can give a real perception of how good or bad the classifiers

really are. For instance, some metrics can be deceiving in cases of extremely unbalanced

datasets.

Five of the most common metrics used in machine learning, which are the ones also

used in this work, are Accuracy, Precision, Recall and Specificity and F1 Score, whose

equations are as follows:

Accuracy =
TN + TP

TN + FP + FN + TP
(5.26)

Specificity =
TN

TN + FP
(5.27)

12https://towardsdatascience.com/basic-ensemble-learning-random-forest-adaboost-gradient-boosting-
step-by-step-explained-95d49d1e2725
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Precision =
TP

TP + FP
(5.28)

Recall =
TP

TP + FN
(5.29)

F1Score = 2 · Precision ·Recall
Precision+Recall

(5.30)

where,

1. True Positives (TP): Corresponds to the number of samples correctly classified

as positive;

2. True Negatives (TN): Corresponds to the number of samples correctly classified

as negative;

3. False Positives (FP): Corresponds to the number of samples wrongly classified as

positive;

4. False Negatives (FN): Corresponds to the number of samples wrongly classified

as negative;

Apart from Accuracy, all metrics mentioned are used in binary problems, and, since the

problem to evaluate is a multi-class one, some adjustments had to be made. Therefore,

in order to calculate the value of Precision, Recall and Specificity and F1 Score, were

considered several binary problems, where each one of the existing classes is considered

against all of the remaining ones. Consequently, for each class, the TP and FP values

correspond to the number of samples from the class correctly and wrongly identified,

accordingly, while the TN and FN values correspond to the number of samples from all

the remaining classes combined that were correctly and wrongly identified as belonging,

or not, to the class.

Another tool used to access how the classifiers behave and what are the classes that are

most mismatched with each other, is the confusion matrix, in which the true labels of the

samples are represented against the output produced by the classifiers (see Figure 5.23).

5.3.6 Experimental Setup

In this subsection the whole process used to elaborate the classification models is

described as well as which measures were taken to avoid typical classification problems or

bottlenecks.

In order to avoid overfitting phenomena, all the annotated data were divided into

a training and test dataset. The training dataset will then be used to perform feature

selection and reduction as well as classifiers hyperparameters optimization, with a k-fold

cross-validation methodology. The k-fold cross-validation method is based on the the

partition of the dataset in k equally sized folders. After the partition of the data, k-1 of

the total partitions are used to train the models and the remaining one is used for validation
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Figure 5.23: Confusion Matrix Example.

purposes. The process is the repeated k times, being each of the partitions, used at a time,

to access the performance of the classifications models (see Figure 5.24). After all iterations

have been completed, the mean value as well as the standard deviation are extracted, giving

a more realistic and accurate value regarding the classification performance. The k-fold

cross-validation method also has a stratified version, in each the data partition keeps the

the same percentage distribution of all classes as in the original dataset.

Thus, several classifications models were developed and optimized based on the training

data. These models, with the best parameters found based on the training dataset, will

then be tested on the test dataset. Therefore, the test dataset will serve only to test the

performance the developed algorithms with the training data, never being used to perform

any kind of optimization on the models. This way, the complete separation in test and

training sets ensures an external validation element, since none of data belonging to the

test set has been used in the models development.

Figure 5.24: 10-fold cross Validation Example13.

13https://codesachin.files.wordpress.com/2015/08/cv.png
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The whole training, validation and test process is illustrated in Figure 5.25.

Dataset Train set

Testing 
Dataset

Validation set

Model 
Building

Parameters 
Optimization

Performance 
Evaluation

Model Builder (Training Dataset)

Best 
Model

External Model Evaluation

Figure 5.25: Models development diagram.





Chapter 6

Results and Discussion

Since in these work several algorithms regarding segmentation and classification of

Ultrasonic Vocalizations (USVs) have been proposed, in this section the according results,

obtained in each of the USVs processing phases, are presented and discussed. This chapter

is divided in two main sections, namely the segmentation and classification ones.

6.1 Segmentation

In this section the methodology used to evaluate the proposed segmentation algorithm

is show as well as the results obtained and the according discussion.

6.1.1 Segmentation Results

To evaluate and develop the proposed algorithm, 16 audio files (.WAV), sampled at

500 kHz, with 45 s each, were considered and manually segmented. The files contain

spontaneous vocalizations originated from the different social contexts in which the signals

were acquired (see section 4.2). In total, the signals used contained 460 vocalizations.

In order to evaluate the algorithm’s performance, the results obtained by the automatic

segmentation algorithm were compared to the results obtained with the manual annotation

and precision and recall were considered as performance values (see equations 6.1 and 6.2).

Precision =
tp

tp+ fp
(6.1)

Recall =
tp

tp+ fn
(6.2)

In Equation 6.1 and Equation 6.2, the true positives value (tp) represents the number

of vocalizations properly segmented, the false positives value (fp) represents the number

of instances detected as vocalizations by the automatic algorithm but do not correspond

to real vocalizations and the false negatives value (fn) represents the number of real calls

that were not detected by the algorithm.

69
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Furthermore, to test the robustness of the algorithm, different levels of Gaussian white

noise were added to the signal before being segmented. This way, it was possible to check

if there were any significant drops in performance and at which noise levels.

As mentioned in subsection 5.1.1, the segmentation algorithm has two different thresh-

olds with different purposes. The first threshold was estimated by observation in order to

be as higher as possible without reaching the top baseline of the spectral entropy of the

signals (about 0.98) and it was settled to 0.97, whereas the second one was tested with

multiple values. The search process for the value of the second threshold is illustrated

in Figure 6.1, where the values of precision and recall obtained with the segmentation

algorithm for the different values of the second threshold are represented.

0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98

Second Threshold value

0
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Recall

Figure 6.1: Precision and recall across the different values tested for the second threshold.

After finding the range of values for the second threshold corresponding to the best

performance, {0.94;0.95;0.96;0.97}, the algorithm was tested with Gaussian white noise

addition, and several levels of signal to noise ratios (SNRs) were considered. For each

value of SNR, the segmentation algorithm was tested five times, and then the mean and

the standard deviation of the precision and recall values were calculated (see Figure 6.1).

100 90 80 70 60 50

SNR

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Recall

0.97
0.96
0.95
0.94

(a) Recall values for different SNRs.
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(b) Precision values for different SNRs.

Figure 6.1: Algorithm’s performance with different levels of noise addition.

6.1.1.1 BOVW Training and Results

To train the Bag of Visual Words (BOVW) classifier, 1600 images were used, 800 images

of real vocalizations and the remaining 800 of noise images. The images were obtained from

the sounds time-frequency representation, which were determined using the Short-Time

Fourier Transform (STFT) with a Hamming window with 256 points, 50% of overlap and

1024 sampling points to compute the discrete Fourier transform. Afterwards, all images

were resized to a 250-by-250 pixels gray image, in order to reduce computational load

while processing the images and extracting features. As mentioned before, KAZE features

were used to extract the key interest points of each image (see Figure 6.2), using a dense

representation and extraction with multiple scales (x1.6 and x3.2).

(a) Noise (b) Vocalization.

Figure 6.2: Example of KAZE feature extraction.

To assess the performance of the classification algorithm, the group of 1600 images was

divided, with 30% of the data used to train the BOVW and 70% used for testing. The



72 CHAPTER 6. RESULTS AND DISCUSSION

according confusion matrix is represented in Table 6.1.

Table 6.1: Confusion matrix for Bag of Visual Words method (Training).

Known
Predicted

Noise Vocalization

Noise 0.99 0.01
Vocalization 0.08 0.92

Using the BOVW classifier after the segmentation algorithm it was possible to diminish

the false positive rate, and, therefore, increase the precision value. The results obtained

with the segmentation algorithm and the images classifier are listed in Table 6.2. The

precision value has increase by 11 % and the recall value decreased by 3%, in comparison

with the results obtained with the two thresholds used in the segmentation algorithm set

to 0.97.

Table 6.2: Precision and Recall values for the segmentation algorithm plus the BOVW classifier.

Algorithm Recall Precision

Segmentation Algorithm
(Threshold 1=0.97)

+
BOVW

0.94 0.74

6.1.2 Segmentation Discussion

Through the analysis of Figure 6.1 it is possible to observe that the value chosen for the

second threshold establishes a clear trade-off between precision and recall. The closer this

value is to the value of the first threshold (0.97), the higher is the number of vocalizations

the algorithm is able to recognize, and, therefore, the higher are the true and false positives

rates, which corresponds to a higher recall and lower precision values, accordingly. This

happens because spectral entropy translates, in some way, the disorder introduced in the

system. So, if the second threshold is higher, the algorithm is more permissive since the

sounds it recognizes as syllables do not have to be as strong in terms of power. On the

other hand, if the value of the second threshold is lower, the precision value is far superior

to the recall one, which means that the majority of the sounds recognized are indeed

real vocalizations. However, the algorithm is unable to segment a bigger number of calls,

especially the ones with lower spectral power, resulting in a lower recall value.

As previously mentioned, the segmentation algorithm was also tested with the addition

of Gaussian white noise to the signals. Through the analysis of Figure 6.1, it is possible

to observe that for values of Signal to Noise Ratio (SNR) higher than 60, both the recall

and precision values are kept relatively constant for all values of the second threshold

used, being the standard deviation between runs very small or even zero. Thus, as the

algorithm’s performance does not significantly change for low levels of SNR, it is possible

to consider that the algorithm is robust to noise.
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Using a fully automated segmentation algorithm based on spectral entropy has been

proved to be an effective method to isolate mice vocalizations, since the algorithm was

able to detected up to 97% of the vocalizations in the signals annotated for this study.

However, the proposed method tends to have a higher rate of false positive vocalizations

in order to achieve higher recall values, which can be observed in 6.1. This phenomenon

can be explained by the fact that the signals used in this work contain lots of noisy sounds

with similar power when compared to the real vocalizations, which led to the increase

of the false positives rate. However, the rate of false positive vocalizations can diminish

with the fine tuning of the lowest threshold used in the algorithm, since it was possible to

obtain 0.85 and 0.86 of recall and precision values with the threshold set to 0.94, and 0.90

and 0.83 with 0.95, accordingly, which provides a more balanced, yet good, performance.

The addition of the BOVW classification as a pos-processing technique in order to

reduce the the rate of false positive detections has also been shown to be effective since

the precision value increased has by 11%. This classifier has presented great results in

the training phase, however, when used after the spectral entropy, the results are lower

than in training. This behavior is somehow expected, since BOVWs are classifiers which

require lots of data in order to produce the dictionaries of visual words. Thus, with the

increase of the dataset size, an increase in performance is expected to be observed, as well

as the computational resources needed to develop the classifier, potentiating even more

this approach.

6.2 Classification

In this section the results obtained regarding the classifications developed models are

presented as well as the evaluation of the contour extraction methods and the according

discussion of the obtained results.

6.2.1 Classification Results

The first step to undertake in order to develop and test the classification models was

the partition of the dataset in two different subsets, a training set containing 70% of the

whole data, and a testing set with 30% of the data, accordingly. Therefore, the training

set is used to train and validate the developed models while the testing set is used as

an independent set, used exclusively to test the models with unseen data. The testing

set is never used to perform any type of parameters adjustments while developing the

classification models. Both the training and testing sets present the same class prevalence,

being the number of samples from each class represented in Table 6.3. Through the analysis

of Table 6.3, it is possible to observe that the class distribution is very uneven. Thus, in

order to avoid classification bias, all the classification methods used were set with the prior

probability of assigning each class as uniform.
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Table 6.3: Training and Testing sets classes distribution.

Class Training Set Rel. Freq. Test Set Rel. Freq.

Complex 33 0.010 13 0.009

1 Frequency Step 464 0.143 198 0.143

M. Frequency Steps 107 0.033 47 0.034

Upward 1246 0.384 534 0.384

Downward 257 0.079 111 0.080

Flat 663 0.204 284 0.204

Short 272 0.084 118 0.085

Chevron 95 0.029 40 0.029

Reverse Chevron 38 0.012 16 0.012

Composite 68 0.021 28 0.020

Total 3243 1 1389 1

Since contour based features play such an important role in USVs classification and

several algorithms where developed to extracted it, the first step is to properly assess which

of the methods better extracts the time-frequency ridges of the vocalizations. Having this

in mind, all the contour extraction algorithms (see subsubsection 5.2.3.1) were used to

extract the contour based features, and, afterwards, with the extracted features, classifiers

were trained. Therefore, to assess the contour extraction algorithms performance, each of

the classifiers was tested with each of the algorithms, repeating a 10-fold cross-validation

methodology five times, in order to train and validate the models. This procedure produced

fifty accuracy values distributions, one for each of the methods with each of the classifiers.

After that, in order to determine which is the best contour extraction method, statistical

tests were conducted in order to evaluate the statistical differences between the obtained

distributions. The mean accuracy values obtained with each of the Time Frequency Ridge

Extraction (TFRE) methods and classifiers are presented in Table 6.4.

Table 6.4: Mean Accuracy values from the distributions for all methods and classifiers (5 times 10-fold
Cross-Validation).

SVM k-NN Decision Tree Fisher-LDA Tree Emsemble

TFRE max 70.04±2.13 60.01±2.61 65.71±2.43 67±2.47 76.64±2.38

TFRE max tonality 55.54±2.49 44.26±2.58 48.66±2.54 53.97±2.1 63.73±2.83

TFRE max interpolation 73.08±2.17 60.33±2.44 65.09±2.6 58.67±2.42 75.13±2.22

TFRE best path 63.16±2.55 52.31±2.32 53.07±2.86 61.35±2.27 67.55±2.24

TFRE fsst 66.87±2.36 53.97±2.15 55.65±2.95 63.45±2.58 69.79±2.36

TFRE wsst 66.69±2.32 57.84±2.31 58.08±2.39 64.58±2.43 71.87±2.1

TFRE image 67.49±2.66 56.05±2.52 61.91±3.02 58.95±2.79 75.01±2.14

The first step to take in order to study the statistical significance of the difference

between the distributions obtained from each method, is to access their normality, so it

can be decided whether to use parametric or non-parametric statistical tests. So, the

Shappiro-Wilk test was applied with a significance level of 95% (alpha = 0.05). The

p-value results are presented in Table 6.5. The results obtain with the Shappiro-Wilk

statistical test were also corroborated with a visual inspection with the histograms of all
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the distributions in cause.

Table 6.5: p-Values Shappiro-Wilk normality test.

SVM k-NN Decision Tree Fisher-LDA Tree Emsemble

TFRE max 0.885 0.196 0.494 0.026 0.494

TFRE max tonality 0.388 0.168 0.002 0.904 0.54

TFRE max interpolation 0.234 0.271 0.092 0.399 0.666

TFRE best path 0.141 0.807 0.162 0.883 0.281

TFRE fsst 0.931 0.616 0.539 0.137 0.532

TFRE wsst 0.819 0.498 0.391 0.5 0.463

TFRE image 0.202 0.007 0.098 0.277 0.019

Through the analysis of Table 6.5 values it is possible to observe that, apart from the

SVM case in which all distributions are normal, all classifiers have, at least, a distribution

for one of the methods in which the p-value is smaller than the alpha value (0.05), meaning

that at least one of the distributions can not be assumed as being drawn from a normal

distribution. Thereby, to determine if are there any statistical differences between the

distributions of all the methods with the different classifiers, non-parametric tests were

used, except in the SVM case in which parametric tests were used. Then, to assess the

statistical differences, the Kruskal-Wallis and independent-ANOVA tests were used, since

the samples are unpaired or unmatched, meaning that the distributions were not obtained

under the same conditions. The results are presented in Table 6.6.

Table 6.6: Statistical difference tests.

SVM k-NN Decision Tree Fisher-LDA Tree Emsemble

p-Value 2.06e-127 8.86e-55 1.20e-60 1.09e-52 4.77e-56

Test Ind. ANOVA Kruskal-Wallis Kruskal-Wallis Kruskal-Wallis Kruskal-Wallis

Since all the p-Values in Table 6.6 are smaller than 0.05 (alpha value), it is possible

to infer that for all classifiers the various distributions present significant statistical differ-

ences within themselves. Therefore, in order to determine which time frequency contour

extraction performs the best, a pair-wise comparison was performed to the two methods

with best performance for each classifier. The two best methods for each classifiers were

determined using the boxplots representation (see appendix B) of each accuracy distribu-

tion.

Table 6.7: Statistical analysis of the two best methods for every classifier.

Best Method 2nd Best Method Test p-Value Sig. Diff

SVM TFRE max interpolation TFRE max Ind. t-test 2.424e-10 Yes

k-NN TFRE max interpolation TFRE max Mann-Whitney 0.456 No

Decision Tree TFRE max TFRE max interpolation Mann-Whitney 0.223 No

Fisher-LDA TFRE max TFRE wsst Mann-Whitney 1.812e-05 Yes

Tree Emsemble TFRE max TFRE max interpolation Mann-Whitney 1.865e-3 Yes

Through the analysis of Table 6.7, is clearly possible to conclude that the contour

extraction methods that performed the best, with almost all classifiers used, were the
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Maximum Time-Frequency Ridge Extraction and Maximum Interpolation Time-Frequency

Ridge Extraction. Furthermore, it also possible to acknowledge that their performance is

quite similar, despite some statistical differences observed in Table 6.7. Having this con-

clusion in mind, the method used to extract the contour, and afterwards, the development

of the classification algorithms, was Maximum Time-Frequency Ridge Extraction, since it

was among the top two performers for all the classifiers (see Table 6.7).

The set of features used in the developed Machine Learning (ML) classifications algo-

rithms is composed by an agglomerate of the features described in section 5.2. In total,

128 descriptors were extracted (see Table 6.8), being: 9 from the time domain; 45 from

the frequency domain; 74 from the time-frequency domain. Note some of the features

described in section 5.2 are a set of multiple values, a distribution, whereat, in those cases,

several statistical descriptors were used in order to represent the distribution in a reliable

and accurate way.

Table 6.8: Features summary table.

Domain Features

Time

Time-Amplitude Based features
Zero Crossing Rate
Tonal Power Ratio
Short Time Energy

Frequency

PSD Based Features
Signal Power

Tonality
Spectral Centroid
Spectral Spread
Spectral Slope
Spectral Rolloff
Spectral Flux

Spectral Decrease
Spectral Crest Factor

Spectral Flatness
Spectral Skewness
Spectral Kurtosis
Spectral Entropy

Spectral Pitch Chroma
Spectral Edge Frequency
Harmonic Components

Time-Frequency
Local Binary Patterns

Contour Based Features
Number of Frequency Steps

Total Number 128 Features

As mentioned before, five different classifiers were trained and tested, but, before

directly fed the data into the classifiers, feature selection and feature transformation tech-

niques were used, in an attempt to increase the classification performance. Using the
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training set and the set of features described in Table 6.8, a method of feature selection

joined with analysis of classification performance was used. The feature selection method

was implemented with two filter methods (Kruskall-Wallis and ReliefF) and by testing the

multiple classification methods with different numbers of features, to determine the best

subset of features. The performance results obtained with the feature selection process

are represented in Table 6.9 and Table 6.10.

Table 6.9: Weighted mean of F1 Score for feature selection with Maximum Time-Frequency Ridge Ex-
traction and with Kruskal-Wallis (Training Dataset).

# Features SVM k-NN Decision Tree Fisher-LDA Tree Ensemble

5 30.40±8.30 54.90±1.30 53.50±1.90 50.10±2.10 61.20±2.40

20 62.70±1.90 65.10±3.40 64.90±2.20 51.60±3.00 73.60±2.50

35 66.90±2.20 62.70±2.50 64.40±3.10 52.80±3.60 75.40±2.40

50 70.30±2.60 63.30±1.70 64.60±1.50 53.50±3.90 75.50±2.50

65 70.60±1.80 62.20±1.60 64.90±2.10 54.00±3.90 76.40±2.20

80 71.80±2.00 60.90±2.30 66.40±2.50 53.50±4.70 75.80±1.80

95 72.90±2.00 60.60±2.10 65.10±2.70 56.00±2.70 76.70±1.50

110 73.80±1.90 59.50±2.20 66.20±2.50 55.20±3.80 76.30±2.10

125 72.60±2.20 55.30±2.00 66.40±2.40 55.20±3.90 76.80±2.30

128 72.20±2.00 55.40±2.50 65.50±1.90 55.60±3.50 76.30±3.30

Table 6.10: Weighted Mean of F1 Score for feature Selection with Maximum Time-Frequency Ridge
Extraction and with ReliefF (Training Dataset).

# Features SVM k-NN Decision Tree Fisher-LDA Tree Ensemble

5 35.50±7.20 42.20±2.60 50.40±2.60 40.70±3.80 50.50±2.40

20 67.20±2.00 66.00±2.10 67.20±2.50 49.00±1.70 76.50±3.00

35 70.30±2.60 64.50±1.40 66.80±1.70 50.20±3.90 76.80±1.70

50 71.30±2.60 65.30±2.90 67.50±3.00 51.20±2.50 76.50±2.60

65 72.10±1.80 64.80±2.50 67.40±2.60 50.90±2.00 77.10±1.80

80 73.00±2.40 64.80±1.80 67.10±2.90 52.70±3.80 77.50±1.70

95 74.00±1.80 64.30±2.70 66.90±2.20 53.80±4.50 76.60±1.90

110 73.70±2.40 60.00±2.60 66.40±2.30 54.90±4.00 76.80±2.00

125 72.90±3.00 55.60±3.00 65.40±2.20 56.30±3.10 76.20±1.70

128 73.20±2.50 54.60±1.50 65.50±2.50 56.00±2.40 76.40±1.40

The subsets of features obtained are the result of the most commonly selected features

across all folds. Then, after the cross-validation process, the n features with higher “rank-

ing” across all iterations are selected. Since the features used can be grouped in distinct

groups according to their domain, in Table 6.11 and Table 6.12 the relative frequency (0-1

range) of the features selected from each of the groups considered are presented. Note

that in these tables the contour based features were separated from the time-frequency

domain in order to assess their importance. Thus, four different groups of features were

considered, where: CB stands for the contour based, TF for time-frequency domain, F

for frequency domain and T for time domain features, accordingly.
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Table 6.11: Kruskal-Wallis selected features relative frequency by domain.

#Feat CB TF F T

5 0.23 0 0.02 0.11

20 0.62 0.13 0.07 0.11

35 0.62 0.25 0.22 0.22

50 0.77 0.36 0.33 0.33

65 0.77 0.56 0.38 0.44

80 0.77 0.77 0.42 0.44

95 0.85 0.93 0.49 0.56

110 1 0.98 0.69 0.67

125 1 1 0.96 0.89

128 1 1 1 1

Table 6.12: ReliefF selected features relative frequency by domain.

#Feat CB TF F T

5 0.38 0 0 0

20 0.08 0 0.29 0.67

35 0 0 0.64 0.67

50 0 0.15 0.76 0.78

65 0.23 0.36 0.73 0.78

80 1 0.82 0.33 0.22

95 1 0.62 0.8 0.89

110 1 0.93 0.76 0.67

125 1 1 0.96 0.89

128 1 1 1 1

Note that the features selection methods used, namely Kruskal-Wallis and ReliefF,

are independent of the classifiers, thus it was expected for the features selected with a

certain n for each classifiers to be the same. However, in this does not happen since for

all the classifiers the split of the train dataset is different, which led to slight changes in

the groups of features depending on the classifier. Yet, these change are not significant

whereby in Table 6.11 and Table 6.12 the values are not presented by classifier. In the

tables the value 1 means that all features from that domain were chosen, while the value

0 means that none was.

Similarly to what happen with the feature selection methods, a feature transforma-

tion method (Principal Component Analysis (PCA)) was also tested in the training data,

testing the performance obtained with all the classifiers for different values of retained

variance percentage. The performance results obtained with this process are represented

in Table 6.13.

Some of the classification models used have parameters that need to be adjusted,

which is the case with the Support Vector Machine (SVM) and k-NN. Thus, a grid search

optimization process was conducted for these two models. For the SVM, the cost value,

C, and the gamma value, γ, were varied, as well as the kernel function. For the k-NN, the

number of neighbors and the distance metric were varied.
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Table 6.13: Weighted Mean of F1 Score for multiple % of variance retained with Maximum Time-
Frequency Ridge Extraction and with PCA (Training dataset).

% Variance
Retained

SVM k-NN Decision Tree Fisher-LDA Tree Ensemble

50 14.5 ± 4.6 43.6 ±2.2 39.5±2.7 29.9±2 48.4 ± 2.3

75 23.5±4.9 51.9±1.8 48.5±2.8 38.8±3.5 51.7±2.6

85 33.2±4.8 57.8±1.7 52.2±3 43.5±3 60±2.8

90 34.5±6.9 58±2 53.2±2.5 43.5±2.3 60.6±2.4

95 38.5±5.9 56.7±2.3 52±2 43.4±2.6 60.5±2

99 49.3±5.5 61.2±1.9 55.9±2.8 48.1±1.7 64.2±1.8
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Figure 6.3: SVM RBF grid search.
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Figure 6.4: SVM linear grid search.
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Table 6.14: Best parameters from grid-search (SVM).

Classifier Method Kernel Cost Gamma Mean Acc.

SVM ReliefF RBF 21 23 73.45

SVM Kruskal-Wallis RBF 21 23 73.48

SVM ReliefF Linear 2−3 n.a. 72.06

SVM Kruskal-Wallis Linear 2−1 n.a. 74.04

(a) 20 features Kruskal-Wallis. (b) 20 features ReliefF.

Figure 6.5: k-NN grid search.

Table 6.15: Best parameters from grid-search (k-NN).

Classifier Selection method # Neigb. Dist. Metric Mean Acc.

k-NN ReliefF 55 City-block 69.69

k-NN Kruskal-Wallis 110 City-block 68.95

After the determination of the subsets of features for all classifiers, and the hyper-

parameters in the SVM and k-NN cases, that allowed to obtain the best performance

in the training dataset, the final models were trained with all the training dataset and

evaluated in the testing dataset. The results obtained are presented in Table 6.16, being

all the metrics presented obtained as the weighted mean of each metric for each class.

A more complete performance evaluation regarding the two best classifiers in Table 6.16

is presented bellow, where the confusion matrix was determined as well as a table with

the Recall, Precision, Specificity and F1 Score values for all the classes separately. The

two best methods were the Tree Ensemble and the RFB SVM, with 80 and 95 features

selected with ReliefF, accordingly.
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Table 6.16: Weighted mean performance values for all classifiers obtained in the test dataset (Underlined
values correspond to the two best classifiers).

Classifier Parameters
Feature selection/

transformation

# Features/

% Variance
Precision Recall Specificity F1 Score Accuracy

SVM

Linear

C = 2−1

One-vs-One
Kruskal 110 76.11 75.16 92.69 75.25 75.2

SVM

Linear

C = 2−1

One-vs-One
ReliefF 95 75.66 74.37 92.87 74.53 74.4

SVM

RBF

C = 21

γ = 23

One-vs-One

Kruskal 110 74.20 74.30 91.80 74.05 74.3

SVM

RBF

C = 21

γ = 23

One-vs-One

ReliefF 95 75.27 75.95 91.79 75.38 76.0

SVM One-vs-One PCA 99% 60.46 49.46 87.59 50.93 49.5

k-NN
k = 110

metric = cityblock
Kruskal 20 70.33 70.19 89.16 67.23 70.2

k-NN
k = 55

metric = cityblock
ReliefF 20 74.18 72.64 91.04 71.12 72.6

k-NN - PCA 99% 64.16 58.09 74.47 52.56 58.1

Decision

Tree
- Kruskal 128 70.14 68.40 91.50 68.95 68.4

Decision

Tree
- ReliefF 50 70.11 68.52 91.210 68.98 68.3

Decision

Tree
- PCA 99% 59.43 54.07 86.39 56.24 54.1

Fisher-LDA
Pseudo-Linear

Discriminant
Kruskal 95 57.64 49.17 85.00 49.83 49.2

Fisher-LDA
Pseudo-Linear

Discriminant
ReliefF 125 60.53 52.12 86.45 53.24 52.1

Fisher-LDA
Pseudo-Linear

Discriminant
PCA 99% 56.39 47.95 84.41 48.25 47.9

Tree

Ensemble

Num. Trees-250

GentleBoost
Kruskal 125 79.33 80.20 93.00 79.50 80.2

Tree

Ensemble

Num. Trees-250

GentleBoost
ReliefF 80 80.31 81.14 93.37 80.46 81.1

Tree

Ensemble

Num. Trees-250

GentleBoost
PCA 99% 66.45 67.5 87.35 66.72 67.5



82 CHAPTER 6. RESULTS AND DISCUSSION

Table 6.17: Tree Ensemble Classifier with 80 features selected with ReliefF, 250 trees and GentleBoost
method (Test dataset).

Class Precision Recall Specificity F1 Score

Complex 45.5 38.5 99.5 41.7

1 Frequency Step 63.8 57.1 94.1 60.3

Multiple Frequency Steps 61.3 40.4 98.9 48.7

Up 84.5 92.7 87.4 88.4

Down 70.0 82.9 97.8 81.4

Flat 91.4 86.3 97.5 88.8

Short 84.7 94.1 98.1 89.2

Chevron 75.0 75.0 99.1 75.0

Reverse Chevron 54.6 37.5 99.6 44.4

Composite 57.9 39.3 99.3 46.8

Mean 69.9 64.4 97.1 66.5

Weighted mean 80.3 81.1 93.4 80.46
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Figure 6.6: Confusion Matrix Tree Ensemble Classifier with 80 features selected with ReliefF, 250 trees
and GentleBoost method (Test dataset).
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Table 6.18: RBF SVM with 95 features selected with ReliefF, C = 21 and γ = 23 (Test dataset).

Class Precision Recall Specificity F1 Score

Complex 55.6 38.5 99.6 45.5

1 Frequency Step 64.4 58.6 93.6 61.4

Multiple Frequency Steps 50.0 44.7 98.0 47.2

Up 83.7 86.7 86.8 85.2

Down 65.2 65.8 96.2 65.5

Flat 77.7 83.5 92.3 80.5

Short 79.8 87.3 97.3 83.4

Chevron 61.8 52.5 98.8 56.8

Reverse Chevron 44.4 25.0 99.5 32.0

Composite 75.0 42.9 99.6 54.6

Mean 65.8 58.5 96.2 61.2

Weighted mean 75.3 76.0 91.8 75.4
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Figure 6.7: Confusion Matrix RBF SVM with 95 features selected with ReliefF, C = 21 and γ = 23 (Test
dataset).
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In Table 6.19, the features that were used to train the two best models in Table 6.17

and Table 6.18 are presented. Furthermore, a graphical representation of each domain

selection feature percentage is also presented in Figure 6.8 and Figure 6.9.

Table 6.19: Features selected for the training of the two best classifiers.

Tree Ensemble
(80 Feat ReliefF)

Trend, Number Dir Changes, Number Steps, Harmonic Components, Diff Max End, Diff Min Init,
Initial Frequency, Duration, Frequency Bandwith, LBP37, Final Frequency,

Spectral Edge Frequency, Freq max PSD, Peak Frequency, LBP41, Mean Freq PSD,
Diff Min End, Diff Max Init, Minimum Frequency, LBP35, LBP39, Diff End Init,
LBP3, LBP7, Mean Frequency, LBP9, Mean Spectral Skewness, Non instantanous
Spectral Entropy, LBP36, LBP5, Mean Tona Power Ratio, Mean Spectral Slope,

LBP51, LBP8, LBP15, Std Spectral Entropy, LBP55, LBP4, LBP27, LBP30, Mean
Spectral Centroid, LBP12, LBP57, LBP31, LBP26, LBP53, LBP16, Max power PSD,
LBP11, Mean Spectral Spread, LBP14, LBP29, Mean ZCR, LBP33, LBP22, LBP32,

LBP28, LBP46, LBP1, Min Spectral Entropy, LBP24, LBP59, LBP10, LBP42, LBP45,
Median Spectral Entropy, LBP49, LBP20, LBP25, LBP40, LBP18, LBP23, Mean
Spectral Entropy, LBP47, LBP56, LBP13, LBP21, LBP44, Signal Power, LBP54

SVM
(95 Feat ReliefF)

Short Time Energy, Max Tonality, Min Tonality, Std Tonality, Mean Amplitude,
Median Amplitude, Std Amplitude, Skewness Amplitude, Min power PSD, Freq min PSD,

Std power PSD, Mean Spectral Flatness, Mean Spectral Flux, Mean Spectral Pitch Chroma1,
Mean Spectral Pitch Chroma2, Mean Spectral Pitch Chroma3, Mean Spectral Pitch Chroma4, Mean

Spectral Pitch Chroma5, Mean Spectral Pitch Chroma6, Mean Spectral Pitch Chroma7,
Mean Spectral Pitch Chroma8, Mean Spectral Pitch Chroma9, Mean Spectral Pitch Chroma10,

Mean Spectral Pitch Chroma11, Mean Spectral Pitch Chroma12, Mean Spectral Rolloff,
Mean Spectral Decrease, Mean Time STD, LBP34, LBP38, Trend, Number Dir Changes,

Number Steps, Harmonic Components, Diff Max End, Diff Min Init, Initial Frequency,
Frequency Bandwith, Duration, Kurtosis Amplitude, Mean Spectral Kurtosis, LBP37,
Final Frequency, Freq max PSD, Spectral Edge Frequency, Peak Frequency, LBP41,

Diff Max Init, Mean Freq PSD, Diff Min End, Max Spectral Entropy, LBP39,
Minimum Frequency, LBP35, Diff End Init, LBP7, LBP3, Mean Frequency, LBP9,

Mean Spectral Skewness, LBP5, LBP36, Mean Tona Power Ratio,
Non instantanous Spectral Entropy, LBP8, LBP15, LBP51, Std Spectral Entropy,

Mean Spectral Slope, LBP55, LBP4, LBP27, LBP30, LBP12, Mean Spectral Centroid,
LBP57, LBP16, LBP53, LBP31, LBP26, LBP11, Mean Spectral Spread, Max power PSD,

LBP29, LBP14, LBP33, LBP32, LBP28, Mean ZCR, LBP22, LBP46, LBP1, LBP42, LBP59,
LBP24

Selected % of each domain of features
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Figure 6.8: Domain percentage selection of the 80 features selected with ReliefF (Tree Ensemble Classi-
fier).
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Selected % of each domain of features
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Figure 6.9: Domain percentage selection of the 95 features selected with ReliefF (SVM).

6.2.2 Classification Discussion

The classification results are divided in two different parts. Firstly, an evaluation of

the performance of the multiple algorithms to extract the time-frequency ridges of the

vocalizations was made. After that, the best method was selected and used to develop

the classifications algorithms themselves and the according results in the test set were

determined.

Given the fact that several contour extraction algorithm were developed, a statistical

analysis was conducted to assess which of the methods performed the best with the multiple

classifiers used. As presented in subsection 6.2.1, not all contour extraction methods

performed equally with the multiple classifiers, whereby, the two strongest performing

methods across all classifiers were selected and their performance distributional differences

was analyzed (see Table 6.7). Through the analysis of Table 6.7 is possible to observe that

the only contour extraction method that was consistently among the two better ones, was

the Maximum Time-Frequency Ridge Extraction. Thus, it was the one used to extract

the descriptors set to be used, joined with the remaining ones described in section 5.2.

As it is possible to see in Table 6.9 and Table 6.10, the importance of feature selection

is demonstrated, however, the performance improvements are not that pronounced. This

is generally truth for all classifiers, which suggests that the classification problems are

originating from the features themselves, and not from the way in which they are selected

or from the classification methods. Furthermore, through the analysis of Table 6.11 it

is possible to observe that Time-frequency domain features, which includes the contour

based ones, tend to have a higher percentage of selection. In Table 6.12, some irregular

behaviors regarding the selected descriptors are patented. Also, time domain descriptors

are all select for almost every number of selected features. Contour based features also
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tend to be all select with the ReliefF method, which demonstrate the importance that

those features since they are the ones used in te manual annotation process. Using a

different method to reduce the problem dimensionality, representing the data where it

varies the most (PCA), the conclusions drawn are similar to the ones with the feature

selection techniques.

Moving to the performance analysis of the models developed with the best parameters

defined with the help of the training dataset, a clear trend emerges. Looking at the results

in the test dataset (see Table 6.16), it is noticeable that the performance does not decrease

that much when compared to the results obtained in the models validation and adjustment

(see Table 6.9, Table 6.10 and Table 6.13). In some cases, the performance obtained in the

test phase has even supplanted the performance in the models validation phase. This fact

stresses out three important aspects. First, it highlights the quality of the used features.

Secondly, it means that the selection of the better parameters and number of features for

the classification was made in such a way that eventual overfitting phenomena may have

been avoided. Thirdly, it means that in this particular problem, the classifiers benefits

from the use of more data, since in the validation phase they were typically trained with

9/10 of the total data composing the training dataset while in the test phase the whole

training set was used.

Another conclusion that can be drawn is related to the classifiers which have showed

better results, being the SVM and the Tree Ensembles the best methods. Thus, in order

to better understand how these two models behave, the confusion matrix and the accord-

ing Recall, Precision, Specificity and F1 Score values for each class, were represented in

Figure 6.6, Figure 6.7, Table 6.17 and Table 6.18.

Analyzing the Tree Ensemble method, Figure 6.6 and Table 6.17, is possible to observe

that the method can discriminate the classes Upward, Downward, Flat and Short quiet

well. This can be explained by the fact that these classes have strict definitions and

lots of samples, from which the classifier can learn. On the other hand, the classes that

were the hardest for the classifier to correctly identify were the ones with less samples,

Complex, Reverse Chevron and Composite. Observing the confusion matrix, it is clear

that the class that was confused more often was the 1-Frequency Step, being the more

expressive confusion with the Upward class. Even-tough the 1-Frequency Step class has a

very strict and unequivocal identifier, which is the number of frequency breaks or “steps”,

more precisely one step, this feature is pretty hard to extract correctly, namely due to

the quality of some vocalizations themselves and the excessive noise. This fault in the

extraction of the descriptor gives origin to several missclassification cases. The same thing

happens with the class 2-Frequency Steps. Still, for a 10 class multi-class problem with

very uneven class distribution, the performance obtain with the Tree Ensemble method is

quiet satisfactory, being the weighted mean of the Recall, Precision and F1 Score values

all around 80%, as well as the global accuracy.

Looking now to the performance of the RBF SVM, Figure 6.7 and Table 6.18, is

also perceptible that the classes in which the classifier struggled the most where the ones
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with less representation. Also, in a similar way, the most mismatched class was the 1-

Frequency Step, which was mostly confused with the Upward class. The SVM presented

a slightly lower performance values than the Tree Ensemble, however, this should already

be expected since the way the USV classes are defined and manually annotated resembles

a top down process with several conditions “if ... then ... else ...”, which, basically, works

like these classification trees.

In conclusion, the best classification methods presented good results in all the eval-

uated metrics. Plus, while the state of art classification methods presented [20, 25] can

distinguish only between five different classes, the classifiers used in these work can classify

ten USVs classes. Since in the state of the art literature, no performance evaluation of

the classification was made, a proper comparison with the developed methods could not

take course. Moreover, the classes classified on the state of the art do not have correspon-

dent definitions with the ones classified in this work, making it even harder to perform a

comparative analysis.

Limitations

Regarding the classification itself, the main reason why the results were not higher is,

certainly, related to the quality of the extracted features. Since the USVs classes definitions

follow such strict and well defined rules, if the descriptors were extracted in a perfect way,

the classification would also be perfect. Thus, in relation to the classification problem, the

main obstacle was, for sure, the features extraction, mostly due to the low quality of some

vocalizations and the enormous variability within each class. The mentioned problems

made it even harder to develop proper algorithms to extract the features to be used in

classification, being this mostly truth to the features related to the contour of the USVs.

Looking back to all the classification related work, there are several takeaways that are

worthy to be mentioned and referenced. The first is related to one of the main obstacles and

difficulties in rodents USVs studies, which is the fact that a standard set of vocalizations

does not exist. This means that is hard to list all types of sounds produced by rodents,

mainly because these sounds can vary a lot with several factors, such as the species of

the rodents, age, sex and other factors. Other of the main struggles in rodents USVs

studies is, definitely, the lack of public accessible annotated data, which makes it harder

to perform external validation of the developed classification algorithms. The same is true

for the segmentation algorithms. However, there have been some recent developments

regarding this topic, as an online platform called MouseTube1 was created. This platform

allows researchers to make public their own acquisitions of mouse USVs and describe

the protocols used to acquire them. Even-tough there is no annotation regarding the

vocalization of the multiple signals in the platform, the simple fact of sharing the data

allows for other researchers to understand what types of protocols generate more USVs, for

instance. Platforms like MouseTube are the result of an increasingly search and interest

1https://mousetube.pasteur.fr/
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in USVs. These type of studies have been more and more common over the years, since

they present a simple and easy tool to access the animal models.



Chapter 7

Conclusion

The starting global premise of this work was fairly simple and straightforward, being

the main objective the development of a system capable of processing raw audio files,

segmenting their Ultrasonic Vocalizations (USVs) and then, categorize them.

Having the initial objectives in mind, it can be said they were fulfilled, since a fully au-

tomated pipeline capable of processing the audio files was developed, being the final result

an application developed in MATLAB. The developed software considers all algorithms

that compose this pipeline.

With this work a new approach regarding USV segmentation has been developed. The

segmentation algorithm has shown great results, being able to detect most of the USVs.

Furthermore, the association with a post-processing technique, which in these case was the

Bag of Visual Words (BOVW), has also proved to be a very interesting approach, making

the segmentation process more robust.

Also, a new approach was taken regarding the sets of features used. This new ap-

proach consisted in the fusion of features information from multiple domains, including

the addition of image specific descriptors.

In relation to the developed classification algorithms, the performance obtained can

be acknowledged as satisfactory, mainly due to the fact that the problem was a multi-

class classification one, with ten different classes. Regarding this topic, is worth notice

that the freely available state of the art methods are only capable of discriminate between

five different class, or group the vocalizations in classes without labeling them. Thus,

significant improvements were made in the USVs classification topic.

In conclusion, with this work several advances have been made and the objectives

that were set as a goal, when the project started, were reached. Even if the developed

segmentation and classification algorithms are not perfect, they are arguably a step in the

right direction.
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Future Work

Since USVs analysis constitute a growing field of study, several things can be done in

the future based on the work developed in this thesis. Perhaps, one of the most interesting

approaches to be studied in the future, would be, definitely, an approach based on computer

vision and deep-learning techniques. The computer vision based techniques and deep-

learning have experienced a rapid grow in demand and use, showing great results in image

classification problems. Hence, this path is, undoubtedly, worthy to be explored. As

demonstrated by Coffey et al. 2019 [20], deep-learning techniques have great potential in

USVs studies.

Also, as future work, a more exhaustive statistical analysis should be conducted, in

order to unclear the relations between vocalizations and emotions, as well as the relation

with the neurodevelopmental state of the animals, among other factors, in order to uncover

the full potential of USVs as a biomarker.



Appendix A

Graphical Interface

Using the platform App Designer from MATLAB 2018b, a graphical interface was

developed, as a final product of the project. The interface allows the complete process-

ing of raw audio signals, since it integrates the developed algorithms, starting from the

segmentation of the Ultrasonic Vocalizations (USVs) to their according classification.

The software presents a simple graphical design, being divided in three main menus

or tabs. Following the typical chronological order in bioacoustic studies, the first menu is

related to the segmentation of raw audio files. Then, the second tab offers the ability to

rectify or accept the output of the segmentation algorithm. At last, using the segmentation

output, in the classification menu it is possible to run the segmented calls to through the

developed classification systems.

To use the interface a version of MATLAB has to installed. The MATLAB distribution

must be the 2018b version.

Segmentation Menu

The segmentation menu has two core functionalities, which are the isolation of the

USVs in the audio signals and the extraction of some relevant characteristics regarding

them.

This tab has a simple layout and to perform the segmentation of audio signals it is only

required to select a directory where the raw audio files are located, and then, select which

ones to choose. Furthermore, the user also has the possibility to change some parameters

related to the segmentation itself, such as the values of each of the thresholds used, the

filtering cut of frequency and the activation or not of the Bag of Visual Words (BOVW)

noise classifier.

The interface outputs a .xls (see Figure A.2) file containing the date when the signal

was segmented concatenated with its name. The .xls file lists all the detected vocalizations

with the extracted characteristics, which are:

1. Duration;
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2. Peak Frequency;

3. Minimum Frequency;

4. Mean Frequency;

5. Initial Frequency;

6. Final Frequency;

7. Frequency Bandwidth;

8. Short Time Energy;

9. Energy.

Figure A.1: Tab Segmentation.
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Figure A.2: Segmentation Output.

Segmentation Correction Menu

The second menu allows the user to review the segmentation output, as it offers the

possibility to accept or rejects the detected calls. If the user rejects a vocalization, it

is removed from the .xls files. Thus, this menu has a very simple layout, enabling not

only the possibility of review the segmented USVs, but also to see their time-frequency

representation.
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Figure A.3: Tab Review.

Classification Menu

The classification menu allows the user to run a classifier through the output of the

segmented vocalizations. In this menu, the user only has to choose a single or multiple .xls

files, which resulted from the segmentation process, and the classifier in order to classify.

The available classifiers are SVM and Tree Ensemble.

After the classification process a .xls file is generated containing some relevant charac-

teristics regarding the vocalizations distribution. The output statistics are:

1. Absolute frequency of each class;

2. Rate of each class;

3. Inter vocalization time of each class;

4. Total Count of the number of vocalization;

5. Global vocalizations rate;

6. Global inter vocalizations time.
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Figure A.4: Tab Classification.
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Figure A.5: Classification Output.
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Contour Extraction Evaluation
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Figure B.1: Boxplot SVM.
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Figure B.2: Boxplot k-NN.
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Figure B.3: Boxplot Decision Tree.
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Figure B.4: Boxplot Fisher-LDA.
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Figure B.5: Boxplot Tree Ensemble.
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