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Patŕıcia Nobre Silva

AUTOMATIC DETECTION OF
CATARACT IN FUNDUS IMAGES

Dissertation presented to the

Physics Department at University of Coimbra

to obtain the Master’s degree in Engineering Physics

Supervisors:
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Esta cópia da tese é fornecida na condição de que quem a consulta reconhece que os

direitos de autor são pertença do autor da tese e que nenhuma citação ou informação

obtida a partir dela pode ser publicada sem a referência apropriada.

This copy of the thesis has been supplied on condition that anyone who consults

it is understood to recognize that its copyright rests with its author and that no

quotation from the thesis and no information derived from it may be published

without proper acknowledgement.

iv



Abstract

Opacities found in fundus images are an obstacle to the detection of other anomalies

related to eye diseases, sometimes blocking diagnoses. They interfere with other eye

lesions diagnosis software, degrading image quality and visibility.

An automatic approach to the detection and quantification of cataracts would be

very helpful to the ophthalmological field to avoid the mentioned problem and to

enable analysis of large amounts of images in an easier, faster and inexpensive way,

without needing the expertise of trained specialists to do so.

This work presents two approaches to detect eye cataracts, one based on “general”

Machine Learning and the other on Deep Learning.

To enhance visibility and contrast, two pre-processing methods of the retinal images

are explored and compared. Three Machine Learning algorithms (Support Vector

Machine, Decision Tree and Bagged Trees) that classify each image into one of two

classes - cataract or no cataract - were used. Feature extraction is based on a

Discrete Wavelet Transform, more specifically, the Haar Transform.

A method based on Convolutional Neural Networks is also introduced, which uses

the same dataset to train and test a similarly aimed Deep Learning classifier.

Keywords: automatic approach, Bagged Trees, cataract, Convolutional Neural Net-

work, Decision Tree, Deep Learning, fundus image, Machine Learning, opacity, Sup-

port Vector Machine, Discrete Wavelet Transform
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Resumo

As opacidades encontradas em retinografias são um obstáculo à deteção de outras

anomalias relacionadas com doenças visuais, impedindo por vezes diagnósticos. Es-

tas interferem com outros softwares de diagnóstico de lesões do olho, degradando a

qualidade e a visibilidade das imagens.

Uma abordagem automática à deteção e quantificação de cataratas, seria muito

útil para o campo da oftalmologia para evitar o problema mencionado e para que

fosse posśıvel analisar uma maior quantidade de imagens de uma maneira mais fácil,

rápida e barata, sem que fosse necessário o conhecimento de um especialista na área

para o fazer.

Este trabalho apresenta duas abordagens para detetar cataratas no olho, uma baseada

em Aprendizagem Máquina “geral” e outra em Aprendizagem Profunda.

Para aumentar a visibilidade e o contraste, dois métodos de pré-processamento das

imagens da retina são explorados e comparados. Três algoritmos de Aprendizagem

Máquina (Máquina de Vetores de Suporte, Árvore de Decisão e Árvores “Bagged”)

que classificam cada imagem numa de duas classes - catarata ou sem catarata -

são usados. A extração de caracteŕısticas é baseada na Transformada em Ondeletas

Discreta, mais especificamente, na Transformada de Haar.

Um método baseado em Redes Neuronais Convolucionais é também apresentado,

usando o mesmo conjunto de dados para treinar e testar um classificador em Apren-

dizagem Profunda para a mesma função.

Palavras-chave: abordagem automática, Árvore de Decisão, AprendizagemMáquina,

Aprendizagem Profunda, catarata, Árvores “Bagged”, Máquina de Vetores de Su-

porte, opacidade, Rede Neuronal Convolucional, retinografia, Transformada em On-

deletas Discreta
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Introduction

Opacities found in fundus images are an obstacle to the detection of other anomalies

related to eye diseases. As they degrade image quality and visibility, they interfere

with software that detects eye lesions in this type of images, such as microaneurysms,

sometimes blocking diagnoses. It is then important that an automatic approach is

developed to detect these cataracts.

Modern medical science benefits greatly from the development of technology, spe-

cially in image analysis. Nowadays, computerized systems that integrate medical

devices are improving health care quality and productivity [9]. Regarding automatic

diagnosis, Machine Learning has been widely applied in di↵erent diseases such as

glaucoma, breast cancer and diabetes [31]. From that we can imagine the potential

of applying state-of-the-art techniques to cataract detection in retinal imaging.

Traditional cataract diagnosis present low e�ciency with the increasing number

of patients [6], making trained professionals scarce resources and invalidating the

usual methods. Besides, clinical grading is quite subjective since it depends on

the individual and its experience. Therefore, “reducing costs and simplifying the

process for early cataract diagnosis is a crucial means of improving eye care” [38].

Consequently, it is consistent from the social and economic points of view to develop

automatic cataract detection systems [40].

The main requirements of such a system are that it should be able to take retino-

graphies as input and result in a binary classification – cataract or no cataract. It is

important to be a rapid, repeatable and accurate analysis, so it can give trustwor-

thy results in real time and detect change. In essence, such an automated approach

would have a function to extract features and an image classification algorithm ca-

pable to analyze fundus images from di↵erent angles, that would run on a PC and

be compatible with other similar diagnosis tools, especially the ones from Retmarker

S.A..
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1. Introduction

This method would not require pupil dilation to obtain the retinal image or the

expertise of trained eye professionals, presenting itself as an interesting solution

especially in places where other exams are not possible due to the lack of experts

or resources. Used as an early detection approach, it would be a powerful way

to accurately and objectively diagnose thousands of patients, detecting the disease

e�ciently and preventing it from progressing and turning into blindness. It would

be possible to guide risk patients for referral to further care.

A system like this would also be useful to detect images with opacities, cataractous

or not, preventing di↵erent software of misdiagnosing other eye conditions because

the image is not clear enough or good to be analyzed. The truth is, if a patient

has a cataract and some other eye lesion (as long as it is not something urgent

resulting from some accident of sorts), the cataract is the main problem. It needs to

be treated, which, in this case, means surgically removed, as fast as possible. Only

then other screening can be done to access the remaining problems. Therefore, it is

easy to understand the importance and practical application of such approach.

Benefits from a method like this would be compatibility and integration with screen-

ing of di↵erent retinal diseases, as well as solving the interference caused by the

unhealthy fundus images with other software, since the problematic ones would be

filtered out.

Essentially, the motivation of this work is to develop an automatic cataract classifi-

cation system for fundus images so that cataractous patients can receive preliminary

diagnosis and get help timely, conveniently and even remotely. Meanwhile, hospitals

can focus more on cataract treatment instead of early screening.

The question that remains is, is this really a reliable possibility? Retinal imaging

has been widely used in clinical applications, but automatic detection of cataract

based on it was only proposed in recent years.

Document Structure

This document encloses a total of 5 chapters organized as follows:

The present chapter is Chapter 1, which includes the Introduction to this work.

Chapter 2 contains details about the Background Information and State of the Art

in the areas of knowledge involved into this work. It describes the human eye, vision

impairment, fundus imaging, cataract, diagnosis and treatment of the disease. It

also discusses Artificial Intelligence, Classical Machine Learning, Deep Learning and

2



1. Introduction

their di↵erences. Lastly, a compilation of research done in the field of automatic

cataract classification is presented, explaining the work of the authors and results

obtained, in chronological order.

In Chapter 3 one can find the methods used to achieve the proposed goal. Proce-

dures like the pre-processing of the input images and the feature extraction will be

thoroughly described, as well as the dataset, learning models and classifiers, transfer

learning, performance parameters used and the coding structure.

Chapter 4 will address the results obtained, while Chapter 5 presents the conclusions

of the work.

3
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2

Background Information and State

of the Art

2.1 The Eye

The human eye is the organ responsible for the sense of sight, allowing us to perceive

the shapes, colors and dimensions of our surroundings by processing light. It “is

mostly optically transparent, allowing a window into both the central nervous system

along with the systemic vasculature” [14].

The eye is a complicated structure composed of interconnected subsystems [24],

which can be seen in Figure 2.1. The front part, visible by the naked-eye, includes

the colored part called Iris, the Cornea, a clear dome over the Iris, the black round

opening in the Iris, which is the Pupil, the Sclera that is the white part, and,

finally, the Conjunctiva, a thin layer of tissue that covers the entire front of the

eye, except the Cornea [34].

Light reflects o↵ objects and when these are in the field of vision, it enters the eye.

First, the light is focused by the clear front surface, the Cornea. After, it passes

the Aqueous Humor, a transparent watery fluid that circulates throughout the

front part of the eye and keeps the pressure inside constant. Then, the Iris controls

the amount of light that reaches the back of the eye by automatically adjusting the

size of the Pupil. The Crystalline Lens further focuses the light, adjusting shape

depending on whether the light reflects o↵ something near or far. The light then

pierces the center of the eye, through a clear gel known as Vitreous Humor [17].

The focused light beam reaches the Retina, the light-sensitive inner lining of the

back of the eye, which converts optical images into electrical impulses. The Optic

Nerve then transmits these signals to the visual cortex, which is the part of the

brain that controls our sense of sight [29], allowing us to see.

5



2. Background Information and State of the Art

Figure 2.1: Schematic of the anatomy of the human eye, seen from above [29].

The Retina, which is the most important structure in this case, has di↵erent com-

ponents. The Optic Disk (OD) is a round disc that connects with brain nerves

[39]. The vast Blood Vessels bring nutrients to the nerve cells, they are divided

into arteries, veins and capillaries and all converge into the OD. The Macula is

a small yellowish extra-sensitive area at the center of the Retina, allowing central

vision [34], whose darker center is called Fovea. As it is the focal point of the eye,

it has special light-sensitive nerve endings called photoreceptors. These can be rods

or cones and convert the light into electrochemical signals [17].

Vision Impairment

Fact sheets posted by the World Health Organization in 2018 state that approxi-

mately 1.3 billion people live with some form of vision impairment and around 80%

of it is considered avoidable [36], this is why prevention is of such importance.

They also a�rm that, currently, the most prevalent causes of vision impairment

worldwide are Uncorrected Refractive Errors and Cataracts. Besides these, there

are also diseases like Age-Related Macular Degeneration (AMD), Glaucoma, Dia-

betic Retinopathy (DR), Corneal Opacity and Trachoma, most of them manifest

themselves in the retina [9]. Cataracts are more prevalent in low and middle-income
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2. Background Information and State of the Art

countries, whereas the others are the most common diseases in high-income societies

[36]. This work will focus only on cataracts.

2.1.1 Fundus Imaging

The retina is visible with proper illumination due to the fact that the anterior portion

(the front part) of an healthy eye is optically transparent. However, properties of

some eye parts make direct inspection of the retina di�cult. Therefore, fundus

imaging is complicated because illumination and imaging beams cannot overlap, or

reflections from the cornea and lens will worsen image quality and contrast. This

type of imaging solves this using separate paths in the pupil plane, more specifically,

an outer illumination beam and an inner imaging beam [14].

A fundus image, also called retinography or retinal image, consists of a photograph

of the back of the eye, the posterior segment, taken by a fundus camera. It can be

seen in Figure 2.2 a scheme showing the elements of the retina in a fundus image.

Fundus photography is a cost-e↵ective and simple technique. It can be examined at

another location or time by specialists and provides photo documentation for future

reference [2].

“One fundus image contains plenty of information to reflect the health of the eyes and

the body to some extent, playing an important role on the diagnosis and treatment

Figure 2.2: Components of a retinal image.

7



2. Background Information and State of the Art

Figure 2.3: Fundus images with and without the OD centered.

Figure 2.4: Fundus images of the right and left eyes, respectively.

of some diseases” [31].

The ophthalmological field had been seeking to examine the retina for a long time.

Several scientists from many areas of study worked towards what we have today.

“From the initial photograph of the human retina in the 19th century until today,

there have been huge advances in ophthalmic imaging” [14]. In 1910, Allvar Gull-

strand, a swedish ophthalmologist and optician, developed the first fundus camera,

which is widely used nowadays to accomplish retinal imaging, great for examina-

tions and population screening programs [9]. This type of cameras can take fundus

photographs of the eye in di↵erent angles, as shown in Figure 2.3, in the first image

the OD is centered unlike the second one. In addition, it is also easy to distinguish

between right and left eye images where the OD is not centered, noticing which way

it is “turned”, as can be seen in Figure 2.4.

Due to being safe, harmless and cost-e↵ective, retinal images are used by ophthal-

8



2. Background Information and State of the Art

mologists for screening certain eye diseases. From it, doctors can detect eye diseases

such as cataract, glaucoma and DR, plus they can examine the current condition of

the patient and predict the visual acuity based on the clearness degree of the image.

Other changes are crucial for predicting hypertension and cardiovascular diseases,

such as vessel width, tortuosity and branching angle [39], for example.

The research and study of the analysis of fundus image have been broad in the last

two decades. There are reports of segmentation and localization of retinal structures,

as well as retinal lesions and aneurysms [9]. Based on these techniques, researchers

are developing diagnostic systems for retina diseases and lesions, including microa-

neurysms, DR, AMD, glaucoma and cardiovascular diseases [38].

A more widespread adoption of retinal imaging is expected in the clinical practice

for early identification of several chronic diseases and long-term conditions, to aid

medical experts, decreasing associated care costs and also facilitate the establishment

of large-scale computer aided screening and prevention programs [2].

Cataracts occur in the crystalline lens of the eye, not in the retina. However, the

lens dulling reduces the light that focuses on the retina, degrading the quality of the

fundus image [9], which makes this type of images suited for the task of cataract

classification and grading.

2.1.2 Cataract

A cataract is a painless eye disease caused by protein denaturation that results in an

opacification (dulling or clouding) of the lens inside the eye that develops gradually.

This phenomenon blocks the light from passing clearly through the lens and leads

to a decrease in vision, resulting in poor visual acuity and even blindness at later

stages [6]. Nowadays, as said before, it is one of the most common causes of visual

impairment globally and its incidence rate increases with age.

This disease interferes with the subject’s daily routine, worsening his life quality.

As the cataract progresses, it can change the eye’s ability to focus [32].

As it is mentioned in Allen et al. ’s research [1], if a↵ects simple things we take

for granted, like color awareness, changes in contrast, handling brightness, driving,

reading and even recognizing faces, since it blurs the vision. For this reason, it is

encouraged to be early detected and treated.

There are three main types of cataracts: Nuclear Sclerotic, Cortical and Pos-

terior Subcapsular. During the aging process, people can develop either one of

9
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these or a combination of them [32].

1. Nuclear Sclerotic Cataract is the most common type and is caused by the

hardening and yellowing of the lens nucleus. It progresses slowly and may

require many years of gradual development before it begins to a↵ect vision

[32].

2. Cortical Cataract refers to opacities in the peripheral edge of the lens.

“Changes in the water content of the lens fibers create fissures that cause

the light that enters the eye to scatter, creating problems with blurred vision,

glare, contrast and depth perception” [32]. People with diabetes are at risk

for developing this type of cataract.

3. Posterior Subcapsular Cataract begins as a small clouding on the back

surface of the lens but develops fast, within months. It forms beneath the lens

capsule, “a small membrane that encloses the lens and holds it in place” [32].

This cataract a↵ects vision around lights and diabetics and people who have

extreme myopia can develop it.

To detect cataract by inspection of a fundus image it is important to check for

the clearness or clarity of the structures of the retina, specifically for the details,

or lack of, due to blurriness. If the OD, the macula and all vessels are clear, the

retinography is normal. If the capillary are not clear, it is defined as a mild cataract.

If all the vessels are not clear, it is a medium cataract. Lastly, if all the structures

are not visible or just barely visible, it consists of a severe cataract [39]. Basically,

as the visibility decreases, the severity of cataract increases, it is based on this fact

that automatic methods are explored.

2.1.2.1 Diagnosis

Clinical grading of cataract is performed by comparing the observed picture with a

set of standard photos with di↵erent cataract severities.

The diagnosis is usually performed by doing a slit-lamp examination by experienced

ophthalmologists and its diagnosis is based on the clearness degree of the retina,

that can be subjective and prone to error. Then it is classified with the Lens Opac-

ities Classification System (LOCS) [9], seen in Figure 2.5, the Wisconsin Cataract

Grading System, the Wilmer Scale, the Oxford Clinical Cataract Classification or

the American Cooperative Cataract Research Group [38], to name a few.

Besides slit-lamp, there are already other methods such as Light-Focus, Iris Image
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Figure 2.5: Lens Opacities Classification System [3].

Projection and Ophthalmoscopic Transillumination [40]. These methods are good

but not e�cient since they demand manual assessment, i.e., a doctor that presently

examines one patient at a time, which is time consuming and costly. Also, because

it requires pupil dilation and a strong light directed to the eye, it can be hard,

not suitable and even expensive for some. This makes ophthalmologists a scarce

resource that causes large scale screening of cataracts in the early stage very hard

[9]. Whereas fundus images could be more easily obtained only with the help of

technicians, for example.

2.1.2.2 Treatment

Treatment for cataracts has become a concern due to the impairment the disease

causes to the patient.

There is no e↵ective treatment for this eye disease besides removal surgery, but early

detection can prevent visual impairment from turning into blindness.

Surgery is conducted when both the individual and doctor agree that the cataract

noticeably interferes with the daily life and work [9]. However, by avoiding prolonged

exposure to the sun, its progression can be slowed down, if early diagnosed.

“An accurate diagnosis of the severity of the cataract is still needed prior to any

surgical interventions to ensure both the safety of the patient and high-quality treat-

ment” [37].
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2.2 Artificial Intelligence

We live in an era of automation, where costumers demand speed and e�ciency, and

now more than ever they can actually get it.

Artificial Intelligence (AI) terms are widely spoken about nowadays, but with all the

hype around it, it is easy to get lost, misunderstand and even misuse the concepts.

Understanding the latest advancements in AI can be well summed up in two terms:

Machine Learning (ML) and Deep Learning (DL). Examples of it can be spotted

everywhere nowadays, even though sometimes we cannot even tell; it is how Netflix

knows which show we would want to watch next or how Gmail decides what is and

is not spam.

While some applications of AI may still seem far from being possible, there are

already a lot of technologies that use intelligent machines, as well as businesses and

industries who rely on it, either to function or to improve parameters like speed,

e�ciency and reliability.

AI is the future, but also part of our everyday lives already. It refers to machines

being able to demonstrate human intelligence and act according to it. This includes

tasks such as problem solving, object recognition, planning, learning, understanding

language and sounds [21].

Machine intelligence has been imagined by many for almost a century. But only

in 1956 the term “Artificial Intelligence” was discussed and o�cialized as a field

[5]. However, it was not until 2015 that AI really bloomed, unleashing applications

millions of people use on a daily basis. This explosion was mostly enabled by GPUs’

wide availability, making processing tasks faster, cheaper and more powerful, and

also by storage availability and the Big Data Movement [5].

AI started in the fifties but it was not until the eighties that ML began to appear.

DL is the latest concept, that exploded around 2010, driving big advancements in

the field (Figure 2.6).

The goal of computer scientists was to build elaborated technology that exhibited

characteristics of human intelligence, this being enabled by state-of-the-art comput-

ers. This falls in the category of General AI, which refers to the machines that

possess every characteristic of human intelligence, and sometimes even more. We

have seen machines like this in several science fiction movies, such as The Terminator

of the self titled movie or C-3PO from Star Wars [5].
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Figure 2.6: The evolution of AI [5].

What is already accomplished nowadays is Narrow AI, machines that execute a

specific duty as well as a human and sometimes even better. Some examples are

Facebook’s face recognition system and Pinterest’s image classification service [5].

Technologies like this demonstrate human intelligence traits and can work them

extremely well, but are lacking in other areas [21]. How this was possible, leads us

to ML.

2.2.1 Classical Machine Learning

Professor Arthur Samuel was an American pioneer of AI research [35] that, in 1959,

coined the term “Machine Learning”, defining it as “the ability to learn without

being explicitly programmed” [21].

A basic definition of ML is “algorithms that parse data, learn from it and then apply

what they have learned to make informed decisions” [8], making a determination or

prediction about something in the world.

Algorithms are the core of ML. An algorithm is a set of rules to be followed when

solving problems. They take in data and perform calculations, which can either

be very simple or more complex, to find an answer. Algorithms should deliver the

correct answer in the most e�cient manner. They need to be trained to learn how

to classify and process information. The e�ciency and accuracy of the algorithm

are dependent on how well it was trained [33].
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ML is not just using an algorithm to analyze data and make a prediction, but to

use the outcome to improve future predictions.

Several automated tasks across multiple industries and businesses are supported by

ML. Many AI applications in customer service use ML algorithms, making work-

flows more reliable, increasing productivity and assisting self-service. A perpetual

incoming of customer opinions and questions feeds these algorithms, leading to fast

accurate predictions [8].

ML is simply a way of achieving AI. But it is possible to achieve AI without it.

However, this would require hand-writing millions of lines of code with complex

rules, which would be hard and take too long. Instead, ML is used as a way of

training an algorithm, using large amounts of data and allowing it to adjust itself

and improve [21], learning how to perform a specific task.

Algorithmic approaches for ML include inductive logic programming, Decision Tree

(DT) learning, reinforcement learning, Bayesian Network (BN), clustering, among

others [5].

One of the most relevant applications of ML over the years has been improving

computer vision (the ability of a machine to recognize an object in an image or

video), but it still required a lot of hand-written code. People wrote edge detection

filters to identify an object’s boundaries, shape detectors and even classifiers to

recognize details. Although they were progressing, the method would fail if there

was low visibility, for example. Computer vision was still too prone to error [5].

In some cases, thousands of pictures were gathered and people tagged them. Then,

the algorithm would build a model that could accurately distinguish between the

input groups, ideally as well as a human. The training and testing of an algorithm

can be repeated several times, until the accuracy level is high enough, only then we

can say that the machine successfully learned what we were trying to “teach”. A

machine being capable to learn means it executes a task with the data fed into it

and is progressively getting better at it.

Learning Types

There are essentially four ML types [7]:

1. Supervised Learning uses labelled examples, so the output for the given

input is known before itself. The machine must be able to assign the given

input to the output.
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2. Unsupervised Learning uses unlabelled inputs, therefore the output is un-

known. The data is provided, the model finds insights about it and groups it

together accordingly.

3. Semi-supervised Learning is an halfway between Supervised and Unsu-

pervised Learning. The inputs are a combination of labelled and unlabeled

data.

4. Reinforced Learning consists of exposing the machine to an environment

where it gets trained by trial and error. “It learns from past experience and

tries to capture the best possible knowledge to make accurate decisions based

on the feedback received” [7].

It is also possible to combine multiple learning models to achieve better results. This

is know as Ensemble Learning. This method has great potential to achieve higher

accuracy and less error than the individual models. “If each base learning model

is viewed as an expert, multiple experts may be better than any single one if their

individual judgments are appropriately combined, i.e., ensuring that individuals in

a group make di↵erent errors in di↵erent instances” [38].

2.2.2 Deep Learning

DL goes yet another level deeper and can be considered a subfield of ML. Although

it has di↵erent capabilities, technically it is ML and its behaviour is similar [8].

The data analysis in a DL model follows a logic structure similar to how a person

reaches a conclusion. This makes for machine intelligence that is far more capable

than that of standard ML models, not needing guidance or adjustments like the

latter [8].

DL networks need large quantities of items in order to be trained, because the system

learns from exposure to millions of data.

An Artificial Neural Network (ANN) is a DL model for implementing ML. A Neural

Network (NN) is inspired by our understanding of the biology of the human brain,

such as the neurons’ connections. They include discrete layers, connections and

directions of data propagation, di↵erent from biological brains in which a neuron

can make connections with any other if they are close enough. The input passes

through each layer of neurons until the final output is produced [5]. ANNs are then

algorithms that mimic the structure and function of the brain, where the multiple

layering achieves the desired depth for DL [21]. The layers can be seen as a nested
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hierarchy of related concepts or DTs, where the answer to one question leads to a

set of deeper related questions [33].

Just as the brain can recognize patterns and help us categorize and classify infor-

mation, ANNs do the same for computers. The brain is constantly trying to make

sense of the information it is processing, and to do this, it labels and assigns items

to categories. When we encounter something new, we try to compare it to a known

item to help us understand and make sense of it, just as ANNs [33]. They have

a lot of advantages, such as extract meaning from complicated data, detect trends

and identify patterns too complex for humans to notice, learn by example and, of

course, speed improvement in comparison to human work.

Observing an image, distinctive features of it are examined by the neurons. The

ANN presents a probability vector saying it might be “x” with 86% probability, “y”

with 7% sure, and so on [5]. Feature diversity is the key to high quality classification

results, so it is important to use independent feature sets to achieve it.

The simplest NN were computationally intensive, until recently. Only in the last

years they were considered a practical approach through the use of GPUs [5].

As a network is getting tested, it is normal to come up with wrong answers because

it needs to be trained, it needs to see a great number of images until the weightings

of the neurons are so accurate that the software is correct most times, only then we

can say the NN has taught itself what something looks like [5].

As said before, DL is becoming popular in part because of the Big Data Movement

that is presenting lots of opportunities in the field of AI. In the next decade we will

progress in ways we cannot imagine yet [8].

Whether using ML or DL, one thing is certain, if the data being used is flawed,

then the insights and information extracted will be flawed as well. Data is at the

heart of the matter, it is important to do data cleansing, which consists of detecting,

correcting or even removing corrupt or inaccurate records from a record set, table

or database and identifying incomplete, incorrect or irrelevant parts of the data

[33]. In order to advance, the data driving the algorithms and decisions needs to be

high-quality, otherwise the insights from the data cannot be trusted [5].

Today we already reached a point where some image recognition DL softwares are

better than humans, especially in scenarios of detection of cancer indicators or tu-

mors in scan images [5], for instance.

High quality preventive health care, fully automated houses and cars that drive
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themselves are not just utopias anymore. As DL becomes more refined, enabling

even more real-world applications of ML, what we imagine as science fiction today

may be a reality soon.

Main Di↵erences

AI is a broader concept than ML, addressing the use of computers to mimic the

cognitive functions of humans. ML focuses on the ability of machines to receive a

set of data and learn for themselves, changing algorithms as they learn more about

the information they are processing [33].

In ML, the feature (key parameter the system uses to do the classification and

produce an output) selection is done by the programmers, humans are the ones who

study the problem and decide what features better describe what they want the

computer to learn. In DL, the system itself chooses what it thinks are the best

features from what they are trying to learn, doing that by being exposed to a huge

amount of data, as mentioned before.

Understanding the di↵erence between both terms is to realize DL is ML, but the

next evolution of it, the way machines make exact decisions without someone to

instruct them, powering the most human-like AI so far [8].

With the advancements in technology, specifically better computers, GPU processing

speed allied to the Big Data Movement, ideas that we only dreamt to be possible

are coming o↵ the paper to real world applications. The advancements in AI are

an exciting prospect for many businesses and industries, both nowadays and in the

future.
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2.3 Automatic Cataract Detection Systems

Yang et al. [39] propose the classification of retinal images by using a NN. The

research included three main parts, pre-processing, feature extraction and classifier

construction. An Improved Top-Bottom Hat Transformation was done in the first

part to enhance the contrast between the background and the blood vessels as well

as a Trilateral Filter to reduce the noise in the retinography. The transformation

done is a mathematical morphological method that enhances the quality of the im-

age. It is improved by doing an histogram equalization operation after, making the

image clearer [39]. As classification features, they extracted luminance, which is

the intensity of white pixels in the image, and texture, which represent the charac-

teristics and appearance of each pixel. The classifier is constructed by a two-layer

Back Propagation Neural Network, which then classifies the photos, based on their

clearness degree, in a four-class grading scale (normal, mild, medium or severe).

Back Propagation Neural Network is a widely used multi-layer hierarchical NN with

upper neurons associated with lower neurons. It can accurately predict results with

inputs that have never been seen by the NN [38]. The true positive rate was an

average of 82.5%.

In the work of Zheng et al. [41], pre-processing included resize and extraction of

the green channel from the 460 Red, Green and Blue (RGB) retinographies. After

pre-processing, they calculate the two dimensional Discrete Fourier Transform of the

fundus images and use the calculated spectrum as features, followed by Principal

Component Analysis (PCA) to reduce dimensions. PCA is a common unsupervised

learning method for dimension reduction by seeking a projection that best represents

the data in a least squares sense [41], resulting in a reduction of computation cost.

The authors considered opacifications in the eye lens as a low-pass filter, which

absorbs and scatters the light, filtering the details of the fundus. They report that

as the cataract severity progresses, the high frequency components are fewer and the

low frequency ones increase. The classification uses the Linear Discriminant Analysis

classifier promoted by the AdaBoost algorithm. Linear Discriminant Analysis is

similar to PCA but supervised [41]. AdaBoost trains individual classifiers using a

part of training samples by re-sampling and voting for the final decision; a weight is

given to each training sample, which determines the probability of it being selected

for a component classifier; when a training sample is misclassified, its weight will

increase as well as the chance of being chosen for an individual classifier [41]. The

classification accuracy was 95.22%.
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To extract features suitable for the task, Guo et al. [9] explored both the Discrete

Wavelet Transform (DWT) with Haar transform and the sketch-based with Discrete

Cosine Transform. After this step, a Multi-class Fisher Discriminant Analysis al-

gorithm was used for a binary classification (cataract, not cataract). “MDA finds

a linear transformation that best discriminate among classes and the classification

is performed in the transformed space based on some metric such as Euclidean dis-

tance” [16]. For the training and testing of the algorithm, they were able to use a

real-world dataset with 445 fundus images. The correct classification rate for the

wavelet transform was 90.9%. For the sketch-based method, the result obtained was

a bit worse, 86.1%, but still good overall.

Fan et al. [6] used PCA to reduce the dimensionality of two sets of features (wavelet

and sketch) extracted from fundus images. To build the classifier, they adopted

four ML algorithms: Support Vector Machine (SVM), Gradient Boosting Decision

Tree (GBDT), Bagging and Random Forest. SVM is a popular learning model used

for classification and regression analysis, based on the structural risk minimization

principle from statistical learning theory; it can perform linear and non-linear clas-

sification using di↵erent types of kernels [6]; it builds a hyperplane that separates

the positive and negative examples while maximizing the smallest margin from two

classes of data; SVMs are robust to overfitting and can scale up to high dimen-

sionalities; besides, there is no need for parameter tuning since the derived ones

theoretically provide the best results [38]. A DT is a supervised learning method

that builds models in a tree structure; the bigger the tree, the more complex the

decision rules and the fitter the model; it breaks down the dataset into smaller sub-

sets, building nodes and branches; a DT classifier is similar to a flowchart diagram

where the final nodes represent classification outputs and the first node the best

predictor [30]. GBDT is an Ensemble Learning method, it optimizes the DTs by

iteratively choosing a weak hypothesis that points in the negative gradient direction

[6]. Bagging is an approach that generates multiple versions of a predictor and lever-

ages them to get an aggregated predictor; the classification results are obtained in

accordance with the majority voting of multiple base classifiers [6]. Random forest

is also an Ensemble Learning method that uses bagging, it constructs several DTs in

training and outputs the class that is the mode of the classes or the mean prediction

of the individual trees [6]. The accuracy of each one of them is shown in Table 2.1.

As we can confirm, the best result was an accuracy rate of 84.77%, obtained from

the SVM algorithm with sketch features and before the PCA transformation. The

authors concluded that the classification accuracy before and after the PCA trans-

formation is nearly the same. However, they also report that the computation time
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PCA Features SVM (%) Bagging (%) Random Forest (%) GBDT (%)

Before
Wavelet 79.85 79.55 80.30 81.56
Sketch 84.77 82.41 84.26 81.65

After
Wavelet 79.25 77.09 79.84 79.35
Sketch 82.65 81.75 82.80 80.75

Table 2.1: Classification accuracy of the wavelet and sketch features, before and
after PCA [6].

diminished from more than one second to less than one second by doing this type

of analysis, which is a positive outcome since we ambition for faster approaches.

Previous studies use a single learning model for fundus image cataract classification

and grading, Yang et al. [38] innovated presenting an ensemble learning based ap-

proach. From retinal images, they extracted wavelet, sketch and texture features,

and for each feature set they built a SVM and a Back Propagation Neural Network.

Then, the ensemble methods Majority Voting and Stacking combine the multiple

base-learning models for the final classification. In Majority Voting, the class label

of an unlabelled instance will be the one that obtains the highest number of votes,

i.e., the most frequent vote given by the multiple base classifiers; it does not require

parameter tuning once the base classifiers have been constructed [38]. The Stacking

approach employs a meta classifier to generate the final classification; it typically

uses a two layer frame structure, where base classifiers are generated from the train-

ing dataset in the first layer and combined by the meta classifier in the second layer

[38]. The accuracy rate of the ensemble classifier was 93.2%, outperforming the

single learning models.

Building a good classifier generally requires a large amount of labelled examples,

which can be expensive to obtain. Plus, a predefined set of image features may

provide an incomplete, redundant or even noisy representation, according to Song

et al. [31]. For that reason the authors [31] decided to use semi-supervised learning

to build a classifier for automatic classification of cataracts. Their dataset included

476 labelled examples and 4902 unlabelled ones, in a total of 5378 fundus images.

The features extracted from the retinographies were wavelet coe�cients and texture.

The algorithms used to build the classifier were a Bayesian Network (BN) and a DT,

both supervised methods, but they used tri-training to learn a good hypothesis. A

BN is a mathematical model based on Bayes formula for probabilistic relationships

among sets of variables, capable of extracting additional information [31]. The tri-

training algorithm generates three classifiers, using Ensemble Learning to improve

the generalization and reduce error; an unlabelled example is labelled by one clas-
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Features BN (%) DT (%)

Wavelet 88 86
Texture 69 70

Table 2.2: Classification accuracy of the wavelet and texture features, using BN
and DT [31].

sifier if the other two are in accordance with the labelling under given conditions,

and the final hypothesis is produced via Majority Voting [31]. The performances are

shown in the Table 2.2. It is obvious that the wavelet feature outperforms the tex-

ture one, specially using a BN, with which the result was better. The authors also

remark that the performance of the semi-supervised learning is not always better

than supervised method.

Kolhe et al. [16] created a remote cataract detection system deployed on the cloud, so

clients could access the system remotely. It used supervised and unsupervised learn-

ing algorithms to do the classification. The database contained 261 fundus images

graded by ophthalmologists. The images were pre-processed by extracting the green

channel and using Contrast-limited Adaptive Histogram Equalization to uniformly

adjust the contrast. For feature extraction two methods were explored, DWT (Haar

Transform) and Skeletonization with Discrete Cosine Transform. “Skeletonization

is performed before the Discrete Cosine Transform to reduce foreground regions in

a binary image to a skeletal remainder that largely preserves the extent and connec-

tivity of the original region” [16]. The above methods output coe�cients of DWT

and Discrete Cosine Transform, whose high frequency components were considered

as features, details hard to recognize in the space domain but easily discovered in

frequency domain. After, PCA was applied to reduce dimensions and select ap-

propriate features. A SVM was implemented to classify the images in two classes

(non-cataract and cataract). Results showed a precision of 77.7%, a sensitivity of

93.0% and a specificity of 77.7%.

The research of Harini et al. [11] used a SVM to classify 60 images. For pre-

processing a mean filter was used for smoothing the images and removing Gaussian

noise, replacing each pixel with the average value of the intensities in the neigh-

borhood. Feature extraction was done using the Haar Transform. The number of

coe�cients obtained through the used wavelet was compared with other wavelets

such as Daubechies and Biorthogonal, and the Haar gave more high frequency in-

formation than the others. Canny edge detection was also done. The widths of the

edges were dilated for clear visibility and then the edge components were counted.
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Features SVM (%) Softmax (%)

Wavelet 86.00 81.91
DL 89.83 94.07

Table 2.3: Accuracy of the wavelet and DL features, using SVM and Softmax [27].

For a cataract, the number of components is low and for a normal eye, the edges

are clear without discontinuity and hence the number of components is higher. The

accuracy obtained was 91.11%, the sensitivity 90.00% and the specificity 93.33%.

Zhang’s et al. method [40] uses a Convolutional Neural Network (CNN) for the task.

CNN is another kind of ANN that has a high degree of invariance to translation,

scaling, tilting and other forms of deformation [40]. They pre-processed the retinal

images using a G-filter to reduce the interference of local uneven illumination and

the eye’s reflection. The accuracy rate obtained was 93.52% in cataract detection.

“Some might find it di�cult to use manually select features and ML algorithm

combinations to obtain better results. Due to its good automatic feature selection

ability and classification accuracy, DL is becoming more e↵ective in di↵erent fields”

[27]. The research of Qiao et al. [27] focused on the comparison between the wavelet

feature extraction and the DL aided one. They pre-processed the fundus images

using the Maximum Entropy Method to calculate the optimal classification gray

level threshold and then perform local gray level transformation. The SVM and

Softmax algorithms execute the detection, resulting from the analysis of the features

extracted by wavelet and by DL. Softmax is a DL function that outputs a vector that

represents the probability distributions of a list of potential outcomes. The results

obtained are discriminated in Table 2.3. Results showed that the higher accuracy

(94.07%) was from the features extracted by DL and classified by Softmax, for

about a 4% di↵erence from the SVM classifier. Features extracted by the wavelet

transformation lead to an average accuracy of 84%.

A DT was trained by Xiong et al. [37] to classify a total of 1355 fundus images.

Pre-processing included image size normalization, green channel extraction and en-

hancement with a two dimensional Gaussian Matched Filter, in order to improve

the visibility of retinal vessels and the OD boundary. Three types of features were

extracted, namely the number of pixels of visible structures, the mean contrast be-

tween retinal structures and background and, lastly, the local standard deviation.

The final accuracy of the two-class classification was 92.8%.
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Methodology

After analyzing the research done in the field, one paper was chosen to guide this

study. Starting this work in the fields of ML and DL, the work of Guo et al. [9]

came across as a good way to kick-start this project. It was carefully studied and

examined so it could be possible to improve and add to it, based on what was also

learned from all the other papers.

The methodology followed is then similar to the one done by Guo et al. [9], but

contains a lot of new implementations as well.

3.1 Dataset

Three di↵erent groups of datasets provided by Retmarker S.A. were used: Public,

Cataract and NonCataract.

The first one contained 20 smaller public datasets, namely ARIA, CHASEDB1,

Color Fundus Images of Healthy Persons & Patients with Diabetic Retinopathy

(CFIHPPDR), Data 50 Healthy Persons (D50HP), Database for the purpose of

Vessel-based Registration of Fundus Projection Images (DVRFPI), diaretdb0 v 1 1,

diaretdb1 v 1 1, DMED, DRHAGIS, DRIMDB, DRIVE, e optha EX, e optha MA,

FIRE, HRF, IDRID, M ES.database, Messidor, Messidor-2 and ROC. The two other

datasets (Cataract and NonCataract) were proprietary and contained, as the name

reads, cataractous and not cataractous images, respectively. The properties of the

datasets are compiled in Table 3.1, which identifies the dataset, its number of im-

ages, the resolution of these images and the presence of cataract as well as of other

pathologies, identifying each one.

All the images were manually analyzed and graded one by one by the author. This

was done in order to build an appropriate dataset to develop this work, that com-

bined a wide and rich variety of fundus images, from di↵erent cameras and datasets.
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Dataset # Images Resolution Cataract Other Pathologies

ARIA 212 768⇥ 576 False AMD, DR
Cataract 11 761 2448⇥ 2448 True -

CHASEDB1 28 999⇥ 960 False DR
CFIHPPDR 60 720⇥ 576 False DR

D50HP 99 1612⇥ 1536 False -
DVRFPI 22 1200⇥ 1143 True Several unnamed

diaretdb0 v 1 1 130 1500⇥ 1152 False DR
diaretdb1 v 1 1 89 1500⇥ 1152 False DR

DMED 169 2196⇥ 1958 False -
DRHAGIS 40 4752⇥ 3168 True -
DRIMDB 194 760⇥ 570 False -
DRIVE 40 565⇥ 584 False -

e optha EX 82 2544⇥ 1696 False DR
e optha MA 381 2544⇥ 1696 False DR

FIRE 268 2912⇥ 2912 True DR, Myopia, Hyperopia
HRF 45 3504⇥ 2336 False DR, Glaucoma
IDRID 597 4288⇥ 2848 True DR

M ES.database 35 720⇥ 576 False DR
Messidor 1200 2304⇥ 1536 True DR
Messidor-2 1756 2304⇥ 1536 True -
NonCataract 11 997 2448⇥ 2448 True -

ROC 100 1394⇥ 1392 False DR
STARE 397 700⇥ 605 True -

Table 3.1: Properties of the datasets used.

The images in the Cataract dataset were divided into 4 categories called “Errors”,

“Not Cataract”, “No image” and “Cataract”. The first contained images with no

quality, non-analyzable, a total of 937. Some examples are shown in Figures 3.1, 3.2

and 3.3. The second category had 1 694 images, the ones the author considered to

demonstrate no presence of cataract, that were incorrectly labelled. The “No image”

category is a compilation of 155 completely black images, an example can be seen

in Figure 3.4. The remaining cataractous images were put into the “Cataract”

category.

This assessment was done for every dataset except for the NonCataract, which was

not completely examined because of lack of time and regarding the high amount of

images. From the latter were only separated the 88 non-analyzable no quality images

and the 70 completely black ones that provided zero information, as mentioned

above for the Cataract dataset. The rest of the retinographies were put in the

“Not Cataract” category.
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Figure 3.1: Two eye images that are not fundus photographs, from the Cataract
dataset.

Figure 3.2: Three fundus images with no quality.

Figure 3.3: Incomplete fundus images that were considered to have no quality.
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Figure 3.4: A black image present in some datasets, which in the upper left corner
says “Sem imagem”, meaning “No image”.

Figure 3.5: Examples of fundus images from the Not Cataract dataset.

Examples of healthy and ill images can be seen in Figures 3.5 and 3.6, respectively.

Only few datasets presented relevant ground truth (healthy or cataractous), namely

D50HP, CFIHPPDR, Cataract and NonCataract. Nevertheless, the last two were

not totally reliable, for some images were mislabelled, but the majority was correctly

identified.

The final dataset is then made up of two categories, containing a total of 25 217 fun-

dus images with and without cataract. The Cataract and Not Cataract categories

have 9 089 and 16 128 photographs, respectively. Not all images from the initial

datasets were used, since some were considered too small (less than 800⇥800 pixels)

or not useful, such as being completely black, for example.
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Figure 3.6: Examples of fundus images from the Cataract dataset.

3.2 Pre-Processing

The pre-processing step makes the images suitable for further steps, improving their

visual appearance and making the manipulation of datasets easier.

Sometimes a few approaches are required to enhance the image’s condition, such as

its improvement and noise removal.

The pre-processing steps can be seen in Figure 3.7 and included padding of the

images to make sure they were all square. Then cropping was done to minimize the

black mask that has no useful information. This transformations were finalized with

resizing the images to the most common resolution of the dataset, which was 2448⇥
2448 pixels. The mentioned changes were done to improve dataset homogeneity.

Another important step present in all the mentioned research is the extraction of

the Green Channel (GC) from the RGB image. This is done because, according to

previous studies, the green component shows the most details of the original color

fundus image.

For a matter of comparison, it was decided to also use luminance images to see which

ones would perform better. Luminance (L) can be calculated through the following

expression [39], which combines the three di↵erent color channels of an RGB image.

L = 0.3⇥R + 0.59⇥G+ 0.11⇥ B
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Figure 3.7: Overview of the pre-processing procedure.

With R being the red channel, G the green and B the blue one.

Therefore, after the mentioned pre-processing steps, the dataset was doubled. One

category had the dataset with all images in the GC and another had the dataset

with all luminance images. This datasets were then ready to go through feature

extraction.

3.3 Feature Extraction

As Guo et al. [9] and several others ([6], [11], [16], [27], [31] and [38]) mention the

use of the DWT, more specifically, the Haar transform, this method was considered

suitable for the task proposed and was adopted to perform the feature extraction.

The steps included in this process can be seen in Figure 3.8.

Non cataract fundus images show clear optic structure details, contrasting with

cataractous images where details are less visible. An intuitive approach to select

features is then to use the localized features related to the high frequency compo-

nents. These details are usually hard to be recognized and quantitatively assessed

in space domain but obvious in frequency domain [9].

DWT allows both time and frequency analysis, showing good contrast between blood

vessels or edges (high frequency components) and background (low frequency compo-
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Figure 3.8: Overview of the feature extraction process.

nent) in fundus images [11]. It allows the decomposition of the image into a wanted

number of levels to distinguish the high from the low frequency components. Its

coe�cients quantify the horizontal, vertical and diagonally oriented details at each

level of the Haar wavelet transform. These coe�cients are then counted accord-

ing to their amplitude and it is noticeable that severe cataracts have low values of

coe�cients [11].

“Many functions can be used as the mother functions for wavelet transform. Since

the calculation with Haar transform can be easily carried out with only additions

so that no multiplications are needed because most elements of the Haar wavelet

transform matrix are zero, it can achieve high computing e�ciency” [9].

Therefore, the Haar decomposition in 3 levels was computed by using the “haart2()”

Matlab function that performs the two dimension Haar transform. According to the

paper of Guo et al. [9], we are only interested in the third level horizontal details of

the wavelet transform.

Since only the round center of the fundus photograph is supposed to be considered,

a function to remove the border (i.e., the black mask) of the image was written. It

takes as input the fundus image and the level of details wanted, and the output is
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the image without the mask, an uneven-sided matrix. What the function does is

finding center of the image, the medium point of the image’s height and, from there,

the point where the black mask stops. With it, it calculates the radius of the circle,

that is our region of interest, and creates a binary mask that obeys the equation of

the circle, enabling the elimination of the part that has no useful information. This

method is very simple, but it is su�cient for the required purpose.

Having the wanted region of interest, the coe�cients are read and plotted into a

graph that shows the intensity of the coe�cients in each pixel of the image. This

plot is very useful to visually notice the di↵erence between an healthy and a catarac-

tous image. In Figure 3.9 we can see two examples of these graphs, the first for a

cataractous image and the second for an healthy one, from Guo et al. ’s [9] paper.

It is clear from Figure 3.9 that distribution of the third level horizontal coe�cients of

the Haar decomposition of a healthy image is more irregular and erratic, comparing

to the distribution of a cataractous fundus images that is even and more stable.

This shows the practicality of the approach, since the di↵erence between sick and

healthy images is prominent.

An histogram of the coe�cients is computed with ten pre-defined edges, or regions,

from Guo et al. ’s [9] paper. It is the frequency count of each bin of the histogram

that corresponds to each one of the ten features.

Guo et al. ’s [9] work implements a four-class classification, rather than just a two-

class distinction. However, a four-class classification was not done in this work,

because the data was not separated into the four classes needed, corresponding to

four stages of severity of the disease. Without a solid ground truth it would be

Figure 3.9: Third level horizontal coe�cient amplitudes for each pixel for an
healthy image and for a cataractous one, respectively [9].
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Figure 3.10: Histogram of the wavelet third level horizontal coe�cients [9].

impracticable to carry out an accurate classification and grading of cataract.

The histogram plot presented in Guo et al. ’s [9] paper is then for a four-class

classification, it can be seen in Figure 3.10. It shows the frequency count of the

coe�cients according to their amplitude in each one of the ten intended regions.

Figure 3.10 shows a much wider and taller distribution of the histogram for non

cataractous images, contrary to sick images that have less to none coe�cients in

the outer regions and a small amount in the center regions, excluding the center

region in which both cases present the highest amount of coe�cients and are hard

to compare.

Essentially, the number of coe�cients in di↵erent amplitude regions has a significant

di↵erence, which implies that the number of coe�cients in those regions can be used

as features for cataract classification and even grading [9].

In summary, each fundus image is converted into a set of features that is later

classified by an ML algorithm.
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3.4 Learning Models and Classifiers

3.4.1 Support Vector Machines

SVM is a popular classification and regression method. Using it, it is possible to

train a method on a representative set of input–output pairs and obtain good results

without having to train on all possible input–output pairs.

Supposing we are given a training dataset D = {f(xi, yi) | i = 1, 2, ..., n} of input

vectors xi and associated targets yi, the goal of regression is to fit a function f(x)

which approximates the relation inherited between the dataset points so that it can

be used to predict new cases. SVM regression can be described as the following

optimization problem [18]

min
1

2
wTw + C

NX

i=1

⇠i + C
NX

i=1

⇠⇤i

subject to [18]

yi� < w,xi > � b  "+ ⇠i

< w,xi > + b� yi  "+ ⇠⇤i

⇠i, ⇠
⇤
i � 0

where <> denotes the dot product, w the vector of coe�cients, C > 0 a regular-

ization constant, b an o↵set value and ⇠i, ⇠⇤i the slack-variables for pattern xi. The

prediction of a new input vector can be obtained by [18]

f(x) = < w,x > + b

A SVM with a Gaussian kernel has two-layers. The first is a set of template matchers

that measure the similarity of the input pattern to each of the training samples.

“The second layer computes the discriminant function as a linear combination of

the similarity scores with learned weights, where the kernel function measures the

similarity between the input pattern and the training sample” [15]. The samples for

which the corresponding weights are non-zero are the support vectors.
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3.4.2 Decision Trees

DT analysis is a non-parametric supervised predictive modelling tool, widely used

for classification and regression tasks. They are constructed via an algorithmic

approach that identifies ways to split a dataset based on di↵erent conditions. “The

goal is to create a model that predicts the value of a target variable by learning

simple decision rules inferred from the data features” [10]. The decision rules are

generally in the form of “if-then-else” statements, and the deeper the tree, the more

complex the rules and the fitter the model [10].

A DT is a tree shaped graph, showed in Figure 3.11. A node is where an attribute

is picked and a question is asked; branches represent decisions, the answers to the

question; and the leaves or leaf nodes represent the outcome/output or class labels

[10] [22].

DTs classify the examples by sorting them down the tree from the root to a leaf

node, providing the classification to the example. Each node in the tree acts as a

test case for some attribute and each edge descending from that node corresponds to

one of the possible answers to the test case. This process is recursive, being repeated

for every subtree rooted at the new nodes [10].

To generate a DT from data, the algorithm used was Matlab’s Classification and

Regression Tree. It uses Gini index as cost function to evaluate the split in feature

selection in the case of the classification tree, and least square as the metric in the

case of the regression tree [22].

Figure 3.11: A Decision Tree concerning the decision to play golf depending on
the weather [12].
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Gini index is a measure of inequality or impurity in the sample, ranging from 0 to

1. A value of 0 means the sample is perfectly homogeneous and all the elements are

similar, whereas a value of 1 means maximum inequality among elements. It can be

calculated as [22]

Gini index = 1�
nX

i=1

p2i

with pi being the probability of each class and i the number of classes [22].

3.4.3 Bagged Trees

BT is an ensemble method that combines several DTs to produce better predictive

performance. Since individual DT tend to overfit, BT combine the results of many

DT, reducing the e↵ects of overfitting and improving generalization. They also select

a random subset of predictors to use at each decision split as in the Random Forest

algorithm [20].

Bagging reduces the variance of a DT. It creates several subsets of data from training

samples chosen randomly, which are used to train the DTs. As it uses an ensemble

of di↵erent models, the average of the predictions from all the di↵erent trees are

used, which is more robust than a single DT [23].

3.4.4 Convolutional Neural Networks

CNNs consist of multi-layer architectures where the successive layers are designed

to learn progressively higher-level features, until the last layer which produces the

label. This process can be seen in Figure 3.12 which shows an example of a CNN

that distinguishes types of vehicles.

Feature extraction is an integral part of the classification system, rather than a

separate procedure. After training, the last layer can be seen as a linear classifier

operating on optimized features extracted by the previous layers. Feature extraction

contains a stack of convolution (C) and subsampling (S) layers. The C-layers com-

pute convolutions over the previous layers xin with some small trainable convolution

kernels k [15]
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Figure 3.12: A Convolutional Neural Network to distinguish types of vehicles [28].

xout = S(
X

i

xin ⌦ ki + b)

where S is a non-linear function (hyperbolic tangent sigmoid) and b is a scalar

bias. Depending on the values of the kernel coe�cients, the convolution operation

can implement a local edge detector, a low-pass filter or others. On each C-layer,

multiple convolution kernels can be used, creating several di↵erent feature maps.

The spatial S-layers take the average of a n⇥n pixel block, multiply it by a trainable

scalar �, add a bias and pass the result through a sigmoid [15]

xout = S(�
X

i

xn⇥n
in + b)

The result is a feature map of lower resolution where some position information

about features has been eliminated, creating some level of distortion invariance in

the representation.

Alternated layers of convolution and subsampling can extract features from increas-

ingly large receptive fields, with increasing robustness to irrelevant variabilities of

the inputs. The overall e↵ect of these layers is to extract a feature vector v from

the input x, written as v = c(x) [15].

The last layer of a CNN computes the product of the feature vector v with a weight

matrix W , adds a bias vector and passes the result through sigmoid functions. For

training, the Euclidean distance between the output vector and a target output

vector T i is used as the loss function to be minimized [15]
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L = k S(W.s+ b)� T i k2

where W is a trainable weight matrix of the last layer and i is the class label of the

input x. The network is trained by minimizing L.

Transfer Learning

Transfer learning is a ML method where a model developed for a task is reused as

the starting point for another task, using knowledge transfer from trained meth-

ods. What has been learned in one setting is exploited to improve generalization

in another setting, providing an optimization that allows rapid progress and good

performance. It is a popular approach in DL where pre-trained models are used

as the starting point on computer vision tasks given the vast compute and time

resources required to develop NN models from scratch [4]. An example of the steps

necessary to implement transfer learning can be seen in Figure 3.13.

This method was also helpful for the task of cataract classification. Two pre-trained

Convolution Neural Networks, namely AlexNet and GoogleNet, were used. The last

three layers of each net were removed and modified to suit the problem at hand,

such as two classes instead of the many more they were fit to distinguish.

Figure 3.13: Transfer learning steps [25].
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3.5 Performance Parameters

The performance of classifiers is usually measured using the following parameters:

• Sensitivity (SE), or true positive rate, measures the proportion of positive

images that are correctly labeled [11].

• Specificity (SP), or true negative rate, is the same but for negatives, i.e., the

proportion of negative images that are correctly labeled [11].

• Accuracy (AC) is the fraction of correct predictions, i.e., the proportion of

data designated with the correct label [11].

The above values can be calculated through the following expressions [11].

SE =
TP

TP + FN
⇥ 100%

SP =
TN

TN + FP
⇥ 100%

AC =
TP + TN

TP + FP + TN + FN
⇥ 100%

where [11]

• True Positive (TP) = Correctly identified, i.e., predicted “cataract” and have

cataract.

• False Positive (FP) = Incorrectly identified, i.e., predicted “cataract” and do

not have cataract.

• True Negative (TN) = Correctly rejected, i.e., predicted “not cataract” and

do not have cataract.

• False Negative (FN) = Incorrectly rejected, i.e., predicted “not cataract” and

have cataract.

In this project, a “positive” is an image with signs of cataract and a “negative” is

an image without those signs.

Figure 3.14 helps to visualize the four mentioned concepts, which together make

up a Confusion Matrix. This type of matrix is a table whose x-axis contains the

prediction outcome and the y-axis contains the actual class [19]. Since we only have
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Figure 3.14: Confusion Matrix for a two-class problem [19].

two classes (cataract and not cataract), the Confusion Matrix in this work would

only have four cells, filled with the values of TP, FN, FP and TN, as 3.14 shows.

However, a Confusion Matrix can be much bigger if the problem to solve contains

multiple classes. In this cases, the diagonal of the table is where the classifier got

the correct result, which can be in numerical form (number of correct guesses) or in

percentage.

As in most automatic diagnosis system, sensibility is more important than specificity.

Although we should always aim for the best results of both parameters, it is crucial

to correctly identify the sick individuals as such, rather than miss the disease. Telling

someone who does not have cataract that they do will result in a medical assessment

to prove the assumption was false, which is not as serious as telling a cataractous

patient that he does not have cataract, resulting in no medical evaluation leading to

the progression and proper lack of treatment of the disease. The FN, the ones that

have cataract but were classified as healthy, are the true concern here, as comparing

to the FP, healthy individuals that were misclassified as cataractous. Ideally, all

the false results should be minimized, specially the FN, and sensibility should be

maximized.
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3.6 Code Structure

The core part of the ML code is structured in four functions. The overview of the

process steps can be seen in Figure 3.15.

Figure 3.15: Overview of the ML process.

The first is called “preprocess” and pre-processes the RGB fundus images. It padds

them so they all become square, crops the maximum possible of the black mask and

then resizes the images to 2448⇥ 2448 pixels, saving the output in a category that

has the same name as the dataset category but adds the su�x “ cropped”, keeping

separate categories to cataractous and not cataractous images.

After comes the “channel extraction” function that extracts both the GC or the

luminance image based on what the user asks for, from the “ cropped” category

created before. It saves the output images in a new directory called the name of

the dataset but adding the su�x “ preprocessed”. Besides also keeping the healthy

and sick images separated, it creates individual categories for each image, with the

original name of the image.
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Figure 3.16: Overview of the DL process.

Then there is a function that performs the feature extraction and it is called “cataract-

FeatureExtraction”. It does the DWT, more specifically, the Haar transform of each

image, reads the coe�cients from the region of interest, i.e., ignoring the black mask,

and plots them into an histogram with ten pre-defined edges. The frequency count

of each bin of the histogram corresponds to each one of the ten features. This func-

tion saves a text file with the features for each image, plus its histogram and details

plot in “.png” files. Lastly, it creates a “.csv” file which contains all the features

from all the images in the dataset. It is this file that is later used to train and test

the classifiers.

The classifiers are trained in Matlab’s Classification Learner app and then tested in

the last function that also provides the performance parameters after each test.

The DL part, whose steps can be seen in Figure 3.16, loads the dataset images,

dividing them for training and testing. Then the pre-trained network is loaded and

the last three layers are adapted to be suited to the problem we are trying to solve.

Some training parameters are specified, as well as fine-tune learning rates, and the

training begins. After comes the testing that results in some useful performance

parameters such as accuracy, sensibility and specificity.
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Results

This chapter contains the results of the present work, displaying the performance of

the ML and DL methods used.

4.1 Classical Machine Learning

4.1.1 Pre-Process and Feature Extraction

Figure 4.1 depicts three fundus images, the first belongs to an healthy individual,

the second to a cataractous patient, and the last presents a severe cataract, all from

the Not Cataract and Cataract datasets.

In Figures 4.2, 4.3 and 4.4 we can see the same three fundus images. These RGB

images were divided into their channels (Red, Green and Blue, respectively) and

calculated into a specific combination of the channels resulting in a Luminance

image.

As it can be seen, the channel that presents better contrast and more details is

Figure 4.1: Three fundus images, the first without cataract, the second with
cataract and the last one with severe cataract.

41



4. Results

Figure 4.2: Not cataractous fundus image with only the Red, Green and Blue
channels individually, plus the Luminance image that combines all of them.

the green one, as previously assumed. Visually we can also inspect that the next

best one would be luminance and that the remaining ones are useless in the case of

cataract images, specially the blue channel.

Therefore, the two best types of images (GC and luminance) were adopted to solve

the automatic classification of cataract problem in this project, as mentioned in the

previous section.

The pre-processing included padding, cropping and resizing of the images to the

desired size, which in this case was 2448⇥ 2448 pixels, since it was the size of more

than 80% of the dataset.
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Figure 4.3: Cataract fundus image with only the Red, Green and Blue channels
individually, plus the Luminance image that combines all of them.
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Figure 4.4: Severe cataract fundus image with only the Red, Green and Blue
channels individually, plus the Luminance image that combines all of them.
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Figure 4.5: Di↵erence between a smaller raw fundus image and the pre-processed
one, respectively.

Figures 4.5 and 4.6 show a raw fundus image and the same image after pre-processing.

In 4.5, the di↵erence is noticeable in size (hence the images’ size mismatch) and

cropping, the black mask is much bigger before comparing to the output of the pre-

processing step. The padding is not evident, since it is done before the cropping

to ensure square images. In Figure 4.6, the di↵erences are evident also in size and

cropping, but in the padding too, in the top and bottom of the retinography.

After the image pre-process exemplified in Figures 4.5 and 4.6, the dataset was ready

for the feature extraction step.

Figure 4.6: Di↵erence between a bigger raw fundus image and the pre-processed
one, respectively.
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Figure 4.7: Third level horizontal details from the DWT of the model images.

First the Haar transform is applied for each image, from where the coe�cients of

the DWT are collected and plotted into the details graph, and later, the histogram.

Since the first and last images shown in Figure 4.1 represent well the classes we are

trying to distinguish (not cataract and cataract, respectively), they were used to

exemplify what was done to the whole dataset and will be called “model images”

from now on.

The Haar transform of the GC model images presents the three levels of decom-

position and orientation of details of each one of them, obtained through Matlab’s

app Wavelet Analyzer. From Figure 4.7 we can see the third level horizontal im-

ages we are interested in, calculated through Matlab’s haart2() function. It is from

these images that the coe�cients of the DWT are retrieved. It is then possible to

obtain the images’ coe�cient plots, seen in Figure 4.8. From them, we build the

histograms, which can be seen in Figure 4.9.

It is then from the frequency count of the histograms from Figure 4.9 that the set

of features for each image arrives. In this case, the features were the following:

featuresnot cataract = [399, 833, 2321, 3858, 57483, 1609, 812, 894, 476, 53]

featurescataract = [0, 2, 314, 2008, 66186, 249, 18, 0, 0, 0]

The healthy image presents higher values of features than the cataractous one, except

in the fifth feature, that corresponds to the center of the histogram, in which both

images present similar high values. This di↵erence in the features is then a way of

distinguishing the classes.
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Figure 4.8: Third level horizontal DWT coe�cient plots of the model images.

With each image being already pre-processed and the feature extraction done, the

data was ready to be analyzed.

Figure 4.9: Third level horizontal DWT coe�cient histograms of the model images.

4.1.2 Classifiers

Prior to choosing any specific classifiers, a preliminary analysis of several ML al-

gorithms was done using Matlab’s Classification Learner application. This app

provides an intuitive user interface that allows the training and testing of many

di↵erent ML classifiers based on the data the user inputs.

Feeding the Classification Learner the features extracted by the DWT of both the

GC and the luminance images separately, it is possible to do a n-fold cross-validation

just by choosing the value of n and the classifier(s) wanted.
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Classifier
Accuracy (%) Training Time (s)
5-fold 10-fold 5-fold 10-fold

DT
Fine Tree 81.3 81.1 10.81 3.40

Medium Tree 80.8 80.8 9.90 3.60
Coarse Tree 80.6 80.5 9.55 4.49

SVM

Linear 80.8 80.7 475.11 1257.50
Quadratic 82.8 82.8 2785.70 5362.50
Cubic 47.9 44.0 1992.00 3387.00

Fine Gaussian 83.8 83.9 291.36 372.09
Medium Gaussian 82.2 82.2 362.99 516.87
Coarse Gaussian 81.0 81.0 435.43 649.71

Ensemble

Boosted Trees 81.6 81.6 422.63 694.44
Bagged Trees 82.9 83.0 470.19 780.40

Subspace Discriminant 80.8 80.8 423.62 793.07
Subspace KNN 81.3 81.5 442.33 823.85

RUSBoosted Trees 80.8 80.6 469.13 879.52

Table 4.1: 5- and 10-fold classification accuracies for the green channel extracted
features and training times for each classifier.

It was found appropriate to use 5- and 10-fold validations, taking in consideration

the size of the dataset.

Table 4.1 compiles the information gained from this analysis for the green channel

extracted features. It shows the classifiers used by type, their accuracy and training

time. The values and names in bold represent the best scores. The names of the

classifiers are the same Matlab uses, deriving from the kernels used in the case of

the SVMs.

Table 4.2 provides the same information as Table 4.1, but for the luminance ex-

tracted features.

Some classifier parameters that were default options in the Classification Learner

app can be seen in Tables 4.3, 4.4 and 4.5, for both the features extracted from

the GC and luminance images. In the case of the SVMs, the Box Constraint Level

was 1, the Multiclass Method was One-vs-One and the data was standardized. All

Ensemble classifiers had 30 learners, the DT methods had a Maximum Number of

Splits of 20 and a Learning Rate of 0.1, whereas the Subspace methods presented

the value 5 as the Subspace dimension.

Analyzing the results obtained, the classifiers chosen to use in this project were

the most accurate ones, allied to being time e�cient and recommended by both

supervisors, namely the Fine DT, the Fine Gaussian SVM and the Bagged Trees
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Classifier
Accuracy (%) Training Time (s)
5-fold 10-fold 5-fold 10-fold

DT
Fine Tree 84.7 84.6 9.25 3.83

Medium Tree 83.3 83.1 8.39 2.71
Coarse Tree 81.0 81.0 8.06 2.48

SVM

Linear 81.6 81.6 399.00 803.92
Quadratic 79.2 84.0 2620.00 5778.20
Cubic 42.6 55.5 1587.40 3114.00

Fine Gaussian 86.0 86.0 191.03 363.80
Medium Gaussian 83.8 84.0 256.73 488.30
Coarse Gaussian 81.8 81.8 322.17 614.59

Ensemble

Boosted Trees 84.7 84.5 328.50 649.11
Bagged Trees 85.0 85.0 362.24 719.52

Subspace Discriminant 81.2 81.2 371.65 732.14
Subspace KNN 83.5 83.3 407.27 763.39

RUSBoosted Trees 82.9 82.8 394.92 806.92

Table 4.2: 5- and 10-fold classification accuracies for the luminance extracted
features and training times for each classifier.

DT Max # Splits Split Criterion Surrogate Decision Splits

Fine Tree 100
Gini’s diversity index O↵Medium Tree 20

Coarse Tree 4

Table 4.3: Parameters of the DT classifiers used in the preliminary analysis.

SVM Kernel Function Kernel Scale

Linear Linear Automatic
Quadratic Quadratic Automatic
Cubic Cubic Automatic

Fine Gaussian Gaussian 0.79
Medium Gaussian Gaussian 3.20
Coarse Gaussian Gaussian 13.00

Table 4.4: Parameters of the SVM classifiers used in the preliminary analysis.

Ensemble Classifier Method Learner Type

Boosted Trees AdaBoost DT
Bagged Trees Bag DT

Subspace Discriminant Subspace Discriminant
Subspace KNN Subspace Nearest Neighbors

RUSBoosted Trees RUSBoost DT

Table 4.5: Parameters of the Ensemble classifiers used in the preliminary analysis.
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(BT). An SVM classifier was also used in the work of Guo et al. [9], which was also

a choice factor.

4.1.3 Training and Testing

Randomly half of the dataset was used for training and the other half for testing.

The training of the classifiers was also done in the Classification Learner app. The

trained model was then exported to the Matlab workspace from where is it possible

to access, save and use it to classify new data.

Table 4.6 shows the performance measures of the classifiers after testing, for all

images used, namely GC and luminance (L). The results obtained were good but

not great. However, it is already possible to recognize the potential of such approach.

The goal would be to reach for an accuracy (AC) higher than, at least, 90% and

improve SE. The SP values are good, but SE is more important in this case.

According to expectation, the GC images performed better than the luminance

ones. This could be predicted since, by the naked eye, the first images presented

more contrast and kept more details comparing to the latter.

It is also possible to observe that the SVM performed better than the other two

classifiers in terms of accuracy and SP , but not in the SE parameter, which is our

focus.

In order to keep improving the results and knowing some retinographies could be

mislabelled, it was decided to remove the images that were misclassified (FP +FN)

by the most accurate classifier (the SVM) from the dataset to be analyzed one by

one and labelled accordingly. This was a total of 4094 retinographies.

Images Classifier AC (%) SE (%) SP (%)

GC
DT 84.44 72.11 91.19
SVM 85.85 70.61 94.19
BT 84.80 73.26 91.11

L
DT 81.86 69.14 89.07
SVM 83.42 72.22 89.78
BT 82.79 73.64 87.97

Table 4.6: Performance measures of the classifiers after testing.

50



4. Results

Images Classifier AC (%) SE (%) SP (%)

GC
DT 96.17 94.58 96.91
SVM 99.31 98.48 99.71
BT 98.39 97.59 98.77

L
DT 95.28 91.08 97.21
SVM 96.69 91.53 99.06
BT 96.09 92.39 97.79

Table 4.7: Performance measures of the classifiers after testing, without misclassi-
fied images.

While the dataset was free of the misclassified images, it was decided to train and

test the three classifiers on it, to see the di↵erence in the results. Values obtained

can be seen in Table 4.7.

It is possible to see that without the previously misclassified images, the results

improved a lot. Accuracy increased around 15%, SE improved about 25% and SP

around 5%, with all these values being close to 100%. The GC images kept being

the better classified ones.

However, it is not a good practice to simply eliminate all the images the classifier

failed its classification and achieve better results without them. After all, those

results would be erroneous, misleading the public to believe the results of the classi-

fier were that great while manipulating the input data to specifically achieve those

results.

It was expected the results would improve, but the point is not to eliminate the

“problematic” images, but to figure out a way to improve the classifier in order to

obtain better results in those specific images, as well as to keep properly guessing

the images that were already correctly classified.

This train and test was just an intermediate step to check how much the results

would improve, and they improved a lot.

Therefore, after the misclassified images were rightfully labelled, they were put back

into the dataset, in their own right classes. Now the dataset has 7 965 cataractous

images and 17 252 healthy images, summing up to the previous size of the dataset,

25 217 photographs. From now on, this is how the dataset is used.

Once more, the three classifiers were trained and tested. The parameters obtained,

along with the performance measures are shown in Table 4.8.

The results in Table 4.8 can be compared with those of Table 4.6, it is possible
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Images Classifier AC (%) SE (%) SP (%)

GC
DT 91.73 85.89 94.29
SVM 93.94 91.55 94.67
BT 93.01 90.22 94.22

L
DT 91.33 82.85 95.46
SVM 92.16 84.46 95.91
BT 92.41 86.33 94.32

Table 4.8: Performance measures of the classifiers after testing, after the problem-
atic images re-label.

Quality Dimensions Possible Values

Color {0,3}
Focus {0,2,3}

Contrast {0,3}
Illumination {0,3}

Quality {0,1}

Table 4.9: Variation of the parameters of the pre-existent fundus image quality
classification algorithm [26].

to observe a big improvement. Accuracy improved an average of 7.86% for GC

images and 9.28% for luminance images, considering all classifiers. Accordingly, SE

improved an average of 17.23% and 12.88%, and finally SP improved an average of

2.23% and 6.12%, both respectively for GC and luminance images.

SVM continues to be the best classifier, now in regards to AC, SE and SP in the

GC images, but in the luminance images, SVM has the second best value of SE.

Looking forward to keep improving the results, a pre-existent fundus image quality

classification algorithm [26] available at Retmarker S.A. was found appropriate to

use in the dataset to inspect some key parameters of the images, such as color, focus,

contrast, illumination and quality.

This algorithm identifies images suited for manual grading, spotting lack of contrast,

uniformity and focus, for example. This would allow us to identify images that would

not be appropriate for this type of grading and remove them from the dataset.

The five quality dimensions estimated by the algorithm vary di↵erently within the

possible values showed in Table 4.9.

The whole raw dataset was run through the quality algorithm and their classification

in the five mentioned parameters was the output.
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Images Classifier AC (%) SE (%) SP (%)

GC
DT 92.18 86.00 94.95
SVM 94.03 91.60 95.11
BT 93.10 90.94 94.31

L
DT 91.52 82.39 95.57
SVM 92.67 85.10 96.03
BT 92.47 86.49 95.13

Table 4.10: Performance measures of the classifiers after testing the dataset with-
out the images excluded by the Quality Algorithm.

Since a great amount of the fundus images performed poorly in this quality algorithm

[26], it was not viable to eliminate from the dataset all the images that had the lowest

score in the quality dimension. So a stricter criterion was arranged to exclude “bad”

images, i.e., only the images that had the worse classification in all the five criteria

would be eliminated. This analysis identified 217 + 80 images from the Cataract

and Not Cataract folders, respectively. In essence, 297 images from the dataset

were removed and visually inspected. They were indeed bad quality images, with

extremely bad illumination.

The classifiers were then trained and tested again, now without these “bad” images.

The results obtained from it can be seen in Table 4.10. In general, the results

improved slightly in all the performance parameters evaluated.

However, the Cataract dataset (7686 images) is about half the size of the Not Cataract

(17234 images), thus why SP has been higher than SE. Since the in-training classi-

fier sees more than double the images without cataract than with cataract, it is not

a surprise that it distinguishes healthy images better than cataractous ones, due to

class imbalance.

Another training and test was done where the classes were randomly balanced. All

the cataract images were accounted for but only some healthy ones were used, the

same number of cataract ones. Also, from now on, only the GC images were used

since from the beginning they were the ones that performed better. The results can

be seen in Table 4.11.

At last the SE increased, being higher than SP , which decreased a bit. Overall the

results show a good compromise between these two parameters, since the focus was

to get a higher SE. The accuracy is better, which was also a goal. These were the

best results so far, but some other strategies were used to see if it was possible to

increase them even further.
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Images Classifier AC (%) SE (%) SP (%)

GC
DT 92.36 94.76 89.96
SVM 94.29 96.71 91.86
BT 93.56 96.09 91.03

Table 4.11: Performance measures of the classifiers after testing the dataset with-
out the images excluded by the Quality Algorithm and with balanced classes.

Images Classifier AC (%) SE (%) SP (%)

GC
DT 94.47 96.96 91.83
SVM 96.20 98.69 93.57
BT 95.62 97.68 93.44

Table 4.12: Performance measures of the classifiers after testing the dataset with-
out the images excluded by the Quality Algorithm and with balanced classes but
with 70% of training images and 30% for testing.

Since the results from Guo et al. [9] were obtained using 70% of the dataset to train

and the remaining 30% to test, for the sake of comparison, the results from Table

4.11 were calculated again for that percentage ratio, rather than the one we have

been using so far, which is 50%/50%. The new parameters can be found in Table

4.12. The results are better, as expected, exceeding the average accuracy of 90.9%

obtained in the work of Guo et al. [9].

4.1.3.1 Data Augmentation

As a way of enlarging the dataset, improving variety and generalization, it was

decided to do Data Augmentation.

“Data Augmentation is a strategy that enables users to significantly increase the

diversity of data available for training models, without actually collecting new data”

[13]. Commonly used techniques are cropping, padding, rotating and flipping, to

name a few [13].

The Data Augmentation strategy chosen was to apply a 45� rotation to every image.

Doubling the fundus images on which the classifier is trained may provide a better

SE value and hopefully improve the overall accuracy.

After the augmentation, the classifiers were again trained and tested and the results

obtained can be seen in Table 4.13, for the Data Augmentation only on the training

images. Furthermore, Table 4.14 shows the performance measures of the classifiers

after doing Data Augmentation on all images (train and test). Knowing balanced
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Images Classifier AC (%) SE (%) SP (%)

GC
DT 90.02 81.30 93.91
SVM 92.71 88.79 94.46
BT 92.49 88.60 94.23

Table 4.13: Performance measures of the classifiers after Data Augmentation on
the training images.

Images Classifier AC (%) SE (%) SP (%)

GC
DT 89.90 87.20 91.59
SVM 91.95 90.77 92.69
BT 91.74 90.49 92.52

Table 4.14: Performance measures of the classifiers after Data Augmentation on
all images.

classes give better results, Table 4.15 presents the same process as in 4.14, but with

balanced classes.

One can conclude that the best accuracies are mostly the ones from Table 4.13, with

the SVM consistently being the best classifier. Regarding se, the results from Table

4.15 are the best, reinforcing the fact that balancing the classes, the se is better,

even if the accuracy is not, although in previous sections both of the performance

parameters improved when the classes were balanced.

However, all Data Augmentation results are worse than the ones obtained in Table

4.11. Since the dataset is bigger and a bit di↵erent from the one used before, the

lower results may imply a better generalization to a real-life dataset, so reduced

performance parameters might not be a setback.

Instead of analyzing the regular images and the rotated images and then classifying

each one of them separately, it was thought to include in the feature extraction

method the rotation of the image being analyzed and add its features to the ones

from the regular image. Therefore, each image would result in a vector of 20 features,

instead of the previous 10 features.

Images Classifier AC (%) SE (%) SP (%)

GC
DT 90.03 92.12 88.12
SVM 91.94 93.61 90.41
BT 91.62 93.34 90.05

Table 4.15: Performance measures of the classifiers after Data Augmentation on
all images with balanced classes.
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Images Classifier AC (%) SE (%) SP (%)

GC SVM 92.86 95.56 91.65

Table 4.16: Performance measures of the SVM with 20 features from the regular
and the rotated images, with balanced classes.

Another training and testing were done and the results can be seen in Table 4.16,

this time only for the best classifier so far, the SVM, plus with balanced classes.

The results were better than the other Data Augmentation ones, both in accuracy

and se, but still lower than the ones from Table 4.11.

4.1.3.2 Feature Selection

A feature selection was done to the results from Table 4.10. For a matter of ease

and quickness of the procedure, the feature selection process was done using the

software Weka, since Matlab does not use the exact same well-known methods as

Weka.

Three di↵erent feature selection methods were used. First the Wrapper was applied

to the features, then the method Information Gain and finally the Gain Ratio. All

of these were used alone and then combined.

The Wrapper is based on greedy search algorithms, it evaluates all possible com-

binations of the features and selects the one that produces the best result. The

features this method selected can be seen in Table 4.17.

Information Gain selects the attributes with higher mutual information. Table 4.18

shows the performance obtained regarding this method.

Gain Ratio measures the proportion of Information Gain to the intrinsic information

of each feature, choosing the best ones. The results using this method can be seen

in Table 4.19.

Tables 4.20 and 4.21 show the results obtained using the methods Information Gain

+Wrapper and Gain Ratio +Wrapper, respectively. These were used in this specific

order, i.e., first Information Gain was applied and then Wrapper was applied to the

resulting selected features by the Information Gain.

None of the feature selection methods were beneficial for the SVM in any parameter.

For the DT, using the Wrapper or the combination Gain Ratio + Wrapper is useful

in terms of SE, but roughly the same in accuracy. Just using Wrapper is favorable
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Images Classifier Selected Features AC (%) SE (%) SP (%)

GC
DT 2,3,4,5,6,10 92.18 88.50 93.83
SVM 1,2,3,4,6,7,8,9,10 89.68 86.05 91.30
BT 2,3,4,5,6,7,10 93.42 90.25 94.84

Table 4.17: Wrapper feature selection and performance parameters.

Images Classifier Selected Features AC (%) SE (%) SP (%)

GC
DT

1,2,3,5,6,7,8,9
91.53 85.74 94.12

SVM 83.22 90.51 94.44
BT 92.57 89.28 94.04

Table 4.18: Information Gain feature selection and performance parameters.

Images Classifier Selected Features AC (%) SE (%) SP (%)

GC
DT

1,2,3,5,6,7,8,9,10
91.51 84.69 94.56

SVM 93.42 90.80 94.59
BT 92.83 89.96 94.11

Table 4.19: Gain Ratio feature selection and performance parameters.

Images Classifier Selected Features AC (%) SE (%) SP (%)

GC
DT 2,3,5 91.78 88.63 93.19
SVM 2,7 89.05 85.68 90.55
BT 2,3,5,6,9 92.92 89.31 94.53

Table 4.20: Information Gain and Wrapper feature selection and performance
parameters.

Images Classifier Selected Features AC (%) SE (%) SP (%)

GC
DT 2,3,5,10 92.11 88.79 93.60
SVM 2,5,8,10 89.53 84.80 91.65
BT 2,3,5,6,10 93.14 90.07 94.52

Table 4.21: Gain Ratio and Wrapper feature selection and performance parame-
ters.
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for the BT, since it improves all the performance parameters. Still, the results from

Table 4.11 continue to be the best ones yet.

4.1.3.3 Horizontal, Vertical and Diagonal Features

As earlier mentioned, the features used to represent each image come from the third-

level horizontal coe�cients of the Haar transform. However, this DWT gives two

more “types” of coe�cients, the vertical and diagonal ones. As these were not used

by recommendation of Guo et al. ’s [9] work, it was decided to incorporate them

into the method to further investigate their usefulness. Plus, they were considered

with balanced classes, since it has been beneficial.

First, only the vertical coe�cients were considered, since they simulate a 90� rotation

of the input images. And then all of the coe�cients were considered, making each

image into 30 features (10 for each orientation). The performance measures can be

seen in Tables 4.22 and 4.23, respectively.

In terms of accuracy, it is better to use all the features (horizontal, vertical and

diagonal), rather than just the vertical ones. Nevertheless, the latter is beneficial

for the SE. Both these results (Tables 4.22 and 4.23) are still not as good as the

ones from Table 4.11 though.

Images Classifier AC (%) SE (%) SP (%)

GC SVM 92.62 94.99 90.23

Table 4.22: Performance measures of the SVM with 10 vertical features.

Images Classifier AC (%) SE (%) SP (%)

GC SVM 93.53 94.68 92.38

Table 4.23: Performance measures of the SVM with 30 features (horizontal, vertical
and diagonal).
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4.2 Deep Learning

4.2.1 Pre-trained Convolutional Neural Networks

AlexNet was the first pre-trained CNN used here to solve the problem of cataract

classification. The last three layers of this 25-layer net were re-purposed to label two

classes instead of the default, which were up to a thousand classes. The layers of

the network can be seen in Figure 4.10, while the structure of it is shown in Figure

4.11 (split in half to fit the page).

Figure 4.10: Layers of AlexNet.

The input size the net requires is 227 ⇥ 227 pixels, so the dataset is resized before

entering the first layer.

The training options used included an initial learn rate of 0.0001, 20 as the maximum

number of epochs and a mini batch size of 128, which all proved to be beneficial.

The CNN was then trained with the dataset prepared in this work, based on the

layers and training options. After came the testing, from which resulted the values

of Table 4.24.

The results are good for the first attempt, better than the first ones achieved with

ML. However, they are not better than those from Table 4.11. Maybe AlexNet is
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Figure 4.11: Structure of AlexNet.
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Classifier AC (%) SE (%) SP (%)

AlexNet 92.45 92.33 92.56

Table 4.24: Performance parameters of AlexNet.

Classifier AC (%) SE (%) SP (%)

GoogleNet 91.41 92.02 91.14

Table 4.25: Performance parameters of GoogleNet.

too simple, perhaps a deeper net would accomplish higher results. Accordingly, a

more complex CNN was used to try to achieve better accuracy and SE. GoogleNet

was then loaded and modified to suit our purpose, the same way AlexNet did, by

adjusting its final layers. The layering is showed in Figure 4.12 (split in half to fit

the page).

The network is considerably bigger than the previous one used, having 144 layers,

as seen in Figure 4.12, and only accepts input images of size 224 ⇥ 224 pixels.

Using the same training options, the results obtained are presented in Table 4.25.

It shows worse performance, comparing to Table 4.24, which made us go back to

using AlexNet.

AlexNet was then used again, but this time training it with an SVM to do the clas-

sification. Since the SVM was the best classifier in the classical ML section, maybe

it can aid here, providing a more e↵ective classification. Basically, the features are

extracted by the NN, but a SVM does the final classification. What was done was

an experimentation to see in which fully connected (FC) layer the SVM could be

put to maximize the final accuracy of the classifier. Remembering the layers from

AlexNet, presented in Figure 4.10, there are three FC layers: fc6, fc7 and fc8, the

SVM was introduced in each one of them separately and the performance was ob-

served and written in Table 4.26. Plus a study of the performance of each available

SVM kernel was also done and can be found in Table 4.26 as well.

The best kernel is the Gaussian, as in the classical ML section, but the linear SVM

kernel comes in a close second. Regarding the FC layers, the sooner the SVM classifi-

cation is done, the better, since the best accuracy is obtained when the classification

is done were the fc6 would be, with the input from the previous layer that would

feed the fc6, rather than in the place of fc7 or fc8. This result is a bit counterin-

tuitive, in the sense that we would expect the best result to come out deeper in the

network and not as soon as possible. However, that was what happened in this case,

implying that the more transformations are done in each deeper layer, the worse the
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Figure 4.12: Layers of GoogleNet.
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Fully Connected Layer SVM Kernel AC (%)

fc6
Gaussian 92.82
Linear 92.54

Polynomial 90.74

fc7
Gaussian 92.68
Linear 92.35

Polynomial 88.84

fc8
Gaussian 92.28
Linear 91.70

Polynomial 83.03

Table 4.26: Accuracy of AlexNet with di↵erent kernels of a SVM classifier.

SVM will perform.

Because we have still not reached with DL the best results achieved with classical

ML, one more attempt was done to try and get better performances.

4.2.2 Fully trained Convolutional Neural Network

Another experiment was the creation of a CNN from scratch, completely training

it. Nevertheless, the layering was inspired by the one from AlexNet.

The layers of the network can be seen in Figure 4.13, two more layers (one FC and

one RELU) were added comparing to AlexNet because this configuration showed

better results.

The training options were the same as AlexNet, except the learn rate schedule used

was “piecewise”, instead of “none”, since it proved more e↵ective. The CNN results

are shown in Table 4.27.

The results are above 90%, which is very good for a CNN trained in just a couple

thousands of images, but are inferior than the ones previously obtained, as could be

expected.

Classifier AC (%) SE (%) SP (%)

CNN 90.71 90.79 90.21

Table 4.27: Performance parameters of the fully trained Convolution Neural Net-
work.
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Figure 4.13: Layers of the fully trained Convolutional Neural Network.
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Conclusions

This work was focused on developing approaches to achieve automatic cataract

classification in fundus images.

Besides the methods described in Chapter 2, there are not many automatic published

methods for cataract classification using fundus images, as earlier work focuses on

other type of images and di↵erent imaging methods that are not useful in this case.

As specified in Chapter 3, all the best methods and processes investigated in Chapter

2 were used, but much more was added.

The dataset prepared in this work is much bigger than the ones used in previous

reported researches. It is also much more diverse and inclusive since it contains

fundus images from multiple sources that also include some with di↵erent types of

lesions and pathologies.

Following the outcomes presented in Chapter 4, this study suggests reliable yet cost

e↵ective and simple approaches to the problem described. The features used were

appropriate, giving the classifiers a good way of distinguishing each class.

One can conclude that the best Machine Learning classifier was the Support Vector

Machine, but with Bagged Trees coming in a close second. The Decision Tree was

the worse of the three, giving good results (higher than 90%) but not as good as

the other classifiers. The best performance achieved with 50% of training data and

the other 50% for testing with the SVM was an accuracy of 94.29%, a sensitivity of

96.71% and a specificity of 91.86%, having balanced classes, i.e., the same number

of cataracts as of not cataracts for training.

The Data Augmentation strategy was better when it was done only to the training

images and not the whole dataset, also giving considerable results, but still lower

than using the “regular” dataset.

Regarding the Feature Selection methods, just the Wrapper or its combination with
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the Gain Ratio were favorable for the Decision Tree, just the Wrapper was beneficial

for the Bagged Trees, but none of them were worthy in the case of the SVM.

As Guo et al. [9] mentioned, the horizontal features from the Haar DWT really

do o↵er the best results, since the just the vertical or the combination of the three

coe�cient directions (vertical, horizontal and diagonal) do not measure up.

Concerning Deep Learning, the results were inferior. Transfer Learning, specially

with AlexNet, is more e↵ective than the Convolutional Neural Network built from

scratch, possibly for the lack of proper parameter tuning to adapt to the problem

at hand or because the size of the training dataset might be insu�cient for such

approach.

Nevertheless, the experiment results illustrate the value and e↵ectiveness of the

approach, showing that the method is useful in a practical application of cataract

detection. It has the potential to reduce the burden of experienced ophthalmologists

as well as the diagnosing underlying costs, helping cataract patients to get an early

intervention, improving health care quality.

It was not possible to obtain neither the computer code nor the dataset used in

similar works, but it was still possible to compare results, even though we have to

keep in mind that they were not obtained in the same conditions. However, the

results achieved remain valid and relevant in their own context. The closest one in

terms of performance is perhaps the method of Guo et al. [9], since the first part

of the present work is very similar to it. Guo et al. achieved an average accuracy

of 90.9% using 70% of the dataset to train and the remaining 30% to test. For

comparison, the dataset used was also split in the same way and the results were an

accuracy of 96.20%, which is an improvement of more than 5%, a great progress in

these high accuracies.

Comparing to all the methods reviewed in Chapter 2, the results obtained were

better than all of them, except one. The only exception was the work of Zheng et

al. [41] that managed to get an accuracy of 95.22%. However, the dataset is about

54 times smaller and the authors used di↵erent methods, as other researchers did,

so it is not easy to compare them. Also, this analysis is assuming that their dataset

was divided equally for training and testing, which may not be true since they do

not mention it. However, if the train and test ratio was 70%/30%, the results in

this work are better than theirs, but this analysis is very superficial.

Despite the encouraging performance achieved by the present system, some issues

remain. A limiting factor could be the lack of certainty of the ground truth of the
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fundus images used. In other words, if the images are labelled incorrectly, they are

put in the wrong class, a↵ecting the overall performance of the method due to faulty

training. Improving the quality of the dataset would most likely boost the accuracy.

Reinforcing the last point, another issue was the fact that a few dataset images that

did not have a clear class were graded by a non-expert, which may be a source of

error. Since the reference standard of those images was not clinically confirmed,

some cataracts may have been missed and even if the method would find them, it

was considered wrong, since the ground truth was incorrect. As said before, the

quality of the Artificial Intelligence approach reflects the quality of the dataset, so

a great dataset with a firm ground truth is what we should look for.

Another factor is the huge amount of fundus images with bad illumination. The

acquisition of these images should be done more carefully.

Although the dataset is quite big compared to other reported researches in the field,

it is not be big enough to properly train a robust Convolution Neural Network. So a

bigger amount of images would probably result in a better Deep Learning method.

Future Work

Since the size of the images used in the Machine Learning part reflected the size of

the majority of the dataset, a study could be done to research the optimal image

size for both Machine Learning and Deep Learning algorithms. It would also be

interesting to study and compare fundus images acquired by each specific camera,

pointing out the best ones for the job, for example.

Several more tests could be done to assure the robustness of the methods, such as

defocusing the previously rightly labeled images and running them by the classifier

to check if the performance is maintained, for example.

Other feature selection methods could be tested, as well as other Machine Learning

classifiers and Deep Learning structures, it is a matter of trial and error to see what

works best for this specific problem.

A larger dataset should be used to build a stronger Deep Learning method. Using

di↵erent types of Data Augmentation strategies could be helpful to enlarge the

dataset, if there are no other fundus images available to train and test the algorithms.

Future work should focus on the improvement of the methods described. Hopefully

other eye diseases detection software can also benefit from this work, furthermore

improving heath care quality.
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