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Abstract 
 

Cities are becoming more and more a magnet for diversity, creativity, and wellbeing. 

Challenges related to increased density and complexity are being addressed by the 

integration of smarter computational systems at the various levels of the urban fabric.    

Data plays a crucial role in understanding urban flows and mobility patterns through the 

development of models that are used to improve the transportation network, social 

environment, and security in urban spaces. A type of data used to feed these models is the    

Call Detail Records (CDRs) that provide information on the origin and destination of voice 

calls at the level of the base stations in a cellular network. The low spatial resolution and 

temporal sparsity of these data constitute challenges in using them for mobility 

characterization and is a current topic of research for the Computer Science community.  

Throughout this work, we study and compare different data sources for mobility 

characterization (including CDRs).  We assess the impact that the variance of four quality 

parameters of CDR datasets have on the detection of commuting patterns: (1) density of the 

base stations per square kilometer; (2) average number of calls made or received per day 

per user; (3) regularity of these calls; (4) number of active days per user. We concluded that 

we can infer the commuting patterns of 10.42% of the users in a CDR dataset by considering 

users with a maximum of 7.5 calls per day. Considering users with higher activity in terms 

of frequency of calls (more than 7.5 calls per day on average) does not result in a significant 

improvement in the results. Including in our dataset users with a regularity of 16.8 days or 

more, we can only avail a maximum of 0.27% of them to infer routes home to the workplace 

or vice-versa. Conversely, if we have users with a regularity less than 16.8 in our dataset, 

we can notice a significantly higher growth (that can go up to 11.1%) in the percentage of 

users from which we can infer routes home to workplace or vice versa. We also found that 

the higher the number of days of call activity of the users in our dataset, the bigger the 

percentage of them from which we can infer commuting patterns (almost linear). 

We also proposed an optimized approach to infer commuting patterns, including 

origin/destination trips and the respective unimodal/multimodal modes (car, bus, train, 

tram, subway, walking, and bicycle). We present results and conclusions obtained from data 

on 5000 users, along fourteen months of communication, across the 18 Portuguese districts. 

We did a more in-depth analysis of the mobility profile and characterization of three 

Portuguese cities – Lisbon, Porto, and Coimbra. The two first cities are the larger ones with 

various travel mode options, and the third one is a medium-size city where the private car 

is the first mode of transport. Obtained estimations of the mode choice composition 

(percentages per mode of transport) were validated with Portuguese censuses that were 

used as ground truth.  Then, our methodology reached an accuracy of 67%. 
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Resumo 
 

As cidades estão se tornando cada vez mais um íman para a diversidade, criatividade e 

bem-estar. Desafios relacionados com o aumento da densidade e complexidade estão sendo 

abordados pela integração de sistemas computacionais mais inteligentes nos vários níveis 

do tecido urbano. 

Os dados desempenham um papel crucial na compreensão dos fluxos urbanos e dos 

padrões de mobilidade por meio do desenvolvimento de modelos usados para melhorar a 

rede de transporte, o ambiente social e a segurança nos espaços urbanos. Um tipo de dados 

usado para alimentar esses modelos é o CDR (Call Detail Record) que fornece informações 

sobre a origem e o destino das chamadas de voz no nível das torres de telecomunicações em 

uma rede móvel. A baixa resolução espacial e a esparsidade temporal desses dados 

constituem um desafio ao utilizá-los para a caracterização da mobilidade e é um tópico atual 

de pesquisa para a comunidade de Ciência da Computação. 

Ao longo deste trabalho, estudámos e comparámos diferentes fontes de dados para a 

caracterização da mobilidade (incluindo CDRs). Avaliámos o impacto que a variação de 

quatro parâmetros de qualidade dos conjuntos de dados CDR têem na detecção de padrões 

de deslocação pendular: (1) densidade das torres de telecomunicações por quilómetro 

quadrado; (2) número médio de chamadas feitas ou recebidas por dia por utilizador; (3) 

regularidade nessa atividade celular; (4) número de dias de atividade cellular por parte do  

utilizador. Concluímos que podemos inferir os padrões de 10,42% dos utilizadores num 

conjunto de dados CDR considerando utilizadores com um máximo de 7,5 chamadas por 

dia. Considerar utilizadores com maior atividade em termos de frequência de chamadas 

(mais de 7,5 chamadas por dia, em média) não resulta em uma melhoria significativa nos 

resultados. Incluindo na nossa amostra de dados utilizadores com uma regularidade de 

atividade de 16,8 dias ou mais, faz com que possamos aproveitar apenas um máximo de 

0,27% deles para inferir rotas casa-trabalho ou vice-versa. Por outro lado, se tivermos 

utilizadores com uma regularidade menor que 16,8 dias na nossa amostra, poderemos 

observar um crescimento significativamente maior (que pode chegar a 11,1%) na 

percentagem de utilizadores a partir dos quais podemos inferir rotas casa-trabalho ou vice-

versa. Também descobrímos que, quanto maior o número de dias de atividade celular dos 

utilizadores no conjunto de dados, maior a percentagem deles a partir da quais podemos 

inferir padrões de deslocação pendular (quase linear). 

Também propusemos uma abordagem otimizada para inferir padrões de deslocação 

pendular, incluindo viagens de origem/destino e os respectivos modos de transporte 

unimodais/multimodais (carro, autocarro, comboio, elétrico, metro, a pé e bicicleta). 

Apresentamos resultados e conclusões obtidos a partir de dados de 5000 utilizadores, ao 

longo de catorze meses de comunicações, nos 18 distritos portugueses. Fizémos uma análise 

mais aprofundada do perfil de mobilidade e caracterização de três cidades portuguesas - 

Lisboa, Porto e Coimbra. As duas primeiras cidades são as maiores, e teem várias opções de 

transporte, a terceira é uma cidade de tamanho médio, onde o carro particular é o principal 

modo de transporte. As estimativas obtidas da composição da escolha do modo de 

transporte (valor percentual por cada modo de transporte) foram validadas com censos 

portugueses que foram utilizados como dados verdadeiros. A nossa metodologia atingiu 

então uma precisão de 67%. 
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Chapter 1 
Introduction 

This chapter explains the fundamental guidelines of this investigation’s internship. It starts 

by discussing the motivation behind this study and established objectives. Then, it will be 

taken into consideration more details about the internship procedures like planning along 

the two semesters, used tools, and methodology of work. The last subsection describes the 

structure of the document. 

1.1 Motivation 

Nowadays, modern cities face many challenges and concerns. How to make them more 

ecofriendly? How to make them smarter? How to make them more attractive to people or 

healthier for everyone? We are living in times where the concern about the environment and 

climate changes is growing faster. When we talk about mobility, the worry is not only about 

the environment but also on our health and other factors that make us rethink and research 

about the principal reasons behind the choice of transportation modes. It is consensual that 

the massive use of the individual modes of transportation is contributing strongly to 

aggravate the impact of the problems mentioned above. In order to address these issues, 

some campaigns to promote the use of public transportation were made like, for example, 

giving free access to public transport for a determined period. Improving the infrastructures 

and comfort of public transportation is also an essential factor to attract new users.  

Nonetheless, it is crucial that public transports must help users reach the destination they 

want. It becomes critical then to have an overview of the mobility patterns and the demand 

for transportation of the users. That is where the opportunistic use of mobile data comes in - 

to enable us to model the mobility behavior of the users. Ultimately, it allows us also to 

characterize the demand for public transportation and to help public transport operators 

transporters to perceive the needs and adjust their offer to the users.  

The use of data-driven approaches is then crucial to improve urban spaces. Data is used to 

create models used to predict urban behaviors. The modeling of urban spaces involves 

creating models of their main constituents: citizens, transports, and land use. Those are 

critical elements that interconnect with each other and turn a city into a living organism. 

Using data to model this human-made organism is what sets it smarter and fluid. That is a 

real challenge as the users of urban areas are increasing, the transport infrastructures are 

snowballing, and land for different uses is more and more scarce. By modeling mobility in 

urban spaces, it is possible to translate raw data extracted from those three urban elements 

into crucial elements for decision-making to make urban spaces smarter, eco-friendlier, 

healthier, and more attractive. 
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1.2 Objectives 

The fundamental goal within this work is to model mobility in urban spaces in a way that is 

possible to characterize the offer and the demand for transport solutions in cities. With that 

goal in mind, we want to, first of all, review the primary data sources that can be used to 

model urban spaces and select the most appropriate sources to model mobility. Following 

that, we need to understand fundamental approaches and the current state-of-the-art to infer 

social behavior, travel patterns, and land uses through opportunistic data sources. Only then 

can we find innovative ways and optimized methodologies to model mobility. It is also 

objective of this project to use data mining techniques upon an available CDR dataset to infer 

commuting patterns. In this sense, we want to know how good a CDR dataset needs to be to 

enable us to infer those commuting patterns. We will examine that by assessing the impact 

that the variance of four quality parameters of CDR datasets has in accomplish that task. 

Ultimately, with all that in mind, we will apply techniques to automatically infer commuting 

routes, along with the respective unimodal/multimodal travel modes (car, bus, train, tram, 

subway, walking, and bicycle). The outcome of this project aims to provide decision-making 

elements for various stakeholders (e.g., transport operators, urban decision-makers, citizens 

in general). These elements comprise visualizations of the commuting routes adopted by the 

users. It also includes statistics of the distribution of percentages of the different chosen travel 

modes in any of the 18 districts of Portugal. Therefore, these results can help, for example, 

transport operators to adapt the offer efficiently to the needs of the transportation of the 

users. They can do that by rethinking bus lines, transport infrastructures, bus schedules, or 

bus fleets.  Is through these results that we will also characterize more-in-depth the mobility 

profiles of three important Portuguese cities – Lisbon, Porto and Coimbra. 

1.3 Internship 

Specifics of the internship will be approached in this subsection. We describe the planning 

of tasks, software and hardware that will be used, and methodology of work during the 

semesters. 

1.3.1 Planning 

Plans and schedules were made, adjusted, and debated regularly. It was essential to know 

where we were on the timeline, what time was left to do what remained and revise the plan 

accordingly with new goals and unforeseen events. Risks were evaluated, and the respective 

contingency plans were developed on a weekly basis. In Appendix A, it is possible to see the 

main Gantt charts for the tasks accomplished during the semesters. 

1.3.2 Tools 

The tools and technologies used during the internship will be briefly described in the 

following list: 

• Microsoft Excel: It is a tool from Microsoft that is free for students. It was used primarily 

to build the Gantt Charts. 
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• Mendeley: It is too a free tool through which it was possible to store, highlight, 

comment, search, and reference the necessary research articles for this study. 

• Python: It is a free programming language that is equipped with multiple packages and 

libraries of data mining and machine learning (like, for example, sklearn). Syntactically, it is 

very close to pseudo-code and easy to understand. This tool was used to make the 

exploratory analysis and apply the necessary algorithms on the dataset to infer commuting 

patterns. 

• ArcGIS: It was the only non-free software that was used and was licensed to the 

AmILab laboratory. It constituted a crucial tool to render visualizations of geospatial data 

directly into the world map. It is complete because it is armed with a panoply of algorithms 

already implemented to make spatial calculations. 

•  Database Server: It was used to store the enormous amount of necessary data to be 

managed, processed, and operated. It belongs to CISUC (Center for Informatics and Systems 

of the University of Coimbra). It would be highly challenging if this work were dependent 

only on the local storage and processing power. 

1.3.3 Work Methodology 

This internship took place at AmILab – Ambient Intelligence Laboratory at CISUC. All the 

work was developed using a personal computer but accessing peripherals and the 

installations of AmILab. We could also take advantage of servers, databases, research 

articles, and licensed programs to CISUC laboratories as a researcher. Daily meetings, 

usually in the evening, were made along with the advisors to make a daily briefing about 

progress, the status of the project, faced challenges, and other issues that may have arisen 

throughout the days. Every two weeks, a more formal meeting was held in which we 

recapped the progress made and pondered the future steps to take. It was mutually agreed 

that all the documentation would be written in English (including this report). Some 

presentations prepared by each member of the team were presented sporadically. These 

presentations aimed to clarify and explain progress to the whole team about the work that 

each member was developing. It was essential that each member knew her/his role and 

relevance and, simultaneously, understood more deeply the fields in which other members 

were highly focused. The collaboration among the teammates was also valued, and, for that 

reason, we had team building sessions. During the internship, other meetings with clients 

and possible partners also happened. These meetings aimed to show the developments of 

our research projects and the potentialities of the results achieved in exchange for external 

collaborations and acquaintance of new and larger sources of opportunistic data. As already 

highlighted, iterations and adjustments of the internship’s schedule plan were made and 

discussed on a regular basis. We guaranteed in this way that we would not lose the notion 

of the deadlines or the work that remained to be executed.  

1.4 Structure of the Document 

This document is divided into six chapters. This chapter is where we talk about the 

structure, planning, and other specifications relative to the internship. In Chapter Two, we 

will dive deep into the primary data sources that we can use in urban spaces in order to 
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detect urban patterns. This exploration establishes an essential step in the State of the Art 

because we need to understand which weaknesses, challenges, and highlights are related to 

each data source. This understanding is vital so that we can choose a promising and suitable 

data source upon which we can infer urban patterns and develop our algorithms. Chapter 

Three also makes part of the State of the art. In this section, we look over some of the leading 

modeling topics in urban spaces. This section is segmented in multiple subsections: the first 

one focuses on inferring origin-destination flows and activity locations; the second one is 

more centered in transport mode detections; the third one about traffic estimation; the 

fourth addresses how the land use distribution affects the mobility modelling; and the fifth 

examines how social behaviors determine our mobility behaviors. Each one of these 

subsections will examine exciting contributions to the topic under analysis and will 

scrutinize some promising modeling methodologies developed by some authors. The sixth 

subsection assumes to be a critical reflection on the possible weaknesses or ways of 

optimization of the analyzed methodologies along with possible groundbreaking 

methodologies and new unexplored topics. It is in this subtopic that we will define the 

innovative contributions of this project and the methods necessary to achieve them. The 

following chapter – Chapter 4 - is where we develop data mining techniques and discover 

patterns in our large CDR dataset.  It includes the initial cleaning and preparation of the 

dataset, followed by a detailed characterization of it. This chapter is critical because it is 

where we make noteworthy contributions by assessing how the variance in quality 

parameters of a CDR Dataset impacts the inference of commuting patterns of the users. We 

then proceed with the downsampling of our dataset accordingly with the conclusions taken 

from that assessment. Chapter Five describes the most relevant contributions of this study. 

Commuting patterns will be inferred for 18 municipalities of Portugal through a novel 

technique. In practice, that means that distributions of percentages of travel mode choices 

in commuting routes (home to workplace and workplace to home) will be computed along 

with the routes themselves. A posterior validation with Portuguese censuses is performed. 

Chapter Six addresses the conclusions and observations. It serves as a recapitulation of the 

work developed, the main results obtained, the scientific contributions produced, and some 

challenges that we had to surpass. We also reflected about future topics related to this work 

that can be further explored.



 

Chapter 2 
Data for Urban Spaces 

The capacity of improving urban spaces in a city relies pretty much on having large volumes 

of data that can support decision-making and can provide valuable information to make 

longstanding plans for the city. So, data is a sort of fuel for modern smart cities in a way that 

empowers them to react to urban dynamics in an informed way. Security vulnerabilities, 

urban planning, social flows, traffic congestion, population health, transportation veins, and 

pollution threats are some of the most addressed and concerning issues that a city must be 

able to respond and care about. On the other hand, data can provide insights to the “private 

sector companies in everything from retail to insurance and advertising crave better urban 

information on how to run their businesses” [1]. Visualizations of this data also aid to grant 

answers to the challenging urban issues. Through modeling analysis using ubiquitous data, 

it is possible to develop real-time visualizations of the urban patterns and flows. 

Consequently, all this information can provide more solutions to current challenges like 

“catastrophe planning”, “developing better tourist strategies”, and “studying the impact of 

new urban development projects” [1]. 

2.1 Data Sources 

To infer the dynamics and flows of urban spaces, we rely on various data sources including 

ubiquitous ones, in other words, data that come from devices that are used massively by 

people and that exist in almost everywhere in a city. We can divide the purpose of data 

sources relatively to our goal to improve urban spaces between opportunistic and non-

opportunistic. Mobile data (coming from smartphone sensors or cellular networks) and data 

from location-based social networks are useful opportunistic data given that they are widely 

generated by almost every people every single day. On the other hand, we can have data 

with fewer public adherence, but they can be very suitable and specific for the pattern that 

we want to model. For that reason, we are also going to discuss traditional methods like 

surveys, questionnaires, and other non-opportunistic sources of data. Comprehensively, it 

will not be explored all the possible data sources that can be used to improve urban spaces. 

Instead, we will focus on diving deep into the most common and relevant sources used in 

the scientific community to derive urban patterns and, particularly, mobility patterns. Figure 

2.1 sums up the main different data sources we can use to improve urban spaces. 
2.1.1 Opportunistic Data 

Opportunistic data is data that is not purposely generated with the specific intent of 

deducing mobility or social patterns or any other urban pattern. For example, we are going 

to analyze the potential impact of using cellular network data in planning urban spaces 

when, in fact, that data only was created for billing purposes and other telecommunication 

operations. The same happens with the sensors that come with the smartphone and the 
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geotagged information we can retrieve from location-based social networks.  

Figure 2.1  – Overview of all useful data sources categories to characterize urban spaces. 

The advantages of using opportunistic data instead of other traditional methods of collecting 

data are abounding. First, using data from these ubiquitous devices is not so expensive as 

surveys or questionnaires. The mobile phone is a very personal device that people use during 

the entire day as well as some of the location-based social networks (like Facebook or Waze). 

This fact means in practice that, by looking through this data, it is way easier to infer 

behaviors, preferences, and other characteristics about the users than by looking through 

surveys or questionnaires. These technologies are also widely spread and have a massive 

percentage of adhesion, which means that we can reach a highly significant population 

sample. We can also supervise the human movement on a daily, continuous, and real-time 

basis. We have access to a great variety of sensors built in the smartphone and, consequently, 

access much higher quality and quantity of datasets. Opportunistic data also allow us to do 

much longer observations. This possibility is particularly useful, for example, to study the 

impact of long-term changes like the change of the seasons or any personal change (like a job 

change or a house moving) [2]. 

2.1.1.1 Smartphones 

Nowadays, mobile phones are our footprints. We need them for many tasks throughout the 

day and, therefore, we carry them almost the entire time. Mobile phone data generate 

signatures of the interactions of human beings with each other. There are fundamentally two 
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sources of mobile data: cellular network-based data and data from the smartphone sensors 

[2]. Expectedly, they have different properties in what regards to granularity and other 

factors that we are going to examine in the following sections. 

It has been a long time since smartphones are not used anymore only to call or to receive/send 

messages to another person. Smartphones are armed with many types of sensors and 

applications that collect various types of data, like location-based data and other contextual 

data [3]. That vast amount of data enables us to infer patterns of the user’s mobility and 

sociability. Hence, the smartphone is an excellent device to apprehend our daily habits, what 

we like or hate, how we feel, and infer many other patterns. If we can model human behavior, 

we can consequently predict and improve the quality of the urban spaces that those humans 

frequent. Consequently, this is fundamental to urban planning, to understand the dynamics 

of the urban spaces and, for example, to plan the supply of public transportation once 

citizens’ necessities are previously inferred.  

Built-in Sensors 

As already emphasized, smartphones enclose various types of sensors. So, in this subsection, 

we are going to dive deep into the variety of sensors and the corresponding data that we can 

obtain from them. As proposed by Nikolic et al., we can divide these sensors basically in 

three categories: sensors that measure motion, sensors that measure position and sensors 

that measure environment conditions [3]. The motion ones are rotational vector sensors, 

accelerometers, and gyroscopes. The second category comprises the position sensors plus 

the magnetometers. Finally, relatively to environmental sensors, we have thermometers, 

barometers, and photometers [3]. Figure 2.2 schematizes and sums up all the typical sensors 

that we can find in a standard smartphone and that we are going to describe from now on 

briefly. 

Accelerometers 

Accelerometers are sensors capable of measure the acceleration of the smartphone. This 

motion force is captured in all the three possible physical axes, so, consequently, the force of 

the gravity is measured as well [3]. This sensor is frequently used to know the orientation of 

the mobile phone and to switch automatically between a landscape or portrait view of the 

screen [4]. It is widely used in mobility modeling because not only consumes low battery 

power but also, once the user is carrying the smartphone, his physical movement can be 

automatically characterized, and his/her distinctive activities can be perceived (e.g., walking, 

standing) [4].  

Gyroscopes 

Gyroscopes provide information about the orientation of the user. As the accelerometers, 

they consume low battery power. As stated by Nikolic et al., that is obtained from the 

measure of the “device’s rate of rotation around each of the three physical axes” [3]. This 

kind of sensor tends to be not so accurate as we might expect due to factors like temperature, 

errors of calibration, and electronic interferences [3].  

Magnetometers (Compass) 

Magnetometers assess the geomagnetic field around the mobile device. So, it can also 
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provide orientation always relative to the Earth’s magnetic field. By observing the magnetic 

flux density, it is possible to detect the movement speed of the device [2]. 

 

 

Figure 2.2  – Set of sensors that we can find in a typical smartphone. 

GPS (Global Positioning System) 

GPS permits to measure the position and velocity of the user using the distance from the 

mobile phone to three GPS satellites [3]. The location is measured through a triangulation 

method. The computed location estimation is incredibly accurate (accuracy up to 10 meters 

of margin). Nonetheless, it can be quite imprecise when we are in dense urban areas or 

tunnels [5]. The temporal rate of records generation is high but, unlike all the other sensors, 

this is consensually the one that consumes more battery. Besides, GPS signal accuracy 

abruptly regresses in indoor scenarios [3].  

Bluetooth 

Bluetooth is one way of connecting to another device wirelessly as long as these preserve a 

short distance between them (10 to 100 meters) [3]. So, Bluetooth sensors are advantageous 

to sense other devices in the neighborhood, extracting their names, types, and identifiers.  

Wi-Fi 

The WI-FI sensor enables us to connect to a WLAN (Wireless Local Area Network). With this 

sensor, it is possible to sense outdoor and indoor devices.  Concordantly with Wang et al., 

the technique applied to estimate the location is the RSSI (Received Signal Strength 

Indication) methodology and it is possible to improve it if more than one access point 

becomes available in order to compute the location through the triangulation method [2]. As 
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it occurs in cellular network data (like CDRs or sightings data), the “ping-pong effect” (this 

effect will be detailed in section 2.2.2) can happen in WI-FI as well [3]. The connections that 

were made to WI-FI access points (or hotspots) can be opportunistically used latter to 

discover urban patterns like the different visited places or the most visited metropolitan area 

by the users.  

Barometers 

Barometers measure atmospheric pressure and can be used to detect how high the phone is 

above sea level [3]. 

Thermometers 

Thermometers measure ambient temperature [3].  

Humidity Sensors 

Humidity sensors measure air humidity [3].  

Light Sensors 

It is used, for example, to adjust the luminosity of the smartphone’s display automatically 

[4].  

Proximity Sensors 

As the name already explains for itself, the smartphone can perceive the proximity to various 

physical objects. For example, one of the possible applications is the capability that the phone 

has of turning off the touchscreen when it senses that the face of the user is close to it [4].  

Camera 

This sensor also has a lot of practical uses. An example of that is the use of the camera to 

track the user’s eyes movements with the purpose of launching some application or trigger 

any other action.  

Microphone 

Although not so massively used in inferring urban patterns as other sensors like, for 

example, accelerometers, it can be very opportune to detect surrounding noise and, with 

posterior analysis, discern the user’s location or activity, for example, if the user is driving, 

if he/she is in the supermarket or playing an instrument. 

2.1.1.2 Cellular Networks 

Cellular networks are fundamentally communication networks with a particularity of the 

last link being wireless. These networks are dispersed among coverage areas or “cells”. In 

every cell generally exists three transceivers. These transceivers grant network coverage to 

the entire cell in order to afford transmission of voice and data. To prevent interference in 

communications and provide a good quality of service, the frequencies of each cell differs 

from the frequencies used in neighboring cells [6]. 
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Architecture 

There are a few mobile communication standards. The most common system is GSM (Global 

System for Mobile Communication), but there are other well-known mobile communications 

standards like UMTS (Universal Mobile Telecommunications System) for 3G 

communications and LTE (Long-Term Evolution) for 4G communications. The work of M. 

Tiru et al. [7] details the architecture of an MNO (Mobile Network Operator) in a very 

intuitive and understandable way. According to them, mobile communications are assured 

by a network of base stations that define a region of coverage (also known as “cell”). Each 

one of these stations has a unique identifier. All the MNOs use one of the following 

technologies: GSM or CDMA (Code Division Multiple Access). The main difference between 

these two technologies is: in the first case, an exclusive timeslot is assigned to each user, and 

nobody else can connect through that timeslot; in the second one, the user can use the entire 

frequency spectrum to transmit signals all the time. In practice, this difference is the reason 

why standard mobile phones have SIMs (Subscriber Identity Module). The SIM makes the 

phone associated with a particular network. Then, it is as if it was the CDMA technology but 

with the advantage of being easier to change mobile phone by just substituting the SIM. A 

schema that depicts the various components of the MNOs for the GSM and CDMA 

technologies is presented below (Figure 2.3): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 – Typical Architecture of MNO’s. The figure is adapted from the work of M. Tiru et al. [7]. 

Following the line of reasoning of M. Tiru [7], when a mobile phone connects to a mobile 

network, it becomes tied to a BTS (Base Transceiver Station) antenna. This equipment 

handles speech encoding and other radio signals. In its turn, a set of BTSs are controlled by 

a BSC within a particular region designated Location Area. BSCs are responsible for the 

correct distribution of radio channels, frequency, among other factors. BSCs are managed by 

MSCs (Mobile Switching Centers), and these last ones are supervised by the NMSs (Network 

Management Systems). MSCs deal with the routing of the calls and messages as well as the 
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handovers between the plenty of Location Areas. On the other hand, it is in the NMSs that 

all the central databases reside. These databases hold billing information, CDRs, and other 

critical location data. This structure is valid for GSM and CDMA technologies. For other 

protocols like 3G, or UTMS, the structure can have slightly different characteristics.  

Types of Network-Based Data 

According to Calabrese et al. [8], this kind of data source can be segmented into two 

categories: event-driven data and network-driven data. The first one involves user 

participation (making calls, sending messages, and accessing mobile internet). The second 

one does not require it; the records are generated periodically without human intervention 

(sightings data) [8]. From the reviewed literature, the types of network-based data most 

regularly used to infer mobility patterns are CDRs and sightings data.  

Call Detail Records 

The CDRs are fundamentally the voice calls. The amount of information comprised in each 

record may vary slightly, but, in general, from all the research works analyzed that make use 

of CDR data, we have the following basic fields: timestamp, call duration, caller’s ID, ID of 

the person to whom the user is calling, caller’s connected cellular tower ID and cellular tower 

ID of the person to whom the user is calling. Every time a call is made, a new record is 

generated. The images below (Figure 2.4 and Figure 2.5) exemplify very well the typical 

composition of these types of records: 

 

 

Figure 2.4 – Some examples of CDRs. These records were taken directly from the dataset that will be 

analyzed in this project. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 – Other examples of CDRs. Records in blue are from the same user. These records are 

represented on a map in the right region. The figure is originally from Charisma et al. [9]. 
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Messages 

SMSs constitute another kind of event-driven data. From the articles reviewed, it becomes 

clear that this data source is not commonly used in the research community. The use of it can 

happen as a complement to other data source. The limited use of this data is comprehensive 

because its generation by the users is too scarce.  

Mobile Internet Accesses 

Mobile internet accesses are not so frequently used as CDRs, but it is too a valuable source 

of data.  As explained by Lorenzo et al. [10], mobile access data records differ from the CDRs 

because they do not always require user initiation and intervention to generate them. Some 

mobile applications regularly make use of mobile internet data without the user explicitly 

activating it. Even when it is expressly activated, it repeatedly generates new records. So, 

overall, the more significant advantages of this data source compared to, for example, CDRs 

are: usually less sparse, more abundant, and more evenly distributed throughout the day. 

These characteristics can have different impacts on the characterization of mobility or 

sociability of the users, depending on the issue to be addressed or studied. 

Sightings Data 

This data source differentiates from the CDRs in two critical aspects as pointed out by Chen 

et al. in [11]. First, many more records are generated because it is registered activity from 

other network-driven interactions besides event-driven activities (like handover, signal 

strength information, and switch rate of cells) [12]. The other difference is that, with this data, 

we can get a significantly higher spatial precision (the real numbers and a real comparison 

of spatial resolution will be explored later in section 2.2.3). That happens because the location 

that we get is an estimation done by a triangulation method of multiple cells instead of the 

geographical position of the cell that the caller is attached to (like what happens in CDRs) 

[13]. 

A handover record happens when a device switches between two neighboring cell areas. It 

is valid for active voice calls or mobile data accesses that did not suffer any interruption 

while crossing the cells. It is important to mention also that the records can be “initiated 

periodically or, while the cellphone equipment crosses the boundary of the Location Area” 

[14]. 

The variance of the signal strength is something that can occur in the GSM signals but also 

in WI-FI signals [2]. The fluctuation pattern of the cell identifiers plus the signal strength is 

useful to compute the exact location of the cell phone and estimate the user’s speed [3]. 

Therefore, travel modes can be inferred based on speed thresholds. Presumably, these 

methods are not the most accurate ones once “they can hardly distinguish transportation 

modes with similar speeds, such as buses and cars” [15]. 

2.1.1.3 Location-Based Social Networks 

LBSN’s (Location-Based Social Networks) constitute an up-and-coming data source because 

they have millions of adherents. So, the development of urban pattern models becomes 

facilitated once we have access to these platforms that store a vast amount of data relative to 

events/places that people went/visited. In fact, the potential of using LBSN like Twitter, 
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Facebook, Instagram, Flickr, Foursquare, among others, is enormous at the point that 

becomes relatively easy to distinguish, for example, areas in a city considered more attractive 

than others [16]. That occurs because people share information about their activities in real-

time, and they also reference the location where those activities take place. 

Many works try to use these LBSN’s mainly to extract spots with a high circulation of people 

in a city or identify spatio-temporal patterns. For example, the study of Leung et al. [17] tries 

to detect important places in a city through a vast amount of geotagged photos that users 

took and shared on Flickr. Mamei et al. [18] also try to use the same data source but to infer 

the tourists’ routines. However, this data source also has the potential to support 

applications that need to recommend physical locations to the user [19]. It is interesting how 

popular travel routes can also be determined through geotagged information coming from 

LBSN as it is shown by Wei et al. [20]. So, these studies demonstrate that “individual mobility 

patterns are strongly related to land-use patterns as well as the built environment of a city” 

[21]. 

2.1.1.4 Smart Cards 

When we talk about smart cards, we talk about cards within a tiny electronic chip that is 

recurrently used in public transportation to substitute tickets or magnetic cards. However, 

they are also used in many divisions besides transportation like healthcare, human resources, 

among others. This type of card is equipped with a little memory that can hold personal 

information like identification, transportation fares, and other things [22]. So, these cards 

have a very well-defined purpose which is usually the revenue collection or a way to provide 

a more comfortable and secure validation of the legitimacy of access to a determined service 

by a specific person. About the technical functioning of a smart card, Pellier et al. [22] detail 

in a concisely and understandable manner when they explain that a ”contact card (usually a 

memory card) is placed in direct contact with the reader“ while a smart card usually 

”communicates with the reader by high-frequency waves similar to RFID (Radio-Frequency 

IDentification)”. It continues by saying that “the energy needed is provided by the 

electromagnetic field generated by the reader”. Usually, these contactless cards are armed 

with NFC (Near Field Communication) technology. 

There are some interesting researches that use this type of data that we would like to 

highlight. For example, Morency et al. [23] implement data mining techniques on smart card 

data collections to know the variability of public transportation use and determining the 

frequency of use of bus stops. With a similar purpose, Bagchi et al. [24] attempt to reconstruct 

users’ trips and examine patterns of travel in order to adjust future transport offering. 

Furthermore, Trépanier et al. [25] use data mining methods to infer user behavior on public 

transportation and get some performance indicators. 

2.1.2 Non-Opportunistic Data 

Now it is time to explore a little bit more about the non-opportunistic kinds of data sources. 

As an opposed definition of opportunistic data, non-opportunistic data constitute all kinds 

of data that come from sources specifically developed to collect data to inferring an urban 

pattern or address an urban issue. So, in that sense, we are naturally going to talk about 

surveys and questionnaires, static data that belong to the public or private domain, and 

dedicated sensors.  
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It is consensual across many reviewed research articles that opportunistic data allow us to 

access a higher amount of data with a much less cost. However, non-opportunistic data are 

useful if used as a complement to help us building or validating our models. The non-

opportunistic data give us so detailed and precise information at such extent that it can be 

employed as a ground truth data. Nevertheless, using only this type of data is infeasible in 

the most cases because, as stated before, we drastically loose variety of data, number of users 

and the ability to do more extended observations [2]. 

2.1.2.1 Static Data 

Combining data sources that belong to the public, private, or commercial domain as a 

complement of other opportunistic data can be very useful. Many examples can be included 

in this group, for instance, bus network maps, street network maps, and weather forecasts. 

Institutions and entities (like municipalities or governments) plus online services (like Google 

Maps or Bing Maps) and crowdfunded data platforms (like OpenstreetMaps or Waze) might 

constitute free sources capable of providing valuable information. For example, according to 

[1], “London has created the London Database, making all of its data freely available – 

everything from bicycle rental locations, to house prices and locations of local playing 

fields”.  Another example is the fact that private companies are becoming open to the idea of 

combining opportunistic data sources with their internal sales and customer data to identify 

the best place to install their next store [1]. Static data can also be advantageous in knowing 

the “users socio-economic and demographic profile” [26] that we may lack in most of the 

previously explored data sources due to anonymization regulations. 

So, in fact, if we can use transport street network maps as well as public transports’ 

schedules, we might see an exponential increase in the value of our information [3]. 

Recurrently, in this type of situation, it is used map-matching algorithms that match the 

localization estimations provided by sensors (for instance GPS or accelerometers) and by 

network-based methods with the nearest roads drawn on the transport network maps. 

However, this works great if the transport network is not too ramified; otherwise, it will be 

generated plenty of different alternatives for one trip [2]. Yuan et al. [27] tried precisely to 

use transport network maps and to apply map-matching algorithms to infer the path 

traveled by the users. 

2.1.2.2 Surveys 

Surveys are a traditional way to collect data that require direct or indirect interaction with 

individuals. They are probably the most used type of data in scientific researches. There are 

plenty of examples of surveys that collect a variety of information, from assessing the 

number of people living in a nation, to evaluate the people’s reactions to a specific event or 

people’s mobility choices. They can take the form of a questionnaire to be filled by the person 

or can be a simple telephone interview. A survey of the entire population is also called a 

“census” [28]. 

In the context of urban spaces, and as already mentioned before, surveys can be 

advantageous if they are used as a complement to build our model or to validate it (they can 

constitute a way to label data to train or test a model). We emphasize the use of them as a 

complement because the surveys carry with them all the disadvantages that non-

opportunistic data have and that were already explained in section 2.1.2. However, it is 
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opportune to recall the work of Nikolic et al. that elaborates a little bit more about the 

infeasibility of relying only on surveys [2]. That work warns us of the fact that surveys 

usually only “select a small proportion of people to represent the whole population”. Besides 

that, for studies about mobility behaviors, it means that we will solely rely on “trips that take 

place more frequently with a longer duration ” [2]. Doing that results in “ignoring some 

occasional but still important trips as well as some short but frequently happening trips, such 

as travelling to hospitals and walking to dine in nearby restaurants” [2]. It also results in 

ignoring the occurrence of some irregularities in public transportation due to holidays, 

strikes, or catastrophes. Furthermore, it is impossible to study the social behaviors of 

unreachable people. 

2.1.2.3 Dedicated Sensors 

This section covers a wide range of sensors that are specifically developed to collect non-

opportunistic data. For example, when the goal is to detect mobility patterns, it is frequent 

the use of traffic sensors. Traffic sensors are often installed with the intent of retrieving large 

volumes of information about traffic streams on the roads. This retrieved information can be 

counting the number of vehicles, counting the number of pedestrians, making real-time 

monitoring of traffic status, and retrieving other useful information. Although this is an 

effective system, it has functional limitations. Ideally, these sensors would be installed all 

over the road network, but it is inviable due to “their expensive installation and maintenance 

costs” [14]. So, in practical terms, we gain in the quality of data, but we lose dreadfully in 

quantity and representativeness of the data. This dilemma is shared across the major of non-

opportunistic data sources.  

We can also talk, for example, about sensors that are specifically built to collect information 

about the atmospheric conditions like CO2 levels, temperature, humidity, and pressure. They 

contribute to give us a highly detailed image of the atmospheric environment composition. 

Though, thanks to the use of opportunistic data coming from smartphone sensors that can 

measure similar factors, we can have a geographically broader perspective of the 

atmospheric composition with a much less cost. GPS sensors on buses are another example 

of dedicated sensors, in this case, with the particular purpose of knowing the exact real-time 

location of the buses and, consequently, calculate arrival times and other valuable 

information.  

2.2 Data Challenges 

Recurrently, we try to use data that was not generated specifically for the issue that we are 

addressing in the study. So, it is just expectable that the data is not fully ready to be applied 

to build the models that we want and that we might have to do some treatment, subsampling, 

and other pre-processing methodologies first. Thereby, it is in this section that we are going 

to scrutinize the most typical challenges that are faced in the research community that 

obligates us to look and treat the datasets carefully before using them to infer urban patterns. 

2.2.1 Location Uncertainty 

This problem is mainly characteristic of sightings data and GPS data since their location 

estimations are done by the triangulation method of cellular towers and satellites, 
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respectively. For this reason, every location estimation generated is unique, and, 

consequently, it becomes difficult to define the different activity locations. That causes 

fluctuations in the location estimations that need to be aggregated in some clustering 

technique [11].  

Towards solving these fluctuations, Bian et al. suggested a model-based clustering method 

[29]. Some new techniques aggregate traces by segmenting one trajectory into several 

sequences of segments. Here, one trajectory of a user refers to the user’s available traces of 

one day. In the trajectory-segmentation methods, an activity location is defined as a sequence 

of consecutive traces bounded by both temporal and spatial constraints [30]. Finally, Wang 

et al. suggested to apply a revised incremental clustering algorithm to agglomerate traces 

[11]. 

There is only one problem with using clustering techniques to solve location uncertainty. 

When we agglomerate the location estimations and find the activity location in different days 

of traces, it becomes difficult to identify places that we daily frequent (as is the case of home 

and workplaces). That occurs because, on a different day, we possibly end up with different 

computed localizations for the same activity location. Nevertheless, Wang et al. [11] succeed 

in solving this problem by applying the agglomerative clustering algorithm into the different 

activity locations classified in multiple days. Another way of contour that problem is by 

dividing the range area of the study into grids and consider all the identified clusters that 

are circumscribed to a specific cell of the grid as the same activity location [31]. 

2.2.2 Oscillation 

This problem can also be called “Ping-Pong effect” and affects W-FI and GSM signals (CDRs 

and sightings data). This effect is responsible for alternating the association of the user’s 

phone to different cell towers even when the user is not moving. That happens because of 

load balances between different cells within a particular user’s range [11].  

Typically, when oscillation occurs, a specific pattern is detected characterized by 

intermittency and a loop of the locations in a teeny period (considering a short time window 

as proposed by Wang et al. [32]) like, for example, L2-L3-L2-L3 or L2-L3-L4-L2 (L means location 

here). If these locations are quite far from each other, it means that the user had to travel at 

an incredible speed. If an unrealistic switching speed is detected (>= 400 km/h), then we are 

in the presence of an oscillation [11].  Despite these facts, there is a certain level of risk 

associated with removing these oscillating sequences because it may result in removing real 

visited places that the user visited intermittently throughout the day. To mitigate that risk, 

Wang et al. [11] alert us to the alternative of adding one more constraint beyond the 

calculation of the switching speed. Then, two consecutive changes in location constitute an 

oscillation if the angle formed by the change in the heading direction is equivalent to 180º. 

So, in the face of oscillation, we need to decide which location will be trustworthy and again, 

as pertinently remembered by Wang et al. [11], it should be the one that is visited most 

frequently. A more recent approach from Wu et al. [32] suggested having not only the 

visiting frequency but also the average distance to other locations as selecting factors to 

decide which place is the real one. So, the best methodologies to deal with this question are 

pattern-based and hybrid methods. According to Wang et al. [11], the first one “examines 

trace sequences and the one that exhibits a specific switching pattern will be identified as the 
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oscillation case”, while the second one “utilizes temporal and/or spatial information to 

consider velocity or other measurements”. 

2.2.3 Spatial Resolution 

Spatial resolution constitutes the principal worry in CDR data. CDRs are coarse-grained, 

which means that they have a low spatial resolution of the location’s estimation. This 

estimation depends on the cellular towers’ density, and it is reported to be approximately 

300m on average in urban areas for sightings data [11]. However, For CDRs, this value varies 

between 50 and 200 meters on high-density areas [3] and several kilometers on low-density 

regions [11]. Figure 2.6 tries to illustrate a comparison in precision ranges among the primary 

geolocation data sources. To contour this problem, particularly in CDRs and sightings data, 

we can add different data as input like, for example, the strength of the signal. We can 

subsample our dataset so that we can obtain only the records that take place in highly dense 

urban areas.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 – Comparison in precision ranges among the main geolocation data sources. 

2.2.4 Temporal Sparsity 

Most sensors and other opportunistic data sources need user initialization before starting to 

generate records. After that initialization, records are produced in the background within 

small intervals. However, long temporal intervals seriously affect CDRs and SMS data since 

the generation of each record is highly dependent on the intervention of the users. So, it is 

challenging to compass all the user’s activities, and locations traveled during the day. As 

Wang et al. state, the “interval for a sample CDR data is reported with a mean of as long as 

eight hours. And a median of slightly longer than one hour is reported for a sample sightings 

data” [11]. This results in inferring deficient origin-destination (OD) paths because a user 

might be observed to have call/message activity in place B and C but, in reality, the origin of 

the trip was in place A and the destination of the trip was in place D. So, frequently, we 

bypass unobserved segments of the user’s trips. The OD matrixes with the observed places 

can be called “transient OD matrixes” [9]. Figure 2.7 illustrates the scenario previously 

described. In the literature, there are not many works that try to eradicate this problem. It is 

a problem that fundamentally affects the completeness and the accuracy of the estimated OD 

matrixes. Research works that try to solve this issue will be scrutinized further in section 3.1. 

As a last resort, we have the possibility of subsampling the dataset so that we end up with 
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only highly active users. Nonetheless, this is not the ideal solution because we might become 

having significantly fewer data. We need to be careful if we are choosing excessively highly 

active users also because when an extremely high number of calls are made, that could mean 

that bots made them or we are dealing with a shared phone instead of a personal one [26].  

2.2.5 Signal Noise and Interference 

There is always a noise associated with cellular network-based data caused by signal drift. 

What is usually done to solve this problem is applying “time order methods to ignore the 

signal drifts” [2] and then, using clustering techniques, we can obtain the information that 

matters from the raw data, just like how it is done in this research [33]. 

 

GPS signals are not immune to this and may also suffer from interference and faults 

(depending on the local environment). Map-matching is a frequently used technique that 

empowers us to surpass some errors, while others are not solvable and require us to 

eliminate the records. Information coming from electromagnetic signals transmitted by all 

kinds of sensors or cellular networks are subject to this kind of vulnerability. 

 

 

Figure 2.7 – Places visited by a user during a day. The dashed segments represent unobserved places from 

CDRs; the ones that are not dashed represent the observed places. The figure is originally from Charisma 

et al. [9]. 

2.2.6 Data Fusion 

Because we talk a little bit about data fusion in the previous section, it is time to explore more 

deeply this method that already proved to be a great tool. This fusion of multiple inputs to 

our model can include data from different smartphone sensors, different cellular network-

based data, and various location-based social networks. We can experience a boost in our 

model’s performance with the usage of more data sources. Nevertheless, we cannot say that 

the more data types we use, the more performance we get. In practice, that brings us some 

problems regarding different data formats, different units, different scales, privacy issues, 
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and other issues [2]. For that reason, the work review of Nikolic et al. [3] reports that “the 

studies that use three or more smartphone sensors are quite rare”. The concern that lies 

underneath this type of fusion is that it implies the association of multiple types of data of 

the same individual. That is complicated to obtain because of the increasingly restrictive 

anonymization policies. 

Nonetheless, this does not necessarily constitute an obstacle to the improvement of the 

algorithm. Many research works prove that point like, for example, the one by Charisma et 

al. [9] that tries successfully to infer OD patterns by fusing CDRs with data coming from 

traffic sensors. Another good example is the use of public transportation network data and 

timetables to improve the performance of public transportation mode detection [3]. 

2.2.7 Big Data 

We are talking about the uninterrupted generation of records of thousands and thousands 

of mobile devices throughout the day. That massive generation imposes us an efficient and 

smart way to not only store but also manage data in a way that we can treat it, process it, and 

operate it. Then, it is required to develop some mechanism and adopt adequate tools to 

outpace this barrier. If the volume of data reveals to be inviable to be managed locally, we 

need to solve the problem by other means. Wang et al. [2] proposed an adjustment of spatial 

and temporal resolution of the geolocation data in order to solve this issue. Zheng Yu [34] 

suggests another two alternative solutions: (1) use clustering techniques to agglomerate 

(almost) identical trajectories; (2) develop an appropriate data management framework. 

Cloud solutions like Amazon Web Services and Google Cloud Platforms have proven to be 

very useful nowadays in terms of storage, process, query, and application of algorithms on 

significant volumes of data. In the work of Jundee et al. [35], for example, it is suggested to 

use precisely the Google Cloud Platforms to store high volumes of CDRs. 

2.2.8 Ground-Truth 

A crucial part of building our models is their validation. We can validate our models by 

introducing in them ground-truth data; in other words, data that is previously known to be 

truthful. Therefore, it can be used to label data and test our model comparing the predicted 

value directly with the real value. We can obtain ground-truth by fusing our initial data with 

other data sources (data fusion). In this sense, we can use, for example, static data provided 

by public or private institutions or companies. Another solution to find ground-truth data is 

to do detailed surveys (or use available ones). It is possible too to ask the user to answer some 

questions inside our app in order to label the data (without being too intrusive). We can also 

rely on calculations like transport mode detection, travel times, routes, and other 

computations of LBSs (Location-Based Services) like Google Maps API. Check if the 

calculated OD-matrix fits the gravity models. 

2.2.9 Real-Time Dilemma 

We say that the system is a real-time one if, for the input that the user generates at every 

moment, it can produce a predicted output. Not every data source may permit this kind of 

prediction. For example, from the literature review, it was not found the development of a 

real-time system to detect transportation modes based on just CDR data. The viability of a 
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real-time system is highly dependent on the classification problem that we are addressing, 

the types of data that are available, the fine-tuning of our model, the methodologies and 

algorithms used, and the quality and quantity of the dataset. Nonetheless, real-time models 

are not the ideal for every situation; in fact, there are plenty of scenarios in which we are only 

interested in developing static models. One possible situation is the need for having a 

periodic overview of the user's demands for travel modes and adjust the transport solutions 

accordingly. 

2.2.10 User Related Issues 

Here, we will address additional issues that we need to have into consideration when we are 

dealing with opportunistic data. These issues represent challenges whose responsibility is 

more centered on user preferences than the treatment and processing of the data itself. These 

preferences might impact the way we can compromise the degree of collaboration of the user 

in our study and, conversely, the way the user can bias the obtained results. 

Privacy and Security 

The security and privacy of the users that provide the data is a growing worry in our days. 

As this is a significant concern, data coming from the smartphone sensors or cellular 

networks cannot identify a user at any circumstance. CDRs that are collected for billing 

purposes by mobile operators suffer an alteration, namely, the anonymization of the user 

identity in such a way that his/her cell phone number is hashed (a unique identifier is 

generated) [36]. Even though this is important to protect the right of privacy that people 

have, this is an obstacle in what concerns to, for example, the fusion of multiple types of data 

of the same population (either to build or to validate our model). That is because we lose the 

possibility of associate different data records from different sources to the same user that 

produced them [2]. We also lose the possibility of knowing valuable information about the 

social-economic status of the user. 

Intrusiveness 

When we depend on applications to send/receive user’s data, we need to be concerned about 

intrusiveness. That means that we do not want to bother the user in such a way that he/she 

would consider the generation of those data records uncomfortable, or stressful. The degree 

of intrusiveness of smart card technologies, cellular network-based activities, or the use of 

location-based social networks is considered acceptable. That is because the user is not 

additionally bothered with any notification. Instead, the generation of records usually 

happens with the spontaneous initiative of the user. Conversely, intrusiveness becomes a 

concern when it is required the user to interact regularly with some third-party app that uses 

smartphone sensors or to answer some questionnaires that serve as ground-truth or to install 

some application that can burden them with an abundance of notifications. So, this is a 

fundamental issue to have into account if we want a close collaboration with the users. 

Mobile Activity Preferences 

This issue mainly affects CDRs and SMSs data and, generally, it is an issue that is ignored in 

the literature. We need to be conscious of the fact that the user can have some preferences in 

what regards to the location where he wants to make a call [37]. For example, we might step 

outside our workplace to receive or make a call so that we will not disturb other co-workers. 
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Many more possible scenarios exist and would perfectly exemplify the issue of not always 

receiving or making a call in the same location where we actually were. Besides that, the user 

might want to avoid receiving/making calls or receiving/sending messages during a 

particular hour of the day. That can bias the generation of records and guide us into 

misleading interpretations. 

Service Adoption 

Smartphones are probably the most widespread and most personal gadgets that accompany 

us. Location-based social networks like Facebook are also services that have a massively high 

number of adherents. Notwithstanding, we must have in mind that there are still many 

people that did not adhere to those services or gadgets yet. The same principle is valid to 

data from cellular networks. The ownership of cellular networks is distributed among 

multiple mobile operators. Thus, some users belong to a specific mobile operator and do not 

belong to the others. There is also the possibility of the same user possessing more than one 

smartphone or more than one SIM card that belongs to a certain mobile operator. All these 

factors must be remembered when we want to extrapolate conclusions from our sample to 

the entire region or country. Knowing the distribution of percentages of service adoption in 

the region of the case study is very useful in these situations. We have also to be sure that 

when we have mobile data, we are not using data from fixed or shared phones because, in 

that case, we would infer erroneous patterns about the user. 

Battery Consumption 

Here we might focus our attention on the use of mobile access data and smartphone sensors 

that require the user initialization initially but then reduces the temporal sparsity by 

sending/receiving signals automatically at much shorter intervals. The immediate drawback 

of this is the faster drain of the battery. GPS sensor is still the one that drains the battery faster 

[7]. Therefore, there are some principles that deserve our attention when it comes to 

developing an application that will make use of user’s smartphone sensors: (i) find a trade-

off between the sample rate and battery consumption; (ii) make sure that the sensors are only 

activated when it is strictly necessary and, hence, avoid having the app running in 

background when it is not needed. In general, applications are becoming very energy-

efficient in such a way that we do not need to avoid including or replacing any data source 

in our research studies because of energy consumption. However, this question continues to 

be very important because smartphones, nowadays, are more and more burdened with new 

functionalities and higher resolution displays that do not help in any terms the preservation 

of the battery’s consumption. Highly battery consuming ways of collecting data would result 

in a weak collaboration of the user with our studies or much shorter observations of their 

daily activities. 

Middle-Trip Problem 

This problem is characteristic of CDRs and SMSs. We must be careful when we plan to 

identify activity locations once not every CDR or SMS is received/sent in a stopping point. 

Instead, he/she might be in the middle of a trip [37]. So, to avoid making misleading 

conclusions, we need to take more extended observations. Thus, the repetition of the call 

activity in specific locations during determined days will tell us the central activity locations 

of the user. Of course that this constitutes a problem when the goal is to infer places that 

were visited sporadically. 
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Mobility Modelling 

Mobility models allow characterizing the movements of users concerning their location, 

velocity and other mobility indicators during a temporal window. Models of human 

mobility are relevant because, besides other fields, they ‘have broad applicability in mobile 

computing, urban planning, and ecology’ [38]. There is an overabundance of articles that 

try to model mobility in urban spaces using opportunistic data. Those works encompass key 

topics like inferring of OD flows [39], detecting transportation modes [40] or identifying 

activity locations [41]. The following subsections explore in more detail the current state-of-

the-art research techniques in five classic subtopics that permit us to estimate the mobility 

of the users. The final subsection will serve us as a reflection about the limitations and ways 

that the research in this field can evolve. It will also be addressed how this work makes 

relevant scientific contributions to this subject. 

3.1 Origin-Destination Flows and Activity Locations 

A key component of mobility modelling is inferring the trips of the users. When we talk 

about trips, we are talking about the travels between an origin point and a destination point 

that end up with an activity. Calabrese et al. [42] explore the usage of sightings data in order 

to calculate these OD flows. Wang et al. [43] make the same but using probabilities of 

transportation mode choices, vehicles occupancy, and CDR data instead. Yang et al. [44] 

showed that through generative algorithms like Bayes Nets and Markov random field 

classification, it is possible to detect activity locations like home, work, shopping, leisure 

and other places with reasonable accuracy.  

Fusing CDRs with data coming from traffic sensors,  Charisma et al. [9] are capable of 

developing an OD matrix. The traffic counts of the different locations are used to validate 

the origin-destination predictions. In order to determine the real origin-destinations, it was 

necessary to scale a transient OD matrix to match the actual traffic flows. Here resides the 

central assumption/limitation of this study: it overlooks “the heterogeneity in call rates from 

different locations (e.g., more calls may be generated to and from railway stations compared 

to and from offices with land telephone lines, etc.)”. Using non-supervised learning 

algorithms, Augusto et al. [45] try to infer users’ trips from their CDRs and then, from the 

travel behaviors, characterize the mobility of the population (for example, what is the 

percentage of commuters or how many of them work far from home). 

The study of Zhao et al. [37]  is fascinating in the sense that it proposes a supervised learning 

technique to obtain a more detailed characterization of the users’ trips. That implicates the 

approach of an issue that has been grossly ignored by those who tried to characterize the 

origin-destinations of the users’ travels. We are talking about detecting if there are unknown 

visited places besides those that can be seen by looking through CDRs. Its solution relies on 

a data fusion technique between CDRs, SMSs, and mobile internet accesses to form labeled 
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data that will be the base to train and test classifiers. The dataset used encloses records from 

three million users’ from a Chinese City during November 2013.  However, only 100.000 

users were randomly selected. As they made data fusion, that number decreased even more. 

That is because there is only interest in users that use mobile internet accesses and 

make/receive at least one call/SMS during the month.  

Throughout the paper was assessed the performance of three different methods: artificial 

networks, support vector machines, and logistic regression. This paper is useful not only to 

comprehend more profoundly how can we extract more accurately trips from mobile billing 

data but also address a well-known problem of using CDR data to obtain users’ routes - the 

temporal sparsity. In most cases, the user does not make or receive a call in every location 

that he visits, so the probability of extracting unrealistic and incomplete trips from CDRs is 

high. Therefore, a framework is proposed, and a scheme of it can be seen in Figure 3.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 – General scheme of the framework used by Zhao et al. [37]. The figure is an adaptation of 

theirs. 

In this situation, we have four layers as we can see on the right side of the image above 

(Network Sensor, User Position, Movement State, and Mobility). The first layer is, essentially, the 

information that we can obtain from CDRs: location and time of the call that was received or 

made by the observed user. After some localization procedures that encapsulate methods of 

subsampling and treatment of location uncertainties and errors, we come up with the user 

Presences that are part of the User Position Layer. After that, it is time to identify activity stops 

- also named as Observed Visits by the author. Every time two consecutive observed visits occur 

in different locations, we have a Displacement. The identification of these two elements is 

made through a movement state identification that catapults us to the Movement State Layer. 

Finally, the bigger contribute of this paper - investigate if in every displacement we have a 

hidden visit. That is made through machine learning algorithms previously mentioned and 
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constitute the Hidden Visit Inference process. Once we got the unknown sites and the observed 

ones, we form the OD trips to compose our Mobility Layer.  

The Hidden Visit Inference is treated as a binary classification. For each displacement between 

location A and B: a) there is a hidden visited place, or b) there is not hidden visited place. 

Not all observed visits are analyzed but only displacements, what constitutes a limitation of 

this study. It is a limitation since the authors are assuming that a user cannot visit any 

different place during the time between the two (and same) observed visited sites. So, the 

basic idea is to use CDRs and SMS records to extract the features while the data from mobile 

internet accesses are used as labels, as ground truth data. Figure 3.2 depicts the sequences of 

displacements made by the same user over time but seen through different types of data at 

the same time (from CDRs and mobile internet accesses). As we can see, there are two types 

of user displacements that need more in-depth analysis. In situation 1, when the user is seen 

through CDR data moving from C to D, we notice that the mobile internet access data 

(MIAD) encapsulates the hidden visited location (W). Nonetheless, in situation 2, despite 

existing two additional records in the MIAD, those give the same site of the destination of 

the displacement (F). So, in this case, no additional visited location is revealed. 

 

 

Figure 3.2 – Visited places of two different data sources with the same temporal window. The figure is 

adapted from the work of Zhao et al. [37]. 

Hereupon, several features are extracted and selected from CDRs: spatial features of the 

displacements, temporal features and personal features of the user (e.g., the number of voice 

calls or the number of active call hours). Four methodologies were tested: a naïve rule that 

assumes no hidden visited places; a logistic regression; SVM (Support Vector Machines) and 

ANN (Artificial Neural Networks). All three classifiers can increase in the order of 10% the 

correct classification of an OD trip having hidden visited places or not (when compared to 

the naïve rule). It was possible to increase this value to a maximum of 11,1% by using an 

ANN.  

Another of the very few researches that attempt to detect hidden visits in an OD trip is the 

one by Bayir et al. [46]. Nevertheless, they try to impose temporal constraints or thresholds 

instead. For example, it would be assumed to exist an unknown visited location between 

two different observed locations if the elapsed time between them was higher than a certain 

threshold (10 mins or 1 hour for example). That is, in fact, a very naïve way to fix the problem 

because we will end up with an excessive number of visited places that do not correspond 

to reality. The reason for that is that we are assuming that the user mandatorily visits, at 

least, some new site every x minutes (where x is our threshold). So, a statistical learning 
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approach theoretically can surpass the efficiency of any heuristics that we can use in this 

case. 

Another notable research work in this matter is one from Demissie et al. [26]. This study 

pretends to estimate the origins and destinations of the users’ trips from Senegal using CDRs 

as well. Commuting and other irregular trips are inferred. Having Senegal as the country of 

the case study is appealing in a way that it provides the opportunity to demonstrate how 

countries that have weak transport infrastructures can improve them by taking advantage 

of mobile operator data to infer mobility behavior. In order to discern the essential places 

like workplace and home, they examined the locations where there was call activity during 

previously defined working hours (from 8 AM to 7 PM) and non-working-hours (from 7 

PM to 8 AM), respectively (always on weekdays).  

 

Despite promising, this study has some limitations. In an attempt to escape from dealing 

with hidden visited places, the locations inferred are on a district level. Consequently, no 

precise location of the cellular towers corresponding to home or workplace is provided. 

Beyond this inconvenient, it is only inferred commuting displacements across districts; no 

detailed commuting routes are obtained. Also, the data could have a more extensive 

temporal window. Only CDRs of January 2013 were analyzed although it involves an 

appropriate number of users (nine million) and records (43 million).    

The paper of Jundee et al. [35] is also remarkable. It is innovative once it proposes two 

different techniques to infer the exact routes in commuting trips (home to the workplace and 

workplace to home). In order to detect these commuting locations correctly, it was done a 

subsampling so that “each user must have at least 100 total connections during the morning 

commuting hours (7 AM – 11 AM) and 100 connections during the evening commuting hours 

(3 PM – 7 PM).” The authors used the Google Maps API to infer possible commuting routes. 

With the workplace and home locations previously estimated, they let Google Maps Platform 

generate the commuting directions that it considers being the most probable for each user. 

From here, it is only required to apply a method that enables us to choose the right route 

among the options that the API suggests. Now is when the two techniques previously 

mentioned are needed. The first one is the method of Minimum Distance. So, assuming that 

we are calculating the exact route from home to the workplace, we then proceed in finding 

the calls and respective base stations activated during the morning hours. Secondly, we must 

calculate the Euclidean distance between each waypoint given by the google API of each 

route and each base station activated. After that, we sum all the Euclidean distances obtained 

for each waypoint and each base station and divide by the number of waypoints. Posteriorly, 

we should repeat the process for all the routes suggested by the Google Maps API. Finally, 

we choose the path that has the smaller value of the sum previously calculated.  

During this process, an important issue had to be addressed. The waypoints given by the 

API are not equally distanced along the route, and the number of waypoints of a path may 

vary. In practice, what this means is that we are going to have, for example, a different 

density of points that will cause the calculation of a variable number of distances and that 

will distort the result. Figure 3.3 illustrates this problem. It is shown that we try to calculate 

the distance between the waypoints and a base station, and, consequently, there are much 

denser red areas in the curvy parts of the route. Firstly, a grid is added and used as a 

reference to interpolate and extrapolate the waypoints. This grid allows the normalization 

of the space that exists between them. For each waypoint, we create a new data point that 
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will be the centroid of a cell’s grid. Figure 3.4 exemplifies this process.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 – Visual representation of the method of Minimum Distance. Red lines represent the Euclidean 

distance between each waypoint and a base station. Each red circle represents a base station in which call 

activity was detected. The figure is originally from Jundee et al. [35]. 



 

Figure 3.4 – Visualization of the interpolation of waypoints and the respective grid. The figure is originally 

from Jundee et al. [35]. 

The second alternative method proposed by the authors is the method of Maximum Overlap. 

The steps of calling the Google Maps API and interpolating the given points remain. 

However, instead of calculating the Euclidean distances, we need to see how many points 

fall into the base station coverage areas during the route. The route that has more points is 

the one that is chosen, as it can be seen in Figure 3.5.  

Despite being very promising and refreshing, these two techniques do not consider the call 

frequency of the user in each base station locations. It would be interesting to give less 

importance to locations where there were less activity and greater weight to those where call 

activity is registered on a more regular basis. 
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Figure 3.5 - Method of Maximum Overlap. At green, we have a base station in which call activity was 

detected. The figure is originally from Jundee et al. [35]. 

3.2 Transport Mode Detection 

Knowing the transport modes patterns of the citizens can enhance the quality of life in a 

metropolitan region.  For the moment we detect the travel modes, CO2 emissions can be 

estimated, and, once it is done, more suitable and ecological alternatives of mobility can be 

suggested. Furthermore, once the inference of the transportation modes chosen by the 

civilians is made, a panoptic view of the current demand and the necessary supply of public 

transports can be deduced. Detecting transportation modes can also be useful to predict 

traffic jams and activate contingency plans to avoid them. 

The current techniques to detect transportation modes can essentially vary in three different 

fields: the type and the number of input data; the classification algorithm used; the categories 

of transport modes that the algorithm can identify  [3]. In general, GPS and the accelerometer 

are, comprehensively, the most used sensors to detect the transportation mode. It is worth to 

mention that it is an arduous task to identify transportation modes only by using GSM data 

unless we use other complementary data to make data fusion. That is because this GSM data, 

in most cases, is coarse-grained.  

Once the data is obtained, the next step is extracting features that are considered relevant to 

the learning process. In what concerns to algorithms, according to Nikolic et al. [3], we can 

divide them into two categories: generative algorithms and discriminative algorithms. 

Generative algorithms deal with the probabilities that some events may happen in the future 

based on previous ones (e.g., Bayesian Networks or Hidden Markov Models). Discriminative 

algorithms are related to clustering techniques and some supervised learning techniques like 

support vector machines or neural networks. Regarding these algorithms, “approaches 

based on Decision Trees appear to be the most suitable for achieving satisfactory accuracy 

while using the least resources” [3]. 

The main categories that pop-up during a literature review about the use of cellular network-

based data to detect transportation modes are: car, bus, walking, and stationary. However, 

by using data from built-in sensors, we are theoretically capable of classifying more 

complicated transportation modes easier (e.g., biking, metro, train, running, or motorcycle). 

For example, in the paper of Nitsche et al. [47] it was possible to identify nine distinctive 



Chapter 3 

28 

 

travel modes using just GPS and accelerometer data, namely: “walk, bicycle, motorcycle, car, 

bus, electric tramway, metro, train, and wait”. According to Nikolic et al. [3], all the different 

travel modes can fall into one of the following two major categories: motorized and soft 

modes of transport. Intuitively, cars, buses, and metros are the motorized ones while 

walking, biking, running, and stationary are the non-motorized ones (Figure 3.6). It is notable 

to mention that usually distinguish between motorized segments from non-motorized ones 

is way easier than classify only among motorized ones or only among non-motorized ones.  

Figure 3.6 – Distinction between motorized and soft modes of transport. 

Anderson et al. [48] try to use unsupervised learning techniques upon data of the fluctuations 

of the signal strength and the change rates of the connected cells. They successfully predicted 

with 92%, 80% and 74% of accuracy the travel modes of stationary, walking and driving, 

respectively. For the same input data and travel mode categories, Sohn et al. [49] saw their 

work surpass that performance with their algorithm. They proposed a framework that has 

two stages. In the first phase, it is classified if the segment is stationary or not. If it is not 

stationary, then it can be walking or driving, and a second classifier is used to verify that.  

The research of Wang et al. [15] is also promising in the sense that looks for distinguishing 

the same categories of travel modes but using CDR data. Given an origin and a destination, 

travel times are computed and compared with travel times that Google Maps API gives. 

Those travel times are calculated assuming that the user is or walking or stationary or 

driving. Distribution of the number of travels and their different travel times is made and, 

then, the travelers are clustered (using k-means) into subgroups depending on the density. 

The different subgroups identified correspond to various transportation modes (Figure 3.7). 

This work is innovative because it suggests a very cheap and simple way of detecting 

transportation modes through travel times. The entire process consisted of the following six 

steps: determining trips; subsampling of the dataset; trip data grouping; downloading travel 

time; noise reduction, and, finally, data clustering. There is an inconvenient that comes from 

using cellular network-based data – the coarse granularity of the data makes it challenging 

to detect transportation modes for very short trips. Therefore, the study only concentrates on 

long trips above 3 km. 

The articles of Jundee et al. [35] and Phithakkitnukoon et al. [50] provide an original way of 

detecting travel modes by using Google Maps API too. Notwithstanding, the methodology  
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Figure 3.7 – Different subgroups identified from users’ travel times. The figure is originally from 

Andrienko et al. [31]. 

is significantly different. In an effort to calculate detailed commuting routes for the users, 

they resort on Google Maps API calls to obtain possibilities of routes for each user. Every one 

of these possible routes has a travel mode associated. Then, the authors need to make API 

calls submitting specific travel modes – in this case, API calls for the car and the bus. Once 

the most probable route is determined by following the two techniques previously detailed 

at the end of section 3.1, the most likely travel mode adopted is also automatically known. 

3.3 Traffic Estimation 

Another way of characterizing the mobility in urban spaces is by estimating the traffic in 

their transport infrastructures. There are two significant measures in traffic estimation: traffic 

volume and flow rate. The first one is related to the duration of the traffic count that can be 

hourly, daily, or another period. The second measure “represents the equivalent hourly rate 

of vehicles traversing a roadway system during a time interval” [14]. Two basic statistics in 

this field are: “annual average daily traffic” and “average daily vehicle distance traveled” 

[14]. GSM data is still one of the less used data sources in this field but let us have a look into 

some of the studies in this field. 

For example, Varaiya et al. [51] took advantage of using wireless magnetic sensors to know 

how many vehicles are moving in the road in real-time. Using cell phones in cars as GPS 

sensors, Herrera et al. [52]  took measurements of the velocity of the traffic flows. Combining 

information about handovers and GPS sensors in buses and taxis, Calabrese et al. [53] tried 

to infer real-time traffic conditions and movements of pedestrians throughout the city of 

Rome. Becker et al. [54], through handover data, attempted to estimate traffic volumes and 

vehicle counts from the city of Anytown, EUA.  

Finally, the paper of Demissie et al. [14] is an exciting one because it tries to infer possible 

traffic jams by making use of handover data. Three categories of hourly traffic count were 

established: high, medium, and low. In order to do this, it was given priority to cellular 

towers that are close to the roads. A multinomial logit model was built, and an ANN was 

trained, providing a classification accuracy of 76.4% and 78.1%, respectively. The results are 

very encouraging; nevertheless, some limitations arise. For example, the calls whose 

durations are not long enough to traverse the boundaries of two cells are ignored.  If the calls 

of the users are not made while driving, then they cannot be considered as well. Finally, the 
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study was “carried out on an urban road network, where the traffic flow is more likely to be 

influenced by entry and exit roads, traffic control devices, intersections, and presence of 

turning movements” [14]. 

3.4 Land Use Characterization 

The land use in urban spaces is increasingly vital to be characterized once the tendency is 

people living more and more in cities. When we consult the World Urbanization Prospects 

of the United Nations [55], we see that the prospects for 2050, it is probable that 66% of the 

entire world will leave in urban regions. So, it is crucial to study in detail the use of these 

spaces and understand how they affect the mobility patterns and dynamics. With that 

purpose in mind, it is essential to use sensing data so that we can prevent the high cost and 

extremely time-consuming process of using surveys to do so. Using satellite remote sensing 

datasets also has its limitations in what regards to urban planning. It becomes impracticable 

to predict land utilization from the physical characteristics and, then, we are diminished to 

infer the land cover [56]. We say that this is impracticable because frequently the same 

infrastructure can be used for multiple and completely disparate purposes. An example of 

that is the fact that nowadays, a ”residential place can function as a location for employment 

or education” [57].  

The multiple regions of cities can be analyzed for their particular use function and, 

consequently, every one of these is characterized by the activities that occur in its area. The 

cities nowadays can hold a plethora of functions that guarantee, for example, commercial, 

mobility or residential uses. These different uses relate to various human activities like 

commuting, shopping, working.  

Many studies tried to characterize these urban land uses. Barnsley et al. [58], for example, 

tried to characterize land use using remote sensing images and spatial metrics. Nevertheless, 

cities are artificial living organisms, which means that they are dynamic; they are in constant 

evolution, in unstoppable expansion, redevelopments, and reallocation of services and 

people. People interact, and their activities occur in a plenty number of different POI’s 

(Points of Interest). Remote sensing and field mapping methods are pretty useful to extract 

texture and other physical properties of the land. However, using them is not the best way 

to infer interaction patterns of socioeconomic contexts [59]. Here comes in the possibility of 

trying location-awareness sensing data, POI data, and social media to have a more temporal 

and spatial notion of the human occupation of the land at an individual level. Studies by Pei 

et al. [60], Steiger et al. [61] and Yao et al. [62] are precisely focused on that potential. The 

power of social media networks (like Facebook, Youtube, Twitter, Foursquare) that contain 

valuable and massive geo-tag information provided by the users to infer land uses is also 

demonstrated in the works of Bawa-cavia [63] and Thakur et al. [64].  

Geo-located tweets have excellent potential to be very useful in characterizing urban land 

use. Notwithstanding, it is complicated to deal with these data sources because they are 

countless and disorganized. Soliman et al. [57] made use of 39 million geo-located tweets and 

“two independent datasets of the City of Chicago: 1) travel survey and 2) parcel-level land 

use map”. Zhan et al. [65] had a similar purpose because they derived temporal patterns 

from Foursquare users’ activities information and associated them with different land uses. 

Noulas et al. [66] tried to classify geographical areas also recurring to Foursquare data but 
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without considering the temporal patters.  

To detect land uses in China, Liu et al. [67] combined too Foursquare data with data from 

OpenStreetMap. A land-use map of the city of Beijing was also elaborated by Hu et al. [68], 

but this time by synthesizing POIs with Landsat images. Relying on the predictability of 

users’ movements, Song [69] tries to classify land uses by analyzing spatial patterns in Twitter 

data. Fusing POI type data with data about taxi pick-ups/drop-offs, Yuan et al. [70]  inferred 

various urban functions of the city of Beijing. To do that, they use LDA (Latent Dirichlet 

Allocation) and Dirichlet multinomial regression. The article by Hobel et al. [71] stands out 

from the others in the way that they were able to identify shopping areas by using features 

like the number of ATM’s or the number of restaurants. The model was developed using 

POIs from OpenStreetMaps. 

3.5 Social Behavior 

Social behavior is related to mobility patterns in the sense that social and other external 

factors can influence, for example, our choice of transportation mode or our route choices. 

Yuan et al. [27] correlate some mobility measures with the gender and the age of the users. 

Among other interesting conclusions, it was discovered that adolescents and the elderly do 

not travel as long distances as the middle-aged and youth people. Isaacman et al. [72] 

concluded that people tend to travel more in the summer than in the winter. So, the seasons 

can actually influence our amount of travel. Furthermore, Cho et al. [73] show us that long-

distance trips are way much influenced by our social ties when compared to short-distance 

ones. Lu et al. [55] tried to study human migration patterns after a catastrophe that happened 

in Bangladesh in May 2013. They used CDRs to characterize the quantity, direction, duration, 

and seasonality of the migration. Blumenstock [74] was also able to infer internal migration 

patterns through the analysis of CDRs.  

According to Deville et al. [75], CDRs are, in fact, a great tool to predict population 

movements. Calabrese et al. [59] also make use of CDRs, but this time to relate users’ calls 

with their geographical locations. They discovered that 90% of people that called each other 

were, indeed, covered by the same cell tower. The contributions of Wang et al. [76] and Tatem 

et al. [77] are relevant to understand epidemiology phenomenon and virus propagations by 

characterizing human mobility through the mobile operator data. Also, Eagle et al. [78] help 

us understand how people adapt and change their behavior in communication to be more 

similar to their new social environment. The discovers from this study constitute a critical 

source of information to event management and congestion reduction.  

 

With the purpose of examining the evolution of the tie strength, sociality levels and other 

factors among users’ social ties during migration periods, Phithakkitnukoon et al. [79] made 

use of 11 months of CDRs from Portugal.  Valuable conclusions were discovered by Krings 

et al. [80] as well. For example, the following formula to characterize the intensity of the 

communications between two cities was obtained: the intensity is “proportional to the 

product of the two populations divided by the square of the distance between the cities.”. 

Besides that, it was observed that ”intra-urban communications scale superlinearly with city 

population” [80]. 

In this line of reasoning, it is opportune to talk about discrete-choice models. These models 
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allow us to find the probability that the user uses determined transport modes through a 

function that has in account multiple factors [50]. So, this model assumes that the user’s 

behaviors are dictated by the maximum gain possibly obtained and the attractiveness of 

other competitors alternatives. However, our choices are not so rational as we might think 

and is by having that in mind that Phithakkitnukoon et al. [50] try to establish a relationship 

between sociability measures and user’s mobility patterns. Then, the concept of homophily 

is central in the sense that we need to be aware that we tend to socialize and form connections 

with people that are similar to us. These people tend to share with us common characteristics 

or possessions (e.g., gender or age). So, it is just rational to extrapolate that the more the 

number of our social ties that use a particular travel mode, the bigger the likelihood of us 

using that same travel mode. The results of this study proved that our most closer ties have 

a stronger influence in choosing private transportation. Reversely, our weakest relationships 

are those that persuade us more to adopt public transports. Besides that, it is also curious 

that friends that are geographically closer to us have more power in our choice of 

transportation in our commuting trips. As expected, it was also found that the distance to 

access public transports contributes to reject it. 

Looking closely into the work of Phithakkitnukoon et al. [81], we see that it is possible to 

extract mobility measures like mobility diversity, mobility dispersion, and range from CDRs. 

Mobility diversity is the “total number of different locations visited” by the user. Mobility 

dispersion “measures the amount of variation (or randomness) in mobility” [81]. Mobility 

range “infers the travel distance range of the person’s mobility, which is defined as the 

distance (in kilometers) from the person’s home location to the farthest location the person 

ever visited” [81]. Besides mobility measures, sociability measures also were extracted from 

CDRs (e.g., call frequency, call duration, and the number of social ties). All these indicators 

are analyzed in order to know which one of them influences our mobility patterns, namely, 

our choice of transportation mode. Through CDRs, we can calculate how intense are our 

social interactions and, therefore, infer some important shared characteristics between us 

and our most strong social ties. However, as this kind of data is always anonymized, we 

cannot know much more about the user beyond his/her location and the users to whom 

he/she is calling.  

After the comparison between the six measurements of each user and his/her social 

relationship, it was concluded that mobility diversity is proportional to the strength of the 

social ties. It is proportional in the way that, the stronger the social connection, the more 

similar it is their mobility diversity and mobility range. Conversely, it was found that 

mobility dispersion is not correlated at all with the strength of the social ties. In what 

concerns to sociality measures, it was discovered that all the three measurements are similar 

between the user and their closest social relations.  So, as we tend to have similar social 

behavior to our closest friends, this research shows us that it is possible to infer some mobility 

patterns from the behaviors observed in our closest social connections. Mobility dispersion 

is the only indicator that deviates from this conclusion. With this study, homophily 

philosophy was enforced. The underlying problem in this study is that it is constrained to 

analyze only the social ties that share the same mobile operator. 

It is becoming crucial to know how to calculate the social strength among social ties. For that, 

we need to recall the work of Granovetter et al. [82]. They defined it as the “combination of 

the amount of time, the emotional intensity, the intimacy (mutual confiding), and the 

reciprocal services”. So, inspired by the work of Nicholas et al. [83], in our case, we can 
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associate the amount of time of communicating through voice calls to the sociability 

measurement that fits the Granovetter previous definition.  To do so, we need to consider 

the following ratio: 

𝑠(𝑖) =  
𝑐(𝑖)

1
𝑁

∑ 𝑐(𝑖)𝑁
𝑖=1

 

 

That formula means that the user social strength (s) with social tie i is equal to the amount of 

time that the user spent talking with tie i - c(i) - divided by the amount of time that the user 

spent talking with all their social ties (N).  In order to compute this calculation correctly, it 

was fundamental to consider social connections as those who maintain reciprocal calls with 

the observed user. We say it is vital because there are often calls that we make sporadically 

to some service or to someone that is not for sure our friend or acquaintance (to handle some 

business, for example).  

In what infer a social network concerns, CDRs may be positioned as one of the best 

opportunistic data to use. That is a reasonable conclusion once the people to/from which we 

make/receive calls mimic the closest as possible our real social network. For example, if we 

took the data from social networks like Facebook or Instagram and based our social ties on 

the so-called “friends” or “followers” in those platforms, we would end up overestimating 

by far the actual number of user’s social ties. 

Olivier et al. [36] also investigate the effects of weather conditions on our social interactions. 

The weather has an impact on socio-economic activities. People may prefer to reside in a 

determined zone because of the weather conditions around. Besides conditioning social 

interactions, changes in weather conditions also influence mobility patterns. Along with 

CDRs, a weather dataset was needed for this investigation. The dataset came from three base 

stations in Lisbon that measured temperature, humidity, and pressure every 30 minutes. In 

the end, it was concluded that weather conditions do not have a significant influence on 

people’s average talk time. In extreme temperatures (excessively cold or warm) and 

pressures (high and low) as well as humidity levels between 20%-100%, people are willing 

to talk to a smaller number of social ties and maintain more connections with their strong 

relationships.  

Despite having valuable conclusions, this research has some issues. The influence of the 

atmospheric parameters might depend on each other; however, only the importance of one 

criterion at a time was explored. It could have been investigated the impact of the 

simultaneous changes in multiple parameters of the weather conditions. Also, the study 

ignores the fact that people might be inside some infrastructure and be shielded from certain 

types of weather. It was neither considered the weather conditions of the person who was 

connected to the observed individual. The fact that there are holidays, vacations, and other 

social events that can influence the average talk time was not taken into consideration as 

well. 

The research developed by Olivier et al. [84] constitutes another great study about the socio-

geography of human mobility. In this study was discovered that 80% of the locations visited 

are within a range of 20 km of the nearest users’ social ties. If we consider a geo-social radius 

of 45 km, then we can say that the percentage increases to 90%.  It is also surprising to know 

that we tend to be geographically closer to our weak ties than our strong ties. In general, the 

(1) 
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more urbanely dense is our region, the more distant we are from our social ties and the 

shorter are our geo-social radius; also, 80% of our travel scope will be within a 10 km geo-social 

radius. Here, the geo-social radius is defined as being the geographical distance from social 

ties. So, if the “places visited by the subject (or travel scope) are within x km from the subject’s 

social ties”, then the geo-social radius will be x. This concept is appropriately depicted in 

Figure 3.8. 

 

 

Figure 3.8  – Red points refer to the locations of social ties, and r is the geo-social radius. The contour line 

encloses the predicted travel scope. The figure is originally from Olivier et al. [84]. 

A more general and surprising conclusion of the study is that “although people tend to reside 

near their strong ties, their mobility is biased towards the geographic locations of their weak 

ties” [84]. This study, like the others, raises some issues. We are assuming that we 

make/receive phone calls to every person that is our friend in the period under analysis, 

which is not realistic. Also, we all have social ties to whom we speak on a regular basis, face-

to-face, and we do not need to call them. It was also assumed that people did not migrate or 

did not change the homeplace, moving to another location during the period of the study. 

People may also be residing temporarily in someplace because they are on vacation. 

However, as vacation is just a short slice of people’s lives, it is quite unlikely that it has a 

significant impact on the study. 

3.6 Limitations and Future Research 

At the end of the State of the Art, looking through all the literature reviewed, it is noticeable 

that there are aspects that need to be worked in more detail or that need to be included in 

the research agenda. These limitations constitute possible anchors from which research work 

can be developed during this dissertation. So, this subsection will reflect on relevant issues 

that can be further investigated in this dissertation that can help us automatically predict and 

characterize mobility patterns and movement behaviors of the citizens in urban spaces. 

For example, regarding transportation mode detection, no paper approaches mobility on the 

water by trying to detect water transport modes, despite having a significant role in many 

countries.  To solve temporal sparsity of event-driven data of cellular networks, studies in 

the field often end up with a small portion of the initial dataset due to the subsampling 

process of the most highly active users. Consequently, studies that are supported by a high 

volume of data are scarce.  
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The methodology presented by Wang et al. [11] is promising and could be applied to a CDR 

dataset instead of just sightings data. Zhao et al. [37] tell if there are hidden visited places or 

not, but it is not capable of knowing the locations of those places. Knowing that would be 

fundamental to obtain full OD flows. Relative to the work of Phithakkitnukoon et al. [63], it 

would be interesting to have a deeper analysis of how geo-social radius varies with tie 

strength and the number of ties.  

The work of Olivier et al. [36] is another one that has room for improvements in different 

ways. For example, the study can be extended to entire Portugal. By doing that we could see 

if the conclusions taken are valid for other municipalities besides Lisbon. Also, many 

parameters of the analyzed weather conditions depend on each other; however, only the 

influence of one parameter at a time was explored. Moreover, it was ignored the weather 

condition in the location of the individuals to whom the user is talking. Finally, the study 

did not consider the effect of special events that can easily influence the duration of the calls 

of the users (e.g., holidays or vacations). The duration of the calls may also vary depending 

on factors like the day of the week or time of the day. 

The work by Jundee et al. [35] proposes two different techniques to infer the exact routes in 

commuting trips (home to the workplace and workplace to home) using only CDRs. 

Nevertheless, the different frequencies of call activity in the different activated cellular 

towers were not considered in any of these two techniques. This disregard can easily lead to 

misleading results. Phithakkitnukoon et al. [50] proposed to follow the same methodology 

and to fix precisely the issue above-mentioned. Nonetheless, this study comprises other 

limitations. For example, it should have been supported on a higher volume of data. Also, it 

is assumed that the users move using just one of the following transport modes - car or bus 

– where, in fact, the user can walk, bicycling, use a subway, a train or a tram. Besides that, 

the study is constrained to Lisbon. It would be interesting to model the commuting mobility 

across the different municipalities of entire Portugal. 

Moreover, it is not taken into consideration that the user can change the transport mode in 

the middle of the trip. Furthermore, the calculation of the exact commuting routes can be 

highly optimized by estimating travel times and “intermediate cell towers”. These 

intermediate cell towers are those towers activated during a commuting trip that does not 

correspond to the home or workplace location. Additionally, taking into account the 

challenges that we have to face relative to the oscillation phenomenon and others, the pre-

process, and treatment of the data should be more elaborated. Finally, not forgetting the 

challenges of temporal sparsity and spatial resolution of the CDRs, a more detailed series of 

filters on the users’ data in the dataset was necessary. 

Besides these limitations, the main methodology followed in this work of Phithakkitnukoon 

et al. [50] is promising, so, during in this dissertation, we will approach an optimized version 

of that methodology that will overcome specifically those seven limitations. Thus, this work 

will be important for those who want to infer mobility patterns using CDRs and need to 

know the suitable thresholds for multiple quality parameters of a CDR dataset. Once we 

know these thresholds, we can process and subsample the dataset efficiently. It will also 

provide an optimized methodology to infer commuting routes (home to the workplace and 

vice-versa) and the respective transport modes chosen by the users. A model that can 

generate the mobility profile of any district of Portugal will be developed. That mobility 

profile will include the distribution of percentages of adoption of each of one of seven 
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categories of travel modes (bus, car, train, tram, bicycle, walking, subway) by each user in 

their commuting trips. Not only percentages about each one of these travel modes 

(unimodal) but also the combinations between them (multimodal). Finally, the automatic 

generation of the visualization of the users’ commuting routes will also be developed. We 

believe that this new and optimized methodology constitutes a viable solution for 

automatically providing elements of decision-making for different entities. For instance, 

transport operators can quickly get an overview of the needs of transport of the users in their 

commuting routes and adjust the offer accordingly to that. 

 



 

Chapter 4 
Data Analysis 

This chapter addresses the analysis of the CDR dataset. The cleaning, pre-processing, and 

subsampling steps have a profound impact on the performance of any data mining 

technique.  So, it is precisely to guarantee the success of our approach that we were going 

to describe the multiple processing stages of our dataset. 

4.1 Data Preparation 

Initially, a total of 435 701 911 records belonged to the dataset. The first step was to clean 

every record with “NULL” values or any field with a negative value (every value of the CDR 

must be positive). A total of 16 CDRs were deleted. Next step was to delete duplicated 

records as well as records that reference unknown cell towers. A total of 12 810 045 CDRs 

were eliminated (2.9% of the original dataset). This step was the one that forced us to remove 

the greatest number of CDRs. It was also needed to check if the minimum and maximum 

values for all fields were within a credible range (e.g., check if the duration of a call is more 

than 4 hours). Also, 254 CDRs were deleted because they had every field equal except the 

duration of the call. Four pair of CDRs were erased as well because they had the same pair 

of intervenient users and the same timestamp, but the duration and the cell towers involved 

in the call were different.  

Finally, we focused on cases in which a call comprises more than one record. These cases can 

happen because the user is moving or because of the ping-pong effect. We know that we are 

facing a case like this when the difference between the timestamps of two consecutive calls 

of the same intervenients is equal to zero. In these cases, if the cell towers participating in the 

call remained the same, we merged the CDRs into one CDR with its final duration being the 

sum of durations of the pair of calls. However, if the originating cell tower or the terminating 

one changed, two different situations arise: a) the user legitimately moved from one place to 

another during a call or b) the call suffered from the ping-pong effect. With that in mind, 

distances between the base stations involved in the calls and the travelling speeds of the 

users were estimated.  CDRs whose travelling speed was higher than 400km/h. All these 

cases resulted in merging 1524 contiguous CDRs and deleting 333 “ping-pong” cases. After 

this pre-processing, we ended up with a total of 422 889 747 CDRs (97% of the original 

dataset). 

4.2 Data Characterization 

The dataset that we used consists of CDRs from citizens of entire Portugal (including 

Madeira and Azores islands) provided by one of the largest telecom operators. It corresponds 

to a period of 14 months of records, from 2nd of April 2006 to 30th of June 2007. These records 

were registered for billing purposes. The dataset is composed by a total of 435 701 911 records 
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from approximately 18% of the Portuguese population in 2007 and covers all the 308 

Portuguese municipalities. It contains incoming and outgoing calls from a total of almost two 

million mobile phone users (1 899 216 users in total, 1 890 018 of which are from Continental 

Portugal). Nothing was registered about SMSs sent/received, internet accesses or any other 

type of network-based data. The total number of different cellular towers presented in the 

dataset is 2243.  Figure 4.1 sums up all the key characteristics of this dataset. 

 

 

Figure 4.1  – Key statistics of the dataset. 

The anonymity, privacy, and security of the users had to be guaranteed. Consequently, 

cellular numbers were anonymized, and a unique hash code (code ID) was generated for 

each user before we received the data. A record is generated every time a call is made only. 

This fact avoids precisely duplicated records that would be generated if it was also 

considered the act of receiving a call.  

The data is structured into two tables. The first one (Figure 4.2) contains basically the set of 

different cellular towers (identified by the cell_id) and their respective localizations (latitude 

and longitude). The cell towers are also sectioned into regions. Each cell tower has a region 

number associated: region 1 means it belongs to the Azores Islands; region 2 means it belongs 

to the Madeira Islands and region 3 to Continental Portugal.  

The other table (Figure  4.3) contains the CDRs. The CDRs are constituted by a timestamp 

(date_id), the duration of the call (duration_amt), an ID that identifies the caller (originating_id), 

an ID that identifies the person to who the user is calling (terminating_id), the cellular tower 

to which the caller is connected (originating_cell_id), the cellular tower to which the person to 

whom the user is calling is connected (terminating_cell_id). 

Figure 4.2  – The first table of the dataset. 
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Figure 4 3 – Second table of the dataset. 

 

In order to explore how the data is 

distributed in space and time, 

visualizations on ArcGIS were made. 

Figure 4.4a depicts the administrative 

boundaries of Portugal and its districts. 

Also, it is represented in purple dots the 

localization of all the cellular towers of 

the dataset. We can clearly see the 

different density of the cells across the 

country. We can observe that the 

regions close to the coast are in general 

gifted with more cellular towers as well.  

As expected, densely populated regions 

like Lisbon and Porto require much 

more cellular infrastructures to support 

the users’ needs. So, the distribution of 

the cellular towers is a radiography of 

the distribution of the population 

density across the country. Figure 4.4b 

and Figure 4.5 represent the same but 

for the Azores and Madeira Islands, 

respectively.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 – Distribution of the cell towers across Continental Portugal (purple dots) and Azores Islands 

(red dots). 

a) b) 

a) 



Inferring Commuting Routes and Travel Modes 

40 

 

 

Figure 4.5 – Distribution of the cell Towers across the Madeira Islands (blue dots). 

In order to have a broader perception of the distribution of the CDRs, heatmaps were created 

based on the call’s density. These maps allow us to see which Portuguese regions have the 

most intense call activity. The obtained images can be seen in Figures 4.6a and 4.6b. There it 

is represented the distribution of the incoming calls and the outgoing calls, respectively.  

Figure 4.6 – Heatmaps of the density of the a) incoming calls (blue points) and b) outgoing calls (red 

points). 

a) b) 



 
Chapter 4 

 

41 

 

Relative to the heatmaps, the redder it gets, the more intense is the call activity. Conversely, 

the greener it gets, the less will be the intensity of the call activity. As expected, both images 

show us again that the more is the urban density, the more is the call activity. So, both 

outgoing and incoming calls identify Porto and Lisbon (as well as surrounding regions) as 

being the municipalities that have the highest call activity. We conclude as well that all the 

coastal regions have higher call activity than interior ones. These insights will be helpful 

when deciding the worth municipalities to analyze at the time of subsampling our dataset. 

Another curious aspect is that the 

images are not quite the same. We can 

understand from the figures that the 

activity of making calls is way more 

concentrated in the regions of Porto and 

Lisbon. Reversely, the activity of 

receiving calls is slightly more 

geographically distributed through 

interior regions. Of course that we need 

to be aware of the fact that this dataset 

belongs to a single mobile operator and 

we do not know the distribution of the 

users’ adherence to this mobile 

operator across the different districts.  

Relatively to tower density across the 

different Portuguese districts, we 

concluded that, on average, the 

coverage area per cellular tower is 90 

km2. In dense urban areas like Porto, 

this coverage drops to 0.125 km2 per 

cellular tower. To have a notion of the 

different coverage area of each cell 

tower, a Voronoi Diagram was 

developed - Figure 4.7. As already 

emphasized, it is notorious by the 

figure that the regions of Porto and 

Lisbon are the districts in which the 

coverage area per cellular tower is 

minimal. The smaller the coverage, the 

higher the spatial resolution retrieved 

from the CDRs. 

 

  
 
 
 
 

 

Figure 4.7 – Voronoi diagram of all the cell Towers 

across Continental Portugal. 
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4.3 User Selection 

As we are using CDRs, we must deal with challenges like low spatial resolution and temporal 

sparsity of the call activity. In practice, that means that we need to have not only a higher 

quantity of data but also a more refined methodology to select relevant data, namely, select 

the appropriate users from which we can extract mobility patterns. So, a random selection of 

the CDRs for the generation of the prediction model can lead to a sub-dataset that is not 

appropriate to infer commuting patterns. Actually, there are various criteria that we have to 

fulfill in order to obtain the right set of users for further analysis. Figure 4.8 gives us an 

overview of the selection process and how the various steps are related to each other. 

The first criterion that it needs to be met is to filter CDRs to obtain only users that have call 

activity on weekdays. As we are focusing our study on commuting trips, it does not make 

sense to consider another scenario. After that, we need to identify the workplace and home 

of the users. In order to do that we followed the technique used by Olivier et al. in [84]. The 

home of the user is assumed to be the cellular tower in which highest call activity was 

registered during the hours that the user is assumed to be at home, namely, from 10 PM to 7 

AM. Conversely, the workplace of the user is assumed to be the cellular tower in which was 

Figure 4.8 – The methodology to select the users from which we can infer commuting patterns. 
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registered most call activity during the working hours (9 AM to 12 PM and from 2 PM to 5 

PM). With this approach, we are ignoring users in the dataset that have more than one home 

or more than one workplace, as well as users that work during the night. Another 

assumption that is made is that the user will not change home or workplace during the 

period of study. Only users that have a well-defined and distinct home and workplace 

locations were considered in the following steps of user selection. 

Nevertheless, in the work of Olivier et al. [84], this approach has already been validated as 

being a good approximation of the actual locations by comparing the inferred results with 

real census information. In Figure 4.9, we can observe the geographical distribution of (a) the 

inferred home locations of the users and (b) the inferred work locations of the users. 

Naturally, the concentration of these locations coincides with the regions in which there are 

more population density and urban development. Generally, we can already conclude as 

well that people tend to work not far from home, once the maps are pretty similar. This 

information about the inferred distribution of home and work locations already provides va- 
 

 

Figure 4.9 – Heatmaps of the density of the a) incoming calls (blue points) and b) outgoing calls (red 

points). 



Inferring Commuting Routes and Travel Modes 

44 

 

luable insights to real entities. For example, it might be useful to municipalities plan 

accessibility infrastructures or transport operators rethink their transport lines towards 

facilitating the commuting travelling of the citizens. 

The next step is to select users that at least have call activity during the morning or the 

evening. The morning corresponds to the period between 5 AM and 12 PM. The evening 

corresponds to the period between 3 PM and 12 AM. Coherently with the assumption made 

when detecting home and the workplace, these stipulated hours were delimitated presuming 

that all the users have a daytime job.  

After that, we must find the users with call activity at home and in the workplace during 

morning hours. This task is essential to determine if it is possible to infer home to workplace 

trips (entering the workplace). Analogously, we want to know if it is possible to determine 

the inverse trip, in other words, workplace to home trips (exiting the workplace). To do that 

we must select the users that have call activity at home and in the workplace but, this time, 

during evening hours.  

Once all of this is done, the next task is to observe how many users have call activity 

throughout the trip home to the workplace or vice-versa and estimate the time that each user 

needs to travel between those places – the estimated travel time. Figure 4.10 schematize the 

methodology followed. This method is centered on the idea of calls’ transitions home to 

workplace and vice versa. To infer travel times from home to workplace, we need in the first 

place to find the last call record associated to the home cell tower of the user as well as the 

first call record associated to the workplace cellular tower during the morning for every 

weekday of activity of the user. The process of inferring travel times from workplace to home 

Figure 4.10  – Reasoning behind the calculation of travel times and intermediate towers. 
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is analogous. We need to pick the last call record associated with the workplace cell tower of 

the user as well as the first call record associated with the home cellular tower during the 

evening for every weekday of activity of the user. The user might indeed make/receive plenty 

of calls at home or in the workplace during the morning or evening. However, we can 

precisely approximate our estimated travel time to the real one by picking the minimal travel 

time registered among the various travel times of the different weekdays.  

So, the idea of assuming the final estimated travel time as being the pair of calls’ transition 

whose subtraction of timestamps results in the shortest duration in seconds becomes 

intuitive. It guarantees us that we are selecting the pair of call records that are temporally 

closer to the moment the user (a) exited the home and (b) arrived at the workplace; and vice 

versa. It is reasonable to think this way once it is improbable that someone makes/receives a 

call immediately before exiting the homeplace and exactly after arriving at the workplace. It 

is also improbable that someone makes/receives a call immediately before exiting the 

workplace and exactly after arriving at home. However, by selecting the shortest travel time, 

we are increasing the likelihood of avoiding the cases in which the user decides to enter in 

another activity location instead of making a direct trip from home to work or vice-versa. 

The high improbability above mentioned result in some implications like considering the 

estimated travel time indicator as being mainly useful to filter out some possible routes that 

reveal to be inviable rather than establish a feasible criterion to choose the adequate path 

among all the possibilities (as it will be further explained more minutely). Another 

implication, but this time more positive, is the fact that the estimated travel time gives us 

enough flexibility to not worry with the variations of speed during the commuting trip. That 

is explained by the high probability of the estimated commuting travel time have a longer 

duration than the real commuting travel time of the user (even using the slowest travel 

mode).  

“Intermediate towers” are cellular towers that were activated during the interval of time of 

the pair of calls from which we detected the minimal travel time home to the workplace or 

vice-versa. As can be seen in Figure 4.11, for each user we take into consideration the time 

interval of the minimal travel times registered, and search for call activity in cellular towers 

during those intervals throughout all the other days in which there was call activity. 

Figure 4.11  – Scheme of the calculation of intermediate towers. 



Inferring Commuting Routes and Travel Modes 

46 

 

4.4 Finding Suitable Parameter Values to Subsample 

Having explored the set of criteria that users need to satisfy in order to be apt for the 

extraction of mobility patterns, we are going to study how the variance of some quality 

parameters (or features) of a CDR dataset impact the percentage of users that we can obtain 

from the subsample that fulfills those necessary criteria. Multiple parameters can 

characterize a CDR Dataset. For the whole dataset, we calculated different parameters 

relative to each one of the 308 municipalities and relative to each one of 1 890 018 users. Some 

of these parameters can be seen in Figure 4.12 and Figure 4.13 in the form of SQL query 

results. For each municipality, the following parameters were calculated:  

1. Total population; 

2. Total area in Km2; 

3. Number of cellular towers inside the municipality; 

4. Tower density – area of coverage in Km2 on average per each cell tower inside the 

municipality; 

5. Total number of calls received/made inside the municipality; 

6. Number of different active users inside the municipality; 

7. Number of different days in which was registered call activity inside the 

municipality; 

8. Average number of calls made/received per day inside the municipal; 

9. Average of active users per day inside the municipal; 

10. Percentage of active users relative to the population; 

11. Percentage of different active days relative to the period of the study. 

 

To know the population and total area of each municipality, we took advantage of the official 

census of 2009 [85]. We chose this particular year because it is the census data closer to the 

year of the period of the study (2007).  

Figure 4.12  – Some of the parameters calculated for each municipality and retrieved in the database. 

Regarding each user, the following parameters were obtained: 

1. Total amount of talk in seconds; 

2. Average number of calls received/made per day; 

3. Average number of days until receiving/making a new call, in other words, 

regularity in his/her call activity; 

4. Total number of calls made/received; 

5. Number of different active days; 

6. Different visited places; 
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Figure 4.13  – Scheme of the calculation of intermediate towers. 

Many parameters have been calculated, some of which are correlated and, therefore, 

redundant. So, we know in advance that there are two key requirements that our subsampled 

users have to fulfill in order to guarantee the success of our approach to infer their 

commuting routes: (a) users must have a distinct home and workplace location; (b) users 

must have call activity in towers located between home and the workplace or vice-versa 

(intermediate towers).  

In this line of reasoning, we consider four quality parameters under analysis: (1) Tower 

Density for each municipality (TD); (2) Average Number of Calls made/received per Day 

(ANCD); (3) Regularity of the Call Activity (RCA); and (4) Number of Different Active Days 

(NDAD).  

As a preliminary analysis of the distribution of the values of the last three quality parameters 

(ANCD, RCA, and NDAD), Figure 4.14 was rendered. It depicts the values in a 3D plane just 

to understand their behavior in relation to each other. As expected, we can observe that, as 

RCA (regularity) reaches the value of 0, the values of ANCD increase greatly. Conversely, 

the values of RCA escalate to very high values as NDAD values decrease. The values of 

NDAD and ANCD have no specific pattern between themselves. So, in other words, if a user 

has a low number of days in which was registered activity, then it is probable that he will 

make calls more spaced apart. Also, the fewer days a user remains without making a call, 

the higher his/her daily call activity will probably be.  

TD might mainly affect the ability to distinguish the house from the workplace and to 

distinguish possible intermediate towers from home and the workplace. This is because as 

we decrease the tower density, we increase the area of coverage per cell, and, consequently, 

we are increasing the probability of having the same cell tower representing different places. 

The other three quality parameters might affect the ability to identify workplaces, homes, 

and intermediate towers. The more intense the call activity, the higher the likelihood of the 

user has call activity in those different places. In order to verify this, multiple experiments 

were made. 

First, we will vary the values of the last three variables and we’ll develop a chart for each 

one of them that encapsulates the percentage of users that still fulfills the following necessary 

criteria: (1) call activity on weekdays; (2) a well-identified home and workplace; (3) call 

activity at home and in the workplace in the morning; (4) call activity at home and in the 

workplace in the evening and (5) call activity during their routes home to work or vice-versa. 

 

Secondly, we need to consider areas with different tower densities across the multiple 

municipalities to answer to the following question: considering the universe of users who have 

enough call activity to have a well-identified home and workplace in each municipality, what is the 
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percentage of users that still have the home location distinct from the workplace location? To answer 

this question, we developed a chart that relates the different values of cell towers densities 

and the percentage of users that have a distinct home from the workplace.  

 

Figure 4.14 – Distribution of the values of ANCD, RCA, and NDAD on a 3D plane. 

 

So, these experiments were performed upon our entire CDR dataset. According to Figure 

4.15, except for the line of “Call activity on Weekdays”, each line has a similar behavior – 

high growth in low values of ANCD until it reaches the elbow of the curve from which tends 

to stabilize. Having in consideration statistical measures (e.g., standard deviation, mean), we 

concluded that the values of ANCD for each plotted line (in the order in which they appear 

in Figure 4.15) from which this stabilization happen are 0.1, 6.3, 6.3, 7.1, 7.5, 8.5. In practice, 

this means that a dataset with users that, on average, receive/make a maximum of 7.5 calls 

per day is enough to avail 10.42% of the total users to infer routes home/workplace or vice-

versa. Moreover, if we extend the threshold to a maximum of 8.5 calls per day, we can avail 

3.31% of the total users to infer routes home/workplace and vice-versa. Adding users to our 

dataset with higher thresholds does not result in significant percentage gains. In Figure 4.16, 

the behavior of the plotted lines is the inverse. Coming from high values of RCA the lines 

remain stable in values close to 0% until they reach the elbows of the curves. From which the 

peak is achieved. Considering again the same previously mentioned statistical measures, we 

concluded that, for each plotted line,  the values of RCA from which this stabilization happen 

are 1.4, 33.5, 30.7, 24.4, 16.8, 9.4 days (in the order in which they appear in Figure 4.16). From 

which the peak is achieved. Considering again the same previously mentioned statistical 

measures, we concluded that, for each plotted line,  the values of RCA from which this 

stabilization happen are 1.4, 33.5, 30.7, 24.4, 16.8, 9.4 days (in the order in which they appear  



 
Chapter 4 

 

49 

 

 

Figure 4.15  – Percentage of remaining users that satisfy certain criterion. The percentages are cumulative - 

e.g., the percentage for 6 calls per day is a sum of percentages of 0 to 6 calls per day. 

 

in Figure 4.16). So, if we include in our dataset users with an RCA of 16.8 or higher, we can 

only avail a maximum of 0.27% of them to infer routes home/workplace or vice-versa. Fur- 

  

 

 

 

Figure 4.16   – Percentage of remaining users that satisfy certain criterion. The percentages are cumulative - 

e.g., the percentage for a regularity of 10 days is a sum of percentages of 10 to 205 days. 
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thermore, if the RCA equals to 9.4 or higher, we can only take advantage of a maximum of 

0.035% users to infer routes home/workplace and vice-versa. Conversely, if we have users 

with an RCA less than 16.8 in our dataset, we can notice a significantly higher growth (that 

can go up to 11.1%) in the percentage of users from which we can infer routes home to the 

workplace or vice versa. 

Looking at Figure 4.17, we see that the elbow of the curve of each line is becoming more and 

more attenuated until becoming practically linear. Hereupon, we conclude that the higher 

the value of NDAD of the users, the bigger the percentage of them from which we can infer 

commuting patterns. For example, if we have in our dataset users with a maximum amount 

of 208 days (average for the green plotted data) of call activity, we can obtain 5.67% of them 

to compute routes home/workplace or vice-versa. Yet, to reach only 1.427% of users from 

which we can compute routes home/workplace and vice-versa, the threshold needs to be 228 

days (average for the cyan plotted data). 

Figure 4.17  – Percentage of remaining users that satisfy certain criterion. The percentages are cumulative - 

e.g., the percentage for 120 active days is a sum of percentages of 0 to 120 active days. 

 

From Figure 4.18, we understand that as long we are increasing the average coverage area 

per cell, the percentage of users that have a distinct cell for home and for workplace 

(considering the universe of users that have a well-identified home and workplace) will 

decrease (not linearly) until it reaches 0% for TD > 370  Km2/cell. On average, the percentage 

of users obtained is 13%, with a standard deviation of 10.7%. So, if we choose users from our 

dataset that are from a municipality with a tower density less than 7 Km2/cell, then we will 

obtain more than 13% of them with a well-identified home and workplace. 

Figure 4.19 also let us analyze the percentages of users from which we can infer the 

various types of commuting routes varies with the tower density of the municipalities 

where they belong. It is clearly notorious that the less the number of Km2 of coverage 

per cellular tower, the more the percentage of users that register activity in intermediate 

towers in any type of commuting trip.  
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Figure 4.18 - Variation of the percentage of the users with distinct home and workplace. 

 

 
Figure 4.19 – Percentage of Users with intermediate towers during the various types of commuting routes 

accordingly to the tower density of the municipalities where they belong. 
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4.5 Subsampling 

Taking into account that the dataset has so many records for so many users, we needed to 

subsample it in order to speed up the computational processing. Then, we took advantage 

of the optimal threshold values calculated in the section above. So, we deleted CDRs 

belonging to users that have a regularity of calls smaller than 16.8 days. We also selected 

users that have a daily average number of calls less than 7.5 calls per day. Only users with a 

maximum of 208 different days of call activity were selected. After applying this preliminary 

filtration of the dataset accordingly to these parameters, we ended up with 79% of the 

original dataset, namely, 1 288 113 users (the first subsample). 

Of all the remained users, it was fundamental to select those that are apt for the extraction of 

mobility patterns. After executing all the selection methodology detailed in section 4.3, we 

ended up with 5.67% of the users of the first subsample, namely, 209 659 users. Table 4.1 

presents some values collected during this selection. From the first subsample, we could infer 

the routes home to the workplace or vice-versa of 5.67% of the total number of users and the 

routes home to workplace and vice-versa of 2.9% of them. We can observe from the table that 

the criteria that made us drastically lose users are, in descending order of impact: (1) users 

with a well-defined home and workplace; (2) users with call activity at home and in the 

workplace in the evening.  We can also see that, from those percentages (5.67% and 2.9%), 

we had to remove some users whose house, workplace or intermediate towers are 

represented by the same cellular tower. It makes sense to remove those cases since, for a 

commuting route to exist, an origin and destination that are distinct must exist too. So, the 

percentages 5.67% and 2.9 actually became 3.9% and 1.2%. 

 

 

Table 4.1 - Statistical results throughout the selection of the initial subsample.  

At the end of this selection, we still ended up with tens of thousands of users (92 150) from 

Criteria of Selection of the Users 
Number of 

Users Left 

Percentage of 

Remaining Users 

Relatively to the Initial 

Dataset 

Percentage of 

Eliminated Users 

First Subsample 1 288 113 79% 21% 

Call Activity on Weekdays 1 122 772 73% -5% 

Well-defined Home and Workplace 932 671 59.3% -39% 

Call Activity at Home and in the 

Workplace in the Morning 
872 356 46.2% -1.9% 

Call Activity at Home and in the 

Workplace in the Evening 
329 715 17.5% -28,7% 

Call Activity During the trip 

Home-Workplace or Workplace-

Home 

(with home, workplace and 

intermediate towers distinct) 

209 659 5.67% -6,4% 

92150 3.9% -2,77% 

Call Activity During the trip Home 

to Workplace and Workplace to 

Home 

(with home, workplace and 

intermediate towers distinct) 

69154 2.9% -1,3% 

33163 1.2% -1,7% 
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which is possible to infer commuting patterns in any direction (home to workplace or 

workplace to home). This quantity is still an impracticable number of users to analyze. 

Further, we will use the Google Cloud Platform in our methodology to access the Google 

Directions API in order to infer commuting patterns. Google Cloud Platform only gives us a 

budget to make API calls for free for some hundreds of different users. So, when we refer 

that the subsample still has an impracticable number of users to analyze, we are taking into 

account not only the computational power needed but mainly the restrictions that Google 

imposes us. 

To limit our subsample as much as possible, we then considered the set of users that have 

call activity during the trip home to the workplace and the inverse trip (33 163 users). After 

that, we chose 18 municipalities that correspond to one municipality in each of the 18 districts 

of Portugal with the best tower density possible. In this way, we reduced the number of 

municipalities under analysis, without compromising the possibility of making a 

comparative analysis of the mobility patterns across the districts of entire Portugal. Finally, 

among the users left of these 18 municipalities (24 667 users), we chose to analyze a fixed 

number of 5000 users with the highest average number of calls per day. Table 4.2 shows the 

number of users taken in each municipality.  

As we have 5000 users to study, we could not choose all the possible users in each 

municipality. That is the reason behind the variance of the number of chosen users in each 

municipality (range from 100 to 500). In fact, the higher the tower density in a municipality, 

the higher the number of users worth of studying there. Also, users that met the selection 

process criteria can be very few in regions like Castelo Branco, Évora, or Beja. So, in these 

cases, we were actually forced to reduce the number of users under analysis (100).  

Municipality Tower Density (Cells per 

Km2) 

Possible Users Chosen Users 

Lisboa 2.459 9770 500 

Porto 2.268 5933 500 

Braga 0.148 3511 500 

Coimbra 0.110 2207 500 

Setúbal 0.096 1300 300 

Aveiro 0.081 898 300 

Faro 0.069 212 150 

Leiria 0.048 765 300 

Viana do Castelo 0.044 503 300 

Vila Real 0.040 466 300 

Viseu 0.036 445 300 

Santarém 0.030 370 150 

Guarda 0.015 354 100 

Portalegre 0.013 101 100 

Bragança 0.011 610 300 

Évora 0.0092 194 150 

Castelo Branco 0.0090 163 150 

Beja 0.005 129 100 

Total 18 municipalities 24667 users 5000 users 
 

Table 4.2 - List of chosen users for each municipality. 
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It is essential to clarify a challenge faced when we needed to identify if a user belongs to a 

specific municipality. The universe of calls and users portrayed in Figure 4.20 represents very 

well that problematic. Initially, we thought that every user that had at least one call (made 

or received) inside a certain city, it would be analyzed as a citizen of that city. We quickly 

realized that this is not viable once we ended up by having the same user belonging to 

different municipalities (User2 in Figure 4.20). Then, we added another constraint to that 

rule: we should discard users from a city that made/received any call outside the 

municipality. This rule still seemed to be naive. A user can belong to a municipality and yet 

receiving constantly calls from far away (User1 in Figure 4.20).  

Also, a person may need to make/receive calls in other municipalities because of work duties, 

vacations, or any other reason. So a rule that should cover all the cases (User1, User3 and User 

4 in Figure 4.20) is: a user can receive a call from any place; however a percentage of the calls 

he makes inside the municipality must be higher than a certain threshold (75% for example). 

Nevertheless, this also did not seem a perfect measure. Rely on an arbitrarily defined 

threshold easily end up in suboptimal results. So, we concluded that the best solution to 

determine if the users belong to a certain city was to examine if they have their home and 

workplace inside the city. With this methodology, we are ignoring users whose home and 

work are in different municipalities (or vice-versa). However, we need to have an analysis 

of the users on a municipality level in order to validate our results later. 

 

Figure 4.20 -  Four different users (colored circles) make calls (arrows) between them, inside and outside a 

specific municipality region. The edge of the arrow that has the shaft means that the users received that 

call; otherwise, the user made it.



 

Chapter 5 
Inferring Commuting Routes and 
Travel Modes 

Having analyzed and process our dataset, we can implement a methodology to inter 

mobility patterns in urban spaces. Throughout this chapter, it will be described the 

techniques applied to automatically infer commuting routes for the users as well as the 

chosen unimodal/multimodal modes of travel (car, bus, train, metro, tram, walk, or bike). 

The outcome of this methodology aims to provide decision-making elements for various 

entities (e.g., transport operators). These elements comprise commuting routes 

visualizations and statistics of the distribution of percentages of the most varied means of 

transport adopted in any of the 18 districts of Portugal.  

5.1 Methodology 

The necessary steps to implement this methodology are summarized in Figure 5.1 and will 

be detailed in this section. As previously described, we already made a proper selection of 

the users and calculated their home location, their workplace location, their intermediate 

towers, and their estimated travel times. All those elements are fundamental to continue with 

the inference methodology, so, we stored them in tables in a PostgreSQL database. They were 

later retrieved and provided to Google Directions API through a Python script.  

5.1.1 Google Directions API 

The Google Directions API has an algorithm that returns directions of movement given the 

geocoordinates of an origin and a destination. It is also possible to specify a desired travel 

mode among the following nine: driving, walking, bicycling, bus, train, subway, tram, and 

rail.  

The directions of movement are given as a textual description of the movement or as a set of 

geocoordinates that guide the user to the destination. Therefore, API calls containing the 

geocoordinates inferred of the user’s home and workplace and a specific travel mode were 

performed to every user of our sample and for each of the nine travel modes. The use of 

Google Maps API reveals to be opportune once that Google holds one of the vastest set of 

data about the most varied kinds of mobility elements (from subway entries/exits to bus 

schedules and bicycle paths and many more). All the knowledge about these elements 

reveals to be crucial to detect the viable travel modes to adopt in each path (including the 

possibility of changing the travel mode, opting for a multimodal trip). It is also relevant to 

make a correct map matching of the geocoordinates to the available roads network map 

relatively to a specific mode of transport.   



Inferring Commuting Routes and Travel Modes 

56 

 

Figure 5.1 – Scheme with every necessary step to implement the methodology of inferring commuting 

routes and travel modes.



 

5.1.2 Interpolation of Route Points 

The points given by the Google Maps API are not equally far-between. In practice, as can be 

verified in Figure 5.2a, the points given tend to be way more concentrated in curved or 

sinuous segments once is in those segments that the heading direction change rate is high. It 

was mandatory to address this issue: otherwise, this unbalance would constitute a problem  

when we needed to calculate further a distance score for every possible route. So, first of all, 

we inferred the route line from the given directions. Then, it was indispensable to interpolate 

the original geocoordinates in such a way that an equally distanced set of points (each one 

distanced by 20 meters) was created along the route line (Figure 5.2b). These two steps were 

processed using ArcGIS geoprocessing tools.  

 
Figure 5.2 –  Series of geocoordinates of an inferred commuting route a) given by Google Directions API 

(points irregularly distanced) b) after the interpolation/extrapolation process (points equally distanced). 

The orange circles highlight curving segments in which there is a high concentration of route points. 

5.1.3 Attributing a Score to Each Route 

After the interpolation process, a duration score was computed for every possible route given 

by the API. As already emphasized, the estimated travel time is longer than the real travel 

time and cannot constitute a reliable metric to find the real travel adopted by the user. In 

Figure 5.3, we can see just an example of the misleading use of the estimated travel time to 

choose the final route and the respective travel mode. In this situation, the user exits home 

at 8:52 PM, goes to the workplace by car and arrives at the destiny at 9:05 PM – a total of 13 

minutes of travel. The estimated travel time is 50 minutes once the pair of calls 

home/workplace that resulted in the shortest travel duration took place at 8:30 PM and at 

9:20 PM, respectively. Two possible routes are given by the API, one by private car (the real 

one) with a duration of 13 minutes and other by bicycle with the duration of (40 minutes). 

The fact that the user did not have call activity immediately before exiting the home and 

immediately after he/she arrived at the workplace causes the travel time to have more 

similarity with the wrong possible route (by bicycle). So, the conclusion here is that the 

a) 

b) 
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duration score needs to actuate, mainly as a penalization to reject any possible route that 

reveals to be inviable rather than establish a feasible criterion to choose the adequate route 

among all the possibilities. To deal with this situation, we started by calculating a Travel Time 

Difference (1) and then a Penalty (2). The Penalty was used as a penalization to increase the 

likelihood of reject a candidate route.  

 

𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒 − 𝐺𝑜𝑜𝑔𝑙𝑒 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒  (2) 

 

𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = {
𝑎𝑏𝑠(𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒), 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 < 0

1, 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ≥ 0
 

  

Figure 5.3 - Example of a misleading use of the travel time to choose the final route 

 

The Travel Time Difference is negative if the Google Travel Time (given by the API) is higher 

than the Estimated Travel Time – scenario that is to be avoided, as we already. So, instead of 

deleting that route, we penalized its final score by a factor equal to the absolute value of its 

Travel Time Difference (3). Merely deleting the route is not the best solution because we could 

end up with no candidate routes at all for selection. All candidate solutions (trips) had an 

assigned Distance Score (3):  

 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑆𝑐𝑜𝑟𝑒 =  
1

𝑅
∙ ∑ (∑ (𝑔𝑒𝑜𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑗, 𝑘) ∙

1

𝑓𝑟𝑒𝑞(𝑘)
)

𝐼

𝑘=1

)

𝑅

𝑗=1

 

 

This Distance Score involved calculating the distance of each interpolated point of a possible 

route (point j in the set R of points) to each one of the intermediate towers (tower k from the 

set I of intermediate towers), as shown in Figure 5.4c. The geodistance formula was based on 

the methodology of Karney et al. [86] that was implemented in the PostGIS toolbox. Every 

calculated distance between a route point j and the intermediate tower k was multiplied by 

the inverse of the call frequency of activity in the intermediate tower k - freq. This frequency 

(freq) allowed us to give more importance to the routes that are closer to towers with a 

stronger call activity, which indicates that the user passed there more often. Restricting the 

set of cell towers to just the intermediate ones, permitted us not only to reduce the number 

of calculations by reducing the number of cellular towers to consider but also to improve the 

(4) 

(3) 
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accuracy of the algorithm. This improvement happens because we are selecting only the 

cellular towers that correspond to the possible intermediate coordinates of the commuting 

trip caused by the call activity of the user during his/her commuting journey. Finally, after 

summing up all these distances to all those intermediate towers (inner sum in (4)) for all the 

interpolated route points (outer sum in (4)), we divided de result by the number of route 

points (R in (4)). This was needed because we wanted to reach an average value that is 

independent of the number of route points along the route line (the route points are equally 

spaced by 20 meters of distance, but not every route has the same number of route points). 

5.1.4 Selecting the Suitable Route 

The final score was obtained by multiplying the Penalty by the Distance Score as can be seen in 

(5).  

 
𝐹𝑖𝑛𝑎𝑙 𝑆𝑐𝑜𝑟𝑒 = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑆𝑐𝑜𝑟𝑒 × 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 

 

Every possible route given by the Google API had a final score associated and, thus, the final 

route was the one that had the minimal registered final score. So, in practice, the optimal final 

route is inversely proportional to the distance of its route points to the intermediate towers 

and to the number of seconds that the duration of the route is greater than the estimated 

travel time. Figure 5.4 depicts all the process to one user that can travel from home to 

workplace by four possible modes of transport and a total of eight possible routes. In this 

case, the algorithm indicated that the more appropriated commuting route was route line 

number one (using a private car).  
 

 

Figure 5.4 – Generation of all possible routes. The size of the gray balls is proportional to the frequency of 

calls in the respective cell tower. (a) three possible routes for pedestrian travel mode; (b) two possible routes 

for private car travel mode; (c) distances between route points and an intermediate cell tower; (d) three 

possible routes for bus travel mode. 

 

(5) 

a) 

b) d) 

c) 
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An alternative solution to infer possible commuting routes could be passing the location of 

all the intermediate towers as intermediate visited points (waypoints) to the Google Maps 

API. So, the API would return possible paths that pass by those intermediate locations, which 

would result in much fewer options. However, we concluded that it is not a great solution 

once, during the period of study, the user can adopt different commuting paths in different 

days. Consequently, some intermediate towers define intermediate points of a particular 

path while others define another one. Forcing the commuting route to contain all those 

intermediate locations would undoubtedly result in misleading results. We remember that 

what we tried to infer here was the most used/typical commuting route of the user during 

the period of the study. 

5.2 Results and Discussion 

In this section, we are going to discourse through the obtained results after having 

implemented and ran the methodology previously explained. A critic analysis of the results, 

as well as their evaluation and validation will be detailed. Every time a very detailed 

characterization of the mobility profile is needed (e.g., present the results about every 

detected travel mode, and every possible combination between them), we will focus our 

analysis in the cities of Lisbon, Porto, and Coimbra. That is because they are three important 

cities in Portugal and, simultaneously, they have different mobility infrastructures and 

accessibility. Also, they are three among 18 Portuguese cities with the highest tower density. 

5.2.1 Overview of the Commuting Patterns 

The perception of the degree of accessibilities in each city can be largely enhanced if we 

overlap all the rendered final routes over a map. Among the 18 visualizations rendered for 

each district, we can observe in Figure 5.5 an example of that type of map for the district of 

Porto. By having an overview of the daily commuting flows of the users, we can observe the 

roads that have higher use, or even observe if there are other routes better suited to the user 

needs. Furthermore, by visualizing travel modes that users adopt in their commuting routes, 

it becomes clear if the transportation offer matches transport demand.  

 

Figure 5.5 – Overview of all the travel modes and commuting routes of the users of Porto. 
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The number of different travel modes detected in the set of all the possible routes given by 

the Google Maps API is bigger than those that are in the set of the final commuting routes. 

For example, Table 5.1 shows that divergence, giving the examples of Lisbon, Porto and 

Coimbra. We believe that the more users we include in our sample, the closest the gap 

between the different travel modes available in the city and the actual choices of the users. 

Table 5.1 – Number of different detected travel modes. 
 

The cities in whose were detected a higher number of different travel modes were, in 

decrescent order, Lisbon, Porto, and Coimbra. These results were expectable because the 

accessibility to different transport modes is different in these cities. In Lisbon, we may have 

people with easy access to public transport modes like bus, subway, train or tram, while in 

Porto that is more difficult. In the case of Coimbra, subway, or tram structures do not even 

exist.  

5.2.2 Analysis of the Adopted Travel Modes 

Figures 5.6 and 5.7 help us gain insight into the distribution of different percentages of the 

use of the private car and walking in commuting routes. As we are analyzing all the 18 

districts, it is better to look at these two basic modes of transport that we have sure that are 

available in every city. By comparing the different districts of Portugal, it is possible to 

visualize the municipalities where there is possibly the highest CO2 emission. Which of them 

is more ecofriendly, healthy, or have the most attractive mobility solutions for the citizens. 

For example, it is clear that Leiria, Coimbra, Évora, and Guarda are the municipalities where 

there is greater use of private car in commuting routes of users. Conversely, Faro, Braga, 

Portalegre, and Beja make part of the municipalities where people most opt for walking.  

Proceeding to a more detailed analysis, Figure 5.8 shows us that, for example, in Coimbra, 

practically four-fifths of the 500 users analyzed use their private car to commute between 

work and home. The rest do not use any transport at all. Porto has a way more evenly 

distributed percentual values of users across the many different travel modes (Figure 5.9).  

The use of a private car continues to be the preferable travel mode, followed by the bus, 

walking, subway, and, finally, train. The train is never used as the only travel mode during 

commuting trips, instead, is used as a complement to a multimodal trip along the subway or 

the bus. However, the combination of subway + bus still constitutes the most used multimodal 

travel mode. The lower values of the walking travel mode relatively to Coimbra is 

comprehensive once Porto is a much bigger city and far more distances need to be traveled 

between the home and workplace. 

 

Number of Different Detected Travel Modes 

(unimodal and multimodal) 

In the Possible 

Routes 

In the Final 

Routes 

Lisbon 13 9 

Porto 9 7 

Coimbra 5 2 

In the three cities 15 9 
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Figure 5.6 - Distribution of the percentages of the use of the private car and walking in Lisbon, Porto, 

Coimbra, Braga, Setubal, Aveiro, Faro, Leiria, and Viana do Castelo. 

 

 

Figure 5.7 - Distribution of the percentages of the use of the private car and walking in Vila Real, Viseu, 

Santarem, Guarda, Portalegre, Bragança, Évora, Castelo Branco, and Beja. 
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Figure 5.8 – Distribution of the percentages of the different travel modes in Coimbra. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9 - Distribution of the percentages of the different travel modes in Porto. 

The mobility profile of Lisbon is similar to the one in Porto since we are talking about cities 

that are more similar in size, population and transport infrastructures than Coimbra (Figure 

5.10). The robustness structuring and the high number of lines of Lisbon’s subways are 

reflected in the percentual of users that use them. When compared with Porto, that percentu- 
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Figure 5.10 - Distribution of the percentages of the different travel modes in Lisbon. 

 

al value more than doubled and is higher than the percentage of users that do not use any 

travel mode at all (walking). However, the bus is still the second preferred travel mode after 

the private car. As Lisbon is bigger than Porto, we now begin to have some users that need 

the train to travel between home and workplace. We begin to have the rising of users that 

need to use three travel modes (two changes of travel mode – Bus, Train and Subway). The 

combination subway + bus still constitutes the most used multimodal travel mode. 

In all the three analyzed cities, the train is consistently the travel mode that exhibits the lower 

percentual values, and that fact could be highly biased because of the nature of our 

experiments. These experiments were done on a municipal level and, consequently, only 

users with a well-identified home and workplace inside the municipality were qualified to 

the study. Considering that the train is more used to interconnect different cities, its rare use 

becomes understandable.  

Figures 5.11-5.13 depicts the various percentages of users that make use (in their commuting 

trips) of private travel modes (private car and bicycling – walking is not included); public 

transport modes (train, tram, subway, bus); unimodal travel modes or multimodal travel 

modes.  

Despite of the fact that there are only two public transport modes in Coimbra (bus and train), 

the absence of values for the use of public travel modes – as seen in Figure 5.11 - may indicate 

that there is still much room to improve the public transport access ways linking residential 

areas and business areas (the most fundamental access ways). As discussed in Figure 5.8, the 

users in Coimbra mainly use a private car or no travel model at all in their commuting routes, 

so, it is comprehensible that the percentage of multimodal travel mode is inexistent (a 

multimodal trip is only viable if it involves public transport modes). As we will see later, the 

percentages of the different travel modes in Coimbra were the ones that most deviated from 

the groud-truth data. We believe that if we analyzed more users in Coimbra, the slice of them 
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that appeared to use public travel modes would increase. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11 – Percentages of different types of travel modes in Coimbra. 
 

Figure 5.12 is relative to Lisbon, and we can observe a more reasonable ratio between the 

public and private travel modes, which is remarkable from an ecological standpoint of view. 

Although we have more options for public transport mode (bus, train, tram, and subway), 

this ratio also indicates that there are inviting accessibility solutions between residential and 

 

 

 

 

 

 

 

 

 

Figure 5.12 - Percentages of different types of travel modes in Lisbon. 

business areas. The growth of available public travel modes (as already analyzed in Figure 

5.10) increases the multimodal solutions offered. Consequently, we can see the growth of the 

multimodal percentage in Figure 5.12 when compared to Coimbra (Figure 5.11).  
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Finally, Porto is the city in which the users have a more ecological behavior, with the highest 

percentage of users that adopt public travel modes – see Figure 5.13. The public transport 

access ways linking the home and workplaces seem to be appropriated. We conclude that 

because, even with higher usage of public travel modes than Lisbon, we end up with a lower 

need for multimodal solutions (less need for changing from a travel mode to another).  

 

 

 

 

 

 

 

 

 

Figure 5.13 - Percentages of different types of travel modes in Porto. 

 

Now, analyzing the overall percentages of the different types of travel modes in Figures 5.11-

5.13, we observe that there is a tendency to use more private travel modes and less public 

travel modes in routes home to the workplace. The reverse happens in the routes workplace 

to home. In the case of the percentages of public transport modes in Lisbon and Porto, if we 

subtract the value relative to commuting workplace to home to the value relative to 

commuting home to workplace, the difference can go from 14% (in Porto) to 16% (in Lisbon). 

That difference might happen because there is a more mandatory commitment to arrive at 

the workplace on time that consequently induces the need to use private travel modes (as 

cars, taxis or ubers) to certify that users do not arrive late. Comprehensively, private travel 

modes are the fastest ones since they do not depend on schedules or entrance/exit of 

passengers 

5.2.3 Validation 

As previously mentioned, in the work of Olivier et al. [84], the approach we used to infer 

work and home locations have already been validated as being a good approximation of the 

actual locations by comparing the inferred results with real Portuguese government census 

information. 

During the analysis of the inferred commuting patterns, it becomes noticeable that we obtain 

different results depending on if we are dealing with the commuting route home to the 

workplace or if we are dealing with the reverse one. Contrary to what we might think, the 

routes home to the workplace are not always equal to the opposite way. That is plausible 

because we might have different road routines in the morning and the evening or even 

different directions of the roads. Maybe temporary roadblocks might obligate us to follow 

different paths in the morning and the evening. This asymmetry in commuting travel 
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behavior is supported by Malleson et al. [87]. They explain that the commuting route home 

to the workplace of the users differs from their route workplace to home around 15% of the 

time. That fact validates our conclusions that users, comparatively to the trip home to the 

workplace, adopt a different travel mode (a private one, instead of a public one) 14% (in 

Porto) and 16% (in Lisbon) of the time when they make the reverse trip (Figure 5.13 and 

Figure 5.12). 

Validating the inference of travel modes and commuting routes that rely on opportunistic 

data is always challenging, especially considering that we are dealing with data of 2007. 

Making questionnaires that ask the people to tell what is their typical commuting path not 

only would it be costly in terms of time and money, but also we would not get the expected 

results. Users would have to remember and describe precisely the commuting route that they 

took in 2007, which would be extremely difficult. Many of them have already different jobs 

or homes, and even the city's topology and road network have changed. So, actually, to 

validate the results obtained in the Figures 5.8-5.13, we consulted studies of the Institute of 

Mobility and Land Transports of Portugal [88],[89]. These censuses have a registry of the 

preferred choice of transport modes of the Portuguese citizens during their commuting trips. 

These results are at a municipality level and are specifically targeted to commuting routes 

home to the workplace or home to school. They do not have information about some specific 

travel modes like the tram, or any combination of travel modes (multimodal).  

As already clarified, our estimated results are from commuting patterns of users in 2007. 

From 2001 to 2011, we do not know the variance of the percentages. Hereupon, we will 

assume that the values in 2001 will constitute our percentual floor, and the values in 2011 

will represent our percentual ceiling. Thus, our results will be considered validated if they 

are between those two references; otherwise, we will assess the error, and evaluate if the 

estimated value was too way off. In Tables 5.2-5.3, we can see that the percentages of census 

2011 are colored. That indicates if the value decreased (red) or increased (green) relatively 

the previous census registry. 

From the results shown in Table 5.2-5.3, we can see that the values that we obtained are 

credible. For eight out of twelve travel modes across the three cities, the results got fall 

between the values of the 2001 and 2011 censuses. Then, in this detailed analysis of three 

cities, we got an accuracy of 67%. The only exceptions are the walking and driving travel 

modes in Porto and Coimbra, suffering slight deviations that can go from 1.2% (walking in 

Coimbra) to 9.3% (Driving in Coimbra). Once again, we believe that the higher the number 

of users subject to this study, the less will be the estimated error. 

 

 
Table 5.2 - Table with the different percentages of the travel modes in Lisbon based on our estimation and 

the censuses. 

 

Cities Lisbon 

Travel Modes Walking Driving Bus Train Subway 

Census 2001 5.9% 24.2% 29.4% 39.1% Not defined 

Census 2011 16.9% 48.6% 19.4% 1.6% 12.3% 

Estimation from 2007 users 6.6% 43.7% 21.9% 1.8% 11.1% 

Estimated Error - - - - - 
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Table 5.3 - Table with the different percentages of the travel modes in Porto and Coimbra based on our 

estimation and the censuses. 

 
 

Analogously, we applied the same validation technique for the two basic travel modes of all 

the 18 districts of Portugal (as depicted in Figure 5.6 and Figure 5.7). Tables 5.4-5.6 permit us 

to observe the different estimated percentages for walking and driving in the 18 districts and 

compare those values with the census. In this case, the methodology enabled us to infer 

correctly 19 results out of 30, which gives us an accuracy of 63%. The little drop in the 

accuracy is comprehensible once we are analyzing districts that have considerably lower 

tower density and fewer users belonging to the subsample. In fact, we verified that the 

estimated error increases as the tower density and the number of users analyzed of a certain 

municipality decreased. 

 

Table 5.4 - Table with the different percentages of the travel modes based on our estimation and the 

censuses. They are relative to the following cities: Braga, Setúbal, Aveiro, Faro, and Leiria. 

 

 

 

 

Cities Porto Coimbra 

Travel Modes Walking Driving Bus Train Subway Walking Driving 

Census 2001 26.3% 43.8% 28.1% 1.1% 
Not 

defined 
17.0% 60.8% 

Census 2011 21.6% 52.2% 17.1% 0.6% 7.7% 10.7% 72.5% 

Estimation 

from 2007 

users 

9.3% 41.4% 19.8% 0.9% 4.7% 18.2% 81.8% 

Estimated 

Error 

21.6 - 9.3 = 

12.3% 

43.8- 

41.4 = 

2.4% 

- - - 
18.2 – 17.0 

= 1.2% 

81.8-72.5 

= 9.3% 

Cities Braga Setúbal Aveiro Faro Leiria 

Travel 

Modes 

Walki

ng 

Drivi

ng 

Walki

ng 

Drivi

ng 

Walki

ng 

Drivi

ng 

Walki

ng 

Drivi

ng 

Walki

ng 

Drivi

ng 

Census 

2001 
27.0% 52.3% 23.4% 52.4% 20.5% 57.8% 32.2% 57.3% 19.0% 66.1% 

Census 

2011 
18.2% 68.1% 18.2% 63.0% 14.2% 70.9% 25.5% 65.8% 10.6% 78.8% 

Estimati

on from 

2007 

users 

21.5% 61.5% 20.2% 59.0% 14.8% 62.4% 26.6% 73.3% 12.0% 78.0% 

Estimat

ed Error 
- - - - - - - 

73.3 – 

65.8 = 

7.5% 

- - 
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Table 5.5 - Table with the different percentages of the travel modes based on our estimation and the 

censuses. They are relative to the following cities: Viana do Castelo, Vila Real, Viseu, Santarém,  Guarda. 

 
 

 
Table 5.6 - Table with the different percentages of the travel modes based on our estimation and the 

censuses. They are relative to the following cities: Portalegre, Bragança, Évora, Castelo Branco, and Beja. 

 

These results are very encouraging. From the methodologies analyzed, some tried to infer 

origin/destination trips and travel modes with performances around 80% and 90% ([39], 

[48]). However, these results are obtained through the use of GPS  sensors, accelerometers or 

the strength of the network signal. These data are widely used in the scientific community 

and, therefore, the challenge and scientific contribute is much less. Moreover, these sensors 

drain the battery of the mobile phone much faster. The researchers need to interact with the 

users through an application much more intrusively. CDRs do not cause any additional 

inconvenience to the users. Their willingness to collaborate is total. Also, attempts to infer 

commuting patterns from CDRs are far more scarce. Some few of the works that attempted 

it, as already mentioned in the literature review ([26], [50], [81]), could not even validate the 

results. Therefore, the results of this work are promising for the scientific community.

Cities 
Viana do 

Castelo 
Vila Real Viseu Santarém Guarda 

Travel 

Modes 

Walki

ng 

Drivi

ng 

Walki

ng 

Drivi

ng 

Walki

ng 

Drivi

ng 

Walki

ng 

Drivi

ng 

Walki

ng 

Drivi

ng 

Census 

2001 
23.6% 57.4% 27.1% 58.0% 22.2% 61.9% 22.9% 61.9% 28.7% 59.3% 

Census 

2011 
15.1% 73.1% 15.3% 70.9% 13.3% 76.5% 14.4% 73.1% 17.7% 73.6% 

Estimati

on from 

2007 

users 

15.2% 71.2% 17.5% 59.4% 15.3% 74.6% 17.3% 82.7% 18.0% 90.0% 

Estimat

ed Error 
- - - - - - - 

82.7 – 

73.1 = 

9.6% 

- 

90.0 -

73.6 = 

16.4% 

Cities Portalegre Bragança Évora Castelo Branco Beja 

Travel 

Modes 

Walki

ng 

Drivi

ng 

Walki

ng 

Drivi

ng 

Walki

ng 

Drivi

ng 

Walki

ng 

Drivi

ng 

Walki

ng 

Drivi

ng 

Census 

2001 
24.7% 57.4% 34.7% 59.8% 23.8% 66.3% 34.3% 54.2% 32.5% 55.4% 

Census 

2011 
17.2% 73.4% 21.1% 74.0% 17.5% 75.3% 24.0% 67.9% 24.6% 67.2% 

Estimati

on from 

2007 

users 

22.7% 77.3% 13.0% 87.0% 6.6% 93.4% 24.7% 73.7% 24.2% 75.8% 

Estimat

ed Error 
- 

77.3 -

73.4 = 

3.9%  

21.1 -

13.0 = 

8.1% 

87.0 -

74.0 = 

13% 

17.5-

6.6 = 

10.9% 

93.4-

75.3 = 

18.1% 

- 

73.7 -

67.9 = 

5.8% 

24.6%-

24.2% 

= 0.4% 

75.8 -

67.2 = 

8.6% 
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Chapter 6 
Conclusion 

In this chapter, it will be described the main contributions produced during the internship 

as well as recapping the work that was developed and the obtained results from it. We will 

also mention the challenges encountered and how we managed to surpass them. Finally, 

topics that deserve further investigation will also be discussed. 

6.1 Main Contributions 

In this research internship, we addressed the inference of commuting patterns – travel times, 

route choice, and travel mode choice - from CDRs. At the end of this research, we understand 

that CDRs offer a great and viable way to infer these mobility patterns in urban spaces, 

especially if is not required real-time monitoring. We focused on commuting trips since the 

travel between home and workplace constitutes one of the most relevant travelling behaviors 

in our daily routines with substantial impacts on the decisions to be made on urban mobility.  

Comparing this work with previous studies in the field, this one (1) supported a higher 

volume of data; (2) detected a wider variety of travel modes and their possible combinations 

(3) made use of intermediate cell towers activated along the commuting trip, estimated travel 

times and different ranking of the possible routes; (4) provided an enhanced approach for 

preparation and subsampling of the dataset. 

At an early stage of our work on the State of the Art, we familiarized with the main sources 

of data that we can use in urban spaces to detect urban patterns. This exploratory work 

established an essential step to understand which are the main weaknesses, challenges, and 

strengths related to each data source. This understanding was vital for choosing a promising 

and appropriate data source that would enable us to infer urban patterns and develop the 

necessary algorithms. 

Furthermore, some of the main topics of mobility modeling in urban spaces were analyzed. 

Such topics included: inference of origin-destination flows; deduction of activity locations, 

estimation of road traffic, detection of travel modes, analysis of social behavior, and 

characterization of urban land use and occupation. In each of these subsections, the relevant 

scientific contributions to the topic under consideration were examined, as well as some 

promising modeling methodologies developed by some authors. This analysis was then 

critical to have a panoptic vision of the possible weaknesses and ways of optimizing the 

existing methodologies. It was also important to come up with new ideas of possible 

innovative techniques and new unexplored topics to address during this internship. 

Insights acquired from the State of the Art were applied to a CDR dataset of citizens from 

the Portuguese territory, including the islands of Madeira and Azores. Some preliminary 

statistical analysis was developed for familiarization with the dataset. Visualizations of the 

distribution of cell towers throughout the country and heat maps showing the different cell 
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activity density of different users of the dataset were rendered. Also, the development of 

Voronoi diagrams allowed us to perceive how the coverage area of each cell tower is 

distributed among the different Portuguese districts. Once this thorough characterization 

was done, the natural subsequent step was the selection of the appropriate users from which 

we can extract mobility patterns. In fact, there are several criteria that we need to fulfill in 

order to get the right set of users. That process is something that other studies in this field 

had to do, but we approached it in a very optimized, complete, and innovative way. 

Succinctly, instead of a random selection, we make sure that all the users that we selected 

have: a well-identified and distinct home cell tower and workplace cell tower; cal activity in 

these two places during the morning and the evening; call activity while they are moving to 

their home or their workplace. 

While applying this series of criteria or filters to select the appropriate users to proceed with 

our methodology, a scientific paper was written and later published [90]. The scientific paper 

included the content of section 4.4 and, therefore, tried to evaluate how the variation in four 

quality parameters of a CDR dataset affects the inference of users' commuting mobility 

patterns. After the experiments, we concluded that subsampling the dataset to including 

users that, on average, receive/make a maximum of 7.5 calls per day is enough to infer 

commuting routes of 10.42% of them. Adding users with more than 7.5 calls per day into the 

subsample does not result in a significant increase in that percentage value. Including in our 

subsample users with a daily call activity, we can infer commuting routes of 11.1% of them. 

Increasing the number of days without calling, we observe a steep descent of this percentage 

down to 0.27% that is when we include users with a regularity up to 16.8 days. From this 

value, the percentages stabilize. Moreover, the more the number of active days of the users 

we include in our subsampling, the higher is the percentage of them from which we can infer 

commuting patterns. If a dataset is constituted by users with a maximum amount of 208 days 

of call activity allows us to infer commuting patterns of 5.67% of the users.  

These conclusions are relevant for those who want to infer mobility patterns using CDRs and 

need to know which are the most suitable thresholds for multiple quality parameters are in 

order to subsample the data. It also gives an overview of the quality of the results, knowing 

in advance the characteristics of the dataset. For a given set of characteristic variables of the 

dataset or subset, it is shown to be possible to estimate the percentage of users that we can 

ignore or carry on throughout the detection of commuting patterns.  

With these insights in mind, we subsampled our dataset. This subsample was further limited 

to 5000 users from the 18 different districts of Portugal due to API restrictions and the need 

to reduce computational processing. With all that done, we could infer the commuting 

mobility patterns through an innovative methodology. This technique essentially consisted 

of using the Google Maps API to provide us the potential commuting routes and their modes 

of transport, once have we inferred and provide to the API the selected users and their 

respective home and work locations. Then we created formulas that try to give a score to 

each one of these candidate routes and find the most appropriate one (and the associated 

travel mode). These formulas are new in the way that they consider some indicators 

previously calculated like the estimation of travel times, the cellular towers that were 

activated during the trips, and the frequency of call activity on those cellular towers. 

After running the algorithm for the 5000 users, some metrics and statistics were calculated. 

Through those statistics, a characterization and a comparative analysis of the mobility profile 
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of the cities was done. The distribution of different percentages of adhesion to different 

modes of transport (and their combinations) was analyzed. Those results were validated 

with census data that were used as a ground truth. These censuses are 2001 and 2011 reports 

from the Institute of Mobility and Land Transport (IMTT). Initial and vaster results of the 

percentages of adoption of private car and walking in the 18 districts of Portugal were taken. 

After comparing with the ground-truth, we obtained 63% of accuracy once they were inside 

the interval of percentual values given by the Portuguese censuses. However, when we 

focused and detailed our inference in cities with more users and higher tower density, we 

noticed that 67% of the estimated percentages of the different travel modes were correct.33% 

of the percentual values obtained were still very close to the real percentages (the deviation 

went from 1.2% to 12.3% in the worst case). These last ones were relative to the walking and 

driving modes in Porto and Coimbra. These are exciting results as CDRs are there, available 

to any mobile operator, generally at a national level of coverage.  

Graphs were rendered with the intention to assess which cities use most private, public, 

unimodal, or multimodal transportation. Having a straight way to infer percentages of use 

of private, public, unimodal and multimodal modes of transport, like we did for the three 

Portuguese main cities – Lisbon, Coimbra, Porto – it is of crucial relevance to decision-makers 

and cause a social impact in terms of going in the direction of a more sustainable mobility in 

urban areas. Thus, it is possible to know which cities are greener and healthier for their 

citizens. It is also possible to perceive the efficiency of current public transport infrastructures 

by analyzing the percentage of users who were forced to take multimodal solutions. 

Finally, visualizations of the routes and means of transport adopted by users' commuting 

routes were overlapped on the map of each municipality. These visualizations provide a 

more general idea of regions of each city where each mode of transport is predominant. For 

example, it allows a carrier to have access to information about where users travel mostly 

using private transportation and, accordingly, to adjust the network of transports to motivate 

to shift to the more sustainable public transport. It also allows having an overview of the 

areas of the city in which exist more flow of people and vehicles. All these inferred results 

about the commuting patterns ended up by being the main focus of a second paper 

developed throughout the second semester [91].  

6.2 Challenges Faced 

Looking closely at the Gantt diagrams that depict the foreseen planning and the achieved 

planning (Figure A.1 and Figure A.2), we see that there are discrepancies. Some of these 

discrepancies are justifiable because there have been changes in the objectives of the 

internship. Initially, it was intended that, in addition to inferring mobility patterns, we would 

infer social patterns. For instance, through the CDRs, we intended to infer our social ties and 

their respective strength as well as the influence that our social ties have in our choice of 

mode of transport in our commuting trips. However, a more-in-depth investigation allowed 

us to conclude that discovering these social patterns through CDRs is not appropriate. One 

simple reason for that is that we can have strong social ties that we see every day and to 

whom we do not even make a call. We may even be great friends with someone that is very 

distant and to whom we rarely. So, the total call duration of our calls to our social ties is not 

a very good indicator of the strength of our relationship with them.  
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Having our goal been adjusted, the steps we needed to reach it were also redefined according 

to the gradual clarification we were getting and the challenges we were facing as we moved 

forward through the internship. Some of these challenges are related to the dataset itself. 

Once it is a dataset of CDRs, a more thorough and painstaking effort on data preparation, 

processing, cleaning, and selection had to be done. Despite multiple advantages (which will 

be described throughout the report), CDRs have some challenges related to low spatial 

resolution, temporal sparsity, and oscillation that led us to focus much of our time on this 

phase of data processing. A major challenge that accompanied the entire implementation 

phase was dealing with massive amounts of data. It was necessary to manipulate, store, and 

perform complex calculations upon more than 400 million records. This issue resulted in 

several weeks of waiting just to produce the outcomes of the methodology applied to 5 000 

users.  

In addition, the local computational power proved to be insufficient, so we had to resort to 

AmILab databases. Weeks of processing the algorithms conditioned the number of users 

under analysis as emphasized. However, it was another issue that had the most 

responsibility in this regard - the fact that we had to deal with the Google Directions API. 

Google now charges the API calls from a specific limit of calls. This issue not only forced us 

to limit the number of users being analyzed but principally forced us to be very careful about 

unnecessary and experimental calls we might make during the development of the python 

code.  

Finally, a significant challenge that is common in other studies that attempt to infer mobility 

patterns from opportunistic data is to obtain ground-truth data to validate the results 

obtained. After relentless searching for various sources that could validate our results, we 

were finally able to get census from the Institute of Mobility and Land Transports whose 

content met the goals of our work. 

6.3 Future Research 

It is important to recap some assumptions made during this study. Ideally, every analyzed 

user has a single phone with a single SIM that belongs to the mobile operator with which we 

are dealing. However, there are other scenarios. We need to be aware that, first of all, despite 

being the most widespread gadget, not everyone in Portugal has a phone. The ownership of 

the cellular towers belongs to multiple mobile operators. We had access to a dataset of a 

particular mobile operator that gave us data of a considerable representative amount of 

Portuguese users – about 20% Portuguese population. There is also the possibility of the 

same user having more than one smartphone. Even if it has only one smartphone, it can have 

more than one SIM that belongs or not to the same mobile operator. We also do not have a 

guarantee that we are not dealing with shared phones (e.g., a phone shared between a couple 

or between family members).  

Moreover, we assumed that during the period, not a single user changed the smartphone or 

the SIM card during the period of the study. Furthermore, there is the possibility that users 

decided to not make or receive calls in their workplace or home, moving to another place 

instead. Also, as already mentioned in this report, when we tried to infer home and 

workplace locations, we considered that every user has a daytime job. When we are 

calculating the percentages of users choosing a private car, we are assuming that the sampled 
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users do not know each other, so it is impossible that more than one analyzed user travels in 

the same car (as a passenger or as a driver).  

So, in the end, there is still considerable room for future improvement of this work. Future 

researches can take the path of trying to deconstruct some of the above-described 

assumptions. Combining new data for ground truth to validate the results more accurately 

is also something for further exploitation. It would also be interesting extending this 

approach to other places besides home and workplace and considering more complex 

travelling patterns. These conclusions and insights are contextualized to the Portuguese 

reality. It would be pertinent to see similar experiments in other countries for comparative 

analysis.  
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Appendix A: Gantt Charts 
 

 

 

 

 

 

 
 

Figure A.1 – Gantt Chart of the first semester that contradistinguishes the foreseen and the executed tasks. 
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Figure A.2 - Gantt Chart of the second semester that contradistinguishes the foreseen and the executed tasks. 

 


