
Faculty of Sciences and Technology

Department of Informatics Engineering

Algorithms for the Star Discrepancy
Subset Selection Problem

Gonçalo Nuno Corte-Real Martins

Dissertation in the context of the Master in Informatics Engineering, Specialization in
Intelligent Systems advised by Prof. Luís Paquete and presented to the

Faculty of Sciences and Technology / Department of Informatics Engineering..

September 2019

This page is intentionally left blank.

Abstract

Discrepancies quantify differences between two measurements of point sets. The star dis-
crepancy is a particular type of discrepancy with application in areas such as statistics and
pseudo-random number generation. It can be defined as the supremum of the absolute
value of the local discrepancy for all points in the unit hypercube. The star discrepancy
subset selection consists of finding the subset of k out of n points that minimizes the star
discrepancy. The goal of this work is to develop branch-and-bound algorithms that are
able to solve this problem for an arbitrary set of points, number of dimensions and value of
k. We have developed two bounding functions that can be used to solve this problem for
any number of dimensions, as well as a set of improvements to the base branch-and-bound
algorithm. Our approach showed a clear increase in performance, on multiple different
scenarios, when compared to a simple search algorithm that evaluates all possible subsets.
This increase was most significant for point sets in a two-dimensional space.

Keywords

Star discrepancy problem, subset selection, branch and bound, combinatorial optimization

iii

This page is intentionally left blank.

Resumo

As discrepâncias quantificam diferenças entre duas medições de conjuntos de pontos. A
discrepância estrela é um tipo particular de discrepância com aplicações em áreas como a
estatística e a geração de números pseudo-aleatórios. Pode ser definida como o supremo do
valor absoluto da discrepância local para todos os pontos no hipercubo unitário. A selecção
de subconjuntos baseada na discrepância estrela consiste em encontrar o subconjunto de
k pontos de um conjunto de n pontos, n ≥ k, que minimiza a discrepância estrela. O
objectivo deste trabalho é desenvolver algoritmos de branch and bound que sejam capazes
de resolver este problema para um conjunto arbitrário de pontos, número de dimensões
e valor de k. Foram desenvolvidas duas funções de bound que podem ser usadas para
resolver este problema para qualquer número de dimensões, bem como um conjunto de
melhorias para o algoritmo base de branch and bound. A nossa abordagem revelou uma
melhoria evidente de desempenho, em multiplos cenários diferentes, quando comparada
com um algoritmo simples de pesquisa que avalia todos os possíveis subconjuntos. Esta
melhoria foi mais significativa para conjuntos de pontos num espaço com duas dimensões.

Palavras-Chave

Discrepância estrela, selecção de subconjuntos, branch and bound, optimização combina-
torial

v

This page is intentionally left blank.

Acknowledgements

I would like to start by thanking my family, in particular my mother and my brother, for
all the support and motivation they gave me to finish this thesis and for always being there
for me.

I would also like to thank Professor Luís Paquete for all the advice and help throughout
this year of work, and Professor Carola Doerr for all the feedback and ideas shared.

Finally, I would like to thank all my friends who somehow contributed towards this work.

vii

This page is intentionally left blank.

Contents

1 Introduction 1

2 Definitions and Notation 3
2.1 Star Discrepancy . 3
2.2 Branch and Bound . 6
2.3 Star Discrepancy Subset Selection Problem 7

3 State of the Art 9

4 A Branch-and-bound Algorithm 13
4.1 Branch-and-bound Approach . 13
4.2 Lower Bounds . 14

4.2.1 A Lower Bound for the Case d = 2 15
4.2.2 A Generic Lower Bound for Any Dimension 16
4.2.3 Validity of the Bounds . 16

4.3 Other Improvements . 17
4.3.1 Upper Bound Initialization . 17
4.3.2 Sorting the Points . 17
4.3.3 Using Heuristics Before Evaluating Nodes 18

5 Results 21
5.1 Experimental Setup . 21
5.2 Test Cases . 22
5.3 Experimental Results . 23

5.3.1 2D Point Sets . 24
5.3.2 3D Point Sets . 24
5.3.3 4D Point Sets . 24
5.3.4 Special Test Cases . 25

5.4 Discussion . 25

6 Conclusion 31

A Example Of The Calculation Of The Star Discrepancy 37

B Results 39

ix

This page is intentionally left blank.

List of Figures

1.1 Examples of point sets with different discrepancies 1

2.1 Example of different norms . 3
2.2 Example of the hypervolume of a point y . 4
2.3 Example of the calculation of δ and δ functions 5
2.4 Example of grids Γ(X) and Γ(X) . 6
2.5 Result of the star discrepancy subset selection problem for different values

of k . 8

4.1 Example of a branch-and-bound search tree for this problem 14
4.2 Example of the layers of maxima problem 18

5.1 Examples of 2D test cases for n = 35 . 23
5.2 Examples of 3D test cases for n = 30 . 24
5.3 Execution times for the 2D point sets with k = n/2 25
5.4 Star discrepancy of the best subset found of 2D point sets 26
5.5 Execution times for the 3D point sets with k = n/2 27
5.6 Star discrepancy of the best subset found of 3D point sets 28
5.7 Execution times for the 4D point sets with k = n/2 29
5.8 Star discrepancy of the best subset found of 4D point sets 30
5.9 Evolution of the upper bound . 30

A.1 Grids induced by X . 37

xi

This page is intentionally left blank.

List of Tables

5.1 Computer specifications . 22

B.1 Execution times in seconds for the random point sets for d = 2 39
B.2 Execution times in seconds for the Sobol point sets for d = 2 40
B.3 Execution times in seconds for the Halton point sets for d = 2 41
B.4 Execution times in seconds for the clustered point sets for d = 2 42
B.5 Star discrepancy of the best subsets found for d = 2 43
B.6 Execution times in seconds for the random point sets for d = 3 43
B.7 Execution times in seconds for the Sobol point sets for d = 3 44
B.8 Execution times in seconds for the Halton point sets for d = 3 44
B.9 Execution times in seconds for the clustered point sets for d = 3 45
B.10 Star discrepancy of the best subsets found for d = 3 45
B.11 Execution times in seconds for the random point sets for d = 4 46
B.12 Execution times in seconds for the Sobol point sets for d = 4 46
B.13 Execution times in seconds for the Halton point sets for d = 4 47
B.14 Execution times in seconds for the clustered point sets for d = 4 47
B.15 Star discrepancy of the best subsets found for d = 4 48

xiii

This page is intentionally left blank.

Chapter 1

Introduction

The calculation of discrepancies is an important field of study in many areas, such as
statistics and pseudo-random number generation [4, 7]. Discrepancies aim at measuring
how much a given point set deviates from a perfectly distributed one, which can be used
for assessing its quality. The star discrepancy is one of the many ways of calculating
discrepancies, and it is probably the most extensively studied [4]. It can be defined as
the supremum of the absolute value of the local discrepancy for all points in the unit
hypercube. Its value ranges from 0 to 1 and the lower it is, the more diverse the point set
is.

(a) Random point set (b) Sobol point set

Figure 1.1: Examples of point sets with different discrepancies

Figure 1.1 shows an example of the correlation between the coverage of the unit hypercube
and the value of the star discrepancy. Both points sets are composed of 25 points, but the
ones of the left were generated randomly using an uniform distribution and the ones of the
right were generated using the Sobol sequence which is known to have a low discrepancy.
Even though the random points were generated using an uniform distribution, it is clear
that the points are not evenly distributed, having a discrepancy value of 0.226. On the
other hand, the same number of points from the Sobol sequence cover the hypercube more
uniformly and so they have a discrepancy of 0.121.

The calculation of the star discrepancy is a highly complex problem [6, 7]. Multiple al-
gorithms exist and in the case of the L∞-norm the most efficient one that works for any
number of dimensions was proposed by Dobkin et al. [3]. However, because of the com-
plexity of the star discrepancy, approaches that provide an estimation of its value have
also been proposed [8, 13, 15, 16, 17].

1

Chapter 1

While random point sets have a discrepancy of order 1/
√
n, there are ways to construct

point sets with a discrepancy of order logd−1 /n, in a d-dimensional space [10]. These
are called low-discrepancy point sets, to which the Halton [9] and Sobol [14] sequences
are examples. Halton sequences have been generalized to avoid regularization issues in
the two-dimensional projections. Efficiently finding good generators for these generalized
Halton sequences is another complex problem that has been addressed heuristically [5, 12].
These low-discrepancy point sets are used in, for example, multivariate integration and
computer graphics.

In this thesis we study the star discrepancy subset selection problem. The star discrepancy
subset selection problem consists of selecting k points from a set X of n points, n ≥ k,
that minimizes the star discrepancy. This arises, for example, in the selection of solutions
in the context of population based heuristics, such as evolutionary algorithms, in order
to maintain diversity within the population [10, 11]. Depending on the original point set,
it might be the case that the subset selected has a low discrepancy value, and so it also
presents an alternative way of generating low-discrepancy point sets. Unfortunately, to the
best of our knowledge, this problem has not been addressed in a systematic fashion yet,
leading Neumann et al. [10] to apply ad-hoc methods in which points are removed by a
simple greedy selection.

The aim of this thesis is to develop algorithms for the star discrepancy subset selection
problem. In this report, we present two lower bounds for the estimation of the star discrep-
ancy, one for a two-dimensional space and another that works in any d-dimensional space,
as well as a branch-and-bound algorithm that uses this bounding functions to solve the star
discrepancy subset selection problem. Additionally, we also present improvements done to
our algorithm (using a sort, an upper bound initialization and the heuristic evaluation of
solutions before the exact calculation of their discrepancy) and an experimental analysis
using a variety of different scenarios.

The structure of this document is the following. First, in Chapter 2, we present the
notation used and some concepts required to a fully understanding of this work, such as
the star discrepancy, branch and bound, star discrepancy subset selection problem, and
other related concepts. In Chapter 3, we review the state of the art regarding the exact
calculation of the star discrepancy, with an analysis of the most efficient algorithm proposed
so far, and the approximation of the star discrepancy, as well as the generation of low-
discrepancy point sets. In Chapter 4, we explain the proposed branch-and-bound algorithm
in a detailed way, as well as both of the bounding functions. In Chapter 5, we describe
an experimental analysis that allows to characterize the performance of the branch and
bound and its relation with instance features for different numbers of dimensions, present
the results and compare the performance of our algorithm with a simple search algorithm.
Finally, in Chapter 6, we summarize all the work done and discuss its contributions, as
well as present some possible future lines of work regarding this problem.

2

Chapter 2

Definitions and Notation

In this chapter, the definitions and notation used throughout this document are presented.
These definitions include the star discrepancy, the branch and bound, the star discrepancy
subset selection problem, and all the other concepts necessary to understand them. The
notation used in this thesis for the star discrepancy is similar to that of Doerr et al. [4],
which discusses the existing contributions in the field of calculation of discrepancies.

2.1 Star Discrepancy

The star discrepancy is one of many different ways of calculating discrepancies of point sets.
The discrepancy is related to the concept of distance, which is associated to a norm that
defines how distances are calculated. Many Lp-norms, 1 ≤ p <∞ exist, but in most cases
only the L2-norm and the L∞-norm are considered. L2-discrepancies can be calculated in
O(dn2) time [4], where n is the number of points and d is the dimension, and not much is
known about other Lp-discrepancies since not much work has been done. For this thesis
only the L∞-norm is of interest. Figure 2.1 presents an example of different norms.

Figure 2.1: Example of different norms [1]

Before defining the star discrepancy, some necessary concepts regarding discrepancies need
to be defined. Let B be a σ-algrebra on a set X and let µ and ν be two different measures
for X. Then the local discrepancy ∆ measures the difference between the two measures.
To calculate the local discrepancy, the following general formula is used.

∆(B,µ, ν) = µ(B)− ν(B) (2.1)

where ∆(B,µ, ν) is the local discrepancy of measures µ and ν, B ∈ B. The L∞-discrepancy
of a set, which is defined as the supremum of the absolute value of the local discrepancy

3

Chapter 2

of all test sets inside that set, can then be defined as

disc∞(B, µ, ν) = sup
B∈B
|∆(B,µ, ν)|.

To understand the star discrepancy it is also necessary to mention the Lebesgue measure
λd, or the hypervolume indicator. Let us assume without loss of generality that y ∈ Rd

≥0.
Then, the hypervolume is the volume of the box anchored at the origin and delimited by y
from above. The value of the hypervolume is equal to the volume of the area dominated by
point y in the positive octant. Figure 2.2 illustrates the hypervolume in a two-dimensional
space marked in gray.

x1

x2

y

Figure 2.2: Example of the hypervolume of a point y

We can now define how to calculate the star discrepancy of a point set X = {x1, ..., xn} in
[0, 1)d. Let Σ be the σ-algebra of Borel sets of M = [0, 1]d, d ∈ [1,∞) and Cd is the class
of boxes anchored in zero such that [0, y) = [0, y1) × ... × [0, yd), y ∈ [0, 1]d, that is, the
class of all boxes anchored in zero and limited by all the points in the unit hypercube from
above. Also, let µ be the d-dimensional hypervolume λd on [0, 1]d and vX is the counting
measure that counts the number of points from X inside a given Borel set C. We can now
obtain the L∞-star discrepancy of X [4] as follows:

d∗∞(X) = disc∞(Cd, λd, vX) = sup
C∈Cd

|∆(C, λd, vX)|,

where the formula of vX(C) gives the percentage of points of X inside the subset C, which
is computed as follows:

vX(C) =
1

n

n∑
i=1

1C(xi), for all C ∈ Σ

where 1C(xi) is the indicator function that returns 1 if xi ∈ C (if xi is contained in the
box [0, y) of C) and 0 otherwise.

The star discrepancy is the supremum of the absolute value of the local discrepancy for
all points inside the unit hypercube, with the local discrepancy being calculated using the
hypervolume and the percentage of points inside the box anchored at zero and delimited
by each point.

Even though these formulas appear to be quite complex, they can be simplified [4]. Let
y = (y1, ..., yd) be an arbitrary point in the unit hypercube [0, 1]d and X = {x1, ..., xn} be
a point set such that xi ∈ [0, 1)d, i ∈ {1, ..., n}. Let us also consider the formulas

4

Definitions and Notation

Vy =
d∏

i=1

yi A(y,X) =
n∑

i=1

1[0,y)(xi) A(y,X) =
n∑

i=1

1[0,y](xi),

where Vy is the hypervolume of the box [0, y) and A(y,X) and A(y,X) are the number of
points inside the boxes [0, y) and [0, y] respectively. Using the formulas presented above, we
can calculate δ(y,X) and δ(y,X) which represent the differences between the hypervolume
of the point y and the percentage of points inside the boxes [0, y) and [0, y], respectively,
and are computed as follows:

δ(y,X) = Vy −
1

n
A(y,X) δ(y,X) =

1

n
A(y,X)− Vy

These correspond to the local discrepancy ∆ function, introduced by Eq. (2.1), which
calculates the difference between the Lebesgue measure and the counting function vX(C).
Using the example of Figure 2.3, we can illustrate how these functions are calculated. The
value of A(y,X) is 2, as there are only 2 points in the box [0, y), while the value of A(y,X)
is 3, as there is one point in the border of the box, and the value of Vy is equal to the area
marked in grey.

x1

x2

y

x1

x2

x3

x4

x5

x6

x7

Figure 2.3: Example of the calculation of δ and δ functions

Finally, let us define the grids Γ(X) and Γ(X) induced by X for j ∈ {1, ..., d} as follows

Γ(X) = Γ1(X)× Γ2(X)× ...× Γd(X) Γ(X) = Γ1(X)× Γ2(X)× ...× Γd(X)

where

Γj(X) = {xji |i ∈ {1, 2, ..., n}} Γj(X) = Γj(X) ∪ {1}

Figure 2.4 gives an example of grids generated by a point set X. Given the points in the
grids Γ(X) and Γ(X), it has been proven that no other point in the unit hypercube [0, 1]d

5

Chapter 2

x1

x2

0.80.4 0.70.1

0.2

0.4

0.6

0.9

x1

x2

x3

x4

(a) Grid Γ(X)

x1

x2

0.80.4 0.70.1 1

0.2

0.4

0.6

0.9

1

x1

x2

x3

x4

(b) Grid Γ(X)

Figure 2.4: Example of grids Γ(X) and Γ(X)

needs to be considered in order to calculate the star discrepancy [4]. For this reason, the
star discrepancy of X can then be calculated as

d∗∞(X) = max{ max
y∈Γ(X′)

δ(y,X), max
y∈Γ(X′)

δ(y,X)} (2.2)

It has also been proven that calculating the star discrepancy of a point set is a NP-Hard
[7] and even W[1]-Hard [6] problem. Because of this, there is no algorithm to calculate the
star discrepancy for an arbitrary number of dimensions in a polynomial amount of time
with respect to n. The best algorithm developed is that of Dobkin et al. [3], which has
a running time of O(nd/2+1). For a better understanding of the calculation of the star
discrepancy, an example is given in appendix A.

2.2 Branch and Bound

The following description of the branch-and-bound approach is based on the work of
Clausen [2]. The branch and bound is a solution approach that is commonly used to
solve NP-Hard combinatorial optimization problems. It works by decomposing the orig-
inal problem into smaller and smaller sub-problems and using bounds on the optimal
solutions to these subproblems in order to prune the search and avoid visiting uninterest-
ing subproblems. It starts with the entire search space as the root node of the search tree.
Each time a node is expanded, new subproblems, descendants of that node, are generated
by adding constraints. The way that the next node to expand is selected varies for each
specific case. Every node has a bound value associated to it, which estimates the value of
the best solution to that subproblem. Whenever a node has a bound value that is higher
than the best value found so far, in the case of minimization problems, it is discarded
without being expanded. The search ends when there are no nodes left to expand, and the
solution is equal to the best value found in the search process.

This approach is defined by three components, and each of them influence its performance.
The most important one is the bounding function. This function is very problem dependent
and presents an estimation of the best value that can be obtained, given the current

6

Definitions and Notation

subproblem. In the case of minimization, this value must always be lower or equal to the
true best value, in order to prevent possible optimal solutions to be discarded. There are
two main ways of defining bounding functions. The first one is by relaxation, where some
of the constraints of the problem are discarded, which implies that the number of feasible
solutions increases. When a solution is found, if it satisfies all the original constraints, then
it is a solution to the initial problem and a candidate to optimal solution. The other way
consists of maintaining the set of feasible solutions but creating a bounding function that is
easier to calculate compared to the objective function. It is also possible to combine these
two approaches, in which case it is called Lagrangean relaxation. More accurate bounding
functions allow a larger prune of the search tree. However, this can be too computationally
expensive, and thus a trade-off between the accuracy and the time spent to calculate the
bounding function must be made.

The selection of the next subproblem decides which node from the search tree to expand
given its current state. The three main types of selection are best-first search, which
chooses the node with the lowest bound value, breadth-first search, which considers all
nodes at the same level before starting to expand the next level, and depth-first search,
which chooses the node at the highest level of the search tree as the next one.

Finally, the last component is the branching rule, which tells us how new subproblems
are created. The branching rule subdivides the current division of the search space, and
creates new nodes in the search tree. Any current subproblem may generate a range of
new subproblems from two up to any number.

2.3 Star Discrepancy Subset Selection Problem

The star discrepancy subset selection problem can be defined in the following way: given
a point set X = {x1, ..., xn} in a d-dimensional space, where xi ∈ [0, 1)d and an integer
k ≤ n, the goal is to find a subset X ′ ⊆ X of size |X ′| = k such that the value of the star
discrepancy of X ′ , d∗∞(X

′
), is minimized. More formally, the problem consists of:

min
X′⊂X
|X′|=k

max{ max
y∈Γ(X′)

δ(y,X), max
y∈Γ(X′)

δ(y,X)}.

We believe that this problem is NP-Hard for an arbitrary number of dimensions because
the calculation of the star discrepancy has been proven to be NP-Hard. However, no proof
of this statement has been made so far. This problem can be solved by enumerating all
the possible solutions of subsets of size k and then finding which one has the lowest star
discrepancy value. This can be done by using a search algorithm, such as a depth-first
search, to find the valid subsets of X. However, due to the complexity of the problem and
the size of the search tree, a simple algorithm such as the one mentioned above will require
a large amount of time as the value of n increases. A more practically efficient approach
such as a branch-and-bound algorithm that does not have to consider all the nodes in the
search tree is necessary.

It is also important to note that selecting more points from the original point set does not
necessarily translate into a lower star discrepancy value. Let us show that this is indeed
true with a simple example. Figure 2.5a presents a point set X with n = 15, which clearly
contains a cluster of points. If we select k = 3 points from X the result is the subset
presented in Figure 2.5b which has a discrepancy value of 0.42. It is possible to achieve a
lower value, by selecting k = 5 points. The result is shown in Figure 2.5c and has a star
discrepancy value of 0.32. However, if we increase the number of points to be selected even

7

Chapter 2

(a) Complete point set (d∗∞(X) = 0.60) (b) Best subset for k = 3 (d∗∞(X
′
) = 0.42)

(c) Best subset for k = 5 (d∗∞(X
′
) = 0.32) (d) Best subset for k = 10 (d∗∞(X

′
) = 0.52)

Figure 2.5: Result of the star discrepancy subset selection problem for different values of
k

more, this value increases. For k = 10, the discrepancy value is 0.52. From Figure 2.5d we
can see that this happens because some points from the cluster were selected. It is then
clear that the star discrepancy is not monotonic, that is, the direction of the value change
depends on the characteristics of the point set.

This problem has applications in many different areas. As previously mentioned, it can
be used in the selection of solutions in, for example, evolutionary algorithms in order to
maximize diversity, as Neumann et al. [10] did. Even though they were not using the star
discrepancy subset selection problem, they minimized the discrepancy of the population in
their algorithm at each iteration.

The star discrepancy subset selection problem can also be used for the generation of low-
discrepancy point sets from an original point set, in a different way than those methods
that already exist to generate such point sets, such as the low-discrepancy sequences, which
are deterministic but always have a low discrepancy. The minimum star discrepancy value
that can be achieved by solving this problem depends on the original point set. It might
be the case that due to poor coverage of the unit hypercube by the original point set, the
subset found will still have a bad discrepancy value.

8

Chapter 3

State of the Art

This chapter contains an overview of the state of the art regarding the calculation of the
star discrepancy, based on the work by Doerr et al. [4], which summarizes all the existent
contributions to date, and the generation of low-discrepancy sequences. To the best of our
knowledge there is no previous work done regarding the star discrepancy subset selection
problem.

Even though it is possible to calculate the star discrepancy by performing and enumeration
of all grid points, it requires a large amount of time as it is expected that most point sets
generate grids of size nd. This fact makes enumeration algorithms impractical for high
values of n and/or d. There are multiple algorithms and formulas from past contributions
but the most efficient one is that of Dobkin et al. [3], which has a running time of O(nd/2+1)
and calculates the exact value of the star discrepancy for any number of dimensions.

The algorithm of Dobkin et al. starts by decomposing the space. Each point x of the
point set is turned into an orthant and each box [0, y) into a point y such that x is in a
box only if y is in its orthant. The computation of the star discrepancy can then be made
by finding, for i = 1, ..., n, the points y ∈ Γ(X) with the highest and lowest volume Vy
contained in i orthants.

The unit hypercube is divided into regions of the type [a1, b1] × ... × [ai, bi] × [0, 1]d−i (a
region at level i), and we have that aj = 0 and bj = 1 for j > i if i < d. A point X is internal
in dimension j, j ∈ 1, . . . , i to a box [a, b] if it is contained in [0, b) and aj < xj < bj . Two
invariants are needed:

1. All of the points in a box [0, b) have at most one coordinate 1 ≤ j ≤ i such that they
are internal in dimension j

2. There are O(
√
n) points internal in dimension 1 ≤ j ≤ i for every region at level

i > 0

Let Xb be the set of points in [0, b) and XI be the set of points internal in some dimension
j ≤ i for a region begin subdivided at level i. At the beginning of the algorithm the current
region is [0, 1]d and all the points are in XI .

Regions at level i < d are divided into O(
√
n) regions at level i+ 1, which guarantees that

the total number of regions is O(nd/2). A region [a, b] at level i is divided in dimension
i + 1 into segments of the type [zj , zj+1], for j ∈ {1, ...l}, where l is the number of the
subdivisions. By doing this, regions of the type [a(j), b(j)] = [a1, b1]× [ai, bi]× [zj , zj+1]×
[0, 1]d−i−1 at level i + 1 are generated for each j = 1, ..., l − 1, and each of these regions

9

Chapter 3

is then recursively processed and XI and Xb are updated. The values of zj are chosen in
order for these conditions to hold:

1. For x ∈ XI , xi+1 ∈ {z1, . . . , zl}

2. For j ∈ {1, ..., l − 1}, |{x ∈ Xb : zj < xi+1 < zj+1}| = O(
√
n)

Since this partition of the unit hypercube generates exactly O(
√
n) divisions per level, then

the total number of divisions generated is O(
√
n
d
) = O(nd/2).

With the space fully partitioned, the star discrepancy can then be calculated efficiently
using dynamic programming, ensuring that the complexity of the algorithm is O(nd/2+1)

Some research has also been done in the approximation of the value of the star discrepancy.
Even though the focus of this thesis is solving the star discrepancy subset selection problem
with the exact value of the star discrepancy these algorithms may still be of use to our
approach, as will be explained in Chapter 4.

Multiple approaches exist, such as the one of Thiémard [15, 16], but since the algorithm
of Gnewuch et al. provides the best results to date, it will be explained in more detail.
The algorithm of Gnewuch et al. [8] is based on threshold accepting, and it is an extension
of the algorithm of Winker et al. [18]. The algorithm of Winker et al. starts with a
point y ∈ Γ(X) selected uniformly at random. At each iteration, up to a limit I, a new
point z in the neighborhood of y is selected by changing some of the coordinates of y,
chosen uniformly at random. The number of coordinates to be adjusted is not fixed, as
it may be up to mc, and these coordinates are changed up to k steps in the grid Γ(X),
chosen independently and uniformly at random. The variables mc and k are inputs of the
algorithm. The point z replaces y if d∗∞(z)− d∗∞(y) ≥ T , where T ≤ 0. T is the threshold
which is computed initially and remains constant for

√
I iterations. After this, it keeps

increasing so that 0 ≥ T ′
> T so that the algorithm converges as it ends.

Gnewuch et al. improved this algorithm, as it did not obtain very good results for d ≥ 10.
Their changes included a different neighborhood structure, as well as varying its size,
and splitting the optimization of d∗∞(·, X) into δ(·, X) and δ(·, X) separately. The tests
performed to this algorithm showed that it outperformed other existent algorithms, and
frequently found the exact star discrepancy value in case where this could be checked.

Other approaches based on integer linear programming [17] and genetic algorithms [13] are
not feasible to be used in our approach as these types of algorithms are known to require
a high computational time to finish their execution and thus will not be reviewed.

Regarding the generation of low-discrepancy point sets, there are some well-know sequences
capable of generating points with this characteristic. Two example of these are the Sobol
and the Halton sequences.
In the case of the Halton sequence, its i-th element is given by the following formula:

xi = (φp1(i), . . . , φpd(i))

where pj is the j-th prime number. The function φp(i) can be calculated by:

φp(i) =
k∑

l=1

dlp
−l

where p is a prime base and i ∈ N . It is also necessary to calculate the digital expansion
of i in base p such that i = dkdk−1...d2d1, that is, i =

∑k
l=1 dlp

l−1.

10

State of the Art

There are also some different types of algorithms that are capable of creating such point
sets. An example of it is the work of De Rainville et al. [12] that proposes the use of
evolutionary algorithms.

Evolutionary algorithms have a biological inspiration. They evolve a set of solutions, called
the population, over a set of generations in order to obtain the best possible result. At
each generation some of the individuals in the population are selected in order to generate
new individuals, that join the population, using a number of recombination methods.

In the work of De Rainville et al. the outcome of their algorithm is actually a generalized
Halton sequence, which is obtained from the Halton sequence using a permutation vector
to shuffle its digits. The proposed algorithm evolves vectors of permutations. Vectors are
iteratively constructed as optimal permutations are found, according to a fitness function.
The recombination operators used were crossover, that recombines two permutations by
swapping pairs of values, and mutation, that shuffles the values of the permutation. The
algorithm was tested for multiple dimensions and the solutions obtained were then eval-
uated using the L2-star discrepancy and the Hickernell’s modified L2-discrepancy, which
is a type of discrepancy based on orthogonal projections. The results showed that this
algorithm performed similar to the existent approaches.

The work of De Rainville et al. was later extended by Doerr et al. [5] to include the star
discrepancy. In this case however, the authors generate low star discrepancy point sets
instead of sequences and so all the permutations are optimized at the same time. Because
of the complexity of calculating the star discrepancy, and unlike what was done in the
previously mentioned work, the proposed algorithm uses an exact calculation of the star
discrepancy using the algorithm of Dobkin et al. for d ≤ 9. For an higher number of
dimensions, due to the high running time of the algorithm of Dobkin et al., the algorithm
of Gnewuch et al. is used, and the optimization is performed using values of lower bounds
for the star discrepancy of the point sets. The discrepancy of the generated sequences
was then compared to the discrepancy of previous work, using the exact calculation of the
discrepancy in cases where this value was known for the point set to compare to or an
approximation of the star discrepancy of both point sets otherwise. The generated point
sets achieved a better discrepancy value in the majority of the cases.

11

This page is intentionally left blank.

Chapter 4

A Branch-and-bound Algorithm

This chapter gives a detailed explanation of the branch-and-bound algorithm proposed for
the star discrepancy subset selection problem. Moreover, it describes further improvements
as well as notions of bounding functions that were explored.

4.1 Branch-and-bound Approach

In order to solve the star discrepancy subset selection problem, we propose a branch-and-
bound algorithm. We chose this approach as it is commonly used to solve combinatorial
optimization problems and it guarantees that the solution found is optimal since all the
possible solutions are implicitly considered in the search process.

Algorithm 1 Branch and Bound
Initialization:
A = {}; R = {}; N = (x1, ..., xn);
best =∞;
gridA[i1, i2, . . . , id] is the maximum possible number of points in [0, y) for all i1, i2, . . . , id =
1, . . . , n, and for all points y in grid Γ
gridA[i1, i2, . . . , id] = 0 for all i1, i2, . . . , id = 1, . . . , n

Function branch_and_bound(A,R,N)

1: if |A| = k then
2: best = minimum(best, star_discrepancy(A))
3: return
4: if N = ∅ or |A|+ |N | < k then
5: return
6: if lower_bound(A,N) > best then
7: return
8: point P = first_point(N);
9: update(gridA, P)

10: branch_and_bound(A ∪ {P}, R,N \ P)
11: restore(gridA, P)
12: update(gridA, P)
13: branch_and_bound(A,R ∪ {P}, N \ P)
14: restore(gridA, P)
15: return

13

Chapter 4

Algorithm 1 presents the pseudocode of our branch-and-bound algorithm, where A is the
set of chosen points, R is the set of rejected points and N is the sequence of points
that have not been considered yet. Both A and R are empty in the beginning, and N
contains all the points. The variable best corresponds to the best discrepancy value found
so far, and is initialized to ∞ because this is a minimization problem. Both d-dimensional
matrices gridA and gridA contain information about the grid points from Γ(X) and Γ(X),
respectively, that will be used to calculate the lower bounds, and their initialization will
be explained in the next section.

The branching part of the algorithm work as follows: every point in the point setX is either
accepted into the solution or rejected (Algorithm 1, lines 10 and 13 respectively), which
means that every node in the search tree generates two new nodes, corresponding to the
acceptance (xi joins set A) and rejection (xi joins set R) of the point considered. Whenever
this happens, it is necessary to update the values of both grids used to calculate the lower
bounds (Algorithm 1, lines 9 and 12) and then restore their former values (Algorithm 1,
lines 11 and 14). This process will be further explained in the next section. Figure 4.1
shows the structure of the search tree generated by this branching strategy.

A = A ∪ {x2} R = R ∪ {x2}

A = A ∪ {x1}

A = A ∪ {x2} R = R ∪ {x2}

R = R ∪ {x1}

Figure 4.1: Example of a branch-and-bound search tree for this problem

However, in order to prevent the generation of infeasible solutions, such as those with less
or more than k points, there must be some stopping conditions. In this case, the most
basic one is to stop whenever the size of the subset is equal to k, preventing sizes larger
than k. When this happens, the current solution must be valid and so its star discrepancy
is calculated and the best value found is updated (Algorithm 1, lines 1, 2 and 3). The
other two conditions are to stop: 1) when the last point as been considered; 2) when the
number of points left to consider plus the current size of the subset is less than k, as it is
not possible to achieve a valid solution at that point (Algorithm 1, lines 4 and 5). The final
and more complex part of the algorithm is the bounding function. It estimates the final
value of the solutions achievable at any point in the search tree, which leads to a possible
pruning that occurs every time the value of the bounding function is higher than the best
value found so far (Algorithm 1, lines 6 and 7). The bounding functions are explained in
the following section.

4.2 Lower Bounds

While the proposed algorithm can be applied to the generic d-dimensional star discrepancy
subset selection problem, it is necessary to choose the bounding function according to the
number of dimensions of the point set, in order to minimize the computational time required
by the algorithm to obtain the result. Since the star discrepancy subset selection problem
is a minimization problem, valid bounds for pruning at a given node in the search tree
must be equal or lower than the best value that is possible to achieve from that partial
solution.

14

A Branch-and-bound Algorithm

We have developed two bounding functions for this problem. One of them is a tighter
bound for the case d = 2, and the other is a more generic bound that works for any value
of d. Both of the bounding functions will be further explained, as well as their validity, in
the following sections.

4.2.1 A Lower Bound for the Case d = 2

Our bounding function for d = 2 is composed of two parts. The first part of the lower
bound, LB1, is an under-estimation of the δ function in Eq. (2.2). The second part, LB2,
is a calculation of the δ function in Eq. (2.2). The value of the bound is the maximum
of LB1 and LB2. Even though this bounding function is valid and can be used for an
arbitrary number of dimensions d, its calculation is computational heavy, and thus it only
makes sense to use it when d = 2.

Calculation of LB1

We start by noting that the value of function δ(y,X ′
) for a given point y in the grid, and

given a subset X ′ , is composed of two terms:

1. Vy, the volume of the box [0, y).

2. A(y,X
′
), the number of points in the box [0, y).

Clearly, as points are added to set X ′ , only A(y,X
′
) changes as Vy remains constant

throughout the optimization process. Moreover, the value of A(y,X
′
) decreases as input

points in the box [0, y) are not chosen by the algorithm (leave from N and enter into set
R).

At each point y in the grid, we compute an overestimation B(y,X
′
) on the number of

points in the box [0, y). The value of B(y,X
′
) consists of counting the number of points

in [0, y), truncated by k, that either belong to X ′ (in set A in Algorithm 1) or were not
yet considered by the algorithm (in the sequence N in Algorithm 1).

Let γ(y,X
′
) = Vy − B(y,X

′
). Once γ(y,X

′
) has been computed for all points y in the

grid Γ(X), we can start the calculation of the lower bound LB1. In order to obtain its
value, we first need to calculate two other values. The first one is obtained through the
points in set A. For all of these points, the maximum of γ(y,X

′
) between the point itself

and all the grid points generated through a combination of its coordinates with the point
1 or the coordinates of other points already in A, is calculated, and the maximum of all of
those values is stored. Second, for the points in set N , the same is done but considering
only the points themselves and the grid points generated through a combination with the
point 1. However, in this case, the value that is stored is the minimum of the maximum
values calculated. The value of LB1 is the maximum of both of these values.

Calculation of LB2

Similar to the value of function δ(y,X ′
), the value of δ(y,X ′

) is composed of:

1. Vy, the volume of the box [0, y].

2. A(y,X
′
), the number of points in the box [0, y].

15

Chapter 4

Likewise in the previous case, only A(y,X
′
) changes (increases) as points are chosen by

the algorithm. For each point y in the grid, the number of points from X
′ in the box

[0, y], B(y,X
′
), is maintained. It starts at zero and is updated as points are chosen by the

algorithm.

Once γ(y,X
′
) = B(y,X

′
) − Vy, has been calculated for each point in the grid Γ(X), the

value of LB2 can be obtained. The calculation of LB2 is similar to that of LB1, except
that the grid points generated through the combination of the coordinates of points of X
with the point 1 are never considered, since these points do not exist in the grid Γ(X).

4.2.2 A Generic Lower Bound for Any Dimension

The generic bound is a modified version of the bound for d = 2 that can be used for an
arbitrary number of dimensions d. Since the number of grid points generated from a point
set X in [0, 1]d, where |X| = n and d ∈ [2,∞), is nd, it is infeasible to use an extension
of the bound for the case d = 2 described in the previous section for an higher number of
dimensions. As the number of grid points grows exponentially in relation to the number
of dimensions d, the computational time required to update all the grid values each time
a point is selected or not by the algorithm is too high.

In order to minimize this effect, this bounding function does not consider the grid points
generated by combining the coordinates of points from the point set. As in the previous
case, this bounding function is composed of two parts, LB1, which is an under-estimation
of the δ function in Eq. (2.2) and LB2, which is a calculation of the δ function in Eq.
(2.2). The difference between these bounding functions lies in which grid points are used
in the calculation of these components.

In the case of LB1, the points from the grid Γ(X) that are used in the calculation are
the points from X and the ones that are generated by a combination of the coordinates
of points from X with the point 1, as these grid points always exist independently of the
current state of the partial solution. In the case of LB2, and because this component is
calculated using the points from grid Γ(X), only the points from X are considered, as the
points that are generated by a combination of the coordinates of points from X with the
point 1 do not exist in this grid.

4.2.3 Validity of the Bounds

In order to be valid, the value of the bounding functions to a given partial solution x
must be lower or equal to the optimum value that can be obtained by a solution that
contains x. To prove the validity of the bound for d = 2 let us start by considering the
first component, LB1. For a given partial solution x with value v, the value of LB1 is less
or equal to the lowest value of any solution that contains x. This is equivalent to show
that γ(y,X

′
) ≤ δ(y,X ′

) for all points y in the grid Γ(X).

Proposition 1: γ(y,X
′
) ≤ δ(y,X ′

) for all points y in the grid Γ(X)

Proof : The value of B(y,X
′
) is initialized as the maximum number of points in the box

[0, y), for all grid points y, and thus it is an overestimation of the value of A(y,X
′
). Because

the value of B(y,X
′
) only changes (decreases) when points are not chosen by the algorithm,

then B(y,X
′
) ≥ A(y,X

′
) at all times during the search process. Since the value of Vy

remains constant, then it is clear that γ(y,X
′
) ≤ δ(y,X ′

) because B(y,X
′
) ≥ A(y,X

′
).

The process of proving the validity of LB2 is similar to that of LB1. In order for this

16

A Branch-and-bound Algorithm

component to be valid, we must ensure that γ(y,X
′
) ≤ δ(y,X

′
) for all points in the grid

Γ(X).

Proposition 2: γ(y,X
′
) ≤ δ(y,X ′

) for all points in the grid Γ(X)

Proof : The value of B(y,X
′
) corresponds to the calculation of, A(y,X

′
), the number of

points in the box [0, y], for all grid points y. Its value is initialized at 0 and only changes
(increases) as points are chosen by the algorithm to be a part of the current solution.
Because of this, it is clear that B(y,X

′
) ≥ A(y,X

′
) throughout the search process. Then,

as the value of Vy never changes, we can prove that γ(y,X
′
) ≤ δ(y,X ′

).

In the case of the generic bound, the principles behind the validity of the bound components
for the grid points are the same as for the bound for d = 2. The difference is that, in this
case, not all grid points are considered. This, however, does not make the bound invalid.
By considering only some of the points we lose information about the current state of the
grid and therefore the lower bound value is more relaxed, and so it is still valid.

For both of the bounding functions proposed, using the maximum value of both components
does not make the bound invalid either. Both of the components are valid and can be used
alone, because of Eq. (2.2). However, it is preferable to test the maximum of the two, as
this makes the bounds tighter.

4.3 Other Improvements

In order to further improve the performance of the algorithm, aside from the bounding
functions, multiple techniques such as sorting the points and the initialization of a upper
bound were used, which are described in the following sections.

4.3.1 Upper Bound Initialization

When using a branch-and-bound algorithm it may be the case that the algorithm takes a
large amount of time to reach a good upper bound that allows to prune the search tree. In
order to prevent this, we evaluate multiple solutions before starting the branch-and-bound
algorithm in order to start with a good upper bound value.

Each of these solutions is generated by selecting an initial point, and then selecting others
iteratively until the solution has k points. At each iteration, the selected point is the one
that maximizes the minimum distance to those points already in the solution. We generate
n solutions, ensuring that every point in the point set will be in at least one of the evaluated
solutions. By selecting the points that maximize the minimum distances we ensure the
diversity of the generated solution. Since a low discrepancy value is correlated with a
better coverage of the unit hypercube, we expect that the value of the star discrepancy of
generated solutions is in fact a good upper bound for pruning at the start of the algorithm.

4.3.2 Sorting the Points

Since the calculation of the star discrepancy is based on the number of points in the boxes
[0, y) and [0, y], where y is an arbitrary grid point, the order in which points are processed
by the algorithm affects the tightness of the bound values, and so sorting the points could
potentially lower the computational time of the algorithm.

17

Chapter 4

We consider sorting the point set with respect to the layers of maxima. Note that point p
dominates q if pi ≥ qi for all i ∈ {1, ..., d}. The problem of the layers of maxima consists
on dividing the point set in layers, such that for any layer its points are not dominated by
the points of the lower layers. We say that the ith layer is composed of the points that
are not dominated by any other point, except by some in upper layers. Figure 4.2 shows
an example of the layers obtained by solving the layers of maxima problem on the points
shown.

L1

L2

L3

Figure 4.2: Example of the layers of maxima problem

By solving the layers of maxima problem on the point set we can then sort the points
based on the layers obtained. The order of the points in N is then given by increasing
order of the layers. However, the ordering of the points from each layer is kept equal to
their ordering on the original point set, as the order of the points from the same layer
does not interfere with their bound value, because these points do not dominate nor are
dominated by each other and thus their bound values are as tight as possible.

Since the points are now sorted based on the layers, when the algorithm is considering
adding a point xi to the partial solution, all the points that it dominates have already
been considered, and so its bound value is tighter than when considering the points in an
arbitrary order, leading to a strong pruning of the search tree and a potential reduction of
the computational time of the branch-and-bound algorithm.

4.3.3 Using Heuristics Before Evaluating Nodes

Since the complexity of the algorithm proposed by Dobkin et al. [3] to calculate the star
discrepancy is O(n1+d/2) it is expected that this calculation degrades the performance of
the branch-and-bound algorithm considerably, as the number of dimensions and points
increase.

One possible way to reduce the impact of this issue is to lower the number of calculations
of the star discrepancy. In the branch-and-bound algorithm, whenever a terminal node is
reached the solution is evaluated and the upper bound for the discrepancy, the best value
found so far, is updated. Since reaching a new terminal node does not necessarily imply
an improvement of the upper bound, it may not be needed to evaluate all of them.

In order to assess which nodes are worth evaluating, we propose the use of an heuristic
approach. While the proposed lower bounds could be used on a solution to obtain a lower
bound of the value of its star discrepancy, the bound for d = 2 is too slow as it considers

18

A Branch-and-bound Algorithm

many of the grid points, and the generic bound is not tight enough to be usable in this way,
as it discards many grid points to improve its computational time. Instead, we can use
heuristic methods that calculate bounds for the star discrepancy, as the ones described in
Chapter 3. While these algorithms cannot be used as a bounding functions, because they
calculate bounds for complete point sets, rather than partial solutions, they can be used
in this case, since when a terminal node is reached, the solution is complete. Even though
the algorithm of Gnewuch et al. [8] has a random factor and so the results obtained may
be different for the same set of points on different runs, and they may not be close to a
good result on every run, it has obtained the best results to date, and so we believe this is
the best algorithm to use in this approach.

Whenever a solution is reached, before its exact evaluation is performed, an heuristic
evaluation of the solution is performed to obtain a lower bound value of its star discrepancy.
If the lower bound obtained is higher than the current upper bound, the best value found
so far by the algorithm, then the solution reached cannot be better than the current
upper bound and the calculation of its star discrepancy can be skipped, which can lead
to a reduction of the computational time of the algorithm specially in a higher number of
dimensions.

19

This page is intentionally left blank.

Chapter 5

Results

This chapter describes an experimental analysis that was conducted to characterize the
performance of our branch-and-bound approach.

5.1 Experimental Setup

The tests performed to the branch-and-bound algorithm have the goal of assessing its
performance over instance size, number of dimensions and different types of instances. In
order to do this, multiple scenarios were defined: 2D, 3D and 4D point sets.

All of these tests were performed with a time limit of 30 minutes. The maximum values
of n are 45 in the 2D case and 30 in the 3D case. With this value defined, we tested
the algorithms for k ∈ {bn/4c, b3n/8c, bn/2c, b5n/8c, b3n/4c} as we believe that it is more
interesting to study the impact on algorithm performance of the ratio between points to
choose and total number of points, rather than fixed values of k. For each combination of
n and k, multiple test cases were generated and evaluated, in order to reduce variance and
to understand if outliers exist. More information about the generation and content of the
test cases is described in the next section.

The experimental process is as follows. We start with a simple search algorithm. This
algorithm is recursive, and has the same stopping conditions as the branch-and-bound
algorithm. However, it has no bounding functions, which means that the entire search
tree will be covered and the star discrepancy will be calculated each time a valid solution
is found, evaluating all the possible

(
n
k

)
subsets. Because of the complexity of the star

discrepancy, in order to reduce time spent calculating it, the algorithm used to calculate
its value is the one proposed by Dobkin et al. [3], which is the most efficient algorithm.

Then, we add the bounding function to the simple search algorithm and we are left with
our branch-and-bound approach. Finally, we keep adding the improvements proposed in
Chapter 4 in order to achieve the best possible results.

Once an algorithm reaches a value of n where it can no longer obtain results for all values
of k, no more values of n are tested. All the results for all the tests are recorded, in order to
understand how each component of the final algorithm influences its overall performance.

Additionally, two more tests were also run, one with a high number of points, where n = 500
and d = 2 and another with a high number of dimensions, where d = 20 and n = 25. While
it is expected that our algorithm does not finish its search process within the defined time

21

Chapter 5

limit, our goal with this type of test is to characterize the evolution of the upper bound
throughout the search progress.

All the code necessary to run these experiments was implemented in C++ and is available
at https://github.com/gncrm/star_discr_subset. The code used to calculate the star
discrepancy was adapted to C++ from an implementation in C by Magnus Wahlström
that was provided by Professor Carola Doerr. Table 5.1 contains the specifications of the
computer where the tests were run.

Operating System macOS Sierra Version 10.12.4
Processor 2,9 GHz Intel Core i5
RAM 8 GB 1867 MHz DDR3

Compiler Apple LLVM version 8.1.0 (clang-802.0.42)
Flags g++ -o3

Table 5.1: Computer specifications

Even though the best performance metric is the time elapsed by the search algorithm, we
believe that further information is needed to understand how the bounds perform, as the
computational time does not allow a complete analysis of the pruning process. Because of
this, several other performance metrics were recorded. These metrics include the average
depth at which prunes to the search tree occurred and which bound component had the
maximum value, which helps us understand the performance of the bounding functions
even further. The value of the star discrepancy of the best subset found was also recorded,
in order to understand how this value is influenced by the values of n and k as well as the
type of test case.

5.2 Test Cases

In order to properly assess the performance of the developed branch and bound algorithm
over a multitude of different scenarios, four types of test cases were generated. In our
opinion these test cases, described below, provide a good coverage of different types of
data that the algorithm can encounter and have a wide range of star discrepancy values,
which will allow us to show the correlation between the star discrepancy of the subsets and
the star discrepancy of the point set. All of the generated points are in the [0, 1)d interval.

Random Data The points that compose the random data test cases are generated ran-
domly from a continuous uniform distribution for each dimension. It is expected
that these points cover most of the unit hypercube, especially for higher values of n.
However, these point set should have a higher discrepancy value than the low dis-
crepancy sequences as the points will not cover the unit hypercube evenly. Because
of this, the algorithm should be able to significantly prune the search tree.

Low-discrepancy Data Two types of test cases were constructed using data generated
from known low-discrepancy data: the Sobol and the Halton sequences. It is expected
that the performance of the algorithm is worse than in the case of the random data,
as the low discrepancy makes pruning the search tree harder.

Clustered Data This test case is composed of points belonging to two different clusters,
generated using isotropic Gaussian distributions with the centers generated randomly
and a standard deviation of 0.05. Since the points are closer together it is expected

22

https://github.com/gncrm/star_discr_subset

Results

(a) Random (b) Sobol sequence

(c) Halton sequence (d) Clustered

Figure 5.1: Examples of 2D test cases for n = 35

that pruning the search tree will be difficult for the algorithm and that the overall
solution will have a high discrepancy value.

5.3 Experimental Results

The figures presented in this report show the execution times of the algorithms in loga-
rithmic scale, since the difference between the values of both approaches was too much
for a normal scale. Whenever a value is not shown in a figure it means that for that test
the result could not be obtained within the time limit of 30 minutes. The performance
of the simple search algorithm, in any d-dimensional space, depends only on the values
of n and k, as these are the factors that change the size of the search tree. The algo-
rithm of Dobkin et al., which has a running time of O(nd/2+1) only depends on n and
k as well, and thus the simple search algorithm must have a similar running time for all
types of test cases. Because of these, only the values of the tests for the random point sets
are presented, for this algorithm. In the legends of the figures shown in this section, SSA
refers to the simple search algorithm, BB refers to the branch-and-bound algorithm, BB_S
refers to the branch-and-bound algorithm with the sorting of the points, and BB_SI refers
to the branch-and-bound algorithm with the sorting of the points and the upper bound
initialization. Appendix B contains the results displayed in tables.

23

Chapter 5

(a) Random (b) Sobol sequence

(c) Halton sequence (d) Clustered

Figure 5.2: Examples of 3D test cases for n = 30

5.3.1 2D Point Sets

In order to show the difference in performance between the simple search algorithm and
the different branch-and-bound algorithms used, Figure 5.3 presents the execution times
of the algorithms, for k = n/2 and for all instance types.

Figure 5.4 shows the optimal star discrepancy found, for each type of test case. Note that
the scales are different based on the values in order to make differences in values more
perceptible.

5.3.2 3D Point Sets

Figure 5.5 presents the results regarding the execution time of the algorithms, for the fixed
value of k = n/2.

Figure 5.6 shows the star discrepancy of the best subsets. As in the previous cases the
scales are different for different instance types.

5.3.3 4D Point Sets

The figures regarding the tests with the 4D point sets present the same information as
the figures of other scenarios. Figure 5.7 shows the execution time of the algorithms, and
Figure 5.8 shows the optimal star discrepancy found.

24

Results

(a) Random (b) Sobol Sequence

(c) Halton Sequence (d) Clustered

Figure 5.3: Execution times for the 2D point sets with k = n/2

5.3.4 Special Test Cases

The tests using the special test cases where done using the branch-and-bound algorithm
with the sorting of the points and the upper bound initialization for the point set where
n = 500 and d = 2, and the branch-and-bound algorithm for the point set where n = 25
and d = 20. In Figure 5.9 we show the evolution of the upper bound throughout the search
process for these tests, with k = n/2.

5.4 Discussion

Regarding the 2D point sets, the best results were obtained using the branch-and-bound
algorithm with the sort and the upper bound initialization. In fact, both of these improve-
ments provided a huge increase in performance which allowed results to be obtained for
values of n up to 45, when the basic branch-and-bound algorithm was only able to solve
the problem until n = 35. This increase in performance was so high that it also allowed the
problem to be solved in less than one or two minutes, for cases in which other approaches
tested did not get a result due to not finishing within the time limit of 30 minutes.

The behaviour of our algorithm was very similar in the case of the 3D and 4D point sets.
The best results were achieved by the branch-and-bound algorithm with no improvements.
Adding the sort did not lead to an increase in performance. This may be due to the fact
that since most of the grid points are discarded, sorting the points does not have much of
an effect in the tightness of the bound. The upper bound initialization also failed to fulfill

25

Chapter 5

(a) Random (b) Sobol Sequence

(c) Halton Sequence (d) Clustered

Figure 5.4: Star discrepancy of the best subset found of 2D point sets

its purpose. The tests showed that unlike what happened when d = 2, the upper bound
was further away from the optimal value, and so it did not help the pruning of the search
tree as much as it did in the 2D case.
In these scenarios, the increase in performance was also much lower than in the 2D case,
which was expected due to the higher complexity of the problem and the relaxation of the
bounding function. However, the results show that in some cases, the execution time was
cut in half, and it was also possible to obtain the results from tests where the simple search
algorithm failed to terminate its execution.

The results also show that on all of the scenarios tested, the behavior of the algorithms
depending on instance type is similar. Because of the characteristics of the random point
sets, it is natural that there are a lot of point combinations that result in bad discrepancy
values, which will correspond to easy prunes to the search tree. The low-discrepancy point
sets were expected to require more computational time than the random point sets. Our
assumption proved to be true for both the Sobol and Halton. While the tests with these
point sets were faster or similar for low values of n, when the value of n increased the tests
with random point sets were faster. The tests with Halton point sets were also usually
slower than those with the Sobol point sets.

Our algorithms showed either a decrease or a minimal improvement in performance on the
majority of the experiments using the clustered point sets, for any of the different number
of dimensions tested. This is due to the low pruning of the search tree, associated with
the computational cost of the bounding functions and the grid updates. This decrease in
performance was most significant when d = 2 as the bounding function is more demanding
in that case.

26

Results

(a) Random (b) Sobol Sequence

(c) Halton Sequence (d) Clustered

Figure 5.5: Execution times for the 3D point sets with k = n/2

In some of the tests, especially for d = 2, low values of star discrepancy were achieved. The
optimal value of the star discrepancy was higher as the number of dimensions increased,
which is somewhat expected, as when the number of dimensions increase more points are
required to achieve a low value of discrepancy. Nevertheless, the point sets which exhibited
the best values of discrepancy were the Sobol and Halton, with the random point sets
becoming close as the value of n increased. This proved to be true for all of the scenarios
tested. We can then conclude that using random point sets to generate low-discrepancy
point sets is a good method, as our algorithm was faster on these point sets. The clustered
point sets always had a high discrepancy value.
Based on the discrepancy values obtained we can also conclude that the star discrepancy
of the initial point set defines how low the star discrepancy of the subsets can be, since the
low-discrepancy sequences had the best subsets, and the clustered point sets obtained by
far the worst results.
From the results obtained, especially from the random test cases, we can also verify what
was shown in Chapter 2, since for some values of n selecting more points actually led to
an increase in the value of the star discrepancy.

The results obtained also showed that for a given value of n and algorithm tested, the depth
at which the prunes to the search tree occurred seemed to remain somewhat constant, with
no significant differences, for the various values of k.
Regarding both components of the bounding functions, in the 2D scenario we could not
determine which bound component actually contributed the most to the pruning of the
search tree. However, in the 3D and 4D scenarios, it was clear that the first component of
the bounding function, LB1, was actually more important than LB2 in the search process.
This may have been due to the fact that LB1 considers more grid points than LB2, which

27

Chapter 5

(a) Random (b) Sobol Sequence

(c) Halton Sequence (d) Clustered

Figure 5.6: Star discrepancy of the best subset found of 3D point sets

only considers the points from the original point set.

In the case of the special test cases, two tests were performed: one with 500 points generated
randomly in a two-dimensional space, and another with 25 points generated in a similar
way but with d = 20. As expected, these tests did not finish their execution within the
defined time limit of 30 minutes, as both of these scenarios are quite complex for the
algorithm.

In the high n test case, in fact, the upper bound stayed almost constant for the entire
run. This could have happened because the bound for d = 2 is computational heavy as
the estimation of the grid values needs to be updated at each step of the search, and thus
not many solutions were reached, or because the initial value may be close to the optimal
solution.
On the other hand, the high d test case, which did not have the upper bound initialization,
kept finding new best solutions as the search progressed. However, not many updates to
the upper bound happened, which may have been due to the running time of the algorithm
of Dobkin et al. on a high-dimensional space and consequently the consideration of a low
number of solutions.

28

Results

(a) Random (b) Sobol Sequence

(c) Halton Sequence (d) Clustered

Figure 5.7: Execution times for the 4D point sets with k = n/2

29

Chapter 5

(a) Random (b) Sobol Sequence

(c) Halton Sequence (d) Clustered

Figure 5.8: Star discrepancy of the best subset found of 4D point sets

(a) n = 500 (b) d = 20

Figure 5.9: Evolution of the upper bound

30

Chapter 6

Conclusion

In this thesis we propose a branch-and-bound algorithm to solve the star discrepancy subset
selection problem for any number of dimensions. Our contributions are two bounding
functions, one for the d = 2 case and another that works for any number of dimensions,
as well as some improvements to the base branch-and-bound algorithm by sorting the
points, calculating an upper bound to start the search with and heuristically evaluating
the nodes of the search tree prior to calculating their exact discrepancy. Finally, the
proposed algorithms were tested using a variety of instance types with different values for
the parameters of the problem.

The results showed us that for d = 2 our approach presents a very considerable speedup
when compared to an evaluation of all the possible solutions for the majority of the instance
types. The generic bound for any number of dimensions also performed better than the
simple search algorithm, although in this case the speedup factor was much lower, which
is expected due to this bounding function being a relaxation of the one for d = 2.

Regarding future work, multiple possibilities exist. The first one, more related to the goal
of this thesis, would be to find new bounding functions, primarily for d ≥ 3, that are
tighter than our proposed generic bound while also being less computational demanding
than our bound for d = 2, in order to allow solving the star discrepancy subset selection
problem for a higher number of points.
It would also be interesting to prove that the star discrepancy subset selection problem is
in fact a NP-Hard problem for an arbitrary number of dimensions. While the calculation
of the star discrepancy has been proven to be NP-Hard, which makes us believe that the
star discrepancy subset selection problem is as well, this has not been proven yet.
Finally, regarding the calculation of the star discrepancy itself, approximation algorithms
could be developed. These algorithms provide an approximation to the real value with a
guarantee of how inaccurate they may be, in polynomial time. While they do not calculate
the exact value of the discrepancy, they provide a good alternative in cases where an exact
calculation would be too computationally demanding.

31

This page is intentionally left blank.

References

[1] Original image by Esmil available at https://en.wikipedia.org/wiki/Norm_
(mathematics)#/media/File:Vector_norms.svg with license CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=678101. The original image
was adapted.

[2] Jens Clausen. Branch and bound algorithms - principles and examples, March 1999.

[3] David P. Dobkin, David Eppstein, and Don P. Mitchell. Computing the discrepancy
with applications to supersampling patterns. ACM Trans. Graph., 15(4):354–376,
1996.

[4] Carola Doerr, Michael Gnewuch, and Magnus Wahlström. Calculation of Discrepancy
Measures and Applications, pages 621–678. Springer International Publishing, Cham,
2014.

[5] Carola Doerr and François-Michel De Rainville. Constructing low star discrepancy
point sets with genetic algorithms. In Christian Blum and Enrique Alba, editors,
Genetic and Evolutionary Computation Conference, GECCO ’13, Amsterdam, The
Netherlands, July 6-10, 2013, pages 789–796. ACM, 2013.

[6] Panos Giannopoulos, Christian Knauer, Magnus Wahlström, and Daniel Werner.
Hardness of discrepancy computation and ε-net verification in high dimension. J.
Complexity, 28(2):162–176, 2012.

[7] Michael Gnewuch, Anand Srivastav, and Carola Winzen. Finding optimal volume
subintervals with k points and calculating the star discrepancy are NP-hard problems.
Journal of Complexity, 25(2):115–127, 2009.

[8] Michael Gnewuch, Magnus Wahlström, and Carola Winzen. A new randomized al-
gorithm to approximate the star discrepancy based on threshold accepting. SIAM J.
Numerical Analysis, 50(2):781–807, 2012.

[9] J. H. Halton. Algorithm 247: Radical-Inverse Quasi-random Point Sequence. Com-
munications of the ACM, 7(12):701 – 702, 1964.

[10] Aneta Neumann, Wanru Gao, Carola Doerr, Frank Neumann, and Markus Wagner.
Discrepancy-based evolutionary diversity optimization. In Hernán E. Aguirre and
Keiki Takadama, editors, Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO 2018, Kyoto, Japan, July 15-19, 2018, pages 991–998. ACM,
2018.

[11] Aneta Neumann, Wanru Gao, Markus Wagner, and Frank Neumann. Evolutionary
diversity optimization using multi-objective indicators. In Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO 2019, Prague, Czech Republic,
July 13-17, 2019, pages 837–845, 2019.

33

https://en.wikipedia.org/wiki/Norm_(mathematics)#/media/File:Vector_norms.svg
https://en.wikipedia.org/wiki/Norm_(mathematics)#/media/File:Vector_norms.svg
https://commons.wikimedia.org/w/index.php?curid=678101

Chapter

[12] François-Michel De Rainville, Christian Gagné, Olivier Teytaud, and Denis Lauren-
deau. Evolutionary optimization of low-discrepancy sequences. ACM Trans. Model.
Comput. Simul., 22(2):9:1–9:25, 2012.

[13] Manan Shah. A genetic algorithm approach to estimate lower bounds of the star
discrepancy. Monte Carlo Meth. and Appl., 16(3-4):379–398, 2010.

[14] I. M. Sobol’. On the Distribution of Points in a Cube and the Approximate Evaluation
of Integrals. USSR Computational Mathematics and Mathematical Physics, 7(4):86 –
112, 1967.

[15] Eric Thiémard. Computing bounds for the star discrepancy. Computing, 65(2):169–
186, 2000.

[16] Eric Thiémard. An algorithm to compute bounds for the star discrepancy. J. Com-
plexity, 17(4):850–880, 2001.

[17] Eric Thiémard. Optimal volume subintervals with k points and star discrepancy via
integer programming. Math. Meth. of OR, 54(1):21–45, 2001.

[18] Peter Winker and Kai-Tai Fang. Application of threshold-accepting to the evaluation
of the discrepancy of a set of points. SIAM Journal on Numerical Analysis, 34(5):2028–
2042, 1997.

34

Appendices

35

This page is intentionally left blank.

Appendix A

Example Of The Calculation Of The
Star Discrepancy

Let X = {x1, x2, x3, x4} be a point set where x1 = (0.8, 0.2), x2 = (0.4, 0.4), x3 = (0.7, 0.6)
and x4 = (0.1, 0.9). In order to calculate its star discrepancy, we need first to consider the
grids induced by X, Γ(X) and Γ(X).

Γj(X) = {xji |i ∈ {1, 2, ..., n}} Γj(X) = Γj(X) ∪ {1}
Γ(X) = Γ1(X)× Γ2(X)× ...× Γd(X) Γ(X) = Γ1(X)× Γ2(X)× ...× Γd(X)

x1

x2

0.80.4 0.70.1

0.2

0.4

0.6

0.9

x1

x2

x3

x4

p21

p20

p19

p7

p11

p18

p13

p12

p17

p6

p10

p16

(a) Grid Γ(X)

x1

x2

0.80.4 0.70.1 1

0.2

0.4

0.6

0.9

1

x1

x2

x3

x4

p21

p20

p19

p7

p11

p18

p13

p12

p17

p6

p10

p16

p15 p5 p9 p2 p3

p1

p4

p8

p14

(b) Grid Γ(X)

Figure A.1: Grids induced by X

Then, for each point y in Γ(X) and Γ(X) we must calculate the value of δ(y,X) and
δ(y,X) respectively, using the following formulas.

Vy =
d∏

i=1

yi A(y,X) =
n∑

i=1

1[0,y)(xi) A(y,X) =
n∑

i=1

1[0,y](xi)

δ(y,X) = Vy −
1

n
A(y,X) δ(y,X) =

1

n
A(y,X)− Vy

37

Chapter A

δ(x1, X) = 0.16− 0 = 0.16 δ(x1, X) = 1/4− 0.16 = 0.09

δ(p1, X) = 0.2− 0 = 0.2 δ(x2, X) = 1/4 = 0.16 = 0.09

δ(p2, X) = 0.8− 3/4 = 0.05 δ(p6, X) = 2/4− 0.32 = 0.18

δ(p3, X) = 1− 1 = 0 δ(p7, X) = 0− 0.08 = −0.08

δ(x2, X) = 0.16− 0 = 0.16 δ(x3, X) = 2/4− 0.42 = 0.08

δ(p4, X) = 0.4− 1/4 = 0.15 δ(p10, X) = 3/4− 0.48 = 0.27

δ(p5, X) = 0.4− 1/4 = 0.15 δ(p11, X) = 1/4− 0.24 = 0.01

δ(p6, X) = 0.32− 0 = 0.32 δ(p12, X) = 1/4− 0.28 = −0.03

δ(p7, X) = 0.08− 0 = 0.08 δ(p13, X) = 0− 0.14 = −0.14

δ(x3, X) = 0.42− 1/4 = 0.17 δ(p16, X) = 1− 0.72 = 0.28

δ(p8, X) = 0.6− 2/4 = 0.1 δ(p17, X) = 3/4− 0.63 = 0.12

δ(p9, X) = 0.7− 2/4 = 0.2 δ(p18, X) = 2/4− 0.36 = 0.14

δ(p10, X) = 0.48− 1/4 = 0.23 δ(x4, X) = 0− 0.09 = −0.09

δ(p11, X) = 0.24− 0 = 0.24 δ(p19, X) = 0− 0.06 = −0.06

δ(p12, X) = 0.28− 0 = 0.28 δ(p20, X) = 0− 0.04 = −0.04

δ(p13, X) = 0.14− 0 = 0.14 δ(p21, X) = 0− 0.02 = −0.02

δ(x4, X) = 0.09− 0 = 0.09

δ(p14, X) = 0.9− 3/4 = 0.15

δ(p15, X) = 0.1− 0 = 0.1

δ(p16, X) = 0.72− 2/4 = 0.22

δ(p17, X) = 0.63− 1/4 = 0.38

δ(p18, X) = 0.36− 0 = 0.36

δ(p19, X) = 0.06− 0 = 0.06

δ(p20, X) = 0.04− 0 = 0.04

δ(p21, X) = 0.02− 0 = 0.02

We can finally calculate the value of the star discrepancy, using the formula

d∗∞(X) = max{ max
y∈Γ(X)

δ(y,X), max
y∈Γ(X)

δ(y,X)},

which in this case is d∗∞(X) = max{0.38, 0.28} = 0.38.

38

Appendix B

Results

This appendix contains the results of the experiments performed with our algorithm, dis-
played in tables. Whenever a NA is displayed in a table entry, it is because that test was
not conducted. If the table entry contains a dash, it means that the test reached the time
limit and thus no result was obtained. All the values of time displayed in the tables are in
seconds, and SSA refers to the simple search algorithm, BB refers to the branch-and-bound
algorithm, BB_S refers to the branch-and-bound algorithm with the sorting of the points,
and BB_SI refers to the branch-and-bound algorithm with the sorting of the points and
the upper bound initialization.

n k SSA BB BB_S BB_SI

25

n/4 0.75 0.11 0.03 0.02
3n/8 11.28 1.16 0.19 0.15
n/2 38.95 3.94 0.92 0.74
5n/8 29.47 6.50 2.52 2.01
3n/4 5.29 2.48 1.25 0.89

30

n/4 9.41 3.88 0.16 0.08
3n/8 383.89 73.14 3.09 0.13
n/2 1361.76 286.62 12.71 1.09
5n/8 914.59 362.24 20.19 3.29
3n/4 84.54 104.21 7.16 2.49

35

n/4 109.94 25.67 0.22 0.20
3n/8 — 1073.89 5.43 2.23
n/2 — — 12.67 10.53
5n/8 — — 42.05 40.15
3n/4 1174.57 1038.50 45.94 44.87

40

n/4 NA NA 0.66 0.42
3n/8 NA NA 13.28 0.75
n/2 NA NA 125.49 20.68
5n/8 NA NA 398.14 130.92
3n/4 NA NA 107.29 12.19

45

n/4 NA NA 88.71 2.25
3n/8 NA NA — 3.20
n/2 NA NA — 69.24
5n/8 NA NA — —
3n/4 NA NA — 1009.27

Table B.1: Execution times in seconds for the random point sets for d = 2

39

Chapter 6

n k SSA BB BB_S BB_S

25

n/4 0.75 0.16 0.02 0.01
3n/8 11.28 1.57 0.09 0.06
n/2 38.95 4.15 0.42 0.12
5n/8 29.47 4.73 0.48 0.20
3n/4 5.29 3.40 0.46 0.33

30

n/4 9.41 1.04 0.57 0.55
3n/8 383.89 8.45 7.78 6.32
n/2 1361.76 14.55 46.92 14.50
5n/8 914.59 11.34 82.23 35.30
3n/4 84.54 6.40 26.91 4.59

35

n/4 109.94 29.87 0.25 0.20
3n/8 — 1280.72 9.65 1.40
n/2 — — 57.18 4.07
5n/8 — — 79.94 4.18
3n/4 1174.57 811.90 41.50 31.93

40

n/4 NA NA 17.78 4.05
3n/8 NA NA 1108.58 148.85
n/2 NA NA — 77.79
5n/8 NA NA — 96.55
3n/4 NA NA — 35.66

45

n/4 NA NA NA 3.47
3n/8 NA NA NA 698.54
n/2 NA NA NA 249.30
5n/8 NA NA NA 56.32
3n/4 NA NA NA —

Table B.2: Execution times in seconds for the Sobol point sets for d = 2

40

Results

n k SSA BB BB_S BB_S

25

n/4 0.75 0.20 0.03 0.03
3n/8 11.28 1.38 0.10 0.08
n/2 38.95 2.78 0.14 0.14
5n/8 29.47 3.77 0.21 0.21
3n/4 5.29 1.42 0.12 0.12

30

n/4 9.41 2.32 0.07 0.05
3n/8 383.89 27.09 0.54 0.20
n/2 1361.76 47.24 1.64 0.45
5n/8 914.59 65.91 1.06 0.65
3n/4 84.54 25.67 0.61 0.38

35

n/4 109.94 45.39 0.47 0.14
3n/8 — — 16.31 3.53
n/2 — — 51.51 4.60
5n/8 — — 33.45 1.17
3n/4 1174.57 1267.00 13.53 2.99

40

n/4 NA NA 9.74 1.75
3n/8 NA NA 1118.39 12.05
n/2 NA NA — 1135.62
5n/8 NA NA — —
3n/4 NA NA 218.13 126.00

45

n/4 NA NA NA NA
3n/8 NA NA NA NA
n/2 NA NA NA NA
5n/8 NA NA NA NA
3n/4 NA NA NA NA

Table B.3: Execution times in seconds for the Halton point sets for d = 2

41

Chapter 6

n k SSA BB BB_S BB_S

25

n/4 0.75 0.72 0.23 0.22
3n/8 11.28 11.41 5.69 5.66
n/2 38.95 48.22 32.72 32.31
5n/8 29.47 52.28 42.83 42.73
3n/4 5.29 15.22 13.57 13.56

30

n/4 9.41 11.38 7.01 6.98
3n/8 383.89 510.15 304.02 302.79
n/2 1361.76 — 1598.98 1590.85
5n/8 914.59 — — —
3n/4 84.54 420.28 311.22 308.52

35

n/4 109.94 NA NA NA
3n/8 — NA NA NA
n/2 — NA NA NA
5n/8 — NA NA NA
3n/4 1174.57 NA NA NA

40

n/4 NA NA NA NA
3n/8 NA NA NA NA
n/2 NA NA NA NA
5n/8 NA NA NA NA
3n/4 NA NA NA NA

45

n/4 NA NA NA NA
3n/8 NA NA NA NA
n/2 NA NA NA NA
5n/8 NA NA NA NA
3n/4 NA NA NA NA

Table B.4: Execution times in seconds for the clustered point sets for d = 2

42

Results

n k Random Sobol Halton Clustered

25

n/4 0.231950 0.208333 0.202801 0.465798
3n/8 0.200650 0.163628 0.160564 0.465798
n/2 0.201177 0.139648 0.130884 0.465798
5n/8 0.200650 0.121094 0.111435 0.465798
3n/4 0.203028 0.121094 0.101836 0.465798

30

n/4 0.193727 0.176052 0.179808 0.445808
3n/8 0.143432 0.136124 0.136468 0.445808
n/2 0.135736 0.108855 0.106241 —
5n/8 0.136671 0.099792 0.092101 —
3n/4 0.132058 0.093422 0.092767 0.447115

35

n/4 0.178311 0.165036 0.167067 NA
3n/8 0.132472 0.126851 0.114912 NA
n/2 0.122723 0.104006 0.100603 NA
5n/8 0.109532 0.095728 0.088264 NA
3n/4 0.123093 0.089520 0.079328 NA

40

n/4 0.145022 0.136384 0.138745 NA
3n/8 0.114394 0.107405 0.105104 NA
n/2 0.105161 0.088698 0.086970 NA
5n/8 0.095161 0.078300 — NA
3n/4 0.092041 0.071550 0.068889 NA

45

n/4 0.123000 0.126852 NA NA
3n/8 0.104168 0.099911 NA NA
n/2 0.094452 0.079102 NA NA
5n/8 — 0.068921 NA NA
3n/4 0.090038 — NA NA

Table B.5: Star discrepancy of the best subsets found for d = 2

n k SSA BB

20

n/4 0.15 0.11
3n/8 1.10 0.64
n/2 3.27 1.43
5n/8 3.55 1.63
3n/4 0.54 0.54

25

n/4 1.88 1.66
3n/8 35.69 26.31
n/2 141.23 104.17
5n/8 109.05 108.78
3n/4 21.83 25.75

30

n/4 26.50 17.60
3n/8 1480.35 529.05
n/2 — 1238.51
5n/8 — 883.84
3n/4 442.17 67.36

Table B.6: Execution times in seconds for the random point sets for d = 3

43

Chapter 6

n k SSA BB

20

n/4 0.15 0.12
3n/8 1.10 0.68
n/2 3.27 2.09
5n/8 3.55 2.80
3n/4 0.54 0.44

25

n/4 1.88 1.71
3n/8 35.69 19.73
n/2 141.23 82.37
5n/8 109.05 58.27
3n/4 21.83 20.16

30

n/4 26.50 18.13
3n/8 1480.35 637.86
n/2 — —
5n/8 — 1527.30
3n/4 442.17 205.84

Table B.7: Execution times in seconds for the Sobol point sets for d = 3

n k SSA BB

20

n/4 0.15 0.13
3n/8 1.10 0.81
n/2 3.27 2.68
5n/8 3.55 3.37
3n/4 0.54 0.66

25

n/4 1.88 1.16
3n/8 35.69 21.44
n/2 141.23 82.03
5n/8 109.05 70.82
3n/4 21.83 22.04

30

n/4 26.50 22.59
3n/8 1480.35 765.75
n/2 — —
5n/8 — —
3n/4 442.17 350.70

Table B.8: Execution times in seconds for the Halton point sets for d = 3

44

Results

n k SSA BB

20

n/4 0.15 0.16
3n/8 1.10 0.96
n/2 3.27 3.19
5n/8 3.55 3.14
3n/4 0.54 0.49

25

n/4 1.88 2.23
3n/8 35.69 38.84
n/2 141.23 148.92
5n/8 109.05 114.28
3n/4 21.83 22.23

30

n/4 26.50 29.82
3n/8 1480.35 1446.32
n/2 — —
5n/8 — —
3n/4 442.17 381.57

Table B.9: Execution times in seconds for the clustered point sets for d = 3

n k Random Sobol Halton Clustered

20

n/4 0.348644 0.316769 0.327955 0.505850
3n/8 0.299428 0.268518 0.270287 0.505850
n/2 0.252546 0.228159 0.215885 0.505850
5n/8 0.236199 0.194691 0.192698 0.505850
3n/4 0.259548 0.186040 0.172871 0.505850

25

n/4 0.295423 0.289814 0.271709 0.639772
3n/8 0.243553 0.204414 0.226075 0.639772
n/2 0.211757 0.190167 0.188256 0.639772
5n/8 0.249693 0.163904 0.161648 0.639772
3n/4 0.283027 0.152710 0.150583 0.639772

30

n/4 0.264730 0.242525 0.258618 0.847691
3n/8 0.206781 0.191274 0.195074 0.847691
n/2 0.185900 — — —
5n/8 0.175296 0.143305 — —
3n/4 0.168899 0.124422 0.126667 0.847691

Table B.10: Star discrepancy of the best subsets found for d = 3

45

Chapter 6

n k SSA BB

20

n/4 0.35 0.36
3n/8 2.88 2.38
n/2 10.81 8.36
5n/8 13.54 10.22
3n/4 2.13 2.09

25

n/4 5.00 4.60
3n/8 110.89 70.45
n/2 509.12 290.80
5n/8 419.35 186.80
3n/4 92.67 50.48

30

n/4 76.28 62.66
3n/8 — —
n/2 — —
5n/8 — —
3n/4 — 1623.22

Table B.11: Execution times in seconds for the random point sets for d = 4

n k SSA BB

20

n/4 0.35 0.44
3n/8 2.88 2.75
n/2 10.81 11.56
5n/8 13.54 13.56
3n/4 2.13 2.30

25

n/4 5.00 5.28
3n/8 110.89 96.33
n/2 509.12 418.83
5n/8 419.35 340.30
3n/4 92.67 93.67

30

n/4 76.28 75.87
3n/8 — —
n/2 — —
5n/8 — —
3n/4 — —

Table B.12: Execution times in seconds for the Sobol point sets for d = 4

46

Results

n k SSA BB

20

n/4 0.35 0.42
3n/8 2.88 3.15
n/2 10.81 11.46
5n/8 13.54 14.04
3n/4 2.13 2.30

25

n/4 5.00 4.85
3n/8 110.89 94.70
n/2 509.12 362.90
5n/8 419.35 341.16
3n/4 92.67 88.40

30

n/4 76.28 76.29
3n/8 — —
n/2 — —
5n/8 — —
3n/4 — —

Table B.13: Execution times in seconds for the Halton point sets for d = 4

n k SSA BB

20

n/4 0.35 0.39
3n/8 2.88 2.85
n/2 10.81 10.20
5n/8 13.54 11.32
3n/4 2.13 1.76

25

n/4 5.00 5.85
3n/8 110.89 113.05
n/2 509.12 477.32
5n/8 419.35 386.93
3n/4 92.67 82.42

30

n/4 76.28 74.94
3n/8 — —
n/2 — —
5n/8 — —
3n/4 — —

Table B.14: Execution times in seconds for the clustered point sets for d = 4

47

Chapter 6

n k Random Sobol Halton Clustered

20

n/4 0.409910 0.385208 0.416666 0.693693
3n/8 0.333515 0.311146 0.345899 0.693693
n/2 0.273753 0.268838 0.299178 0.693693
5n/8 0.263272 0.242118 0.299178 0.693693
3n/4 0.264404 0.216967 0.299178 0.693693

25

n/4 0.356021 0.342967 0.342756 0.794170
3n/8 0.282430 0.276860 0.282417 0.794170
n/2 0.247570 0.235857 0.230586 0.794170
5n/8 0.220588 0.201928 0.205578 0.794170
3n/4 0.205155 0.187934 0.189077 0.794170

30

n/4 0.329978 0.301926 0.309961 0.740540
3n/8 — — — —
n/2 — — — —
5n/8 — — — —
3n/4 0.284420 — — —

Table B.15: Star discrepancy of the best subsets found for d = 4

48

	Introduction
	Definitions and Notation
	Star Discrepancy
	Branch and Bound
	Star Discrepancy Subset Selection Problem

	State of the Art
	A Branch-and-bound Algorithm
	Branch-and-bound Approach
	Lower Bounds
	A Lower Bound for the Case d = 2
	A Generic Lower Bound for Any Dimension
	Validity of the Bounds

	Other Improvements
	Upper Bound Initialization
	Sorting the Points
	Using Heuristics Before Evaluating Nodes

	Results
	Experimental Setup
	Test Cases
	Experimental Results
	2D Point Sets
	3D Point Sets
	4D Point Sets
	Special Test Cases

	Discussion

	Conclusion
	Example Of The Calculation Of The Star Discrepancy
	Results

