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ABSTRACT 
 

Alzheimer’s disease (AD) is one of the main neurodegenerative disorders 

causing dementia. Positron emission tomography (PET) neuroimaging with 11C-

Pittsburgh Compound B (PiB) and 11C-(R)-PK11195 (PK) are two of the existing 

modalities to assess amyloid plaque and activated microglia in human brain, 

respectively. Since amyloid plaque is the main hallmark of AD and activated microglia 

is currently found in the brain of AD patients, these imaging biomarkers can be used 

in diagnostic workup and to achieve early AD diagnosis. 

The main goal of the present study is to solve a binary classification problem 

between healthy controls (HC) and AD patients, by using machine learning (ML) 

methods based on two PET imaging biomarkers, PiB and PK. Another important goal 

of this work includes the identification of the brain regions where PiB and PK are most 

correlated, at both regional and voxel level. 

In the present study it was included 41 subjects (20 AD and 21 HC). To 

understand the impact of the time interval considered in PET image acquisition, the 

dataset was split in three different groups. Group TOT composed by PiB PET images 

acquired during the total time of PiB biodistribution, and groups 4070 and 4060, 

acquired during the characteristic accumulation time of PiB and PK, between minute 

40 and 70, and 40 and 60, after administration, respectively. After quantification, pre-

processing, feature extraction and selection, PiB and PK PET images were submitted 

to classification using a support vector machines (SVM) approach. Voxel-wise 

comparison between AD and HC groups of different quantified PK PET images were 

performed to understand the impact of distinct reference regions in the 

normalization of PK PET images and the influence of the quantification method used. 

Also, voxel-wise and region of interest (ROI) based correlation between standard 

uptake value ratio (SUVr) PiB and different quantified PK PET images were calculated. 

Normalization by cerebellum of PiB PET images of group 4070 yielded the best 

classification accuracy of AD (accuracy-0.925, sensitivity-1.000, specificity-0.857). 

Thus, for PiB PET images, cerebellum appears to be the brain region where amyloid 

accumulation bears the least differences between HC and AD patients, i.e., the best 

reference region to do the normalization. Also, when using the cerebellum as 

reference region of PiB PET images, stronger ROI-based correlation with binding 
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potential (BP) PK PET images in several brain regions was found, compared to 

normalization based on white matter. Features extracted at regional level from PK 

PET images did not show improvement, neither in accuracy nor in sensitivity, of the 

classifier only based on features extracted from PiB PET images. ROI-based 

correlation results suggest specific binding of PK to cerebellum; thus, supervised 

cluster analysis algorithm based on four kinetic classes (SVCA4) showed to be the best 

approach to do the normalization of PK PET images. Both types of quantified PK PET 

images did not show relevant differences between groups at voxel level.  This 

suggests that PK biodistribution in the brain is not relevant for group differentiation. 

The reason why is probably related to the fact that activated microglia is associated 

with neuroinflammation, and this process is quite variable across participants, i.e., it 

is randomly distributed across brains of AD patients. There were five brain regions 

where the correlation at voxel level between PK and SUVr PiB PET images agreed the 

most for all reference regions considered, primary motor cortex, primary visual 

cortex, somatosensory association cortex, associative visual cortex and premotor 

cortex. Since, both precuneus (P) and parietal inferior (PI) have important roles in 

visuospatial processing, ROI-based correlation results are consistent with the ones 

obtained at voxel level. 

Overall, according with the present study, the classifier only based on features 

extracted from PiB PET images of group 4070, using cerebellum as reference region, 

was the classifier who solved more accurately the problem proposed, binary 

classification in AD. Additionally it was also found a positive correlation between PK 

and PiB in particular in brain regions responsible for motor function and visual 

processing. 

 

Key words:  

Alzheimer’s disease (AD), Quantification, Normalization, Classification, Machine 

Learning (ML), Biomarkers, Positron Emission Tomography (PET), 11C-Pittsburgh 

Compound B (PiB), 11C-(R)-PK11195 (PK), Correlation  
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RESUMO 
 

A doença de Alzheimer (AD) é a doença neurodegenerativa responsável pelo 

maior número de casos de demência. Tomografia por emissão de positrões (PET) com 

11C-Pittsburgh Compound B (PiB) e 11C-(R)-PK11195 (PK) são duas modalidades 

utilizadas na visualização das placas amilóides e da microglia ativada no cérebro 

humano, respetivamente. Uma vez que as placas amilóides são o principal 

identificador da AD e que a microglia ativada é também recorrentemente encontrada 

no cérebro dos doentes de Alzheimer, estes representam dois potenciais 

biomarcadores imagiológicos que podem ser usados como ferramenta de diagnóstico 

precoce da doença.  

Este trabalho teve como objetivo principal a resolução de um problema de 

classificação binário, entre controlos saudáveis (HC) e pacientes de Alzheimer, 

através de métodos de machine learning (ML) baseados em dois traçadores 

imagiológicos de PET: o PiB e o PK. Outro objetivo deste trabalho, incluiu a 

identificação das regiões cerebrais onde o PiB e o PK apresentam maior correlação, 

quer a nível do voxel quer a nível regional.  

O dataset deste estudo, que incluiu 41 indivíduos (20 doentes de Alzheimer e 

21 HC), foi dividido em três grupos por forma a melhor compreender o impacto do 

intervalo de tempo considerado no protocolo de aquisição da PET. O grupo TOT, 

composto pelas imagens PET adquiridas durante o tempo total de biodistribuição do 

PiB, e os grupos 4070 e 4060, compostos por imagens PET adquiridas durante o 

intervalo de tempo caraterístico de acumulação de cada um destes radiofármacos. 

Após quantificação, pré-processamento, extração e seleção das características, as 

características selecionadas das imagens PET, com PiB e com PK, foram utilizadas 

como variáveis preditoras em classificadores baseados em support vector machines 

(SVM). Para estudar o impacto das diferentes regiões de referência utilizadas na 

normalização de imagens PET com PK, e a influência do método de quantificação 

escolhido, os grupos de AD e HC de diferentes formas de quantificação de imagens 

PET com PK foram comparados a nível do voxel. Adicionalmente, calculou-se para 

diferentes regiões cerebrais a correlação existente entre imagens PET com PiB em 

termos da taxa do valor de captação padronizado (SUVr) e as imagens PET com 

diferentes formas de quantificação PK. 
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O classificador com o melhor desempenho foi construído com características 

extraídas de imagens PET com PiB do grupo 4070 normalizadas pelo cerebelo 

(exatidão – 0.925, sensibilidade-1.000, especificidade-0.857). Por conseguinte, para 

imagens PET com PiB, o cerebelo foi a região cerebral onde a diferença na acumulação 

de amilóide entre os grupos de AD e HC foi a menos significativa, isto é, foi a melhor 

região de referência. De referir que quando o cerebelo é utilizado como região de 

referência em imagens PET com PiB, é verificada uma maior correlação a nível 

regional para com as imagens PET com PK, comparativamente à normalização 

realizada através da matéria branca. As características extraídas a nível regional de 

imagens PET com PK não melhoraram nem a exatidão nem a sensibilidade do 

classificador apenas baseado em características extraídas de imagens PET com PiB. A 

correlação a nível regional entre imagens PET com PiB e com PK sugere que o 

cerebelo apresenta uma ligação específica ao PK; consequentemente, o método 

supervised cluster analysis algorithm based on four kinetic classes (SVCA4) relevou ser 

a melhor abordagem para a normalização de imagens PET com PK. As duas formas de 

quantificação de imagens PET com PK apresentaram diferenças muito pouco 

significativas entre os grupos AD e HC a nível do voxel, o que sugere que a 

biodistribuição do PK no cérebro não permite diferenciar grupos. Esta afirmação 

apoia a associação que se tem vindo a estabelecer entre a microglia ativada e a 

neuroinflamação. Como a neuroinflamação é característica de cada indivíduo, isto é, 

é aleatoriamente distribuída no cérebro dos doentes de Alzheimer, o esperado é a não 

diferenciação de grupos por parte do PK. Foram encontradas cinco regiões cerebrais 

onde a correlação a nível do voxel se relevou mais acentuada para quase todas as 

regiões de referência consideradas, córtex motor primário, córtex visual primário, 

córtex de associação somatossensorial, córtex visual associativo e córtex pré-motor. 

Tanto o precuneus (P) como o lóbulo parietal inferior (PI) desempenham funções 

importantes no processamento visual e espacial. Por conseguinte, é natural que os 

resultados da correlação a nível regional estejam associados com os obtidos a nível 

do voxel. 

Em suma, de acordo com o estudo realizado, o classificador construído apenas 

com características extraídas de imagens PET com PiB do grupo 4070, usando o 

cerebelo como região de referência, foi o classificador que apresentou uma melhor 

resposta ao problema proposto, classificação binária de indivíduos como AD ou HC. 
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Adicionalmente, também foi descoberta uma correlação positiva entre o PK e o PiB 

em regiões cerebrais responsáveis pela função motora e pelo processamento visual.  

 

Palavras-chave:  

Doença de Alzheimer (AD), Quantificação, Normalização, Classificação, Machine 

Learning (ML), Biomarcadores, Tomografia por Emissão de Positrões (PET), 11C-

Pittsburgh Compound B (PiB), 11C-(R)-PK11195 (PK), Correlação 
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CHAPTER 1 (INTRODUCTION) 

 

BACKGROUND 

 

The human body is made of trillions of cells. The nerve cells, also known as 

neurons, are the building blocks of the nervous system and represent one of the most 

important cells of the body. The neurons are specialized cells responsible to pass 

messages throughout the different parts of the body by an electrochemical process 

[1, 2]. 

Neurodegenerative diseases are disorders caused by the progressive death of 

neurons. Due to the impossibility of reproducing and replacing death neurons, these 

diseases do not have currently a cure. Some of the most relevant neurodegenerative 

diseases are Multiple Sclerosis, Alzheimer’s disease (AD), Parkinson’s disease and 

Huntington’s disease [3]. 

Even though the progression of these diseases is inevitable, there are 

treatments that can delay their evolution and treat their symptoms. For example, 

cognitive stimulation. Naturally, the earlier the diagnosis the most effective these 

therapeutics can be [3, 4].  

In 2019, in the United States more than 55 million people presented a 

diagnostic of dementia, a number that is expected to increase every year up to 88 

million in 2050. Unfortunately, only about half of those are actually diagnosed in the 

primary care setting [5-7]. 

 

1-ALZHEIMER’S DISEASE (AD) 

  

Portugal is an aged country with a predictable increased number of cases of 

dementia. Due to the lack of epidemiological studies focusing Portugal, the statistics 

presented herein are a worldwide estimation. Currently, AD is the neurodegenerative 

disorder responsible for most diagnosed cases of dementia, accounting for 60 to 80 

percent of them and representing the sixth leading cause of death in the United States 

[8-10]. 
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The progressive loss of nerve cells causes neurological and neuropsychological 

signs and symptoms, such as mobility problems and cognitive dysfunction [3, 4]. 

When a slight, noticeable and measurable decline in cognitive abilities is detected the 

mild cognitive impairment (MCI) is often diagnosed. MCI is considered to be a 

transitional phase between normal aging and AD and, when it is associated with 

memory loss, there is an increased risk for the patient to develop clinical AD [4, 11, 

12]. 

AD is considered a slowly progressive disorder as its symptoms tend to 

become worse with time. One of the first symptoms to appear is the loss of memory, 

which progresses over time in most of the cases, up to the point where one loses the 

ability to carry on a conversation. On average, patients live eight more years after 

their first symptoms become noticeable to others. However, since the progression of 

this disorder depends both on age and other health conditions, the survival range 

ranges goes from four to twenty years [8, 9]. 

 

1.1 – RISK FACTORS 

 

The main risk factors related with Alzheimer’s are ageing, decreased reserve 

capacity of the brain, low mental ability in early life, reduced mental and physical 

activity during late life, vascular disease, environmental factors, family history and 

genetics (heredity). Although there are risk factors that cannot be prevented - age, 

family history and genetics (heredity) – they are not the ones that scientists believe 

to have the upmost importance in the activation of the disease [6, 9]. 

From a genetic standpoint, AD is a heterogeneous disorder with two forms, 

familial Alzheimer’s disease (FAD) and sporadic Alzheimer’s disease. FAD is very rare 

and it is caused by mutations in the amyloid precursor protein (APP) gene, located in 

chromosome 21, and in the highly homologous presenilin 1 (PSEN1) and presenilin 2 

(PSEN2) genes, both linked to amyloid β (Aβ) metabolism [6]. 

In contrast, there are more than 15 million people affected worldwide by 

sporadic Alzheimer’s disease. After several years of research, apolipoprotein E 

(APOE) ε4 allele has been hypothesised to be the most relevant genetic risk factor in 

sporadic Alzheimer’s disease. However, there might be more genetic factors 

associated. Since AD is triggered by ageing combined with a complex interaction of 
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both genetic and environmental risk factors, all the factors that contribute to sporadic 

Alzheimer’s disease as well as their combination remain unknown [6]. 

 

1.2- HALLMARKS OF THE DISEASE 

 

Nowadays, it remains unknown what triggers the disease. However, according 

to the current understanding of molecular pathogenesis, the hallmarks are the 

amyloid plaques, composed of Aβ, the neurofibrillary tangles (NFTs), composed of 

hyperphosphorylated tau, and neuroinflammation [13].  

Although activated microglia is not a specific pathological hallmark to AD, it is 

probably related to neuroinflammation and so consistently found in AD patients. 

According with studies, it may be present years before the clinical and behavioural 

signs of the disease start to appear. Thus, it can represent another important factor 

for AD diagnostic [12]. 

From all the hallmarks of the disease, it is thought that Aβ is the driving force 

of the disease process, supported by the mutation found in FAD. In line with this, 

amyloid cascade hypothesis postulate that AD results from an initial imbalance 

between the production and clearance of Aβ in the brain, followed by neuronal 

degeneration and ensuing dementia [6, 8, 14]. 

Figure 1 shows plaques and tangles in the cerebral cortex of an AD patient. 

 

 

 

  

Figure 1 - Plaques and tangles in the cerebral cortex AD. Plaques are extracellular deposits of Aβ 
whereas tangles are intracellular aggregates composed of a hyperphosphorylated form of the 
microtubule-associated protein tau. Figure extracted from the book of Blennow, Leon and Zetterberg 
(2006) – Figure 1 pag. 388 [6]. Copyrights authorized by the author and pending by the The Lancet 
journal. 
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2–DIAGNOSIS 

 

 AD definitive diagnosis can only be performed post-mortem with an autopsy, 

which allows the confirmation of the presence or absence of amyloid plaques and 

neurofibrillary tangles [7]. Until recently, clinical diagnosis depended mainly on 

medical history, together with the clinical, neurological, and psychiatric examination 

through a 1984’s stablished criteria of the National Institute of Neurological and 

Communicative Diseases and Stroke and the Alzheimer’s Disease and Related 

Disorders Association (NINCDS-ADRDA). Since these criteria for suspected AD largely 

depended on the exclusion of other dementias, the diagnostic accuracy was relatively 

low, with sensitivity of around 80% and specificity of 70%. Due to this fact, and to the 

evidence of other potential biomarkers, NINCDS-ADRDA proposed in 2011 the 

incorporation of both imaging and molecular biomarkers to the clinical diagnosis of 

AD [6, 7, 15]. 

Biomarkers are biological markers able to objectively measure and evaluate 

some biological state or condition. In this regard, changes that occur at different 

biological states, corresponding to the evolution of the disorder, can be translated by 

biomarkers. The currently biomarkers used in AD are the brain scans (imaging 

biomarkers) and blood tests and measures of cerebrospinal fluid (CSF) (molecular 

biomarkers) [16-18]. 

 

2.1 - MOLECULAR BIOMARKERS 

 

Blood tests and measures of CSF are used to quantify any disease-related 

marker. Consequently, they can be used in addition to brain scans to verify biological 

and/or pathogenic changes in the brain [18, 19]. 

 

MEASURES OF CEREBROSPINAL FLUID (CSF) 

 

The CSF is the liquid that surrounds the brain and spinal cord. Since CSF is in 

direct contact with the extracellular space of the brain it can be used as a tracer for 

the biochemical changes that occur [20].  
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Aβ42 and abnormally phosphorylated (P-tau) and truncated tau proteins have 

been shown to be the primary components of amyloid plaques and neurofibrillary 

tangles, respectively. Thus, the levels of these proteins in CSF have been considered 

as potential AD biomarkers [14, 18]. 

Aβ42 CSF levels in AD patients are a measure of fibrillar Aβ42 and plaque load 

in the brain. Aβ42 concentration can be measured in CSF by antibody-based 

techniques, such enzyme-linked immunosorbent assay (ELISA), and by antibody-

independent techniques, such as mass spectrometry. The aggregation of Aβ into 

plaques results in less Aβ being available to diffuse into the CSF, resulting in lower 

levels of this protein in the CSF of AD patients [14, 18]. 

In normal conditions, tau is the protein responsible to bind and to stabilise 

microtubules in neuronal axons, a process that is inhibited when tau becomes 

phosphorylated. So, patients with AD are characterized by having high CSF tau 

levels (total tau (T-tau) and/or P-tau). CSF T-tau is increased to around 300% in 

patients with Alzheimer’s disease and, according with several evidences, it reflects 

the intensity of the neuronal and axonal damage, and degeneration of the brain. Also, 

patients with high T-tau measures are more likely to have a faster progression from 

MCI to AD, cognitive decline and higher mortality [6, 14, 18]. 

Since CSF levels are normal in several other neurodegenerative diseases, 

abnormal CSF levels allow to discriminate patients with AD from both the cognitively 

normal elderly and patients with other dementias. However, to improve the diagnosis 

of AD, a delineation of the temporal changes of core and candidate CSF biomarkers in 

preclinical AD and the investigation of their association with established and 

emerging neuroimaging markers as well as with comorbidities and other age-related 

risk factors is needed [14, 19]. 

 

2.2 - IMAGING BIOMARKERS 

 

Brain scans, used to investigate what is happening in the brain of AD patients, 

can be acquired by different imaging modalities, such as magnetic resonance imaging 

(MRI) and positron emission tomography (PET). By using these techniques, it is 

possible to assess biological and pathogenical changes in the brain and, thus, access 
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disease risk or make prognosis, clinical guidance of diagnosis, and monitorization of 

therapeutical interventions [6, 18]. 

 

IMAGING TECHNIQUES: MAGNETIC RESONANCE IMAGING (MRI) 

 

MRI is a non-invasive imaging technique that uses strong magnetic fields and 

radio waves to produce 3D detailed anatomical images [21, 22].  

There are two types of MRI images, structural MRI (sMRI) and functional MRI 

(fMRI). Since brain morphometry can be measured by sMRI, this technique has been 

used to detect secondary effects of AD, such as grey matter atrophy, which is related 

to the loss of neurons, synapses and dendritic de-arborization; white matter atrophy; 

and ex vacuo expansion of CSF spaces. Consequently, it represents a powerful 

indicator of the stage and intensity of the neurodegenerative aspect of AD pathology 

[13, 23]. 

According with several studies changes in MRI imaging can be used to 

successfully separate patients with AD from both healthy aging subjects and MCI 

patients. However, atrophy in the hippocampal and entorhinal cortex have also been 

associated to other dementias, such as frontotemporal dementia and vascular 

dementia; Thus, MRI might bear difficulties on the discrimination of AD patients from 

patients with other dementias [6]. 

 In the Figure 2 is present an example of a a study using MRI imaging to 

detect grey matter (GM) atrophy in the brains of AD patients. 

 

  

Figure 2 - Grey matter (GM) atrophy. Left part shows the differences of GM between AD and HC. 
Indicating that AD compared with HC in the hippocampus part present a significant atrophy. From right 
part, it is possible to see significant regions of GM loss between AD and HC in whole brain. Figure 
extracted from the article Xiao et al. (2017) – Figure 3 pag.6 [24]. Copyright authorization pending. 
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IMAGING TECHNIQUES: POSITRON EMISSION TOMOGRAPHY (PET) 

 

Tracers are substances with atomic or nuclear, physical, chemical or biological 

properties that can help identify, observe or track the behaviour of a variety of 

biological processes. A tracer is called radiotracer when one or more atoms of its 

chemical composition are replaced by a radioisotope. Different techniques, such as 

single photon emission computed tomography (SPECT), PET and computed 

radioactive particle tracking (CARPT) use radiotracers as visualizing tools [25, 26]. 

PET is an imaging technique that uses reduced amounts of radioisotopes 

emitters of positrons to evaluate organ and tissue functions. PET images are formed 

by mapping the gamma photons that arrive at opposite detectors within a tiny 

window time. These gamma rays are produced by a process called positron-electron 

annihilation. In this process, two gamma photons (511keV) are produced when a 

positron, emitted by the radiotracer, meets an electron inside the patient’s body [27, 

28]. 

Due to its capacity to detect changes at the cellular level, PET imaging may 

access the early onset of disease, even when some changes characteristics of the 

disease are not identified by other imaging techniques, such MRI, and before the 

appearance of the first symptoms [27, 29].  

 

18F- FLUORODEOXYGLUCOSE (FDG) PET IMAGES 

 

FDG shows the glucose metabolism, namely its decrease (hypometabolism). 

Hypometabolism is well established in AD, in cognitively normal individuals at high 

risk for AD, in cognitively normal individuals with a parent with AD and in patient 

diagnosed with MCI. Due to this, FDG was one of the first biomarkers used in PET in 

the diagnosis of AD [30]. It is capable to demonstrate neuronal dysfunction in the 

temporal, parietal and posterior cingulate cortex, characteristic of AD patients. Also, 

has the potential to play a predictive role at detecting which normal controls or MCI 

patients are most likely to convert to AD with high accuracy [6, 30]. 

An example of longitudinal metabolic reductions on FDG-PET scan is present 

in the Figure 3. 
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CARBON-11 (11C) RADIOLABELLED MOLECULES FOR PET IMAGING 

 

As aforementioned, the retention of activated microglia and amyloid plaques 

have been widely reported in pathological examination of AD. Since carbon 11- 

Labelled Pittsburgh Compound B, know as PiB, and carbon 11- Labelled (R)- 

PK11195, known as PK, can be used as measure for amyloid plaques and microglia 

activation, respectively, these two radiopharmaceuticals have been widely used in 

PET imaging studies as tools for AD diagnosis [31].   

 

RADIONUCLIDE 11C 

 

Since organic compounds contain carbon and 11C is a positron emitter, this 

radionuclide represents one of the most common tracers used in PET. In fact, until 

today, more than 200 compounds have been labelled with 11C [32].  

The most common radionuclides used in PET images along with their decay 

characteristics, half-time, decay mode, maximum energy, mean energy and maximum 

range are present in the Table 1. 

 

  

Figure 3 - Longitudinal metabolic reductions on FDG-PET scan. FDG-PET scans in a 71-year-old 
cognitively normal woman at baseline (1989) and over 9 years. During this observation period the 
patient declined to MCI and later was diagnosed with AD, which was confirmed at autopsy. Arrows 
indicates progressive reductions in glucose metabolism. Figure extracted from the book of Blennow et 
al.  (2006) – Figure 6 pag. 394 [6]. Copyrights authorized by the author and pending by the The Lancet 
journal. 
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Table 1- Common radionuclides used in PET images and their decay characteristics, half-time, decay 
mode, maximum energy, mean energy and maximum range [32]. 

Nuclide Half-life 
(min) 

Decay 
mode 

Maximum 
energy 
(Mev) 

Mean energy 
(Mev) 

Max. range 
(mm) 

11C 20.4 100% 𝛽+ 0.96 0.386 4.1 
13N 9.98 100% 𝛽+ 1.19 0.492 5.4 
15O 2.03 100% 𝛽+ 1.7 0.735 8 
18F 109.8 97% 𝛽+ 0.69 0.25 2.4 
 

 

PRODUCTION 

  

The production of radioisotopes for use in biomedical procedures, such as 

diagnostic imaging and/or therapeutic treatments, is made by the conversion of the 

atoms of one element into another. This conversion, that involves altering the number 

of protons in the nucleus (target), can be accomplished by nuclear reactions in 

reactors or by charged particle bombardment in accelerators [32]. 

The short half-life of 11C (T1/2 = 20.4 min) is the main challenge for the 

synthesis of his labelled tracers. Fortunately, across the years, the improvement of 

automated techniques for radiosynthesis allowed the development of 11C tracers. 11C 

is generally produced by charged particle bombardment in cyclotron, in accordance 

with the nuclear reaction: 14N(p,α) 11C, where 14N (nitrogen-14) is the target, p 

(positron) the charged particle bombarded and α (alpha) the particle that is emitted 

by the nuclear reaction [26, 32]. 

 

11C-PITTSBURGH COMPOUND B (PIB) PET IMAGES 

 

The development of the PET tracer PiB has made in-vivo imaging of amyloid 

plaques in human brain possible, which as aforementioned represent a core 

molecular feature of AD [30].  

In line with this, the differences in PiB uptake profile observed in PET imaging 

between controls and AD patients can be used as a tool for AD diagnosis. AD patients 

present a higher uptake of PiB on amyloid plaques in cortical areas (amyloid-positive) 

than normal controls [6, 30, 33]. 
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In general, AD patients are PiB positive and healthy controls PiB negative. PET 

images of MCI patients, who will eventually convert to AD, should be characterized as 

positive PiB. However, this characterization is tricky, in most cases. There are at least 

two distinct explanations for PiB negativity in MCI subjects. Firstly, it is possible that 

a fraction of MCI subjects is a non-AD process, such as cerebrovascular pathology, 

medial temporal sclerosis, tauopathy, or other processes. Secondly, PiB-negative MCI 

subjects may be at earlier stages of the AD process, when prefibrillar amyloid is not 

yet detected by PiB [34]. 

Nowadays, the widely used form of PiB is radiolabelled for PET with 11C. 

Several developments across the years, resulted in the availability of amyloid imaging 

tracers labelled with longer half-life radioisotopes such as 18F (T1/2 = 110 min), 

florbetapir, florbetaben, and flutemetamol [34, 35]. 

 

PIB BEHAVIOUR AFTER ADMINISTRATION 

 

In accordance with standards protocols, subjects are positioned in the scanner, 

injected with 10 to 15 mCi of PiB, and then scanned using a dynamic acquisition 

protocol that lasts between 60 to 90 minutes. There are two main options to analyse 

PET time–activity data, the subjects do or do not arterial cannulation. Arterial 

cannulation is highly invasive and technical demanding. Due to this PET 

quantification often relies on alternative methods that do not require arterial 

cannulation [34, 36]. 

Perfusion represents the passage of the radiopharmaceutical through the 

circulatory system. The perfusion of PiB to the brain is fast, occurring between minute 

0 and 10, after administration. On the other hand, the uptake of PiB is observed 

between minute 40 and 70, after administration [33, 37]. 

The distribution and uptake of PiB in brain has substantial regional 

specificity and is associated to different brain regions depending if the subject is an 

AD patient or healthy control (HC). Control subjects show a quickly clearance of the 

radiotracer from all areas except from the hemispheric white matter and portions of 

thalamus and brain stem. On the other hand, AD patients tend to retain PiB in the 

neocortex at levels twofold higher than white matter and present lower binding levels 

in medial temporal lobe and primary sensorimotor cortex. So, the regions that are 
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most PiB positive are the association isocortical areas of the medial (precuneus) and 

lateral parietal, lateral temporal, frontal extending into gyri recti, and the allocortical 

anterior and posterior cingulate. All the mentioned areas are known to have high 

levels of amyloid plaques on post-mortem examination [34]. 

In the Figure 4 PiB scans are presented using the (semi)quantification output 

standard uptake value (SUV) (Figure 4 - A) and the quantification output mean 

distribution volume ratio (DVR) (Figure 4 – B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11C-(R)-PK11195 (PK) PET IMAGES 

 

Inflammatory mechanisms like microglial activation might be involved in the 

pathogenesis of AD. Due to the capacity of PK to reveal microglial activation this 

Figure 4 - Representative PiB scans from HC and AD participants using two different quantification 
outputs. In A using the standard uptake value (SUV) and in B the mean distribution volume ratio (DVR). 
In A the arrows indicate areas of typical amyloid deposition.  In B, PiB- represents the PiB-negative 
clinically unimpaired participants (left) and PiB+ the PiB-positive clinically unimpaired participants 
(centre). Figure adapted from two figures of the article of Cohen and Klunk (2014)   - Figure 1 pag.118 
and Figure 3 pag. 119 [30]. Copyrights authorized by the author. 
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radiopharmaceutical can be used for in vivo imaging of microglial activation in the 

human brain and can represent a target of AD and MCI [12, 38]. 

  

2.3 - COMBINATION OF MULTIPLE BIOMARKER MODALITIES 

 

It is arguably to postulate that the combination of molecular biomarkers, such 

as measures of cerebrospinal fluid, with imaging biomarkers, using both structural 

(sMRI) and functional (SPECT/PET) neuroimaging techniques, may potentially 

increase the diagnostic accuracy as compared with the use of one biomarker alone. 

This was therefore a goal of the current thesis [14]. 

 

3- QUANTIFICATION 

 

PET allows for sequential measurements of in vivo distribution of a radioligand 

after its intravenous administration. Sequential measurements are done over time, 

and are influenced by several factors, such as blood flow and radioligand clearance 

from plasma, besides the number of receptors and their affinity. Therefore, clinically 

or experimentally relevant information is extracted by applying tracer kinetic 

models to PET time–activity data. In PET kinetic modelling the knowledge of the 

input function, that represents the behaviour of the radiotracer in the blood (or 

plasma) to a site of interest, is mandatory. This input function can be assessed by 

plasma input models or through reference tissue input models [39, 40].  

Since plasma input models assess the most continuous and noiseless input 

function, they represent the gold-standard. However, these models require arterial 

blood sampling, which is laborious and invasive [41].  

In contrast, reference tissue input models are methods where a reference 

tissue is used instead of an arterial input function. The input function can be assessed 

applying compartmental models, multiple-time graphical analyses or by semi-

quantitative analysis applying tissue-to-reference tissue ratio. These methods do not 

require arterial blood sampling, and thus represent an easy choice for routine clinical 

studies. However, there are evidences that they can be biased due to (specific) binding 

of the reference region considered to the radioligand injected [34, 42, 43]. 

http://www.turkupetcentre.net/petanalysis/model_compartmental_ref.html
http://www.turkupetcentre.net/petanalysis/model_mtga.html
http://www.turkupetcentre.net/petanalysis/model_ref_ratio.html
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In table 2 are present the pros and cons of the two main types of models used 

in quantitative analysis of PET studies, reference tissue input models and arterial 

function input models. 

 

Table 2 - Pros and cons of the two models used in quantitative analysis of PET studies: reference tissue 
input models and arterial plasma input models [43]. 

 Reference tissue Arterial function 
Pros →Non-invasive; 

→Can provide binding 
potential in receptor studies. 

→Represents the true input 
function (gold standard); 

→Can be corrected for 
labelled metabolites. 

Cons →Optimal reference tissue is 
available only for a few 
radioligands; 
→Radioactivity spread from 
adjacent tissues or due to 
scatter can affect the 
performance of the model; 
→Specific analysis models 
required; 
→Metabolite analysis is not 
possible. 

→Invasive; 
→Labour-intensive. 
 

 

 

PIB QUANTIFICATION 

 

After PET image acquisition, the binary diagnostic assessment of PiB is 

established, i.e., abnormal (amyloid-positive) versus normal (amyloid-negative). This 

assessment is done in accordance with the values of the tracer uptake in cortical 

regions of interest by two different approaches: visual assessment and quantification. 

The second approach, quantitative assessment, allows higher accuracy and more 

reliable evaluation of PiB [33].  

The standardized uptake value ratio method is the most common PiB 

(semi)quantification approach used in PiB PET images. Using semi-quantitative 

analysis applying tissue-to-reference tissue ratio this method normalizes the uptake 

within target regions to that within a reference region. The cerebellum, white matter 

and grey matter are been widely used as reference region, since its amyloid 

accumulation has been demonstrated to bear no relevant differences between HC and 

AD patients [33, 34]. 

 

http://www.turkupetcentre.net/petanalysis/model_ref_ratio.html
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PK QUANTIFICATION 

 

The gold standard for analysis of dynamic PK studies is the two-tissue 

reversible plasma input model (2T4k). 2T4k model requires accurate invasive 

arterial blood sampling during the scan, which complicates the procedure, and is 

prone to errors [42]. 

Since the pattern of microglial activation is generally unknown, the choice of 

an anatomical region to be used as reference region may be challenging without 

appropriate pathological information. Due to this, reference tissue input models for 

years were not considered trustworthy PK quantification approaches. However, after 

several efforts, automatic approaches to extract reference tissue kinetics of PK, such 

as supervised cluster analysis algorithm based on four kinetic classes (SVCA4), have 

been found and used in the quantification of PK PET data [42]. 

 

4- CLASSIFICATION PROBLEM  

 

MACHINE LEARNING 

 

Machine learning (ML) can be broadly defined as computational methods that 

are able to extract knowledge from data to improve performance or to make accurate 

predictions. ML is inherently related to areas as artificial intelligence, computer 

science, data analysis and statistics, so it is also known as predictive analytics or 

statistical learning [44, 45]. 

With all the data available today, ML applications have become in recent years 

abundant in everyday life. From automatic recommendations of which movies to 

watch, to what food to order, protein function, image recognition, face detection, 

medical diagnosis and treatment, among others, ML applications are everywhere 

[44]. 

As it was mentioned, neuroimaging biomarkers changes are important tools for 

the diagnosis of AD. These changes can be translated by features and these features 

can be used as inputs in ML methods for the classification of AD, MCI and HC [46].   
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UNSUPERVISED AND SUPERVISED MACHINE LEARNING  

 

Supervised and unsupervised are two types of ML. Supervised machine 

learning is one of the most commonly used and successful type of ML. It can be 

broadly defined as an efficient and accurate method that predicts a specific outcome 

from a given input that has never been seen. To achieve that, the algorithm is provided 

with examples of input/output pairs, that comprise the training set.  The two main 

types of supervised ML problems are classification and regression. Assign a 

category to each item represents a classification problem, while the predictions of 

real value for each item represent regressions tasks. Ranking (order items according 

to some criteria), clustering (partition items into homogeneous regions) and 

dimensionality reduction or manifold learning (transform an initial representation of 

items into a lower-dimensional representation of the same items, while preserving 

some properties of the initial one) are other examples of learning problems [44, 45]. 

To build a ML model, the dataset needs to be split into two parts: training set 

and test set. Supervised learning builds a model on the training data and then make 

accurate predictions on the new unseen data, that present similar characteristics as 

the training set used (test set) [44, 45]. 

A model generalizes from the training set to the test set, when makes accurate 

predictions on unseen data. On the other hand, overfitting a model occurs when a 

model too complex is built for the available information, on the other way, choosing 

too simple a model is called underfitting. The goal is to find a model in between, 

which allows generalisations as accurately as possible [44]. 

 

CROSS VALIDATION  

 

Cross-validation techniques can be used to guarantee that the chosen ML 

model extracts the correct patterns/information from the given data, and it is not 

getting up too much noise. So, cross-validation techniques are used to assess the 

classification performance of ML models on unseen data. Moreover, since, in practice, 

the amount of labelled data available could not be enough to set aside two different 

samples, one for validation and other for training, cross-validation techniques are 

used to exploit the labelled data for both model validation and training [45, 47, 48].  
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In conclusion, cross-validation is a resampling procedure used to evaluate ML 

models on a limited data sample [45, 47, 48]. 

 

SUPERVISED MACHINE LEARNING ALGORITHMS 

 

As expected, the success of the chosen learning algorithm depends both on the 

dataset and the classification problem. Therefore, the first and most important thing 

to do before building the model is to become familiar with the data and to understand 

how it relates to the task to be solved [44, 45].  

K-nearest-neighbours (K-NN), support vector machines (SVM), Naïve Bayes, 

ensembles of decisions trees and neural networks are the most used supervised ML 

algorithms. The strengths, weakness and some observations of these supervised ML 

algorithms are presented in Table 3 [44, 45]. 

 

K-NEAREST-NEIGHBOURS (K-NN) 

 

K-NN is a ML algorithm used for both classification and regression problems. 

To predict to which class belongs a new data point the algorithm finds the next lying 

k examples. The class to which most of the neighbours belong is assumed to be the 

class of the new example. In line with this, there are two important parameters in K-

NN classifier, the number of neighbours (K) and how the distance between data points 

is measured. By default, Euclidean distance is used for quantitative variables. For two 

class classification problem this algorithm only considers exactly one nearest 

neighbour, which is the closest training data point to the new data point [44]. 

 

NAÏVE BAYES CLASSIFIERS 

 

The Naïve Bayes classifier technique is a simple classifier based on the so-

called Bayesian theorem and is particularly suitable when the dimensionality of the 

inputs is high. According with Bayesian theorem, there is a strong independence 

between the features (in the dataset); thus, it is possible to update the probabilities 

of hypotheses when some evidences are given. In line with this, Naïve Bayes learn 
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parameters by looking at each feature individually and collect simple per-class 

statistics from each feature to do the prediction [44, 49-51].   

 

DECISIONS TREES  

 

Decision trees are widely used models for both classification and regression 

tasks. Essentially, they learn a hierarchy of if/else questions, leading to a decision. 

Decision tree is an easy to follow and understand method [44]. 

 

SUPPORT VECTOR MACHINES (SVM) 

 

SVM is a powerful classifier, appropriate to high dimensional problems. The 

objective of SVM is mapping the non-linear separable data points into a higher-

dimensional feature space where linear separation is possible. To avoid the explicit 

mapping needed to get linear learning algorithms to learn a nonlinear function or 

decision boundary, kernel methods are performed. Kernel methods represent the 

data only through a set of pairwise similarity comparisons between the original 

dataset. In line with this, the linear separation problem is solved by the addition of 

nonlinear features (kernel functions) to the dataset. There are three kernel functions 

commonly used in SVM: the linear kernel, the polynomial kernel (poly) and the radial 

basis function (rbf) kernel [4, 44, 52]. 

During training, the SVM learns the importance of each training data points in 

the decision boundary between the two classes. Typically, only the ones that lie on 

the border between the classes have importance for the decision. These are called 

support vectors and give the support vector machine its name [44].  

To make a prediction for a new point, the distance to each of the support 

vectors is measured. The class of the new point is based on that distances and on the 

importance of the support vectors learned during training [33, 44]. 

 

NEURAL NETWORKS 

 

Neural networks are a biologically-inspired programming algorithm which 

enables a computer to learn from observational data. It can be viewed as a 

https://en.wikipedia.org/wiki/Learning_algorithms
https://en.wikipedia.org/wiki/Decision_boundary
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generalization of linear models that perform multiple stages of processing to reach a 

decision. Given enough computation time, data and careful tuning of the parameters, 

neural networks often present better results than other ML algorithms in many 

problems, such as image recognition, speech recognition and natural language 

processing [44].  

 

ENSEMBLES CLASSIFIER 

 

Although the large majority of the existing techniques rely on a single classifier 

there are several methods that combine the outputs of multiple ML models to create 

more powerful ones. These methods are called ensemble methods and are used to 

increase performance, by exploring the diversity of the base classifiers in terms of 

features or examples, which are usually randomly selected. Gradient Boosted 

Decision Trees and Random Forests (RF) are the two most common ensemble 

methods [4, 44]. 
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Table 3 - Strengths, weakness and some applications of the most relevant supervised ML algorithms 
[44, 53]. 

Algorithms Strengths Weakness Applications 
k-NN →Model easy to 

understand and fast to 
build; 
→Reasonable 
performance; 
→Good for small 
datasets; 
→Good as a baseline. 

→Slow predictions when 
the training set is large; 
→Does not perform well 
on dataset with many 
features; 
→Pre-process of data is 
needed. 

→Industrial 
applications (look for 
similarity of items in 
comparison to others); 
→Handwriting 
detection; 
→Image/video 
recognition. 

Naïve 
Bayes 

→Good for very large 
data sets and high-
dimensional data; 
→Great as baseline 
model. 

→Only for classification. →Classification 
without manually 
processing of web 
pages, forum posts, 
blog snippets, and 
tweets. 

Decisions 
trees 

→Easily visualized and 
understood by 
nonexperts; 
→Work well for features 
in different scales; 
→No pre-processing is 
needed.  

→Tend to overfit and 
provide poor 
generalization 
performance. 

→Data exploration; 
→Pattern recognition; 
→Medical diagnosis 
(disease 
identification); 
→ Risk trends. 

SVM →Powerful for medium-
sized datasets of 
features with similar 
meaning; 
→Allow complex 
decision boundaries, i.e., 
guarantees optimal 
separation. 

→It can be difficult to 
understand; 
→Require careful pre-
processing and scaling 
of the data and tuning of 
the parameters.  

→ Business 
applications 
(comparison of stocks 
performance); 
→Medical data. 

Neural 
Networks 

→Able to capture 
information contained 
in large amounts of data; 
→Builds incredibly 
complex models; 
 
 

→Long time to train; 
→Careful pre-processing 
of the data and tuning of 
the parameters; 

→Image and speech 
recognition;  
→Natural language 
processing. 
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STATE OF THE ART 

 

In this section, will be presented several studies using molecular and/or 

imaging biomarkers of AD. It will be evidenced the relevance of the changes of these 

biomarkers in the brain of AD patients and the diagnosis of this disease. Also, the most 

pertinent quantification and ML methods that have been use in AD classification 

problems are addressed.  

 

1.1 – MOLECULAR BIOMARKERS  

 

According with various studies on consecutive patients, classification of AD 

made by T-tau and Aβ42 CSF measures presented an average sensitivity of 84% and 

89%, respectively, while the specificity against cognitively normal elderly people was 

91% and 90% [6].  

Other studies have also demonstrated high sensitivity and specificity of CSF 

measures as biomarkers in discriminating AD from both cognitively normal elderly 

people and from patients with other dementias, such as frontotemporal, Lewy body 

and vascular [14]. 

 

1.2 – IMAGING BIOMARKERS 

 

MAGNETIC RESONANCE IMAGING (MRI) 

 

The medial temporal lobe, including the hippocampus and entorhinal cortex 

are the first affected regions in the brain of AD patients. Several studies using MRI 

have demonstrated that hippocampal atrophy is capable to distinguish AD from 

cognitively normal elderly people, with 80–90% accuracy. However, only a few 

studies using MRI have addressed the differentiation of AD from other dementias [6]. 

In 2016 R. Gad performed a study using MRI images of 120 individuals (40 AD, 

40 MCI and 40 HC). The classification of the groups was performed using two different 

methods, KNN and SVM. After filtering and normalization, the features were extracted 
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and the ones with highest accuracy were selected to build the classifier. SVM 

polynomial order three provided the best average accuracy (97.92%) [46]. 

A different study carried out in 2018 by Lee et al used a total of 1342 

individuals (869 HC and 473 patients with probable AD). This study proposed a new 

ML method to quantify the similarity between the cortical atrophy pattern of an 

individual subject and the one of a representative AD patient cohort.  Simultaneously, 

a longitudinal validation study was done, using 79 patients with MCI and 27 patients 

with probable AD dementia. Surface-based morphometry yielded a sensitivity and 

specificity of 87.1% and 93.3%, respectively. In the longitudinal validation study, both 

MCI-converts and AD patients with faster decline presented higher atrophy similarity 

at both baseline and first year visits, in comparison to non-converters [54]. 

A different study using T1-weighted MR scans from pathologically proven AD 

patients and cognitively normal elderly individuals was used to classify the grey 

matter segment. Linear SVM approach classified 96% of pathologically verified AD 

patients and 89% of mild, clinically probable AD patients [7]. 

 

POSITRON EMISSION TOMOGRAPHY (PET) 

 

Ensemble methods are well established in ML studies using PET images. These 

methods increased the performance of the classifier by the analysis and exploration 

of the diversity of the base classifiers in terms of features or examples [4]. 

 

18F- fluorodeoxyglucose (FDG) 

 

In three class classification problem (HC, MCI and AD) RF and SVM are the 

favourite ensembles methods used to classify FDG PET brain images. To test that, 

voxel intensities were extracted from 177 FDG PET volumes and used as inputs of the 

classifier. The classification was performed using ensemble method of classifiers 

where each base classifier (both SVM and RF) in the ensemble had its own optimized 

feature subset. Ensemble methods outperformed the base classifiers with the best 

accuracy of 66.78% being obtained by the SVM ensemble [4]. 

Another study using FDG PET volumes consists of 164 subjects (42 HC, 27 MCI 

patients who had not converted to AD within 5 years (nc-MCI) and 95 MCI patients 
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who converted to AD within 5 years (MCI-AD)). In this study, FDG uptake values of 26 

volumes of interest were submitted to ANCOVA and SVM analyses. Lower FDG uptake 

values were found in the temporoparietal area of individuals in the MCI-AD group. HC 

and nc-MCI revealed similar FDG uptake values, higher uptake values comparing with 

MCI-AD group. The best discrimination of nc-MCI from MCI-AD patients was obtained 

using SVM, with an accuracy of 89%, correctly detecting 93% of the nc-MCI patients 

[55]. 

The low accuracy of FDG PET evidenced by these studies is probably caused 

by the reflection of hypometabolism and neurodegeneration in non-AD syndromes, 

such as frontotemporal lobar degenerations (FTLD) [56]. 

 

11C-Pittsburgh Compound B (PiB) 

 

PiB has been studied in several research settings, with the goal of determining 

whether a positive amyloid PET imaging can be used to predict imminent decline in 

MCI individuals, and whether amyloid PET imaging can be used to follow and explore 

the performance of emerging antiamyloid therapeutic agents [34]. 

 

PIB: in vivo imaging of amyloid plaques  

 

Post-mortem tissue studies have shown that in the brain of patients with AD, 

PiB binds specifically to amyloid-laden portions, and in cognitively normal elderly 

control brains there is a nonspecific level of PiB retention in the cortex [34].  

 Braak and Braak (1990), Brilliant et al. (1997), Suenaga et al.  (1990) and Wolf 

et al.  (1999) studied the pattern of PiB retention in the brain. In AD, PiB retention 

was mainly observed in a brain region commonly associated with amyloid plaques 

accumulation, the frontal cortex. It was also observed a retention of PiB in 

precuneus/posterior cingulate and parietal, occipital and temporal cortices, with a 

relative sparing of PiB retention in the mesial temporal areas. Previous reports also 

show extensive Aβ deposition in the striatum, the striped mass of white and grey 

matter located in front of the thalamus [56, 57].   
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PiB imaging in MCI patients 

 

 A longitudinal study made by Forsberg and colleagues (2007) suggests that 

MCI subjects with high PiB retention have a higher tendency to convert into AD 

patients, comparing with subjects with low PiB retention. This tendency has also been 

observed in several subsequent studies performed by Koivunen et al., (2011), 

Villemagne et al. (2011) and Wolk et al. (2009) [56].  

Several studies regarding amyloid deposition in prodromal AD found that 50% 

to 60% of MCI individuals are PiB positive.  In a different study Nordberg et al. 

reported that 62% of the studied MCI subjects were PiB positive, and approximately 

24% of them had converted into a clinical diagnosis of AD during the initial follow-up 

period [34]. 

These results raise the possibility of PiB PET amyloid imaging playing a role in 

the identification of MCI subjects and in the identification of those whom are more 

likely to convert to AD [34]. 

 

PiB imaging in normal older subjects 

 

Aizenstein et al. (2008), Jack et al. (2008), Kantarci et al. (2012), Klunk et al.  

(2004), Mintun et al. (2006), Mormino et al. (2009), Mormino et al. (2011) Pike et al. 

(2007), Reiman et al. (2009), Rowe et al. (2010) and Villemagne et al. (2008) found 

considerable PiB retention in normal elderly subjects, ranged from a proportion of 10 

to 30 percent [56]. 

Other studies showed cortical PiB retention in approximately 15% to 20% of 

apparently cognitively normal subjects. This finding supports the theory of why 

amyloid plaques are recurrently found in the brains of older nondemented 

individuals at autopsy. PiB-positive older subjects are probably capable of tolerating 

a certain amount of amyloid due to the existing reserve of cognition [34]. 
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PiB and MRI 

 

Archer et al. (2006) found a correlation between the PiB binding and the rate 

of decline in whole-brain volume, among a group of patients with a clinical diagnosis 

of AD. According to this study, amyloid deposition was associated with higher rates 

of atrophy, which supports a primary role for amyloid in AD. Two PiB-negative 

subjects studied, identified clinically as AD, presented very small atrophy in brain 

volume. They did not show evidence of decline after a year, which leads to the 

conclusion that they may have another disease other than AD [34]. 

 

PiB and CSF 

 

Fagan et al. (2006) compared the levels of CSF Aβ1–42 and other CSF measures 

to PiB binding using 24 subjects (18 HC, 3 very mild, 2 mild and 1 moderate 

dementia).  In general, the subjects were separated in two non-overlapping groups, a 

group of PiB positive subjects, with low CSF Aβ levels, and a group composed by the 

PiB-negative subjects, with higher levels of Aβ. Three PiB positive of the 18 

cognitively normal subjects presented low levels of CSF Aβ1–42. [34]. 

A different study consisting of 243 individuals (AD, HC, MCI and other 

dementias) used PiB PET images and CSF concentrations of Aβ38, Aβ40 and Aβ42 to 

solve the AD classification problem. The classifier was constructed using a SVM 

approach. SUVr PiB PET images normalized by cerebellar grey matter and pons 

produced a similar classifier performance (accuracy-96%, sensitivity-96%, 

specificity-95%), outperforming both classifiers using the CSF multiple Aβ 

concentrations features (best accuracy 91%) and SUVr PiB PET images normalized 

by white-matter. In conclusion, this study found pons to be the best reference region 

to normalized PiB PET images, since vaster differences were observed at voxel level 

between the groups and a stronger correlation between the several CSF Aβ 

concentrations were found. Even though there were misclassified cases found using 

the cerebellar grey matter or pons as reference region, both approaches 

outperformed the visual assessment (accuracy -92.0%, sensitivity-92.6%, specificity 

-90%) [33]. 
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PiB and FDG 

 

 Across the years several studies have investigated the association between PiB 

and FDG PET images in AD. A study done by Ng et al. (2007) found PiB more accurate 

than FDG using both visual assessment (accuracy, 90% vs. 70%) and receiver 

operating characteristic (ROC) analysis (95% vs. 83%). Similar results were obtained 

by Rabinovici et al., where PiB showed a higher inter-rater agreement between visual 

and quantitative classifications, when compared to FDG [56]. 

Li et al. (2008) found 94% of agreement between PiB and FDG in 

differentiating AD from normal controls, and just 54% in classifying MCI subjects. In 

addition, Lowe et al. demonstrated in 2009, using PiB and FDG images of AD and MCI 

subjects, that while PiB and FDG displayed similar AD diagnostic accuracy, PiB was 

significantly better in the classification of MCI subtypes [56]. 

In 2011 Rabinovici et al. performed a study using 107 subjects (62 AD and 45 

FTLD) to test the diagnostical performance of PiB and FDG in the classification of 

clinically diagnosed AD and FTLD patients. Better sensitivity results were found using 

PiB in visual assessment (89.5%), when compared to FDG reads (77.5%). Similar 

specificity values were obtained using PiB and FDG reads, 83% and 84%, respectively 

[56]. 

Buckner et al. postulated the association of amyloid deposition to 

hypometabolism (brain dysfunction) as a measure by FDG metabolism. Even though 

DeKosky et al. (2002) and Ikonomovic et al. (2007) found an inverse correlation 

between PiB retention and glucose metabolism in several cortical areas, PiB retention 

and glucose metabolism did not correlate in the frontal cortex. Since the frontal cortex 

is a specific region of PiB binding these findings suggest that probable Aβ deposition 

is not able to reduce cerebral metabolism locally. Another study done in 2006 by 

Edison et al. found an inverse correlation, reduced by 20%, between PiB retention 

and regional glucose metabolism in temporal and parietal cortices [34, 56]. 

 

PiB and PK 

 

Parbo et al. (2017) studied PiB and PK PET images of a total of 57 patients (42 

MCI and 15 HC) to determine the amyloid retention and to detect the extension of 
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neuroinflammation (microglial activation) in MCI cases. In PiB PET images amyloid-

positivity was defined for a PiB retention of 1.5 above the retention of this 

radiopharmaceutical in the reference region. On the other hand, for PK PET images 

parametric maps of binding potential (BP) were generated using supervised cluster 

analysis. 62% of MCI cases presented an higher amyloid retention in cortical areas 

and 85% of them an increased microglial activation, comparing to HC. Voxel-wise 

analysis found a positive correlation between levels of amyloid retention and PK 

binding potentials within subregions of frontal, parietal and temporal cortices. In 

general, PK PET reveals increased inflammation in cortical areas accompanying the 

amyloid deposition of amyloid positive MCI cases [58]. 

A study performed to verify the differences between the retention of PiB and 

PK in the brain of AD patients consisted of 17 subjects (5 HC, 6 MCI and 6 mild to 

moderate AD). No differences of PK retention between the groups or the presence or 

absence of β-amyloid were found. According to these results it can be assumed that 

either microglial activation is limited to severe stages of AD or PK is unable to detect 

microglial activation in initial phases of AD. This study also showed significantly 

greater levels of PiB retention in subjects with a clinical diagnosis of probable AD, 

compared to HC. MCI cases crossed a range from control-like to AD-like levels of PiB 

retention. Two HC exhibited high PiB retention in specific regions of amyloid plaques 

accumulation in AD; thus, they probably represent prodromal cases of AD. The 

quantification of PiB radiotracer was done using regional standardized uptake value 

(SUV) method, normalized to the cerebellar SUV determined over the minute 40 and 

90, after administration. For PK, 2 methods of quantification were applied: 1) 

reference tissue model using the whole cerebellum; 2) and tissue ratio method 

through the sum, over the minute 10 and 60, after administration, of regional 

radioactivity concentration and normalized using subcortical white matter as 

reference region [31].  
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11C- (R) - PK11195 (PK) 

 

PK: in vivo imaging of microglial activation 

 

PET with PK is one of the modalities used for in vivo imaging of microglial 

activation in the human brain. The potential of PK to reveal microglial activation was 

confirmed in 2013 by studies using Zymosan-Treated Rats with induced microglial 

activation [38, 56]. 

As it was mentioned before, inflammatory mechanisms like microglial 

activation are probably involved in the pathogenesis of AD.  Thus, PK can be used as 

a tool of AD diagnosis. In line with this, a study using 50 subjects (19 patients with 

probable AD, 10 MCI cases, and 21 HC) was carried by Schuitemaker et al. (2013) to 

investigate if increased PK binding potential is present in AD and MCI individuals. The 

quantification of PK binding potential (BP) were done using receptor parametric 

mapping (RPM), with supervised cluster analysis. Comparisons between groups were 

performed at voxel level using mixed model analysis. The occipital lobe presented 

small differences between the groups of PK BP, showing a slightly increased PK BP in 

the occipital lobe of AD patients. Results from regions of interest (ROI)-based 

analyses show no differences between the groups of PK BP. These non-consensual 

results suggest that microglial activation is probably an indirect phenomenon 

occurring in AD patients [12]. 

 

PK quantification  

 

To verify which data analysis method is the best one to quantify BP of PK PET 

images a study using 25 individuals tested different approaches. From the 25 studied 

individuals, 18 were HC (12 HC with arterial blood sampling and 6 without blood 

sampling), 3 patients had Huntington's disease and 4 AD. Data were analysed using 

arterial input function and predefined kinetic classes. Predefined kinetic classes 

extracted the grey matter without specific tracer binding and used it as reference 

tissue. BP was estimated using rank-shaping exponential spectral analysis. Since both 

quantification approaches were in excellent agreement and highly correlated, this 

study showed that supervised reference tissue extraction may represent a 
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robust and reproducible quantitative method to assess PK in the human brain 

[38]. 

Another study, consisting of 34 subjects (9 young controls, 8 old controls, 9 

MCI and 8 AD), used two different methods to quantify dynamic PK PET images: 1) 

supervised cluster analysis (SVCA) algorithms based on either four (SVCA4) and six 

(SVCA6) kinetic classes; 2) and manually defined cerebellum. Data were analysed 

using arterial input function and reference tissue model with and without vascular 

correction. The best reference regions, i.e., the reference region with the lowest 

specific bind to PK, was given by SVCA4. Also, higher differences between groups in 

specific binding were observed using SVCA (4 or 6). Data analysed by reference tissue 

model with vascular correction improved both parametric images and PK binding 

potential differences between groups. In general, SVCA combined with reference 

tissue model with vascular correction presented the best assessment of binding 

potential PK PET images [42]. 
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MOTIVATION AND OBJECTIVES   

 

Nowadays, the diagnosis of AD makes use of clinical, biological and imaging 

criteria, however most of times the diagnose only occurs when symptoms become 

manifest. Nevertheless, characteristic neurodegenerative changes in the brain of AD 

patients, plaque and tangle load and neurodegeneration, start earlier. Even though 

the progression of AD is inevitable, late diagnosis is a factor that reduces the potential 

of causal disease-modifying therapeutic approaches, which in turn delays the 

evolution of the disease or symptomatic treatment [59]. 

The main goal of current clinical workup is to find a new method to change the 

standard timeline of Alzheimer’s disease diagnostic, depicted in Figure 5 - a), to the 

timeline b) presented in Figure 5 - b). However, to achieve an early diagnosis of AD, 

more studies with imaging and biochemical biomarkers, and their correlation, 

evidencing their relevance in the diagnostic of AD, need to be performed. Therefore, 

the aim of the present study is to solve a binary classification problem of HC and AD 

patients using ML methods based on two PET imaging biomarkers, PiB and PK and to 

study the putative correlation between these two radiopharmaceuticals. 
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Figure 5 - Timeline for AD diagnosis: a) standard and b) desirable. 
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CHAPTER 2 (MATERIALS, METHODS AND RESULTS) 

 

INTRODUCTION  

 

The main goal of the present study is to set up an automatic binary classifier 

to predict whether a patient has AD or not. To achieve the intended output, different 

groups of PET images acquired using two different radiopharmaceuticals, PiB and PK, 

were utilised as classifiers inputs.  

Other goals of this work include: 

1) Understanding the impact of:  

1.1) The distinct reference regions used in the normalization of PET 

images;  

1.2) The time interval considered in PET images acquisition;  

1.3) The method of quantification used;  

2) The investigation of the correlation between PiB and PK PET images, in 

different brain regions. 

 

1- DATASET 

 

The dataset used in this study consists of 41 subjects (20 AD and 21 HC). All 

HC patients had both PiB and PK PET images. 18 subjects of AD have both PiB and PK 

PET images. One of the remaining has just PiB PET image and the other one just PK 

PET image. If there was high PiB retention in cortical regions PiB PET images were 

classified as PiB positive (abnormal), otherwise, they were classified as PiB negative 

(normal) [33]. 

To understand the impact of the acquisition time interval considered in PET 

images acquisition, the dataset was split in three different groups. For PiB two groups 

of images were considered: a group composed by the PET images acquired during the 

total time of PiB biodistribution (group TOT); and a group composed just by the 

images acquired during the characteristic accumulation time of this 

radiopharmaceutical, between minute 40 and 70, after administration (group 4070). 

For PK only PET images acquired during the characteristic accumulation time of PK 
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were considered, between minute 40 and 60, after administration (group 4060). 

Group TOT includes 35 subjects (14 AD and 21 HC) and both group 4070 and 4060 

have 40 subjects (19 AD and 21 HC). 

 

2-MATERIALS 

 

2.1- 2DSLICESTIMEFRAMESTO3D 

 

The conversion of all raw data (PET images) from their initial DICOM format 

(.dcm) to NIfTI format (.nii) was achieved by using the 2DslicesTimeFramesTo3D 

executable. This executable, provided by the Institute of Nuclear Sciences Applied to 

Health (ICNAS), allowed the concatenation of thousands of dynamic DICOM PET 

images in just two files: one with all PET images in NIfTI format acquired during the 

total time of the radiopharmaceutical biodistribution, i.e., with all the PET images of 

group TOT; and another one with the information regarding the time frames.  

 

2.2- BP_KINETICMODEL 

 

 Another computer routine, also provided by the ICNAS, was used to quantify 

PET images acquired during the radiopharmaceutical characteristic accumulation 

time: between minute 40 and 70 (group 4070), and minute 40 and 60 (group 4060), 

after administration, for PiB and PK, respectively.   

 Unlike 2DslicesTimeFramesTo3D, this executable contains step for selection 

of a reference region. Therefore, all the features extracted from PET images of group 

4070 and 4060 could be directly used and compared between each other.  

 

2.3- MANGO  

 

Mango is a free software composed by several tools for image analysis and a 

user interface that allows to navigate in the image volumes [60]. This software was 

firstly used in the co-registration of all PET images to the template Montreal 
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Neurological Institute (MNI) T1 MRI. After co-registration, it was used in feature 

extraction. 

 

2.4- STATISTICAL PARAMETRIC MAPPING  

 

Statistical parametric mapping (SPM) is a free software package designed for 

the analysis of brain imaging data sequences. The sequences can be a series of images 

from different cohorts, or time-series from the same subject. The current release, 

SPM12, can be used for the analysis of fMRI, PET, SPECT, electroencephalography 

(EEG) and magnetoencephalography (MEG) images [61, 62]. 

SPM12, was used in the pre-processing, to smooth all co-registered images 

with a 8 mm full width at half maximum (FWHM) Gaussian filter and to do the voxel-

wise comparison between groups of different quantified PK PET images. To visualize 

the voxel-wise correlation between PK PET images and SUVr PiB PET images it was 

used an older release of SPM, SPM5. 

 

2.5- BIOLOGICAL PARAMETRIC MAPPING (BPM) – A STATISTICAL TOOLBOX FOR 

MULTI-MODALITY BRAIN IMAGE ANALYSIS 

 

Biological parametric mapping (BPM) is a toolbox developed in MATLAB for 

multimodal image analysis based on a voxel-wise use of the general linear model. This 

toolbox includes a user-friendly interface for performing analyses, including voxel-

wise multimodal correlation, ANCOVA, and multiple regression. It depends of SPM 

software for visualization and statistical inference [63]. 

BPM was used to do the voxel-wise correlation between PK and PiB PET 

images. 

 

2.6- RSTUDIO 

 

RStudio, an integrated development environment for R, is a free software 

environment for statistical computing and graphics [64, 65].  

In this work, R-3.5.3 and RStudio 1.1.463 were firstly used to select the 

features to build the classifier. The independent two sample T-test as well as principal 

https://www.fil.ion.ucl.ac.uk/spm/doc/biblio/Keyword/FMRI.html
https://www.fil.ion.ucl.ac.uk/spm/doc/biblio/Keyword/PET.html
https://www.fil.ion.ucl.ac.uk/spm/doc/biblio/Keyword/EEG.html
https://www.fil.ion.ucl.ac.uk/spm/doc/biblio/Keyword/MEG.html
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component analysis (PCA) technique were used as feature selection approaches. 

RStudio 1.1.463 was also used to investigate the correlation of several brain regions 

at regional level between PiB and PK PET images.  

 

2.7- MATLAB 

 

MATLAB is a programming language that includes matrix algebra and a large 

network for data processing and plotting. Since this language is easy for beginners, 

my ML task involved imaging processing through SPM, a free software package 

designed to work in MATLAB, and I had free license given by the University of 

Coimbra to use it, MATLAB R2019a was the chosen software to build the binary 

classifier. To run the BPM toolbox it was used an older release of MATLAB, MATLAB 

R2011a [66, 67]. 

 

3-METHODS AND RESULTS 

 

It is possible to summarize the methods of this work in three main steps: 

1) Conversion of all raw data (PET images) from their initial DICOM format 

(.dcm) to NIfTI format (.nii); 

2) Quantification and pre-processing (co-register and smoothing); 

3)  

3.1) Voxel Based Analysis 

3.1.1) Voxel-wise comparison between AD and HC groups of 

different quantified PK PET images; 

3.1.2) Voxel-wise correlation between PK and PiB PET images. 

3.2) Region Based Analysis 

3.2.1) Feature extraction of co-registered and smoothed PET images 

using different brain regions of interest (ROI); 

 3.2.2) Feature selection (independent two sample T-test and PCA); 

 3.2.3) Classification; 

3.2.4) ROI based correlation between BP PK of group 4060 and 

SUVr PiB of group 4070 PET images. 

  



 
 

35 
 

3.1- STEP 1: DICOM TO NIFTI 

 

To make medical imaging information interoperable and image-acquisition 

devices integrated, an international standard image format called DICOM (Digital 

Imaging and Communications in Medicine) was created [68]. Consequently, all raw 

PET images presented in this study were coded in DICOM format. However, image 

analysis software, such SPM and Mango, require data in NIfTI format (.nii). So, it was 

required the conversion of all raw data between these two formats. This task was 

done using the 2DslicesTimeFramesTo3D executable.  

 

3.2- STEP 2: QUANTIFICATION AND PRE-PROCESSING 

 

Several quantification methods were performed by the executables 

2DSLICESTIMEFRAMESTO3D and BP_KineticModel to quantify and (semi)quantify PiB 

and PK PET images. All the methods used are reference based methods, i.e., are 

methods that used reference tissue input models instead of arterial input function 

models. 

 

PiB PET images quantification  

 

For group TOT, the quantification of PiB PET images was done in terms of Sum. 

Sum was given by the executable 2DSLICESTIMEFRAMESTO3D and is equivalent to the 

sum of all PiB PET images acquired during the total time of PiB biodistribution. Due 

to physiological differences, such as weight and height, to make the individuals of the 

group TOT comparable, Sum was represented in terms of standard uptake value ratio 

(SUVr) using three different reference regions, cerebellum (CER), grey matter (GM) 

and white matter (WM). 

On the other hand, for group 4070, the (semi)quantification of PiB PET images 

was given directly in terms of SUVr by the executable BP_KineticModel through the 

standardized uptake value (SUV) method. This method was performed for two 

different reference regions, CER and WM.  

Summing up, PiB PET images were quantified according to different reference 

regions in: 1) SUVrTOT-CER; 2) SUVr4070-CER; 3) SUVrTOT-GM; 4) SUVrTOT-WM and 5) 
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SUVr4070-WM. Where in XXYY-ZZ, XX represents the quantification output; yy the group 

of PET images considered; and zz the reference region used to do the normalization. 

 

PK PET images quantification  

 

As it was mentioned, the quantification of dynamic PK PET images was done 

using the executable BP_KineticModel. This executable quantified PK PET images 

acquired during the characteristic accumulation time of PK using two different 

approaches: 1) supervised cluster analysis (SVCA) algorithm based on four (SVCA4) 

kinetic classes; and 2) CER as reference region. For each one of these approaches, it 

was used the SUV method to (semi)quantify PK PET images of group 4060 in terms of 

SUVr and the Logan Plot and the MRTM2 methods to quantify PK PET images of group 

4060 in terms of distribution volume ratio (DVR) and binding potential (BP), 

respectively. In line with this, PK PET images were quantified in six different ways: 1) 

SUVr4060-CER; 2) SUVr4060-SVCA4; 3) BP4060-CER; 4) BP4060-SVCA4; 5) DVR4060-CER and 6) 

DVR4060-SVCA4. 

Logan Plot is a reference based graphical method. It can be applied to both 

reversible and irreversibly binding tracers and simplify the quantification task by 

converting the model equations into linear plots [69]. On the other hand, MRTM2 

method is a linearized reference tissue model. This method quantifies PK PET images 

in terms of BP according with the model equation 3) present in the article written by 

Ichise et al. (2003) [70]. 

 

PIB AND PK PRE-PROCESSING 

 

To be able to correctly analyse subsequent quantitative images, co-registration 

needs to be performed. Image co-registration is the process that allows to spatially 

align two or more images, i.e., allows the identical indexation and assessment of voxel 

values from different sequences and different post-processing approaches, from two 

distinct matrices [71, 72]. 

In line with this, before further processing, all quantified PET images were co-

registered (linear spatial normalized) to Montreal Neurological Institute (MNI) T1 

MRI template. This task was done using the tool Register Brain (FLIRT) available in 
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Mango software. The MNI template used was the ICBM152, since it exhibits the best 

resolution and detail to date. This template is equivalent to the average of 152 normal 

MRI scans matched to the first MNI template available (MNI305) using a 9-parameter 

affine transform [73, 74].  

After co-registration, with the goal to remove high frequencies of the signal, a 

spatial smoothing with a 8 mm FWHM Gaussian filter using SPM12 was applied.  The 

exclusion of high frequencies of the signal make the distribution of the intensities 

more normal which can be very helpful for the validity of the statistical tests [75].  

 

3.3-STEP 3 

 

3.3.1- VOXEL BASED ANALYSIS 

 

Once the image has been quantified, co-registered (realigned) and smoothed 

the next step is to statistically analyse the data. To compare the two groups (AD and 

HC) of subjects in a “random effect analysis” (with one scan per subject), it was 

defined in the “Basic Models” of SPM12 the design two sample T-test. A design matrix, 

where columns represents the number of groups and lines the number of subjects, 

was automatically generated by SPM12. This matrix is responsible to solve the 

estimation problem; and thus, tries to interpret correctly the defined contrast vector, 

for this case [1 -1], and estimate their global main effect according with the design 

defined in the “Basic Models”, the two sample T-test [76]. 

In the Figure 6 are presented the sequential scheme of voxel based analysis – 

comparison between AD and HC groups. 
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PK - COMPARISON BETWEEN AD AND HC GROUPS AT THE VOXEL LEVEL  

 

Comparison between AD and HC groups of different quantified PK PET images 

at the voxel level was done using the SPM12 (Figures 7-11).  

This comparison was performed to understand the impact of distinct 

reference regions in the normalization of PK PET images and the influence of the 

quantification method used. In addition this comparison was also performed to verify 

if the characteristics brain regions of PiB positive PET images (prefrontal cortex (PC), 

occipital cortex (OC), mesial temporal cortex (MTC), parietal inferior (PI), parietal 

superior (PS), anterior cingulate (ACing), caudate (C), posterior cingulate (PCing), 

Design matrix 

 

Series of PET images 

 

 

Co-register (realigned) 

 

Smoothing 

 

 

Kernel - Gaussian filter 

 

Kernel - Gaussian filter 

Basic Models 
(Two sample T-test) 
 

 

Estimation 
 

 

Figure 6 – Sequential scheme of voxel based analysis – comparison between AD and HC groups [75]. 
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precuneus (P), putamen (Pmen) and a mask of the whole brain (B)) presented 

differences at the voxel level between AD and HC groups of PK PET images. And to 

identify the brain regions with the most relevant differences at the voxel level 

between groups of PK PET images. To discover those brain regions, it was found the 

coordinates of the clusters with the most differences at voxel level, between AD and 

HC groups of PK PET images (Tables 4-8).  

The coordinates of the clusters found, considering CER and SVCA4, as 

reference region, and the correspondent brain regions are presented in the Tables 4 

to 8. 

 

SUVr PK PET images (p-value<0.005 and 100 voxels) 

 

 

 

 

 

 

 

 

 

Table 4 - Correspondence between the coordinates of the found clusters in SUVr PK PET images and 
the brain regions [77, 78]. 

Cluster’s coordinates Brain Region 
(-12; 8; 44)  

Outside defined Brodmann’s Areas (BAs) 

 
(-34; 10; -46) 
(-12; 10; 70) 
(0; -48; 46) Left – BA31(Dorsal Posterior Cingulate) 

(-16; -62; 20) Right – BA11 (Orbitofrontal Cortex) 
 

  

b) 

 

b) 

a) b) b) 

 

b) 

Figure 7 - Comparison between AD and HC groups of SUVr PK PET images at the voxel level 
considering CER (Figure 7a)) and SVCA4 (Figure 7b)) as reference regions. This comparison was 
performed for a p-value < 0.005 and 100 voxels as extent threshold. 
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BP PK PET images (p-value<0.005 and 100 voxels) 

 

 

 

 

 

 

 

 

Table 5 - Correspondence between the coordinates of the found clusters in BP PK PET images and the 
brain regions [77, 78]. 

Cluster’s coordinates Brain Region 
(42; -62; -24)  

Outside defined Brodmann’s Areas (BAs) 

 
(50; -22; -36) 
(-28; 16; 42) 
(-8; -46; 42) Left – BA31 (Dorsal Posterior Cingulate) 
(-10; -42; 38) 
(-8; 4; 70) Left – BA6 (Premotor Cortex) 
(48; -56; -4) Right Fusiform (37) 
(22; 26; -18) Right – BA11 (Orbitofrontal Cortex) 
(-62; -38; -24) Left – BA21 Middle Temporal Gyrus 
(20; -64; 26) Right – BA31 (Dorsal Posterior Cingulate) 
(20; -62; 26) 
(48; -22; 28) Right-PrimSensory (1) 

 

 
BP PK PET images (p-value<0.001 and 100 voxels) 

 

 

 

 

 

 

 

 

b) 

 

b) 

a) b) 

Figure 8 - Comparison between AD and HC groups of BP PK PET images at the voxel level considering 
CER (Figure 8a)) and SVCA4 (Figure 8b)) as reference regions. This comparison was performed for a 
p-value < 0.005 and 100 voxels as extent threshold. 

Figure 9 - Comparison between AD and HC groups of BP PK PET images at the voxel level considering 
CER (Figure9a)) and SVCA4 (Figure9b)) as reference regions. This comparison was performed for a p-
value < 0.001 and 100 voxels as extent threshold. 
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These results were obtained for a p-value less than 0.001, more conservative 

than the case before (Figure 8 and Table 5). 

 

Table 6 - Correspondence between the coordinates of the found clusters in BP PK PET images and the 
brain regions [77, 78]. 

Cluster’s coordinates Brain Region 
(42; -62; -24) Outside defined Brodmann’s Areas (BAs) 

(-8; -46; 42) Left – BA31 (Dorsal Posterior Cingulate) 
(-8; 4; 70) Left – BA6 (Premotor Cortex) 
(48; -56; -4) Right Fusiform (37) 

 

DVR PK PET images (p-value<0.005 and 100 voxels) 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

  

a) b) 

Figure 10 - Comparison between AD and HC groups of DVR PK PET images at the voxel level 
considering CER (Figure10a)) and SVCA4 (Figure10b)) as reference regions. This comparison was 
performed for a p-value < 0.005 and 100 voxels as extent threshold. 
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Table 7 - Correspondence between the coordinates of the found clusters in DVR PK PET images and 
the brain regions [77, 78]. 

Cluster’s coordinates Brain Region 
(-60; -42; -28)  

 
 
Outside defined Brodmann’s Areas (BAs) 

 

(56; -28; -38) 
(28; 2; -60) 
(-62; -42; -26) 
(-30; 2; -60) 
(-32; 36; 20) 
(-30; 36; 14) 
(-10; -46; 44) Left – BA31 (Dorsal Posterior Cingulate) 
(-10; 4; 72) Left – BA6 (Premotor Cortex) 
(36; 0; 58) Right – BA6 (Premotor Cortex) 
(-20; 54; -18) Left – BA11 (Orbitofrontal Cortex) 
(-20; 48; -16) 
(48; 6; -44) Right – BA20 (Inferior Temporal Gy) 
(58; -24; -30) 
(-14; 32; 56) BA8 (Frontal Cortex) 
(-18; -40; 76) Left – PrimSensory (1) 

 

DVR PK PET images (p-value<0.001 and 100 voxels) 

 

 

 

 

 

 

 

 

 

These results were obtained for a p-value less than 0.001, more conservative 

than the case before (Figure 10 and Table 7).  

  

a) b) 

Figure 11 - Comparison between AD and HC of DVR PK PET images at the voxel level considering CER 
(Figure11a)) and SVCA4 (Figure11b)) as reference regions. This comparison was performed for a p-
value < 0.001 and 100 voxels as extent threshold. 
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Table 8 - Correspondence between the coordinates of the found clusters in DVR PK PET images and 
the brain regions [77, 78]. 

Cluster’s coordinates Brain Region 
(-60; -42; -28)  

Outside defined Brodmann’s Areas (BAs) (56; -28; -38) 

(-62; -42; -26) 

(-10; 4; 72) Left – BA6 (Premotor Cortex) 
 

 

The comparison between AD and HC groups of SUVr PiB PET images of group 

4070 (Figure 12a)), BP (Figure 12b)) and DVR (Figure 12c)) PK PET images, using 

CER as reference region, for a p-value less than 0.001 and 100 voxels as extent 

threshold, are displayed using colour scale in Figure 12.  

 

 

 

 

 

 

 

 

 

 

 

 

 

According with the Figures 7 to 11, is possible to verify that, when CER is used 

as reference region, higher differences at the voxel level between AD and HC groups 

of PK PET images, comparing with SVCA4, are observed. 

Across the Tables 4 to 8 in bold are represented the three brain regions most 

recurrently found, i.e., the brain regions with the most differences at the voxel level 

between groups of PK PET images: dorsal posterior cingulate (BA31), orbitofrontal 

cortex (BA11) and premotor cortex (BA6). From the characteristic brain regions of 

PiB positive PET images: PC; OC; MTC; PI; PS; ACing; C; PCing; P; Pmen; and B; the 

PCing (posterior cingulate) have a correspondence in Tables 4-8 with the dorsal 

posterior cingulate (BA31) and PC (prefrontal cortex) with both orbitofrontal cortex 

a) b) c) 

Figure 12 - Comparison between AD and HC groups of SUVr PiB PET images of group 4070 (a)) and 
BP (b)) and DVR (c)) PK PET images of group 4060 using CER as reference region. These comparisons 
were performed in SPM12 for a p-value < 0.001 and 100 voxels as extent threshold. 
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(BA11) and premotor cortex (BA6). However, PK PET images overall did not present 

differences between AD and HC groups at the voxel level for the different 

characteristic brain regions of PiB positive PET images. 

According with the results of Tables 4 to 8 and with the work developed by 

Bradburn et al., “new” brain regions were chosen to be extracted from PK PET images: 

frontal lobe (FL); temporal lobe (TL); frontal-temporal space (FTS); superior frontal 

gyrus (SFG); middle frontal gyrus (MFG); precentral gyrus (PG); inferior frontal gyrus 

(IFG); superior temporal gyrus (STG); middle temporal gyrus (MTG); inferior 

temporal gyrus (ITG); amygdala (A); hippocampus (H); inferior parietal lobule (IPL); 

and superior parietal lobule (SPL) [79]. 

It was also observed relevant differences at voxel level between AD and HC 

groups of SUVr PiB PET images of group 4070 (Figure 12a)). Whereas the two 

considered quantified PK PET images (Figure 12b) and c)) do not show substantial 

differences. 

 

CORRELATION AT VOXEL LEVEL BETWEEN PK PET IMAGES OF GROUP 4060 

AND SUVR PIB PET IMAGES OF GROUP 4070  

 

The correlation at voxel level between PK PET images of group 4060 and SUVr 

PiB PET images of group 4070 was computed in the toolbox BPM, using regression 

analysis and a positive T-contrast. The visualization of the Figures 13-16 was 

performed in SPM5. 

The identification of the brain regions more correlated at the voxel level 

between BP and DVR PK and SUVr PiB PET images was based on the coordinates of 

the clusters with the most correlation found (Tables 9 to 12). 
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SUVr PiB PET images using CER as reference region (Ref) & BP PK PET images 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 13 - Correlation at voxel level between BP PK and SUVr PiB PET images. To visualize in SPM5 
it was defined in a) and c) a p-value < 0.01 and in b) and d) p-value < 0.05 and 100 voxels as extent 
threshold. In a) and b) BP PK was normalized using CER and in c) and d) using SVCA4. For both cases 
SUVr PiB was normalized using CER. 

a)  b) 

c)  d)  
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Table 9 - Correspondence between the coordinates of the found clusters in BP PK PET images 
normalized by CER and SVCA4, and the brain regions [77, 78]. 

BP PK reference region Cluster’s coordinates Brain Region 
CER (-28; -48; 2)  

 
 
Outside defined Brodmann’s 
Areas (BAs) 

(52; 24; -34) 

(38; -80; 88) 

(-2; -8; 76) 

(14; -26; 18) 

(-24; -74; 4) 
(2; 10; -50) 

(22; 40; 6) 

(6; -102; -30) 

(-40; -72; -24) Left-BA19 (Associative Visual 
C) 

(20; -82; 6) Right-PrimVisual (17) 

(-16; -28; 68) Left-PrimMotor (4) 

SVCA4 (-24; -46; 6)  
 
Outside defined Brodmann’s 
Areas (BAs) 

(0; -8; 74) 
(28; -82; 90) 

(52; -24; -34) 

(22; -84; 4) 

(2; 10; -50) 

(6; -102; -30) 

(-16; -28; 68) Left-PrimMotor (4) 

(18; -70; 26) Right-BA19 (Associative Visual 
C) 

 

According with the Figure 13 and Table 9, when SUVr PiB PET images are 

normalized by CER, it is possible to verify that, for CER as reference region of BP PK 

images, there is correlation at voxel level in visual cortex (Left-BA19 - Associative 

Visual C), primary visual cortex (Right-PrimVisual (17)) and primary motor cortex 

(Left-PrimMotor (4)) between BP PK and SUVr PiB of group 4070 PET images. For 

SVCA4 as reference region, there is correlation at voxel level in primary motor cortex 

(Left-PrimMotor (4)) and visual cortex (Left-BA19 - Associative Visual C). 
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SUVr PiB PET images using CER as Ref & DVR PK PET images 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 10 - Correspondence between the coordinates of the found clusters in DVR PK PET images 
normalized by CER and SVCA4, and the brain regions [77, 78]. 

DVR PK reference 
region 

Cluster’s 
coordinates 

Brain Region 

CER (-24; -46; 10)  
Outside defined Brodmann’s Areas (BAs) (12; -36; 54) 

(-12; 60; -28) 
(-18; -84; -28) 
(-6; -4; 76) Left-BA6 (Premotor Cortex) 
(-64; -38; -24) Left-BA21 (Middle Temporal Gyrus) 
(8; 28; -36) Right-BA11 (Orbitofrontal Cortex) 
(-26; -28; 64) Left -PrimMotor (4) 

SVCA4 (-20; -38; 16)  
 
Outside defined Brodmann’s Areas (BAs) 

(-58; -48; -76) 
(8; -52; -74) 
(-4; -6; 76) 
(2; 4; -52) 
(6; -40; 56) Right-SensoryAssoc (5) 
(20; -72; 8) Right-PrimVisual (17) 
(-64; -38; -22) Left-BA21 (Middle Temporal Gyrus) 
(14; 12; 56) Right-BA6 (Premotor Cortex) 

Figure 14 - Correlation at voxel level between DVR PK and SUVr PiB PET images. To visualize in SPM5 
it was defined in a) and c) a p-value < 0.01 and in b) and d) p-value < 0.05 and 100 voxels as extent 
threshold. In a) and b) DVR PK was normalized using CER and in c) and d) using SVCA4. For both cases 
SUVr PiB was normalized using CER. 

 

Figure 15 - Correlation at voxel level between DVR PK and SUVr PiB PET images. To visualize in SPM5 
it was defined in a) and c) a p-value < 0.01 and in b) and d) p-value < 0.05 and 100 voxels as extent 
threshold. In a) and b) DVR PK was normalized using CER and in c) and d) using SVCA4. For both cases 
SUVr PiB was normalized using CER. 

a)  b)  

c)  
d)  
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 According with the Figure 14 and Table 10, when SUVr PiB PET images are 

normalized by CER, for CER as reference region of DVR PK images, there is correlation 

at voxel level in premotor cortex (Left-BA6), middle temporal gyrus (Left-BA21), 

orbitofrontal cortex (Right-BA11) and primary motor cortex (Left-PrimMotor (4)) 

between DVR PK and SUVr PiB of group 4070 PET images. For SVCA4 as reference 

region, there is correlation at voxel level in primary somatosensory cortex (Right-

SensoryAssoc (5)), primary visual cortex (Right-PrimVisual (17)), middle temporal 

gyrus (Left-BA21) and premotor cortex (Right-BA6). 

 

SUVr PiB PET images using WM as Ref & BP PK PET images 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

a)  b)  

c)  d)  

Figure 15 - Correlation at voxel level between BP PK and SUVr PiB PET images. To visualize in SPM5 
it was defined in a) and c) a p-value < 0.01 and in b) and d) p-value < 0.05 and 100 voxels as extent 
threshold. In a) and b) BP PK was normalized using CER and in c) and d) using SVCA4. For both cases 
SUVr PiB was normalized using WM. 
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Table 11 - Correspondence between the coordinates of the found clusters in BP PK PET images 
normalized by CER and SVCA4, and the brain regions [77, 78]. 

BP PK reference region Cluster’s coordinates Brain Region 
CER (-6; 4; 8) Outside defined 

Brodmann’s Areas (BAs) (36; -78; 90) 
(0; -10; 72) 
(8; -40; 56) RightSensoryAssoc (5) 
(52; -56; -8) Right-Fusiform (37) 

SVCA4 (-6; 4; 8)  
Outside defined 
Brodmann’s Areas (BAs) 

(22; -84; 4) 
(36; -78; 90) 
(0; -10; 72) 
(8; -40; 56) RightSensoryAssoc (5) 
(-24; -28; 62) Left-PrimMotor (4) 
(28; -46; 56) RightSensoryAssoc (5) 

 

According with the Figure 15 and Table 11, when SUVr PiB PET images are 

normalized by WM, for CER as reference region of BP PK images, there is correlation 

at voxel level in primary somatosensory cortex (Right-SensoryAssoc (5)) and 

fusiform gyrus (Right-Fusiform (37)) between BP PK and SUVr PiB of group 4070 PET 

images. For SVCA4 as reference region, there is correlation at voxel level in primary 

somatosensory cortex (Right-SensoryAssoc (5)) and primary motor cortex (Left-

PrimMotor (4)).
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SUVr PiB PET images using WM as Ref & DVR PK PET images 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 12 - Correspondence between the coordinates of the found clusters in DVR PK PET images 
normalized by CER and SVCA4, and the brain regions [77, 78]. 

 

According with the Figure 16 and Table 12, when SUVr PiB PET images are 

normalized by WM, for CER as reference region of DVR PK images, there is correlation 

at voxel level in premotor cortex (Left-BA6) between DVR PK and SUVr PiB of group 

4070 PET images. For SVCA4 as reference region, there is correlation at voxel level in 

DVR PK reference region Cluster’s coordinates Brain Region 
CER (-16; -30; 16) Outside defined 

Brodmann’s Areas (BAs) (12; -34; 56) 
(-4; -4; 74) Left-BA6 (Premotor Cortex) 

SVCA4 (-16; -30; 16) Outside defined 
Brodmann’s Areas (BAs) (-2; -6; 74) 

(6; -40; 56) RightSensoryAssoc (5) 
(24; -68; 0) Right-BA19 (Associative 

Visual C) 

Figure 16 - Correlation at voxel level between DVR PK and SUVr PiB PET images. To visualize in SPM5 
it was defined in a) and c) a p-value < 0.01 and in b) and d) p-value < 0.05 and 100 voxels as extent 
threshold. In a) and b) DVR PK was normalized using CER and in c) and d) using SVCA4. For both cases 
PiB SUVr was normalized using WM. 

a)  b)  

c)  d)  



 
 

51 
 

primary somatosensory cortex (Right-SensoryAssoc (5)) and visual cortex (Left-

BA19 - Associative Visual C). 

 

3.3.2-REGION OF INTEREST (ROI) BASED ANALYSIS 

 

Unlike voxel based analysis, after images alignment and smoothing, it was 

required to define the brain regions which were more relevant to solve the proposed 

problem and, consequently, to proceed the images analysis. Thus, comparing with 

what happen at voxel level, ROI based analysis is more dependent of some pre-

defined hypotheses [80]. 

 

FEATURE EXTRACTION 

 

PiB PET images feature extraction   

 

Due to physiological differences such as weight and height, the injected 

radioactivity concentration varies between individuals. Thus, to make the individuals 

of the group TOT comparable, the sum of all PiB PET images of the group TOT was 

represented in terms of SUVr. SUVr is a dimensionless ratio used to distinguish 

between “normal” and “abnormal” levels of uptake. This ratio normalises the uptake 

values of a ROI to the mean uptake value within a region containing non-specific 

binding, the reference region [81-83]. In line with this, for group TOT, the features, 

i.e., the mean intensity values of several brain regions (PC, OC, MTC, PI, PS, ACing, C, 

PCing, P, Pmen and B) of SUVr PiB PET images, were extracted according with 

Equation 1). Where both brain region mean value uptake and reference region (CER, 

GM, WM) mean value uptake where extracted using masks defined on the T1 MRI 

template ICBM152 in Mango software. On the other hand, for group 4070 the features 

were extracted just using masks defined on the T1 MRI template ICBM152 using two 

different reference regions: CER and WM.  

These brain regions were chosen according with the criteria used by the 

nuclear physicians to label a PET image as PiB positive. For the subjects with more 

than one scan, i.e., more than one dynamic PET acquisition, the SUVr considered 

resulted from the mean of the SUVr of each scan.  
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1) 𝑆𝑈𝑉𝑟 =  
 𝐵𝑟𝑎𝑖𝑛 𝑟𝑒𝑔𝑖𝑜𝑛 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 𝑢𝑝𝑡𝑎𝑘𝑒

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑟𝑒𝑔𝑖𝑜𝑛 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 𝑢𝑝𝑡𝑎𝑘𝑒 
; 

 

PK PET images feature extraction  

 

PK PET images were quantified in six different ways: 1) SUVr4060-CER; 2) 

SUVr4060-SVCA4; 3) BP4060-CER; 4) BP4060-SVCA4; 5) DVR4060-CER and 6) DVR4060-SVCA4. From 

1) to 4) the mean intensity values of the same brain regions used in PiB PET images 

(PC, OC, MTC, PI, PS, ACing, C, PCing, P, Pmen and B) were extracted using brain masks, 

defined on the T1 MRI template ICBM152 for 2mm resolution in Mango software. 

More regions were extracted in 3) to 6) PK PET images: FL; TL; FTS; SFG; MFG; PG; 

IFG; STG; MTG; ITG; A; H; IPL; and SPL. These “new” brain regions were chosen 

according with the information gathered by the group Bradburn et al. and based on 

the voxel based analysis results obtained from the comparison between AD and HC 

groups of different quantified PK PET images [79]. 

 

FEATURE SELECTION  

 

Feature selection is one of the core concepts in machine learning. It allows a 

faster training of the algorithm, reduces the complexity of the model and makes it 

easier to interpret, improves the accuracy of the model, when the right subset of 

features is selected to train the machine learning model, and avoids overfitting [84, 

85] 

There are three main different approaches to do the feature selection: 1) filter-

based feature selection; 2) wrapper-based feature selection; and 3) embedded-based 

feature selection [85].  

In the present study, two filter-based feature selection approaches were 

applied: independent two sample T-test and principal component analysis (PCA) 

technique. The independent two sample T-test is a univariate approach since it 

involves the analysis of a single variable at a time. On the other hand, PCA technique 

is a multivariate approach considering it examines two or more variables at once [86].  
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The independent two sample T-test was applied to all quantified PET images 

and PCA technique just in the cases where 5 or more features resulted from the 

independent two sample T-test, and in a dataset of several features extracted from 

SUVr PiB PET images of group 4070 and BP and DVR PK PET images of group 4060. 

In order to avoid overfitting the rule of thumb of using just one feature for each 

five subjects was adopted. In line with this, a subset of 7 features for group TOT and 

8 features for the rest of the cases was stipulated to be obtained by each one of these 

approaches (two sample T-test and PCA) [85]. 

  

Fisher’s F-test and two sample T-test 

 

In this univariate test, the means of each variable (features –mean intensity 

values of the brain region considered) of the two groups (AD and HC) are compared 

under the assumption that both samples are random, independent and came from 

normally distributed population, with unknow but equal variances [87]. In line with 

this, before proceeding with the two sample T-test, it was verified if the variances of 

each variable were equal, i.e., if they were homogeneous. To do that, Fisher’s F-

test was performed. If the p-value obtained in this test was greater than 0.05 the two 

variances were considered homogeneous (equal variances), otherwise they were 

non-homogeneous. Two sample T-test was implemented according with this 

information [87].  

As results of the two sample T-test, it was obtained the p-value and the mean 

of each feature for each group, AD and HC. If the p-value of the two sample T-test was 

lower than 0.05 the null hypothesis - the means of the measurement variable for each 

sample are equal - was rejected and the feature was selected. In accordance with the 

rule of thumb of using just one feature for each five subjects, the 7 (group TOT) and 8 

(rest of the cases) features with the lowest p-values that had passed the two sample 

T-test, i.e., that had a p-value lower than 0.05, were the chosen ones to build the binary 

classifier [87, 88]. 

The results of the Fisher’s F-test and two sample T- test, the percentage 

difference of sample means and the global percentage difference are presented in the 

Appendix A (Table(A) 1 to Table(A) 11). The global percentage difference was 
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calculated by the mean of the percentage difference of sample means, for the features 

with two sample T-test p-value lower than 0.05. 

 Graphics 1 to 6 were constructed according with the two sample T-test p-

value present in Table(A) 1 to Table(A) 5 and Table(A) 8 of Appendix A.  

 

SUVr PiB of group TOT (Ref -CER) 

 

 

 

 

 

 

 

 

 

The features that failed the two sample T-test, C and PCing, were automatically 

excluded.  In the horizontal axis (x-axis) of Graphic 1 is present the brain regions in 

increasing order of two sample T-test p-value. According with that, the 7 features 

selected to build the classifier were the Acing, Pmen, B, PS, PI, PC and P. A classifier 

only based on features extracted from SUVr PiB PET images of the group TOT when 

the CER is used as reference region.  
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Graphic 1 - Brain regions (x-axis) in increasing order of two sample T-test p-value (y-axis) for SUVr 
PiB of group TOT using CER as reference region. 



 
 

55 
 

SUVr PiB of group TOT (Ref -GM) 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

For this specific case just 6 features, MTC, PI, PCing, PS, C, and P passed the two 

sample T-test; and so, these were the ones selected to build the classifier. A classifier 

only based on features extracted from SUVr PiB PET images of the group TOT, when 

the GM is used as reference region. It is important to mentioned that it was stated a 

length of 7 features to construct the binary classifier to avoid under and overfitting.  

Another important aspect is the negative percentage difference of sample means of 

the features MTC, PCing and C (Appendix A Table(A) 2). Since they have a negative 

percentage difference of sample means, a priori these features do not have clinical 

meaning. Thus, it is logical to postulate that GM probably do not represent the best 

reference region to do the normalization of PiB PET images.  

To test if these conditions have a negative influence in the performance of the 

classifier, an additional classifier using 7 features and avoiding MTC, PCing and C was 

constructed.  
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Graphic 2- Brain regions (x-axis) in increasing order of two sample T-test p-value (y-axis) for SUVr 
PiB of group TOT using GM as reference region. 
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SUVr PiB of group TOT (Ref -WM) 

 

 

 

 

 

 

 

 

 

 

 

The features that failed the two sample T-test, OC, C, PCing and MTC, were 

automatically excluded. In the horizontal axis (x-axis) of Graphic 3 is present the brain 

regions in increasing order of two sample T-test p-value. According with that, the 7 

features selected to build the classifier were Acing, Pmen, B, P, PC, PS and PI. A 

classifier only based on features extracted from SUVr PiB PET images of the group 

TOT, when the WM is used as reference region. 

The global percentage difference (%) obtained for PiB PET images of group 

TOT were 30.811%, 0.650% and 22.371%, for CER, GM and WM as reference region, 

respectively (Appendix A - Table(A) 1 to Table(A) 3). Due to the low global percentage 

difference (%) obtained when the GM was used as reference region (0.650%), this 

reference region was not used in PiB PET images of group 4070.  
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Graphic 3 - Brain regions (x-axis) in increasing order of two sample T-test p-value (y-axis) for SUVr 
PiB of group TOT using WM as reference region. 
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SUVr PiB of group 4070 (Ref -CER) 

 

 

Graphic 4 - Brain regions (x-axis) in increasing order of two sample T-test p-value (y-axis) for SUVr 
PiB of group 4070 using CER as reference region. 

 

For this specific case all the features passed the two sample T-test; and so, none 

of these features were automatically excluded. In the horizontal axis (x-axis) of 

Graphic 4 is present the brain regions in increasing order of two sample T-test p-

value. According with that, the 8 features selected to build the classifier were the B, 

PS, P, PI, MTC, Acing, OC and PC. A classifier only based on features extracted from 

SUVr PiB PET images of the group 4070 when the CER was used as reference region 

 

SUVr PiB of group 4070 (Ref -WM) 

 

 

 

 

 

 

 

 

 

Graphic 5 - Brain regions (x-axis) in increasing order of two sample T-test p-value (y-axis) for SUVr 
PiB of group 4070 using WM as reference region. 
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The features that failed the two sample T-test, B, C and MTC, were 

automatically excluded. In the horizontal axis (x-axis) of Graphic 5 is present the brain 

regions in increasing order of two sample T-test p-value. According with that, the 8 

features selected to build the classifier were PI, P, PS, Acing, PC, Pmen, OC and PCing. 

A classifier only based on features extracted from SUVr PiB PET images of the group 

4070 when the WM is used as reference region. 

The global percentage difference (%) obtained for PiB PET images of group 

4070 were 40.245% and 19.975%, for CER and WM as reference region, respectively 

(Appendix A- Table(A) 4 and Table(A) 5). 

 

SUVr PK of group 4060  

 

From the results of Table(A) 6 and Table(A) 7 present in Appendix A, it is 

possible to verify that all the features extracted from SUVr PK PET images for both 

reference regions (CER and SVCA4) failed the two sample T-test. Due to these results, 

none of these features were selected; and so, no classifier only based on features 

extracted from SUVr PK PET images was constructed. For the same reasons, the global 

percentage difference (%) was not to calculated. 

 

BP PK of group 4060 (Ref -CER) 

 

 

 

 

 

 

 

 

 

 

 

 

Graphic 6 - Brain regions (x-axis) in increasing order of two sample T-test p-value (y-axis) for BP 
PK of group 4060 using CER as reference region. 
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For this specific case just 5 features, P, ITG, IPL, SPL, FL passed the two sample 

T-test. It was established a length of 8 features to construct the binary classifier to 

avoid under and overfitting. Since a classifier constructed just using these 5 features 

would be probably underfitting, no classifier only based on features extracted from 

PK BP PET images using CER as reference region, was constructed.  

 

BP PK of group 4060 (Ref-SVCA4) 

 

For this specific case, just IPL, SPL and P passed the two sample T-test 

(Appendix A – Table(A) 9). Due to these results, no classifier only based on features 

extracted from BP PK 4060 images, when the SVCA4 is used as reference region was 

constructed.  

According with these results, it is logical to postulate that PK biodistribution 

among groups is not related to any, besides P, characteristic brain region of PiB 

positive PET images; and so, these brain regions were not tested for DVR PK PET 

images. 

The global percentage difference (%) obtained for BP PK PET images of group 

4060 were 2.320% and 4.100%, for CER and SVCA4 as reference region, respectively 

(Appendix A- Table(A) 8 and Table(A) 9). 

 

DVR PK of group 4060  

 

Besides SFG and P and SFG, all features extracted from DVR PK PET images for 

CER and SVCA4 as reference region, respectively, failed the two sample T-test 

(Appendix A- Table(A) 10 and Table(A) 11). Due to these results, no classifier only 

based on features extracted from DVR PK PET images was constructed. 

The global percentage difference (%) obtained for DVR PK PET images of 

group 4060 were 3.100% for both CER and SVCA4 as reference region (Appendix A- 

Table(A) 10 and Table(A) 11). 

A summary of the most relevant results obtained in this section – feature 

selection, two sample T-test, are presented in the Table 13. 

 



 
 

60 
 

Table 13 - Part of the results obtained in this section- feature selection, two sample T-test. 

PET images  Reference region Nº of features w/ 
p-value < 0.05 

Global percentage 
difference (%) 

SUVr PiB of group 
TOT 

CER 9/11 30.811 

GM 6/11 0.650 

WM 7/11 22.371 

SUVr PiB of group 
4070 

CER All (11/11) 40.245 

WM 8/11 19.975 

BP PK of group 
4060 

CER 5/25 2.320 

SVCA4 3/25 4.100 

DVR PK of group 
4060 

CER 2/15 3.100 

SVCA4 1/15 3.100 

 

In comparison with PK PET images, PiB PET images present higher values for 

the ratio between the features that passed the two sample T-test and the total 

considered features and for the global percentage difference (Table 13).  

 

PCA technique 

 

PCA was the second approach used to select the features to construct the 

binary classifier. PCA is a valuable linear transformation technique normally used in 

datasets with many features. This technique identifies the existing correlation 

between the features - if a strong correlation between features exists, the attempt to 

reduce the dimensionality is required. In line with this, PCA take the dataset with 

many variables, and simplify it turning the original variables into a smaller number 

of new variables, the "Principal Components". This linear transformation fits the 

dataset to a new coordinate system. The most variance is found on the first 

coordinate, and each subsequent coordinate is orthogonal to the last and explain a 

lesser variance [89, 90].  The features with the highest contribution to the “Principal 

Component” with the most variance, the first “Principal Component”, are probably 

the most relevant ones to construct the classifier. Thus, this was the criterion used to 

select the features by PCA technique. It is important to notice that the higher the 

variance of the first “Principal Component” better will be the approximation assumed 

by this criterion.  

Before performing the PCA technique, it was necessary to guarantee 

standardization, i.e., the different variables were mapped to the same scale. This task 
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was done according with the Equation 2), where standardized variables (𝑥𝑖
′) were the 

result of the subtraction of the variable mean (𝜇) to each observed value of the 

variable (𝑥𝑖) divided by the variable standard deviation (𝜎)  [91].  

 

2) 𝑥𝑖
′ =  

𝑥𝑖−𝜇

𝜎
; 

 

After standardization, PCA technique was performed on different sets of 

features extracted from different quantified PET images: three sets composed by the 

features extracted from SUVr PiB PET images of group TOT for CER, GM and WM as 

reference region;  other two sets composed by the features extracted from SUVr PiB 

PET images of group 4070 for CER and WM as reference region; the sixth set 

composed by the features extracted from BP PK PET images of group 4060 for CER as 

reference region; and the last one by a mixture of features with the lowest two sample 

T-test p-value, and thus probably the most relevant ones to construct the classifier. 

The last set of features, extracted from SUVr PiB 4070, BP and DVR PK 4060 PET 

images of 39 subjects (18 AD and 21 HC), was composed by: 

-  PC, PI, PS, ACing and P of SUVr PiB 4070 PET images (CER and WM as 

Ref); 

-  B of SUVr PiB 4070 PET images (CER as Ref); 

-  IPL, P and SPL of BP PK 4060 PET images (CER and SVCA4 as Ref); 

-  SFG of DVR PK 4060 PET images (CER and SVCA4 as Ref); 

- P of DVR PK 4060 PET images (CER as Ref). 

 

SUVr PiB of group TOT (Ref-CER) 

 

In Figure(B) 1 of Appendix B is presented the percentage of variance of each 

“Principal Component” for this case, SUVr PiB of group TOT using CER as reference 

region. The first “Principal Component”, Dim.1, explains 66.464% of the total 

variance, which means that nearly all the information (84.170%) in the dataset (11 

variables) can be encapsulated just by the first two “Principal Components”, 

Dim.1(66.464%) and Dim2 (17.706%).  



 
 

62 
 

The Graphic 7, brain regions (x-axis) in decreasing order of the percentage of 

contribution to the first “Principal Component” (y-axis), was constructed according 

with the information present in Figure(B) 2 of Appendix B. 

 

 

 

 

 

 

 

 

 

According with the contributions of each variable to the first “Principal 

Component” presented in Graphic 7, B, P, Acing, PI, PC, PS and OC were the 7 selected 

features to construct the classifier. A classifier only based on SUVr PiB PET images of 

group TOT for CER as reference region.   

 

SUVr PiB of group TOT (Ref-GM) 

 

In Figure(B) 3 of Appendix B is presented the percentage of variance of each 

“Principal Component” for this case, SUVr PiB of group TOT using GM as reference 

region. Dim.1, Dim.2 and Dim.3 explains 48.127%, 19.407% and 10.455%, 

respectively, of the total variance, which means that nearly all the information 

(77,989%) in the dataset (11 variables) can be encapsulated by these three principal 

components. 

The Graphics 8, brain regions (x-axis) in decreasing order of the percentage of 

contribution to the first “Principal Component” (y-axis), was constructed according 

with the information present in Figure(B) 4 of Appendix B. 
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Graphic 7 - Brain regions (x-axis) in decreasing order of the percentage of contribution to the first 
“Principal Component” (y-axis), Dim.1, for SUVr PiB of group TOT using CER as reference region. 
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According with the contributions of each variable to the first “Principal 

Component” present in Graphic 8, PS, MTC, PI, PC, PCing, OC and Pmen were the 7 

selected features to construct the classifier. A classifier only based on SUVr PiB PET 

images of group TOT for GM as reference region.   

In the section “two sample T-test” it was mentioned the construction of an 

additional classifier only based on SUVr PiB PET images of group TOT for GM as 

reference region. A classifier using 7 features and avoiding the brain regions MTC, 

PCing and C was constructed according with the information present in Graphic 8. So, 

the selected features to construct the additional classifier were PS, PI, PC, OC, Pmen, 

P and B. 

 

SUVr PiB TOT (Ref-WM) 

 

In Figure(B) 5 of Appendix B is presented the percentage of variance of each 

“Principal Component” for this case, SUVr PiB of group TOT using WM as reference 

region. The first two “Principal Components”, Dim.1 and Dim.2, explains 53.679% and 

20.415%, respectively, of the total variance, which means that nearly all the 

information (74.094%) in the dataset (11 variables) can be encapsulated by these two 

principal components.  
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Graphic 8 - Brain regions (x-axis) in decreasing order of the percentage of contribution to the first 
“Principal Component” (y-axis), Dim.1, for SUVr PiB of group TOT using GM as reference region. 
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The Graphics 9, brain regions (x-axis) in decreasing order of the percentage of 

contribution to the first “Principal Component” (y-axis), was constructed according 

with the information present in Figure(B) 6 of Appendix B. 

 

 

 

 

 

 

 

 

 

 

 

According with the contributions of each variable to the first “Principal 

Component” present in Graphic 9, B, PI, P, PS, PC, Acing and Pmen were the 7 selected 

features to construct the classifier. A classier only based on SUVr PiB PET images of 

group TOT for WM as reference region.   

 

SUVr PiB of group 4070 (Ref-CER) 

 

In Figure(B) 7 of Appendix B is presented the percentage of variance of each 

“Principal Component” for this case, SUVr PiB of group 4070 using CER as reference 

region. The first “Principal Component”, Dim.1, explains 82,165% of the total 

variance, which means that nearly all the information in the dataset (11 variables) 

can be encapsulated just by that one “Principal Component”.  

The Graphics 10, brain regions (x-axis) in decreasing order of the percentage 

of contribution to the first “Principal Component” (y-axis), was constructed according 

with the information present in Figure(B) 8 of Appendix B. 
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Graphic 9 - Brain regions (x-axis) in decreasing order of the percentage of contribution to the first 
“Principal Component” (y-axis), Dim.1, for SUVr PiB of group TOT using WM as reference region. 
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According with the contributions of each variable to the first “Principal 

Component” present in Graphic 10, B, Acing, PC, PS, PI, P, Pmen and PCing were the 8 

features selected to construct the classifier. A classifier only based on SUVr PiB PET 

images of group 4070 for CER as reference region.   

 

SUVr PiB PET images of group 4070 (Ref-WM) 

 

In Figure(B) 9 of Appendix B is presented the percentage of variance of each 

“Principal Component” for this case, SUVr PiB of group 4070 using WM as reference 

region. Dim.1 explains 61.498% of the total variance, which means that nearly all the 

information (78.992%) in the dataset (11 variables) can be encapsulated by 

Dim.1(61.498%) and Dim2 (17.494%). 

The Graphics 11, brain regions (x-axis) in decreasing order of the percentage 

of contribution to the first “Principal Component” (y-axis), was constructed according 

with the information present in Figure(B) 10 of Appendix B. 

0

2

4

6

8

10

12

B Acing PC PS PI P Pmen Pcing OC MTC C

C
o

n
tr

ib
u

ti
o

n
s 

to
 D

im
.1

  (
%

)

Brain regions

PCA technique

Graphic 10 - Brain regions (x-axis) in decreasing order of the percentage of contribution to the first 
“Principal Component” (y-axis), Dim.1, for SUVr PiB of group 4070 using CER as reference region. 
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According with the contributions of each variable to the first “Principal 

Component” present in Graphic 11, PC, PS, P, Acing, PI, Pmen, PCing and OC were the 

selected features to construct the classifier. A classifier only based on SUVr PiB PET 

images of group 4070 for WM as reference region.   

 

BP PK of group 4060 (Ref-CER) 

 

In Figure(B) 11 of Appendix B is presented the percentage of variance of each 

“Principal Component” for this case, BP PK of group 4060 using CER as reference 

region. Dim.1 explains 49.442% of the total variance, which means that nearly all the 

information (70.206%) in the dataset can be encapsulated by Dim.1(49.442%) and 

Dim2 (20.764%). 

The Graphics 12, brain regions (x-axis) in decreasing order of the percentage 

of contribution to the first “Principal Component” (y-axis), was constructed according 

with the information present in Figure(B) 12 of Appendix B. 
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Graphic 11 - Brain regions (x-axis) in decreasing order of the percentage of contribution to the first 
“Principal Component” (y-axis), Dim.1, for SUVr PiB of group 4070 using WM as reference region. 
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According with the contributions of each variable to the first “Principal 

Component” present in Graphic 12, B, FL, PG, TL, MTG, IPL, SFG and IFG were the 8 

selected features to construct the classifier.  A classifier only based on BP PK PET 

images of group 4060 for CER as reference region.   

 

Mixture of features extracted from SUVr PiB 4070, BP and DVR PK 4060 

PET images 

 

In Figure(B) 13 of Appendix B is presented the percentage of variance of each 

“Principal Component” for this case, mixture of features extracted from PET images 

of groups 4070 and 4060. Dim.1 explains 61.262% of the total variance, which means 

that nearly all the information (80.200%) in the dataset can be encapsulated by 

Dim.1(61.262%) and Dim2 (18.938%). 

The Graphics 13, brain regions (x-axis) in decreasing order of the percentage 

of contribution to the first “Principal Component” (y-axis), was constructed according 

with the information present in Figure(B) 14 of Appendix B. 
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Graphic 12 - Brain regions (x-axis) in decreasing order of the percentage of contribution to the first 
“Principal Component” (y-axis), Dim.1, for BP PK of group 4060 using CER as reference region. 
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According with the contributions of each variable to the first “Principal 

Component” present in Graphic 13, five different datasets of features were chosen to 

construct the binary classifier: 1) the first dataset chosen was composed by P, PS, PI, 

PC, B and Acing from SUVr4070-CER, and PI and P from SUVr4070-WM; 2) the second was 

composed by P, PS, PI, PC and B from SUVr4070-CER, and  P, SPL and  IPL from BP4060-

CER; 3) the third was composed by  P, PS, PI, PC, B and Acing from SUVr4070-CER, and P 

from both BP and DVR PK 4060 for CER as reference region; 4) the fourth was 

composed by  P, PS, PI, PC and B from SUVr4070-CER, PI and P from SUVr4070-WM, and P 

from BP4060-CER; 5) the last dataset was composed by P, PS, PI, PC, B and Acing from 

SUVr4070-CER, PI from SUVr4070-WM, and P from BP4060-CER. 

The datasets obtained by the two feature selection approaches (two sample T-

test and PCA technique) are presented in Table 14. The features in bold represent the 

disagreements of the two features selection approaches. 
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Graphic 13 - Brain regions (x-axis) in decreasing order of the percentage of contribution to the first 
“Principal Component” (y-axis), Dim.1, for a mixture of features extracted from SUVr PiB of group 4070 
and BP and DVR PK of group 4060. 
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Table 14 - Different datasets of features obtained by the two feature selection approaches (two sample 
T-test and PCA technique) used to construct the binary classifiers. Where GM* represents the dataset 
of features selected to construct the classifier only based on features extracted from SUVr PiB PET 
images of group TOT using GM as reference region and avoiding features which a priori do not have 
clinical meaning.   

  Two sample  
T-test 

PCA 

SUVr PiB of 
group TOT 
 

CER 
 

PS, B, PI, PC, P, 
Pmen and Acing 

PS, B, PI, PC, P, OC and Acing 

GM PS, MTC, PI, C, 
Pcing and P 

PS, PC, MTC, PI, OC, Pcing and Pmen 

GM* - PS, PI, PC, OC, Pmen, P and B 
WM PS, PC, Acing, PI, B, Pmen and P 

SUVr PiB of 
group 4070 

CER P, PI, B, PS, OC, 
Acing, PC and MTC 

P, PI, B, PS, PCing, Acing, PC and Pmen 

WM PS, PC, PI, OC, Acing, Pcing, Pmen and P 

BP PK of 
group 4060 

CER - IPL, B, FL, TL, SFG, MTG, IFG and PG 

Mixture of 
features 
extracted 
from group 
4070 and 
4060 
 

1st attempt - PI, PS, P, PC, B and Acing from SUVr PiB 
4070 (CER as ref.) and PI and P from 
SUVr PiB 4070 (WM as ref.) 

2nd 
attempt 

- PI, PS, P, PC, B from SUVr PiB 4070 (CER 
as ref.) and P, SP and IPL from BP PK 
4060 (CER as ref.) 

3rd attempt - PI, PS, P, PC, B and Acing from SUVr PiB 
4070 (CER as ref.) and P from both BP 
and DVR PK 4060 (CER as ref.) 

4th attempt - PI, PS, P, PC and B from SUVr PiB 4070 
(CER as ref.), PI and P from SUVr PiB 
4070 (WM as ref.) and P from BP PK 
4060 (CER as ref.) 

5th attempt - PI, PS, P, PC, B and Acing from SUVr PiB 
4070 (CER as ref.), PI from SUVr PiB 
4070 (WM as ref.) and P from BP PK 
4060 (CER as ref.) 

 

 

The resulting datasets given by two sample T-test and PCA technique 

disagreed in three cases: 1) in the selection of one of the features extracted from 

SUVrTOT-CER, where two sample T-test selected Pmen and PCA OC; 2) in SUVrTOT-GM, 

where two sample T-test selected C and P and PCA OC, PC and Pmen; 3) and in the 

selection of two of the features extracted from SUVr4070-CER, where two sample T-test 

selected OC and MTC and PCA PCing and Pmen (Table 14). 
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Even though two sample T-test is univariate and PCA technique is multivariate, 

these two approaches presented similar results in the selection of features extracted 

from the different quantified PiB PET images.  

 

Classification (CONSTRUCTION OF THE CLASSIFIER IN MATLAB) 

 

To construct the classifier the dataset of features was split in two, training and 

test sets. The training set was used to build the mathematical model for classification, 

and in the test set the model was validated.  

The ML algorithm chosen to build the mathematical model, in the training set, 

was the SVM, since it represents a powerful binary classifier appropriate to high 

dimensional problems. SVM was computed in MATLAB using three different kernels: 

linear, polynomial (poly) and radial basis function (rbf) [33]. 

Due to the relatively small subject’s dataset size, the model technique used to 

validate the ML algorithm was the Leave One Out Cross Validation (LOOCV). The 

LOOCV technique is a cross validation technique that uses a single observation from 

the subject’s dataset to validate the dataset in the test set, while the remaining 

observations are used to train the classifier. This procedure is repeated until all 

observations of the dataset have been classified once in the test set [92]. 

 Diagnostic tests determine the presence (test positive) or absence (test 

negative) of diseases in a subject. The main goal is to achieve a test with the lowest 

error possible. Test validation is the evaluation method performed to determine how 

good the diagnostic test is at identifying subjects with and without a disease or 

condition. To do that, a comparison between the test results and the gold standard, 

that establishes the true status of the subject, was performed [93, 94]. 

Table 15 shows the results of a diagnostic test where columns summarise the 

gold standard results and rows summarise the test results. Subjects with the disease 

testing positive and negative are denoted by true positive (TP) and false negative 

(FN), and healthy subjects HC testing positive and negative are denoted by false 

positive (FP) and true negative (TN). The total number of subjects is given by the sum 

of TP, FN, FP and TN [94]. 
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Table 15 – Subjects denotation according with the diagnostic tests results (rows) obtained and the 
results of Gold Standard Test (columns) [94]. 

Results of diagnostic tests Results of Gold Standard Test 

 Disease present Disease absent 

Test positive True positive (TP) False positive (FP) 

Test negative False negative (FN) True negative (TN) 

 

In the present work, to validate the results of the diagnostic tests given by the 

binary classifiers, three objective measures of test performance were calculated: 

accuracy, sensitivity and specificity.  

The accuracy of the classifier expresses its power to identify correctly subjects 

with and without the disease. In line with this, the most desire test would have 100% 

accuracy. The accuracy of a test is calculated by the ratio of true positives (TP) and 

true negatives (TN), and all evaluated cases. Mathematically, it can be expressed by 

Equation 3) [93, 94].  

 

3) Accuracy =
𝑇𝑁+𝑇𝑃

𝑇𝑜𝑡𝑎𝑙
; 

 

The sensitivity of the classifier represents its ability to correctly identify 

subjects with the disease condition. It represents the proportion of subjects with the 

disease (TP and FN) that are correctly identified by the test (TP). Mathematically, it 

can be expressed by Equation 4) [93, 94]. 

 

4) Sensitivity = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
; 

 

Lastly, specificity is the ability of the classifier to correctly identify HC. It is the 

proportion of healthy subjects (TN and FP) that are correctly identified by the test 

(TN). Mathematically, it can be expressed by Equation 5) [93, 94]. 

 

5) Specificity = 
𝑇𝑁

𝑇𝑁+𝐹𝑃
; 
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Group TOT 

 

Sixteen different classifiers using features extracted from SUVr PiB PET images 

of the group TOT as input were built. One for each reference region (CER, GM and 

WM), for each different kernel (linear, rbf and poly) and, for CER and GM, for each 

feature selection approach. It was also constructed an additional classifier using GM 

as reference region avoiding the features MTC, PCing and C, which a priori do not have 

clinical meaning.  

The results of the three objective measures of test performance, accuracy, 

sensitivity and specificity, for the classifiers only based on features extracted from 

SUVr PiB PET images of the group TOT are presented in Tables 16 to 21. 

 

Results of the classifier only based on features extracted from SUVr PiB PET 
images of group TOT (Ref-CER): feature selection (two sample T-test) 
 

Features dataset length: 7 (B, P, Acing, PI, PC, PS and Pmen) 
Subjects dataset length: 35   

 

Table 16 - Confusion matrix results of the classifier only based on features extracted from SUVr PiB 
PET images of group TOT for CER as reference region. The features used to construct this classifier 
were selected by the two sample T-test. 

Kernel TN FN FP TP Accuracy Sensitivity Specificity 
Linear  18 1 3 13 0.886 0.929 0.857 
rbf 18 1 3 13 0.886 0.929 0.857 
poly 19 3 2 11 0.857 0.786 0.905 

 

 

Results of the classifier only based on features extracted from SUVr PiB PET 
images of group TOT (Ref-CER): feature selection (PCA) 
 

Features dataset length: 7 (B, P, Acing, PI, PC, PS and OC) 
Subjects dataset length: 35   
 

 
Table 17 - Confusion matrix results of the classifier only based on features extracted from SUVr PiB 
PET images of group TOT for CER as reference region. The features used to construct this classifier 
were selected by the PCA technique. 

Kernel TN FN FP TP Accuracy Sensitivity Specificity 
Linear  18 3 3 11 0.829 0.786 0.857 
rbf 17 1 4 13 0.857 0.929 0.810 
poly 17 4 4 10 0.771 0.714 0.810 
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Results of the classifier only based on features extracted from SUVr PiB PET 
images of group TOT (Ref-GM): feature selection (two sample T-test) 
 

Features dataset length: 6 (MTC, PI, PS, C, Pcing, P) 
Subjects dataset length: 35   
 

 

Table 18 - Confusion matrix results of the classifier only based on features extracted from SUVr PiB 
PET images of group TOT for GM as reference region. The features used to construct this classifier 
were selected by the two sample T-test. 

Kernel TN FN FP TP Accuracy Sensitivity Specificity 
Linear  17 5 4 9 0.743 0.643 0.810 
rbf 16 2 5 12 0.800 0.857 0.762 
poly 15 2 6 12 0.771 0.857 0.714 

 
Results of the classifier only based on features extracted from SUVr PiB PET 
images of group TOT (Ref-GM): feature selection (PCA) 
 

Features dataset length: 7 (PC, MTC, PI, PS, OC, Pcing, Pmen) 
Subjects dataset length: 35   

 

Table 19 - Confusion matrix results of the classifier only based on features extracted from SUVr PiB 
PET images of group TOT for GM as reference region. The features used to construct this classifier were 
selected by the PCA technique. 

Kernel TN FN FP TP Accuracy Sensitivity Specificity 
Linear  18 3 3 11 0.829 0.786 0.857 
 rbf 16 3 5 11 0.771 0.786 0.762 
poly 20 6 1 8 0.800 0.571 0.952 

 

Results of the additional classifier only based on features extracted from SUVr PiB 
PET images of group TOT (Ref-GM): feature selection (avoiding features which a 
priori do not have clinical meaning) 
 

Features dataset length: 7 (PS, PI, PC, OC, Pmen, P and B) 
Subjects dataset length: 35   

 

Table 20 - Confusion matrix results of the classifier only based on features extracted from SUVr PiB 
PET images of group TOT for GM as reference region. A classifier constructed avoiding features which 
a priori do not have clinical meaning. 

Kernel TN FN FP TP Accuracy Sensitivity Specificity 
Linear  17 3 4 11 0.800 0.786 0.810 
 rbf 16 6 5 8 0.686 0.571 0.762 
poly 15 5 6 9 0.686 0.643 0.714 
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Results of the classifier only based on features extracted from SUVr PiB PET 
images of group TOT (Ref-WM): feature reduction (two sample T-test and PCA) 
 

Features dataset length: 7 (B, P, PS, PC, PI, Acing, Pmen) 
Subjects dataset length: 35   

 

Table 21 - Confusion matrix results of the classifier only based on features extracted from SUVr PiB 
PET images of group TOT for WM as reference region. 

Kernel TN FN FP TP Accuracy Sensitivity Specificity 
Linear  18 2 3 12 0.857 0.857 0.857 
rbf 17 3 4 11 0.800 0.786 0.810 
poly 18 5 3 9 0.771 0.643 0.857 

 

The results of accuracy, sensitivity and specificity obtained for the first group 

studied – group TOT – for the three different reference regions considered, using 

three distinct kernels and, for CER and GM as reference region, using different 

features selection approaches, are summarized in Table 22. 

 

Table 22 - Accuracy, sensitivity and specificity of the classifiers build for the group TOT using three 
different reference region, three distinct kernels and, for CER and GM as reference region, using 
different features selection approaches. Where * represents the feature selection approach used to 
construct an additional classifier avoiding features which a priori do not have clinical meaning. 

 

 

For the classifier only based on SUVr PiB PET images of group TOT, the best 

set of accuracy (0.886), sensitivity (0.929) and specificity (0.857) was obtained using 

 Cerebellum Grey Matter White Matter 

Linear rbf poly Linear rbf poly Linear rbf poly 

A
cc

u
ra

cy
 Two sample 

T-test 
0.886 0.886 0.857 0.743 0.800 0.771 0.857 0.800 0.771 

PCA 0.829 0.857 0.771 0.829 0.771 0.800 

* - - - 0.800 0.686 0.686 - - - 

S
e

n
si

ti
v

it
y

 Two sample 
T-test 

0.929 0.929 0.786 0.643 0.857 0.857 0.857 0.786 0.643 

PCA 0.786 0.929 0.714 0.786 0.786 0.571 

* - - - 0.786 0.571 0.643 - - - 

S
p

e
ci

fi
ci

ty
 Two sample 

T-test 
0.857 0.857 0.905 0.810 0.762 0.714 0.857 0.810 0.857 

PCA 0.857 0.810 0.810 0.857 0.762 0.952 

* - - - 0.810 0.762 0.714 - - - 
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both linear and rbf kernel, for CER as reference region and two sample T-test as 

feature selection approach.  

 

Group 4070 

 

Nine different classifiers, using features extracted from SUVr PiB PET images 

of the group 4070 as input were built. One classifier for each reference region 

considered (CER and WM), for each different kernel and, for CER as reference region, 

one for two sample T-test and another one for PCA technique. The results of the three 

objective measures of test performance, accuracy, sensitivity and specificity, for the 

classifiers only based on features extracted from SUVr PiB PET images of the group 

4070 are presented in Tables 23 to 25. 

 

Results of the classifier only based on features extracted from SUVr PiB PET 
images of group 4070 (Ref-CER) feature selection (two sample T-test) 
 

Features dataset length: 8 (PC, PI, PS, Acing, P, B, OC, MTC) 
Subjects dataset length: 40 
 

 

Table 23 - Confusion matrix results of the classifier only based on features extracted from SUVr PiB 
PET images of group 4070 when the CER is used as reference region and two sample T-test as feature 
selection approach. 

Kernel TN FN FP TP Accuracy Sensitivity Specificity 
Linear  18 2 3 17 0.875 0.895 0.857 
rbf 17 0 4 19 0.900 1.000 0.810 
poly 18 2 3 17 0.875 0.895 0.857 

 

Results of the classifier only based on features extracted from SUVr PiB PET 
images of group 4070 (Ref-CER) feature selection (PCA) 
 

Features dataset length: 8 (PC, PI, PS, Acing, P, B, PCing, Pmen) 
Subjects dataset length: 40 

 

Table 24 - Confusion matrix results of the classifier only based on features extracted from SUVr PiB 
PET images of group 4070 when the CER is used as reference region and PCA as feature selection 
approach. 

Kernel TN FN FP TP Accuracy Sensitivity Specificity 
Linear  18 2 3 17 0.875 0.895 0.857 
rbf 18 0 3 19 0.925 1.000 0.857 
poly 18 4 3 15 0.825 0.790 0.857 
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Results of the classifier only based on features extracted from SUVr PiB PET 
images of group 4070 (Ref-WM) feature selection (two sample T-test and PCA) 
 

Features dataset length: 8 (PS, PC, PI, OC, Acing, PCing, Pmen, P) 
Subjects dataset length: 40 

 

Table 25 - Confusion matrix results of the classifier only based on features extracted from SUVr PiB 
PET images of group 4070 when the WM is the reference region. 

Kernel TN FN FP TP Accuracy Sensitivity Specificity 
Linear  16 3 5 16 0.800 0.842 0.762 
rbf 16 1 5 18 0.850 0.947 0.762 
poly 19 2 2 17 0.900 0.895 0.905 

 

The results of accuracy, sensitivity and specificity obtained for the second 

group studied – group 4070 – for the two different reference regions considered, 

using three distinct kernels, and, for CER as reference region, using the two features 

selection approaches, are summarized in Table 26. 

 

Table 26 - Accuracy, sensitivity and specificity of the classifiers build for the group 4070 using two 
different reference region, three distinct kernels and, for CER as reference region, using two features 
selection approaches. 

 Cerebellum White Matter 

Linear rbf poly Linear rbf poly 

A
cc

u
ra

cy
 Two sample T-test 

 

0.875 0.900 0.875 0.800 0.850 0.900 

PCA 

 

0.875 0.925 0.825 

S
e

n
si

ti
v

it
y

 Two sample T-test 

 

0.895 1.000 0.895 0.842 0.947 0.895 

PCA 

 

0.895 1.000 0.790 

S
p

e
ci

fi
ci

ty
 Two sample T-test 

 

0.857 0.810 0.857 0.762 0.762 0.905 

PCA 

 

0.857 0.857 0.857 

 

The best results obtained for group 4070 were the ones regarding the features 

selected by PCA technique with the CER as reference region and the rbf as kernel; 

accuracy of 0.925, sensitivity of 1.000 and specificity of 0.857. 
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Group 4060 

 

Three different classifiers using features extracted from BP PK PET images of 

the group 4060 as input were built. One classifier for each different kernel using CER 

as reference region and PCA technique as feature selection approach.  

The results of the three objective measures of test performance, accuracy, 

sensitivity and specificity, for the classifiers only based on features extracted from BP 

PK PET images of the group 4060 are presented in Table 27. 

 

Results of the classifier only based on features extracted from BP PK PET images 
of group 4060 (Ref-CER) feature selection (PCA) 
 

Features dataset length: 8 (B, FL, TL, SFG, IFG, MTG, PG, IPL) 
Subjects dataset length: 40 

 

Table 27 - Confusion matrix results of the classifier only based on features extracted from BP PK PET 
images of group 4060 when the CER is used as reference region and PCA as feature selection approach. 

Kernel TN FN FP TP Accuracy Sensitivity Specificity 
Linear  15 8 6 11 0.650 0.579 0.714 
rbf 14 16 7 3 0.425 0.158 0.667 
poly 11 11 10 8 0.475 0.421 0.524 

 

The best results obtained for the group 4060 were the ones using a linear 

kernel; accuracy of 0.675, sensitivity of 0.579 and specificity of 0.714. 

The binary classifier constructed just using features extracted from BP PK PET 

images of the group 4060 shows, for all used kernels, a weak performance (Table 27), 

compared with the performance of the classifier obtained when the features were 

extracted from the first two groups (TOT - Table 22, and 4070 – Table 26). 

 

Mixture of features extracted from images of groups 4070 and 4060 

 

Fifteen different classifiers based on different combinations of features were 

constructed.  According with PCA technique, these features are the most relevant ones 

for the construction of the classifier. One classifier for each one of the 5 different 

features datasets selected by PCA technique and one for each kernel. The results of 
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the three objective measures of test performance, accuracy, sensitivity and specificity, 

for these classifiers are presented in Tables 28 to 32. 

 

Results of the classifiers based on different mixture of features (the most relevant 
ones according with PCA technique to construct the classifier)  
 

1st attempt 
 

Features dataset length: 8 
→ From SUVr PiB 4070 (Ref- CER): PI, PS, P, PC, B, Acing 
→ From SUVr PiB 4070 (Ref-WM): PI, P 

Subjects dataset length: 39 
 

Table 28- Confusion matrix results of the classifier based on different mixture of features extracted 
from SUVr PiB PET images of group 4070 for CER and WM as reference region. 

Kernel TN FN FP TP Accuracy Sensitivity Specificity 
Linear  18 1 3 17 0.897 0.944 0.857 
Rbf 18 0 3 18 0.923 1.000 0.857 
Poly 17 4 4 14 0.795 0.778 0.810 

 

2nd attempt 
 

Features dataset length: 8 
→ From SUVr PiB 4070 (Ref- CER): PI, PS, P, PC, B 
→ From BP PK 4060 (Ref- CER):  P, SPL, IPL 

Subjects dataset length: 39 
 
 
Table 29 - Confusion matrix results of the classifier based on different mixture of features extracted 
from SUVr PiB PET images of group 4070 and BP PK PET images of group 4060 for CER as reference 
region. 

Kernel TN FN FP TP Accuracy Sensitivity Specificity 
Linear  16 3 5 15 0.795 0.833 0.762 
Rbf 17 2 4 16 0.846 0.889 0.810 
Poly 15 5 6 13 0.718 0.722 0.714 

 

3rd attempt 
 

Features dataset length: 8 
→ From SUVr PiB 4070 (Ref- CER): PI, PS, P, PC, B, Acing 
→ From BP PK 4060 (Ref- CER):  P 
→ From DVR PK 4060(Ref- CER):  P 

Subjects dataset length: 39 
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Table 30 - Confusion matrix results of the classifier based on different mixture of features extracted 
from SUVr PiB PET images of group 4070, BP and DVR PK PET images of group 4060 for CER as 
reference region. 

Kernel TN FN FP TP Accuracy Sensitivity Specificity 
Linear  18 2 3 16 0.872 0.889 0.857 
Rbf 16 3 5 15 0.795 0.833 0.762 
Poly 18 3 3 15 0.846 0.833 0.857 

 

4th attempt 

 

Features dataset length: 8 
→ From SUVr PiB 4070 (Ref- CER): PI, PS, P, PC, B 
→ From SUVr PiB 4070 (Ref- WM): PI, P 
→ From BP PK 4060 (Ref- CER):  P 

Subjects dataset length: 39 
 

Table 31 - Confusion matrix results of the classifier based on different mixture of features extracted 
from SUVr PiB PET images of group 4070 for CER and WM as reference region and BP PK PET images 
of group 4060 for CER as reference region. 

Kernel TN FN FP TP Accuracy Sensitivity Specificity 
Linear  18 2 3 16 0.872 0.889 0.857 
rbf 18 2 3 16 0.872 0.872 0.872 
poly 19 3 2 15 0.872 0.833 0.905 

 

5th attempt 
 

Features dataset length: 8 
→ From SUVr PiB 4070 (Ref- CER): PI, PS, P, PC, B, Acing 
→ From SUVr PiB 4070 (Ref- WM): PI 
→ From BP PK 4060 (Ref- CER):  P 

Subjects dataset length: 39 
 
Table 32 - Confusion matrix results of the classifier based on different mixture of features extracted 
from SUVr PiB PET images of group 4070 for CER and WM as reference region and BP PK PET images 
of group 4060 for CER as reference region. 

Kernel TN FN FP TP Accuracy Sensitivity Specificity 
Linear  18 2 3 16 0.872 0.889 0.857 
rbf 18 0 3 18 0.923 1.000 0.857 
poly 19 1 2 17 0.923 0.944 0.905 

 

In Table 33 is presented the most relevant results obtained in this section, ROI 

based analysis – classification. 
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Table 33 - Part of the results obtained in this section, ROI based analysis - classification.  

Classifier input  Accuracy Sensitivity Specificity Feature selection 
approach 

Kernel 

SUVrTOT- CER 0.886 0.929 0.857 Two sample T-test Linear and rbf 

SUVrTOT- GM 0.829 0.786 0.857 PCA Linear 

SUVrTOT- WM 0.857 0.857 0.857 Both linear 

SUVr4070- CER 0.925 1.000 0.857 PCA rbf 

SUVr4070- WM 0.900 0.895 0.905 Both poly 

BP4060- CER 0.675 0.632 0.714 Two sample T-test linear 

First attempt 

(SUVr4070- CER 

and SUVr4070- WM) 

 

0.923 1.000 0.857 PCA rbf 

Fifth attempt 

(SUVr4070- CER, 

SUVr4070- WM and 

BP4060- CER) 

 

0.923 0.944 0.905 PCA poly 

 

Both for CER and for WM the binary classifier with the best results were the 

ones using the second group (group 4070) as input classifier. Within the group 4070 

the classifier using CER as reference region was the one presenting the best 

performance (bold in Table 33).  

In Table 33 it is possible to verify that the fifth attempt presents a slightly 

lower value for accuracy (0.923) and sensitivity (0.944), when compared to the 

overall binary classifier with the best performance obtained - accuracy of 0.925 and 

sensitivity of 1 (bold in the Table 33). However, it was the one that presented the best 

specificity performance (0.905). 

 

CORRELATION AT REGIONAL LEVEL BETWEEN BP PK PET IMAGES OF GROUP 

4060 AND SUVR PIB PET IMAGES OF GROUP 4070 

 

There are three main methods to perform correlation analysis, Pearson 

correlation, Kendall rank correlation and Spearman [95]. 



 
 

81 
 

Pearson correlation, also known as parametric correlation test, is represented 

by the Pearson correlation coefficient and expresses the strength of the linear 

association between two variables. Since this method can only be performed when 

the two variables present a normal distribution, Shapiro-Wilk test was used to check 

the normality of the variables. If the two p-values of the variables under correlation 

were greater than the significance level, 0.05, the distribution of the data were not 

significantly different from normal distribution and the normality was assumed. The 

p-value obtained in the Shapiro-Wilk test are presented in Table 34 [95, 96]. 

On the other hand, the Kendall rank correlation and Spearman are non-

parametric rank-based measures of association. Both methods can be used in data 

randomly distributed, i.e., in data that did not pass the Shapiro-Wilk test [95, 96]. 

Correlation coefficients (r) take a range of values between -1 to +1. A value of 

0 indicates that there is no correlation between the two variables and values greater 

and less than 0 indicates a positive and negative association, respectively. Stronger 

correlations of the two variables is associated to r values closer to either +1 or -1 

depending on whether the relationship is positive or negative, respectively [95]. 

 

Table 34 - p-value obtained in the Shapiro-Wilk test for the different considered features. 

 Shapiro-Wilk test (p-value) 
 SUVr4070-CER BP4060-CER SUVr4070-WM BP4060-SVCA4 

PC 0.003 0.619 0.003 0.011 
OC 5.076E-03 3.435E-04 0.006 0.007 
MTC 0.044 0.145 0.919 0.605 
PI 0.006 0.033 0.002 0.214 
PS 0.012 0.048 0.005 0.011 
Acing 0.010 0.042 0.016 0.879 
C 0.163 0.438 0.043 0.616 
P 0.002 0.431 6.286E-04 0.172 
PCing 0.054 0.260 0.238 0.059 
Pmen 0.001 0.226 0.036 0.560 
B 0.012 0.128 1.261E-05 0.473 

  

As it was mentioned, to apply Pearson correlation, the two p-values obtained 

in the Shapiro-Wilk test of the variables under correlation need to be greater than the 

significance level 0.05. Table 35 shows the variables were the Pearson correlation can 

be ( ) or not ( ) be applied. 
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Table 35 - Pair of variables were the Pearson correlation can be or not be applied. 

 Shapiro-Wilk test (result) 

SUVr4070-CER SUVr4070-WM 

PC BP4060-CER 
  

BP4060-SVCA4 
  

OC BP4060-CER 
  

BP4060-SVCA4 
  

MTC BP4060-CER 
  

BP4060-SVCA4 
  

PI BP4060-CER 
  

BP4060-SVCA4 
  

PS BP4060-CER 
  

BP4060-SVCA4 
  

Acing BP4060-CER 
  

BP4060-SVCA4 
  

C BP4060-CER 
  

BP4060-SVCA4 
  

P BP4060-CER 
  

BP4060-SVCA4 
  

PCing BP4060-CER 
  

BP4060-SVCA4 
  

Pmen BP4060-CER 
  

BP4060-SVCA4 
  

Brain BP4060-CER 
  

BP4060-SVCA4 
  

 

In consonance with the results of Table 35, Pearson correlation was applied 

in eight pairs of variables (test result - ). Since Spearman can be used in data that do 

not come from a bivariate normal distribution, all data was applied using this method 

of correlation analysis.   

In Table 36 is presented the results of the p-values and the coefficients of 

correlation, r, given by Pearson and Spearman correlation.  
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Table 36 - P-values and the coefficients of correlation, r, given by Pearson and Spearman correlation. 

 SUVr4070-CER SUVr4070-WM 
 Pearson 

 
Spearman 

 
Pearson 

 
Spearman 

 
p-value r p-value r p-value r p-value r 

B
P

4
0

6
0

-C
E

R
 

PC - - 0.415 0.134 - - 0.899 0.021 
OC - - 0.029 0.351 - - 0.140 0.240 
MTC - - 0.065 0.299 0.594 0.088 0.522 0.105 
PI - - 0.009 0.416 - - 0.051 0.316 
PS - - 0.082 0.282 - - 0.202 0.209 
ACing - - 0.801 -0.042 - - 0.966 0.007 
C 0.054 0.311 0.021 0.370 - - 0.003 0.471 
P - - 0.002 0.489 - - 0.014 0.392 
PCing 0.639 0.077 0.199 0.210 0.813 0.039 0.683 0.067 
Pmen - - 0.460 0.122 - - 0.381 0.144 
B - - 0.085 0.280 - - 0.384 0.143 

B
P

4
0

6
0

-S
V

C
A

4
 

PC - - 0.937 -0.013 - - 0.542 -0.100 
OC - - 0.154 0.232 - - 0.358 0.151 
MTC - - 0.478 0.117 0.649 0.075 0.774 0.047 
PI - - 0.012 0.399 - - 0.040 0.331 
PS - - 0.248 0.189 - - 0.452 0.124 
ACing - - 0.246 -0.190 - - 0.365 -0.149 
C 0.230 0.197 0.238 0.193 - - 0.022 0.368 
P - - 0.002 0.475 - - 0.006 0.437 
PCing 0.600 -0.087 0.982 0.004 0.674 -0.070 0.588 -0.089 
Pmen - - 0.472 0.119 - - 0.322 0.162 
B - - 0.781 0.046 - - 0.608 -0.084 

 

Values of Table 36 in bold represent p-values lower than the significance level 

0.05. Consequently, the two variables associated to these p-values are significantly 

correlated. 

In the Pearson correlation all pair of features tested presented a p-value higher 

than the significance level alpha, 0.05. Thus, using this method of analysis no 

correlation between BP PK and SUVr PiB PET images was found at regional level [95]. 

In the Spearman eleven pairs of variables presented a p-value less than the 

significance level alpha. BP4060-CER and SUVr4070-CER are correlated positively in OC, PI, 

C and P, with a correlation coefficient of 0.351, 0.416, 0.370 and 0.489, respectively; 

BP4060-CER and SUVr4070-WM are correlated positively in C and P, with a correlation 

coefficient of 0.471 and 0.392, respectively; BP4060-SVCA4 and SUVr4070-CER are 

correlated positively in PI and P, with a correlation coefficient of 0.399 and 0.475, 

respectively; and BP4060-SVCA4 and SUVr4070-WM are correlated positively in PI, C and P, 

with a correlation coefficient of 0.331, 0.368 and 0.437, respectively [95]. 



 
 

84 
 

Overall, when using the CER as reference region of PiB PET images, stronger 

correlation with BP PK PET images were found compared to normalization based on 

WM. What is possible to see in: P where the correlation coefficient between BP4060-CER 

and SUVr PiB PET images normalized by CER is 0.489, greater than 0.392 using WM; 

and in PI and P where the correlation coefficient between BP4060-SVCA4 and SUVr PiB 

PET images normalized by CER is 0.399 and 0.475, greater than 0.331 and 0.437, 

respectively, using WM. 

In the Figures bellow, Figures 17 to 20, are presented the scatter plots showing 

the existing correlation in several brain regions between BP PK of group 4060 and 

SUVr PiB of group 4070. The abline() function was performed in RStudio to add the 

corresponding regression line, blue line of the Figures 17 to 20 [97]. 

 

Positive correlation in different brain regions between BP4060-CER and 

SUVr4070-CER 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 17 - Scatter plots showing the positive correlation in P, C, OC and PI between BP4060-CER and  
SUVr4070-CER.  
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Positive correlation in different brain regions between BP4060-CER and 

SUVr4070-WM 

  

 

Positive correlation in different brain regions between BP4060-SVCA4 and 

SUVr4070-CER 

  

 

  

Figure 18 - Scatter plots showing the positive correlation in P and C between BP4060-CER and SUVr4070-WM.  
 

Figure 19 - Scatter plots showing the positive correlation in P and PI between BP4060-SVCA4 and SUVr4070-

CER.   
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Positive correlation in different brain regions between BP4060-SVCA4 and 

SUVr4070-WM 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Through the scatter plots (Figures 17 to 20) it is possible to see a positive 

correlation in several brain regions between BP PK of group 4060 and SUVr PiB of 

group 4070. It is also possible to verify that when the CER is used as reference region, 

the values of BP are mainly negative. Which suggests that CER may not represent the 

best reference region to be used in the normalization of PK PET images. On the other 

hand, when the SVCA4 is the approach used to obtain the reference region, the values 

of BP are mainly positive. 

  

Figure 20 - Scatter plots showing the positive correlation in P, PI and C between BP4060-SVCA4 and 
SUVr4070-WM.  



 
 

87 
 

CHAPTER 3 (DISCUSSION) 

 

Voxel Based Analysis – Conclusions 

 

PK PET images comparison between groups – Conclusions 

 

According with the results exposed in Table 4-8 and with Figures 7-11, it was 

found that, when CER was used as reference region, higher differences at the voxel 

level between AD and HC groups of PK PET images (SUVr, BP and DVR), comparing 

with SVCA4, were observed. Even though the main hypothesis is that PET images bear 

differences between AD and HC groups, these differences can be biased. To our 

knowledge, SVCA4 gives the reference region with the less specific binding to PK. 

Thus, the differences at the voxel level using CER may be a result of their specific 

binding to PK. So, although CER is associated to higher differences between groups at 

the voxel level, SVCA4 is likely the approach that gives the more accurate 

quantification of PK PET. This implies that there are just small differences at 

voxel level between AD and HC group of PK PET images. The reason why is 

probably related to the fact that activated microglia is associated to 

neuroinflammation and this process is characteristic of each subject, i.e., is 

random distributed and degreed in the brain of the AD patients. This reduces 

the likelihood of finding a substantial effect. 

Also, in Figures 7 to 11, are presented three different quantification outputs of 

PK PET images, SUVr, BP and DVR. Through the comparison of these Figures and just 

looking for the b) part of the figures, when SVCA4 is used as reference region, it is 

possible to conclude that the quantification output associated to the most differences 

between AD and HC groups is the DVR. However, since all the quantification methods 

are robust and the differences between BP and DVR are small, the quantification 

outputs, BP or DVR, are relatively similar and none can be declared as the best 

one to quantify PK PET images. 
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PiB and PK images comparison between groups – Conclusions 

 

In addition, results from the voxel-based analysis present in Figure 12 - SUVr 

PiB of group 4070 presents a relevant difference at voxel level between AD and HC 

groups. Conversely, the two considered quantified PK PET images did not show big 

differences –suggests that PK biodistribution in the brain does not indeed 

differentiate groups. Moreover, this also indicates that when the disease is present, 

if they exist, there are probably just a few features extracted from PK PET 

images that can be used to improve the performance of the classifiers only 

based on PiB PET images.  

 

Voxel wise correlation in different brain regions between PK of group 4060 

and SUVr PiB of group 4070 – conclusion 

 

There were five brain regions where the correlation at voxel level between PK 

and SUVr PiB PET images agreed the most for all reference regions considered, 

primary motor cortex, primary visual cortex, somatosensory association cortex, 

associative visual cortex and premotor cortex. It is interesting to noticed that all these 

brain regions are related to motor function and visual spatial orientation. 

 

ROI Based Analysis – Conclusions 

 

Feature selection – conclusion 

 

Results from Table 13 - in comparison with PK PET images, PiB PET images 

present much higher values for the ratio between the features that passed the two 

sample T-test and the total considered features, and for the global percentage 

difference - are directly linked to the conclusions mentioned above, PK 

biodistribution in the brain does not differentiate groups reliably in any brain 

region. Within PK PET images, BP PK PET images using CER as reference region 

presented the higher values for the ratio between the features that passed the two 

https://en.wikipedia.org/wiki/Visual_cortex#V3
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sample T-test and the total considered features. This agrees with the result obtained 

in the voxel-based analysis, in PK PET images, CER as reference region allow the 

most differences between AD and HC groups. However, as it was mentioned, these 

differences are probably biased by the specific binding of CER to PK. This agrees 

with the slightly lower values of the global percentage differences obtained using CER 

as reference region, 2.320 and 3.100, comparing with the ones obtained using SVCA4, 

4.100 and 3.100, for BP and DVR, respectively.  

The resulting datasets given by two sample T-test and PCA technique 

disagreed in three cases. Since the T-test is univariate and PCA technique is 

multivariate the existence of disagreements is not unexpected. According with the 

number of disagreements present in Table 14, it is logical to postulate that the 

feature selection can be done by either two sample T-test or PCA technique, 

when the features are extracted from quantified PiB PET images. However, even 

though the similarity of the classifiers performance given by these two approaches, 

overall PCA technique was the one with the best results (Table 33). For PK PET 

images, no classifier was constructed only using features selected by two sample T-

test (Table 14). The difficulty in the selection of features extracted from PK PET 

images by two sample T-test is probably because the Two sample T-test is a 

univariate approach and due to the low percentage differences of sample 

means obtain for BP PK PET images. So, it is logical to postulate, for PK PET 

images, two sample T-test is not the obvious approach to choose to do the 

feature selection. 

 

Classification – conclusion 

 

According to the results obtained in Table 22, it is possible to conclude that 

somehow the algorithm can extract important information to build the binary 

classifier from features which a priori do not had overt clinical meaning.  

The binary classifier only based on features extracted from BP PK PET images 

(Table 27), shows a weak performance, when compared with the first two groups 

(TOT and 4070). What is in agreement with the above mentioned conclusions, if they 

exist, there are probably just few features extracted from PK PET images able 

to be use to improve the classifier performance. 
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According to the results of Table 33 - the overall binary classifier with the best 

performance; accuracy of 0.925, sensitivity of 1.000 and specificity of 0.857; was 

obtained for the group 4070, using CER as reference region, rbf as kernel and PCA 

technique as feature selection approach. The group 4070 is composed by PET images 

acquired during the characteristic accumulation time of PiB, between minute 40 

and 70, after administration. So, it is possible to state that the most important 

information extracted from the features are presented in this time interval. It 

can be also concluded, that CER represents the best reference region. What also 

means that CER represents the brain region where amyloid accumulation bears 

the least differences between HC and AD patients. Results from Table 33 show 

also that the use of one feature extracted from PK PET images (5th attempt), although 

it does not improve neither the accuracy nor the sensitivity of the classifier, can be 

used to improve their specificity. However, since specificity represents the capacity 

of classifying correctly the HC, for this specificity case it is better to have a higher 

value for the sensitivity than for the specificity. 

 

ROI based correlation in different brain regions between BP PK of group 

4060 and SUVr PiB of group 4070 PET images – conclusion 

 

BP PK PET images correlated positively in some brain regions with PiB-PET 

images normalized by both the CER and WM. BP4060-CER and SUVr4070-CER are correlated 

positively in OC, PI, C and P, BP4060-CER and SUVr4070-WM in C and P, BP4060-SVCA4 and 

SUVr4070-CER in PI and P, and BP4060-SVCA4 and SUVr4070-WM in PI, C and P. Since, both P 

and PI have important roles in visuospatial processing, ROI based correlation results 

are directly linked with the obtained in voxel wise correlation [98, 99]. 

Results from Table 36 - when using the CER as reference region of PiB PET 

images, stronger correlation with BP PK PET images were found compared to 

normalization based on WM –agrees with the aforementioned conclusion, for PiB PET 

images of group 4070 CER represents the best reference region. To our knowledge, 

if the reference region considered has specific binding to PK, the binding potential 

will be underestimated [43]. In the Figures 17 to 20 it is possible to see that when CER 

is used as reference region, the values of BP are mainly negative. On the other hand, 

https://reliawire.com/superior-temporal-sulcus/
https://www.powerthesaurus.org/aforementioned/synonyms
http://www.turkupetcentre.net/petanalysis/receptor_binding_potential.html
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when the SVCA4 is the approach used to obtain the reference region, the values of BP 

are mainly positive. CER as certainly specific binding to PK; thus, it not represents 

the best reference region to be used in the quantification of PK PET images. This 

conclusion proves the assumptions considered in voxel based analysis conclusions - 

SVCA4 is certainly the approach that gives the more accurate quantification of 

PK PET. 

 

Final remarks 

 

After confrontation of the results obtained - features extracted at regional level 

from PK PET images did not improve, neither the accuracy nor the sensitivity of the 

classifier only based on features extracted from PiB PET images - different 

alternatives to build a new classifier using features extracted from PK PET images 

were considered. Since all the features were extracted at regional level, the 

alternative considered was the extraction of features from PK PET images using 

voxel-based methods texture analysis. However, this alternative was not carried 

forward since: 

→ For this problem, texture do not have clinical meaning in PET images; 

→ PK PET images, even at voxel level, presented only small differences 

between AD and HC groups;  

→ The classifier only based on features extracted from PiB PET images have 

already a great performance;  

→ The inclusion of features extracted from PK PET images implies the 

production and administration of another radiopharmaceutical and the acquisition of 

more PET images, which is invasive, very expensive and time-consuming. 

 

Future work 

  

The characterization of PiB retention (positive or negative) in MCI patients is 

tricky. There are evidences of at least three separate binding sites for PiB on the Aβ 

polymer fibrils, each with its own specific affinity. If one of these sites had an higher 

association with the development of AD and/or MCI subjects a possible refinement of 

amyloid imaging could be done to improve AD and/or MCI diagnosis [34]. 
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According with scientists, activated microglia may be present years before the 

clinical and behavioural signs of the disease start to appear. In line with this, features 

extracted from PK PET images, although they did not represent a core key in the 

resolution of the problem proposed - binary classification in AD - they may represent 

in a different problem –classification of MCI subjects.   

 

Overall, according with the present study, the classifier only based on features 

extracted from PiB PET images of group 4070, using CER as reference region, was the 

classifier who solved more accurately the problem proposed, binary classification in 

AD. Additionally it was also found a positive correlation between PK and PiB in brain 

region responsible for motor function and visual processing. 
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A - FISHER’S F-TEST AND TWO SAMPLE T-TEST 
 

PiB SUVr gro up TOT (Ref-CER) 

Table(A) 1 - Brain regions considered, p-value of the Fisher's F-test, homogeneity of variances, p-value 
of the two sample T-test and test result, mean of the brain region for AD and HC groups, percentage 
difference of sample means (%) and global percentage difference. 

Brain 
regions 

Fisher’s F-
test 

(p-value) 

Fisher’s 
F-test 
result 

Two 
sample T-

test 
(p-value) 

Two 
sample 
T-test 
result 

Mean 
brain 

region 
AD 

Mean 
brain 

region 
HC 

Percentage 
difference 
of sample 
means (%) 

PC 0.340 
 

0.005 
 

1.356 0.996 36.000 

OC 0.065 
 

0.022 
 

1.448 1.135 31.300 

MTC 0.051 
 

0.049 
 

1.004 0.928 7.600 

PI 0.591 
 

0.004 
 

1.469 1.083 38.600 

PS 0.262 
 

0.003 
 

1.380 0.948  43.200 

ACing 0.004 
 

2.650E-04 
 

1.368 1.088 28.000 

C 0.155 
 

 0.171 
 

0.951 0.878 - 

PCing 0.022 
 

0.509 
 

1.157 1.107 - 

P 0.542 
 

0.007 
 

1.608 1.171 43.700 

Pmen 0.001 
 

 2.740E-04 
 

1.424 1.186  23.800 

B 0.244 
 

0.001 
 

1.304 1.053 25.100 

Global percentage difference (%) 30.811 
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PiB SUVr group TOT (Ref-GM) 

Table(A) 2 - Brain regions considered, p-value of the Fisher's F-test, homogeneity of variances, p-value 
of the two sample T-test and test result, mean of the brain region for AD and HC groups, percentage 
difference of sample means (%) and global percentage difference. 

 
 

PiB SUVr group TOT (Ref-WM) 

Table(A) 3 - Brain regions considered, p-value of the Fisher's F-test, homogeneity of variances, p-value 
of the two sample T-test and test result, mean of the brain region for AD and HC groups, percentage 
difference of sample means (%) and global percentage difference. 

Brain 
regions 

Fisher’s 
F-test 

(p-
value) 

 Fisher’s 
F-test 
result 

Two 
sample T-

test 
(p-value) 

Two 
sample 
T-test 
result 

Mean 
brain 

region 
AD 

Mean 
brain 

Region 
HC 

Percentage 
difference 
of sample 

means (%) 
PC 0.979 

 
0.006 

 
1.075 0.833 24.200 

OC 0.004 
 

0.278 
 

1.152 1.038 - 

MTC 0.617 
 

0.981 
 

0.798 0.799 - 

PI 0.188 
 

0.010 
 

1.169 0.904 26.500 

PS 0.087 
 

0.008 
 

1.098 0.792 30.600 

ACing 0.010 
 

1.840E-04 
 

1.083 0.912 17.100 

C 0.373 
 

0.690 
 

0.756 0.740 - 

PCing 0.024 
 

0.907 
 

0.928 0.935 - 

P 0.628 
 

0.005 
 

1.276 0.979 29.700 

Pmen 0.005 
 

9.520E-04 
 

1.134 1.001 13.300 

B 0.654 
 

0.002 
 

1.035 0.883 15.200 

Global percentage difference (%) 22.371 

 

Brain 
regions 

Fisher’s F-
test 

(p-value) 

Fisher’s 
F-test 
result 

Two 
sample T-

test 
(p-value) 

Two 
sample T-

test 
result 

Mean 
brain 

region 
AD 

Mean 
brain 

region 
HC 

Percentage 
difference 
of sample 

means (%) 
PC 0.359 

 
0.066 

 
1.051 0.938 - 

OC 0.002 
 

0.190 
 

1.123 1.073 - 

MTC 0.451 
 

1.040E-04 
 

0.784 0.908 -12.400 

PI 0.122 
 

5.560E-04  
 

1.141 1.020 12.100 

PS 0.105 
 

0.012 
 

1.071 0.893 17.800 

ACing 0.042 
 

0.404 
 

1.058 1.034 - 

C 0.159 
 

0.032 
 

0.743 0.839 -9.600 

PCing 0.067 
 

0.011 
 

0.913 1.063 -15.00 

P 0.027 
 

0.035 
 

1.246 1.136 11.0000 

Pmen 0.005 
 

0.495 
 

1.111 1.137 - 

B 9.620E-04 
 

0.323 
 

1.012 1.000 - 

Global percentage difference (%) 0.650 
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PiB SUVr group 4070 (Ref-CER) 

Table(A) 4 - Brain regions considered, p-value of the Fisher's F-test, homogeneity of variances, p-value 
of the two sample T-test and test result, mean of the brain region for AD and HC groups, percentage 
difference of sample means (%) and global percentage difference. 

Brain 
regions 

Fisher’s F-
test 

(p-value) 

 Fisher’s 
F-test 

Two 
sample T-

test 
(p-value) 

Two 
sample 
T-test 
result 

Mean 
brain 

region 
AD 

Mean 
Brain 
region 

HC 

Percentage 
difference 
of sample 

means (%) 
PC 0.615 

 
4.200E-04 

 
1.352 0.939 41.300 

OC 0.266 
 

4.120E-04 
 

1.449 1.053 39.600 

MTC 0.026 
 

3.850E-04 
 

1.067 0.906 16.100 

PI 0.816 
 

2.440E-04 
 

1.529 1.002 52.700 

PS 0.977 
 

1.670E-04 
 

1.301 0.866 43.500 

Acing 0.804 
 

4.100E-04 
 

1.645 1.144 50.100 

C 0.159 
 

0.006 
 

1.024 0.811 21.300 

PCing 0.059 
 

0.003 
 

1.528 1.131 39.700 

P 0.477 
 

1.980E-04 
 

1.698 1.084 61.400 

Pmen 0.020 
 

0.001 
 

1.491 1.083 40.800 

B 0.828 
 

1.330E-04 
 

1.370 1.008 36.200 

Global percentage difference (%) 40.245 
 

PiB SUVr group 4070 (Ref-WM) 

Table(A) 5 - Brain regions considered, p-value of the Fisher's F-test, homogeneity of variances, p-value 
of the two sample T-test and test result, mean of the brain region for AD and HC groups, percentage 
difference of sample means (%) and global percentage difference. 

Brain 
regions 

Fisher’s F-
test 

(p-value) 

Fisher’s 
F-test 

results 

Two 
sample T-

test 
(p-value) 

Two 
sample 
T-test 
result 

Mean 
brain 

region 
AD 

Mean 
Brain 
region 

HC 

Percentage 
difference 
of sample 

means (%) 
PC 0.456 

 
0.003 

 
0.854 0.676 17.8 

OC 0.139 
 

0.014 
 

0.915 0.759 15.6 

MTC 0.025 
 

0.444 
 

0.678 0.660 - 

PI 0.024 
 

2.600E-04 
 

0.962 0.720 24.2 

PS 0.392 
 

9.220E-04 
 

0.821 0.625 19.6 

ACing 0.230 
 

0.001 
 

1.036 0.823 21.3 

C 0.422 
 

0.190 
 

0.651 0.589 - 

PCing 0.115 
 

0.020 
 

0.969 0.820 14.9 

P 0.274 
 

6.520E-04 
 

1.072 0.778  29.4 

Pmen 0.047 
 

0.013 
 

0.957 0.787 17 

B < 1.124E-0
11 

 
0.171 

 
253.9 
 

0.728 
 

- 

Global percentage difference (%) 19.975 

 



 
 

104 
 

PK SUVr group 4060 (Ref-CER) 

Table(A) 6 - Brain regions considered, p-value of the Fisher's F-test, homogeneity of variances, p-value 
of the two sample T-test and test result, mean of the brain region for AD and HC groups, percentage 
difference of sample means (%) and global percentage difference. 

Brain 
regions 

Fisher’s F-
test 

(p-value) 

Fisher’s 
F-test 
result 

Two 
sample T-

test 
(p-value) 

Two 
sample 
T-test 
result 

Mean 
brain 

region 
AD 

Mean 
Brain 
region 

HC 

Percentage 
difference 
of sample 

means (%) 
PC 0.147 

 
0.462 

 
0.827 0.811 - 

OC 0.019 
 

0.442 
 

0.938 0.920 - 

MTC 0.150 
 

0.791 
 

0.901 0.906 - 

PI 0.923 
 

0.081 
 

0.838 0.796 - 

PS 0.035 
 

0.343 
 

0.834 0.802 - 

Acing 0.483 
 

0.878 
 

0.814 0.817 - 

C 0.763 
 

0.229 
 

0.628 0.656 - 

PCing 0.441 
 

0.478 
 

0.869 0.860 - 

P 0.647 
 

0.059 
 

0.869 0.832 - 

Pmen 0.713 
 

0.691 
 

0.869 0.860 - 

B 0.760 
 

0.393 
 

0.856 0.842 - 

 

PK SUVr group 4060 (Ref-SVCA4) 

Table(A) 7 - Brain regions considered, p-value of the Fisher's F-test, homogeneity of variances, p-value 
of the two sample T-test and test result, mean of the brain region for AD and HC groups, percentage 
difference of sample means (%) and global percentage difference. 

Brain 
regions 

Fisher’s F-
test 

(p-value) 

Fisher’s 
F-test 
result 

Two 
sample T-

test 
(p-value) 

Two 
sample 
T-test 
result 

Mean 
brain 

region 
AD 

Mean 
Brain 
region 

HC 

Percentage 
difference 
of sample 

means (%) 
PC 0.361 

 
0.685 

 
1.048 1.040 - 

OC 0.011 
 

0.756 
 

1.188 1.180 - 

MTC 0.454 
 

0.231 
 

1.141 1.164  - 

PI 0.892 
 

0.084 
 

1.060 1.022 - 

PS 0.078 
 

0.466 
 

1.057 1.028 - 

Acing 0.593 
 

0.324 
 

1.031 1.049 - 

C 0.692 
 

0.071 
 

0.794 0.841 - 

PCing 0.455 
 

0.754 
 

1.080 1.074 - 

P 0.349 
 

0.093 
 

1.101 1.069 - 

Pmen 0.181 
 

0.830 
 

1.099 1.104 - 

B 0.926 
 

0.772 
 

1.084 1.081 - 
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PK BP group 4060 (Ref-CER) 

Table(A) 8 - Brain regions considered, p-value of the Fisher's F-test, homogeneity of variances, p-value 
of the two sample T-test and test result, mean of the brain region for AD and HC groups, percentage 
difference of sample means (%) and global percentage difference. 

Brain 
regions 

Fisher’s F-
test 

(p-value) 

Fisher’s 
F-test 
result 

Two 
sample T-

test 
(p-value) 

Two 
sample 
T-test 
result 

Mean 
brain 

region 
AD 

Mean 
Brain 
region

HC 

Percentage 
difference 
of sample 

means (%) 
PC 0.062 

 
0.408 

 
-0.155 -0.171 - 

OC 0.018 
 

0.374 
 

-0.051 -0.071 - 

MTC 0.072 
 

0.234 
 

-0.076 -0.095 - 

PI  0.975 
 

0.053 
 

-0.157 -0.198 - 

PS 0.064 
 

0.405 
 

-0.154 -0.185 - 

ACing 0.079 
 

0.317 
 

-0.138 -0.155 - 

C 0.882 
 

0.356 
 

-0.354 -0.333 - 

PCing 0.139 
 

0.158 
 

-0.136 -0.161 - 

P 0.422 
 

0.006 
 

-0.120 -0.167 -4.700 

Pmen  0.842 
 

0.114 
 

-0.091 -0.120 - 

B 0.826 
 

0.060 
 

-0.121 -0.145 - 

FL 0.797 
 

0.031 
 

-0.118 -0.147 2.400 

TL 0.253 
 

0.216 
 

-0.098 -0.115 - 

FTS 0.937 
 

0.590 
 

-0.148 -0.135 - 

SFG 0.230 
 

0.066 
 

-0.136 -0.165 - 

MFG 0.078 
 

0.323 
 

-0.121 -0.139 - 

PG 0.847 
 

0.065 
 

-0.141 -0.165 - 

IFG 0.416 
 

0.557 
 

-0.106 -0.114 - 

STG 0.736 
 

0.760 
 

-0.155 -0.150 - 

MTG 0.939 
 

0.324 
 

-0.080 -0.095 - 

ITG 0.031 
 

0.008 
 

-0.009 -0.053 4.400 

A 0.597 
 

0.401 
 

0.054 0.034 -- 

H 0.069 
 

0.115 
 

0.001 -0.034 - 

IPL 0.663 
 

0.010 
 

-0.134 -0.175 4.100 

SPL 0.338 
 

0.011 
 

-0.144 -0.198 5.400 

Global percentage difference (%) 2.320 
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PK BP group 4060 (Ref-SVCA4) 

Table(A) 9 - Brain regions considered, p-value of the Fisher's F-test, homogeneity of variances, p-value 
of the two sample T-test and test result, mean of the brain region for AD and HC groups, percentage 
difference of sample means (%) and global percentage difference. 

Brain 
regions 

Fisher’s F-
test 

(p-value) 

 
Fisher’s 

F-test 
results 

Two 
sample T-

test 
(p-value) 

Two 
sample 
T-test 
result 

Mean 
brain 

region 
AD 

Mean 
brain 

region 
HC 

Percentage 
difference 
of sample 

means (%) 
PC 0.166 

 
0.937 

 
0.051 0.049  - 

OC 0.0568 
 

0.850 
 

0.181 0.176 - 

MTC 0.719 
 

0.919 
 

0.144 0.143 - 

PI 0.988 
 

0.141 
 

0.048 0.016 - 

PS 0.031 
 

0.857 
 

0.041 0.033 - 

ACing 0.935 
 

0.940 
 

0.070 0.068 - 

C 0.810 
 

0.119 
 

-0.201 -0.161  - 

PCing 0.363 
 

0.444 
 

0.078 0.064 - 

P 0.206 
 

0.019 
 

0.098 0.056 4.200 

Pmen 0.160 
 

0.413 
 

0.130 0.113 - 

B 0.594 
 

0.352 
 

0.091 0.081 - 

FL 0.924 
 

0.169 
 

0.094 0.079 - 

TL 0.445 
 

0.957 
 

0.119 0.118 - 

FTS 0.287 
 

0.261 
 

0.063 0.096 - 

SFG  0.653 
 

0.239 
 

0.075 0.056 - 

MFG 0.117 
 

0.895 
 

0.093 0.090 - 

PG 0.681 
 

0.297 
 

0.069 0.0574 - 

IFG 0.618 
 

0.487 
 

0.113 0.122 - 

STG 0.763 
 

0.155 
 

0.054 0.076 - 

MTG 0.944 
 

0.952 
 

0.145 0.146 - 

ITG 0.129 
 

0.074 
 

0.230 0.196 - 

A 0.812 
 

0.912 
 

0.309 0.306 - 

H 0.617 
 

0.408 
 

0.239 0.217 - 

IPL 0.448 
 

0.024 
 

0.076 0.044 3.200 

SPL 0.302 
 

0.041 
 

0.067 0.018 4.900 

Global percentage difference (%) 4.100 
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PK DVR group 4060 (Ref-CER)  

Table(A) 10 - Brain regions considered, p-value of the Fisher's F-test, homogeneity of variances, p-
value of the two sample T-test and test result, mean of the brain region for AD and HC groups, 
percentage difference of sample means (%) and global percentage difference. 

Brain 
regions 

Fisher’s F-
test 

(p-value) 

Fisher’s 
F-test 
result 

 

Two 
sample 
T-test 

(p-value) 

Two 
sample 
T-test 
Result 

Mean 
brain 

region 
AD 

Mean 
brain 

region 
HC 

Percentage 
difference 
of sample 

means (%) 
FL 0.670 

 
0.081 

 
0.727 0.704 - 

TL 0.775 
 

0.892 
 

0.740 0.738 - 

FTS 0.192 
 

0.843 
 

0.737 0.734 - 

SFG 0.995 
 

0.023 
 

0.746 0.713 3.300 

MFG 0.450 
 

0.163 
 

0.743 0.721 - 

PG 0.657 
 

0.077 
 

0.739 0.716 - 

IFG 0.396 
 

0.423 
 

0.750 0.739 - 

STG 0.888 
 

0.501 
 

0.727 0.737 - 

MTG 0.740 
 

0.761 
 

0.774 0.770 - 

ITG  0.871 
 

 0.123 
 

0.795 0.773 - 

A 0.968 
 

0.660 
 

0.863 0.855 - 

H 0.483 
 

0.180 
 

0.808 0.782 - 

IPL 0.874 
 

0.122 
 

0.739 0.719 - 

SPL 0.369 
 

0.067 
 

0.753 0.724 - 

P 0.809 
 

0.034 
 

0.777 0.748 2.900 

Global percentage difference (%) 3.100 
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PK DVR group 4060 (REF-SVCA4)  

Table(A) 11 - Brain regions considered, p-value of the Fisher's F-test, homogeneity of variances, p-
value of the two sample T-test and test result, mean of the brain region for AD and HC groups, 
percentage difference of sample means (%) and global percentage difference. 

Brain 
regions 

Fisher’s F-
test 

(p-value) 

Fisher’s 
F-test 
result 

Two 
sample 
T-test 

(p-value) 

Two 
sample 
T-test 
result 

Mean 
brain 

region 
AD 

Mean 
brain 

region 
HC 

Percentage 
difference 
of sample 

means (%) 
FL 0.765 

 
0.127 

 
0.914 0.895 - 

TL 0.806 
 

0.765 
 

0.933 0.938 - 

FTS 0.332 
 

0.762 
 

0.924 0.930 - 

SFG  0.408 
 

0.027 
 

0.935 0.904 3.100 

MFG 0.982 
 

0.251 
 

0.932 0.915 - 

PG 0.680 
 

0.173 
 

0.927 0.91 - 

IFG 0.280 
 

0.720 
 

0.944 0.938 - 

STG 0.929 
 

0.149 
 

0.914 0.935  - 

MTG 0.929 
 

0.994 
 

0.977 0.977 - 

ITG 0.497 
 

0.155 
 

1.005 0.981 - 

A 0.720 
 

0.899 
 

1.084 1.087 - 

H 0.963 
 

0.326 
 

1.017 0.995 - 

IPL 0.708 
 

0.360 
 

0.924 0.912 - 

SPL 0.530 
 

0.249 
 

0.942 0.92 - 

P 0.886 
 

0.172 
 

0.969 0.948 - 

Global percentage difference (%) 3.100 
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B - PCA TECHNIQUE 
 

PiB SUVr group TOT (Ref-CER) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure(B) 1 - Eigenvalues (top) and scree plot (down) for the dataset of features extracted from PiB 
SUVr PET images of the group TOT using CER as reference region. 
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Figure(B) 2 - Contributions to the principal components of each variable (brain region). 
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PiB SUVr group TOT (Ref-GM) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure(B) 3 - Eigenvalues (top) and scree plot (down) for the dataset of features extracted from PiB 
SUVr PET images of the group TOT using GM as reference region. 

Figure(B) 4 - Contributions to the principal components of each variable (brain region). 



 
 

112 
 

PiB SUVr group TOT (Ref-WM) 

 

 

 

 

 

 

 

 

  

Figure(B) 5 - Eigenvalues (top) and scree plot (down) for the dataset of features extracted from PiB 
SUVr PET images of the group TOT using WM as reference region. 

Figure(B) 6 - Contributions to the principal components of each variable (brain region). 
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PiB SUVr group 4070 (Ref-CER) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure(B) 7 - Eigenvalues (top) and scree plot (down) for the dataset of features extracted from PiB 
SUVr PET images of the group 4070 using cerebellum as reference region. 

Figure(B) 8 - Contributions to the principal components of each variable (brain region). 
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PiB SUVr group 4070 (Ref-WM) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure(B) 9 - Eigenvalues (top) and scree plot (down) for the dataset of features extracted from PiB 
SUVr PET images of the group 4070 using WM as reference region. 

Figure(B) 10- Contributions to the principal components of each variable (brain region). 



 
 

115 
 

 PK BP group 4060 (Ref-CER) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure(B) 11 - Eigenvalues (top) and scree plot (down) for the dataset of features extracted from PK 
BP PET images of the group 4060 using CER as reference region. 



 
 

116 
 

 

  

Figure(B) 12 - Contributions to the first six principal components of each variable (brain region). 
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Mixture of features extracted from SUVr PiB group 4070, BP and DVR PK 

group 4060 PET images 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure(B) 13- Eigenvalues (top) and scree plot (down) for the dataset of a mixture of features 
extracted from PiB SUVr PET images of the group 4070 and PK BP and PK DVR PET images of group 
4060. 
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Figure(B) 14- Contributions to the first six principal components of each variable (brain region). 
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