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“Shall I refuse my dinner because I do not fully understand the process of
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Resumo

O presente estudo foi desenvolvido no âmbito do projeto BASE, Biofeedback Aug-

mented Software Engineering (POCI - 01-0145 - FEDER-031581) que se encontra

a decorrer, e que visa a monitorização das funções cognitivas do cérebro durante

o desenvolvimento de código de software, de modo a detectar posśıveis bugs que

possam ocorrer devido a mudanças no estado emocional do programador. Mais

especificamente, o objetivo deste estudo inicial é investigar a atividade cerebral du-

rante a compreensão do código por meio da análise de sinais de Eletroencefalograma

(EEG) adquiridos de vários voluntários e tentar estabelecer posśıveis biomarcadores

de EEG senśıveis a diferentes ńıveis de carga mental. O uso de EEG para esse fim

é relevante, uma vez que os estudos existentes em detecção de bugs foram princi-

palmente focados em técnicas de neuroimagem com base em Functional Magnetic

Ressonance Imaging (fMRI), as quais apresentam desvantagens, como por exemplo,

o desconforto para o sujeito e a impossibilidade de serem adquiridas em condições

normais de programação.

O presente estudo foi conduzido usando informação de 64 canais de EEG adquiridos

de 30 participantes durante tarefas de compreensão de código. Os sujeitos foram

submetidos a três ensaios diferentes, correspondentes a três tarefas de compreensão

do código de diferente dificuldade. Os três ńıveis diferentes de complexidade de

código considerados foram de acordo com cinco métricas de complexidade de soft-

ware amplamente utilizadas na area de engenharia de software.

Através de uma sequência de métodos de pré-processamento, artefatos foram identi-

ficados e removidos dos sinais de EEG, para posteriormente proceder-se à extração
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Resumo

de carateŕısticas lineares e não lineares. Assim, foi posśıvel investigar a possibilidade

de distinguir diferentes ńıveis de complexidade com base nas caracteŕısticas do EEG.

Para isso, foram utilizados diferentes tipos de modelos de classificação, binário ou

multiclasse, através da combinação de quatro métodos de seleção/redução de carac-

teristicas com quatro classificadores diferentes.

Considerando um modelo multiclasse utilizando Principal Component Analysis (PCA)

e o classificador Support Vector Machine (SVM) com kernel linear, obteve-se um F-

Measure de 93.60% para a complexidade do código fácil, 50.60% para a complexidade

do código intermédio, 47.09% para a complexidade do código avançada e 94.42 %

para a tarefa de controlo (leitura de texto). Estes resultados revelam uma evidência

de saturação do esforço mental com o aumento da complexidade do código e também

sugerem que as métricas de complexidade de código usadas actualmente não captam

a carga cognitiva, e por isso podem não ser a melhor abordagem para avaliar o risco

de bugs nos códigos.

A partir da análise realizada neste estudo, também se verificou que as caracteŕısticas

relacionadas com as atividades Teta, Alfa e Beta foram as mais comuns entre as

caracteŕısticas selecionadas com maior poder de discriminação da complexidade das

tarefas. No que respeita aos canais que contribúıram com mais informação, eles

estavam localizados predominantemente na região frontal (principalmente em Fz, F2

e FCz), centro-parietal (principalmente em CPZ e CP2) e parietal (principalmente

em Pz). Estes resultados estão de acordo com as caracteŕısticas e regiões (lobos

frontal e parietal) relatadas em estudos relacionados, como sendo as mais relevantes

para medir a carga cognitiva nas áreas investigação de compreensão de código e da

carga de trabalho mental.

Por fim, como estudo preliminar, utilizando duas das caracteŕısticas mais discrimi-

nantes, foi explorada a possibilidade de realizar-se uma análise espaço-temporal, a

fim de identificar áreas que exibiram um esforço mental elevado durante a tarefa de

código que está sendo realizado. Estas áreas foram comparadas com (i) os aglomer-

ados dos dados do Eye tracking ; (ii) as regiões cŕıticas apontadas por profissionais

especializados; e (iii) outros dois biosinais (Variabilidade da Frequência Card́ıaca e
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Pupilografia).

Palavras-Chave: Processamento de Bio-sinais, Electroencefalograma, Biofeed-

back, Engenharia de Software
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Abstract

This study was developed on behalf of the on-going project BASE, Biofeedback Aug-

mented Software Engineering (POCI - 01-0145 - FEDER- 031581), which aims at

monitoring cognitive functions of the brain during code development to detect pos-

sible bugs that might occur due to shifts in the emotional condition of the subject.

Specifically, the goal of this initial study is to investigate the brain activity during

code comprehension through the analysis of Electroencephalogram (EEG) signals

acquired from multiple volunteers and try to establish possible EEG biomarkers

sensitive to different levels of mental workload. The use of EEG for this purpose

is relevant, since the existing studies in bug detection were mostly focused on neu-

roimaging techniques based on fMRI, which have disadvantages, such as subject

discomfort and impossibility to be acquired in normal programming condition.

The study reported herein was conducted using information from 64 channels of

EEG recorded from 30 subjects during code comprehension tasks. The subjects

were submitted to three different trials corresponding to three different difficulty

code comprehension tasks. The three different code complexity levels considered

were according to five software complexity metrics widely used.

Through a sequence of preprocessing methods, artifacts were identified and removed

from EEG signals for further extraction of linear and nonlinear features. Then, the

possibility to distinguish different levels of complexity based on EEG features was in-

vestigated. For this purpose, different types of classification models were considered,

either binary or multiclass, by combining four different feature selection/reduction

methods with four different classifiers.
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Abstract

Considering a multiclass model using Principal Component Analysis (PCA) and

a Support Vector Machine (SVM) classifier with linear kernel, it was obtained a

F-Measure of 93.60% for code complexity easy, 50.60% for code complexity inter-

mediate, 47.09% for code complexity advanced and 94.42% for the control (reading)

task. These results reveals an evidence of mental effort saturation as code complex-

ity increases and also suggest that current code complexity metrics do not capture

cognitive load and might not be the best approach to assess bug risk.

From the analysis, it was also found that the features related with the Theta, Alpha

and Beta activity were the most common among the selected features with highest

discriminative power. Concerning the channels which contributed with more in-

formation, they were located predominantly in frontal (mainly in Fz, F2 and FCz),

central-parietal (mainly in CPz and CP2) and parietal (mainly in Pz) regions. These

findings are in agreement with the features and regions (Frontal and Parietal Lobes)

more relevant to cognitive load in the areas of mental workload and code compre-

hension, reported in related studies.

Finally, as a preliminary study, using two of the most discriminant features, it was

explored the possibility of a space-temporal analysis in order to spot areas that

exhibited a higher mental effort during the code task being performed. These areas

were compared to the (i) clusters of Eye tracking data; (ii) critical regions pointed

by expert professionals; and (iii) other two biosignals (Heart Rate Variability and

Pupillography).

Keywords: Bio-signal Processing, Electroencephalogram, Biofeedback, Software

Engineering

xvi



Contents

List of Figures xxi

List of Tables xxvii

List of Abbreviations xxxi

1 Introduction 1

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 General outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . 2

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Basic Concepts 5

2.1 Software Engineering Metrics . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Cognitive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Human Nervous System . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Electroencephalography . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 State of the Art 13

4 Data Acquisition Protocol 19

4.1 Dataset Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Protocol Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3 EEG Acquisition Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 21

xvii



Contents

5 Methods 23

5.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1.1 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1.2 Channels Spatial Interpolation . . . . . . . . . . . . . . . . . . 27

5.1.3 Re-referencing . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1.4 Blind Source Separation . . . . . . . . . . . . . . . . . . . . . 28

5.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2.1 Feature Description . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2.2 Selection of Extraction Window . . . . . . . . . . . . . . . . . 40

5.2.3 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2.4 Feature Transformation . . . . . . . . . . . . . . . . . . . . . 45

5.3 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3.1 Kruskal–Wallis H test or Mann-Whiney U-test . . . . . . . . . 46

5.3.2 ReliefF Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3.3 Normalized Mutual Information . . . . . . . . . . . . . . . . . 48

5.3.4 Principal Component Analysis . . . . . . . . . . . . . . . . . . 49

5.4 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.4.1 Fisher Linear Discriminant Analysis Classifier . . . . . . . . . 49

5.4.2 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . 50

5.4.3 k-Nearest Neighbors Algorithm . . . . . . . . . . . . . . . . . 51

5.4.4 Naive Bayes Classifier . . . . . . . . . . . . . . . . . . . . . . 52

5.4.5 Validation and Evaluation Metrics . . . . . . . . . . . . . . . . 52

5.5 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.6 Analysis Performed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.6.1 Study 1: 13 Regions Analysis . . . . . . . . . . . . . . . . . . 55

5.6.2 Study 2: Whole Scalp Analysis . . . . . . . . . . . . . . . . . 57

5.6.3 Study 3: Space-Temporal Features Analysis . . . . . . . . . . 57

6 Results 59

6.1 Study 1: 13 Regions Analysis . . . . . . . . . . . . . . . . . . . . . . 59

6.1.1 Code Complexity Analysis . . . . . . . . . . . . . . . . . . . . 59

xviii



Contents

6.1.2 Code Complexity and Resting Analysis . . . . . . . . . . . . . 66

6.1.3 Linear and Non Linear Features Performance Analysis . . . . 73

6.2 Study 2: Whole Scalp Analysis . . . . . . . . . . . . . . . . . . . . . 77

6.2.1 Code Complexity and Resting Analysis . . . . . . . . . . . . . 77

6.2.2 Participant’s Proficiency Analysis . . . . . . . . . . . . . . . . 81

6.2.3 NASA-TLX Labelling Analysis . . . . . . . . . . . . . . . . . 83

6.3 Study 3: Space-Temporal Features Analysis . . . . . . . . . . . . . . 85

7 Conclusions 89

Bibliography 91

Appendices 109

A Experimental Protocol - Codes . . . . . . . . . . . . . . . . . . . . . 111

B Computational Time for Features Extraction . . . . . . . . . . . . . . 115

C Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

xix



Contents

xx



List of Figures

2.1 Division of the cortex into four lobes: frontal, temporal, parietal and

occipital. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Configuration of the electrodes placements using the International

10-20 System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1 Diagram of one trial procedure with an empty screen with a fixed

cross, a reading task as reference for analysis and a code comprehen-

sion task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Complexity level (in % of the maximum) of each code tasks according

to each one of the five software complexity metrics used. . . . . . . . 21

5.1 Overview of the pipeline with the steps and methods performed. . . . 23

5.2 Frequency Response of the High-pass Filter with a cutt-off frequency

of 1 Hz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.3 Frequency Response of the Low-pass Filter with a cut-off frequency

of 90 Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.4 Frequency Response of the Notch Filter applied at 50 Hz. . . . . . . . 26

5.5 Overview of the filtered EEG data from 20 of the 60 channels. . . . . 26

5.6 Visual inspection of EEG bad channels for removal and interpola-

tion. In this case of this trial from a participant, the C3 channel was

removed and interpolated. . . . . . . . . . . . . . . . . . . . . . . . . 27

5.7 Scheme of the formation of the recorded signals and how the BSS

works by going in the inverse direction (right to left) of the scheme,

in order to compute the estimation of the original signal sources. . . . 29

xxi



List of Figures

5.8 Example of the topographic map, activity power spectrum and con-

tinuous time course of a neural activity ICA component. . . . . . . . 31

5.9 Example of the topograpich map, activity power spectrum and con-

tinuous time course of ICA component with eye blinking artifacts. . . 31

5.10 Example of the topograpich map, activity power spectrum and con-

tinuous time course of ICA component with saccades artifacts. . . . . 32

5.11 Example of the topograpich map, activity power spectrum and con-

tinuous time course of a cardiac artifact ICA component. . . . . . . . 32

5.12 Example of the topograpich map, activity power spectrum and con-

tinuous time course of ICA component with muscle activity. . . . . . 33

5.13 Example of multifractal spectrum obtained from a random 1-second

window of EEG signal. . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.14 Search of the optimal order P for AR model. In the left side is repre-

sented the Levinson-Durbin Recursive algorithm approach, while on

the right side it is represented the Partial Autocorrelation function

approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.15 Step response of the process for an example of 5-second window of the

signal, in order to analyse the dynamic of the system and its settling

time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.16 Analysis of the window size selection (in seconds) using the Fisher

Linear Discriminant Analysis classifier. . . . . . . . . . . . . . . . . . 43

5.17 Illustration of how FLDA classifier performs by finding the best pro-

jection of the data for classification of new samples. . . . . . . . . . . 50

5.18 Illustration of Linear SVM for a binary classification. . . . . . . . . . 51

5.19 Illustration of how k-NN performs for classifying a new sample. . . . 51

5.20 Pipeline of classification of the statistical test to be used for the dif-

ferent analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.21 Division of the EEG electrodes into 13 regions. . . . . . . . . . . . . . 56

5.22 Scheme of the chain of thought during 13 Regions Analysis. . . . . . 56

5.23 Scheme of the chain of thought during Whole Scalp Analysis. . . . . . 57

xxii



List of Figures

6.1 Boxplots and corresponding Kruskal-wallis p-value indicating the ex-

istence of statistical differences among the four feature selection/reduction

methods accuracies. A p-value was obtained for each of the classifiers

trained to distinguish the three code tasks. . . . . . . . . . . . . . . . 60

6.2 Topographic map representing the percentage of the features corre-

sponding to each brain region after feature selection with Kruskal–Wallis

H test, for the multiclass scenario: Code 1 vs Code 2 vs Code 3. . . . 62

6.3 Radar plot depicting which type of features are more frequent (in

%) in the dataset obtained after feature selection, for the multiclass

scenario: Code 1 vs Code 2 vs Code 3. . . . . . . . . . . . . . . . . . 63

6.4 Topographic map representing the percentage of the features cor-

responding to each brain region after feature selection with Mann-

Whitney U-test, for the binary classification scenario of Codes: (a)

C1 vs C2; (b) C1 vs C3; (c) C2 vs C3. . . . . . . . . . . . . . . . . . 65

6.5 Boxplot of the highest rank feature for each binary situation. . . . . . 65

6.6 Boxplots and corresponding statistical test p-value indicating the ex-

istence of statistical differences among the four feature selection/reduction

methods accuracies. A p-value was obtained for each of the classifiers

trained to distinguish the three code tasks and the resting task. The

statistical tests performed were: (a) and (b) Kruskal-Wallis test; (c)

and (d) Analysis of Variance (ANOVA). . . . . . . . . . . . . . . . . 66

6.7 Multiple comparison test and respective p-value of the statistical dif-

ferences between each method of feature selection/reduction for the

different classifiers, as classification models of the three code and rest-

ing tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.8 Topographic map representing the percentage of the features corre-

sponding to each brain region after feature selection with Kruskal–Wallis

H test, for the multiclass scenario Code 1 vs Code 2 vs Code 3 vs

Resting Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

xxiii



List of Figures

6.9 Radar plot depicting which type of features are more frequent (in

%) in the dataset obtained after feature selection, for the multiclass

scenario Code 1 vs Code 2 vs Code 3 vs Resting Control. . . . . . . . 70

6.10 Topographic map representing the percentage of the features cor-

responding to each brain region after feature selection with Mann-

Whitney U-test, for the binary classification scenario: (a) Code 1 vs

Control 1; (b) Code 2 vs Control 2; (c) Code 3 vs Control 3. . . . . . 72

6.11 Boxplot of the highest rank feature for each binary situation. . . . . . 72

6.12 Boxplots and respective p-value of the statistical differences between

the accuracy results of each models (Linear + Non linear vs Linear)

for the different classifiers, after PCA feature reduction. For each

classifier case, being only two groups to be compared and all pre-

senting normal distribution, the statistical test performed was the

independent t-test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.13 Topographic map representing the percentage of the features corre-

sponding to each brain region after feature selection with Kruskal–Wallis

H test, for the multiclass scenario using only linear features: Code 1

vs Code 2 vs Code 3 vs Resting Control. . . . . . . . . . . . . . . . . 76

6.14 Radar plot depicting which type of features are more frequent (in

%) in the dataset obtained after feature selection, for the multiclass

scenario using only linear features: Code 1 vs Code 2 vs Code 3 vs

Resting Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.15 Boxplots and respective p-value of the statistical differences between

the accuracies values of each method of feature selection/reduction

for the different classifiers, as classification models of the three code

and resting tasks, using 60 signals information. For each case, being

four groups to be compared and all with normal distribution, the

statistical test performed was the Analysis of Variance (ANOVA) test. 77

xxiv



List of Figures

6.16 Multiple comparison test and respective p-value of the statistical dif-

ferences between the accuracies values of each method of feature se-

lection/reduction for the different classifiers, as classification models

of the three code and control tasks, using 60 signals information. . . . 78

6.17 Topographic map representing the percentage of the features corre-

sponding to each electrode after feature selection with Kruskal–Wallis

H test, for the multiclass scenario Code 1 vs Code 2 vs Code 3 vs

Resting Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.18 Radar plot depicting which type of features are more frequent (in

%) in the dataset obtained after feature selection, for the multiclass

scenario Code 1 vs Code 2 vs Code 3 vs Resting Control. . . . . . . 81

6.19 Average ratings of the mental effort felt by the participants and writ-

ten on the NASA-TLX for the three different Code tasks. . . . . . . . 83

6.20 Example of the fusion of EEG with HRV, Pupillography and Eye

tracking, for an expert participant during the Code task 2. . . . . . . 86

A.1 Example of the code 1, which corresponds to the lowest complexity

level, used in the experimental protocol. . . . . . . . . . . . . . . . . 111

A.2 Example of the code 2, which corresponds to the middle complexity

level, used in the experimental protocol. . . . . . . . . . . . . . . . . 112

A.3 Example of the code 3, which corresponds to the highest complexity

level, used in the experimental protocol. . . . . . . . . . . . . . . . . 113

C.1 Boxplots and corresponding Kruskal-Wallis p-value indicating the ex-

istence of statistical differences among the four classifiers accuracies.

A p-value was obtained for each of the feature selection/reduction

methods used to distinguish the three code tasks. . . . . . . . . . . . 120

C.2 Multiple comparison test and respective Kruskal-Wallis p-value in-

dicating the existence of statistical differences among the four clas-

sifiers accuracies. A p-value was obtained for each of the feature

selection/reduction methods used to distinguish the three code tasks. 120

xxv



List of Figures

C.3 Boxplots and corresponding statistical test p-value indicating the ex-

istence of statistical differences among the four classifiers accuracies.

A p-value was obtained for each of the feature selection/reduction

methods used to distinguish the three code tasks and the resting

task. The statistical tests performed were: (a) and (c) Analysis of

Variance (ANOVA); (b) and (d) Kruskal-Wallis test. . . . . . . . . . 127

C.4 Multiple comparison test and respective p-value of the statistical dif-

ferences between the different classifiers for each method of feature

selection/reduction, as classification models of the three codes and

resting tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

C.5 Boxplots and corresponding statistical test p-value indicating the ex-

istence of statistical differences among the four classifiers accuracies.

A p-value was obtained for each of the feature selection/reduction

methods used to distinguish the three code and the resting tasks.

The statistical tests performed were: (a), (b) and (d) Analysis of

Variance (ANOVA); (c) Kruskal-Wallis test. . . . . . . . . . . . . . . 134

C.6 Multiple comparison test and respective p-value of the statistical dif-

ferences between the accuracies values of each classifier for the differ-

ent methods of feature selection/reduction, as classification models of

the three code and resting tasks. . . . . . . . . . . . . . . . . . . . . . 134

xxvi



List of Tables

2.1 Brief description of the code complexity software metrics used in the

present work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 EEG frequency brain bands and associated brain state . . . . . . . . 11

3.1 Most common features and classifiers used in Emotion Recognition

studies using EEG signals, from the most frequent (1) to the less

frequent (6), according to the review work done by Alcarão et al. . . 14

3.2 Summary of significant features types, classifiers and brain locations

reported by related studies. . . . . . . . . . . . . . . . . . . . . . . . 18

5.1 Summary of the types and number of the features extracted for the

13 Regions Analysis and for the whole Scalp Analysis (60 signals). . . 44

6.1 Performance of the four different classifiers after PCA feature reduc-

tion (with 70% variance preserved), for the multiclass classification

scenario: Code 1 vs Code 2 vs Code 3. . . . . . . . . . . . . . . . . . 61

6.2 Performance of the four different classifiers after PCA feature reduc-

tion (with 70% variance preserved), for the binary classification sce-

nario: Code task vs Code task. . . . . . . . . . . . . . . . . . . . . . 64

6.3 Performance obtained for the four classifiers after PCA feature reduc-

tion (with 70% variance preserved), for the multiclass classification

scenario: Code 1 vs Code 2 vs Code 3 vs Resting Control. . . . . . . 68

6.4 Performance of the four different classifiers after PCA feature reduc-

tion (with 70% variance preserved), for each binary classification sce-

nario: Code task vs Resting Control task. . . . . . . . . . . . . . . . 71

xxvii



List of Tables

6.5 Performance of the four different classifiers after PCA feature reduc-

tion (with 70% variance preserved), using only linear features, for the

multiclass classification scenario: C1 vs C2 vs C3 vs Resting Control. 74

6.6 Performance of the four different classifiers after PCA feature reduc-

tion (with 70% variance preserved), for the multiclass classification

scenario: C1 vs C2 vs C3 vs Resting Control. . . . . . . . . . . . . . 79

6.7 Performance of Linear SVM classifier after PCA feature reduction,

for each different tasks and the three proficiency levels Intermediate,

Advanced and Expert). . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.8 Performance of the four different classifiers after PCA feature reduc-

tion (with 70% variance preserved), for the multiclass classification

scenario (C1 vs C2/C3 vs Resting Control). . . . . . . . . . . . . . . 84

B.1 Computational time for linear and non-linear feature extraction using

ASUS laptop equipped with a 2.2GHZ Intel Core i7 8th Gen proces-

sor, 256GB M.20 SATA III SSD and 16 GB RAM. . . . . . . . . . . . 115

C.1 Performance of the four different classifiers after using Kruskal–Wallis

H test as feature selection method (100 features selected), for the

multiclass classification scenario: Code 1 vs Code 2 vs Code 3. . . . . 117

C.2 Performance of the four different classifiers after using ReliefF Al-

gorithm as feature selection method (100 features selected), for the

multiclass classification scenario: Code 1 vs Code 2 vs Code 3. . . . . 118

C.3 Performance of the four different classifiers after using Normalized

Mutual Information as feature selection method (50 features selected),

for the multiclass classification scenario: Code 1 vs Code 2 vs Code 3. 119

C.4 Performance of the four different classifiers after using Mann-Whiney

U-test as feature selection method (100 features selected), for the

binary classification scenario: Code task vs Code task. . . . . . . . . 121

C.5 Performance of the four different classifiers after using ReliefF Al-

gorithm as feature selection method (100 features selected), for the

binary classification scenario: Code task vs Code task. . . . . . . . . 122

xxviii



List of Tables

C.6 Performance of the four different classifiers after using Normalized

Mutual Information as feature selection method (50 features selected),

for the binary classification scenario: Code task vs Code task. . . . . 123

C.7 Performance obtained for the four classifiers after using Kruskal–Wallis

H test as feature selection method (100 features selected), for the mul-

ticlass classification scenario (Code 1 vs Code 2 vs Code 3 vs Resting

Control). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

C.8 Performance obtained for the four classifiers after using ReliefF Al-

gorithm as feature selection method (100 features selected), for the

multiclass classification scenario (Code 1 vs Code 2 vs Code 3 vs

Resting Control). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

C.9 Performance obtained for the four classifiers after using Normalized

Mutual Information as feature selection method (50 features selected),

for the multiclass classification scenario (Code 1 vs Code 2 vs Code

3 vs Resting Control). . . . . . . . . . . . . . . . . . . . . . . . . . . 126

C.10 Performance of the four different classifiers after using Mann–Whitney

U test as feature selection method (100 features selected), for each bi-

nary classification scenario: Code task vs respective Resting Control

task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

C.11 Performance of the four different classifiers after using ReliefF Algo-

rithm as feature selection method (100 features selected), for each

binary classification scenario: Code task vs respective Resting Con-

trol task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

C.12 Performance of the four different classifiers after using Normalized

Mutual Information as feature selection method (50 features selected),

for each binary classification scenario: Code task vs respective Resting

Control task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

C.13 Performance of the four different classifiers after using Kruskal–Wallis

H test as feature selection method (100 features selected), for the

multiclass classification scenario: Code 1 vs Code 2 vs Code 3 vs

Resting Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

xxix



List of Tables

C.14 Performance of the four different classifiers after using ReliefF Al-

gorithm as feature selection method (100 features selected), for the

multiclass classification scenario: Code 1 vs Code 2 vs Code 3 vs

Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

C.15 Performance of the four different classifiers after using Normalized

Mutual Information as feature selection method (50 features selected),

for the multiclass classification scenario: Code 1 vs Code 2 vs Code

3 vs Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

C.16 Performance of FLDA classifier after PCA feature reduction, for each

different tasks and the three proficiency levels (Intermediate, Ad-

vanced and Expert). The overall performance of accuracy obtained

for each proficiency was 72.92 ± 13.41, 71.88 ± 9.88 and 67.19 ±

23.03, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

xxx



List of Abbreviations

ANS Autonomic Nervous System. 2, 8, 9

AR Autoregressive. 41, 42

BSS Blind Source Separation. 24, 29

CEV cumulative explained variance. 49

CIC Comments and Identifiers Consistency. 5

CLT Cognitive Load Theory. 6

CNS Central Nervous System. 7

CR Comments Readability. 5

ECG Electrocardiogram. 57, 58

EDA Electrodermal Activity. 15, 21

EEG Electroencephalogram. 2, 3, 4, 9, 10, 11, 13, 14, 15, 16, 17, 21, 22, 23, 24, 26,

27, 28, 29, 33, 34, 35, 37, 38, 39, 40, 41, 55, 57, 58, 75, 77

EMG Electromyogram. 32

FIR Finite Impulse Response. 24

FLDA Fisher Linear Discriminant Analysis. 49, 50, 66, 67, 77, 80, 82

fMRI Functional Magnetic Resonance Imaging. 13

fNRIS Functional Near-Infrared Spectroscopy. 13

HRV Heart Rate Variability. 18, 57, 58

IAF Individual Alpha Frequency. 16

ICA Independent Component Analysis. 24, 25, 29, 30, 31

ICG Impedance Cardiography. 21

xxxi



List of Abbreviations

IIR Infinite Impulse Response. 24

k-NN k-Nearest Neighbors. 51, 66, 67, 69, 77, 80

LTM Long-Term Memory. 6

MSE mean square error. 41

NMI Normalized Mutual Information. 48

PACF Partial Autocorrelation function. 41

PCA Principal Component Analysis. 48, 49, 60, 62, 64, 67, 69, 71, 73, 78, 80, 84

PNS Peripheral Nervous System. 7

PPG Photoplethysmography. 21

PSD Power Spectral Density. 14, 15, 16, 35, 36

SNR signal-to-noise ratio. 25

SNS Somatic Nervous System. 8

SVM Support Vector Machines. 14, 17, 50, 61, 66, 67, 69, 77, 79, 80, 82, 84

TSE total squared error. 41

WM Working Memory. 6, 7

xxxii



1

Introduction

This project was developed within the scope of the curricular unit Project of the

Integrated Master in Biomedical Engineering of the Faculty of Sciences and Tech-

nology of the University of Coimbra, in the academic year 2018-2019. It is part of

the on-going project BASE, Biofeedback Augmented Software Engineering (POCI -

01-0145 - FEDER- 031581), funded by FCT.

1.1 Context

Nowadays with the continuous evolution of technology, software programming is the

groundwork in a wide range of areas, going from health applications to autonomous

driving challenges. Software programmers face an enormous pressure to develop

the programs that integrate all the requirements for each field. A great effort is

demanded to detect/fix bugs, change code and understand different types of logical

thinking and different languages, that, in the end, enables the acquisition of differ-

ent mathematical or symbolic manipulation expertise. Every year there is a great

loss in software industry, hitting the $1.7 trillion in 2017, due to software bugs or

security failures and also because of the amount of time it takes for a programmer

to understand codes and detect those bugs [1]. In this industry, on average, for a

completed code, there are about 15-50 errors per 1000 lines of code [2]. This is where

project BASE comes in, with the goal of developing an approach using biofeedback

that will allow bug warning and programmers to review certain areas of the code

that need a more thorough inspection.
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1.2 Motivation

Studies reveal that about 70% of a programmer’s time is spent on code compre-

hension [3]. In addition, the quality of code is closely linked to the complexity of

code and to the programmers ’ capacity to comprehend and master such complex-

ity. For this reason, it is crucial to understand the relationship between the neural

mechanisms engaged in code comprehension and the metrics used to evaluate code

complexity.

1.3 Objectives

The work developed for this thesis is an initial study integrated in the project BASE

that aims at understand the brain mechanisms involved in different code comprehen-

sion tasks with different complexities based on neurophysiological responses observed

in the Electroencephalogram (EEG) information. This inspection is performed by

using a conventional pipeline, which involves: pre-processing, feature extraction &

selection and classification.

Another goal of this thesis is also to inspect the relationship between possible EEG

biomarkers and Autonomic Nervous System (ANS) responses in order to investigate

the possibility of replace EEG by more comfortable measurement methods that allow

monitoring of such responses in daily life conditions.

1.4 General outline of the thesis

The structure of this thesis proceeds as follows: Chapter 2 describes briefly the

basic concepts necessary to understand the thesis background, such as the Software

Metrics usually considered, the Cognitive Load, the Human Nervous System and

the Electroencephalography; Chapter 3 focus on the state of the art of code com-

prehension assessment in the field of software engineering and on the use of the EEG

for this purpose; Chapter 4 describes the data acquisition protocol, obtained in

the scope of a previous work developed for the project, and that will be used in this
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thesis; Chapter 5 details the methods used for preprocessing of EEG data, feature

engineering, classification, statistical analysis and the types of analysis performed;

Chapter 6 presents the main results and respective discussion from different per-

spectives; and finally, Chapter 7 highlights the main findings and also points out

the limitations and future work.

1.5 Contributions

The main contributions from this thesis are as follows:

• Evidence of how EEG can be a powerful technique for biofeedback in the

context of Software Reliability;

• Comparison between models, using different feature selection methods and

classifiers, in the prediction of code complexities;

• The best features and more relevant regions, with the purpose of validation of

existent and new EEG biomarkers for mental workload related with Software

Engineering;

• Evidence of saturation of the mental effort of the participants with the com-

plexity level;

• Verification that the complexity metrics used worldwide in Software Engineer-

ing are not the best approach for measuring code complexity.

The following publications were also produced in the context of this thesis:

• Abstract and poster presentation at the IEEE 6th Portuguese Meeting in Bio-

engeneering (6th ENBENG) organized by the IEEE EMBS Portugal Chapter,

held on 22-23 February in Lisbon. The results of a preliminary study regarding

the assessment of EEG’s potential to distinguish software codes with different

complexities were presented;

• Four page, 2 columns, article submitted and accepted at the 41st International

Engineering in Medicine and Biology Conference (41st EMBC) held in Berlin,
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Germany from 23 to 27 of July, 2019. The article is a comprehensive study on

the assessment of software code complexity using several linear EEG features.
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Basic Concepts

2.1 Software Engineering Metrics

In Software Engineering, there are several types of metrics used worldwide for many

purposes, typically in the context of software testing, identification of software parts

that may need to be rewritten, improvement of code quality and reduction of main-

tenance costs, among others [4]. These metrics can be relative to the code, docu-

mentation, or developer subject [5].

Concerning code-related metrics, as the name suggests, it focuses on the algorithm

code, and there are several metrics for this target, such as the well known McCabe

Cyclomatic Complexity [6], average Number of Nested Block Depth, Number of

Parameters and Lines of codes, among others [7].

The documentation related metrics are used to measure the quality of the docu-

mentations and include the Comments Readability (CR) and the Comments and

Identifiers Consistency (CIC) [8].

At last, the developer-related metrics are used to quantify the programmer’s experi-

ence, such as the time (in years) spent programming in general or/and in a specific

programming language [5].

A brief description of the metrics used for code complexity and comprehensibility

assessment [9] that are mentioned throughout this thesis can be found in Table 2.1.
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Table 2.1: Brief description of the code complexity software metrics used in the
present work.

Code Complexity Metrics Description

Lines of codes Measures the number of lines in the code

Number of Parameters
Measures the number of parameters in the
code

Weighted Method Count
Measures the sum of the complexity of the
code methods

McCabe Cyclomatic Complexity
Measures the number of paths that are lin-
early independent in the code

Nested Block Depth

Measures the maximum nested block
depth in the code, i.e., the depth level of
the block (e.g. condition) that is deeper
in the code

2.2 Cognitive Load

In information processing there are two fundamental keys: Working Memory (WM)

and Long-Term Memory (LTM). The WM has limited capacity and a person is

purely cognizant of the information that is held in the WM [10]. It is based on this

ground that the Cognitive Load Theory (CLT) [11] is formed. The LTM mainly

differs from the WM in duration and in capacity. While WM has limited capacity,

LTM does not have a capacity limit, it has an ample knowledge storage domain.

LTM organizes the information, hence helping to reduce the load of WM to process

the information [12].

The CLT, developed and suggested in 1988 by Sweller [11], comprises the exist-

ing correlations between the WM and the LTM, how organization and information

grouping affect the WM capacity and disclose the neural activity behind certain

tasks. This theory defines the cognitive load in three types: Intrinsic, Extraneous

and Germane cognitive load. Intrinsic cognitive load is independent from the task

representation, being only affected by the demand of the inherent complexity of the

task on the WM of the user. Extraneous cognitive load, on the contrary is influ-

enced by the representation of the task to the user, i.e., information presented in a
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more complex manner requires more WM capacity. The latter, Germane cognitive

load, is related to the effort required from a task to process and construct new ways

of organizing ideas, i.e., finding a novel path to complete a task increases the Ger-

mane cognitive load. This cognitive load is associated with schemas construction –

organized pattern of information in the brain’s neural network [13]. The junction

of these three types of cognitive load forms the total cognitive load demanded for

a certain task. From the point of view of Software Engineering, the total cognitive

load is sometimes also referred as mental effort or cognitive stress [14–16], since most

of the studies do not want to assess the individual type of cognitive load but the

overall effort on the task being performed.

2.3 Human Nervous System

The nervous system controls everything in the human body. From physiologic needs

to muscular responses and reflexes, all systems depend on the nervous system. The

human body works with constant series of stimuli inputs, their integration in the

nervous system and output responses to each specific stimuli received.

The electrical signal produced in the human body is a result of constant changes

on the cell’s membrane permeability to specific ions, Na+ and K+. The cell mem-

brane has a resting potential of -70mV, but when a stimuli is generated, it triggers

the depolarization of the membrane, initiating the action potential. This action

potential will be carried through a neuron chain to the brain, by triggering an elec-

trical chemical gradient generated by a series of depolarizations, repolarizations and

hyperpolarizations. When the signal reaches the brain, the brain elaborates an ad-

equate response and sends the information again via neurons, that communicate

between them, transmitting the electrical/chemical signal through synapses, until it

generates the output [17].

The nervous system is divided in two main parts, the Central Nervous System (CNS)

and the Peripheral Nervous System (PNS). The first one involves the brain and the

spinal cord, that function as the main control centre of the Nervous System, where
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all the stimuli come to be interpreted, and all the specific responses are formed

according to inputs. The Peripheral System is the one that include all the nerves

that branch from the brain/spinal cord to every part of the body. This system is

responsible for transporting the signals, either to or from the brain, ensuring, for

example, that muscles contract or that the secretion of certain chemicals increase

or decrease [17,18].

The Central Nervous System, more precisely the cortex of the brain, can be divided

in four main lobes: Frontal, Temporal, Parietal and Occipital. Each one of those

four lobes, represented in Fig. 2.1, is responsible or associated to different functions

[19]. With regard to the Frontal lobe, it is associated with motor actions, working

memory and conscious thoughts. As for the Temporal lobe, it is related to auditory

and olfactory functions. The Parietal lobe is linked to the integration of the sensory

information from several senses. Finally, the Occipital lobe is associated to visual

functions [19,20].

Figure 2.1: Division of the cortex into four lobes: frontal, temporal, parietal and
occipital. Adapted from Alotaiby et al. [21].

Concerning the Peripheral System, it can be divided in two divisions, the Sensory

Division, involving afferent pathways, the one that acquires sensory stimuli, and the

Motor Division that includes the efferent pathways, responsible to send the response

to muscles and glands. The Motor division is then, composed by the Somatic Ner-

vous System (SNS) and the Autonomic Nervous System (ANS). The SNS commands

voluntary contractions, i.e., the one responsible for big muscle movement. The ANS,

therefore, is related to all the involuntary functions, such as heart beating, lungs
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breathing, stomach digestion or temperature changing. Finally, this system, that

controls the involuntary movements, is divided in Parasympathetic and Sympathetic

Systems [18]. These two branches that integrate the ANS, have opposite functions:

the Sympathetic System alarms the body for certain situations, while the Parasym-

pathetic System is responsible for the relaxation. When combined, both systems

responses deliver sensations such as stress, relaxation, fear or panic, for example

[17,22].

The responses of the ANS, such as, increasing heart rate, changes of breathing fre-

quency, blood pressure, secretions, temperature changing are correlated with several

feelings, e.g., stress, panic, among others. Then, studying EEG signals to predict

stages of stress, attention and mental effort, should be possible, since all these re-

sponses of the body are signals generated in the brain. In order to uncover the

neural mechanisms behind code comprehension and bug detection, an analysis of

the signals that originate the responses to situations of increased mental effort, re-

quired for a programmer, through scalp EEG recordings, would , theoretically, help

to identify some neuronal mechanism biomarkers involved in these type of tasks.

Code comprehension involves cognitive processes, which requires different capabili-

ties of the brain, such as abstraction level, memory, information processing, logical

thinking, among others [14, 23]. Therefore, the effort spent during these processes,

that can be perceived as cognitive stress, evidences the importance of evaluating

measurements that can capture the cognitive load of the programmers during dif-

ferent types of tasks.

2.4 Electroencephalography

Human EEG recording started in 1924 by the German psychiatrist Hans Berger

[24] and from there on EEG became an important tool in the field of neurology

and clinical neurophysiology [25]. EEG can be a powerful tool in this study, since it

records electrical activity of the brain, which is one of the most relevant physiological

areas analysed when assessing cognitive workload [26].
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The brain electrical activity can be captured using electrodes on the surface of the

scalp (non-invasive) or using intracranial (invasive) electrodes. These electrodes will

measure the voltage fluctuations that occur when there are local ionic current flows

produced by the sum of activations of thousands of neurons [25].

Regarding the type of EEG used in this work, the surface-EEG, it is important

to notice that this is the most frequently used in several studies and applications,

since it offers advantages such as its non-invasive nature, more general perspective

of the brain than the localized invasive measurement approach, and, with advances

in technology, it is turning into a low cost and portable solution to understand the

neural mechanisms [27, 28]. However, one of the drawbacks that can be pointed

out is the fact that the neural signals are filtered by the bone and skin, resulting

in a reduced bandwidth. Other negative aspect is the contamination by artifacts

(electrical & muscular) that makes the analysis more difficult. [29].

Using surface EEG, there are several standard configurations for the electrodes lo-

cation, e.g, the well known International 10-10 or 10-20 System configurations. The

difference between the configurations is due to the distance between adjacent elec-

trodes. This distance corresponds to a percentage of the total distance from front

to back or left to right side of the head. For better visualization, Fig. 2.2 depicts

an example of the International 10-20 System.

Figure 2.2: Configuration of the electrodes placements using the International 10-20
System (adapted from Malmivuo et al. [30]).
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As for the electrode labels, each electrode is named based on its location on the

subject’s scalp: the first letter is defined with respect to the region of the brain

that it belongs (Pre-Frontal - ”Fp”, Frontal - ”F”, Temporal - ”T”, Central - ”C”,

Parietal - ”P” and Occipital - ”O”) or between regions (Pre-Frontal and Frontal

- ”AF”, Frontal and Central - ”FC”, Frontal and Temporal - ”FT”, Central and

Parietal - ”CP” and ”PO” if between Parietal and Occipital). Furthermore, if the

electrode is located in the midline sagittal plane of the brain it will have an additional

letter ”z”. If a given electrode is located on the left hemisphere it will have a odd

number associated, while if it is located on right hemisphere, an even number is

considered.

Finally, the signal recorded from the EEG is always a relative value, since it is the

difference of the electric potential between the electrode where it is being measured

and a reference electrode, typically spotted between Cz and Pz. The signals are

typically measured in microvolts (µV ), presenting an amplitude about 10-100µV

and being commonly divided into 5 main frequency bands (Delta, Theta, Alpha,

Beta and Gamma) [31], presented in the Table 2.2.

Table 2.2: EEG frequency brain bands and associated brain state

Name Frequency Range Associated state of brain

Delta <4 Hz Unconscious / Deep sleep

Theta 4 - 8 Hz Conscious / Imagination / Memory

Alpha 8 - 13 Hz Conscious / Relaxed mental activity

Beta 13 - 30 Hz Conscious / Emotional /Focused

Gamma >30 Hz Conscious / High mental activity
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3

State of the Art

The interest in the field of bug detection and warning during programming/coding

and the underlying neurophysiological processes has recently emerged in the scien-

tific community. In fact, there are a few studies in this area using Functional Mag-

netic Resonance Imaging (fMRI) [23,32]. In these two imaging studies, the authors

analysed the Brodmann areas [33] that were more activated during code comprehen-

sion and bug detection, and found that frontal and parietal lobes appeared to be the

most activated regions during those tasks. Such achievements prompt further inves-

tigation of other imaging tools and also of biosignals such as Electroencephalogram

(EEG), which, given the current technological advances and the arrival of low-cost

off-the-shell acquisition devices, are becoming more user-friendly [28,34].

In recent years, the measurement of the mental workload during programming has

attracted considerable interest in different areas, ranging from the educational to

the software engineering sectors. Such an endeavour aims at increasing programmer

productivity and developing quality software programs. Predominantly, proposed

studies in these areas are based on the use of fMRI, [35], Functional Near-Infrared

Spectroscopy (fNRIS) [36] and EEG [15, 37–41]. The latter, as already mentioned

above, will be the major focus in this study and, therefore, the main related topic

of this state of the art.

Regarding software engineering, in 2017, a study by Scalabrino et al. [5] with 46

participants, focused on the analysis of correlations between code understanding of

the programmers and the different complexity metrics used in software engineer-

ing. To this purpose, they considered and explored 121 existing and new metrics
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(developed by the authors), concerning code, documentation and developer related

metrics. The authors showed, through the report’s evaluation of the participants,

that none of the existing metrics are able to measure the code understandability.

In a recent study [42], in 2019, published by the same authors, they increased the

number of participants from 46 to 63, yet the conclusions remained the same.

Given the impact of the programmer’s emotions during the software tasks and vice

versa [14, 43, 44], it is interesting to investigate which features are most commonly

being used in emotion recognition through the analysis of EEG. In 2017, a survey

was carried out by Alarcão et al. [20] on the recognition of emotions using EEG. In

this study they reviewed articles from 2009 to 2016 and ended up with a subset of 99

quality articles selected according to Brouwer’s recommendations [45], who investi-

gated the most common pitfalls and how to avoid them during analysis of cognitive

and affective states. In this survey, as expected, the authors found that from the

selected papers, the most used features (in 89.4% of the studies) were related to the

five brain waves frequency bands (Delta, Theta, Alpha, Beta and Gamma), typi-

cally captured by the Power Spectral Density (PSD). Regarding the classifiers used

in the reviewed studies, the authors found that the most used one (in 59% of the

studies) was the Support Vector Machines (SVM). Another important aspect noted

by authors, was that the most dominant emotion-related activated brain regions,

reported in most articles, were the frontal and parietal regions. Table 3.1 summa-

rizes the findings reported by Alarcão et al [20] regarding feature extraction and

classification.

Table 3.1: Most common features and classifiers used in Emotion Recognition studies
using EEG signals, from the most frequent (1) to the less frequent (6), according to
the review work done by Alcarão et al. [20].

Absolute/Relative Power of brain wave bands (1) High Order Crossings (4)

Statistical measures (2) Fractal dimension (5)
Most Frequent

Features
Entropy measures (3) Assymetry Index (6)

Support Vector Machines (1) Quadractic Discriminant Analysis (4)

k-Nearest Neighbors (2) Naive Bayes (5)
Most Frequent

Classifiers
Linear Discriminant Analysis (3) Multi-Layer Percepton Back Propagation (6)
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Several research studies reporting analysis of task engagement and mental workload

through the acquisition of EEG have been published in the last twenty years and in

an extensive range of fields [46–48]. In many of them, strong correlations were found

between the states of the subjects and the brainwave frequency bands. The findings

pointed mainly to the strength of Theta and Alpha waves to represent these mental

states [47–50].

In 2014, Fritz et al. [37] conducted an exploratory study using Eye-tracker, EEG

and Electrodermal Activity (EDA) sensors in 15 properly selected software program-

mers, to evaluate the difficulty felt during eight different tasks of code comprehension

in C#, as well as the psycho-physiological features associated with it. Regarding

the EEG, the authors used the one channel off-the-shelf NeuroSky MindBand EEG

sensor that can generate two signals, ”Attention” and ”Meditation” [51]. Mean,

standard deviation, maximum and minimum values were computed from the two

signals, which were considered to capture certain states of consciousness. From the

EEG signal, the PSD of the frequency bands (Delta, Theta, Alpha, Beta, Gamma)

was computed as well as the ratios between each of the frequency bands. The au-

thors also extracted the rate of eye blinks per minute from the EEG, which according

to Brookings et al. [52], is expected to decrease for more difficult tasks. Afterwards,

using Naive Bayes classifier, the authors performed three analysis of the prediction of

difficulty (easy or difficult): by participant, by task and by participant-task. For the

situation of prediction by participant-task, the authors achieved a F-measure of only

56.73% using EEG information, which increased up to 67.71% by fusing the infor-

mation from the three sensors. Although being the first automated approach for as-

sessment of mental workload during code comprehension using psycho-physiological

information, and yet promising results have been achieved in this study, further

work regarding this topic can be explored using only EEG, and also including an

higher number of participants.

In 2014, Igor Crk and Timotthy Kluthe [38] performed a study reporting a bi-

nary qualification of a programmer’s expertise through code comprehension. They

recorded EEG signals from 14 electrodes in 34 participants during programming
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tasks in Java. Through the analysis of Theta and Alpha waves and the reports filled

by the subjects for the different tasks, the authors found evidence that allows to

distinguish subjects from different levels of expertise with an accuracy ranging from

53% to 63 %, depending on the task. They also noted the power of the Alpha band

in distinguishing between states of rest and mental effort through differences in the

average of the PSD of each one. The same authors published a similar work in 2016,

also regarding code comprehension and expertise level, using EEG, but this time fo-

cusing only on the Alpha wave band. More specifically, they analysed the Individual

Alpha Frequency (IAF) [53], which takes into account the subjects’ ages and brain

maturation, for a better analysis of inter-subjects. The authors found correlations

between the IAF (increase) and the correct answers given by the participants to the

reports related to each one of the codes.

In 2016, Lee et. al [39] recorded EEG signals from 18 subjects while they were

performing code comprehension tasks, in Java, to analyse neurophysiological pro-

cesses occurring during tasks and the possibility to distinguish between expert pro-

grammers from beginners. From the signals recorded using 13 EEG electrodes, the

authors explored the relative power spectrum of the five brain frequency bands per

electrode and per region of the brain. The results showed that high frequencies

are dominant features, namely Beta and Gamma waves, and the most significant

channels were from frontal and parietal regions. In addition, the authors also found

that in expert programmers there is more activation in F3 and P8 channels than in

the novice programmers. Nevertheless, the authors are aware of the limitations of

such results, since there are few studies in this area and there is the need for more

studies for comparison of results and conclusions. Lastly, they also point out the

problem of generalization power, since only 18 subjects participated in the study.

In 2017, the authors Yeh et al. [40] conducted a study focusing on brain activity

during 12 C/C++ code comprehension tasks with only two difficulty levels. EEG

signals were recorded using electrodes placed in frontal region from eight subjects.

Subsequently, the authors calculated the power of the Theta and Alpha bands of

the signals, for statistical analysis. Using these two frequency bands, the authors
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obtained statistical significant differences in all eight electrodes used, at 0.05 signif-

icance level. However, within the same type of difficulty, there were no statistically

significant differences. Moreover, given the low number of participants, it becomes

difficult to generalize these results.

Also in the same year of 2017, Lee et al. [41] conducted a study with 38 participants,

20 novices and 18 expert programmers, with the aim of predicting their expertise

level (novice or expert) or the difficulty (easy/difficult) of the comprehension tasks

they performed, through the use of EEG and eye tracking data. Using the SVM

classifier and a 10-fold Cross Validation, the authors obtained better results using

the data from both sensors than using it separately. Thus, the best result obtained

for the prediction study of the difficulty of the task was a F-Measure of 66.6%, while

for the study of prediction of the participants’ level of expertise, a F-Measure of

97% was achieved. Although striking results have been obtained from the analysis

of a considerable number of participants, the authors did not specify what features

were extracted from the recorded EEG, keeping unknown the EEG features that led

to these surprising results, more precisely the results on the prediction of the level

of expertise.

Finally, the most recent study on this topic was conducted by Kosti et al. [15]

in 2018 and had the purpose of investigating the brain activity during two differ-

ent programming tasks: comprehension and inspection of syntax errors in C code.

Using only 14 electrodes, they recorded EEG signal from 10 participants, and sub-

sequently, the authors performed two types of analysis, one using the spectral power

of each electrode alone, and another inspecting functional connectivity. The authors

found that Theta, Beta and Gamma waves during comprehension tasks correlates

with cognitive effort, with stronger correlations observed for higher frequency waves.

Another surprising finding was the detection of much higher activation of Theta and

Beta waves in comprehension tasks than in tasks of inspection of syntax errors. Au-

thors argued that this was due to the fact of inspection tasks being considered easier

tasks that do not require as much effort in the imagination of the program output

as it is demanded for comprehension tasks. Despite these encouraging results, it is
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necessary to increase the number of samples for a stronger generalization, which is

also pointed out by the authors in the limitations of the study.

With the same aim of assessing code complexity, there is already being done studies

exploring other biosignals for this purpose inserted on the project BASE. Recently

in 2019, a study included on the master’s dissertation of Gonçalo Duarte [54], who

also performed the data acquisition followed in this study, showed that, by using

Heart Rate Variability (HRV) features, it was only possible to distinguish two levels

of code complexity, even though there were three complexity levels according to

software complexity metrics. The Eye tracking and Pupillography data is also being

explored, for the same purpose [55].

In sum, the Table 3.2 shows a brief summary of information regarding the feature

types, brain locations and classifiers that may contribute to achieve the objectives

of this work, according to the related works.

Table 3.2: Summary of significant features types, classifiers and brain locations
reported by related studies.

Summary Remarks

Features Locations Classifiers

Brain frequency bands derived

features (specifically from

Theta, Alpha, Beta and Gamma)

Statistical

features

Frontal

Lobe

Parietal

Lobe

Support Vector

Machines

Naive Bayes

18



4

Data Acquisition Protocol

4.1 Dataset Description

As result of the work undertaken by Gonçalo Duarte [54] (inserted in the scope of

the ongoing project BASE), 30 subjects were selected to participate in the study’

acquisitions. This group of volunteers was selected after a series of interviews of

students, professors and professional software developers, with experience in Java

programming language. Specifically, from the 30 participants, 24 were male and

6 female, with ages ranging from 19 to 42, and average age of 24 years old. Also

through the interview and based on years of experience in Java programming or in

the number of lines of code programmed in Java in the last months or years, the par-

ticipants were classified into three levels of proficiency: intermediate, advanced and

expert. In sum, there were 13 intermediate, 12 advanced and 5 expert participants.

The data collection was authorized by all the participants involved and the written

consent was approved by the Ethics Committee of the Faculty of Medicine of the

University of Coimbra, in accordance with the Declaration of Helsinki.

4.2 Protocol Description

Subjects were submitted to three different trials of code comprehension tasks using

three code snippets in JAVA, having each code snippet different complexity levels.

Each trial consisted on a control task of text reading in natural language (60 sec-

onds maximum) and a task of code comprehension of a certain complexity level (10
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minutes maximum). Before and after each task, an empty screen with a cross in the

middle was shown for 30 seconds to the subject, acting as a baseline interval for the

next task.

After each trial, the subjects answered two questionnaires. With the purpose of

guaranteeing that the subject was concentrated during the trials, in the first ques-

tionnaire the subject had to explain in general the algorithm of the finished trial.

On the second one, the subject filled a survey based on NASA-TLX (Task-Load

Index)1 survey [56] with four questions, rating it from 1 to 6, in order to assess the

subjective mental effort, task fulfilment, pressure over time and frustration of the

subject while doing the code comprehension task.

This acquisition protocol is represented in Fig. 4.1, with an estimated experience

time of less than two hours for each subject.

Figure 4.1: Diagram of one trial procedure with an empty screen with a fixed cross, a
reading task as reference for analysis and a code comprehension task. The procedure
was repeated for the three different trials (differing in the code complexity).

Regarding the order of the trials, it was performed according to an increasing degree

of complexity of the code. In Fig. 4.2, it is possible to observe the three types of code

complexity evaluation, as a percentage of the maximum value, for each one of the

five complexity metrics used (Table 2.1 in the Background section 2.1). According

1NASA-TLX site: https://humansystems.arc.nasa.gov/groups/TLX/
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to the metrics, differences between the three different codes complexity are visible,

being the major difference noticed for the McCabe Cyclomatic Complexity metric,

one of the most popular and widely used in software engineering [57]. The three

different complexity codes can be seen in the Figures A.1, A.2 and A.3, respectively,

in the experimental protocol appendix A.

Figure 4.2: Complexity level (in % of the maximum) of each code tasks according
to each one of the five software complexity metrics used.

4.3 EEG Acquisition Setup

For data acquisition, the experimental setup comprised a set of varied sensors, rang-

ing from Electroencephalography (EEG), Electrocardiography (ECG), Impedance

Cardiography (ICG), Photoplethysmography (PPG), Electrodermal Activity (EDA)

to Eye tracking with Pupillography.

Concerning the main focus of this work, the EEG signals were acquired using the

Neuroscan SynAmps 2 amplifier, from Compumedics, with a sampling frequency

of 1000 Hz and 64 channels placed according to the International 10-10 system.

Neuroscan, besides including the channels M1, M2, CB1 and CB2, also included

four integrated bipolar leads for EMG, ECG, and the ocular channels, VEOG and

HEOG.

In the acquisition setup designed to record the EEG data, the EEG quick-cap was
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connected to the amplifier through the EEG HeadBox, which consequently was

connected to the acquisition computer that controls the whole experience, commu-

nicating synchronously with all sensors and to the second computer, used to present

the stimuli to the participant.

During the data acquisition of EEG from one participant, there were several elec-

trodes that did not work, and besides they were located in frontal and parietal lobes,

which, according to related studies, are relevant locations for the analysis. For that

reason, the EEG data of this subject was not considered for the EEG analysis. Later,

three more subjects were removed since Eye tracking data suggested that they did

not focus during some of the trials. Thus, the initial dataset was reduced to 26

subjects for analysis.
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Methods

This section includes four sub-sections describing the steps and methods taken from

the preprocessing of the EEG data to the analysis and interpretation of postpro-

cessed neural signals (see Figure 5.1). It also includes a sub-section of statistical

analysis methods and a last sub-section describing the different studies carried.

Figure 5.1: Overview of the pipeline with the steps and methods performed.
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5.1 Preprocessing

The EEG preprocessing starts with the filtering of raw EEG data, which is then

followed by inspection of the data for bad channels interpolation, re-referencing and

finishes with a Blind Source Separation (BSS), applied for further artifacts removal.

This was performed using the open source toolbox EEGLAB [58], one of the most

widely used software for preprocessing/analysis of EEG data [59]. Before proceeding

to data filtering step, it was added the EEG channels locations information to the

data in the software, and it was also removed the eight channels (M1, M2, CB1,

CB2, ECG, EMG, VEOG, HEOG).

5.1.1 Filtering

In this stage, a Finite Impulse Response (FIR) filter with Hamming sinc window

was applied to the EEG recordings using the function firfilt from EEGLAB. The

filter’s group delay was left-shifted, taking into account that the group delay is an

integer number of samples, not needing more computation, like the cases of Infinite

Impulse Response (IIR) filters, to ensure zero-phase distortion [60].

A windowed sinc filter is considered an approximated ideal filter, since, as the name

suggests, its impulse is based on sinc-function in the time domain, approximating

the frequency response to a rectangular magnitude response [60]. The windowing to

the impulse response is used in order to reduce the passband and stopband ripple,

being the Hamming the chosen window for this study. The number of points M used

in the filter kernel was assigned automatically by default of the function, according

to the quotient between the normalized transition width of the Hamming window

(∆F=3.3) and the transition band width defined by the passband edges.

The order of steps involved, with the respective description, are described bellow:

• High-pass Filter: with a cut-off frequency at 1 Hz, was applied in order to re-

move DC component and slow frequency drifts (depicted in Figure 5.2). This

cut-off value was considered since it was proven that, when using Indepen-

dent Component Analysis (ICA) for blind source separation, this procedure
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produces better results in terms of signal-to-noise ratio (SNR) and in better

dipole-like brain sources ICA components [61].
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Figure 5.2: Frequency Response of the High-pass Filter with a cutt-off frequency of
1 Hz.

• Low-pass Filter: with a cut-off frequency of 90 Hz since it is considered the

upper limit of the frequency band of interest for the analysis (see Figure 5.3).
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Figure 5.3: Frequency Response of the Low-pass Filter with a cut-off frequency of
90 Hz
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• Notch Filter: applied in order to remove the powerline interference at 50 Hz

(see Figure 5.4).
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Figure 5.4: Frequency Response of the Notch Filter applied at 50 Hz.

An example of some of the results of the High-pass, Low-pass and Notch filters

applied to signals obtained from the 60 EEG channels is depicted in Figure 5.5. It

is also visible the presence of artifacts that need to be removed before proceeding

for data analysis (eye blinks occurring around 56, 58 and 60 seconds).

Figure 5.5: Overview of the filtered EEG data from 20 of the 60 channels. Scale: 35
microvolts(µV ).
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5.1.2 Channels Spatial Interpolation

Although the impedance and functionality of each electrode is checked before each

acquisition, it is possible that electrode malfunctioning occurs until the end of the

trial. It can be the result of the participant’s movement that might lead to electrode

detachment from the scalp, for a moment or until the end of the acquisition. When

this event is not corrected, it might have a considerable impact on the remaining

analysis. Therefore, it is necessary to perform visual inspection of the EEG data, in

the time domain, and proceed to the removal and replacement of these flat or noisy

channels, by interpolated signals using the remaining channels’ information. Once

this step is completed, the data can be re-referenced.

Regarding the interpolation step, it was performed with the eeg interp function of

EEGLAB, using the spherical spline interpolation algorithm from Perrin et al. [62].

In the Fig. 5.6, by maximizing the scale for better visualization of data, it is possible

to observe an example of the presence of a bad channel, in this case the C3 channel,

marked with a red rectangle, that will be removed and interpolated.

Figure 5.6: Visual inspection of EEG bad channels for removal and interpolation.
In this case of this trial from a participant, the C3 channel was removed and inter-
polated. Scale: 5000µV .
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5.1.3 Re-referencing

There are several methods of doing the re-reference, instead of using the reference

electrode chosen during the acquisition, and it can be considered any other elec-

trode as the new common reference. However, the new reference should be carefully

chosen, since by choosing an exact electrode any activity in this electrode will be re-

flected in all other electrodes [63]. Furthermore, if the selected electrode is capturing

brain activity, re-referencing to it may lead to loss of information.

Some of the approaches chosen for re-reference can be left/right mastoid reference,

averaged mastoids reference, nose reference and the average reference of all channels

[64]. Regarding nose reference, it is rarely used in literature. Concerning mastoid

reference, although its location is considered further from the brain, it still remains

close enough to it, so that there is the hypothesis of the mastoid reference containing

some neural activity [63]. For that reason, this might not be the best approach in

the re-referencing. The same happens for averaged mastoids reference, despite that

it can provide better results since there is less lateralization bias [63, 65].

In this study, for the re-reference, despite not having the best high density of elec-

trodes, to achieve better results [63, 66], it was used the average reference, which is

performed, as the name suggest, by doing the average of all 60 channels and the lin-

ear transformation of the data. This was performed using the pop reref function of

EEGLAB. The importance of this step is not only to eliminate some noise common

to all channels, but also because of the fact that the reference electrode should not

be around regions of interest with important brain activity for the analysis [63]. So,

in this case, since the most activated regions during code comprehension are also

being investigated, it is important to change the original reference, which is between

Cz and Pz electrodes, for a proper spatial analysis.

5.1.4 Blind Source Separation

Despite the various preprocessing steps already taken, there are still many artifacts

to remove from the EEG signals, such as ocular (eye blinks and eye movement),
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muscle and cardiac artifacts. Therefore, Independent Component Analysis (ICA) is

applied for Blind Source Separation (BSS) in order to accomplish artifact removal.

BSS consists in the decomposition of a matrix of signals into the different recovered

source estimation signals that produced the signals captured by the sensors [67]. In

other words, it consists in going in the inverse direction of the scheme presented

on Fig. 5.7 towards finding the unmixing matrix. In this case, the mixture of the

sources is the EEG signal captured by the different EEG electrodes. This way,

ICA works by searching for a linear transformation that maximizes the statistical

independence between the output components [68].

Figure 5.7: Scheme of the formation of the recorded signals and how the BSS works
by going in the inverse direction (right to left) of the scheme, in order to compute
the estimation of the original signal sources.

When preparing the data to run ICA, large muscular activity or other strange events

(non stationary data) were rejected manually from the data, in order to improve the

ICA decomposition quality [65,69].

In a recent study carried by Dharmaprani et al [70], analysing the different ICA

algorithms and their performance discriminating between EEG and artifacts com-

ponents, the authors found that the best ICA approach was the FastICA [71] or

Infomax [72] algorithm. From these two, an extended version of the Infomax algo-

rithm was chosen to be used in the current study, since it was showed in another

recent work, regarding the State of the Art about EEG artifact removal, that this

algorithm had better performance in removing ocular and myogenic artifacts [73].
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The Infomax algorithm consists in minimizing the Mutual Information between the

components [73], maximizing the independence between them. Years later, the ex-

tended algorithm was introduced by Lee at el. [74], with the use of negentropy

maximization projection, making it possible to separate mixed signals with different

source distributions (sub- and super-Gaussian distributions).

Thus, by using the function runica from EEGLAB, it was possible to apply the

Extended Infomax Algorithm. In this function there are two main conditions to

stop ICA computation: when the differences in ICA weights are less than 1×10-6

between consecutive runs or when it reaches 512 interactions. The latter condition

was changed to 2000 to ensure that the first condition was dominant, but at the

same time guarantees that if it does not converge, it stops.

After computing the ICA components, the components associated with artifacts

were selected, and subsequently removed, by inspection of the component:

• Topographic map;

• Activity power spectrum;

• Continuous time course.

In the following figures (Fig.5.8 - 5.12) it will be demonstrated and described exam-

ples of typical ICA components obtained.

A neural component can be recognized (i) by the topographic map of the dipole

type of the ICA weights, (ii) by the decrease of the power spectrum magnitude with

the increase of the frequency and (iii) by the typical peaks at certain frequencies on

the power spectrum of the component (mainly around 10 Hz) [75]. An example of

brain-related component can be observed in Fig. 5.8.
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Figure 5.8: Example of the topographic map, activity power spectrum and contin-
uous time course of a neural activity ICA component.

On the other hand, regarding artifact components, in Fig. 5.9, it can be easily

recognized an eye blink artifact component by visualization of the component to-

pographic map with maximum ICA component weights in the frontal region, near

to the eyes [69]. Another easy way to detect this artifact is by noticing the large

amplitude of eye blinking in the component’s time course.

Figure 5.9: Example of the topograpich map, activity power spectrum and continu-
ous time course of ICA component with eye blinking artifacts.

In the Fig. 5.10, it is possible to observe another example of an ICA component

removed that presented ocular artifacts, i.e., the saccades and microsaccades (seen
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in the sec 184-185 of component’s time course), particularly, in the lateral frontal

regions.

Figure 5.10: Example of the topograpich map, activity power spectrum and contin-
uous time course of ICA component with saccades artifacts.

Another example of a removed component, containing cardiac artifact, is represented

in the Fig. 5.11, where it can be easily recognized in the component’s time course.

Figure 5.11: Example of the topograpich map, activity power spectrum and contin-
uous time course of a cardiac artifact ICA component.

Figure 5.12 depicts an example of another common type of artifact, induced by

involuntary muscle movement and typically detected in Electromyogram (EMG).

The component contains muscle activity, visible by its local weight and the burst
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in the activity power spectrum from 30 Hz to 40 Hz in comparison to the power

spectrum in the lower frequencies [69].

Figure 5.12: Example of the topograpich map, activity power spectrum and contin-
uous time course of ICA component with muscle activity.

5.2 Feature Extraction

After preprocessing the EEG data, two types of analysis were performed (further

detail in Section 5.6): one using only 13 signals (grouping of EEG signals per region

by their average - considering the scalp division in 13 regions), and another one

using all 60 EEG signals. This was done with the purpose of investigating the

discriminative power of certain groups of features (linear and non-linear), and the

computational cost that would imply if it were an analysis using all 60 channel

signals.

For feature extraction, it was discussed and thought three possible different ap-

proaches: (i) ”Hand Craft”, by exploring and analyse only features that were truly

known to be related with mental workload during code comprehension tasks; (ii)

”Ad-hoc”, by extracting several types of features and by performing afterwards fea-

ture selection based on the data; and (iii) ”Learning” methods which originate own

features representative of the data, e.g., the Autoencoders.

The features explored in this work were chosen based on the knowledge of the most
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commonly reported features in emotion recognition and mental workload studies.

That said, it consists basically on combining the first two interpretative approaches

mentioned before (i) and (ii), allowing to explore already known important features

but at the same time to investigate new possible discriminant features for distinguish

different complexity levels of code comprehension tasks. The ”Learning” approach

was not considered, since it needs a large amount of data for a successful analysis.

5.2.1 Feature Description

This section will try to briefly address the features explored, which can be divided

into two main groups: linear and non-linear features.

1. Linear features

Linear features are computed using methods that extract amplitude and fre-

quency information from a single EEG electrode (uni-channel) or from multi-

ple electrodes (multi-channel). These features were divided into three groups:

Uni-channel Time Domain, Uni-channel Frequency Domain and Multi-channel

features.

(a) Uni-channel Time Domain features

• Statistical features

This type of features, very commonly used in EEG analysis [20],

characterize amplitude changes and distribution of the signal over

time. The first, third and fourth central moment and the standard

deviation [76], extracted from time domain EEG, capture information

about the signal’s amplitude distribution:

– Mean (first central moment) of raw and normalized signal: mea-

sure of the central tendency

– Skewness (third central moment): measure of the asymmetry

– Kurtosis (fourth central moment): a measure of the tailedness

– Standard deviation: measure of the dispersion
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The second statistical moment, the variance, was not extracted here,

since it is already included in the following Hjorth parameters.

• Hjorth Parameters

In 1970, in order to develop a quantitative approach to describe the

EEG signals, Hjorth [77] derived a set of three parameters, shown

below, which are widely used nowadays [78] to describe the signal in

terms of amplitude, time scale and complexity, respectively:

– Activity - measures the variance of the signal’s amplitude.

Activity = σ2(S(t)) (5.1)

– Mobility - measures the variance of the slope in relation to the

variance of the signal’s amplitude.

Mobility =
Activity(S ′(t))

Activity(S(t))
(5.2)

– Complexity - measures the deviation of the signal from the pure

sine shape.

Complexity =
Mobility(S ′(t))

Mobility(S(t))
(5.3)

being σ the standard deviation, S(t) the signal in the window anal-

ysed and S’(t) the first derivative of it.

(b) Uni-channel Frequency Domain features

These are the most popular type of features used in EEG studies. The

Power Spectrum Density (PSD) was calculated by squaring the absolute

value of the Fast Fourier Transform (fft function in MATLAB) of the sig-

nal. Then, from this PSD frequency series, several features were extracted

aiming at analysing specific frequency bands. Among these features it is

expected that Theta, Alpha, Beta and Gamma bands stand out as result

of the increase of mental workload [15,39,40], either individually or when
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combined.

• Power features - obtained by computing the area under the PSD

curve.

– Total Power - corresponding to the total area of the frequencies

of interest.

– Absolute and Relative Power of frequency bands - Delta(0-4 Hz),

Theta (4-8 Hz), Alpha (8-13 Hz), Beta (13-30Hz) and Gamma

(30-90 Hz). The latter since it has a wide range, was divided

into three sub-bands: Low Gamma (30-50 Hz), Medium Gamma

(50-70 Hz), High Gamma (70-90 Hz).

– Power ratios between bands (combinations of two between all

the seven bands) - by including these ratios, it might be possible

to improve the analysis by reducing the variability of the PSD

between different subjects, as Fritz et al. suggested on their work

[37].

– Task engagement indexes - first reported by Pope et al. (1995),

ratios using Theta, Alpha and Beta power bands, are being widely

used for two possible representative indexes of the participants’

engagement during tasks [79–81]:

Index 1 =
βPower

θPower + αPower
(5.4)

Index 2 =
θPower

βPower + αPower
(5.5)

• Average frequency - as the name suggest, the estimation of the mean

frequency of the PSD of the signal, in order to explore what are the

most predominant frequencies (low or high) in the different tasks.

• Alpha peak frequency - the frequency corresponding to the maximum
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peak in the Alpha band has been shown to be able to differentiate

mental states [82], with some studies suggesting that is positively

correlated with cognitive performance [83].

(c) Multi-channel features

• Differential Asymmetry and Rational Asymmetry - the difference and

quotient of the power of the frequency bands between pairs of elec-

trodes (left-right brain hemispheres) has been extensively explored

to find relations between brain locations [78,84].

• Cognitive load index ”Brainbeat” - was showed by Holm et al. [85]

to be a powerful feature in estimating cognitive load in tasks through

the ratio between powers of two frequency bands from frontal and

parietal brain location:

”Brainbeat” Index =
θPower(Fz)

αPower(Pz)
(5.6)

2. Non-linear features

Given the complexity of the EEG signals, linear features can be limited by

providing only part of the information about neural activity, because there

may also be processes resulting from non-linearities [86]. Thus, it is of great

importance to add to the analysis some of the most commonly used non-linear

features, allowing a broader and complete analysis of the brain functions, along

with the linear features. However, an important aspect to be retained is that

these features are associated with a higher computational cost than linear

features.

In this group of features, which will be briefly described below, only features

of the time domain were extracted from single EEG electrodes.

• Phase Space Reconstructed features

One of the most common methods used in non-linear analysis consists in

the reconstruction of a multidimensional dynamical system (also known
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as Phase Space Reconstruction) by taking different time delays (τ) of the

input time domain signal [86]. Then, from the dynamics of the underlying

m-dimensional system reconstructed (being m the so-called embedding

dimension necessary to describe the behaviour of the signal) it is possible

to extract three non-linear features very commonly used:

– Correlation Dimension - by measuring of the phase space dimension

occupied by the data points, it gives information about the complex-

ity in the dynamics of the system [87], in the embedding dimension

m and using an embedding delay τ .

– Largest Lyapunov Exponent - measures the exponential divergence of

close trajectories in the phase space, providing information about the

predictability of the dynamics of the system [88], in the embedding

dimension m and using an embedding delay τ .

– Approximate Entropy - measure of randomness that gives informa-

tion about the disorder of the dynamics of the system [89], in the

embedding dimension m and using an embedding delay τ .

It should be noted that, for the computation of the above features, the

selection of the embbeding dimenson m and the time delay τ was obtained

using phaseSpaceReconstruction function from MATLAB.

Another feature, in spite of being more used in other biosignals [90, 91]

and not so much explored in EEG signals, was also investigated. The

feature was extracted taking into account that during the phase space

reconstruction step, the embedding matrix had already been computed

for the embedding dimension m and the embedding delay τ , required for

the present feature:

– Simplicity Measure S - it is a measure that can also provide infor-

mation about the complexity of the dynamic system, being more

insensitive to the presence of additive noise in the system compared

to the Entropy [90]. It is calculated through the computation of the
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entropy H of the normalized eigenvalues from the correlation matrix

of the embedding matrix. Then, the feature takes the final form as:

S =
1

2H
(5.7)

• Other features

In addition to the previous features, other non-linear features that do

not require the calculation of the phase space reconstruction were also

extracted. These features are briefly described as follows:

– Fractal Dimension (FD) - another frequently used feature to measure

the complexity of the EEG signal. A fractal can be seen as an object

with fragmented geometric shape, with the fractal dimension defining

the degree of self-similarity that the object has in its different scales

of observation. For its calculation, it was used the Higuchi algorithm

[92], since it has been showed in several studies that this method

gives a better estimation value of FD (closer to the theoretical one)

[93, 94]. This method consists on calculating the mean length of the

curve for each of the k -sample sets. Then by plotting, in log-log

scale, the length curve against k, the slope will express the FD. The

optimal number for the maximum parameter k was searched through

plotting FD value against different kmax. It was found that a good

value would be kmax=100, since after this value the FD becomes

stable [95].

– Hurst Exponent (He) - is also used in fractal analysis and it gives a

measure of long-term memory of a fractal time series, giving infor-

mation on the its predictability [96]. A value of He=0.5 corresponds

to a random time series, while values from 0-0.5 indicate a time series

with long-term changes between high and low values. On the other

hand, values from 0.5-1 indicate a long-term trend.

– Multifractal Spectrum (D(h)) - it is another common feature used
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in fractal analysis, and it allows for the quantification of how the

strength and local regularity of a signal varies over time [97]. The

local regularity is measured by the strength of the signal’s singular

behaviour at time t or around a point, through the Hölder exponent

h [98]. From this spectrum, 11 different parameters were calculated

in order to describe its form (see example of spectrum in Fig. 5.13.)

Figure 5.13: Example of multifractal spectrum obtained from a random 1-second
window of EEG signal.

5.2.2 Selection of Extraction Window

Before proceeding to the extraction of features, the window size used to span the

EEG signal over time and compute each value of a given feature was investigated.

In EEG analysis, there is no rule of thumb to choose the window size for analysis.

Different studies despite using the same sampling frequency, use different window

size, varying from 1 second window to 20 second in different analysis [99–101].

In a preliminary study, a 5 second window with a step of 1 second (80% overlap)

were used to extract EEG signal features. Subsequently, it was concluded that it

would be interesting to investigate other window sizes, in order to find the best one

for this study.

Thus, in order to choose the proper window size for the EEG analysis, it was thought
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to be interesting to explore the dynamic (fast or slow) of the process, i.e., its stabi-

lization time. As the input to the system that generates the EEG signals is totally

unknown, Autoregressive (AR) models were considered useful for the task of choos-

ing a window size given that they can predict an approximate output value based on

the past outputs [102]. This way, using the least-squares method, and by minimizing

the mean square error (MSE), it is possible to obtain the output coefficients of the

AR model to attain the transfer function of the process [102].

The designing of an AR model requires the definition of the order of the model, P,

which should be carefully investigated, since, as it is expected, the higher the number

of coefficients of the model, the lower the error of the model becomes, but higher the

complexity. One approach to find the optimal order is using the Levinson- Durbin

Recursive algorithm and search for the minimum of total squared error (TSE) in

function of the order P [102,103]. Other possible approach is by analysing the Partial

Autocorrelation function (PACF) and search for the lag at which the PACF starts

to reach zero, being that lag, the optimal order of the AR model [104].

Both of aforementioned approaches are exemplified in Figure 5.14. It can be observed

that a good choice for the optimal order its around order 20, since after this value

the curve for the Levinson-Durbin Recursive algorithm becomes flat and the PACF

values tend to approximate zero.

Figure 5.14: Search of the optimal order P for AR model. In the left side is repre-
sented the Levinson-Durbin Recursive algorithm approach, while on the right side
it is represented the Partial Autocorrelation function approach.
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After computing the output coefficients of the AR model for different window sizes

and over the time of the signals of the tasks, it was possible to inspect the poles

from the transfer function obtained for each situation. It was observed and also

concluded that the dominant poles of the process did not vary much in the different

cases. Fig. 5.15 depicts the step response for one example of a 5 second window,

and it can be seen that it presents a fast process, with a settling time (2% criterion)

of only 169 milliseconds, approximately.

Figure 5.15: Step response of the process for an example of 5-second window of the
signal, in order to analyse the dynamic of the system and its settling time.

Hereupon, any of the most commonly used windows mentioned before (1-20 seconds

windows), being greater than the stabilization time (0.169 seconds), can be possible

to be used for feature extraction.

Afterwards, the existence of statistical differences between the performances ob-

tained for different window sizes was assessed using only the linear features. Win-

dows of 1 second to 10 seconds duration and 80% overlap were inspected. The

reason for using only linear features was due to the fact that non-linear features re-

quired high computational time to be extracted, making it difficult to use all these

features for this analysis for each window size. For that reason only linear features

were used in order to select the best window size (see appendix B to inspect com-

putational time differences). Concerning the maximum window size analysed, no

windows longer than 10 seconds were used in order to preserve a sufficient number
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of samples to analyse on the events with reduced time (e.g., Baseline cross with 30

seconds).

Subsequently, it was investigated if there was significant statistical difference be-

tween the performances from the different multiclass models (Code 1 vs Code 2 vs

Code 3 vs the Reading (as control) task) using different window sizes to extract

the linear features. For this step, a Linear Discriminant Analysis Classifier (further

details of this classifier will be presented in section 5.4) was chosen to perform a

simple and fast classification (low computational cost).

Afterwards, it was considered two evaluation metrics for inspect the statistical dif-

ferences: the Accuracy of the model and the F-Measure of the Reading (as control)

task. By using Shapiro Wilk and Kolmogorov Smirnov tests, it was possible to

conclude that both parameters values distribution did not follow a normal distri-

bution. For that reason and considering that more than two independent groups

of variables (10 window sizes) were under inspection, statistical differences were

ascertained using non parametric Kruskal–Wallis H test (see Fig. 5.16).
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Figure 5.16: Analysis of the window size selection (in seconds) using the Fisher
Linear Discriminant Analysis classifier. On the left side is presented the Accuracy
in % of the global tasks classification (3 Codes + Reading Control Tasks) with p-
value of 0.62. On the right is presented the F-Measure of the Text Control Task
with p-value of 0.09.
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As no statistically significant differences (p-values > 0.05) were found for the two

performance measures, the smaller window size (1 second) was chosen for feature

extraction, for a better temporal resolution.

It must be understood that for a future work, with computational resources, it would

be interesting to make a global analysis (using both linear and non-linear features)

or use adaptive window size, since the best windows found for linear features may

not be the best for non-linear ones.

It is also important to note that in this procedure of feature extraction, the features

were extracted only after 5 seconds after each event trigger, due to the transitions

of stimulus and to the reaction of some participants to the trigger beep [54].

In the following Table 5.1 is represented a summary of the types of features described

in this section, as well as the number of features extracted for each analysis.

Table 5.1: Summary of the types and number of the features extracted for the 13
Regions Analysis and for the whole Scalp Analysis (60 signals). For the latter, only
linear features were extracted. Further details of the analyses in section 5.6.

Features

Number of Components
Types

Feature Name 13 Regions

Signals

60 Scalp

Signals

Statistical Features 65 300
Uni-channel Time Domain

Hjorth Parameters 39 180

Uni-channel Frequency Domain PSD Features 520 2400

Differential Asymmetry 28 63

Rational Asymmetry 28 63

Linear

Multi-channel

”Brainbeat” index 1 1

Correlation Dimension 13 60

Largest Lyapunov Exp. 13 60

Approximate Entropy 13 60

Simplicity Measure 13 60

Fractal Dimension 13 60

Hurst Exponen 13 60

non-linear Uni-channel Time Domain

Multifractal Spectrum 143 660

Total 902 3007
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5.2.3 Normalization

After the extraction of the aforementioned features for each one of the event tasks

and for each trial of all the participants, a feature normalization of the principal

events (Code and Reading) was performed. This was done in order to reduce the high

inter-subject variability and even to reduce the intra-suject variability throughout

the experiment [105].

There are a few approaches to perform the normalization, but in this study, taking

into account that there were neutral load events (e.g., the event of the cross), it

can be possible to normalize the features with respect to that baseline event. Thus,

each cross-event was used for the normalization of the baseline of the next event

(1st Cross normalized the Reading task while the 2nd Cross normalized the Code

Comprehension task, as it is represented previously on Fig. 4.1, in the protocol

description section). It was then verified if the feature values of the cross events had

a normal distribution using both Shapiro-Wilk and Kolmogorov-Smirnov tests, in

order to choose the mean or median of the event to perform normalization on the

following task. Finally, for the same feature, to each sample of the Reading Text

and Code Comprehension tasks, it was subtracted and then divided the mean or

median value of the cross event, becoming a percentage change value relative to the

cross baseline task [106].

5.2.4 Feature Transformation

In order to capture the state of the subject for each code complexity and respective

control (reading text) tasks, while maintaining sufficient instances for classification,

each task was divided into four segments and five parameters were computed from

the normalized features for each segment of those tasks. The parameters calculated

were: maximum, minimum, mean, standard deviation and median.

As already mentioned, each task was normalized with the cross baseline, reducing the

subject inter and intra-variability. Therefore, concerning the situations of multiclass

models, in order to differentiate Code 1, Code 2, Code 3 and global Control, all the
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Control tasks from each trial were grouped and then the same procedure of the 5

parameters calculation was performed for each segment of this new group.

Thus, in the end there are two final datasets: one with 624 samples (26 subjects

× 6 tasks × 4 segments) and another with 416 samples (26 subjects × 4 tasks

× 4 segments). Both datasets have 4510 features (902 features × 5 transformed

parameters) for the 13 Regions Analysis. For the case of the Whole Scalp Analysis,

as it did not consider the non-linear features, the datasets have 15035 features (3007

features × 5 transformed parameters), instead of 20135 features (4027 features × 5

transformed parameters), as can it was already observed in Table 5.1.

5.3 Feature Selection

After feature extraction, normalization and transformation, the resulting dataset is

ready to be submitted to feature selection and/or dimensionality reduction. These

two steps are considered of utmost importance since by performing them before

classification it might be possible to improve the learning efficiency of the classifier,

their prediction performance, and prevent from overfitting (critical feature dimen-

sion) [107]. In this work, four different approaches were investigated for feature

selection and dimensionality reduction, separately.

It should be noted that previously to this step, as a preprocessing step for feature

selection and classification, feature scaling was performed to the data by using a

z-score in order to standardize the values of the features to zero mean and unit

variance values, improving the feature selection or/and classification methods, since

the features are all in the same range of values.

With the aim of keeping interpretation regarding the features selected, three filter

methods were used for feature selection.

5.3.1 Kruskal–Wallis H test or Mann-Whiney U-test

By applying Kolmogorov-Smirnov and Shapiro-Wilk tests it was possible to ver-

ify that most of the features of the dataset did not follow a normal distribution.
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Based on that, and since the samples are independent, it was considered a non

parametric independent test for feature selection like the Kruskal–Wallis H-test or

Mann-Whiney U-test. On one hand, the latter is used to compare two independent

groups, rejecting or accepting the null hypothesis that the samples originate from

the same distribution [108] with significance level α of 0.05 and ranking features ac-

cording to the U statistic. On the other hand, Kruskal–Wallis H test is an extended

case of the previous test, differing only by being used when analysing more than two

independent groups and by applying different test statistic H. This test is based on

first sorting the values of each feature for all the classes and afterwards compute the

H statistics for each feature, according to the Equation 5.8.

H =
12

n× (n+ 1)
×

c∑
i=1

ni × (Ri −R)2 (5.8)

being n the total number of samples of the data set in question, c the number of

classes, ni the number of samples of class i, Ri the average rank of observations from

class i and R the average rank for all the observations from all classes. The rank is

based on the sorting of the feature values.

In sum, the Mann-Whiney U-test was used for the binary classification models

while the Kruskal–Wallis H-test was used for the multiclass classification models.

The features were then selected based on their ranking according to the U and H

statistics (more discriminant ones are related with higher H or U).

Afterwards, the subset of features selected were inspected for redundancy by com-

puting the Pearson correlation coefficient [109] between features. Then, the features

that had more than 0.90 absolute correlation value, i.e., that are strongly correlated,

were removed, remaining only one feature of them for the final subset.

5.3.2 ReliefF Algorithm

This method is known to be a robust and noise tolerant method for feature selec-

tion, ranking the features by weights [110,111]. It is based on weighting the features

through several iterations, checking how do the features behave by analysing the
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difference between the features’ values of a random instance in relation to the fea-

tures’ values of other k neighbours instances, being ones from the same class and

others from different class of the random instance. In each iteration the weights

of the features (Wj) are updated (for more detail of the algorithm see page 3 from

[110]), and at the end, the features are selected based on the final ranking of the

weights. Concerning the number of neighbours k to use on the algorithm, it was

defined to be 10 since it was proved to give satisfactory results [112]. In the same

way of the previous filter method, it was also used the Pearson correlation coefficient

in order to remove redundant features of the selected subset of features from ReliefF

Algorithm.

5.3.3 Normalized Mutual Information

In order to select relevant but at the same time non-redundant features, another

filter method for feature selection was explored. This method, Normalized Mutual

Information (NMI), consists in selecting the best subset of features based on mutual

information MI, by measuring the relevancy of the features to the classes and the

redundancy within the set of features S [113]. This particular method, by adding an

entropy condition for normalization of the mutual information between features, was

found to give a better performance since it improves the bias problem that occurs in

previous features selection methods based only on the mutual information between

the features and classes [114]. The score obtained for each feature is given by the

measure G :

G = MI(C; fi)−
1

S
×

∑
fs∈S

NMI(fs; fi) (5.9)

being MI(C; fi) the mutual information between class C and the feature fi, S the

number of the selected subset of features and NMI(fs; fi) the normalized mutual

information between the feature i and the subset of features S.

On the other hand, additionally to the feature selection techniques previously de-

scribed, a well-known, widely used dimensionality reduction technique, the Principal
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Component Analysis (PCA), was also tested in this work.

5.3.4 Principal Component Analysis

PCA consists on performing feature space reduction while preserving data variability

as much as possible. This is done through an orthogonal transformation of the

feature space into new directions (principal components) which are determined by

computing the eigenvectors from the data covariance matrix. During this process,

the variance is maximized and the correlation between the components is minimized

[115]. The number of dimensions, i.e., number of principal components, selected was

based on the percentage of the cumulative explained variance (CEV) that is decided

to maintain [116]:

CEVm(%) =

∑m
j=1 λj∑T
j=1 λj

× 100 (5.10)

being λ the magnitude of the eigenvalue of the component j (correspondent to the

variance of the data in this direction), m the number of the first m principal compo-

nents used for compute the CEV and T the total number of principal components

that exists in the new space.

5.4 Classification

After feature selection or dimensionality reduction, four different classifiers were

considered for the realization of the models that will try to differentiate the different

tasks scenarios.

5.4.1 Fisher Linear Discriminant Analysis Classifier

Fisher Linear Discriminant Analysis (FLDA) classifier performs a linear transforma-

tion of the training data, projecting it in directions that (i) maximize the separability

between the classes (numerator of eq. 5.11) and (ii) minimize the variability within

the classes (denominator of eq. 5.11). This way it is possible to find the best

separation plane between the different classes for the classification of new samples
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[117]. Although FLDA is a binary classifier by default, it can be used in multiclass

scenarios by considering One-vs-All strategy.

J(w) =
wTSBw

wTSww
(5.11)

being w the direction of projection to be determined, SB the between-class scatter

matrix and Sw the within-class scatter matrix.

Figure 5.17: Illustration of how FLDA classifier performs by finding the best projec-
tion of the data for classification of new samples. In this case for a binary scenario in
a 2D space, it is possible to see a projection that allows a clear separation between
the two classes. Adapted from [118].

5.4.2 Support Vector Machine

A Support Vector Machine (SVM) with a linear kernel was used in this study in order

to minimize the risk of over-fitting, which may be more likely if non-linear kernels

(Gaussian or Polynomial) are used. This linear classifier discriminates new samples

based on the optimal hyperplane that maximizes the margin between the classes

(see Fig. 5.18) in the training data [119, 120]. SVM are natively binary classifiers,

but can be used in multi-class problems by combining them using a One-Vs-One, or

One-vs-All strategy. Furthermore, the linear kernel SVM has a free parameter, the

cost (C), that should be tuned, and that is related to the degree of misclassification

that one are able to assume. A higher C value leads to a smaller-margin hyperplane

and therefore to a harder penalization of the wrong classification, while a smaller
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C value leads to a larger-margin, allowing the model to be more permissive to

misclassification.

Figure 5.18: Illustration of Linear SVM for a binary classification. The optimal hy-
perplane W.X+b = 0 is the one that maximize the separation margin 2

||w|| delimited

by the supper vectors, as represented in the illustration. Adapted from [121].

5.4.3 k-Nearest Neighbors Algorithm

This classifier, k-Nearest Neighbors (k-NN), is a lazy learner as its training phase

is just the storing of the labelled training data. Thus, in testing, a new sample is

classified based on the class that predominate among the k nearest neighbors around

the mentioned sample [122]. To choose the best odd number of neighbors k for the

classifier, a grid search was performed in the validation step.

Figure 5.19: Illustration of how k-NN performs for classifying a new sample (red),
using k = 3 or k = 5. If k = 3, the new sample will be assign to Class 2 (blue),
while if k = 5 the sample will be assign to Class 1 (green). Adapted from [122].

51



5. Methods

5.4.4 Naive Bayes Classifier

Finally, unlike the previous classifiers, the fourth classifier considered in this study

is a probability-based model. This classifier is based on the Bayes theorem (see

equation 5.12).

P (y | ~x) =
P (y)P (~x | y)

P (~x)
(5.12)

being y the class label (target), ~x the vector of features (predictor), P (y) the Prior

Probability of the class y obtained by the ratio of the number of samples from class y

and the total number of samples, P (~x) the Evidence or Predictor Prior Probability,

P (~x | y) the Likehood, and P (y | ~x) the Posterior Probability.

Considering the conditional independence of all features assumed by Naive Bayes,

the Likehood in the previous equation can be decomposed, using the chain rule,

in the individual independent features. Furthermore, taking into account that the

denominator, P (x1)P (x2)...P (xn), is a constant value with equal value for all the

samples of the dataset, it can be removed and introduced a proportionality (see

equation 5.13).

P (y | x1,...,xn) ∝ P (y)
n∏
i=1

P (xi | y) (5.13)

Thus, Naive Bayes classifier, by taking into account the Bayes theorem and assuming

conditional independence of all features, it classifies a new sample into the class with

higher posterior probabilities [123], i.e., argmax
y

P (y)
∏n

i=1 P (xi | y). There are no

parameters needed for grid search, since it is based on the probabilities derived from

training data.

5.4.5 Validation and Evaluation Metrics

Given that there was not a large amount of data, it was not possible to separate

from the start two datasets, one for only test validation step and the remaining for
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the final test classification. Thus, it was performed only a Leave-One-Subject-Out

cross-validation procedure [124]. This method consists in training the classifiers

with the samples of 25 subjects and testing them with the samples of one subject.

Thus, the overall grid search results for each model as well as the validation results

are obtained based on the statistics from 26 runs. The choice of this type of cross-

validation makes it possible to create a model that it is similar to a daily case

of classifying new samples from a new different subject with previous information

about other subjects.

In order to evaluate the performance of the models (features selection/dimensionality

reduction methods combined with different classifiers), it was considered five evalu-

ation metrics:

• Accuracy - corresponds to the ratio between the number of correctly predicted

samples, i.e., the True Positives (TP), of all classes n and the total number of

samples, giving information of the overall performance of the predictor model.

ACC =

∑n
i=1 TPi

Total Samples
(5.14)

• Recall (or Sensitivity) - given a class, it consists in the ratio between the

number of correctly predicted samples of that class, i.e., the True Positives

(TP), and the total number of samples labelled as to belong to that class, i.e.,

True Positives (TP) plus False Negative (FN).

RC =
TP

TP + FN
(5.15)

• Precision - given a class, it consists in the ratio between the number of correctly

predicted samples of that class, True Positives (TP), and the total number of

samples that were labelled by the classifier as to belong to that class, i.e., True

Positives (TP) plus False Positives (FP).

PR =
TP

TP + FP
(5.16)
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• Specificity - given a class, it consists in the ratio between the number of cor-

rectly predicted samples of the other classes, True Negative (TN), and the

total number of samples that are labelled with those classes, i.e., True Neg-

ative (TN) plus False Positive (FP). It should be noted that for the cases of

study involving multiclass models, One-against-All was considered for compu-

tation of this evaluation parameter for each class.

SP =
TN

TN + FP
(5.17)

• F-measure (F1-score) - is the harmonic average of the precision and recall

parameters, calculated for each class, providing an overall evaluation per class

of the False Negative (FN) and False Positives (FP).

F1 = 2× Precision×Recall
Precision+Recall

(5.18)

5.5 Statistical Analysis

In order to inspect what were the best combinations of feature selection/reduction

and classifiers models, it was verified from the validation results if there was signif-

icant statistical differences between the different methods/classifiers combinations.

Since the models to be compared are independent, it was only considered indepen-

dent statistical tests.

First of all, for each statistical analysis, it was verified the normality of the perfor-

mance values distribution of the models by using Shapiro-Wilk and Kolmogorov-

Smirnov tests. Afterwards, if the performance values distribution of all models were

normal, the statistical tests used were the parametric ones, otherwise, non paramet-

ric tests were considered. Lastly, the statistical test was chosen depending on the

number of models being compared: two groups or more than two groups. In Fig.

5.20, it is illustrated a scheme of the steps made in order to choose the statistical

test to be used.

54



5. Methods

Figure 5.20: Pipeline of classification of the statistical test to be used for the different
analysis.

It should be noted that either for the normality verification or the statistical analysis,

it was considered a significant level α of 0.05.

5.6 Analysis Performed

5.6.1 Study 1: 13 Regions Analysis

For this study, an analysis was conducted considering the division of the brain into

13 regions of electrode clusters. After the preprocessing step of the 60 EEG signals,

the average of the signals that belonged to the same region was computed, reducing

the number of signals to analyse to 13. This way, despite loosing some information

through the step of averaging, it is possible to considerably reduce the computational

cost, and consequently allow for the investigation of the different types of features

(linear and non-linear) and at the same time explore the different regions of the

brain.
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The 13 regions considered are depicted in Fig. 5.21.

Figure 5.21: Division of the EEG electrodes into 13 regions. Adapted from Kielar
et al. [125].

Finally, all combinations of the different feature selection methods with the different

classifiers were trained and tested in order to create a model that could distinguish

the three different code complexities and/or the resting (control) task.

In Fig. 5.22, it is possible to visualize a schematic representation of the chain of

thought for the overall analysis performed.

Figure 5.22: Scheme of the chain of thought during 13 Regions Analysis.
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5.6.2 Study 2: Whole Scalp Analysis

In this study, the 60 EEG signals were submitted to feature extraction, selection

or reduction and classification. By using all signals available, in addition to give a

better spatial resolution, it can also be possible to verify if any information was lost

by using the previous low complex dataset and/or new findings would be achieved.

However, such comparison was only performed for the linear features due to results

obtained in the previous analysis and to the associated lower computational cost

(further details will be presented in section 6.1.3).

Similarly to the 13 Region Analysis, all combinations of the different feature selection

methods with different classifiers were explored in order to create a model that could

distinguish the three different code complexities and the resting (control) task.

In Fig. 5.23, it is possible to visualize a schematic representation of the chain of

thought of the overall analysis performed, considering the previous analysis results.

Figure 5.23: Scheme of the chain of thought during Whole Scalp Analysis.

5.6.3 Study 3: Space-Temporal Features Analysis

Finally, as a preliminary analysis, in order to make a more ambitious analysis by

lines or blocks of code, the EEG signals together with other two biosignals (Heart

Rate Variability (HRV), from Electrocardiogram (ECG), and Pupillography) and

the Eye tracking information were inspected. A spatial-temporal analysis can then

be performed this way, making it possible to visualize how the different signals
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correlate and explore possible biomarkers associated with the more complex parts

of the code.

Additionally, all the signals information is also synchronized with a figure of the task

with lines or blocks of the code highlighted by a small group of four experienced

software professionals. The group selected the regions they considered as potentially

critical areas, i.e., regions that may demand more mental effort.

Concerning the other biosignals, it was used the HRV, extracted from the ECG,

and the Pupillography. The most discriminant feature found on those modalities

were related to the feature LH, which corresponds to the ratio between the power

in low frequency range and the power in high frequency range [126]. Thus, the

most discriminant features from EEG, obtained by feature selection methods, will

be compared with those two features.

Regarding the Eye tracking data, it will allow the synchronization of spacial and

temporal information along the biosignals, and therefore achieve a more thorough

and complete analysis. The preprocessing and clustering of the Eye tracking data

used, was previously performed by Couceiro R. et al. and the methodology can be

seen in [126]. Concerning the clustering step of the data points, it was according to

three features: y-coordinate along the code, time instants and reading velocity.

In order to evaluate the variation of the EEG features values over the time, each

feature value was plotted at the instant of the corresponding window from which

it was extracted. The instant was considered the middle instant of the window

used. Furthermore, a moving average filter, with window length of 5 samples, was

applied to the signal (feature values vector), in order to smooth the signal for better

visualization.
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Results

In this section it will be presented the main results obtained the for three differ-

ent studies: 13 Regions Analysis; Whole Scalp Analysis; Space-Temporal Features

Analysis.

6.1 Study 1: 13 Regions Analysis

In this study, different models were trained and validated either for multiclass or

binary scenario, using both linear and non-linear features. The most discriminant

features for each scenario were also investigated, in order to uncover if there are

features that stand out depending on the tasks to be distinguished.

6.1.1 Code Complexity Analysis

In a first approach, the main focus of the work was to explore the ability of a

multiclass model in distinguishing the three different code complexities, Code 1 vs

Code 2 vs Code 3 (from the easiest to the most complex according to the software

metrics).

For this general multiclass model, for each type of classifier, it was verified if there

was significant statistical differences between the feature selection/reduction meth-

ods used. As already explained in the section 5.5 concerning Statistical analsyis,

firstly, Shapiro-Wilk and Kolmogorov-Smirnov tests were used to check if the val-

ues of the accuracy of each model present a normal distribution. It was concluded

that, for each classifier, at least one of the feature selection/reduction method, the
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statistical tests rejected the null hypothesis of data following a normal distribution.

Based on that, and since more than two independent groups of data were under

analysis, the non-parametric test Kruskal-Wallis was used to assess if there was

significant statistical differences. The boxplots for each of the classifiers and each

correspondent p-value are represented in the following Fig. 6.1.

Figure 6.1: Boxplots and corresponding Kruskal-wallis p-value indicating the exis-
tence of statistical differences among the four feature selection/reduction methods
accuracies. A p-value was obtained for each of the classifiers trained to distinguish
the three code tasks.

By looking at the results, it can be observed that for each classifier models the p-

values are above the significance level of 0.05, allowing to conclude that there are no

significant differences between the methods for feature selection/reduction for these

type of multi-class models.

As no significant statistical differences were found between the performances of the

feature selection/reduction methods for all classifiers, the results obtained for PCA

were randomly chosen to be depicted in Table 6.1, while the results for the remaining

methods can be found in Tables C.1 (Kruskal-Wallis H test), C.2 (ReliefF Algorithm)

and C.3 (Normalized Mutual Information), in Appendix C.1.1. Those tables present

the average performance for different evaluation metrics, and the respective standard

deviation values, obtained for the four classifiers designed to distinguish between the
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three Codes. The parameters returned by grid search for each of these models are

also presented.

Table 6.1: Performance of the four different classifiers after PCA feature reduction
(with 70% variance preserved), for the multiclass classification scenario: Code 1 vs
Code 2 vs Code 3.

Evaluation Metric (%)

Classifier
Multiclass

Classification
Recall Precision Specificity F-measure Accuracy

C1 98.08 ± 6.79 97.69 ± 6.51 98.11 ± 5.44 97.62 ± 5.02

C2 59.61 ± 38.12 56.80 ± 29.79 76.82 ± 18.26 52.89 ± 27.74 70.83 ± 12.74
SVM

(OAO,C=21)
C3 54.81 ± 34.65 61.32 ± 34.39 80.22 ± 19.63 51.67 ± 27.06

C1 94.23 ± 16.29 99.23 ± 3.92 95.67 ± 19.67 95.62 ± 12.39

FLDA C2 58.65 ± 41.79 52.99 ± 35.16 73.76 ± 25.04 50.46 ± 32.25 68.27 ± 18.86

C3 51.92 ± 41.18 51.21 ± 38.99 77.35 ± 23.13 46.57 ± 33.43

C1 88.46 ± 22.62 93.74 ± 21.18 88.24 ± 29.16 90.09 ± 20.64

Naive B. C2 65.38 ± 36.10 47.74 ± 29.71 61.58 ± 25.79 52.95 ± 28.47 61.86 ± 21.24

C3 31.73 ± 42.75 31.56 ± 40.89 79.67 ± 24.82 29.46 ± 38.29

C1 89.42 ± 20.22 96.99 ± 8.71 93.27 ± 21.86 91.32 ± 14.99

C2 57.69 ± 39.86 51.83 ± 36.54 75.20 ± 22.28 51.09 ± 34.25 68.27 ± 18.56
k-NN

(k=5)
C3 57.69 ± 37.26 57.20 ± 33.29 76.80 ± 18.79 53.58 ± 30.68

An overall performance of 70% of accuracy was achieved with the linear SVM classi-

fier, using the One-Against-One multi-class strategy and a cost parameter (C) value

of 21. Furthermore, although there is a clear distinction between the Code 1 and the

other two Codes (F-Measure around 98%), the model is not able to distinguish the

more complex Codes, i.e., the Code 2 and Code 3 (F-Measures only around 52%).

Moreover, concerning Table 6.1, although it seems that the SVM achieved the best

performance, it was verified if there was significant statistical differences between

the performances (accuracy) of the different classifiers models. As the performance

values of some groups did not follow a normal distribution, a non parametric statisti-

cal test was considered. Therefore, since the groups are independent and more than
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two groups to be compared, it was used the Kruskal-Wallis test. It was obtained

a p-value of 0.247, a value superior to the significance level of 0.05, leading to the

conclusion that there are no significant statistical differences between the classifiers

for these type of models. It was also inspected the other feature selection methods if

there were any classifier that stand out. However, it was also obtained no significant

statistical differences between the classifiers performance in each feature selection

method. The boxplots and the multiple comparison tests of the classifiers corre-

sponding to PCA and remaining feature selection methods are presented in figures

C.1 and C.2 in Appendix C.1.1.

Afterwards, taking into account the Kruskal–Wallis H test as feature selection

method, it was inspected the most frequent features in order to investigate the

contribution of the different features type and location. This was performed by

analysing the first one hundred selected features in all folds of validation. Figure

6.2 presents a topographic map indicating the brain regions corresponding to the

most frequent selected features. In Fig. 6.3 a radar plot is depicted containing

information about the most frequent type of features.

Figure 6.2: Topographic map representing the percentage of the features correspond-
ing to each brain region after feature selection with Kruskal–Wallis H test, for the
multiclass scenario: Code 1 vs Code 2 vs Code 3.
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Figure 6.3: Radar plot depicting which type of features are more frequent (in %) in
the dataset obtained after feature selection, for the multiclass scenario: Code 1 vs
Code 2 vs Code 3.

From the above figures, it was found that in this model that the most frequent fea-

tures selected belongs to the parietal regions. Such finding is in accordance with the

results reported in previous studies regarding comprehension tasks and the mental

workload, which pinpoint frontal and parietal regions as the most relevant ones [39].

Additionally, the most frequent type of features correspond to the Absolute and Rel-

ative power of Alpha band and the ratios between the Power of Theta and the Power

of Beta and/or Alpha. These results are in line with the findings of recent studies

in the area as already mentioned in Chapter 3, which emphasized the significant

discriminative power of the Theta, Alpha and Beta bands in distinguishing tasks

difficulty and assessing mental workload [15, 39, 40], suggesting positive correlation

of Theta power and negative correlation of Alpha power with the increase of code

complexity.

Afterwards, in order to inspect the interclass discrimination performance, specifically
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between Code 2 and Code 3, binary classification models were trained and the

corresponding training datasets results were analysed.

Table 6.2 presents the performance results of the binary classifications using PCA,

for the different classifiers. The results for the remaining feature selection methods

can be found in Tables C.4 (Mann-Whitney U-test), C.5 (ReliefF Algorithm) and

C.6 (Normalized Mutual Information) in Appendix C.1.1.

Table 6.2: Performance of the four different classifiers after PCA feature reduction
(with 70% variance preserved), for the binary classification scenario: Code task vs
Code task.

Evaluation Metric (%)

Classifier
Binary

Classification
Recall Precision Specificity F-measure Accuracy

C1 vs C2 100.00 ± 0.00 96.67 ± 9.66 95.19 ± 14.18 98.03 ± 5.74 97.60 ± 7.09

C1 vs C3 99.04 ± 4.90 98.35 ± 8.40 97.12 ± 14.71 98.40 ± 5.94 98.08 ± 7.66
SVM

(C=27)
C2 vs C3 51.92 ± 41.79 46.52 ± 34.97 55.77 ± 43.77 44.32 ± 32.11 53.85 ± 19.93

C1 vs C2 98.08 ± 6.79 98.72 ± 6.54 98.08 ± 9.81 98.13 ± 5.36 98.08 ± 5.80

FLDA C1 vs C3 96.15 ± 11.60 100.00 ± 0.00 100.00 ± 0.00 97.62 ± 7.41 98.08 ± 5.80

C2 vs C3 52.88 ± 40.82 47.61 ± 33.25 47.12 ± 43.78 44.05 ± 28.37 50.00 ± 18.37

C1 vs C2 92.31 ± 18.40 89.43 ± 18.39 81.73 ± 32.83 88.09 ± 15.80 87.02 ± 16.76

Naive B. C1 vs C3 92.31 ± 22.10 91.09 ± 21.52 92.31 ± 15.44 90.97 ± 20.85 92.31 ± 14.61

C2 vs C3 67.31 ± 35.19 51.97 ± 26.55 26.92 ± 39.32 52.72 ± 21.28 47.12 ± 18.48

C1 vs C2 91.35 ± 19.93 92.05 ± 13.73 90.38 ± 17.43 90.13 ± 16.25 90.87 ± 13.49

C1 vs C3 89.42 ± 21.42 95.26 ± 12.37 95.19 ± 12.29 90.89 ± 17.37 92.31 ± 14.18k-NN

(k=3)
C2 vs C3 55.77 ± 35.57 48.25 ± 33.09 54.81 ± 36.07 50.71 ± 32.59 55.29 ± 24.02

By looking at the results, it is possible to observe the expected clear distinction

between (i) Code 1 and Code 2, and (ii) Code 1 and Code 3 (accuracy around 98%),

as already seen in previous results of the multiclass models. However, regarding the

objective of this binary approach, the models’ behaviour when distinguishing Code

2 from Code 3 (the most complex codes) resembles a random prediction.
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At this point, in order to investigate the discriminant features, it was used the

Mann-Whiney U-test as feature selection method, and the features selected were

inspected (see Figure 6.4).

Figure 6.4: Topographic map representing the percentage of the features correspond-
ing to each brain region after feature selection with Mann-Whitney U-test, for the
binary classification scenario of Codes: (a) C1 vs C2; (b) C1 vs C3; (c) C2 vs C3.

It can be seen that for the binary classification between the easier Code (1) and

the more complex Codes (2 and 3), the features selected in each brain location were

similar, with more features being selected from the parietal lobe. On the other hand,

when trying to distinguish between Code 2 and Code 3, the selected features did

not correspond to the same regions mentioned previously but rather were found to

spread across the brain, perhaps trying to overfit for this case that seems difficult

to differentiate, as reflected in the low performance of the classification.

In Fig. 6.5, it is represented the boxplots of the highest rank feature for the different

classes for each one binary classification problem.

Figure 6.5: Boxplot of the highest rank feature for each binary situation.

Although the presence of some outliers, it can be observed a clear distinction between

Code 1 and Codes 2 and 3, using the maximum of θPower
βPower+αPower

during the tasks,

65



6. Results

suggesting the synchronization of the Theta power and a desynchronization of Beta

and Alpha powers with the increase of the code complexity [49]. However the highest

rank feature for the case Code 2 vs Code 3, does not enable a good separation of

the classes as expected.

6.1.2 Code Complexity and Resting Analysis

After concluding previous analysis, a more robust analysis was considered: training

and validating a multiclass model to distinguish Code 1, Code 2, Code 3 and the

Resting Control task, i.e., the reading task (see section 4.2). This way it is possible

to ascertain if the models are using features that represent mainly mental workload

states and ensure a lower possibility of overfitting.

A statistical analysis was conducted on the accuracy results obtained for the different

feature selection/reduction methods obtained for each one of the four classifiers,

SVM, FLDA, Naive bayes and k-NN, for this multiclass problem (see Figure 6.6).

Figure 6.6: Boxplots and corresponding statistical test p-value indicating the exis-
tence of statistical differences among the four feature selection/reduction methods
accuracies. A p-value was obtained for each of the classifiers trained to distinguish
the three code tasks and the resting task. The statistical tests performed were: (a)
and (b) Kruskal-Wallis test; (c) and (d) Analysis of Variance (ANOVA).

From this results, it can be observed that there are significant statistical differences
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between the feature selection/reduction methods using the SVM, FLDA and k-NN,

considering a significance level of 0.05. Additionally, as can be seen in Figure 6.7,

where is represented a multiple comparison test of pairwise comparison accuracy re-

sults of the different models, PCA is the method that more often presents statistical

significant differences for the SVM, FLDA and k-NN classifiers.

Figure 6.7: Multiple comparison test and respective p-value of the statistical differ-
ences between each method of feature selection/reduction for the different classifiers,
as classification models of the three code and resting tasks.

Based on the above, the results obtained by applying PCA and subsequently the

different classifiers are presented in Table 6.3. The results for the remaining feature

selection methods can be found in Tables C.7 (Kruskal-Wallis H test), C.8 (ReliefF

Algorithm) and C.9 (Normalized Mutual Information), in Appendix C.1.2.
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Table 6.3: Performance obtained for the four classifiers after PCA feature reduction
(with 70% variance preserved), for the multiclass classification scenario: Code 1 vs
Code 2 vs Code 3 vs Resting Control.

Evaluation Metric (%)

Classifier
Multiclass

Classification
Recall Precision Specificity F-measure Accuracy

C1 89.42 ± 22.55 94.62 ± 20.05 99.22 ± 2.76 91.27 ± 20.39

C2 55.77 ± 43.19 43.03 ± 32.74 82.77 ± 12.50 47.13 ± 35.15

C3 50.96 ± 35.69 52.78 ± 37.82 85.28 ± 15.62 48.10 ± 31.16

SVM

(OAO,C=2−6)

Control 97.12 ± 8.15 89.94 ± 14.30 92.42 ± 13.26 92.55 ± 9.47

73.32 ± 13.41

C1 75.96 ± 37.07 88.46 ± 32.58 100.00 ± 0.00 79.45 ± 34.50

C2 54.81 ± 42.44 44.53 ± 32.87 82.20 ± 16.61 45.95 ± 32.70

C3 53.85 ± 41.65 51.69 ± 39.02 86.47 ± 15.86 49.06 ± 35.79
FLDA

Control 99.03 ± 4.90 81.74 ± 21.99 83.67 ± 21.55 87.71 ± 14.41

70.91 ± 15.51

C1 50.00 ± 39.37 65.34 ± 43.51 95.38 ± 10.44 53.69 ± 38.00

C2 32.69 ± 35.90 35.94 ± 40.20 83.66 ± 18.81 31.01 ± 32.41

C3 25.96 ± 37.74 31.28 ± 41.12 85.12 ± 19.91 25.38 ± 34.36
Naive B.

Control 90.38 ± 18.81 47.22 ± 18.17 46.71 ± 29.80 59.95 ± 16.45

49.76 ± 16.82

C1 68.27 ± 35.04 84.87 ± 28.36 96.72 ± 5.56 72.18 ± 31.05

C2 41.35 ± 33.87 45.97 ± 36.01 81.48 ± 15.09 40.20 ± 29.99

C3 46.15 ± 37.88 47.34 ± 33.01 80.79 ± 12.44 43.04 ± 29.96

k-NN

(k=3)

Control 87.50 ± 16.20 68.30 ± 23.45 72.33 ± 26.15 73.71 ± 16.67

60.82 ± 16.26

By looking at this table it is possible to observe a decrease in F-measure of Code

1 (from 98% to 91%) when compared to the results from the multiclass model

considering only the three codes (see Table 6.1). Surprisingly, instead of the expected

maximum separation, the F-Measure of the resting (Control) task was only around

93%. Regarding the performance of the higher complexity Codes, it remained the

same as the previous multiclass models, being not possible to distinguish between

these tasks.

The boxplots from the statistical differences between the classifiers’ accuracy re-
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sults for a given feature reduction/selection method are presented in Figure C.3, in

Appendix C.1.2. Statistical significant differences between the models were found

between SVM classifier against Naive Bayes and k-NN classifiers, more specifically

on PCA, ReliefF Algorithm and Normalized Mutual Information methods (see mul-

tiple comparison tests in Figure C.4, in Appendix C.1.2).

Similar to previous analyses, it was also investigated what type and region the most

frequent selected features belonged to. For this situation, this was also performed

using Kruskal–Wallis H test feature selection method.

Figure 6.8: Topographic map representing the percentage of the features correspond-
ing to each brain region after feature selection with Kruskal–Wallis H test, for the
multiclass scenario Code 1 vs Code 2 vs Code 3 vs Resting Control.
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Figure 6.9: Radar plot depicting which type of features are more frequent (in %) in
the dataset obtained after feature selection, for the multiclass scenario Code 1 vs
Code 2 vs Code 3 vs Resting Control.

In the previous figures 6.8 and 6.9, it is possible to verify that the regions corre-

sponding to the most frequent regions are the parietal lobes, and also that the types

of features that stand out comprise Theta, Alpha and Beta band derived features.

From this analysis the value of performance for the resting control task despite being

already a satisfactory value, it was not as high as expected, i.e., maximum separation

and classification. This fact motivated the analysis of a binary classification of each

code task and the respective resting control task. This way, it can be possible to

understand if there are any external factors that were not mitigated/addressed with

the baseline normalization step (see section 5.2.3). This normalization procedure

was meant to correct for any inter or intra-variability present, in any of the three

codes when considering a multiclass model.
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The performance results corresponding to the three binary classifications (Control

1 vs Code 1, Control 2 vs Code 2 and Control 2 vs Code 3) can be inspected in

Table 6.4, for the specific case of PCA. The results for the remaining feature selec-

tion methods can be found in Tables C.10 (Mann-Whitney U test), C.11 (ReliefF

Algorithm) and C.12 (Normalized Mutual Information), in Appendix C.1.2.

Table 6.4: Performance of the four different classifiers after PCA feature reduction
(with 70% variance preserved), for each binary classification scenario: Code task vs
Resting Control task.

Evaluation Metric (%)

Classifier
Binary

Classification
Recall Precision Specificity F-measure Accuracy

C1 vs Control 75.96 ± 34.26 73.48 ± 29.98 70.19 ± 36.07 70.67 ± 28.92 73.08 ± 22.27

C2 vs Control 100.00 ± 0.00 99.23 ± 3.92 99.04 ± 4.90 99.57 ± 2.18 99.52 ± 2.45
SVM

(OAO,C=25)
C3 vs Control 100.00 ± 0.00 99.23 ± 3.92 99.04 ± 4.90 99.57 ± 2.18 99.52 ± 2.45

C1 vs Control 63.46 ± 36.90 72.95 ± 33.87 75.96 ± 33.53 72.95 ± 33.87 69.71 ± 20.97

FLDA C2 vs Control 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

C3 vs Control 100.00 ± 0.00 99.23 ± 3.92 99.04 ± 4.90 99.23 ± 3.92 99.52 ± 2.45

C1 vs Control 63.94 ± 21.31 81.73 ± 26.98 46.15 ± 35.84 56.73 ± 39.65 49.20 ± 35.60

Naive B. C2 vs Control 88.94 ± 15.14 93.27 ± 18.11 84.62 ± 22.45 94.38 ± 14.18 87.44 ± 16.81

C3 vs Control 96.63 ± 7.55 98.08 ± 6.79 95.19 ± 14.18 98.46 ± 5.43 96.03 ± 9.52

C1 vs Control 61.06 ± 18.48 68.27 ± 32.83 53.85 ± 35.84 56.67 ± 34.99 51.91 ± 31.04

C2 vs Control 96.63 ± 7.55 96.15 ± 11.60 97.12 ± 10.79 97.18 ± 8.26 96.54 ± 8.13
k-NN

(k=5)
C3 vs Control 99.04 ± 3.40 99.04 ± 4.90 99.04 ± 4.90 99.23 ± 3.92 99.02 ± 3.48

It can be observed that the accuracy results returned for the classification of Code

2 vs Control 2 and Code 3 vs Control 3 lie around 100%. However, for the case of

Code 1 vs Control 1 the results decrease considerably, which might be explained by

the low difficulty of the task, suggesting that there are segments during this task

that did not present any additional mental effort for some of the participants in

comparison to the mental effort in the resting control tasks.
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Additionally, the inspection of the features representation in each brain region was

performed on the dataset retrieved by the Mann-Whitney U-test feature selection

method (see Figure 6.10).

Figure 6.10: Topographic map representing the percentage of the features corre-
sponding to each brain region after feature selection with Mann-Whitney U-test, for
the binary classification scenario: (a) Code 1 vs Control 1; (b) Code 2 vs Control 2;
(c) Code 3 vs Control 3.

Similarly to the topographic map in Figure 6.8, parietal lobes are also associated

with a higher number of features selected by the feature selection method.

In Fig. 6.11, it is represented the highest rank feature, from the selected ones, for

each binary classification.

Figure 6.11: Boxplot of the highest rank feature for each binary situation.

The highest rank features for the Codes 2 and 3 against their control task remained

to be the previous most common feature , the ratio θPower
βPower+αPower

), which, despite

some outliers, it shows a clear distinction between the classes. On the other hand,

the highest rank feature for the case Code 1 vs Control 1, it was not related to

the ratio, but only with one of the variables, the absolute power of Beta, showing

an inferior separability than the others situations. This result emphasizes that for
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this easier complexity Code, it did not require so much mental effort from some

participants during all the task, probably due to its simplicity on comprehension.

6.1.3 Linear and Non Linear Features Performance Analysis

Finally, as already mentioned in Section 5.2, the computational time for the ex-

traction of linear features is considerable lower than the one required for non-linear

features extraction (see Appendix B), e.g., for one subject it took around 8 mins

for extraction of linear features, while for the non linear it took 23 hours, using a 1

second window and only the 13 region signals. Given that, it was found interesting

to create a model using only linear features and compare the performance results

with the previous ones, which used both linear and non-linear features.

The results for the different classifiers using PCA, and only linear features, are pre-

sented in Table 6.5. Only PCA was considered here, since the principal objective of

this analysis was to investigate how the model behaves after removing the non-linear

features, and not explore what are the best feature selection/reduction methods.
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Table 6.5: Performance of the four different classifiers after PCA feature reduction
(with 70% variance preserved), using only linear features, for the multiclass classi-
fication scenario: C1 vs C2 vs C3 vs Resting Control.

Evaluation Metric

Classifier
Multiclass

Classification
Recall Precision Specificity F-measure Accuracy

C1 88.46 ± 26.67 95.38 ± 19.85 99.36 ± 3.27 90.31 ± 23.41

C2 55.77 ± 36.95 57.84 ± 36.52 87.08 ± 14.62 51.97 ± 30.94

C3 60.58 ± 39.48 54.40 ± 33.53 85.40 ± 14.13 53.16 ± 31.45

SVM

(OAO,C=25)

Control 96.15 ± 9.20 87.53 ± 18.80 90.61 ± 15.17 89.99 ± 11.68

75.24 ± 12.43

C1 75.00 ± 38.73 84.62 ± 36.79 100,00 ± 0,00 77.91 ± 37.12

C2 54.81 ± 41.24 60.00 ± 37.64 85.48 ± 17.12 50.01 ± 31.77

C3 60.58 ± 38.19 60.70 ± 36.01 85.74 ± 14.54 56.24 ± 32.03
FLDA

Control 99.04 ± 4.90 81.40 ± 23.22 83.81 ± 21.63 87.30 ± 15.26

72.36 ± 16.31

C1 44.23 ± 36.27 66.67 ± 43.97 97.31 ± 6.65 50.84 ± 36.71

C2 25.96 ± 27.82 39.10 ± 40.45 85.21 ± 18.16 28.28 ± 27.98

C3 27.88 ± 40.82 26.36 ± 39.22 86.13 ± 17.90 26.48 ± 38.74
Naive B.

Control 94.23 ± 12.86 44.94 ± 15.73 40.48 ± 29.64 58.88 ± 13.65

48.08 ± 17.12

C1 65.38 ± 39.42 74.68 ± 36.26 95.65 ± 7.04 67.32 ± 36.76

C2 47.12 ± 34.15 47.60 ± 31.74 82.87 ± 12.62 45.27 ± 29.17

C3 52.88 ± 37.63 55.06 ± 33.88 82.28 ± 13.53 49.04 ± 29.97

k-NN

(k=3)

Control 86.54 ± 16.17 69.58 ± 25.42 76.10 ± 23.24 74.45 ± 18.38

62.98 ± 14.02

By looking at this table and comparing to the results obtained for the models de-

veloped in section 6.1.2 (using linear and non-linear features), the performance of

the models designed based only on linear features did not vary significantly for all

classifiers (see Figure 6.12)
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Figure 6.12: Boxplots and respective p-value of the statistical differences between
the accuracy results of each models (Linear + Non linear vs Linear) for the different
classifiers, after PCA feature reduction. For each classifier case, being only two
groups to be compared and all presenting normal distribution, the statistical test
performed was the independent t-test.

As can be observed in Fig. 6.12, there are no significant statistical differences be-

tween the models using all the information and the models developed using only

linear information, considering a significant level of 0.05. For this reason, the fol-

lowing analysis named Study 2 will be conducted using only linear features extracted

from all EEG channels. Non-linear features besides not leading to a significant im-

provement of classifiers’ performance, are also more complex features associated with

significantly higher computational time.

Similar to previous analyses, it was also investigated what type and region, the most

frequent selected features belonged to, by using, as well, the Kruskal–Wallis H test

as feature selection method. In Figures 6.13 and 6.14, it is possible to verify that

the regions corresponding to the most frequent regions remain being the parietal

lobes, and also that the types of features continues to be related to Theta, Alpha

and Beta band derived features.
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Figure 6.13: Topographic map representing the percentage of the features corre-
sponding to each brain region after feature selection with Kruskal–Wallis H test, for
the multiclass scenario using only linear features: Code 1 vs Code 2 vs Code 3 vs
Resting Control.

Figure 6.14: Radar plot depicting which type of features are more frequent (in %)
in the dataset obtained after feature selection, for the multiclass scenario using only
linear features: Code 1 vs Code 2 vs Code 3 vs Resting Control.
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6.2 Study 2: Whole Scalp Analysis

Considering that the step of averaging the signals in the different regions might

lead to loss of information, it was trained and validated a new multiclass model

(Code 1 vs Code 2 vs Code 3 vs Resting Control), but using only linear features,

for the already mentioned reasons. This way, it is possible to verify if there is any

type of feature prone to differentiate the higher codes complexity, by using all the

information of the 60 EEG channels.

6.2.1 Code Complexity and Resting Analysis

Similarly to what was done in Study 1, a statistical analysis was conducted on

the accuracy results obtained for the different feature selection/reduction methods

obtained for each one of the four classifiers, SVM, FLDA, Naive bayes and k-NN,

for this multiclass problem (see Figure 6.15).

Figure 6.15: Boxplots and respective p-value of the statistical differences between
the accuracies values of each method of feature selection/reduction for the different
classifiers, as classification models of the three code and resting tasks, using 60
signals information. For each case, being four groups to be compared and all with
normal distribution, the statistical test performed was the Analysis of Variance
(ANOVA) test.
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From this results, it can be observed that there are significant statistical differences

between the feature selection/reduction methods for all the different classifiers, con-

sidering a significance level of 0.05. Additionally, as can be seen in Figure 6.16, the

feature reduction PCA is the method that more often presents statistical significant

differences, followed by the feature selection method Kruskall-Wallis H test.

Figure 6.16: Multiple comparison test and respective p-value of the statistical differ-
ences between the accuracies values of each method of feature selection/reduction
for the different classifiers, as classification models of the three code and control
tasks, using 60 signals information.

Based on the above, the results obtained by applying PCA and subsequently the

different classifiers are presented in Table 6.6. The results for the remaining feature

selection methods can be found in Tables C.13 (Kruskal-Wallis H test), C.14 (ReliefF

Algorithm) and C.15 (Normalized Mutual Information), in Appendix C.2.1.
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Table 6.6: Performance of the four different classifiers after PCA feature reduction
(with 70% variance preserved), for the multiclass classification scenario: C1 vs C2
vs C3 vs Resting Control.

Evaluation Metric (%)

Classifier
Multiclass

Classification
Recall Precision Specificity F-measure Accuracy

C1 91.35 ± 19.93 99.23 ± 3.93 99.03 ± 4.73 93.60 ± 14.54

C2 57.69 ± 38.13 51.68 ± 33.39 83.91 ± 12.94 50.60 ± 30.82

C3 50.96 ± 36.74 52.06 ± 35.11 85.52 ± 13.70 47.09 ± 30.03

SVM

(OAO,C=2−10)

Control 99.04 ± 4.90 91.17 ± 14.90 93.75 ± 10.76 94.42 ± 9.67

74.76 ± 12.46

C1 85.58 ± 25.66 96.15 ± 19.61 100.00 ± 0.00 89.27 ± 22.75

C2 56.73 ± 40.35 48.07 ± 31.21 82.28 ± 14.10 48.79 ± 31.12

C3 47.12 ± 38.29 47.39 ± 38.60 85.45 ± 16.64 43.64 ± 33.39
FLDA

Control 97.12 ± 10.79 85.66 ± 17.42 89.30 ± 15.48 89.72 ± 12.71

71.63 ± 13.49

C1 45.19 ± 34.65 78.08 ± 40.20 98.29 ± 4.91 53.86 ± 34.06

C2 27.88 ± 32.65 37.05 ± 42.54 84.29 ± 20.17 30.53 ± 34.70

C3 25.00 ± 38.08 33.91 ± 45.51 91.87 ± 17.63 26.39 ± 37.49
Naive B.

Control 86.54 ± 23.70 35.96 ± 10.24 37.76 ± 22.48 49.64 ± 13.22

46.15 ± 16.50

C1 66.35 ± 35.31 89.49 ± 27.60 98.11 ± 5.44 72.22 ± 31.09

C2 31.73 ± 39.09 30.86 ± 37.17 83.98 ± 15.08 28.94 ± 33.62

C3 31.73 ± 35.04 40.77 ± 41.05 88.47 ± 15.69 32.32 ± 31.93

k-NN

(k=7)

Control 97.12 ± 10.79 54.16 ± 19.75 57.37 ± 24.30 67.48 ± 15.57

56.73 ± 12.86

From these results, it is possible to observe that despite having more spacial and

original information (not averaged), the overall performance regarding, e.g., SVM

classifier, remained similar to the first results using the 13 Regions Analysis (Table

6.5): Code 1 and Control with F-Measure around 90% and higher complexity Codes

2 and 3 around 50%, presenting no significant statistical differences on the overall

accuracies between each other (p-value of 0.69).

Additionally, it was also explored if there was significant statistical differences be-

tween the classifiers for this new model. The boxplots from the statistical differ-

79



6. Results

ences between the classifiers’ accuracy results for a given feature reduction/selection

method are presented in Figure C.5, in Appendix C.2.1. Statistical significant differ-

ences between the models were found, more specifically on PCA, where linear SVM

and FLDA classifiers stands out from Naive Bayes and k-NN classifiers (see multi-

ple comparison tests in Figure C.6, in Appendix C.2.1). For the case of Normalized

Mutual Information feature selection method, there also exists significant statistical

differences between the FLDA classifier and the Linear SVM and k-NN classifiers.

Afterwards, it was also investigated what type and electrodes the most frequent

selected features belonged to. This was performed using also the Kruskal–Wallis H

test feature selection method.

Figure 6.17: Topographic map representing the percentage of the features corre-
sponding to each electrode after feature selection with Kruskal–Wallis H test, for
the multiclass scenario Code 1 vs Code 2 vs Code 3 vs Resting Control.

In the previous Fig. 6.17 it is possible to verify that besides some features remained

belonging to parietal region (mainly in Pz channel) or near to it, i.e., central parietal

(mainly CPz and CP2), it is also revealed a new evident region: frontal region

(mainly in Fz, F2 and FCz). These results suggests that in the approach of the

first study, there might in fact have been a loss of information due to the step

of average of the signals by regions, leading to fading information especially in

the two new revealed regions. These new results also comes to emphasize how

important the frontal and parietal electrodes can provide information regarding
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code comprehension tasks, going in agreement with the findings of recent studies

focused in code comprehension tasks [15,39,40].

Figure 6.18: Radar plot depicting which type of features are more frequent (in %)
in the dataset obtained after feature selection, for the multiclass scenario Code 1 vs
Code 2 vs Code 3 vs Resting Control.

By looking to the previous Fig. 6.18, it is possible to confirm that despite new

discriminant regions appeared from the analysis, the higher percentage of global

type of features remains related to Theta, Alpha and Beta band derived features.

6.2.2 Participant’s Proficiency Analysis

Additionally, despite the dataset did not have a balanced number of participants

regarding their proficiency, it was inspected the performances of each proficiency

class in the results obtained on the previous models from Table 6.6. This was

performed in order to have an insight if the proficiency level of the participants had

impact on the different tasks and, consequently, on the classification’s results.
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Given that in the previous analysis it was found that SVM and FLDA were the best

classifiers with statistical significant higher performances, it was only considered the

results of these two classifiers models for this analysis. Thus, in Table 6.7, it presents

the average of the performance’s results for each proficiency level of the participants,

for the case of the SVM. The FLDA classifier’ results are presented in Table C.16

from Appendix C.2.2.

Table 6.7: Performance of Linear SVM classifier after PCA feature reduction, for
each different tasks and the three proficiency levels Intermediate, Advanced and
Expert). The overall performance of accuracy obtained for each proficiency was
77.60 ± 15.87, 71.25 ± 8.94 and 75.00 ± 13.50, respectively.

Evaluation Metric (%)

Classifier
Multiclass

Classification
Recall Precision Specificity F-measure Accuracy

Intermediate 97.92 ± 7.22 98.33 ± 5.77 97.92 ± 7.22 97.88 ± 4.99

Advanced 92.50 ± 16.87 100.00 ± 0.00 100.00 ± 0.00 95.24 ± 11.00C1

Expert 68.75 ± 37.50 100.00 ± 0.00 100.00 ± 0.00 76.67 ± 29.06

Intermediate 60.42 ± 43.25 48.65 ± 35.87 86.03 ± 12.01 53.01 ± 37.68

Advanced 55.00 ± 38.73 50.29 ± 33.58 78.44 ± 12.95 45.45 ± 25.92

SVM

C2

Expert 56.25 ± 42.70 64.29 ± 47.38 91.25 ± 11.81 56.28 ± 38.35

(OAO,C=2−4) Intermediate 54.17 ± 39.65 59.72 ± 37.41 86.36 ± 15.00 51.71 ± 33.06

Advanced 37.50 ± 37.73 33.43 ± 26.48 84.76 ± 12.78 33.15 ± 28.23C3

Expert 75.00 ± 35.36 75.71 ± 23.85 84.95 ± 17.32 68.08 ± 24.75

Intermediate 97.92 ± 7.22 93.33 ± 13.03 95.00 ± 10.40 95.37 ± 10.00

Advanced 100.00 ± 0.00 94.67 ± 11.67 96.25 ± 8.44 96.89 ± 6.89Control

Expert 100.00 ± 0.00 75.95 ± 18.57 83.77 ± 14.01 85.40 ± 11.76

By looking at these results, on one hand, it is possible to observe that the Expert

participants were the ones who had the lowest F-measure regarding the Code 1 and

the Control tasks. This supports the statement made in the previous analysis, con-

cerning the possibility of the low difficulty that Code 1 presents, having segments

that did not require any additional effort in comparison to the control task con-

sidered, leading to some overlap between these two classes for classification. On
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the other hand, regarding Code 2 and Code 3, the opposite happens: the Expert

participants tends to outperform, turning the overall results of the accuracy for

each proficiency level similar (around 71-78%, see label of table 6.7). Nevertheless,

it should be emphasized that this analysis is very weak and limited by the small

number of Expert participants, requiring an increase of acquisitions to be able to

perform a more robust valid analysis and generalize the results.

6.2.3 NASA-TLX Labelling Analysis

In the previous analyses, the models were designed considering the class labelling

according to the software complexity metrics (see Fig 4.2 in section 4.2). The results

obtained reveals that the features’ discriminative power stands out when consider-

ably different tasks (in terms of complexity) are being classified (e.g., C1 vs C2 and

C1 vs C3), suggesting a saturation with the complexity degree of the software codes

(e.g., C2 vs C3). Based on that, it is possible to conclude that the results do not

match the complexity levels evaluated with the software metrics, specially the well-

known and used MCCabe Cyclomatic Complexity metric. Nevertheless, the results

are coherent with the answers to the NASA-TLX survey (described in section 4.2).

which also points to such complexity saturation (see Fig.6.19).

Figure 6.19: Average ratings of the mental effort felt by the participants and written
on the NASA-TLX for the three different Code tasks.

In view of the above, it was considered interesting to perform a new labelling of the

codes’ complexity, according to the mental effort of the NASA-TLX. Afterwards,

training and validation were performed in order to obtain a multiclass model able to
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distinguish Code 1, Code2/3 and Control. The results obtained for this model that

is preceded by PCA feature reduction are presented in Table 6.8. No results were

computed for the remaining feature selection methods since the principal objective

of this section was to explore how the models performs with the new labelling and

compare to the mental effort of the participants, and not to explore what methods

are the best.

Table 6.8: Performance of the four different classifiers after PCA feature reduc-
tion (with 70% variance preserved), for the multiclass classification scenario (C1 vs
C2/C3 vs Resting Control).

Evaluation Metric (%)

Classifier
Multiclass

Classification
Recall Precision Specificity F-measure Accuracy

C1 91.00 ± 20.26 98.40 ± 5.54 99.33 ± 2.31 92.90 ± 14.74

C2/C3 98.50 ± 4.15 100.00 ± 0.00 100.00 ± 0.00 99.20 ± 2.21
SVM

(OAO,C=2−10)
Control 98.00 ± 6.92 91.62 ± 13.39 96.00 ± 6.85 93.94 ± 8.30

96.50 ± 5.13

C1 83.00 ± 32.05 92.00 ± 27.69 100.00 ± 0.00 85.79 ± 29.71

FLDA C2/C3 96.00 ± 12.35 97.51 ± 6.10 96.16 ± 9.87 96.12 ± 8.23

Control 97.00 ± 10.99 86.42 ± 18.87 92.48 ± 11.33 89.93 ± 13.60

93.00 ± 9.77

C1 44.00 ± 34.06 75.33 ± 41.07 97.44 ± 6.05 52.17 ± 33.93

Naive B. C2/C3 43.50 ± 31.48 79.69 ± 30.78 91.20 ± 14.42 52.20 ± 30.35

Control 88.00 ± 24.07 36.51 ± 10.50 44.66 ± 21.90 50.44 ± 13.48

54.75 ± 15.23

C1 63.00 ± 36.17 87.20 ± 33.11 99.56 ± 2.22 69.77 ± 33.62

C2/C3 67.50 ± 30.62 85.11 ± 27.51 91.45 ± 12.92 73.06 ± 26.69
k-NN

(k=7)
Control 95.00 ± 12.50 54.93 ± 18.51 68.08 ± 18.91 68.03 ± 15.01

73.25 ± 13.80

As expected, the overall performance of the model increased for this situation,

achieving for the Linear SVM a maximum accuracy of 96.5%. With respect to

class C2/C3 classification performance, a F-Measure of almost 99% was achieved

whereas the F-Measure for Code 1 and Control classes remained similar (around

93%), for the reason already mentioned in the previous results.
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6.3 Study 3: Space-Temporal Features Analysis

After the previous analysis, it was explored the potential of the most discriminant

EEG features as a biomarker to identify complex software sections during the tasks.

This was performed by doing a fusion of information with Eye tracker data, allowing

a spacial-temporal analysis. Furthermore in this analysis, it was compared the EEG

features with features of other two signals: Pupillography and HRV.

In Fig. 6.20, it is depicted one example for the Code task 2 of one expert participant.

In the figure, it is represented over the time one of the most discriminant features

from HRV and Pupillography and two of the most discriminant features from EEG

(bottom - center). Furthermore, regarding Eye tracking data, it is possible to observe

the horizontal density of gaze points (positions where the eyes are looking at) along

the vertical Y axis of the task (top - left), as well as the clusters of the gaze points

over the experience time and the Y axis (top - center). Additionally, it is overlapped

the gaze points with the code task figure (top - right), where is also represented the

geodesic lines that corresponds to the clusters with higher density of the gaze points.

In the code task figure, it is also represented the critical areas considered by the four

professionals, marked by different colours, and by a yellow rectangle the overlapping

critical areas from different professionals.
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Figure 6.20: Example of the fusion of EEG with HRV, Pupillography and Eye track-
ing, for an expert participant during the Code task 2.
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From the above figure, for the most discriminant EEG features used, i.e., the ratio

of θ/(β + α) extracted from the electrode F2 and the ratio of θ/α extracted from

electrode PZ , it can be observed that are some significant spikes or group of spikes

that match with the clusters with higher density of gaze points and with the upper

two critical regions marked, more specifically around the instants: (1) 160 - 190; (2)

220-240; (3) 280 - 350; (4) 420; (5) 510 and (6) 600 - 660 seconds. From these instants

there are spikes that are common to both features, while there are some spikes

corresponding to the high density clusters or critical regions that are only present

for one of the features, e.g., the instant represented as (5). This result suggests,

that depending on the brain region or the frequency band derived features, it can

contribute with the same or additional information about the task being performed.

In sum, the overall results of both EEG features, from the two different brain regions

highly related with mental workload, reveal possible powerful biomarkers to spot

code areas that demand more mental effort or lines of code tending to be critical.

Concerning the relation of the EEG features with the other two biosignals, it is pos-

sible to observe that, although there are less spikes presented on the Pupillography

and HRV, there still exists some spikes with a delay from the EEG instants repre-

sented as (1) and (2), and the instants represented as (6). The spikes of the HRV

feature are the ones that presents an higher delay (approximately of 20 seconds) to

the EEG spikes. For the case of the feature used from the Pupillography, despite

there is a spike that seems delayed from the EEG instant (2), there are other spikes

that occur near some of the EEG spikes, e.g., in (1), (4) and (6). Thus, despite

having less burst spikes related to the critical regions along the code, these results

contribute to reinforce the remarks from others studies [55, 126], using the same

dataset, regarding the applicability of using non-invasive and comfortable measure-

ment methods for capture Autonomic Nervous System (ANS) responses, in order to

measure the mental effort in software environments.
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Conclusions

In this work it was assessed cognitive load during code comprehension tasks using

EEG. Multiple standard features were compared to standard tools used in soft-

ware engineering, i.e., complexity metrics, as well as the NASA-TLX tool which is

commonly applied in mission critical environments.

One of the main findings is that it is possible to distinguish with high confidence,

the simplest code (Code 1) from more complex codes (Code 2 and 3) using EEG.

However, Code 2 (middle complexity level code) and Code 3 (highest complexity

level code) were not well distinguished. This result suggests that the features only

discriminate highly different tasks complexity, revealing an evidence of saturation

with the complexity level, being coherent with the answers of the NASA-TLX sur-

vey. Nevertheless, the results did not match the evaluations of the codes using

the complexity metrics, being proved with the high performances achieved on the

analysis performed when considering only two levels of code complexity.

These results suggest that software complexity metrics do not capture cognitive

load and, therefore, do not translate a key element in bug production - the human

element. Hence, additional research is required to complement current software

engineering strategies in order to integrate the programmer in the loop.

Concerning the most discriminant type of features and the regions from which are

extracted, the results demonstrate the importance of Theta, Alpha and Beta band

derived features for the separability between the efforts in low and high complexity

tasks. In addition, the results also show the importance of the contribution of
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information, for this purpose, from the electrodes on frontal and parietal regions.

Regarding possible applications, the work developed in this project might potentiate

several applications such as: (i) provide feedback to programmers throughout the

code about possible critical lines or sections of the code, as shown in the prelimi-

nary study of space-temporal analysis; (ii) education and learning, by monitoring

the evolution of the mental effort required over time; (iii) criterion for selecting

professionals, based on the mental effort on different tasks.

Although the promising results, there are still limitations. Among these limitations

is the number of subjects used in the study, that despite being a reasonable num-

ber, needs to be increased to see if the findings remain the same, or even to reach

further findings. Another limitation is that, as careful as the preprocessing step is,

it will never be possible to ensure that all the EEG signals are completely clean and

guarantee only the presence of true neural signals.

As future work for this study, it would be interesting to increase the number of

subjects for better clarification of the presented results. More specifically, it should

be increased the number of expert participants for a more balanced dataset, opening

an opportunity to new conclusions regarding expertise levels and respective perfor-

mances. Another work in mind should be to explore the functional connectivity in

the brain using EEG.

As for the project BASE, several new data collection studies are being carried out

in tasks related to code inspection and code programming. After the acquisition

of every subjects is completed, it will be explored the feasibility of the mentioned

mental work biomarkers EEG features, obtained in this work, for detection of bugs

or even discover new biomarkers, as a possible result from eureka effect.
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A

Experimental Protocol - Codes

A.1 Code 1 (Lowest complexity level)

Figure A.1: Example of the code 1, which corresponds to the lowest complexity
level, used in the experimental protocol.
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A. Experimental Protocol - Codes

A.2 Code 2 (Middle complexity level)

Figure A.2: Example of the code 2, which corresponds to the middle complexity
level, used in the experimental protocol.
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A. Experimental Protocol - Codes

A.3 Code 3 (Highest complexity level)

Figure A.3: Example of the code 3, which corresponds to the highest complexity
level, used in the experimental protocol.
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B

Computational Time for Features

Extraction

Table B.1: Computational time for linear and non-linear feature extraction using
ASUS laptop equipped with a 2.2GHZ Intel Core i7 8th Gen processor, 256GB
M.20 SATA III SSD and 16 GB RAM.

Computational time

13 Regions per Subject

Computational time

Whole Scalp per Subject

Window Size

(s)

Linear

Features

(minutes)

Non Linear

Features

(hours)

Linear

Features

(minutes)

Non Linear

Features

(hours)

1 7.71 23.20 35.58 107.09

2 1.55 26.91 7.12 124.21

3 1.58 28.47 7.27 131.40

4 0.68 31.00 3.13 143.10

5 0.64 32.53 2.92 150.13

6 0.61 33.91 2.80 156.50

7 0.52 40.99 2.38 189.19

8 0.48 34.84 2.22 160.79

9 0.45 33.52 2.07 154.71

10 0.64 34.44 2.93 158.95
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C

Results

C.1 Study 1: 13 Regions Analysis

C.1.1 Code Complexity Analysis

Table C.1: Performance of the four different classifiers after using Kruskal–Wallis H
test as feature selection method (100 features selected), for the multiclass classifica-
tion scenario: Code 1 vs Code 2 vs Code 3.

Evaluation Metric (%)

Classifier
Multiclass

Classification
Recall Precision Specificity F-measure Accuracy

C1 92.31 ± 19.71 98.46 ± 5.43 94.96 ± 19.82 93.72 ± 14.49

C2 59.62 ± 29.22 50.91 ± 21.72 67.51 ± 18.71 52.27 ± 21.25
SVM

(OAO,C=24)
C3 41.35 ± 27.33 52.26 ± 29.78 78.18 ± 20.45 43.36 ± 24.10

64.42 ± 16.76

C1 94.23 ± 14.68 98.35 ± 8.40 98.35 ± 8.40 95.29 ± 10.58

FLDA C2 50.96 ± 30.40 47.30 ± 26.98 71.15 ± 14.48 46.17 ± 24.02

C3 47.12 ± 23.80 53.08 ± 22.87 75.16 ± 17.18 47.00 ± 18.77

64.10 ± 12.64

C1 93.27 ± 13.34 92.63 ± 15.28 91.86 ± 17.06 92.31 ± 12.71

Naive B. C2 74.04 ± 31.21 45.13 ± 15.83 58.10 ± 13.06 55.11 ± 20.34

C3 17.31 ± 22.10 28.53 ± 36.07 86.70 ± 16.97 19.60 ± 23.19

61.54 ± 11.07

C1 90.38 ± 18.81 98.46 ± 5.43 97.76 ± 8.01 92.81 ± 13.61

C2 46.15 ± 29.74 44.47 ± 29.71 73.10 ± 13.63 43.53 ± 26.69
k-NN

(k=1)
C3 50.96 ± 25.96 46.59 ± 21.92 69.64 ± 16.58 47.00 ± 20.50

62.50 ± 13.39
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C. Results

Table C.2: Performance of the four different classifiers after using ReliefF Algorithm
as feature selection method (100 features selected), for the multiclass classification
scenario: Code 1 vs Code 2 vs Code 3.

Evaluation Metric (%)

Classifier
Multiclass

Classification
Recall Precision Specificity F-measure Accuracy

C1 83.65 ± 27.33 91.28 ± 21.40 87.50 ± 27.71 84.98 ± 22.85

C2 46.15 ± 43.41 36.56 ± 36.59 68.88 ± 28.42 38.50 ± 35.70
SVM

(OAO,C=2−8)
C3 49.04 ± 43.29 39.15 ± 37.44 69.62 ± 25.66 41.43 ± 36.41

59.62 ± 20.51

C1 76.92 ± 31.56 80.49 ± 31.12 76.95 ± 34.82 75.41 ± 28.30

FLDA C2 36.54 ± 40.76 32.88 ± 38.96 70.29 ± 28.28 32.84 ± 36.34

C3 51.92 ± 44.12 39.23 ± 35.14 65.66 ± 28.47 43.10 ± 36.53

55.13 ± 20.56

C1 51.92 ± 47.92 49.76 ± 45.71 74.79 ± 39.36 49.05 ± 44.78

Naive B. C2 30.77 ± 43.19 28.21 ± 39.14 67.13 ± 37.09 27.73 ± 38.20

C3 57.69 ± 45.15 41.64 ± 36.07 45.01 ± 40.38 44.18 ± 34.61

46.79 ± 29.07

C1 75.00 ± 38.08 71.04 ± 35.52 73.09 ± 32.05 71.57 ± 35.30

C2 28.85 ± 38.53 23.71 ± 32.17 70.86 ± 32.67 25.51 ± 34.00
k-NN

(k=15)
C3 56.73 ± 40.96 42.69 ± 34.35 58.06 ± 33.70 46.19 ± 33.20

53.53 ± 25.62
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C. Results

Table C.3: Performance of the four different classifiers after using Normalized Mutual
Information as feature selection method (50 features selected), for the multiclass
classification scenario: Code 1 vs Code 2 vs Code 3.

Evaluation Metric (%)

Classifier
Multiclass

Classification
Recall Precision Specificity F-measure Accuracy

C1 88.46 ± 19.01 98.46 ± 5.43 98.27 ± 6.16 91.71 ± 13.56

C2 69.23 ± 36.27 51.87 ± 28.48 64.77 ± 24.49 55.03 ± 26.32
SVM

(OAO,C=2−4)
C3 40.38 ± 38.78 49.84 ± 42.32 83.34 ± 20.21 39.81 ± 33.90

66.03 ± 17.47

C1 91.35 ± 18.63 98.72 ± 6.54 97.44 ± 13.07 93.44 ± 13.87

FLDA C2 57.69 ± 42.29 41.57 ± 30.32 66.83 ± 22.06 45.24 ± 30.52

C3 42.31 ± 38.58 43.14 ± 39.41 78.36 ± 23.32 38.87 ± 32.16

63.78 ± 15.8

C1 82.69 ± 26.24 87.86 ± 23.61 81.30 ± 31.94 82.35 ± 22.13

Naive B. C2 56.73 ± 37.79 38.68 ± 22.62 57.90 ± 24.39 44.23 ± 25.88

C3 28.85 ± 39.17 26.67 ± 34.70 77.92 ± 24.55 25.98 ± 33.79

56.09 ± 18.04

C1 69.23 ± 36.95 81.28 ± 36.61 92.65 ± 21.97 72.47 ± 34.80

C2 60.58 ± 35.48 48.21 ± 29.85 61.45 ± 25.64 49.85 ± 26.26
k-NN

(k=7)
C3 50.00 ± 39.37 49.45 ± 35.48 73.56 ± 28.00 45.84 ± 32.46

59.94 ± 19.86
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C. Results

Figure C.1: Boxplots and corresponding Kruskal-Wallis p-value indicating the exis-
tence of statistical differences among the four classifiers accuracies. A p-value was
obtained for each of the feature selection/reduction methods used to distinguish the
three code tasks.

Figure C.2: Multiple comparison test and respective Kruskal-Wallis p-value indicat-
ing the existence of statistical differences among the four classifiers accuracies. A
p-value was obtained for each of the feature selection/reduction methods used to
distinguish the three code tasks.
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C. Results

Table C.4: Performance of the four different classifiers after using Mann-Whiney U-
test as feature selection method (100 features selected), for the binary classification
scenario: Code task vs Code task.

Evaluation Metric (%)

Classifier
Binary

Classification
Recall Precision Specificity F-measure Accuracy

C1 vs C2 95.19 ± 12.29 98.72 ± 6.54 98.08 ± 9.81 96.30 ± 8.41 96.63 ± 7.55

C1 vs C3 95.19 ± 12.29 99.04 ± 4.90 99.04 ± 4.90 96.66 ± 8.61 97.12 ± 7.34
SVM

(C=21)
C2 vs C3 53.85 ± 37.88 50.60 ± 35.56 51.92 ± 42.97 48.18 ± 31.66 52.88 ± 24.57

C1 vs C2 94.23 ± 12.86 96.41 ± 8.89 95.19 ± 12.29 94.47 ± 8.72 94.71 ± 8.04

FLDA C1 vs C3 91.35 ± 18.63 93.93 ± 13.86 93.27 ± 16.67 91.64 ± 15.45 92.31 ± 13.27

C2 vs C3 46.15 ± 43.41 36.92 ± 35.56 50.96 ± 39.67 39.11 ± 36.20 48.56 ± 25.33

C1 vs C2 93.27 ± 13.34 97.95 ± 7.49 97.12 ± 10.79 94.77 ± 8.82 95.19 ± 7.97

Naive B. C1 vs C3 94.23 ± 12.86 94.81 ± 12.04 94.23 ± 12.86 94.18 ± 11.36 94.23 ± 11.31

C2 vs C3 50.00 ± 44.72 39.61 ± 35.99 50.00 ± 39.37 41.96 ± 35.84 50.00 ± 24.49

C1 vs C2 92.31 ± 15.44 98.72 ± 6.54 98.08 ± 9.81 94.47 ± 10.28 95.19 ± 8.72

C1 vs C3 92.31 ± 19.71 98.72 ± 6.54 99.04 ± 4.90 94.21 ± 15.34 95.67 ± 11.15
k-NN

(k=1)
C2 vs C3 58.65 ± 34.60 50.74 ± 27.01 50.96 ± 34.26 51.98 ± 26.45 54.81 ± 19.06
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C. Results

Table C.5: Performance of the four different classifiers after using ReliefF Algorithm
as feature selection method (100 features selected), for the binary classification sce-
nario: Code task vs Code task.

Evaluation Metric (%)

Classifier
Binary

Classification
Recall Precision Specificity F-measure Accuracy

C1 vs C2 96.15 ± 15.32 98.46 ± 5.43 98.08 ± 6.79 96.29 ± 12.15 97.12 ± 8.15

C1 vs C3 94.23 ± 12.86 97.69 ± 8.63 97.12 ± 10.79 95.36 ± 9.79 95.67 ± 9.32
SVM

(C=21)
C2 vs C3 66.35 ± 45.79 41.30 ± 31.24 41.35 ± 39.96 49.99 ± 35.16 53.85 ± 19.93

C1 vs C2 92.31 ± 19.71 95.93 ± 12.07 93.27 ± 20.69 92.05 ± 15.49 92.79 ± 13.31

FLDA C1 vs C3 95.19 ± 14.18 96.04 ± 10.26 94.23 ± 16.29 94.56 ± 10.53 94.71 ± 10.11

C2 vs C3 55.77 ± 44.33 45.60 ± 38.33 51.92 ± 42.97 47.81 ± 37.18 53.85 ± 27.56

C1 vs C2 90.38 ± 27.46 85.83 ± 26.62 84.62 ± 30.88 86.35 ± 26.36 87.50 ± 21.51

Naive B. C1 vs C3 81.73 ± 31.27 85.13 ± 27.33 79.81 ± 36.76 80.33 ± 27.87 80.77 ± 27.67

C2 vs C3 45.19 ± 47.44 39.78 ± 41.66 57.69 ± 46.24 38.89 ± 39.73 51.44 ± 29.44

C1 vs C2 86.54 ± 32.58 90.26 ± 27.60 97.12 ± 10.79 86.50 ± 30.32 91.83 ± 16.56

C1 vs C3 86.54 ± 28.49 90.66 ± 27.98 96.15 ± 15.32 87.78 ± 27.41 91.35 ± 16.87
k-NN

(k=15)
C2 vs C3 41.35 ± 44.13 28.62 ± 30.03 48.08 ± 41.18 31.74 ± 32.06 44.71 ± 16.27

122



C. Results

Table C.6: Performance of the four different classifiers after using Normalized Mu-
tual Information as feature selection method (50 features selected), for the binary
classification scenario: Code task vs Code task.

Evaluation Metric (%)

Classifier
Binary

Classification
Recall Precision Specificity F-measure Accuracy

C1 vs C2 96.15 ± 9.20 97.50 ± 7.11 97.12 ± 8.15 96.54 ± 6.85 96.63 ± 6.67

C1 vs C3 98.08 ± 6.79 95.93 ± 12.07 93.27 ± 20.69 96.38 ± 8.19 95.67 ± 10.57SVM

(C=2−3)
C2 vs C3 61.54 ± 40.14 51.90 ± 33.74 53.85 ± 37.21 53.82 ± 33.48 57.69 ± 24.77

C1 vs C2 92.31 ± 18.40 96.92 ± 7.36 96.15 ± 9.20 93.05 ± 13.51 94.23 ± 9.51

FLDA C1 vs C3 96.15 ± 11.60 96.81 ± 9.74 95.19 ± 15.84 95.72 ± 9.02 95.67 ± 9.32

C2 vs C3 58.65 ± 39.33 50.02 ± 33.87 52.88 ± 40.20 51.15 ± 32.40 55.77 ± 23.51

C1 vs C2 89.42 ± 17.57 88.41 ± 18.71 80.77 ± 32.64 86.34 ± 13.77 85.10 ± 16.21

Naive B. C1 vs C3 95.19 ± 10.05 92.82 ± 11.46 90.38 ± 15.93 93.15 ± 7.32 92.79 ± 8.04

C2 vs C3 85.58 ± 26.62 50.64 ± 15.66 17.31 ± 28.96 61.83 ± 15.69 51.44 ± 10.20

C1 vs C2 74.04 ± 34.99 92.31 ± 27.17 99.04 ± 4.90 79.05 ± 31.70 86.54 ± 18.68

C1 vs C3 83.65 ± 27.33 93.33 ± 20.74 96.15 ± 11.60 86.07 ± 23.86 89.90 ± 13.70k-NN

(k=5)
C2 vs C3 45.19 ± 29.17 40.93 ± 27.46 44.23 ± 33.40 40.95 ± 24.94 44.71 ± 16.65
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C. Results

C.1.2 Code Complexity and Resting Analysis

Table C.7: Performance obtained for the four classifiers after using Kruskal–Wallis
H test as feature selection method (100 features selected), for the multiclass classi-
fication scenario (Code 1 vs Code 2 vs Code 3 vs Resting Control).

Evaluation Metric (%)

Classifier
Multiclass

Classification
Recall Precision Specificity F-measure Accuracy

C1 77.88 ± 26.76 85.45 ± 19.17 91.45 ± 11.23 79.20 ± 21.21

C2 56.73 ± 32.06 50.48 ± 27.45 77.13 ± 14.29 51.03 ± 26.06

C3 39.42 ± 32.54 41.79 ± 33.29 81.66 ± 15.92 38.34 ± 29.45

SVM

(OAO,C=25)

Control 77.88 ± 23.80 75.78 ± 19.64 84.09 ± 15.63 73.69 ± 17.97

62.98 ± 15.1

C1 75.96 ± 25.96 88.35 ± 18.18 92.95 ± 12.11 78.97 ± 20.08

C2 51.92 ± 29.09 53.51 ± 31.13 77.37 ± 16.20 49.57 ± 24.53

C3 41.35 ± 28.23 53.11 ± 32.04 82.36 ± 15.89 43.45 ± 25.59
FLDA

Control 76.92 ± 23.37 66.27 ± 22.82 79.13 ± 15.39 69.34 ± 19.85

61.54 ± 15.58

C1 70.19 ± 35.37 74.17 ± 32.39 89.95 ± 13.36 69.63 ± 31.51

C2 53.85 ± 39.17 39.98 ± 26.16 72.79 ± 15.73 44.59 ± 30.25

C3 17.31 ± 24.26 27.18 ± 37.73 86.06 ± 15.04 18.20 ± 22.87
Naive B,

Control 74.04 ± 23.96 56.75 ± 21.39 66.47 ± 25.75 60.74 ± 16.26

53.85 ± 13.36

C1 63.46 ± 38.88 82.12 ± 36.39 98.49 ± 4.28 68.07 ± 36.18

C2 49.04 ± 30.40 42.48 ± 23.33 74.09 ± 16.83 43.39 ± 23.03

C3 41.35 ± 32.36 38.77 ± 25.49 76.44 ± 15.03 37.36 ± 24.81

k-NN

(k=15)

Control 84.62 ± 23.53 72.30 ± 24.19 78.06 ± 22.91 76.00 ± 21.25

59.62 ± 15.43
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C. Results

Table C.8: Performance obtained for the four classifiers after using ReliefF Algorithm
as feature selection method (100 features selected), for the multiclass classification
scenario (Code 1 vs Code 2 vs Code 3 vs Resting Control).

Evaluation Metric (%)

Classifier
Multiclass

Classification
Recall Precision Specificity F-measure Accuracy

C1 79.81 ± 31.64 90.77 ± 21.34 96.34 ± 7.38 81.42 ± 26.14

C2 47.12 ± 38.94 45.21 ± 39.01 81.84 ± 16.76 43.14 ± 34.55

C3 43.27 ± 39.72 40.60 ± 36.03 80.68 ± 16.44 39.12 ± 33.74

SVM

(OAO,C=2−4)

Control 80.77 ± 22.70 70.06 ± 28.27 79.87 ± 21.38 72.72 ± 22.55

62.74 ± 15.15

C1 72.12 ± 31.88 90.38 ± 20.83 96.42 ± 6.58 76.09 ± 25.66

C2 41.35 ± 38.69 41.62 ± 37.90 80.37 ± 20.55 39.28 ± 35.70

C3 59.62 ± 43.63 46.76 ± 37.20 76.37 ± 20.92 50.67 ± 37.38
FLDA

Control 73.08 ± 31.56 67.65 ± 31.17 81.22 ± 21.00 67.39 ± 27.68

61.54 ± 19.74

C1 76.92 ± 36.00 75.92 ± 31.71 86.20 ± 23.39 72.57 ± 31.95

C2 48.08 ± 43.54 38.65 ± 36.05 75.48 ± 20.00 38.99 ± 33.86

C3 31.73 ± 43.33 27.28 ± 36.80 84.39 ± 19.44 28.07 ± 37.37
Naive B,

Control 59.62 ± 33.22 49.56 ± 26.57 73.33 ± 20.14 52.15 ± 26.95

54.09 ± 14.57

C1 47.12 ± 38.29 63.01 ± 45.78 96.02 ± 7.89 52.53 ± 40.03

C2 35.58 ± 40.73 23.55 ± 27.96 70.79 ± 25.04 27.18 ± 30.25

C3 43.27 ± 37.12 35.89 ± 28.22 64.33 ± 22.86 35.87 ± 26.77

k-NN

(k=1)

Control 57.69 ± 26.24 48.71 ± 21.81 63.12 ± 25.07 50.75 ± 20.81

45.91 ± 15.9
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C. Results

Table C.9: Performance obtained for the four classifiers after using Normalized Mu-
tual Information as feature selection method (50 features selected), for the multiclass
classification scenario (Code 1 vs Code 2 vs Code 3 vs Resting Control).

Evaluation Metric (%)

Classifier
Multiclass

Classification
Recall Precision Specificity F-measure Accuracy

C1 72.12 ± 35.59 82.82 ± 32.83 95.38 ± 10.58 74.13 ± 32.31

C2 53.85 ± 36.53 48.06 ± 31.42 77.01 ± 19.15 46.62 ± 27.45

C3 50.00 ± 38.08 46.97 ± 35.15 82.16 ± 17.14 44.78 ± 31.40

SVM

(OAO,C=2−5)

Control 79.81 ± 26.48 71.78 ± 25.30 84.02 ± 16.33 73.14 ± 22.36

63.94 ± 14.61

C1 73.08 ± 38.68 77.24 ± 35.43 93.73 ± 8.91 72.43 ± 35.33

C2 46.15 ± 38.53 34.89 ± 27.26 77.14 ± 14.53 38.44 ± 29.63

C3 37.50 ± 33.35 41.95 ± 36.93 82.66 ± 15.45 35.69 ± 28.07
FLDA

Control 81.73 ± 18.11 71.85 ± 24.40 77.91 ± 23.53 73.31 ± 17.10

59.62 ± 11.49

C1 62.50 ± 39.53 70.00 ± 38.44 88.54 ± 21.62 63.66 ± 36.90

C2 30.77 ± 37.62 24.75 ± 33.07 70.10 ± 23.09 25.76 ± 31.79

C3 25.96 ± 37.07 23.49 ± 32.34 83.96 ± 18.99 23.84 ± 33.19
Naive B,

Control 75.96 ± 26.91 56.58 ± 28.21 60.97 ± 33.89 59.42 ± 19.56

48.80 ± 18.2

C1 54.81 ± 30.84 73.85 ± 31.91 90.72 ± 11.34 60.28 ± 28.57

C2 34.62 ± 31.68 32.27 ± 29.33 70.07 ± 16.89 30.62 ± 24.89

C3 57.69 ± 32.23 53.74 ± 28.85 70.84 ± 22.73 50.51 ± 23.84

k-NN

(k=1)

Control 55.77 ± 27.67 49.85 ± 21.20 73.27 ± 15.54 51.36 ± 23.05

50.72 ± 13.62
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C. Results

Figure C.3: Boxplots and corresponding statistical test p-value indicating the exis-
tence of statistical differences among the four classifiers accuracies. A p-value was
obtained for each of the feature selection/reduction methods used to distinguish the
three code tasks and the resting task. The statistical tests performed were: (a) and
(c) Analysis of Variance (ANOVA); (b) and (d) Kruskal-Wallis test.

Figure C.4: Multiple comparison test and respective p-value of the statistical differ-
ences between the different classifiers for each method of feature selection/reduction,
as classification models of the three codes and resting tasks.
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C. Results

Table C.10: Performance of the four different classifiers after using Mann–Whitney U
test as feature selection method (100 features selected), for each binary classification
scenario: Code task vs respective Resting Control task.

Evaluation Metric (%)

Classifier
Binary

Classification
Recall Precision Specificity F-measure Accuracy

C1 vs Control 70.19 ± 36.76 70.50 ± 34.37 70.19 ± 34.65 66.89 ± 32 70.19 ± 25.27

C2 vs Control 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
SVM

(OAO,C=2−8)
C3 vs Control 99.04 ± 4.90 98.46 ± 5.43 98.08 ± 6.79 98.60 ± 4.00 98.56 ± 4.07

C1 vs Control 55.77 ± 33.40 57.86 ± 29.10 64.42 ± 27.54 53.89 ± 26.98 60.10 ± 17.33

FLDA C2 vs Control 99.04 ± 4.90 99.23 ± 3.92 99.04 ± 4.90 99.02 ± 3.48 99.04 ± 3.40

C3 vs Control 95.19 ± 10.05 96.99 ± 8.72 96.15 ± 11.60 95.64 ± 7.67 95.67 ± 7.86

C1 vs Control 72.12 ± 33.41 69.33 ± 32.35 64.42 ± 37.53 67.17 ± 28.67 68.27 ± 24.30

Naive B. C2 vs Control 99.04 ± 4.90 100.00 ± 0.00 100.00 ± 0.00 99.45 ± 2.80 99.52 ± 2.45

C3 vs Control 91.35 ± 21.15 97.18 ± 8.26 96.15 ± 11.60 92.11 ± 16.54 93.75 ± 11.32

C1 vs Control 68.27 ± 35.75 66.19 ± 32.22 65.38 ± 34.70 64.22 ± 29.96 66.83 ± 24.22

C2 vs Control 100.00 ± 0.00 99.23 ± 3.92 99.04 ± 4.90 99.57 ± 2.18 99.52 ± 2.45
k-NN

(k=7)
C3 vs Control 100.00 ± 0.00 96.92 ± 7.36 96.15 ± 9.20 98.29 ± 4.09 98.08 ± 4.60
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C. Results

Table C.11: Performance of the four different classifiers after using ReliefF Algorithm
as feature selection method (100 features selected), for each binary classification
scenario: Code task vs respective Resting Control task.

Evaluation Metric (%)

Classifier
Binary

Classification
Recall Precision Specificity F-measure Accuracy

C1 vs Control 55.77 ± 41.42 47.42 ± 37.49 59.62 ± 39.42 49.87 ± 37.36 57.69 ± 26.24

C2 vs Control 100.00 ± 0.00 99.23 ± 3.92 99.04 ± 4.90 99.57 ± 2.18 99.52 ± 2.45
SVM

(OAO,C=20)
C3 vs Control 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

C1 vs Control 50.00 ± 40.00 49.96 ± 38.67 57.69 ± 39.86 47.32 ± 35.96 53.85 ± 28.67

FLDA C2 vs Control 100.00 ± 0.00 99.23 ± 3.92 99.04 ± 4.90 99.57 ± 2.18 99.52 ± 2.45

C3 vs Control 99.04 ± 4.90 98.08 ± 9.81 96.15 ± 19.61 98.17 ± 7.01 97.60 ± 10.01

C1 vs Control 27.88 ± 38.29 29.94 ± 39.06 56.73 ± 41.57 27.21 ± 36.05 42.31 ± 30.22

Naive B. C2 vs Control 95.19 ± 15.84 98.08 ± 9.81 96.15 ± 19.61 95.31 ± 13.49 95.67 ± 12.22

C3 vs Control 96.15 ± 13.59 100.00 ± 0.00 100.00 ± 0.00 97.44 ± 9.06 98.08 ± 6.79

C1 vs Control 65.38 ± 33.97 51.14 ± 25.03 42.31 ± 30.63 55.78 ± 26.21 53.85 ± 21.73

C2 vs Control 100.00 ± 0.00 97.58 ± 9.13 96.15 ± 15.32 98.52 ± 5.69 98.08 ± 7.66
k-NN

(k=1)
C3 vs Control 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
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C. Results

Table C.12: Performance of the four different classifiers after using Normalized Mu-
tual Information as feature selection method (50 features selected), for each binary
classification scenario: Code task vs respective Resting Control task.

Evaluation Metric (%)

Classifier
Binary

Classification
Recall Precision Specificity F-measure Accuracy

C1 vs Control 57.69 ± 38.58 49.62 ± 29.94 52.88 ± 34.88 50.76 ± 30.57 55.29 ± 21.84

C2 vs Control 100.00 ± 0.00 99.23 ± 3.92 99.04 ± 4.90 99.57 ± 2.18 99.52 ± 2.45
SVM

(OAO,C=2−5)
C3 vs Control 99.04 ± 4.90 100.00 ± 0.00 100.00 ± 0.00 99.45 ± 2.80 99.52 ± 2.45

C1 vs Control 61.54 ± 35.52 53.52 ± 30.13 49.04 ± 34.26 54.67 ± 28.82 55.29 ± 24.54

FLDA C2 vs Control 100.00 ± 0.00 99.23 ± 3.92 99.04 ± 4.90 99.57 ± 2.18 99.52 ± 2.45

C3 vs Control 98.08 ± 9.81 99.23 ± 3.92 99.04 ± 4.90 98.29 ± 6.81 98.56 ± 5.39

C1 vs Control 70.19 ± 30.84 57.74 ± 26.07 46.15 ± 39.81 60.40 ± 23.67 58.17 ± 20.29

Naive B. C2 vs Control 98.08 ± 9.81 100.00 ± 0.00 100.00 ± 0.00 98.72 ± 6.54 99.04 ± 4.90

C3 vs Control 91.35 ± 21.15 100.00 ± 0.00 100.00 ± 0.00 93.74 ± 16.48 95.67 ± 10.57

C1 vs Control 64.42 ± 30.14 53.32 ± 21.23 39.42 ± 32.54 55.54 ± 20.69 51.92 ± 19.90

C2 vs Control 100.00 ± 0.00 84.51 ± 12.85 78.85 ± 19.61 91.09 ± 7.70 89.42 ± 9.81
k-NN

(k=15)
C3 vs Control 99.04 ± 4.90 90.81 ± 14.12 86.54 ± 22.62 94.02 ± 8.72 92.79 ± 11.28
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C. Results

C.2 Study 2: Whole Scalp Analysis

C.2.1 Code Complexity and Resting Analysis

Table C.13: Performance of the four different classifiers after using Kruskal–Wallis
H test as feature selection method (100 features selected), for the multiclass classi-
fication scenario: Code 1 vs Code 2 vs Code 3 vs Resting Control.

Evaluation Metric (%)

Classifier
Multiclass

Classification
Recall Precision Specificity F-measure Accuracy

C1 76.92 ± 28.22 98.72 ± 6.54 99.52 ± 2.45 83.26 ± 22.27

C2 53.85 ± 32.93 47.10 ± 27.81 79.29 ± 15.71 47.12 ± 24.70

C3 46.15 ± 39.81 39.47 ± 30.84 82.36 ± 15.04 40.21 ± 31.20

SVM

(OAO,C=2−5)

Control 92.31 ± 11.77 79.40 ± 16.02 85.49 ± 12.82 84.45 ± 11.61

67.31 ± 12.54

C1 70.19 ± 35.37 88.85 ± 28.33 98.01 ± 5.94 75.19 ± 31.33

C2 44.23 ± 34.86 40.40 ± 27 77.49 ± 14.75 39.54 ± 26.81

C3 40.38 ± 34.70 40.22 ± 35.48 81.52 ± 15.24 37.64 ± 30.94
FLDA

Control 88.46 ± 12.71 69.16 ± 19.98 74.92 ± 20.17 75.59 ± 13.09

60.82 ± 13.64

C1 76.92 ± 25.42 96.54 ± 10.93 98.33 ± 4.76 83.28 ± 18.89

C2 50.96 ± 36.39 43.75 ± 29.22 75.08 ± 17.93 43.25 ± 26.16

C3 26.92 ± 35.30 31.28 ± 37.19 88.43 ± 14.85 25.64 ± 29.10
Naive B,

Control 83.65 ± 18.63 63.08 ± 22.22 71.72 ± 19.64 68.82 ± 14.85

59.62 ± 11.89

C1 77.88 ± 27.68 99.23 ± 3.92 99.45 ± 2.80 84.04 ± 20.66

C2 55.77 ± 23.78 49.79 ± 22.15 75.89 ± 16.91 49.83 ± 17.68

C3 43.27 ± 37.12 39.83 ± 31.51 80.43 ± 12.69 38.73 ± 29.77
k-NN

(k=13)

Control 83.65 ± 22.30 78.42 ± 20.04 86.36 ± 14.28 79.62 ± 18.72

65.14 ± 14.38
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Table C.14: Performance of the four different classifiers after using ReliefF Algorithm
as feature selection method (100 features selected), for the multiclass classification
scenario: Code 1 vs Code 2 vs Code 3 vs Control.

Evaluation Metric (%)

Classifier
Multiclass

Classification
Recall Precision Specificity F-measure Accuracy

C1 75.00 ± 30.00 86.57 ± 25.95 93.19 ± 14.29 77.43 ± 26.65

C2 50.00 ± 45.83 35.67 ± 35.20 79.29 ± 18.79 40.17 ± 37.08

C3 50.96 ± 39.67 46.67 ± 37.84 82.08 ± 16.77 45.88 ± 34.79

SVM

(OAO,C=2−6)

Control 75.96 ± 26.91 73.08 ± 23.06 83.21 ± 16.09 71.24 ± 20.99

62.98 ± 15.4

C1 69.23 ± 31.87 84.94 ± 25.06 90.55 ± 16.56 73.12 ± 27.65

C2 44.23 ± 40.81 35.54 ± 36.48 71.60 ± 24.81 36.57 ± 33.35

C3 40.38 ± 37.47 40.77 ± 39.31 79.35 ± 18.29 37.05 ± 32.74
FLDA

Control 62.50 ± 35.53 58.24 ± 33.06 77.03 ± 22.11 56.30 ± 29.20

54.09 ± 16.86

C1 78.85 ± 31.38 69.46 ± 29.02 76 ± 27.80 70.18 ± 25.86

C2 68.27 ± 43.91 35.49 ± 25.17 55.11 ± 21.41 45.01 ± 29.46

C3 10.58 ± 21.42 21.96 ± 39.99 90.37 ± 19.14 12.47 ± 22.82
Naive B,

Control 39.42 ± 30.14 56.97 ± 40.22 82.88 ± 24.46 41.95 ± 27.58

49.28 ± 15.14

C1 45.19 ± 38.74 60.00 ± 44.05 91.85 ± 16.80 49.38 ± 38.68

C2 39.42 ± 38.84 38.22 ± 36.13 74.50 ± 22.02 36.47 ± 33.90

C3 54.81 ± 39.38 46.39 ± 34.66 70.36 ± 26.64 47.86 ± 33.73
k-NN

(k=1)

Control 56.73 ± 29.63 41.50 ± 22.80 61.90 ± 23.13 45.81 ± 22.02

49.04 ± 16.83
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Table C.15: Performance of the four different classifiers after using Normalized Mu-
tual Information as feature selection method (50 features selected), for the multiclass
classification scenario: Code 1 vs Code 2 vs Code 3 vs Control.

Evaluation Metric (%)

Classifier
Multiclass

Classification
Recall Precision Specificity F-measure Accuracy

C1 79.81 ± 31.64 86.22 ± 27.42 96.72 ± 5.59 81.04 ± 28.40

C2 64.42 ± 36.18 49.84 ± 30.88 75.74 ± 17.14 53.25 ± 27.76

C3 35.58 ± 40.11 31.92 ± 33.48 84.77 ± 13.32 31.54 ± 32.96

SVM

(OAO,C=2−4)

Control 82.69 ± 18.40 82.84 ± 21.39 86.89 ± 20.44 80.20 ± 15.76

65.63 ± 12.41

C1 69.23 ± 36.95 83.59 ± 32.51 97.23 ± 6.02 72.75 ± 33.69

C2 51.92 ± 39.95 42.86 ± 31.58 73.61 ± 18.70 42.40 ± 28.48

C3 37.50 ± 38.24 35.76 ± 34.23 82.42 ± 15.73 33.80 ± 31.46
FLDA

Control 76.92 ± 26.38 64.87 ± 25.35 77.05 ± 20.84 67.45 ± 21.14

58.89 ± 12.27

C1 78.85 ± 30.57 89.49 ± 23.70 95.20 ± 10.49 81.40 ± 26.78

C2 43.27 ± 34.32 47.52 ± 38.41 78.99 ± 19.06 40.54 ± 29.29

C3 23.08 ± 36.69 21.35 ± 33.33 88.72 ± 15.50 19.85 ± 29.82
Naive B,

Control 78.85 ± 25.19 57.62 ± 26.44 64.75 ± 26.56 61.03 ± 18.93

56.01 ± 14.2

C1 71.15 ± 30.57 88.10 ± 23.77 93.19 ± 13.12 75.01 ± 25.58

C2 47.12 ± 31.09 38.08 ± 26.65 67.94 ± 18.27 39.99 ± 25.30

C3 45.19 ± 38.74 32.75 ± 26.63 69.55 ± 15.48 37.22 ± 30.40
k-NN

(k=1)

Control 42.31 ± 25.27 56.03 ± 29.98 79.94 ± 18.55 43.77 ± 20.19

51.44 ± 13.95
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Figure C.5: Boxplots and corresponding statistical test p-value indicating the exis-
tence of statistical differences among the four classifiers accuracies. A p-value was
obtained for each of the feature selection/reduction methods used to distinguish the
three code and the resting tasks. The statistical tests performed were: (a), (b) and
(d) Analysis of Variance (ANOVA); (c) Kruskal-Wallis test.

Figure C.6: Multiple comparison test and respective p-value of the statistical dif-
ferences between the accuracies values of each classifier for the different methods
of feature selection/reduction, as classification models of the three code and resting
tasks.
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C.2.2 Participant’s Proficiency Analysis

Table C.16: Performance of FLDA classifier after PCA feature reduction, for each
different tasks and the three proficiency levels (Intermediate, Advanced and Expert).
The overall performance of accuracy obtained for each proficiency was 72.92 ± 13.41,
71.88 ± 9.88 and 67.19 ± 23.03, respectively.

Evaluation Metric (%)

Classifier
Multiclass

Classification
Recall Precision Specificity F-measure Accuracy

Intermediate 87.50 ± 16.85 100.00 ± 0.00 100.00 ± 0.00 92.46 ± 10.64

Advanced 95.00 ± 10.54 100.00 ± 0.00 100.00 ± 0.00 97.14 ± 6.02C1

Expert 56.25 ± 51.54 75.00 ± 50.00 100.00 ± 0.00 60.00 ± 48.99

Intermediate 58.33 ± 44.38 43.64 ± 31.00 84.91 ± 14.43 48.50 ± 35.18

Advanced 55.00 ± 40.48 48.33 ± 25.40 78.71 ± 12.28 46.05 ± 24.43

FLDA

C2

Expert 56.25 ± 37.50 60.71 ± 48.62 83.33 ± 19.25 56.49 ± 40.43

Intermediate 50.00 ± 38.44 56.81 ± 40.39 86.30 ± 18.03 47.28 ± 32.00

Advanced 37.50 ± 35.84 33.71 ± 33.50 84.85 ± 13.52 33.83 ± 30.44C3

Expert 62.50 ± 47.87 53.33 ± 45.22 84.38 ± 23.66 57.22 ± 46.20

Intermediate 95.83 ± 14.43 83.93 ± 17.16 87.84 ± 16.05 87.54 ± 12.51

Advanced 100.00 ± 0.00 96.00 ± 8.43 97.50 ± 5.27 97.78 ± 4.68Control

Expert 93.75 ± 12.50 65.00 ± 17.32 73.20 ± 19.79 76.11 ± 15.00
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