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Resumo 

Um procedimento comum na identificação de patologias da marcha é comparar as curvas 

dos ângulos das articulações do joelho e da anca de pacientes com curvas de referência, contruídas 

a partir de um grupo de indivíduos saudáveis. No entanto, estas curvas de referência genéricas 

são usualmente obtidas de uma amostra heterogénea de pessoas saudáveis e não possuem a 

especificidade necessária para obter resultados precisos. Por estas razões a geração de curvas de 

referência específicas tendo em conta características como o peso, altura, idade e velocidade de 

marcha resultarão numa melhor comparação e consequentemente num diagnostico mais preciso. 

Estas curvas de referência são de grande relevância em áreas como a medicina e a biomédica, na 

deteção de patologias e/ou reabilitação da marcha. Os métodos de Inteligência Computacional 

Backpropagation Neural Network (BNN) e Extreme Learning Machine (ELM) são capazes de 

modelar relações com grande precisão e como tal gerar curvas angulares de referência específicas 

baseadas em características como altura, peso, idade e velocidade da marcha. Os ciclogramas são 

curvas paramétricas constituídas pelas curvas de duas articulações, são de fácil visualização e 

permitem condensar informação pertinente das curvas dos ângulos das articulações do joelho e 

da anca. Podemos assim obter informação sobre o movimento conjunto das articulações e simetria 

da marcha do paciente. O principal objetivo do presente trabalho é identificar qual dos dois 

métodos de inteligência computacional, BNN e ELM, apresentam resultados mais precisos 

quando usados para gerar curvas de referência especificas do joelho e da anca tendo em conta 

altura, peso, idade e velocidade da marcha do paciente. No presente trabalho são geradas curvas 

de referência específicas para um paciente com paralisia cerebral e usadas na construção de 

ciclogramas para comparação e avaliação da marcha. 
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Abstract 

 

A common procedure used to identify abnormal gait is comparing an individual’s knee 

and hip curves with healthy reference curves. These reference curves are usually obtained from a 

heterogeneous sample of healthy subjects and might lack the specificity required to obtain 

accurate results. It is why the generation of reference curves according to an individual’s height, 

weight, age and gait speed should result in a better comparison and diagnosis. These reference 

profiles are useful in various fields such as biomedical engineering and medicine, for detection of 

gait pathologies and rehabilitation. Backpropagation Neural Network (BNN) and Extreme 

Learning Machine (ELM) are Computational Intelligence (CI) methods that can model relations 

accurately and thus generate subject-specific joint angle reference profiles based on a subject’s 

height, weight, age and walking speed. Cyclograms are parametric curves composed by the curves 

of two different joints and present a great way of visualizing and condensate information. 

Furthermore, we can get insights of patient conjoint movement and symmetry. The main objective 

of the present study is to observe which of the two methods, BNN and ELM, present more 

accurate results when used to generate reference curve profiles based on subject height, weight, 

age and gait speed for the knee and hip joint angles. In the present work, subject-specific knee 

and hip healthy reference curves are generated for a Cerebral Palsy patient. These are used to 

construct several cyclograms, from which features of importance to patient gait evaluation, can 

be extracted. 
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1 Introduction 

Upright walking is one of the most basic, fundamental human characteristics. The way 

we walk allows us to have mobility and live life as we know it. Nevertheless, some pathologies 

can arise at an early age, during or towards the end of our life, as a result of mental impairments, 

physical injuries and/or neurodegenerative diseases [1]–[3]. Gait disorders are associated to aging 

and become 60% more prevalent in subjects aged over 80 and 10% between 60 to 69 years old 

[4]. Nevertheless, abnormalities and injuries are recurrent and relevant in other ages. Common 

severe gait abnormalities result from neurological conditions, among them are hemiplegic 

cerebral palsy and Parkinson Disease (PD). Hemiplegic cerebral palsy is characterized by the 

paralysis of one side of the body. A great amount of the cases is resultant of infant strokes, 

affecting both children and elderly. PD, the second most common neurodegenerative disease, is 

recognized by its festinating gait and tremors, affecting vastly the elderly population [5], [6]. 

Another main cause of gait impairment are the Musculoskeletal Disorders (MSDs). According to 

the World Health Organization (WHO), such conditions are the second largest contributor to 

disability worldwide affecting joints, bones, muscles and multiple body systems. As a result of 

MSDs the subjects decrease physical activity which aggravates the state of the patient and 

explains this disease ubiquity in multi-morbidity [7]. Independently of its cause, gait pathologies 

can severely affect our quality of life [8], [9]. Even some non-severe gait abnormalities can 

impose physical limitations and decrease the level of independence. Briggs et al. showed the 

inherent relation between gait abnormalities and incidence of depression in a cohort of older 

people [10]. 

Gait analysis and assessment are used to detect abnormalities in human gait, propose a 

treatment and observe its effectiveness [11]. Gait analysis and assessment have been relying 

increasingly on motion capture technologies but is still predominantly based on visual assessment 

and on the clinical experience of the observer. This gait evaluation is carried out by physicians, 

biomedical engineers, neurologists, and other specialists who rely on their experience. 

Furthermore, this approach has the disadvantage of being qualitative and non-repeatable [12]. As 

previously mentioned a plethora of methods based on the quantitative measurements such as 

spatiotemporal, kinetic and kinematics have been emerging with motion capture technologies and 

have been used for the identification and classification of pathological gaits [2], [13]–[15]. This 

type of analysis shows to be more robust identifying gait abnormalities because it evaluates gait 

in a quantifiable and repeatable manner over time. Methods for gait analysis based on motion 

capture have shown to be capable of quantify risk of falls on elderly and predict neurodegenerative 

diseases before they manifest. Such predictions would be difficult to make, if not impossible, 

using conventional methods. 
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A common procedure for gait analysis used by physicians, is the data visualization and 

comparison, counter-posing the patients kinematic patterns with the control/normal values [16]. 

This type of approach is usually taken with joint angle curves because is a practical way for the 

clinician to easily observe deviation patterns. Nevertheless, the generation of the reference healthy 

joint angle curve is based on very distinct subjects, in such way that it can serve as a standard 

joint angle curve. Seen that subject specific features such as weight, height and age influence gait 

pattern, [17]–[20] this curves will lack the specificity necessary for an accurate comparison. 

Furthermore, such reference profile does not commonly take in consideration the gait speed, 

which is known to have great impact on joint angle’s profile [21],[22]. Using control groups to 

generate normal joint curves might not always be viable since they need to be a cohort. 

The application of Computational Intelligence (CI) methods in broader fields, including 

biomedical engineering, were made possible because of the fast growth of hardware 

computational power [23]. CI methods offer the capability of model complex systems such as the 

human body [24], having by now demonstrated to be capable of identifying and classifying gait 

pathologies [25], [26]. 

The main objective of the present work is to assess pros and cons of two CI methods, 

Backpropagation Neural Network (BNN) and Extreme Learning Machine (ELM), when used to 

generate specific reference curve profiles for the knee and hip joint angles, based on subject 

height, weight, age and gait speed. ELM was chosen due to its simplicity and fast results when 

compared to commonly used regression algorithms, while BNN is the most commonly used CI 

method [27]. Support Vector Machine (SVM) was not included in the comparison, since results 

showed to be slower in such applications [14], [28], [29]. 

 

2 State of the art 

2.1 Human Gait 

 

Walking is an inherent ability to most Humans. Gait is of such trivial semblance that many 

underestimates the underlying complexity of it. A complete gait cycle can be subdivided in two 

main phases:  Stance and Swing. Stance phase comprises the hell strike to toe-off section of the 

gait cycle making around 60% of the gait cycle in a healthy subject. Stance phase itself can be 

subdivided into initial contact (heel strike), loading response, mid-stance, terminal stance and pre-

swing. The swing phase which accounts for the remaining 40 % of the gait cycle, is subdivided 

into initial swing (toe-off), mid-swing (tibia vertical) and terminal swing, terminated by the heel 

striking the ground [30]. The beginning of the gait cycle is marked by heel strike and the ending 

with the subsequent heel strike of the same foot. Figure 1 presents, the beginning heel strike, mid-
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stance, toe-off, mid-swing, and ending heel strike, respectively. Angle convention is displayed in 

Figure 2. 

 

 

Figure 1. Human Gait Cycle. 

 

 

Figure 2. Angle Convention. 

 

Vision systems are emerging and offer data of great value for physicians to detect 

deviation from normality and asses patient’s recovery. Furthermore, the use of this methodology 

has as objective facilitate physicians and gait experts in analyzing and assessing patients gait and 

treatments effectiveness. Kinematic data obtained from vision systems is commonly used to 

evaluate gait. The use of kinetic data obtained through force plates or electromyography is also 

very used for the effect, being these technologies recurrently used to complement each other. It 

should be noticed that these technologies require preprocessing of the data before being applied 

in gait evaluation. 
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2.1.1 Clinical Gait Analysis  
 

Data acquisition by itself would not be of great value without being of liable interpretation 

and able to originate concise conclusions. Although computational intelligence has nowadays a 

strong presence in gait analysis a great part of the work done in this area is still done using 

statistical methods. Bellow the most commonly used approaches in gait analysis and assessment 

will be presented.  

Moandal et. al [31] made a precise evaluation of distinct l-DOPA-sensitive and l-DOPA-

resistant gait profiles of PD patients in a cross-sectional study. l-DOPA is a commonly used drug 

in PD patients that has shown to improve bradykinesia and rigidity in mild stages of the disease. 

Spatiotemporal parameters were obtained using a long electronic walkway containing pressure 

sensors embedded in a carpet. The patients were evaluated in their OFF and ON phases of l-

DOPA medication. The gait parameters of PD patients were compared to age and gender-matched 

healthy participants using independent sample t-test for parametric data and Mann–Whitney U 

test for nonparametric data. 

A commonly applied statistical analysis technique is the Principal Components Analysis 

(PCA). This multivariate technique permits data dimensionality reduction by projecting it in a 

lower dimension. The eigenvectors and eigenvalues of the covariance matrix are used for this 

effect. These represent, respectively, the direction where most variance occurred, and the amount 

of variation associated to each eigenvector. This way PCA is able to reduce dimensionality 

conserving the maximum amount of variance [32]. Peng et. al [33] used PCA for analyses of 

variations in the distribution of sliding distance and Cross-Shear (CS) ratio among Total Hip 

Arthroplasty (THA) patients. Metal-on-Polyethylene (MoP) is the most commonly used bearing 

surface in THA. The microscopic particles produced by friction between articulating surfaces is 

a major concern. PCA has been used for analyses of variations in the distribution of sliding 

distance or CS ratio. It has also detected two principal components (PCs) of the sliding distance 

that together contribute to 94.8% of the total variation and four PCs that together contribute to 

86% of the total variation of the cross-shear ratio. 

The effects of orthopedic walking boots were tested by Gulgin et. al [34] using 3D gait 

analysis vision system (Vicon, Oxford, UK) and two force Advanced Mechanical Technology 

plates (AMTI Inc., Watertown, MA). Peak values for kinematic and kinetic variables were tested 

for significance (p < 0.05) across conditions using one-way repeated ANOVA with the Bonferoni 

procedure. Followed-up paired t-tests were performed to test from right to left differences. 

Significant differences in joint angles and moments were found when using orthopedic walking 

boots. 
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When comparing PD subjects with age-matched controls Castagna et. al [35] used the 

Mann-Whitney U test, while the Wilcoxon test was used for comparison of the ON and 

OFF states in PD patients. The study was based in spatiotemporal, kinematic, and kinetic gait 

parameters. Furthermore, Wald test was used to correct for possible influence of different gait 

speeds between the OFF and the ON state. The nonparametric correlation analysis, Spearman 

Rank test, was used to correlate instrumented gait measures with demographic and clinical data. 

The application of CI methods in the medical area dates to the early 1970s [36]. Up to 

these days a plethora of applications of methods have been applied, solving problems with 

medical interest. Regardless of a lot of questions still lacking answer, such haven’t stopped the 

fast proliferation of CI’s. 

CI’s are capable of generating healthy joint angle curves based on subject specific 

parameters. Luu et al. [37] used anthropometric data and gait parameters of subjects to feed a 

Generalized Regression Neural Network (GRNN) which was trained to target Fourier coefficients 

of joint angle’s waveform. Posteriorly, inverse Fourier transform can be applied to obtain the 

lower limb joint angle waveform.  

H. Alaskar et al. [38] used signals from force sensitive resistors of a continuous walk of 

subjects with PD and healthy subjects. Multilayer neural network, trained with backpropagation 

using the Levenberg-Marquardt optimization, was used to classify the presence of PD. 

Classification was performed using statistical and frequency features from data, clinical 

information (age, height, gait speed, weight and gender), and both previous type of features, 

resulting in the classification accuracies of 64%, 81% and 91% respectively. 

Rani M. P. et al. [14] used ELM in multicategory classification of gait abnormalities in 

children, obtaining accuracies of 97.98% when using PCA and 99.21% accuracy using T-Test.  

Utomo C. P. et al. [39] showed that ELM performed better as a generalization classifier 

model, when compared with BNN in diagnosing breast cancer. ELM resulted in sensitivity, 

specificity and accuracy of 94.8%, 97.4%, 96.4% respectively. Meanwhile, BNN showed 

considerably lower sensitivity (84.3%) and accuracy (92.1%) and slightly higher specificity 

(98%).  

Ma X. et al. [27] used Swarm Particle Optimization (SPO) to choose input bias, weights 

and number of neurons of hidden layer and trained the ELM algorithm to identify falls out of low-

cost Kinect depth camera. This strategy, denominated by the author as variable-length SPO, was 

able to achieve up to 86.83% fall detection accuracy. 

 Blażkiewicz et. al [40] trained an Artificial Neural Network (ANN) to simulate the 

sagittal plane angle of the knee when the hip and ankle sagittal plane angular curve are given as 

input. The hip and ankle angles were increasingly reduced by 20%. The results for the several 

combinations of the two joints angles reductions were compared with targets using the correlation 
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coefficient. The lowest correlation obtained was of 0.70. A quasi-Newton optimization method 

was used for the learning.  

In Kutilek et. al [41] a neural network was trained with segments of a cyclogram in order 

to predict the missing values of the parametric curve. The neural network received as inputs the 

angles of the cyclogram segment, the angular accelerations of the joint, and subject’s weight and 

age. This procedure was done for knee-hip and knee-ankle cyclograms. In a subsequent article 

Kutilek et. al [42] displayed bilateral synchronized cyclograms properties in gait symmetry 

evaluation. Similar procedures were used by Sobral et. al [43] with Vertical Ground Reaction 

Forces (VGRF). A synchronized bilateral cyclogram was created for the VGRF and a Symmetry 

Index (SI) was obtained through percentual relative difference of the slope that fits the cyclogram 

and the ideal symmetrical gait gradient (45º Degrees). 

 Some of the most relevant and accepted measurements in clinical gait analysis for gait 

normality deviation are based on kinematic and spatial temporal measurements. Nevertheless, 

gait symmetry measurements [42]–[44] and indexes as GDI-Kinetic [45], based on kinetic data, 

are also commonly used. The Normalcy Index (NI) or Gillette Gait Index (GGI) stand out as being 

one of the oldest most accepted indices in gait assessment. It serves as a measure of the severity 

and normality deviation of the patient pathological gait. Furthermore, GGI allows the analysis of 

treatments effectiveness by quantifying the changes on the pathological gait. This index makes 

use of the PCA applied to 16 independent discrete variables [46]. From the 16 variables, 3 are 

temporal-spatial parameters, (time of toe off, walking speed, cadence) and 13 are kinematic 

variables ( mean pelvic tilt, range of pelvic tilt, mean pelvic rotation, minimum hip flexion, range 

of hip flexion, peak hip abduction in swing, mean hip rotation in stance, knee flexion of initial 

contact, time of peak knee flexion, range of knee flexion, peak of ankle dorsiflexion in stance, 

peak of ankle dorsiflexion in swing, mean foot progression angle). GGI has been extensively used 

and validated in both clinical and scientific environments, predominantly in children with CP. 

Despite the common use in children with CP, GGI has also been used for other pathologies such 

as PD, Multiple sclerosis and strokes. One of the limitations of this index it’s the lack of evidence 

in the choice of the 16 discrete variables as being the most adequate ones. As well as GGI, indexes 

such Gait Deviation Index (GDI), and Gait Profile Score (GPS) make use of kinematic variables 

such as the pelvis and hip in the three planes and the knee and ankle in the sagittal plane as well 

as the foot progression.  

Symmetry is a main feature of gait. Asymmetric gait is correlated with gait pathologies 

[47], [48] and an evaluation of it can bring great insights of the patient state and situation. Despite 

the importance, up to date there is no standard for SI, neither for the calculation nor the parameters 

to use [44]. Some commonly used approaches are based on bilateral cyclograms, i.e., graphs of 

dominant vs non-dominant limb. In the present work, bilateral cyclograms will be used for 
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symmetry evaluation, as well as some features of hip vs knee cyclograms will be used to show 

the potential of such approaches. 

 

2.1.1.1 Gait Analysis using Cyclograms  
 

Cyclograms, commonly referred as angle-angle graphs, are far from being a novelty in 

gait analysis and assessment. This type of parametric curve is generated by plotting the angle of 

different markers, such as hip and knee, or the same marker for both dominant and non-dominant 

limb, being the former named bilateral cyclogram. By creating such plots, we can get clear 

insights of the gait symmetry and quality. The generated geometries of such plots enable us to 

distinguish a normal from an abnormal gait pattern and condenses information such as range of 

motion that might be important for gait evaluation [46]. Cyclograms fall in one of two categories 

regarding their construction: synchronized and unsynchronized. In order to understand such 

differentiation, it should be noticed that in a gait cycle the angles of both limbs are nearly 

complementary, i.e., legs move approximately out-of-phase. In order to synchronize a cyclogram 

the moment of heel strike for both limbs need to be found before plot one gait cycle against the 

other. In a synchronized cyclogram the angle of the right knee, when the right heel touches the 

ground, corresponds to the angle of the left knee when left heel touches the ground. An example 

of a synchronized knee cyclogram is presented in Figure 3 at left and unsynchronized knee 

cyclogram at right. 

 

 

Figure 3. Synchronized and Unsynchronized knee cyclograms. 

 

Both bilateral and regular cyclograms present features of interest for gait analysis and 

assessment. The most relevant aspects are presented below along with the insights they can 

provide in a subject’s gait evaluation. 
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A) Area: The enclosed area of the cyclogram is a direct repercussion of the range of 

movement of both joints in analysis. This feature encodes all possible pair of angles 

during the gait cycle. When evaluated in sections the diagram permits the identification 

of phases where conjoint movements happen, and area is naturally more expressive.  

B) Perimeter: While the area reflects changes based on conjoint movement, increasing one 

joint angle solely might keep the area unchanged while drastically modifying the 

cyclogram. The perimeter of the cyclogram, would nevertheless, reflect this change 

making the evaluation based on this characteristic more robust. This property permits to 

identify uncoordinated movements in the gait.  

C) 𝑷𝑨 =
𝑷𝒆𝒓𝒊𝒎𝒆𝒕𝒆𝒓

  √𝑨𝒓𝒆𝒂
: This dimensionless ratio presents a relation with the cyclogram shape, 

although the value by itself cannot ensure a unique specific shape. If the diagram shape 

remains the same  PA will remain the same even if the area changes drastically [49]–[51]. 

The previous referred characteristics are of interest mainly for the hip vs knee cyclograms 

since the conjoint movement of two different markers is of interest. Nevertheless, when using 

bilateral cyclograms the focus is shifted for a symmetry evaluation and the perimeter and 𝑃𝐴 ratio 

are no longer of such importance. With bilateral cyclograms the deviation from both limbs to the 

perfect symmetry line (45º degrees line) can be noticed at several moments of the gait cycle. This 

comparison is done since the expected cyclogram of a perfectly symmetrical gait would be a line 

that crosses the origin of unitary slope and zero area, being the angular deviation and area of these 

cyclograms the main features of such evaluation. 

A different approach for symmetry evaluation can be done with unsynchronized 

cyclograms. Besides bringing a different visualization, perhaps more intuitive of the patient limb 

conjoint movement, this approach takes into account the phase shift occurring between joints of 

both limbs [44]. Both methodologies based on cyclograms used in this work are explained with 

greater detail in section 3.2.1. 

 

2.2 Computational Intelligence  

 

Computers can perform a task by being programmed to respond in a given way for a 

certain scenario. It is the programmer’s responsibility to provide the necessary instruction for the 

proper functioning of the application over several situations. However, common tasks that 

humans perform, depend on previous learning experience, and many of them are too complex for 

a programmer to provide a specific set of instructions that could, for every case, result in a 

satisfactory outcome. CI general interest is the solving of problems that require intelligence. Such 

intelligence resembles human and animal intelligence. It is many times used to englobe Artificial 
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Neural Networks, Fuzzy Logic Systems, Genetic Algorithms, and many others used 

interchangeably with Artificial Intelligence. Although boundaries are not yet defined CI presents 

itself as a broader field majorly concerned in problems such as object recognition, signal analysis, 

discovery of structures in data, simple associations and control [52], [53]. CI provides 

applications, the capability to adapt, i.e., improve with experience and extract patterns, sometimes 

too complex for a human to try to model 

There are three major common categorizations of CI methods named as supervised, 

unsupervised and reinforcement learning (see Figure 5). The difference between these groups rely 

in the way they learn and how information is provided to the algorithm for the learning procedure. 

 

 

Figure 4. Computational Intelligence Categories. 

 

 In supervised learning, feature identification is done by an expert that also provides to the 

algorithm the correct outcome for the several training cases. This information can be a label or a 

continuous value. Being referred as a classification and regression respectively. In the 

classification supervised case, the algorithm could be trained to identify one of many categories, 

while for the regression a concrete continuous value is intended. Independently of being a 

regression or classification problem, an algorithm fits the supervised category when the given the 

expected output, also commonly referred as target, is given. 

The unsupervised learning is mostly used to cluster data, but no data labelling is used. 

There is no given information and it is up to the algorithm to find a structure or a feature out of 

data. Such algorithms can also be used for dimension reduction. Typically, the algorithm would 

identify common features between two groups and discard them since they bring no value in 

distinguishing them. 
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Reinforcement learning is based on a system of punishment and reward where the 

algorithm adapts its own behavior based on the consequences of his actions. The algorithm is like 

an agent whose actions are based on the feedback state given by the environment. Model-based 

algorithm is able to model the problem accurately and understand the decision making behind it, 

whereas model-free approach is not to learn the model and simply find a good policy on the run. 

 

2.2.1 Neural Networks  

 

Artificial neural networks are by now the reference algorithm inside the CI field. Due to 

its appealing apparent simplicity and high performances obtained in the immensities of 

applications and fields, neural networks became commonly used in our nowadays technology 

background. Several types of networks exist. Each one with its strength and purpose, among them 

the most common are the feed-forward, convolutional and recurrent neural network.  

Feed-Forward neural networks can be either fully connected or sparse. They contain an 

input, output and hidden layer and flow occurs from the input to the output layer. These algorithms 

use backpropagation to update the bias and weights of the several layers and in this way train the 

network. For this reason, the term backpropagation neural network is recurrently used in the 

literature and will also be applied in the present work. 

 

2.2.1.1 Backpropagation Neural Network  
 

An artificial neural network is composed of several layers containing multiple neurons 

per layer. Deep Neural Network (DNN) comprises a more extended number of hidden layers and 

neurons. This type of network can learn more complex data relations than BNNs. However, they 

require higher processing power and memory [54]. Nevertheless, single hidden layer neural 

networks, with sufficient hidden units, can attain high accuracies and model complex problems 

[55], [56]. 

Every neuron has a weight, bias and chosen activation function. The weights and bias are 

used to calculate a weighted sum of the input of the neuron, which is then applied to the activation 

function, like shown in Figure.6. 
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Figure 5. Neuron structure. 

 

For the one neuron example, 𝑤1 …𝑤𝑛 represent the weights of the several connections, 𝐼1. . . 𝐼𝑛 

represent the inputs of the neuron, b is the neuron bias or threshold value, 𝑓 is the activation 

function, 𝑎 the value output from the neuron that will be feedforward to the several neurons of 

the next layer, and s is the input of the activation function of the neuron and will then be given 

by:  

 
𝑠  =   ∑ ω𝑖𝐼𝑖

𝑛

𝑖 = 1

  +  𝑏 (1) 

 

It should be noticed that a layer usually contains several neurons and in order to 

distinguish among the connections the 𝑤𝑖,𝑗 notation will be used further in this work. Where 𝑖 

represents the connection to 𝑖𝑡ℎ neuron and 𝑗 the source. 

The hidden layer neurons have commonly non-linear activation functions while input and 

output are usually chosen linear (𝑓(𝑛) =  𝑛), as is the case. The hidden layer activation function 

used in the present work is the sigmoid function, defined as: 

 
𝑓(𝑛) = σ(𝑛)  =  

1

1 +  𝑒−𝑛
 (2) 

 

The Sigmoid curve resembles an ‘s’ shape and is presented in Figure.6. 
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Figure.6 Sigmoid Function. 

 

As mentioned before, previous layer output will be feedforward as input to the next layer, 

except for the input and the output layer. The former receives external inputs while the latter one 

outputs the prediction results. For a M layers neural network, it can be written: 

 𝑎𝑚+1  = 𝜎𝑚+1(𝑊𝑚+1𝑎𝑚 + 𝑏𝑚+1) for 𝑚 =  0, 1, … , 𝑀 –  1 (3) 

 

Where W is matrix of weights of the layer and 𝜎𝑚+1 the activation function of the next layer. 

Initially the weights, as well as the bias of the neurons are attributed randomly. The error of every 

iteration is used to change the weights for the next iteration in trying to improve results. This 

procedure is referred as backpropagation and consists of a gradient descendent optimization 

algorithm [57], [58]. In this case, the backpropagation algorithm used for networks was the 

Marquardt-Levenberg.  

If the supervised learning paradigm consists of given an input, finding the weights and 

bias for which prediction best matches real target, a cost function can be defined for the purpose. 

This will serve of indication of whether such goal is being achieved. In the present work this cost 

function is simply the Mean Squared Error of the prediction to the target and can be defined as: 

 
F(x) =

1

n
∑ (tI − aI)

2

n

I=1

 (4) 

 

Being 𝑥 the vector containing the network weights and bias, n the overall number of training 

inputs and 𝑡𝐼 and 𝑎𝐼, respectively, the target and network prediction for the I input. 
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Considering the MSE for the k iteration and extending the previous formula for a network with 

several outputs.  

 𝐹̂(𝑥) = (𝑡(𝑘) − 𝑎(𝑘))
𝑇
(𝑡(𝑘) − 𝑎(𝑘)) (5) 

 

In steepest descent algorithm the weights and bias of the m layer are updated in the following 

manner: 

 
𝑤𝑖,𝑗

𝑚(𝑘 + 1) = 𝑤𝑖,𝑗
𝑚(𝑘) − 𝜂

∂𝐹̂

∂𝑤𝑖,𝑗
𝑚

 (6) 

 
𝑏𝑖

𝑚(𝑘 + 1) = 𝑏𝑖
𝑚(𝑘) − 𝜂

∂𝐹̂

∂𝑏𝑖
𝑚 (7) 

 

The i,j represent the rows and columns of the weights matrix and correspond to the weight of the 

connection between the jth neuron of the current layer (m) to the ith neuron of the next layer 

(m+1). The learning rate is here denoted as 𝜂. 

The Marquardt-Levenberg algorithm applied in the present work, differs, in certain 

situations, from previously shown steepest descent algorithm and approximates the Newton’s 

method. 

Rewriting eq. (5) in a matrixial form for a several output network: 

 
F(x) =

1

n
∑ (tI − aI)

𝑇(tI − aI)

n

I=1

 (8) 

Or, 

 
F(x) =

1

n
∑ 𝑒𝑇𝑒

n

I=1

 (9) 

 

To minimize such function with respect to the weights and bias vector 𝑥, Newtons method would 

be computed in the following manner:  

 ∇(x) = [−𝛻2𝐹(𝑥)]−1∇𝐹(𝑥) (10) 

 

Being ∇2𝐹(𝑥) and ∇𝐹(𝑥) the Hessian matrix and the gradient of the cost function, respectively. 

Considering F(x) the sum of all squares function, i.e.: 
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F(x) =

1

n
∑ 𝑒𝐼

2(𝑥)

n

I=1

 (11) 

 

The gradient and the Hessian matrix can be defined as:  

 ∇𝐹(𝑥) = JT(𝑥)e(𝑥) (12) 

 𝛻2𝐹(𝑥) = JT(𝑥)J(𝑥) + 𝑆(𝑥) (13) 

 

Where J(𝑥)  is the Jacobian matrix given by: 

 

J(𝑥)  =  

[
 
 
 
 
 
 
 
𝜕𝑒1(𝑥)

𝜕𝑥1

𝜕𝑒1(𝑥)

𝜕𝑥2
⋯

𝜕𝑒1(𝑥)

𝜕𝑥𝑛

𝜕𝑒2(𝑥)

𝜕𝑥1

𝜕𝑒2(𝑥)

𝜕𝑥2
⋯

𝜕𝑒2(𝑥)

𝜕𝑥𝑛

⋮ ⋮ ⋱ ⋮
𝜕𝑒𝑛(𝑥)

𝜕𝑥1

𝜕𝑒𝑛(𝑥)

𝜕𝑥2
⋯

𝜕𝑒𝑛(𝑥)

𝜕𝑥𝑛 ]
 
 
 
 
 
 
 

 (14) 

 

And 

 
𝑆(𝑥)  =  ∑  𝑒𝐼(𝑥)𝛻2𝑒𝐼(𝑥)

n

I=1

 (15) 

 

The update using Marquardt-Levenberg is then: 

 ∇(x) = [𝐽(𝑥)𝑇𝐽(𝑥) + μI]−1𝐽(𝑥)𝑇𝑒(𝑥) (16) 

 

Where I is the entity matrix and should not be confused with I used previously as subscript. It can 

be noted that for large values of 𝜇 the algorithm becomes the steepest descendent while for small 

values it becomes the Gauss-Newton. 

 

2.2.1.2 ELM 
 

ELM algorithm consists of a Single-hidden Layer Feedforward Network (SLFN), where 

the input layer neurons, weights, and bias are attributed randomly and kept fixed. After, the SLFN 

can be considered as a simple linear system. This algorithm uses the least squares method and the 
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Moore-Penrose generalized inverse matrix to obtain the weights between the hidden layer and the 

output (see Eq.(25)). These two concepts will be briefly explained ahead, as well as their use in 

the ELM algorithm. 

 It can be stated that for a given matrix 𝐴 of order 𝑛 × 𝑚, a unique Moore–Penrose 

generalized inverse of  𝐴,  𝐻†, of order  𝑚 × 𝑛, satisfies the following properties: 

 𝐴𝐻†𝐴 =  𝐴 (17) 

 𝐻†𝐴𝐻† = 𝐻† (18) 

 (𝐴𝐻†)
𝑇

= 𝐴𝐻† (19) 

 (𝐻†𝐴)
𝑇

= 𝐻†𝐴 (20) 

 

The great advantage of the Moore-Penrose generalized matrix is the ability to solve easily a linear 

system 𝐴𝑥 =  𝑦 where 𝐴𝜖𝑅𝑚×𝑛 and 𝑦𝜖𝑅𝑚×𝑛, for the case where 𝐴 may be singular and not even 

squared [59]. 

For N distinct samples (𝑥𝑖 , 𝑦𝑖) where 𝑥𝑖 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛]𝑇𝜖 𝑅𝑛 and 𝑦𝑖 =

[𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝑛]𝑇𝜖 𝑅𝑚, considering an SLFN with ℎ hidden neurons so that, ℎ ≤  𝑁. A standard 

SLFN can be describe mathematically as: 

 
∑ ω𝑜𝑖𝑓(ω𝑖. 𝑥𝑗 + 𝑏𝑖)

h

i=1

= 𝑎𝑗 ,   𝑗 =  1, … ,𝑁 (21) 

 

Where 𝜔𝑖 is the vector of weights connecting the ith hidden layer neuron to the several 

inputs and 𝜔𝑜𝑖 is the vector of weights connecting the hidden layer to the output, 𝑏𝑖 is the bias of 

the ith hidden neuron and 𝜔𝑖. 𝑥𝑗 the inner product of ω𝑖 and 𝑥 .  

The 𝑁 cases can then be grouped in a hidden layer output matrix, 𝐻. 

 

 

H = [

f(ω1. x1 + b1) f(ω2. x1 + b2) ⋯ f(ωh. x1 + bh)

f(ω1. x2 + b1) f(ω2. x2 + b2) ⋯ f(ωh. x2 + bh)
⋮ ⋮ ⋱ ⋮

f(ω1. xN + b1) f(ω2. xN + b2) ⋯ f(ωh. xN + bh)

]  (22) 

 

And then rewrite the equation as: 

 𝐻ω =  𝑇 (23) 

 

Where  
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ωo  =

[
 
 
 
ωo1

𝑇

ωo2
𝑇

⋮
ωoh

𝑇]
 
 
 
   and  T =

[
 
 
 
t1

𝑇

t2
𝑇

⋮
tN

𝑇]
 
 
 
   (24) 

 

The Minimum Least-Squares method can now be applied to the previous linear system. 

 ω̂𝑜 =  𝐻†𝑇 (25) 

 

With 𝜔̂𝑜 being the smallest least square solution of the linear system, 𝐻𝜔𝑜 = 𝑇, and represents 

the output weights. T represent the targets and 𝐻†the Moore-Penrose generalized inverse of the 

hidden layer output matrix [59]. 

ELM can be used for classification and regression achieving the smallest training error, 

being a clear advantage when comparing with back-propagation algorithms that stop at local 

minimums. Besides its simplicity, applications in several areas have shown that ELM is much 

faster when compared with gradient based algorithms and produces good generalization [59]–

[62].  

 

3 Methodology 

 

 This work is oriented to the application in the clinical area in order to facilitate physicians 

and gait experts in analyzing and assessing patients gait and treatments effectiveness. Among the 

several factors that difficult the proliferation of such systems for the clinical area are the cost of 

the systems, the need of expertise for setting these systems, being able to understand their results, 

and the difficulty to obtain or generate patient-oriented normative data. In order to culminate some 

of the enunciated roadblocks, the approaches presented make use of knee and hip sagittal angles 

that can be obtained by every vision system that possesses two cameras. Furthermore, CIs are 

used to generate subject-specific joint angle reference profiles and cyclograms are generated to 

facilitate visualization and obtain quantifiable measurements of interest to gait analysis. We can 

view this work as two steps:  

1) Creation and training of the CI methods to generate subject-specific joint angle 

profiles→ BNN and ELM algorithms are compared when generating subject-specific 

joint angle reference profiles for the knee and hip. Furthermore, these methods are 

compared to standard reference curves present in the literature. 
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2) Gait analysis and assessment of subject with cerebral palsy using cyclograms and 

the CI generated curves→ Knee and hip angle curves are generated using a CI method 

according to the characteristics and trial speed of a cerebral palsy patient. These healthy 

specific reference curves of the patient are then used to generate a cyclogram that can be 

compared to the real patient cyclogram. In other words, CI is used to generate angle 

curves as if the patient was healthy. This curve and its features permit a comparison and 

assessment of a patient gait. 

 

3.1 CI Considerations 

 

 The present work used a public dataset from the Laboratory of Biomechanics and Motor 

Control at the Federal University of ABC, Brazil [63]. The dataset contains pre-processed lower-

body kinematic data of 42 healthy volunteers. It was one of the most complete datasets found with 

such characteristics. To train the BNN and ELM, the knee and hip angles of the male’s subjects 

(young and old), on over-ground walking at three different speeds (slow, comfortable and fast) 

were used as targets. This data consists, for the young group, of a target matrix composed by 42 

columns (14 young male’s × 3 strides) and 101 rows (marker angles normalized to 101 points) 

and for the old group of 30 columns (10 male’s x 3 strides) by 101 rows. The inputs fed to the 

CI's were age, height, weight and speed of the subject trial, all normalized between 0 and 1. The 

target amplitudes of the joint angles were also normalized for improved results in CI methods and 

a reliable comparison. 

The accuracy was measured in terms of Mean Squared Error (MSE) for both algorithms 

which consists in the average squared error between the BNN output and the target. Since both 

network output and target are angular curves, MSE will be the mean of the angular distance 

between BNN results and targets and is given by: 

 

𝑀𝑆𝐸 =
1

𝑁
∑ (

1

101
∑(𝜃𝑡,𝑘 − 𝜃𝐶𝐼,𝑘)

2
100

𝑘=0

 )

𝑁

𝑖=1

 (26) 

  

Where N is the number of train/test samples and 𝜃𝑡,𝑘 and 𝜃𝐶𝐼,𝑘 are respectively, the target value 

and the CI output at k% of the gait cycle. 

Table 1 shows the data division used for the two methods and normalization range used. 

 



18 

Table 1. Data Normalization Ranges. 

Method 
Input 

Range 

Target Range 

  Knee       Hip 

Accuracy 

Measurement 

Data Division 

Train (%)    Test (%)   Validation (%) 

BNN [0,1] [0,1]     [-1,1] MSE      70               25                 5 

ELM [0,1] [0,1]     [-1,1] MSE      75               25                 - 

 

Different networks were generated for dominant/non-dominant limb and young/old group 

for both knee and hip angles. 

The CI’s were implemented using Matlab in a computer with an Intel i7-6700, 2.90 GHz 

processor and 16,0 GB RAM. The Deep Learning Toolbox™ was used for the neural networks 

and a self-written script for ELM. 

The criteria for validation was based on generating realistic accurate and smooth curves 

for two subjects out of the training set. For this reason, and because of the lack of data, ELM 

validation data was assigned to the training set. In the BNN case the validation data percentage 

was kept at the lowest permitted by the Deep Learning Toolbox™. 

For BNN, the number of hidden units was iterated from 4 to 50 and each network topology 

was trained and tested 3 times. For ELM, the number of hidden neurons were iterated from 4 to 

50 and trained/tested 50 times.  

The activation function of the hidden layer neurons used in both algorithms was the 

sigmoid and the output activation functions were kept linear. 

Figure 7 shows the structure of the single hidden layer neural network were 𝜃0 to 𝜃100 

represent the angle values from 0% to 100% of the gait cycle. An example of an joint curve is 

represented in Figure 9. 
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Figure 7. Single hidden layer neural network structure. 

 

3.2 Cerebral Palsy gait assessment using cyclograms  

 

 Data from a cerebral palsy patient with 23 years was obtained and made publicly available 

by authors [64]. This data contains anthropometric data of the patient, EMG and force plate data, 

and kinematic data. This kinematic file contains the displacement of 15 markers of the patient 

lower body in the 𝑥, 𝑦 and 𝑧 coordinates. It was recorded using Vicon motion analysis system 

(Vicon Motion Systems, Inc., Lake Forest, CA) at 50Hz for the duration of 1.50 seconds. All files 

types given were only compatible with Gaitlab software, which is currently deprecated. OpenSim 

was the chosen software for this purpose. Using excel and Matlab, the kinematic file (.kin) was 

read and organized into a matrix. The columns contained the several markers coordinates and the 

lines correspond to the value of that coordinate for the respective time of sampling. Every marker 

displacement data was filtered using an 4ºth order zero-phase-shift Butterworth filter. The cut-off 

frequency was 6 Hz and was chosen by residual analysis [65] rather than Fourier Transform 

because such analysis is as reliable due to the presuppose that the filters and their cut-off 

frequency are ideal [66]. Residual analysis explanation and results are presented further ahead in 

the present chapter. Once again, Excel was used to create a trace (.trc) file required to visualize 

the experiment in OpenSim software. OpenSim GUI rotation method was used to match data 

orientation with OpenSim coordinate system. Furthermore, OpenSim was used to solve the 

Inverse Kinematics (IK) problem that yield both knee and hip angles. This open source software 

contains several human body models that can be scaled using anthropometric information and 
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markers displacement data emulating the recorded patient trial. Detailed information about 

OpenSim software and procedures previously mentioned can be found in Section 3.2.3.  

Force plate information was used to extract heel strike and toe off moments for both limbs 

and is displayed in Figure 8.  

 

 

Figure 8. Force Plate Information. 

 

The available force plate information contains only one step of each limb, since a complete gait 

cycle encloses the moment of heel strike up to the subsequent moment of the same limb heel 

strike. OpenSim was used to visually obtain such events times and confirm force plate 

information.  

With these events times, the knee and hip angles were reduced to one gait cycle and 

interpolated to 100% in order to allow comparisons. Results of the right hip and knee angles for 

the patient are presented in Figure 9. 

  

 

Figure 9. Right hip and knee angle curve for cerebral palsy patient. 
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The authors from where displacement data was obtained, present an entire chapter 

dedicated to this patient [64], from the medical history to the kinematic and kinetic evaluation. 

Even though, only the right limb curves are presented. A very close match was obtained for knee 

angle curve when comparing the obtained with presented results. Nevertheless, right hip angle 

curve results needed an offset correction. It is common for authors to consider neutral position as 

a pelvic tilt of 12º to 13º degrees, nevertheless, OpenSim model Gait2354 considers 0º degrees 

pelvic tilt with respect to the ground. This will then reflect in an offset in hip flexion that needs 

to be corrected. A 10º degrees offset was added to the hip flexion. This is a typical tilt value and 

is recommended in OpenSim user manual when comparing curves [67].  

 

3.2.1 Symmetry Analysis Using Bilateral Cyclograms  
 

 When using bilateral cyclograms the synchronized plot of left against right limb were 

created and the enclosed area of the cyclograms was calculated. Furthermore, a linear regression 

is used to fit the coordinates 𝑥 and 𝑦 that correspond, respectively, to the right and left limb angles 

for the several moments that constitute the gait cycle. Considering 

(𝑥0, 𝑦0), (𝑥1, 𝑦1), . . . , (𝑥100, 𝑦100) the pair of angles of right and left limb for the entire gait cycle 

and using linear regression relation present in Equation (27). 

 𝑦 =  𝛽1𝑥 + 𝛽0 + 𝜀 (27) 

 

Where 𝛽0 is the value for the 𝑦 axis interception, 𝛽1 is the slope and 𝜀 the error term. The 

following system of equation is created and can be solved in Matlab. 

 

[

𝑦0

𝑦1

⋮
𝑦100

] =  [

1 𝑥0

1 𝑥1

⋮ ⋮
1 𝑥100

] [
𝛽0

𝛽1
] (28) 

 

The slope of the regression is then used to calculate the inclination angle 𝜃. 

 𝑡𝑎𝑛(𝛽)  =  𝜃  (29) 

 

The angular distance 𝜃45 is obtain by subtracting 𝜃 by 45º to yield the cyclogram deviation from 

the perfect symmetry. More precisely θ45º = |45º − 𝜃|. For an ideal gait the area of such 

cyclogram would be 0 𝑑𝑒𝑔𝑟𝑒𝑒𝑠2 and the line would align perfectly with the 45º degrees line. 
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Nevertheless, such results are not possible even for perfectly healthy subjects. SI was, in a first 

approach, calculated as the ratio of ROM of the non-dominant limb to ROM of the dominant limb. 

 
𝑆𝐼 =  

𝑅𝑂𝑀𝑁𝑜𝑛−𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑡

𝑅𝑂𝑀𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑡
  (30) 

 

In order to improve the analysis, the same methodology was applied to the ELM generated 

curves, permitting this way a comparison of the patient results to what would be expected if such 

subject was healthy (ELM generated curve). The difference of the SI of patient and the SI of ELM 

is represented and calculated as:  

 𝛥𝑆𝐼 = 𝑆𝐼𝑃𝑎𝑡𝑖𝑒𝑛𝑡 − 𝑆𝐼𝐸𝐿𝑀 (31) 

 

The same comparison philosophy was applied to the unsynchronized cyclograms. Similar 

methodology to the one used in [44] was applied to make a more accurate alternative of the 

symmetry evaluation with unsynchronized cyclograms. 

The unsynchronized cyclograms are built by plotting right versus left limb like shown in 

Figure 10. 

 

Figure 10. Right and left knee unsynchronized angle curve. 
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For each pair moment of the gait cycle, i.e., (𝑥𝑖, 𝑦𝑖) for the right limb and 

(𝑥𝑖+50, 𝑦𝑖+50) for the left limb (see Figure 10 and Figure 11), the Euclidean distance to 45º 

degrees line is calculated (𝑐𝑗 𝑎𝑛𝑑 𝑑𝑗 respectively). Furthermore, the ratio of the distance from 

(𝑥𝑖, 𝑦𝑖) and (𝑥𝑖+50, 𝑦𝑖+50) to the origin (𝑎𝑗 𝑎𝑛𝑑 𝑏𝑗 respectively) is taken into account yielding the 

symmetry equation for both hip and knee marker. 

 

𝑆𝑀𝑎𝑟𝑘𝑒𝑟 =

∑ (

𝑎𝑗

𝑏𝑗
+

𝑐𝑗
𝑑𝑗

2
)50

𝑗 = 0

𝑁
 

(32) 

 

Where j represent every instance of the gait cycle and N is 101, the total number of instances.  

Figure 11. Ratios for SI calculation using unsynchronized bilateral cyclogram. 

 

Overall symmetry was visualized in polar coordinate system [44]. The adapted equation 

used to calculate the overall symmetry is the following. 

 
𝑆 =  

√𝑆𝐾𝑛𝑒𝑒 + 𝑆𝐻𝑖𝑝

1.41
 (33) 
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Where 1.41 is the normalization factor so that S is a value between 0 and 1. When using SI 

together with unsynchronized cyclograms in such way, it can be considered the phase shift 

occurring between joints of both limbs. Furthermore, this approach is sensitive to variations of 

the right and left limb range of motion because of the point-by-point comparison. Later, when 

analyzing the results, it becomes clear the importance of such characteristics in making an 

accurate evaluation of the patient symmetry. 

 

3.2.2 Residual Analysis and Experimental Data Filtering 
 

 As previously mentioned, residual analysis was made in order to choose cutoff frequency 

of the 4ºth order zero-phase-shift Butterworth filter (see Section 3.2). In this section the 

procedures associated to residual analysis and the cerebral palsy patient raw data filtering are 

described. Such analysis presents an alternative to the commonly used spectral analysis in 

frequency domain using Fourier transform. Typically, in spectral analysis, cutoff frequency is 

chosen for the frequency at which 95 to 99% of the signal power lays underneath. Whereas in 

residual analysis the cutoff frequency is chosen based on the residual, i.e., the difference of the 

filtered data at several frequencies to the original unfiltered data. In this way, there is a better 

understanding and control of the trade-off between the signal attenuation and the noise allowed 

to pass. Furthermore, spectral analysis cutoff frequency selection assumes that the filter is ideal 

and has infinitely sharp cutoff [65], [66].  

The procedure for the residual analysis consists in creating the residual of the marker and 

fitting a linear regression to the linear segment of the residual. Using the y-interception value of 

the regression, a horizontal line with same value is traced (Y line). The election cutoff frequency 

is made by identifying the frequency for which the Y line intersects the residual, for an equal 

amount of signal distortion and amount of noise to pass. An example of the residual for the Great 

Trochanter right marker is presented in Figure 12. 
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Figure 12. Residual Analysis for Great Trochanter Right Marker. 

 

This procedure can be better understood by thinking in the case where signal is only 

constituted by random noise. The residual of random noise is a straight line with negative slope 

with an intersection for 0 Hz and the horizontal axis intersection at the Nyquist frequency ( 
𝑓𝑠

2
 ). 

Our best estimation of the noise its then the regression to the linear section of the residual and the 

y-intersection of the fitted regression line is the Root Mean Square (RMS) of the noise. Due to 

the signal distortion of the filtering, when data is constituted of signal plus noise, the residual 

magnitude will surpass the linear line for increasingly smaller cutoff frequencies [65], [66].  

For the data filtering a 2th order Butterworth filter was used. Nevertheless, data is again 

filtered in the inverse direction to correct the phase lag introduced by the filter. It creates in this 

way a 4th order zero-phase-shift Butterworth filter. 

 

3.2.3 OpenSim Scaling and Inverse Kinematics 
 

 OpenSim is an open source software developed by the National Institute of Health (NIH) 

from Stanford University. Among many features, it permits to analyze musculoskeletal models 

and gait simulations. It was used in this work to visualize and obtain knee and hip angles for the 

subject diagnosed with CP. For this purpose, two main steps involving the software were taken. 

The first was scaling a generic musculoskeletal model. Starting with the generic musculoskeletal 

model available, one can scale in order to match subject-specific anthropometric characteristics. 
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The second step was to use the scaled model together with experimental marker positions and 

solve the inverse kinematic problem in order to obtain knee and hip sagittal angles. 

 

3.2.3.1 Scaling  
 

In order to scale the generic model, the marker placement used by Fukuchi et. al [63] had 

to be replicated in the model. These markers, named virtual markers, are used to compare the 

model body segment size to the subject body segments extracted out of the experimental marker 

position of the trial in order to determine the scaling factors.  

 

3.2.3.2 Inverse Kinematics 
 

OpenSim IK tool uses the experimental data of the subject trial at each frame and 

computes the set of joint angles that yield the closest result to the experimental data. For this 

purpose, OpenSim solves the weighted least squares optimization problem to minimize the 

distance between the virtual marker and the experimental markers. For every frame of the trial 

the IK problem is solved, originating a vector of joint angles that minimizes the weighted sum for 

all markers (see eq.(34) ). 

 
min

𝑞
[ ∑ 𝜔𝑖‖𝑥𝑖

𝑒𝑥𝑝
− 𝑥𝑖(𝑞)‖2

𝑖 ∈ 𝑚𝑎𝑟𝑘𝑒𝑟𝑠

] (34) 

 

Where q is the vector of joint angles, 𝑥𝑖
𝑒𝑥𝑝

 the position of the experimental marker i, 𝑥𝑖(𝑞) the 

position of the corresponding virtual marker, and 𝜔𝑖 is the weight attributed to the error of the ith 

marker and represents the importance of that marker error for the least squares problem. In the 

present work such weights were kept to 1 for all markers, which can be seen as giving the same 

level of concern for all marker errors in the problem. The IK accuracy is shown in the message 

window of OpenSim for every frame and serves as good guidance for the adjustment of the virtual 

marker, since the misplacement of these, in relation to experimental data will result in bigger joint 

angle error [68]. 
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4 Data Description 

 

The used dataset is composed of raw and processed lower-body kinematic data of 24 

young adults and 18 old adults obtained through a motion-capture system with 12 cameras 

(Raptor-4; Motion Analysis Corporation, Santa Rosa, CA, USA) on 10 meter over-ground walk 

and using a dual-belt, instrumented treadmill (FIT; Bertec, Columbus, OH, USA).  

Overground trials were made at 3 different speeds: self-selected comfortable speed, slow 

(30% slower) and fast (30% faster). Each participant’s comfortable speed was determined during 

the 10-meter over-ground walking familiarization period. The 45 healthy subjects’ characteristics 

(age, height, weight) are displayed in Table 2 and further detailed in Annex A. The Young/Old 

group division was done by dataset authors and comprises the ranges of 27-37 and 50-84 years 

old. 

 

Table 2. Dataset characteristics. 

Age 

Group 
Gender Number of Persons Mean Age 

Mean Height 

(cm) 

Mean Weight 

(kg) 

Old F 8 60.1 154.8 61.09 

Old M 10 64.8 167.4 71.58 

Young F 10 25.9 162.9 58.92 

Young M 14 28.8 176.9 75.17 

 

Figure 13 shows the anatomical markers used for obtaining kinematic data. 
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Figure 13. Markers protocol. Anterior (A) and posterior (B) views. Markers shown black are 

removed during the trial recording. Image from [63]. 

 

5 Results and Discussion  

5.1 Computational Intelligence 

 

The main objective of the present study was to observe which of the two Computational 

Intelligence (CI) methods, BNN and ELM, present more accurate results when used to generate 

reference curve profiles based on subject height, weight, age, and gait speed for the knee and hip 

joint angles. The best accuracy results for the BNN and ELM are shown in Table 3 and Table 4, 

for young and old man dominant limb and young and old man non-dominant limb respectively. 
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Table 3. CI’s best accuracies for young and old men dominant limb. 

Limb Method 
Age 

Group 

Train 

Accuracy 

MSE 

Test 

Accuracy 

MSE 

Validation 

Accuracy 

MSE 

Knee 

BNN 
Young 

Old 

0.0001 

0.0010 

0.0022 

0.0022 

0.0009 

0.0027 

ELM 
Young 

Old 

0.0036 

0.0045 

0.0061 

0.0089 

- 

- 

Hip 

BNN 
Young 

Old 

0.0015 

0.0025 

0.0069 

0.0784 

0.0023 

0.0027 

ELM 
Young 

Old 

0.0463 

0.0330 

0.0215 

0.0349 

- 

- 

 

Table 4. CI’s best accuracies for young and old men non-dominant limb. 

Limb Method Age Group 

Train 

Accuracy 

MSE 

Test 

Accuracy

MSE 

Validation 

Accuracy 

MSE 

Knee 

BNN 
Young 

Old 

0.00004 

0.00008 

0.0010 

0.0011 

0.0006 

0.0013 

ELM 
Young 

Old 

0.0037 

0.0034 

0.0078 

0.0094 

- 

- 

Hip 

BNN 
Young 

Old 

0.0010 

0.0002 

0.0021 

0.0030 

0.0029 

0.0038 

ELM 
Young 

Old 

0.0394 

0.0378 

0.0330 

0.0544 

- 

- 

 

 BNN’s test results proved to be better for dominant knee and hip networks except for the old 

group hip, where ELM performed slightly better. BNN presented better results in every situation 

for non-dominant hip and knee. Nevertheless, in both dominant and non-dominant cases, similar 

test performances were obtained. Difference in accuracies were never superior to 0.0084, except 

for the hip results from young subjects. ELM test accuracies were lower for the young and old 

hip case in both dominant and non-dominant limbs. 

 BNN high accuracies also happened to decrease for the hip of the old dominant limb but not 

for the non-dominant. By contrasting such results, it was hypothesized that such decrease might 

be related to the misrepresentation of the test subjects’ characteristics and trial speed in the 
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training set. Furthermore, the reduction of hidden units for the BNN in hip old dominant case 

should have had compensated generalization accuracy (see Table 5), but such did not happen. 

This could be attributed to the lack of data for certain characteristics in the training set, i.e., since 

data division is randomly assigned it might choose fewer cases representative of a certain trial 

speed or a conjugation of subjects’ characteristics and speed. This will translate in a predominance 

of the existing cases and a poorer modeling capacity. For every case, an independent network is 

generated with randomly attributed weights and bias, making it difficult to analyze such 

discrepancies, since these might be the cause of the modeling capability of the network [69]. The 

same procedures were performed for the treadmill data and accuracies results can be found in 

Annex C. 

 Table 5 presents the number of hidden neurons that resulted in the best accuracies for several 

BNNs and ELMs. 

 

Table 5. CI’s topologies for best test accuracies 

Limb 
Age 

Group 

Dominant/Non-

Dominant 

Nº Hidden Neurons 

BNN                 ELM 

Knee 

Young 
D 16                          5 

ND 17                          4 

Old 
D 8                           4 

ND 20                          6 

Hip 

Young 
D 20                          4 

ND 11                          4 

Old 
D 9                           4 

ND 15                          4 

 

For every BNN and ELM created, two subjects outside of the training and validation set 

were used to test CI’s capabilities of generating accurate and smooth subject-adapted joint angle 

curves. The selection of these two subjects for every network was based on the overall difference 

(largest and smallest) of his characteristics (age, height, weight, gait speed) and the mean 

characteristics of the subjects used for training. The test subject that showed to have lower 

difference between his characteristics and the train subjects mean characteristics will be referred 

as the “closer to the mean subject” and the subject who showed greater difference, the “further 

from mean subject”. 
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Table 6 contains the MSE of the joint angle curves generated by the CI’s to the real test 

subject joint angle curve for the subject closer to the mean and  

Table 7 contains the MSE for the subject further from the mean. 

 

Table 6. Error for test subject further from subject’s mean characteristics. 

 

Table 7. Error for test subject closer from subject’s mean characteristics. 

 

Figure 14 and Figure 15 shows the real and CI generated flexion/extension joint angle 

curves for dominant knee and hip of the test subject further from the mean. Figure 16 and Figure 

17 present the same data for the test subject closer to the mean. 

Network Information Subject Input Information CI’s MSE 

Limb 
Age 

Group 
D/ND Age 

Height 

(cm) 

Weight 

(kg) 

Gait Speed 

(m/s) 
BNN ELM 

Knee 

Young 
D 30 171.0 95.4 1.27 0.0053 0.0028 

ND 24 184.0 61.1 1.65 0.0004 0.0028 

Old 
D 55 165.6 79.1 0.89 0.0044 0.0006 

ND 84 155.5 66.4 1.00 0.0009 0.0008 

Hip 

Young 
D 36 182.5 64.0 1.34 0.027 0.0021 

ND 37 155.0 69.6 0.69 0.001 0.031 

Old 
D 84 155.5 66.4 1.00 0.0009 0.043 

ND 84 155.5 66.4 1.00 0.002 0.003 

Network Information Subject Input Information CI’s MSE 

Limb 
Age 

Group 
D/ND Age 

Height 

(cm) 

Weight 

(kg) 

Gait Speed 

(m/s) 
BNN ELM 

Knee 

Young 
D 33 179.3 75.9 0.96 0.0003 0.003 

ND 33 179.3 75.9 0.96 0.0007 0.002 

Old 
D 68 167.0 70.3 1.30 0.029 0.005 

ND 68 167.0 70.3 1.30 0.0001 0.0016 

Hip 

Young 
D 31 172.9 77.9 1.48 0.001 0.014 

ND 33 179.3 75.9 0.68 0.005 0.024 

Old 
D 68 167.0 70.3 1.58 0.001 0.023 

ND 62 164.5 70.5 0.78 0.005 0.094 
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Figure 14. Dominant joint angle knee curves (generated and real) for young subject further from 

the mean. 

 

Figure 15. Dominant joint angle hip curves (generated and real) for young subject further from 

the mean. 
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Figure 16. Dominant joint angle knee curves (generated and real) for young subject closer to the 

mean. 

 

Figure 17. Dominant joint angle hip curves (generated and real) for young subject closer to the 

mean. 

 

For the case of the test subject further from subjects mean characteristics, knee ELM 

accuracies are better or very similar to knee BNN accuracies. Accuracies for hip show a better 

performance of the BNN. For the closer to the mean test subject accuracies are predominantly 

favorable to the BNN. Nevertheless, BNNs are not capable of generating smooth joint angle 

curves either for the knee nor for the hip (see Figure 14 to Figure 17).  On the contrary, ELMs 

present in every case smooth joint angle curves. Test MSE’s obtained for the best male subject 

when generating knee angular reference profiles were similar to the ones presented by Ferreira et. 
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al [29]. There were not found any publications with the generation of hip reference joint profiles 

that could be compared with the results obtained in the present dissertation. 

Figure 18 to Figure 21 show the joint angles prediction for test subjects (For the knee: 

age 33, height 179 cm, weight 75 kg; For the hip: age 25, height 174 cm, weight 83 kg) at the 

three distinct speeds (slow, comfortable, fast) together with the literature reference joint angle 

curve. CIs predictions and the literature joint angle curve were both compared to the real subject 

joint curves.  

 

Table 8 contains the MSE results as well as the trials concrete speeds. 

Figure 18. Dominant joint angle knee curve generation for young subject at several speeds and 

literature reference curve. 
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Figure 19. Dominant joint angle hip curve generation for young subject at several speeds and 

literature reference curve. 

 

 

Figure 20. Dominant joint angle knee curve generation for young subject at several speeds and 

literature reference curve. 
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Figure 21. Dominant joint angle hip curve generation for young subject at several speeds and 

literature reference curve.  

 

Table 8. CI’s and literature MSE at different gait speeds for young subjects. 

Limb Gait Speed (m/s) 
Literature [70] 

MSE 

CI’s MSE 

BNN ELM 

Knee 

0.68 0.017 0.014 0.005 

0.96 0.016 0.004 0.003 

1.29 0.021 0.0002 0.003 

Hip 

0.92 0.16 0.024 0.011 

1.32 0.12 0.004 0.022 

1.56 0.11 0.004 0.026 

 

For the test subject used, BNN and ELM presented significant improvements when 

compared with the literature curve. The literature MSE increased for faster gait speeds, for the 

case of the knee. BNN showed better results specifically for the knee, with MSE decreasing for 

faster gait speeds. Nevertheless, joint angle curves originated were not smooth. ELM presented 

better or similar results as the BNN for knee, as already shown in [29], and slightly worse results 

for the hip. The knee and hip curves of all the test subjects can be found in Annex B. 

  Table 9 presents the mean train time for ELM and BNN for the number of neurons of the 

networks which originated the best accuracies. 
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Table 9. Training Time for ELM and BNN. 

 

 ELM learning speed was 10,000 times faster than BNN for every case. In Huan et. al [71] 

ELM learning speed surpassed BNN by more than a 1,000 times. The discrepancy in the speedup 

between these two works might reside in the training set size used, which was considerably 

smaller for the case of the present work. The number of hidden layer neuron was always smaller 

for ELM and training times obtained for the same number of hidden units still put ELM ahead by 

10,000 times with neglectable loss of generalization (lost generalization < 0.004 for the knee and 

< 0.03 for the hip). 

Based on obtained results both methods outperformed literature reference curve. ELM was 

able to generate smooth subject-specific joint angle curves and presented similar generalization 

accuracy to BNN, reason why it was chosen for the continuation of this work. 

  

5.2 Hip-Knee Cyclogram analysis using ELM 

 

The patient and ELM hip-knee cyclograms were compared using Dynamic Time Warp 

(DTW). Furthermore, the standard curves of the hip and knee used in [64] were used to generate 

the standard cyclogram and to evaluate the results of a comparison using subject-specific curves 

counterposed to a standard curve.  

When comparing DTW results between ELM and the patient curve to standard curve, 

DTW’s for the knee show a difference of 592.48º degrees, being both ELM and literature 

reference curve very similar in shape. The hip results show a substantial difference of 545.74º 

degrees. ELM learned correctly the influence of speed on hip range of motion. The increase of 

speed seems to accentuate hip flexion and decrease/narrow extension. On the other hand, the 

Network Information CI’s Training Times (seconds) 

Limb Age Group D/ND BNN ELM 

Knee 

Young 
D 7.1438 0.0003 

ND 9.4813 0.0003 

Old 
D 1.6235 0.0001 

ND 8.5998 0.0001 

Hip 

Young 
D 32.0725 0.0007 

ND 5.6565 0.0003 

Old 
D 2.0 0.0002 

ND 4.8022 0.0003 
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standard curve used in [64] from Winter et. al [66] was age matched, but did not take into account 

the several other parameters that influence gait and thus does not constitute a reliable curve for 

comparison. Results from the DTW comparison are presented in Table 10. Hip-knee cyclograms 

for the right/dominant limbs are presented in Figure 22 for ELM, Figure 24 for the reference 

cyclogram from literature, and Figure 24 for CP patient. Area of the dominant limb cyclogram 

for the patient was bigger than the ELM cyclogram. This might be due to the fact that patient 

presented a knee extension of approximately 10º degrees together with greater amounts of hip 

extension. One should notice that knee recurvatum is a sign of pathological gait. These two factors 

might have led to a bigger conjoint movement since knee recurvatum happens nearly at the same 

time that hip achieves minimum angle, translating in this way, in a bigger area and the stretched 

look of the cyclogram (see Figure 9 and Figure 24).  

 

 

Figure 22. Dominant Hip-Knee Cyclogram Generated using ELM. 
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Figure 23. Dominant Hip-Knee Literature Reference Cyclogram. 

 

 

Figure 24. Dominant Hip-Knee Cyclogram Of Cerebral Palsy Patient. 
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Patient knee and ELM curve are similar and hip curves, although very distinct, present 

similar ROM. Due to the fact that perimeter is more sensitive to individual joint changes than 

area, the differences between patient and ELM generated cyclogram perimeter weren’t so 

accentuated. Nevertheless, patient cyclogram displayed a bigger perimeter than his healthy 

expected equivalent generated using ELM. 

 

Table 10. Dynamic Time Warp Right Limb Cyclograms. 

Joint ELM- CP Patient Literature Reference- CP Patient 

Knee 454.5 651.5 

Hip 794.6 308.0 

 

Table 11. Right Limb Area, Perimeter and 𝑃𝐴 of Hip-Knee Cyclograms. 

Feature ELM 
Literature Reference 

Curve 
Patient 

Area 1197.2 1292.0 1828.5 

Perimeter 184.7 182.5 194.4 

PA 5.3 5.0 4.5 

 

 The PA ratio, as mentioned previously, gives an indication of the shape. It can be seen 

that ELM healthy expected profile has a ratio closer to the literature reference curve than to the 

patient curve. The shape of the patient is difference from a healthy expected cyclogram, and 

such reflects slightly in the PA ratio. 

 

5.3  Symmetry Analysis Using Bilateral Cyclograms 

 

In the present section results of bilateral Cyclograms, namely hip-hip and knee-knee, are 

displayed. The synchronized cyclogram were used to get insights of patient gait symmetry. The 

subject specific synchronized cyclogram created using ELM are also displayed and serve as 

support for patient evaluation. Synchronized cyclogram of a perfectly symmetrical gait would 
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correspond to a line that crosses the origin of unitary slope and zero area. Furthermore, the 

orientation of such line would be 45º degrees. This property can serve us to evaluate the symmetry 

state of patient knee and hip joints. Since even among healthy subjects there is no perfect 

symmetry, ELM generated cyclograms give us support in discerning what is an acceptable 

deviation from perfect symmetry. SI presented in Table 12 and Table 13 is based on [42] and is 

calculated as the ratio between ROM of non-dominant limb and ROM of dominant limb. 

Furthermore, difference of patient SI to ELM generated cyclogram SI is calculated for comparison 

(see Equations (30) and (31)) replacing the previous comparison measure, the ideal symmetry (SI 

= 1).  

 

Table 12. Area and θ45º for Hip-Hip Synchronized Cyclograms. 

Feature ELM Patient 

Area 11.9266 314.1163 

θ45º  3.2330 0.4609 

SI 1.1115 1.0063 

 

Table 13. Area and θ45º for Knee-Knee Synchronized Cyclograms. 

Feature ELM Patient 

Area 220.9088 477.4071 

θ45º  0.7071 1.2104 

SI 1.0243 0.9591 

 

As can be seen by the results in Table 12 and Table 13 patient has a great deviation from the 

perfect symmetry expected area (Ideal area, A = 0) and when compared to ELM areas which stand 

as the expected area for a subject of such characteristics, it still presents differences of more than 

double for the knee 256.4983 𝑑𝑔𝑟𝑒𝑒𝑠2 and 302.1897 𝑑𝑒𝑔𝑟𝑒𝑒𝑠2 of difference for the hip area. 

The 𝛥SI was of 0.0652 for the knee and 0.1052 for the hip. Naturally, greater the difference, 

greater will be the asymmetry. It can be noticed that for a comparison with the ideal symmetry 

(SI=1) results would be more symmetrical. In the following figures are displayed the 

unsynchronized cyclograms of both patient and ELM. 
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Figure 25. Unsynchronized Hip Cyclogram Of Cerebral Palsy Patient. 

 

 

Figure 26. Unsynchronized Knee Cyclogram Of Cerebral Palsy Patient. 
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Figure 27. Unsynchronized Hip Cyclogram Generated Using ELM. 

 

 

Figure 28. Unsynchronized Knee Cyclogram Generated Using ELM. 
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By visualizing both Cyclograms together with the 45º degrees perfect symmetry line, we 

can have a better understanding of the differences between the pathological and correspondent 

healthy. When using synchronized cyclograms, area is a good indicator of abnormally, 

nevertheless, by visualizing the unsynchronized cyclogram we can easily identify the discrepancy 

between right and left limb. SI based on unsynchronized cyclograms will penalize the abnormal 

knee negative extension since it contributes to a bigger range of movement of the right limb while 

left limb remain fairly normal. SI of the hip values were almost the same for ELM and patient, 

nevertheless, knee symmetry was 1.6 times lower for the patient, emphasizing the presence of 

some abnormality. The enclosed area of the synchronized cyclograms reinforce such results with 

a significant difference to the expected healthy curve, nevertheless cyclogram orientation did not 

shown conclusive results. By using unsynchronized cyclogram anomaly can be clearly visualize 

and quantified by comparison to the expected healthy results. The results for overall SI for both 

ELM generated curve and patient are present in Table 14. 

 

Table 14. Overall SI for ELM and Patient. 

 ELM Patient 

SI 0.67 0.57 

 

SI results are considerably different using unsynchronized cyclograms than when ROM’s 

are used. When unsynchronized cyclograms were used, 𝛥SI of the knee was of 0.2410 and 0.0699 

for the hip. Overall 𝛥SI is then of 0.1 which is a much less symmetrical gait than ROM’s based 

SI indication. This results seem to be coherent with patient gait evaluation present in [64], 

furthermore, Pilkar et. al [44] results were also shown to be lower when using such approach. 

 

6 Conclusion and future work 

 

 For test subjects (For the knee: age 33, height 179 cm, weight 75 kg; For the hip: age 25, 

height 174 cm, weight 83 kg) at the three distinct speeds (slow, comfortable, fast), both CIs 

generated reference curves closer to a patient real curves than the literature standard curve. The 

capability of generation of this healthy profile for specific subject characteristics and gait speed 

permit the use of this methodology in gait assessment in a broad range of impairments. Such 

results were reinforced for increasing gait speeds.  
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For the BNN, the lack of smoothness of the curves for subjects at the edge of the train 

data set was a recurrent issue, although accuracies were higher than with ELM, for most cases. 

For the case of the test subject further from subjects mean characteristics, knee ELM results are 

better or similar to BNN, nevertheless, hip accuracies were higher for the BNN. Furthermore, 

curves generated with ELM were always smooth, suggesting that this CI method is the indicated 

CI to generate knee and hip, subject-specific, healthy joint angle curves for both dominant and 

non-dominant limbs. BNN was better suited for subjects closer to the mean characteristics of the 

data set, although generated curves need to be smoothed. 

 The use of the several types of cyclograms implied in the work permitted the visualization 

and extraction of data of relevancy for the gait analysis and assessment. The use of bilateral 

cyclograms and the Symmetry Index (SI) extracted allowed the comparison between the patient 

and subject-specific curves generated by ELM. This analysis brought insights on patient 

symmetry and its distance to his healthy expected results instead of the ideal unattainable 

symmetry. Furthermore, the SI obtained by unsynchronized cyclograms shown to be more 

sensitive to variations of the right and left limb range of movement (ROM) due to the point-by-

point comparison. The SI based on unsynchronized cyclograms takes into consideration the phase 

shift occurring between joints of both limbs that is not considered in the SI based on ROM.  

 In the future would be of interest the creation or acquisition of a much bigger dataset, as 

well as the application of the methodology to women. Regularization should be applied to CI’s in 

the future. 

 Further validation should be done when using unsynchronized cyclograms based SI and 

in using ELM healthy expected generated cyclograms as reference for comparison. Also, would 

be of interest to do a selection of main cyclograms features that would allow a deviation index 

out of ELM generated cyclograms, originating this way a subject-specific gait deviation measure. 

 The present work resulted in the article Pedro S. Cunha, João P. Ferreira, A. Paulo 

Coimbra, Manuel Crisóstomo, "Computational Intelligence Generation of Subject-Specific Knee 

and Hip Healthy Joint Angles Reference Curves". Presented at the 15th Mediterranean Conference 

on Medical and Biological Engineering and Computing, MEDICON2019. 
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Annex A 

 

Table 15. Healthy Subjects Input Observations Information. 

Subject 

Number 
Age Height (cm) Weight (kg) Gait Speed (m/s) 

1 25 172.50 74.30 0.85 

2 33 179.30 75.85 0.68 

3 24 184 61.05 0.90 

4 28 170.90 77.55 0.87 

5 25 174.20 83.15 0.92 

6 36 182.50 64 1.00 

7 32 192 77.55 0.93 

8 30 171 95.40 0.74 

9 23 180.60 89.30 1.09 

10 31 172.90 77.90 0.77 

11 28 185.50 79.05 0.99 

12 29 175.80 66.25 0.84 

13 22 180.70 61.50 0.97 

14 37 155 69.55 0.68 

1 25 172.50 74.30 1.22 

2 33 179.30 75.850 0.96 

3 24 184 61.05 1.28 

4 28 170.90 77.55 1.25 

5 25 174.20 83.15 1.32 

6 36 182.50 64 1.33 

7 32 192 77.55 1.34 

8 30 171 95.40 1.08 

9 23 180.60 89.30 1.48 

10 31 172.90 77.90 1.12 

11 28 185.50 79.05 1.32 

12 29 175.80 66.25 1.17 

13 22 180.70 61.50 1.42 

14 37 155 69.55 1.00 
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Table 16. CP Patient Information. 

 

 

Annex B 

 

Figure 29. Young Dominant Knee Test Subject 1 Results. 

1 25 172.50 74.30 1.62 

2 33 179.30 75.85 1.28 

3 24 184 61.05 1.64 

4 28 170.90 77.55 1.60 

5 25 174.20 83.15 1.56 

6 36 182.50 64 1.76 

7 32 192 77.55 1.61 

8 30 171 95.40 1.26 

9 23 180.60 89.30 1.96 

10 31 172.90 77.90 1.48 

11 28 185.50 79.05 1.67 

12 29 175.80 66.25 1.59 

13 22 180.70 61.50 1.71 

14 37 155 69.55 1.26 

Age Height (cm) Weight (kg) Gait Speed (m/s) 

23 170 69.5 1.24 
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Figure 30. Young Dominant Knee Test Subject 2 Results. 

 

 

Figure 31. Young Dominant Knee Test Subject 3 Results. 
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Figure 32. Young Dominant Knee Test Subject 4 Results. 

 

 

Figure 33. Young Dominant Knee Test Subject 5 Results. 
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Figure 34. Young Dominant Knee Test Subject 6 Results. 

 

 

 

Figure 35. Young Dominant Knee Test Subject 7 Results. 
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Figure 36. Young Dominant Knee Test Subject 8 Results. 

 

 

Figure 37. Young Dominant Knee Test Subject 9 Results. 
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Figure 38. Young Dominant Knee Test Subject 10 Results. 

 

 

Figure 39. Young Dominant Knee Test Subject 11 Results. 
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Figure 40. Young Dominant Hip Test Subject 1 Results. 

 

 

Figure 41. Young Dominant Hip Test Subject 2 Results. 
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Figure 42. Young Dominant Hip Test Subject 3 Results. 

 

 

Figure 43. Young Dominant Hip Test Subject 4 Results. 
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Figure 44. Young Dominant Hip Test Subject 5 Results. 

 

 

Figure 45. Young Dominant Hip Test Subject 6 Results. 
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Figure 46. Young Dominant Hip Test Subject 7 Results. 

 

 

Figure 47. Young Dominant Hip Test Subject 8 Results. 
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Figure 48. Young Dominant Hip Test Subject 9 Results. 

 

Figure 49. Young Dominant Hip Test Subject 10 Results. 
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Figure 50. Young Dominant Hip Test Subject 11 Results. 

 

 

Figure 51. Young Non-Dominant Knee Test Subject 1 Results. 
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Figure 52. Young Non-Dominant Knee Test Subject 2 Results. 

 

 

Figure 53. Young Non-Dominant Knee Test Subject 3 Results. 
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Figure 54. Young Non-Dominant Knee Test Subject 4 Results. 

 

 

Figure 55. Young Non-Dominant Knee Test Subject 5 Results. 
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Figure 56. Young Non-Dominant Knee Test Subject 6 Results. 

 

 

Figure 57. Young Non-Dominant Knee Test Subject 7 Results. 
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Figure 58. Young Non-Dominant Knee Test Subject 8 Results. 

 

Figure 59. Young Non-Dominant Knee Test Subject 9 Results. 
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Figure 60. Young Non-Dominant Knee Test Subject 10 Results. 

 

 

Figure 61. Young Non-Dominant Knee Test Subject 11 Results. 

 



70 

 

Figure 62. Young Non-Dominant Hip Test Subject 1 Results. 

 

 

Figure 63. Young Non-Dominant Hip Test Subject 2 Results. 
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Figure 64. Young Non-Dominant Hip Test Subject 3 Results. 

 

 

Figure 65. Young Non-Dominant Hip Test Subject 4 Results. 
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Figure 66. Young Non-Dominant Hip Test Subject 5 Results. 

 

 

Figure 67. Young Non-Dominant Hip Test Subject 6 Results. 
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Figure 68. Young Non-Dominant Hip Test Subject 7 Results. 

 

 

 

Figure 69. Young Non-Dominant Hip Test Subject 8 Results. 
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Figure 70. Young Non-Dominant Hip Test Subject 9 Results. 

 

 

Figure 71. Young Non-Dominant Hip Test Subject 10 Results. 

 



75 

 

Figure 72. Young Non-Dominant Hip Test Subject 11 Results. 

 

 

 

 

Figure 73. Old Dominant Knee Test Subject 1 Results. 
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Figure 74. Old Dominant Knee Test Subject 2 Results. 

 

 

Figure 75. Old Dominant Knee Test Subject 3 Results. 
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Figure 76. Old Dominant Knee Test Subject 4 Results. 

 

 

Figure 77. Old Dominant Knee Test Subject 5 Results. 
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Figure 78. Old Dominant Knee Test Subject 6 Results. 

 

 

Figure 79. Old Dominant Knee Test Subject 7 Results. 
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Figure 80. Old Dominant Knee Test Subject 8 Results. 

 

 

Figure 81. Old Dominant Hip Test Subject 1 Results. 
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Figure 82. Old Dominant Hip Test Subject 2 Results. 

 

 

Figure 83. Old Dominant Hip Test Subject 3 Results. 

 



81 

 
Figure 84. Old Dominant Hip Test Subject 4 Results. 

 

 

Figure 85. Old Dominant Hip Test Subject 5 Results. 
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Figure 86. Old Dominant Hip Test Subject 6 Results. 

 

 

Figure 87. Old Dominant Hip Test Subject 7 Results. 
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Figure 88. Old Dominant Hip Test Subject 8 Results. 

 

 

Figure 89. Old Non-Dominant Knee Test Subject 1 Results. 
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Figure 90. Old Non-Dominant Knee Test Subject 2 Results. 

 

 

Figure 91. Old Non-Dominant Knee Test Subject 3 Results. 
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Figure 92. Old Non-Dominant Knee Test Subject 4 Results. 

 

 

Figure 93. Old Non-Dominant Knee Test Subject 5 Results. 

 



86 

 

Figure 94. Old Non-Dominant Knee Test Subject 6 Results. 

 

 

Figure 95. Old Non-Dominant Knee Test Subject 7 Results. 
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Figure 96. Old Non-Dominant Knee Test Subject 8 Results. 

 

 

Figure 97. Old Non-Dominant Hip Test Subject 1 Results. 
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Figure 98. Old Non-Dominant Hip Test Subject 2 Results. 

 

 

Figure 99. Old Non-Dominant Hip Test Subject 3 Results. 
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Figure 100. Old Non-Dominant Hip Test Subject 4 Results. 

 

 

Figure 101. Old Non-Dominant Hip Test Subject 5 Results. 
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Figure 102. Old Non-Dominant Hip Test Subject 6 Results. 

 

 

Figure 103. Old Non-Dominant Hip Test Subject 7 Results. 
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Figure 104. Old Non-Dominant Hip Test Subject 8 Results. 

 

Annex C 

 

Table 17. Treadmill BNN’s and ELM best accuracies, young and old men dominant limb. 

Limb Method 
Age 

Group 

Train 

Accuracy 

MSE 

Test 

Accuracy 

MSE 

Validation 

Accuracy 

MSE 

Knee 

BNN 
Young 

Old 

0.0002 

0.0008 

0.0017 

0.0024 

0.0009 

0.0009 

ELM 
Young 

Old 

0.0095 

0.0037 

0.0104 

0.0090 

- 

- 

Hip 

BNN 
Young 

Old 

0.0002 

0.0006 

0.0044 

0.0018 

0.0017 

0.0021 

ELM 
Young 

Old 

0.0405 

0.0362 

0.0244 

0.0649 

- 

- 
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Table 18. Treadmill BNN’s and ELM accuracies, young and old men non-dominant limb. 

Limb Method Age Group 

Train 

Accuracy 

MSE 

Test 

Accuracy

MSE 

Validation 

Accuracy 

MSE 

Knee 

BNN 
Young 

Old 

0.0008 

0.0001 

0.0024 

0.0012 

0.0009 

0.0019 

ELM 
Young 

Old 

0.0037 

0.0040 

0.0090 

0.0085 

- 

- 

Hip 

BNN 
Young 

Old 

0.0004 

0.0003 

0.0041 

0.0018 

0.0016 

0.0045 

ELM 
Young 

Old 

0.0293 

0.0194 

0.0503 

0.0554 

- 

- 

 


