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Abstract

The main motivation behind this work is to study a method that simulates the propagation of an
electromagnetic wave through the layers of the retina during an Optical Coherence Tomography
(OCT). Simulating the full complexity of the retina, in particular the variation of the size and shape
of each structure, distance between them and the respective refractive indexes, requires a rigorous
approach that can be achieved by solving Maxwell’s equations. These are the set of partial differential
equations that govern the behaviour of an electromagnetic field in free space and in media. To fully
model the problem, we introduce the constitutive relations, boundary conditions and initial conditions.

In this work, we establish a fully discrete method that allows us to obtain a numerical solution
for the problem in a homogeneous isotropic medium with perfect electric conductor (PEC) boundary
conditions. First the spatial discretization is achieved by resorting to the strong formulation of the
discontinuous Galerkin (dG) method with central fluxes and we prove the stability and convergence of
this method. Then the explicit Euler method is used in order to achieve the temporal discretization of
the semi-discrete scheme obtained with the dG method and we prove the stability and the convergence
of the temporal discretization.

The spatial convergence rate of the dG method is numerically corroborated for the bidimensional
case by implementing the dG method in Matlab. Here the fully discrete method is implemented using
a Runge-Kutta method for the temporal discretization. Finally, we consider a numerical example for a
two dimensional model which tries to represent a single nucleus of the outer nuclear layer (ONL), that
comprises the cells bodies of light sensitive photoreceptors cells.





Resumo

A principal motivação por detrás deste trabalho é estudar um método que simule a propagação de uma
onda electromagnética através das camadas da retina durante uma Tomografia de Coerência Óptica
(OCT). A simulação da complexidade total da retina, em particular da variação do tamanho e da
forma de cada estrutura, da distância entre estruturas e dos respectivos índices refractivos, requer uma
abordagem rigorosa que pode ser alcançada resolvendo equações de Maxwell. Estas são o conjunto de
equações com derivadas parciais que ditam o comportamento de um campo electromagnético quer no
vácuo quer num meio não vazio. Para modelar completamente o problema, introduzimos as relações
constitutivas, condições de fronteira e condições iniciais.

Neste trabalho, estabelecemos um método totalmente discreto que nos permite obter uma solução
numérica para o problema num meio isotrópico homogéneo com condições de fronteira para um
condutor eléctrico perfeito (PEC). Primeiro, a discretização espacial é obtida recorrendo à formulação
forte do método de Galerkin descontínuo (dG) com fluxos centrais e provamos a estabilidade e
convergência deste método. De seguida, o método de Euler explícito é usado para proceder à
discretização temporal do esquema semi-discreto que resulta do método dG e provamos a estabilidade
e convergência da discretização temporal.

A ordem de convergência espacial do método dG é confirmada numericamente para o caso
bidimensional implementando o método dG em Matlab. Aqui o método totalmente discreto é imple-
mentado usando um método de Runge-Kutta para a discretização temporal. Por fim, consideramos um
exemplo numérico para um modelo bidimensional que tenta representar um único núcleo da camada
nuclear externa (ONL), que é constituída pelos corpos celulares de células de fotorreceptores sensíveis
à luz.
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Chapter 1

Introduction

Maxwell’s equations are the fundamental set of partial differential equations that govern the behaviour
of an electromagnetic field in free space and in media. When combined with constitutive relations, the
equations fully describe the effect of media on the propagation of electromagnetic waves. Together
with boundary conditions and the initial conditions, they complete the model of the propagation of
electromagnetic radiation [25].

The importance and diversity of application of the Maxwell’s equations has lead to a great
interest in solving these equations. The first numerical method for solving time-dependent Maxwell’s
equations was the Finite-Difference Time Domain (FDTD) scheme proposed by Yee in 1966 in [5],
which uses a staggered grid both in space and time and is a fully discrete method explicit in time.
Similarly to all finite difference methods, FDTD is difficult to generalize to unstructured grids and
can handle only regular domains, while also having other disadvantages: no adaptivity, the numerical
analysis requires high regularity and it is only conditionally stable (CFL condition) [12]. In 2000 it
was proposed a very efficient, unconditionally stable method based on a finite-difference scheme [6].
Finite element based methods can handle irregular domains, achieve higher order and allow adaptivity
and error control, while using a variational approach which inherits many properties of the continuous
problem, which makes a rigorous error analysis possible [12].

In the last years, there has been a focus on solving Maxwell’s equations numerically by using
discontinuous Galerkin (dG) finite element methods for the spatial discretization [4]. Some of the
main advantages of dG methods are: non-conforming meshes are handled much more easily, they
are highly parallelizable and the mass matrix is block diagonal, which is particularly appealing if
one is interested in the simulation of wave propagation in composite materials, where the electric
permittivity and the magnetic permeability are discontinuous [12]. For a fully discrete method it is
necessary to also use a suitable time integration method. We can choose an explicit time integrator,
which can exploit the block diagonal structure of the mass matrix of discontinuous Galerkin schemes
and thus lead to fully explicit schemes. For example, the Runge-Kutta dG-methods achieve high-order
convergence both in space and time by using strong stability preserving Runge-Kutta schemes in time.
Yet, explicit methods have step size restrictions due to stability requirements (CFL condition). Thus,
we can choose implicit methods which can be used with larger time steps at the cost of solving linear
or even nonlinear systems [12].
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2 Introduction

The main goal of this thesis is to study a method that combines dG methods for spatial dis-
cretization with an explicit time integrator, thus providing a fully discrete scheme for time-dependent
Maxwell’s equations. Most of the work focuses on the proof of stability and convergence of this
method. The method is applied to a model with heterogeneous isotropic permittivity, which is the
first step to model the behaviour of electromagnetic waves during an OCT in the layers of the human
retina.

Motivation behind this work

The human retina is a complex structure in the eye that is responsible for the vision. It is a part of
the central nervous system and it is composed by several layers, namely the outer nuclear layer that
includes the cells bodies of light sensitive photoreceptors cells, rods and cones [11].

Optical Coherence Tomography (OCT) is a recent imaging technique that has become increasingly
popular as a ophthalmic diagnostic tool because of its high resolution. OCT allows us to obtain a
highly detailed tridimensional map of the eye’s fundus and is a non-invasive technique, thus being
more comfortable for the patients and of easier access [1]. Therefore, OCT is considered a very useful
and important technique for the early diagnosis of ophthamologic pathologies.

OCT is analogous to ultrasound imaging but uses light instead of sound [9]. Light and sound
travel at different speeds in different materials and, as it travels from one type of material to another,
part is reflected back and part continues to travel forward. The portion that is reflected back is detected.
In an ultrasound the echo time delay and intensity of this signal are used in order to characterise the
material that caused the rejection. As the speed of light is at least 106 times that of sound, direct
measure of the echo time delays isn’t possible for electromagnetic waves because they are in a very
small scale. Therefore, OCT uses a method called interferometry [1].

An electromagnetic beam is emitted by a source and travels until it reaches a beam splitter, where
it is split in two identical parts. One of the resulting beams travels to a reference mirror, where it is
reflected back; the other goes through the eye and, there, it is reflected back by the eye’s different
structures [1].

The result of this constructive interference is detected by the photodetector. If we change the
position of the mirror, we change the optical path the reference beam travels [1]. Thus it will
constructively interfere with a portion of the other beam that was reflected by the sample at a different
depth, which is the principle behind time-domain OCT [23], as described by Figure 1.1.

The intensity of the detected beam depends on the intensity of the reference beam and the
structure’s reflectivity. Different structures reflect the beam back in different proportions, and can
therefore be identified by analysis of this signal [23].

A light scattering simulation allows us to model the layers of the retina and the dG method for
Maxwell’s equations allows us to obtain the scattered field simulating the beam reflected through the
eye in the OCT.
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Fig. 1.1 A scheme of the time-domain OCT [23].





Chapter 2

Maxwell’s equations

2.1 The partial differential equations

Maxwell’s equations are the fundamental set of equations that describe the behaviour of an electro-
magnetic field in free space and in media. These fundamental laws were first formulated by James
Clerk Maxwell in 1873 [17].

The electromagnetic field in space and time is described by four vector fields: E, H, D, B :
R+×Ω → R3 on a set Ω ∈ R3, where E represents the electric field, H the magnetic field, D the
electric flux density and B the magnetic flux density. The SI units of these fields are volts per
meter (V/m), amperes per meter (A/m), coulombs per square meter (C/m2) and webers per square
meter(Wb/m2), respectively [25]. We consider that Ω is a polyhedron in R3 because this will allows
us to cover Ω with meshes built of polyhedral elements and we can define the outward unit normal a.e.

Thus, the time-dependent Maxwell’s equations, relating these electromagnetic fields, are stated in
differential form as:

∂B
∂ t

=−∇×E (2.1a)

∂D
∂ t

= ∇×H − J (2.1b)

∇·D = ρ (2.1c)

∇·B = 0, (2.1d)

where the electric current density J : R+×Ω →R3 and the electric charge density ρ : R+×Ω →R is
the source generating the electromagnetic fields, with SI units amperes per square meter and coulombs
per cubic meter, respectively. The notation ∇× and ∇· refers to the vector operator curl and divergence,
respectively. Thus, equations (2.1a) and (2.1b) are called the curl equations and (2.1c) and (2.1d) are
called the divergence equations.

The differential form of the electric charge conservation law, called continuity equation, follows
from (2.1b) and (2.1c). By taking the divergence of (2.1b) and using (2.1c), we get

∇·∇×H = ∇·J+∇· ∂D
∂ t

= ∇·J+ ∂

∂ t
∇·D = ∇·J+ ∂ρ

∂ t
. (2.2)

5



6 Maxwell’s equations

Then the continuity equation
∂ρ

∂ t
+∇·J = 0 (2.3)

results from the identity ∇·∇×H = 0 [15].
Differentiating the divergence equations with respect to time and using the curl equations, the

continuity equation and the identity ∇·∇×H = 0 gives

∂

∂ t
(∇·D−ρ) = ∇· ∂D

∂ t
− ∂ρ

∂ t
= ∇·(∇×H − J)+∇·J = 0 (2.4)

∂

∂ t
∇·B = ∇· ∂B

∂ t
=−∇·(∇×E) = 0 (2.5)

that is, if the continuity equation holds, the curl equations allow us to imply that that the divergence
equations are constant in time. Thus, if the divergence equations are satisfied for an initial time, they
are satisfied for all times t, which means that, regarding the time evolution of Maxwell’s equation, we
only have to consider the curl equations.

In the Maxwell’s equations, electric current density J and the electric charge density ρ are the
sources of electromagnetic radiation. However, when analysing the propagation of electromagnetic
radiation in regions far from the source, J and ρ can be considered zero. Such assumption will be
used from now on, that is, we will only consider the homogeneous problem where J = ρ = 0.

2.2 The constitutive relations

As seen above, the Maxwell’s equations are reduced to a system of six independent scalar equations
(formed by the vectorial curl equations) for twelve scalar unknowns (the components of vectors E,
H, D, B). Therefore, although the behaviour of a electromagnetic field in free space and in media is
entirely described by the Maxwell’s equations, the system of six equations is underdetermined. This
is overcome by adding six more equations, defining a connection between two couple of fields: D and
E, B and H.

These equations, called constitutive relations and represented by

D = D(E), B = B(H), (2.6)

model the effect of the electromagnetic field on material and describe the functional dependence
between vectors, considering the properties of media.

In free space, we have
D = ε0E, B = µ0H, (2.7)

where the constants ε0 and µ0 are the electric permittivity and magnetic permeability of free space,
respectively. In SI units we have

ε0 = 8.854×10−12F/m (farads per meter) (2.8)

µ0 = 4π ×10−7H/m (henrys per meter). (2.9)

In vacuum, the speed of light c0 is given by 1√
ε0µ0

.
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In homogeneous and isotropic media, where the electric and magnetic properties are uniform in
all directions, the constitutive relations are given by

D = εE, ε = εrε0, (2.10)

B = µH, µ = µrµ0, (2.11)

where the dimensionless scalar εr and µr are the relative permittivity and relative permeability of the
medium and ε and µ are refered to as the permittivity and the permeability of the medium.

In inhomogeneous isotropic media, the relative permittivity and relative permeability of the
medium are scalar functions of the position, εr, µr : R3 → R.

Now, as stated in section 2.1, if the continuity equation (2.3) holds, the divergence equations (2.1c)
and (2.1d) are satisfied and, using the constitutive relations, in three-dimensional spaces for heteroge-
neous isotropic linear media with no source, the Maxwell’s system is

µ
∂H
∂ t

=−∇×E (2.12a)

ε
∂E
∂ t

= ∇×H (2.12b)

2.3 Boundary conditions

In order to properly simulate electromagnetic wave propagation, it is necessary to take into considera-
tion the boundary conditions. In reality, an electromagnetic wave propagates until it eventually dies
out or is totally absorbed by an obstacle. As it would be too computationally expensive to define a
domain large enough to simulate the dying out of an electromagnetic wave, we have to truncate the
space, by selecting a suitable artificial boundary and regions that define a finite domain.

Therefore the boundary conditions introduced on the computational domain in an electromagnetic
wave propagation simulation are of three types: reflecting, absorbing and periodic boundary conditions.

Reflecting boundary conditions, such as Perfect Electric Conductor (PEC) and Perfect Magnetic
Conductor (PMC), are boundary conditions that reflect all incident radiation and are used to model
cavities and to introduce symmetry planes into the system [3]. The absorbing boundary conditions,
such as the Silver-Müller Absorbing Boundary Condition (SM-ABC), mimic an infinite computational
domain by partially absorbing outgoing radiation. In this thesis, we will use only PEC boundary
conditions.

2.3.1 Tangential continuity condition

Before we can solve the Maxwell’s equations in proximity of the boundaries, we must establish
conditions relating the field components at the interface between two media of different properties [13].
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According to [2], [13] and [14], the tangential continuity conditions

n× (E1 −E2) = 0, (2.13)

n× (H1 −H2) = 0, (2.14)

where n is the normal unit vector and indexes 1 and 2 represent the field component inside and outside
the domain, respectively, guarantee that the tangential component of the field vectors E and H is
continuous on either side of the boundary.

Regarding the continuity in the normal components of the field vectors D and B, it is ensured by
the divergence equations

n · (D1 −D2) = 0, (2.15)

n · (B1 −B2) = 0. (2.16)

Owing to the constitutive relations (2.10) and (2.11), equations (2.15) and (2.16) are equivalent to

n · (ε1E1 − ε2E2) = 0, (2.17)

n · (µ1H1 −µ2H2) = 0, (2.18)

this is, the continuity in normal direction of B and D is equivalent to the continuity of the normal
direction of E and H.

Equations (2.13)-(2.16) are known as the interface conditions.

2.3.2 Perfect electric conductor boundary condition

The perfect electric conductor boundary condition, usually used to model metallic cavities, is a
reflective boundary condition where the tangential component of E outside of the domain is zero and
there is no field propagation into the outside.

Thus, in a domain surrounded by a PEC medium, the tangential component of E and the normal
component of B disappear at the boundary, which is translated into the fact that the interface conditions
yield the following boundary conditions:

n×E = 0 on ∂Ω, (2.19)

n · B = 0 on ∂Ω, (2.20)

where ∂Ω is the boundary of Ω and n is the outward unit normal.

2.4 The three dimensional problem

Combining the Maxwell’s equations with the constitutive relations and the boundary conditions
(dropping the divergence conditions) and adding the necessary initial values, we obtain the following
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reduced problem: Solve for E, H : R+×Ω → R3 such that

µ
∂H
∂ t

=−∇×E in R+×Ω (2.21a)

ε
∂E
∂ t

= ∇×H in R+×Ω (2.21b)

E(0,x,y,z) = E0 in Ω (2.21c)

H(0,x,y,z) = H0 in Ω (2.21d)

n×E = 0 on R+×∂Ω (for PEC) (2.21e)

where E = (Ex,Ey,Ez), H = (Hx,Hy,Hz) and Ω ∈ R3, the permittivity ε and the permeability µ of
the medium are space-dependent and the E0 and H0 are the initial values for the electric field and the
magnetic field, respectively.

For each equation (2.21a)–(2.21b), we write the vector components of the curl operators in
Cartesian coordinates. This yields the following three scalar equations for (2.12a) and three scalar
equations for (2.12b).

2.5 Homogeneous isotropic media

In order to simplify the first approach to the Maxwell’s equations, we will study the equations in
homogeneous isotropic media. Therefore, we suppose that ε, µ are positive constants.

2.5.1 Reduction to two dimensions

The underlying physical system modeled by the Maxwell’s equations may have some symmetries
which allow to reduce the dimensions of the system. Oftentimes, the system is homogeneous in one
direction, for instance, if the structure extends to infinity in the z-direction with no change in the shape
or position of its transverse cross section. If the incident wave is also uniform in the z-direction, then
all partial derivatives of the fields with respect to z are equal to zero [25]. The scalar equations are
reduced to

µ
∂Hx

∂ t
=−∂Ez

∂y
in R+×Ω, (2.22a)

µ
∂Hy

∂ t
=

∂Ez

∂x
in R+×Ω, (2.22b)

µ
∂Hz

∂ t
=

∂Ex

∂y
−

∂Ey

∂x
in R+×Ω, (2.22c)
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for (2.12a), and

ε
∂Ex

∂ t
=

∂Hz

∂y
in R+×Ω, (2.23a)

ε
∂Ey

∂ t
=−∂Hz

∂x
in R+×Ω, (2.23b)

ε
∂Ez

∂ t
=

∂Hy

∂x
− ∂Hx

∂y
in R+×Ω, (2.23c)

for (2.12b). These equations can be grouped according to field vector components. This allows us to
create two sets of three equations:

• TE polarization: The first set, which involves only Ex, Ey and Hz, is

ε
∂Ex

∂ t
=

∂Hz

∂y
in R+×Ω, (2.24a)

ε
∂Ey

∂ t
=−∂Hz

∂x
in R+×Ω, (2.24b)

µ
∂Hz

∂ t
=

∂Ex

∂y
−

∂Ey

∂x
in R+×Ω, (2.24c)

and is designated the transverse electric (TE) mode. TE mode describes the propagation when
the electric field lies in the plane of propagation.

• TM polarization: The second set, which involves only Ez, Hx and Hy, is

ε
∂Ez

∂ t
=

∂Hy

∂x
− ∂Hx

∂y
in R+×Ω, (2.25a)

µ
∂Hx

∂ t
=−∂Ez

∂y
in R+×Ω, (2.25b)

µ
∂Hy

∂ t
=

∂Ez

∂x
in R+×Ω, (2.25c)

(2.25d)

and is designated the transverse magnetic (TM) mode. TM mode describes the propagation
when the electric field is perpendicular to the plane of propagation.

Note that the TE and TM modes contain no common field vector components.

2.6 Mathematical aspects of Maxwell’s equations

We will only consider bounded domains Ω with a Lipschitz-continuous boundary ∂Ω. Thus, the
outward unit normal n is defined almost everywhere (a.e.) on Ω.
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2.6.1 The state and graph spaces

Definition 2.1. (The state space V ) We define the state space V as

V = L2(Ω)3 ×L2(Ω)3. (2.26)

We assign it the inner product: for [H1,E1]
T , [H2,E2]

T ∈V ,([
H1

E1

]
,

[
H2

E2

])
V

=
∫

Ω

(µH1·H2 + εE1·E2)dx (2.27)

and the associated norm: for [H,E]T ∈V ,∥∥∥∥∥
[

H
E

]∥∥∥∥∥
V

=

([
H
E

]
,

[
H
E

])1/2

V

. (2.28)

Assuming that µ,ε are positive constants allows us to assert that the V -inner product is equivalent
to the standard L2-inner product. Therefore, (V,(, · , ·)) is a Hilbert space [8]. We choose to use
the V -inner product instead of the standard L2-inner product because its induced norm represents
electromagnetic energy.

We have to define a new meaning to the curl operator in (2.21a), (2.21b) since the standard curl
operator is only defined for continuous differentiable functions and functions in V do not have to
satisfy this condition. In a L2 space, for [H,E]T ∈V , ∇×E,∇×H ∈ L2(Ω)3 is a sufficient condition to
ensure that (2.21a), (2.21b) are well-defined. Let C∞

0 (Ω)3 denote the space of infinitely differentiable
functions with compact support in Ω.

Definition 2.2. (The variational curl) A function F ∈ L2(Ω)3 has a variational curl in L2(Ω)3 if there
exists a function G ∈ L2(Ω)3 such that∫

Ω

G·ϕ =
∫

Ω

F ·(∇ϕ), ∀ϕ ∈C∞
0 (Ω)3. (2.29)

We write ∇×F = G. If the variational curl exists, it is unique since the space C∞
0 (Ω) is dense in

L2(Ω).

Definition 2.3. (The graph space H(curl,Ω)) The graph space of the curl-operator is defined as

H(curl,Ω) := {F ∈ L2(Ω)3|∇×F ∈ L2(Ω)3}, (2.30)

with the inner product: For F,G ∈ H(curl,Ω),

(F,G)H(curl,Ω) := (F,G)L2(Ω)3 +(∇×F,∇×G)L2(Ω)3 , (2.31)

and the associated graph norm

∥F∥H(curl,Ω) := (F,F)
1/2
H(curl,Ω)
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.

Theorem 2.4. The graph space H(curl,Ω) is a Hilbert space.

Proof. Let (Fn) be a Cauchy sequence in H(curl,Ω). Then, (Fn) and (∇×Fn) are Cauchy sequences
in L2(Ω)3 and therefore convergent. By the definition of H(curl,Ω), for all ϕ ∈C∞

0 (Ω) and all n ∈ N,
we have ∫

Ω

(∇×Fn)·ϕ =
∫

Ω

Fn·(∇ϕ). (2.32)

Let F and G be limits of Fn and ∇×Fn in L2(Ω)3, respectively. Taking the limit n → ∞, (2.32) yields∫
Ω

G·ϕ =
∫

Ω

F ·(∇ϕ). (2.33)

Thus we conclude from (2.29) that F ∈ H(curl,Ω) and G = ∇×F .

Theorem 2.5. [18, Theorem 3.26] If Ω is a bounded Lipschitz domain in R3, then the closure of
C∞

0 (Ω)3 in the norm ∥·∥H(curl,Ω) is H(curl,Ω).

2.6.2 Boundary conditions in the graph space

Now we add the boundary condition (2.21e) in the graph space H(curl,Ω).

Definition 2.6. (The space H0(curl,Ω)) The space H0(curl,Ω) is defined as the closure of C∞
0 (Ω)3

in the norm ∥·∥H(curl,Ω).

H0(curl,Ω) is a closed subspace of the Hilbert space H(curl,Ω). Thus, H0(curl,Ω) is a Hilbert
space.

Lemma 2.7. [18, Lemma 3.27] Let F ∈ H(curl,Ω) be such that for every ε ∈C∞(Ω)3 it holds

(∇×F,ε)L2(Ω)3 = (F,∇× ε)L2(Ω)3 . (2.34)

Then, F ∈ H0(curl,Ω).

We can rewrite Lemma 2.7 for functions with more regularity, such as F̃ ∈ H1(Ω)3. Using
integration by parts, we have∫

Ω

(∇× F̃)·ε =
∫

Ω

F̃ ·(∇× ε)+
∫

∂Ω

(n× F̃)·ε, ∀ε ∈C∞(Ω)3. (2.35)

Due to (2.34), we have ∫
∂Ω

(n× F̃)·ε = 0, ∀ε ∈C∞(Ω)3. (2.36)

This is equivalent to
n× F̃ = 0 a.e. on ∂Ω (2.37)

because C∞(Ω)3 is dense in L2(Ω)3.
Then we may conclude the following generalization of Green’s theorem holds for functions on

H(curl,Ω) (see [18, Remark 3.28]).
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Lemma 2.8. (Green’s theorem) Let H ∈ H(curl,Ω) and E ∈ H0(curl,Ω). Then we have

(H,∇×E)L2(Ω)3 = (∇×H,E)L2(Ω)3 . (2.38)

2.6.3 Well-Posedness

Definition 2.9. (Maxwell operator) We define the Maxwell operator A as

A : D(A)→V,

[
H
E

]
7→

[
µ−1∇×E
−ε−1∇×H

]
, (2.39)

where the domain of A is given by

D(A) := H(curl,Ω)×H0(curl,Ω). (2.40)

We define the following graph norm for D(A): For [H,E]T ∈ D(A),∥∥∥∥∥
[

H
E

]∥∥∥∥∥
2

A

:=

∥∥∥∥∥
[

H
E

]∥∥∥∥∥
2

V

+

∥∥∥∥∥A

[
H
E

]∥∥∥∥∥
2

V

. (2.41)

Then, we have ∥∥∥∥∥
[

H
E

]∥∥∥∥∥
2

A

=

∥∥∥∥∥
[

µ1/2H
ε1/2E

]∥∥∥∥∥
2

L2(Ω)6

+

∥∥∥∥∥
[

µ−1/2∇×E
ε−1/2∇×H

]∥∥∥∥∥
2

L2(Ω)6

(2.42)

Due to the fact that the coefficients µ and ε are assumed to be a positive constant, we can conclude
that the norms ∥·∥A and ∥·∥H(curl,Ω)×H(curl,Ω) are equivalent. We also conclude that (D(A),∥·∥A) is a
Hilbert space, thus A is a closed operator.

Homogeneous evolution equation

We write (2.12) in a more compact form, the abstract evolution equation: For a given initial value
u0 = [H0,E0]

T ∈ D(A) we search for u = [H,E]T ∈C1(R+,V )∩C(R+,D(A)) such that

∂u
∂ t

+Au = 0, t ≥ 0, (2.43a)

u(0) = 0. (2.43b)

In order to prove the well-posedness of (2.43), we resort to Stone’s theorem A.1. As stated
previously, V is a Hilbert space, thereby we only need to show that the domain D(A) is dense in V and
the operator A is skew-adjoint in order to conclude that A generates a C0-group of unitary operators.

From (2.5) and (2.6) we know that C∞(Ω)3 ×C∞
0 (Ω)3 is a subset of D(A). As both C∞(Ω)3 and

C∞
0 (Ω)3 are dense in L2(Ω)3 with respect to the L2-norm and the L2-norm and V -norm are equivalent.

Then the density of the domain D(A) in V follows.

Theorem 2.10. (Skew-adjointness of A) The Maxwell operator A is skew-adjoint with respect to the
V -inner product.



14 Maxwell’s equations

Proof. We follow the proof in [19, Proposition 3.1]. In order to prove that A is skew-adjoint with
respect to the V -inner product, we have to show that the domain of A and the domain of its adjoint A∗

coincide, D(A) = D(A∗), and that A is skew-symmetric, that is, for all v1,v2 ∈ D(A) we have

(Av1,v2)V =−(v1,Av2)V . (2.44)

We will prove the skew-symmetry of A first. For v1 = [H1,E1]
T , v2 = [H2,E2]

T ∈ D(A) we have

(Av1,v2)V =

([
µ−1∇×E1

−ε−1∇×H1

]
,

[
H2

E2

])
V

(2.45)

=

([
∇×E1

−∇×H1

]
,

[
H2

E2

])
L2(Ω)6

(2.46)

= (∇×E1,H2)L2(Ω)3 − (∇×H1,E2)L2(Ω)3 . (2.47)

Using the Green’s Theorem 2.8, we have

(Av1,v2)V = (E1,∇×H2)L2(Ω)3 − (H1,∇×E2)L2(Ω)3 (2.48)

=−

([
H1

E1

]
,

[
µ−1∇×E2

−ε−1∇×H2

])
V

(2.49)

=−(v1,Av2)V . (2.50)

Thus, the skew-symmetry of A is shown. Next we prove the coincidence of the domains of A and
A∗, that is, we show that both domains contain each other, D(A)⊂ D(A∗) and D(A∗)⊂ D(A). The
domain of the adjoint A∗ is

D(A∗) = {v2 ∈V |∃v3 ∈V ∀v1 ∈ D(A) : (Av1,v2)V = (v1,v3)V} . (2.51)

Let v2 ∈ D(A) and set v3 =−Av2. Then, for all v1 ∈ D(A) we have

(Av1,v2)V = (v1,v3)V (2.52)

and D(A) ⊂ D(A∗). Now let v2 = [H2,E2]
T ∈ D(A∗). By the definition of D(A∗), there is v3 =

[H3,E3]
T ∈V such that for all v1 = [H1,E1]

T ∈ D(A) we have

(Av1,v2)V = (v1,v3)V , (2.53)

or equivalently

(∇×E1,H2)L2(Ω)3 − (∇×H1,E2)L2(Ω)3 = (µH1,H3)L2(Ω)3 +(εE1,E3)L2(Ω)3 . (2.54)

Choosing H1 = 0, we have

(∇×E1,H2)L2(Ω)3 = (εE1,E3)L2(Ω)3 . (2.55)
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Then (2.55) holds for all E1 ∈ H0(curl,Ω), so it also holds for all E1 ∈C∞
0 (Ω)3. Then we have∫

Ω

(∇×E1)·H2 =
∫

Ω

εE1·E3, ∀E1 ∈C∞
0 (Ω)3. (2.56)

The Definition 2.2 of variational curl allows us to we conclude that ∇×H2 = εE3 ∈ L2(Ω)3 and thus
H2 ∈ H(curl,Ω).

If we choose E1 = 0 in (2.54), we get

−(∇×H1,E2)L2(Ω)3 = (µH1,H3)L2(Ω)3 , (2.57)

and, using the same argument as above, E2 ∈ H(curl,Ω) with ∇×E2 =−µH3 ∈ L2(Ω)3 and∫
Ω

(∇×H1)·E2 =
∫

Ω

H1·(∇×E2), ∀H1 ∈ H(curl,Ω). (2.58)

Theorem 2.5 allows us to conclude that this equation also holds for all function H1 ∈C∞(Ω)3, that is,∫
Ω

(∇×H1)·E2 =
∫

Ω

H1·(∇×E2), ∀H1 ∈C∞(Ω)3. (2.59)

But according to Lemma 2.7 we have E2 ∈ H0(curl,Ω). Thus we have proven that v2 = [H2,E2]
T ∈

D(A) and consequently the inclusion D(A∗)⊂ D(A) is shown.

From this theorem we reach the following result:

Corollary 2.11. We have (Av,v)V = 0 for all v ∈ D(A).

Now we have all the necessary results to prove the well-posedness of the evolution equation (2.43).

Theorem 2.12. (Well-posedness) The operator −A generates a C0-group of unitary operator

T : R→ L(V,V ), t 7→ e−tA. (2.60)

Thereafter, for every initial value u0 ∈ D(A) the homogeneous evolution equation (2.43) has a unique
solution u ∈C1(R+,V )∩C(R+,D(A)) given by

u(t) = T (t)u0. (2.61)

Moreover, the electromagnetic energy is conserved,

∥u(t)∥V = ∥u0∥0 , ∀t ≥ 0. (2.62)

Proof. In [21, Theorem 2.2], it is shown that the homogeneous evolution equation (2.43) is well-posed
if and only if the operator −A generates a C0-semigroup, T (·). Thus, the solution of (2.43) is given by
u = T (·)u0, for every initial value u0 ∈ D(A). Theorem 2.10 and Stone’s Theorem A.1 allow us to
conclude that −A even generates a C0-group of unitary operators.

Conservation of the electromagnetic energy is an immediate consequence of the unitary property
of the C0-group.





Chapter 3

Discontinuous Garlerkin methods

In order to construct a spatial discretization of Maxwell’s equations by dG methods, we need to
construct finite dimensional function spaces in which we search for an approximate solution. First we
discretize the domain Ω using a mesh and then we construct the approximation space as the space of
all functions which are polynomials on each mesh element. This leads to the necessity of introducing
some concepts about meshes, broken polynomials spaces (see Appendix A.1) and admissible mesh
sequences (see Appendix A.2).

Then we construct the discrete bilinear forms of the dG method and prove the stability and
convergence of the method based on [24] and [19].

3.1 Concepts about meshes

Let us begin by introducing some concepts about meshes from [20].

Definition 3.1. (Simplex) Let {x0, . . . ,xd} be a set of d +1 points in Rd such that the vectors {x1 −
x0, . . . ,xd − x0} are linearly independent. Then, the interior of the convex hull of {x0, . . . ,xd} is called
a non-degenerate simplex of Rd and the points {x0, . . . ,xd} its vertices.

In dimension 1, a non-degenerate simplex is an open interval, in dimension 2 a triangle and in
dimension 3 a tetrahedron.

Definition 3.2. (Simplicial mesh) A finite set T = {K} is called a simplicial mesh of the domain Ω if

i) every K ∈ T is a non-degenerate simplex;

ii) the set T forms a partition of Ω, that is

Ω =
⋃

K∈T

K, (3.1)

and for every K1,K2 ∈ T, K1 ̸= K2, it holds

K1 ∩K2 = /0. (3.2)

Each K ∈ T is called a mesh element.

17
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Definition 3.3. (General mesh) A general mesh T of the domain Ω is a finite collection of polyhedra
T = {K} satisfying condition ii) of Definition 3.2. Each element K ∈ T is called a mesh element.

Definition 3.4. (Element diameter and meshsize) Let T be a general mesh of the domain Ω. We
denote with hK the diameter of a mesh element K ∈ T . Moreover, we define the meshsize h as the
largest diameter in the mesh

h := max
K∈T

hk. (3.3)

From now on we will denote a mesh T with meshsize h as Th.

Definition 3.5. (Element outward normal) Let Th be a mesh of the domain Ω and K ∈ Th. We define
nK a.e. on ∂K as the unit outward normal to K.

Now we introduce some further concepts related to meshes frequently used in the dG method
which are also from [20].

Definition 3.6. (Mesh faces) Let Th be a mesh of the domain Ω. We say that a closed subset F of Ω is
a mesh face if F has positive (d −1)-measure and either one of the following conditions is satisfied:

i) There are distinct mesh elements K1,K2 ∈ Th such that F = ∂K1 ∩∂K2. In this case, we call F
an interface.

ii) There is a mesh element K ∈ Th such that F = ∂K ∩∂Ω. In this case, we call F a boundary
face.

We group interfaces in the set F i
h and boundary faces in the set Fb

h . Hereinafter, we set

Fh := F i
h ∪Fb

h . (3.4)

Moreover, for any mesh element K ∈ Th we group the mesh faces composing the boundary of K
in the set

FK := {F ∈ Fh|F ⊂ ∂K}. (3.5)

At last, we denote the maximum number of mesh faces composing the boundary of mesh elements
by

N∂ := max
K∈Th

card(FK). (3.6)

Let us introduce the following notation: For every mesh element K ∈ Th and every corresponding
interface F ∈ FK ∩F i

h we denote the neighbouring mesh element with respect to F with KF .

Definition 3.7. (Face normals) For all F ∈ Fh we define the unit normal nF to F as follows:

i) The unit normal nK to F pointing from K to KF if F ∈ F i
h. The orientation of nF is arbitrary

depending on the choice of K, but kept fixed in what follows.

ii) The outward unit normal n to Ω if F ∈ Fb
h .

Next, we introduce averages and jumps across interfaces of piecewise smooth functions. Let us
begin by introducing the following notation

vK := v|K . vKF := v|KF . (3.7)
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Definition 3.8. (Interface averages and jumps) Let v be a scalar-valued function and assume that for
every mesh element K ∈ Th its restriction v|K is smooth enough to admit a trace a.e. on the boundary
∂K. Then, for all F ∈ F i

h the function v admits a possible two-valued trace and we define

i) the average of v on F as

{{u}}F :=
1
2
((vk)|F +(vKF )|F) , (3.8)

ii) the jump of v on F as
[[u]]F := (vKF )|F − (vK)|F . (3.9)

When v is vector-valued, the above average and jump operators act componentwise on v.

3.2 Homogeneous medium and normalized form

As from now on we are considering a homogeneous medium, we assume that the coefficients ε and
µ are positive constants. As stated previously, we have the homogeneous evolution problem: Given
u0 = [H0,E0]

T ∈ D(A) we search for u = [H,E]T ∈ C1(0,T ;V )∩C(0,T ;D(A)) with u(0) = u0 and
such that

∂H
∂ t

+µ
−1

∇×E = 0, in (0,T )×Ω, (3.10a)

∂E
∂ t

− ε
−1

∇×H = 0, in (0,T )×Ω. (3.10b)

From now on we restrict our considerations to bounded time intervals. The fact that the coefficients ε

and µ are constant allows us to rewrite (3.10) as

∂ H̃
∂ t

+ c0∇× Ẽ = 0, in (0,T )×Ω, (3.11a)

∂ Ẽ
∂ t

− c0∇× H̃ = 0, in (0,T )×Ω, (3.11b)

where c0 := (εµ)−1/2 is the speed of light in the medium and we set

H̃ := µ
1/2H, Ẽ := ε

1/2E. (3.12)

In (3.11), all quantities are normalized to the same physical unit.
The space discretization will be based on the following formulation of (3.11): Given ũ0 =

[H̃0, Ẽ0]
T ∈ D(A) we search for ũ = [H̃, Ẽ]T ∈C1(0,T ;V )∩C(0,T ;D(A)) such that for all test func-

tions in the state space ϕ = [φ ,ψ]T ∈V we have(
∂ H̃
∂ t

,φ

)
L2(Ω)3

+ c0

(
∇× Ẽ,φ

)
L2(Ω)3

+

(
∂ Ẽ
∂ t

,ψ

)
L2(Ω)3

− c0

(
∇× H̃,ψ

)
L2(Ω)3

= 0. (3.13)

In the following formulation, we group the inner products in two bilinear forms according to the kind
of derivative they involve and we write (3.13) in a compact form: We search for ũ ∈C1(0,T ;V )∩
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C(0,T ;D(A)) such that

m
(

∂ ũ
∂ t

,ϕ

)
+a(ũ,ϕ) = 0, ∀ϕ ∈V, (3.14)

where we define the bilinear forms m, a : D(A)×V →R as follows: For v = [H,E]T and ϕ = [φ ,ψ]T ,

m(v,ϕ) := (H,φ)L2(Ω)3 +(E,ψ)L2(Ω)3 , (3.15a)

a(v,ϕ) := c0(∇×E,φ)L2(Ω)3 − c0(∇×H,ψ)L2(Ω)3 . (3.15b)

3.3 Concepts about discrete bilinear forms

In the dG discretization we replace the continuous bilinear forms by discretized ones, thus allowing
for the approximation to the continuous problem (3.14) in a finite dimensional space, which can be
solved computationally.

The dG discretization works with discontinuous elementwise smooth functions and we will
frequently have to consider averages and jumps over interfaces of such functions. However, functions
in the graph space D(A) do not necessarily admit an L2-trace. Therefore, we will require more
regularity from the exact solution. Thus, we assume that the exact solution ũ = [H,E]T of (3.14)
satisfies

ũ ∈V∗ := D(A)∩
(
H1(Th)

3 ×H1(Th)
3) . (3.16)

From Remark ??, we have that the Ẽ-field vanishes on boundary faces, that is,

n× Ẽ = 0, ∀F ∈ Fb
h . (3.17)

Moreover, using Lemma A.9 we conclude that the exact solution only admits zero tangential jumps
on interfaces,

nF × [[H̃]]F = nF × [[Ẽ]]F = 0, ∀F ∈ F i
h. (3.18)

There are two more spaces needed to construct the discrete bilinear forms. First, we want to contruct
the discrete solution in the broken polynomial space PN

3 (Th)
3 ×PN

3 (Th)
3 defined in (A.18), assuming

that Th belongs to an admissible mesh sequence (see Appendix A.2). Thus, we define the discrete
solution space as

Vh := PN
3 (Th)×PN

3 (Th)
3. (3.19)

This discrete solution space is not contained in the continuous space, that is, Vh ̸⊂V∗ (see Lemma A.9),
which characterizes dG methods as non-conforming methods, hence the necessity of introducing the
additional space

V∗h :=V∗+Vh, (3.20)

which contains both the exact and the discrete solutions. Thus, V∗h also contains the error function of
the discretization, that is, it contains the difference between the exact and the discrete solution. This
guarantees that the error function can be plugged into the first argument of the discrete bilinear forms,
which is essential for the later convergence analysis.
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Now, in order to find the discrete bilinear forms, we begin by assuming that the global solution is
approximated by the piecewise N-order polynomial approximation ũh = [H̃h, Ẽh]

T

ũ(x,y,z, t)≃ ũh(x,y,z, t) =
K⊕

k=1

ũh,k(x,y,z, t) (3.21)

defined as the direct sum of the local polynomial solutions ũh,k = [H̃h,k, Ẽh,k]
T .

In order to achieve the semi-discrete scheme, we begin by substituting ũh by ũh,k in (3.11),
multiplying the equations by a test function ϕh = [φh,ψh]

T ∈Vh and integrating over each element K.
We get

∫
K

(
∂ H̃K

∂ t
·φh + c0(∇× ẼK)·φh

)
= 0, (3.22a)

∫
K

(
∂ ẼK

∂ t
·ψh − c0(∇× H̃K)·ψh

)
= 0, (3.22b)

where we have dropped the index h in writing HK and EK instead of Hh,K and Eh,K , respectively.
Integrating by parts, we obtain

∫
K

(
∂ H̃K

∂ t
·φh + c0ẼK ·(∇×φh)

)
+ c0

∫
∂K

(nK × ẼK)·φh = 0, (3.23a)

∫
K

(
∂ ẼK

∂ t
·ψh − c0H̃K ·(∇×ψh)

)
− c0

∫
∂K

(nK × H̃K)·ψh = 0. (3.23b)

Since H̃h, Ẽh are not continuous in tangential directions on the boundary of elements, boundary
integrals would not be well defined. Therefore we replace nK × ẼK and nK × H̃K by numerical fluxes
(nK × ẼK)

∗ and (nK × H̃K)
∗, respectively. Let F = ∂K ∩∂KF . The simplest choice for the numerical

fluxes is the central flux, that is,

(nK × ẼK)
∗∣∣

F = nK × ẼK + ẼKF

2
, (nK × H̃K)

∗∣∣
F = nK × H̃K + H̃KF

2
. (3.24)

Inserting this into (3.23), we get the semi-discrete scheme

∫
K

(
∂ H̃K

∂ t
·φh + c0ẼK ·(∇×φh)

)
+ c0

∫
∂K

(
nK × ẼK + ẼKF

2

)
·φh = 0, (3.25a)

∫
K

(
∂ ẼK

∂ t
·ψh − c0H̃K ·(∇×ψh)

)
− c0

∫
∂K

(
nK × H̃K + H̃KF

2

)
·ψh = 0. (3.25b)

This is called the local weak form of a general dG method for Maxwell’s equations. Integrating by
parts once more and taking function values from the elements K, we derive the local strong form of
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the dG method:

∫
K

(
∂ H̃K

∂ t
·φh + c0(∇× ẼK)·φh

)
+ c0

∫
∂K

1
2

φh·
(
(nK × [[ẼK)]]F

)
= 0, (3.26a)

∫
K

(
∂ ẼK

∂ t
·ψh − c0(∇× H̃K)·ψh

)
− c0

∫
∂K

1
2

ψh·
(
(nK × [[H̃K)]]F

)
= 0. (3.26b)

To obtain a global formulation we have to sum over all elements. On each inner face F ∈ F i
h we get

1
2

∫
F

(
nF × [[Ẽh]]F

)
·(φK +φKF ),

1
2

∫
F

(
nF × [[H̃h]]F

)
·(ψK +ψKF ), (3.27)

respectively. If F = ∂K ∩∂KF is a boundary face, we model the boundary conditions in the following
way:

(nF × Ẽh)
∗∣∣

F = 0 since we have nF × Ẽ = 0 for the exact solution,

(nF × H̃h)
∗∣∣

F = (nF × H̃)
∣∣
F since we have no boundary for H̃.

Therefore we get the following global formulation:

∫
Ω

(
∂ H̃h

∂ t
·φh + c0(∇h × Ẽh)·φh

)
+ c0 ∑

F∈F i
h

∫
F

(
nF × [[Ẽh)]]F

)
·{{φh}}F

+ c0 ∑
F∈Fb

h

∫
F
−(nF × Ẽh)·ψh = 0, (3.28a)

∫
K

(
∂ ẼK

∂ t
·ψh − c0(∇× H̃K)·ψh

)
− c0 ∑

F∈F i
h

∫
F

(
nF × [[H̃h)]]F

)
·{{ψh}}F = 0. (3.28b)

Now we can write the discretization of (3.14): We search for ũh = [H̃h, Ẽh]
T ∈C1(0,T ;Vh) such that

mh

(
∂ ũh

∂ t
,ϕh

)
+ah(ũh,ϕh) = 0, ∀ϕh ∈Vh, (3.29)

where we define the bilinear forms mh, ah : V∗h ×Vh → R as follows: For v = [H,E]T and ϕh =

[φh,ψh]
T ,

mh(v,ϕh) := (H,φh)L2(Ω)3 +(E,ψh)L2(Ω)3 , (3.30a)

ah(v,ϕh) := c0(∇h ×E,φh)L2(Ω)3 − c0(∇h ×H,ψh)L2(Ω)3

+ c0 ∑
F∈F i

h

[
(nF × [[E]]F ,{{φh}}F)L2(F)3 − (nF × [[H]]F ,{{ψh}}F)L 2(F)3

]
+ c0 ∑

F∈Fb
h

[
−(n×E,φh)L2(F)3

]
. (3.30b)



3.3 Concepts about discrete bilinear forms 23

This bilinear form is clearly consistent, that is, for the exact solution ũ ∈V∗ we have

ah(ũ,ϕh) = a(ũ,ϕh), ∀ϕh ∈Vh, (3.31)

because of (3.17) and (3.18). This is true for every v ∈V∗.

This fact and the following lemma ensures we have constructed a meaningful discrete bilinear
form ah.

Lemma 3.9. (Skew-adjointness of ah) The discrete bilinear form ah is skew-adjoint on Vh, that is,

ah(vh, v̂h) =−ah(v̂h,vh), ∀vh, v̂h ∈Vh. (3.32)

Proof. Let vh = [Hh,Eh]
T , v̂h = [Ĥh, Êh]

T ∈Vh. We integrate by parts the curl terms in (3.30b)

(∇h ×Eh, Ĥh)L2(Ω)3−(∇h ×Hh, Êh)L2(Ω)3

=(Eh,∇h × Ĥh)L2(Ω)3 − (Hh,∇h × Êh)L2(Ω)3

= ∑
K∈Th

∑
F∈FK

[
(nK ×EK , ĤK)L2(F)3 − (nK ×HK , ÊK)L2(F)3

]
. (3.33)

We can write the last sum as

∑
F∈F i

h

[
−(nF × [[Eh]]F ,{{Ĥh}}F)L2(F)3 +(nF × [[Ĥh]],{{Eh}}F)L2(F)3

]
+ ∑

F∈F i
h

[
(nF × [[Hh]]F ,{{Êh}}F)L2(F)3 − (nF × [[Êh]],{{Hh}}F)L2(F)3

]
+ ∑

K∈Fb
h

[
(n×Eh, Ĥh)L2(F)3 − (n×Hh, Êh)L2(F)3

]
.

Using this in (3.30b), we have

ah(vh, v̂h) =c0(Eh,∇ : h× Ĥh)L2(Ω)3 − c0(Hh,∇h × Êh)L2(Ω)

+ c0 ∑
F∈F i

h

[
(nF × [[Hh]]F ,{{Êh}}F)L2(F)3 − (nF × [[Êh]],{{Hh}}F)

L2(F)3
]

+ c0 ∑
K∈Fb

h

[
−(n×Hh, Êh)L2(F)3

]
=−ah(v̂h,vh). (3.34)

From now on we have the following equivalent representation of ah where we use the convention
nF × [[ψh]]F =−n×ψh for boundary faces F ∈ Fb

h .
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The discrete bilinear form ah can be equivalently written as: For v = [H,E]T ∈ V∗h and ϕh =

[φh,ψh]
T ∈Vh,

ah(v,ϕh) =c0(E,∇h ×φh)L2(Ω)3 − c0(H,∇h ×ψh)L2(Ω)3

+ c0 ∑
F∈F i

h

[
({{E}}F ,nF × [[φh]]F)L2(Ω)3 − ({{H}}F ,nF × [[ψh]]F)L2(Ω)3

]
(3.35)

+ c0 ∑
F∈Fb

h

[
−(H,nF × [[ψh]]F)L2(Ω)3

]
. (3.36)

Now we construct a seminorm using the bilinear form sh : V∗h ×Vh → R given as: For v =

[H,E]T ∈V∗h and ϕh = [φh,ψh]
T ∈Vh,

sh(v,ϕh) :=c0 ∑
F∈F i

h

[
1
2
(nF × [[H]]F ,nF × [[φh]]F)L2(F)3 +

1
2
(nF × [[E]]F ,nF × [[ψh]]F)L2(F)3

]
+ c0 ∑

F∈Fb
h

(n×E,n×ϕh)L2(F)3 . (3.37)

Definition 3.10. (S-seminorm) We define the S-seminorm on V∗h as

|v|S := (sh(v,v))
1/2 , ∀v ∈V∗h. (3.38)

Obviously, this is not a norm. We see from (3.17) and (3.18) that for all functions v ∈V∗ there
holds

|v|S = 0. (3.39)

3.4 Boundness of discrete bilinear forms

It is now necessary to add a new assumption to the concepts and results about the mesh sequence in
Appendix A.2.

We assume that the mesh sequence TH is quasi-uniform, meaning that there is a constant Cqu such
that for all h ∈ H there holds

max
K∈Th

hK ≤Cqu min
K∈Th

hK . (3.40)

For a function v = [H,E]T we use the convention

∇× v =

[
∇×H
∇×E

]
, (3.41)

and analogously for ∇h × v, {{v}}F and [[v]]F . Let us begin by presenting a result for the boundness
of the central fluxes bilinear form.

Theorem 3.11. (Boundness of ah) For the central fluxes bilinear form we have for all v ∈V∗h and for
all ϕh ∈Vh,

|ah(v,ϕh)| ≤
(

c2
0 ∥∇h × v∥V +Cbndc1/2

0 h−1/2|v|S
)
∥ϕh∥V , (3.42)
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with Cbnd = (max
{

ε−1/2,µ−1/2
}

N1/2
∂

+µ−1/2)CtrC
−1/2
qu independent of h.

Proof. Let v = [H,E]T ∈V∗h and ϕh = [φh,ψh]
T ∈Vh. First, we bound the two curl terms in ah(v,ϕh).

We have

c0(∇h ×E,φh)L2(Ω)3 − c0(∇h ×H,ψh)L2(Ω)3

=c0 ∑
K∈Th

([
∇×E
∇×H

]
,

[
φh

ψh

])
L2(K)6

=c0 ∑
K∈Th

ε
−1/2

µ
−1/2

([
ε1/2∇×E
µ1/2∇×H

]
,

[
µ1/2φh

−ε1/2ψh

])
L2(K)6

≤c0 ∑
K∈Th

c0

∥∥∥∥∥
[

ε1/2∇×E
µ1/2∇×H

]∥∥∥∥∥
L2(K)6

∥∥∥∥∥
[

µ1/2φh

−ε1/2ψh

]∥∥∥∥∥
L2(K)6

=c2
0 ∑

K∈Th

∥∇× v∥V (K) ∥ϕh∥L(K) ,

where the inequality is obtained by the Cauchy-Schwarz inequality. Applying the Cauchy-Schwarz
inequality again, it follows

c2
0 ∑

K∈Th

∥∇× v∥V (K) ∥ϕh∥L(K) ≤ c2
0

(
∑

K∈Th

∥∇× v∥2
V (K)

)1/2(
∑

K∈Th

∥ϕh∥2
V (K)

)1/2

= c2
0 ∥∇× v∥V ∥ϕh∥V .

Next we bound the sum over the interfaces in ah(v,ϕh), that is, the terms

c0 ∑
F∈F i

h

[
(nF × [[E]]F ,{{φh}}F)L2(F)3 − (nF × [[H]]F ,{{ψh}}F)L2(F)3

]
. (3.43)

Recalling the definition of average (3.8), we have

{{φh}}F =
1
2
(φK −φKF ), {{ψh}}F =

1
2
(ψK −ψKF ). (3.44)

Thus, a single summand can be written as

(nF × [[E]]F ,{{φh}}F)L2(F)3 − (nF × [[H]]F ,{{ψh}}F)L2(F)3

=

([
1√
2
nF × [[E]]F

1√
2
nF × [[H]]F

]
,

[
1√
2
(φK −φKF )

1√
2
(ψK −ψKF )

])
L2(F)6

.
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Let us denote this summand with SF . The Cauchy-Schwarz inequality reveals

c0 ∑
F∈F i

h

SF ≤

c0 ∑
F∈F i

h

∥∥∥∥∥
[

1√
2
nF × [[E]]F

1√
2
nF × [[H]]F

]∥∥∥∥∥
2

L2(F)6

1/2

×

c0 ∑
F∈F i

h

∥∥∥∥∥
[

1√
2
(φK −φKF )

1√
2
(ψK −ψKF )

]∥∥∥∥∥
2

L2(F)6

1/2

.

The first factor on the right-hand side (RHS) is equal toc0 ∑
F∈F i

h

[
1
2
∥nF × [[E]]F∥L2(F)3 +

1
2
∥nF × [[H]]F∥L2(F)3

]1/2

, (3.45)

which can be clearly bounded by |v|S. Then, using the inequality (a+b)2 ≤ 2a2 +2b2, we infer that
the second factor can be estimated byc0

2 ∑
F∈F i

h

∥∥∥∥∥
[

φK −φKF

ψK −ψKF

]∥∥∥∥∥
2

L2(F)6

1/2

≤

c0

2 ∑
F∈F i

h

2

∥∥∥∥∥
[

φK

ψK

]∥∥∥∥∥
2

L2(F)6

+2

∥∥∥∥∥
[

φKF

ψKF

]∥∥∥∥∥
2

L2(F)6

∥∥∥∥∥∥
1/2

.

(3.46)

Due to the fact that 1 ≤ max
{

ε−1,µ−1
}

ε and 1 ≤ max
{

ε−1,µ−1
}

µ , we have

c0

2 ∑
F∈F i

h

∥∥∥∥∥
[

φK −φKF

ψK −ψKF

]∥∥∥∥∥
2

L2(F)6

1/2

≤ c1/2
0

 ∑
F∈F i

h

max
{

ε
−1,µ−1}∥∥∥∥∥

[
µ1/2φK

ε1/2ψK

]∥∥∥∥∥
2

L2(F)6

+max
{

ε
−1,µ−1}∥∥∥∥∥

[
µ1/2φKF

ε1/2ψKF

]∥∥∥∥∥
2

L2(F)6

∥∥∥∥∥∥
1/2

≤ c1/2
0 max

{
ε
−1/2,µ−1/2

} ∑
F∈F i

h

∥∥∥∥∥
[

µ1/2φK

ε1/2ψK

]∥∥∥∥∥
2

L2(F)6

+

∥∥∥∥∥
[

µ1/2φKF

ε1/2ψKF

]∥∥∥∥∥
2

L2(F)6

1/2

. (3.47)

Since µ and ε are constant, the discrete trace inequality Lemma A.12 remains the same for the V -norm.
So we continue by applying it to (3.47), which yields the following upper bound

c1/2
0 max

{
ε
−1/2,µ−1/2

}
Ctr

 ∑
F∈F i

h

h−1
K

∥∥∥∥∥
[

µ1/2φK

ε1/2ψK

]∥∥∥∥∥
2

L2(K)6

+h−1
KF

∥∥∥∥∥
[

µ1/2φKF

ε1/2ψKF

]∥∥∥∥∥
2

L2(K)6

1/2

= c1/2
0 max

{
ε
−1/2,µ−1/2

}
Ctr

 ∑
F∈F i

h

[
h−1

K ∥ϕK∥2
V (K)+h−1

KF
∥ϕKF∥

2
V (KF )

]1/2

. (3.48)
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By (3.40) we infer that there holds for all K ∈ Th,

h−1
K ≤C−1

qu h−1. (3.49)

Thus, we can further estimate (3.48) by

c1/2
0 max

{
ε
−1/2,µ−1/2

}
CtrC

−1/2
qu h−1/2

 ∑
F∈F i

h

[
∥ϕK∥2

V (K)+∥ϕKF∥
2
V (KF )

]1/2

≤ c1/2
0 max

{
ε
−1/2,µ−1/2

}
CtrC

−1/2
qu h−1/2

(
∑

K∈Th

card(FK)∥ϕK∥2
V (K)

)1/2

. (3.50)

As stated previously, N∂ is the maximum number of faces composing a mesh element and N∂ is
uniformly bounded with respect to the meshsize h (Lemma A.10). Thus, we have the following upper
bound for (3.50)

c1/2
0 max

{
ε
−1/2,µ−1/2

}
CtrC

−1/2
qu N1/2

∂
h−1/2

(
∑

K∈Th

∥ϕK∥2
V (K)

)1/2

= c1/2
0 max

{
ε
−1/2,µ−1/2

}
CtrC

−1/2
qu N1/2

∂
h−1/2 ∥ϕh∥V . (3.51)

Altogether, we have shown the following bound for the sum over the interfaces

c0 ∑
F∈F i

h

[
(nF × [[E]]F ,{{φh}}F)L2(F)3 − (nF × [[H]]F ,{{ψh}}F)L2(F)3

]
≤ C̃h−1/2|v|S ∥ϕh∥V , (3.52)

with C̃ = c1/2
0 max

{
ε−1/2,µ−1/2

}
CtrC

−1/2
qu N1/2

∂
.

At last, we bound the last term in ah(v,ϕh), that is, the sum over the boundary faces. Using the
same arguments as for the interfaces, we deduce

c0 ∑
F∈Fb

h

(n×E,φh)L2(F)3 ≤ c0 ∑
F∈FB

h

[(
1

µ1/2 ∥n×E∥L2(F)3

)∥∥∥µ
1/2

φh

∥∥∥
L2(F)3

]

≤ c1/2
0 µ

−1/2

c0 ∑
F∈Fb

h

∥n×E∥2
L2(F)3

1/2 ∑
F∈Fb

h

∥∥∥µ
1/2

φh

∥∥∥2

L2(F)3

1/2

≤ c1/2
0 µ

−1/2|v|S

 ∑
F∈Fb

h

∥∥∥µ
1/2

φh

∥∥∥2

L2(F)3

1/2

≤ c1/2
0 µ

−1/2CtrC
−1/2
qu h−1/2|v|S

 ∑
F∈Fb

h

∥∥∥µ
1/2

φh

∥∥∥2

L2(K)3

1/2

≤ c1/2
0 µ

−1/2CtrC
−1/2
qu h−1/2|v|S ∥ϕh∥V . (3.53)

and the proof is complete.
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Now we show a similar result for the bilinear form sh.

Theorem 3.12. (Boundness of sh) Let v ∈V∗h and ϕh ∈Vh. Then, for the bilinear form sh there holds

|sh(v,ϕh)| ≤C′
bndc1/2

0 h−1/2|v|S ∥ϕh∥V , (3.54)

where the constant C′
bnd = (2−1/2N−1/2

∂
max

{
ε−1/2,µ−1/2

}
+ ε−1/2)CtrC

−1/2
qu .

Proof. We have

sh(v,ϕh) =c0 ∑
F∈F i

h

[
1
2
(nF × [[H]]F ,nF × [[φh]]F)L2(F)3 +

1
2
(nF × [[E]]F ,nF × [[ψh]]F)L2(F)3

]
+ c0 ∑

F∈Fb
h

(n×E,n×ψh)L2(F)3

=
c0

2 ∑
F∈F i

h

([
nF × [[E]]F
nF × [[H]]F

]
,

[
nF × [[ψh]]F

nF × [[φh]]F

])
L2(F)6

+ c0 ∑
F∈Fb

h

(n×E,n×ψh)L2(F)3 .

Using the Cauchy-Schwarz inequality, we have

sh(v,ϕh)≤
(c0

2

)1/2

c0

2 ∑
F∈F i

h

∥∥∥∥∥
[

nF × [[E]]F
nF × [[H]]F

]∥∥∥∥∥
2

L2(F)6

1/2 ∑
F∈F i

h

∥∥∥∥∥
[

nF × [[ψh]]F

nF × [[φh]]F

]∥∥∥∥∥
2

L2(F)6

1/2

+ c1/2
0

c0 ∑
F∈Fb

h

∥n×E∥2
L2(F)3

1/2 ∑
F∈Fb

h

∥nF ×ψh∥2
L2(F)3

1/2

,

The first factors can be estimated by |v|S and using |nF |= 1 we get

sh(v,ϕh)≤
(c0

2

)1/2
|v|S

 ∑
F∈F i

h

∥∥∥∥∥
[
[[ψh]]F

[[φh]]F

]∥∥∥∥∥
2

L2(F)6

1/2

+ c1/2
0 |v|S

 ∑
F∈Fb

h

∥ψh∥2
L2(F)3

1/2

. (3.55)

Using 1 ≤ max
{

ε−1,µ−1
}

ε and 1 ≤ max
{

ε−1,µ−1
}

µ , we have

sh(v,ϕh)≤
(c0

2

)1/2
|v|S max

{
ε
−1/2,µ−1/2

} ∑
F∈F i

h

∥∥∥∥∥
[

ε1/2[[ψh]]F

µ1/2[[φh]]F

]∥∥∥∥∥
2

L2(F)6

1/2

+ c1/2
0 ε

−1/2|v|S

 ∑
F∈Fb

h

∥∥∥ε
1/2

ψh

∥∥∥2

L2(F)3

1/2

. (3.56)

According to Definition 3.8, we have

[[ψh]]F := ψKF −ψK , [[φh]]F := φKF −φK . (3.57)
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Using this property in (3.56) together with inequality (a+b)2 ≤ 2a2 +2b2 yields

sh(v,ϕh)≤
(c0

2

)1/2
|v|S max

{
ε
−1/2,µ−1/2

} ∑
F∈F i

h

2

∥∥∥∥∥
[

ε1/2ψK

µ1/2φK

]∥∥∥∥∥
2

L2(F)6

+2

∥∥∥∥∥
[

ε1/2ψKF

µ1/2φKF

]∥∥∥∥∥
2

L2(F)6

1/2

+ c1/2
0 ε

−1/2|v|S

 ∑
F∈Fb

h

c
∥∥∥ε

1/2
ψh

∥∥∥2

L2(F)3

1/2

.

Using the same arguments as in the deduction from (3.47) to (3.53) in the previous proof we infer

sh(v,ϕh)≤
(

2−1/2N1/2
∂

+ ε
−1/2

)
CtrC

−1/2
qu c1/2

0 h−1/2|v|S ∥ϕh∥V .

Now we can easily get the following corollary.

Corollary 3.13. (Bound for S-seminorm) For all v ∈V∗h we have

|v|S ≤C′
Sh−1/2∥v∥V , (3.58)

with C′
S =C′

bndc1/2
0 .

Proof. Let v ∈V∗h and let v∗ ∈V∗, vh ∈Vh such that v = v∗+ vh. It was shown in (3.39) that it holds
|v∗|S = 0. Moreover, using Theorem 3.12, we infer

|vh|2S = sh(vh,vh)≤C′
bndc1/2

0 h−1/2|vh|S∥vh∥V , (3.59)

whence by dividing through |vh|S we see

|vh|S ≤C′
bndc1/2

0 h−1/2∥vh∥V . (3.60)

Then, the corollary follows from the triangle inequality.

3.5 Discrete operators

We have formulated Maxwell’s equations as the abstract evolution problem (2.43): Search for
u ∈C1(0,T ;V∗)∩C(0,T ;D(A)) such that u(0) = u0 and

∂u
∂ t

+Au = 0. (3.61)

For the convergence analysis it is useful to write the central fluxes discretization (3.29) in an operator
based notation.

Thus, we define the operator Ah : V∗h →Vh as

(Ahv,ϕh)V := ah(v,ϕh), ∀ϕh ∈Vh.
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Moreover, we define the V -projection onto Vh as πV
h : V →Vh such that

(πV
h v,ϕh)V = (v,ϕh)V , ∀ϕh ∈Vh. (3.62)

In the following sections we use the V -inner product and thus omit the index V and always assume
that πh denotes the V -projection πV

h . Note that we have for all v ∈V

∥πhv∥V = sup
ϕh∈Vh

∥ϕh∥V=1

(πhv,ϕh)V = sup
ϕh∈Vh

∥ϕh∥V=1

(v,ϕh)V ≤ sup
ϕh∈Vh

∥ϕh∥V=1

∥v∥V∥ϕh∥V = ∥v∥V . (3.63)

The consistency, boundness and skew-adjointness results shown in the previous sections transfer from
the discrete bilinear forms to the discrete operators.

We have proven previously in Lemma 3.9 that, for the exact solution u ∈V∗ of (2.43)

(Ahu,ϕh)V = ah(u,ϕh) = a(u,ϕh) = (Au,ϕh)V , ∀ϕh ∈Vh. (3.64)

Thus, from (3.62) follows
Ahu = πhAu. (3.65)

The same arguments apply for all v ∈V∗. Thus, the consistency of Ah is proven.

For v ∈V∗h we have

∥Ahv∥V = sup
ϕh∈Vh

∥ϕh∥V=1

|(Ahv,ϕh)V |= sup
ϕh∈Vh

∥ϕh∥V=1

|ah(v,ϕh)|

≤ sup
ϕh∈Vh

∥ϕh∥V=1

[(
c2

0∥∇h × v∥V +Cbndc1/2
0 h−1/2|v|S

)
∥ϕH∥V

]
= c2

0∥∇h × v∥V +CSh−1/2|v|S, (3.66)

with CS =Cbndc1/2
0 , where we used the boundness of ah (3.42). Thus the boundness of Ah is proven.

The skew-adjointness of Ah on Vh follows directly from Lemma 3.9. Thus, for all vh, v̂h ∈Vh it
holds

(Ahvh, ṽh)V =−(Ahv̂h,vh)V . (3.67)

The discretization in operator form is: We search for uh ∈C1(0,T ;Vh) such that there holds

∂uh

∂ t
+Ahuh = 0, . (3.68)

We use the projection of u0 as initial value, that is, we require uh(0) = πhu0.

3.6 Stability

The following theorem states that the discrete scheme (3.68) is stable in the same sense as the
continuous problem (see (2.62)).
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Theorem 3.14. (Stability of discrete scheme) Let uh ∈ Vh be the solution of (3.68). Then, for all
t ∈ [0,T ] the following result holds:

∥uh(t)∥V = ∥πhu0∥V , (3.69)

In the inhomogeneous case, that is, if uh ∈Vh is the solution of: We search for uh ∈C1(0,T ;Vh) such
that there holds

∂uh

∂ t
+Ahuh = πhg, (3.70)

we have

∥uh(t)∥V ≤C0

(
∥u0∥2

V +T
∫ t

0
∥g(s)∥2

V ds
)
, (3.71)

with C0 := e.

Proof. Multiplying (3.70) by uh, we get(
∂uh

∂ t
,uh

)
V
+(Ahuh,uh)V = (πhg,uh)V . (3.72)

Using the identity
(

∂v
∂ t ,v

)
V
= 1

2
d
dt ∥v∥2

V and the skew-adjointness of Ah yields

d
dt
∥uh∥2

V = 2(πhg,uh)V . (3.73)

Clearly, for g ≡ 0, we get assertion (3.69) by integrating (3.73) from 0 to t.

In the inhomogeneous case, we apply the weighed Young’s inequality Theorem A.2 with γ = T
to (3.73) yielding

d
dt

∥uh(t)∥2
V ≤ T ∥g(t)∥2

V +
1
T
∥uh(t)∥2

V , (3.74)

where we also used (3.63). Integrating from 0 to t gives the inequality

∥uh(t)∥2
V ≤ ∥uh(0)∥2

V +T
∫ t

0
∥g(s)∥2

V ds+
1
T

∫ t

0
∥uh(s)∥2

V ds, (3.75)

to which the continuous Gronwall Lemma A.3 Lemma apllies. Thus, we have

∥uh(t)∥2
V ≤ et/T

(
∥uh(0)∥2

V +T
∫ t

0
∥g(s)∥2

V ds
)
. (3.76)

Obviously, there holds et/T ≤ e for t ∈ [0,T ] and by (3.63) we see ∥uh(0)∥V ≤ ∥u0∥V . Hence (3.71) is
proven.

3.7 Convergence

In the following section we use the notation

V∗,N+1 := D(A)∩HN+1(Th)
6. (3.77)
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We begin by analysing the types of errors in the discretization (3.68).

Definition 3.15. (Error types) Let u ∈V∗ denote the exact solution of (2.43) and uh ∈Vh denote the
discrete solution of (3.68). We define the spatial discretization error

e(t) := u(t)−uh(t). (3.78)

Moreover, we split the error into two parts

e(t) = eπ(t)− eh(t), (3.79)

where eπ(t) is the projection error

eπ(t) := u(t)−πhu(t), (3.80)

and eh(t) is defined as
eh(t) := uh(t)−πhu(t). (3.81)

By (3.62) there holds
(eπ(t),ϕh)V = 0, ∀ϕh ∈Vh. (3.82)

The projection error eπ arises from replacing the continuous space V∗ with the finite space Vh. The
projection error eπ is the minimal error we can obtain because πh is the best approximation to u in Vh.

Lemma 3.16. (Bounds for the projection error) Let v ∈ HN+1(Th)
6. Then, the projection error is

bounded by
∥v−πhv∥V ≤CπhN+1|v|HN+1(Th)6 , (3.83)

and its broken curl by
∥∇h × (v−πhv)∥V ≤CπhN |v|HN+1(Th)6 . (3.84)

The constant is given by Cπ :=C′
app max{µ1/2,ε1/2} and is independent of the meshsize h.

Proof. Let v = [H,E]T ∈ HN+1(Th)
6 and set ξ = v−πhv, that is,

ξπ =

[
ξ H

π

ξ E
π

]
=

[
H −πhH
E −πhE

]
. (3.85)

Then, we have

∥ξπ∥V =

∥∥∥∥∥
[

µ1/2ξ H
π

ε1/2ξ E
π

]∥∥∥∥∥
L2(Ω)6

≤ max{µ
1/2
∞ ,ε1/2

∞ }∥ξπ∥L2(Ω)6 . (3.86)

By using Lemma A.15 on each mesh element K we get

∥ξπ∥V ≤C′
app max{µ

1/2
∞ ,ε1/2

∞ }|v|Hk+1(Th)6 . (3.87)

Thus, the first assertion follows. For the second assertion note that ∥∇h ×ξπ∥L2(Ω)6 ≤ |ξπ |H1(Th)6 and
thus

∥∇h ×ξπ∥V ≤ max{µ
1/2
∞ ,ε1/2

∞ }|ξπ |H1(Th)6 . (3.88)
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The result follows from Lemma A.15.

If the exact solution satisfies u ∈V∗,N+1, Lemma 3.16 provides the bounds

∥eπ∥V ≤CπhN+1|u|HN+1(Th)6 , (3.89)

and
∥∇h × eπ∥V ≤CπhN |u|HN+1(Th)6 . (3.90)

Lemma 3.17. (Error equations) For the error eh we have the following discrete evolution equation

∂eh

∂ t
+Aheh = Aheπ , eh(0) = 0. (3.91)

Proof. Projecting the continuous problem (2.43) onto Vh gives

∂πhu
∂ t

+πhAu = 0, πhu(0) = πhu0, (3.92)

where we used the fact that the projection operator is independent of the time t and therefore it holds
∂πh
∂ t = πh. Due to the consistency of the operator Ah (see 3.65)), this is equivalent to

∂πhu
∂ t

+Ahu = 0. (3.93)

For the discrete solution uh we have uh(0) = πhu0 as well as

∂uh

∂ t
+Ahuh = 0. (3.94)

Obviously there holds eh(0) = 0 and by substracting (3.93) from (3.94) we get

∂eh

∂ t
+Ahe = 0. (3.95)

Thus, (3.91) follows by the splitting of the error, that is, by e = eπ − eh.

The convergence of the central fluxes discretization is proven by combining the error equa-
tion (3.91) with the stability result.

Theorem 3.18. (Convergence for central fluxes) Let u ∈ C1(0,T ;V )∩C(0,T ;V∗,N+1) be the exact
solution of (2.43) and uh ∈ C1(0, t;Vh) be the discrete solution of (3.68). Then, for the error there
holds

∥e(t)∥2
V ≤CT h2N

∫ t

0
|u(s)|2HN+1(Th)6 ds+C′h2N+2|u(t)|2HN+1(Th)6 , (3.96)

with C = 2C0C2
π(c

2
0 +CSC′′

S )
2 and C′ = 2C2

π both independent of h.

Proof. We apply the stability result for the central flux scheme (3.71) to the error equation (3.91) and
obtain

∥eh(t)∥2
V ≤C0T

∫ t

0
∥Aheπ(s)∥2

V ds. (3.97)
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Using the boundness of the operator Ah (3.66) and the bound of the S-seminorm (3.58), we get

∥eh(t)∥2
V ≤C0T

∫ t

0

(
c2

0 ∥∇h × eπ(s)∥V +CSh−1/2 |eπ(s)|S
)2

ds

≤C0T
∫ t

0

(
c2

0 ∥∇h × eπ(s)∥V +CSC′′
S h−1 ∥eπ(s)∥V

)2
ds.

Next, we use the bounds on the projection errors (3.89) and (3.90) to infer

∥eh(t)∥2
V ≤C0C2

π

(
c2

0 +CSC′′
S
)2

H2NT
∫ t

0
|u(s)|2HN+1(Th)6 ds. (3.98)

By using Young’s inequality Theorem A.2, we get the following result for the full error

∥eh(t)∥2
V ≤ 2∥eh(t)∥2

V +2∥eπ(t)∥2
V ≤ 2∥eh(t)∥2

V +2C2
πh2N+2|u(t)|2HN+1(Th)6 , (3.99)

where we used (3.89) in the second inequality. Combining (3.98) and (3.99) yields the assertion.

3.8 Full discretization

The use of the dG method for the spatial discretization of the Maxwell’s equations homogeneous
problem (2.43) led us to the following discrete evolution problem: Search for uh ∈Vh such that

∂uh

∂ t
=−Ahuh(t), t ∈ (0,T ). (3.100a)

uh(0) = πhu0. (3.100b)

Now, in order to obtain a fully discrete problem that can be solved computationally, we discretize
the semi-discrete problem (3.100) in time with an explicit Euler method. We will present the method
and prove its stability and convergence based on [19].

3.8.1 The explicit Euler method

We begin by dividing the time interval [0,T ] into M subintervals by the equidistants points

0 = t0 < t1 < · · ·< tM = T, (3.101)

where tm = m∆t for m = t0, . . . , tM.
We want to approximate the semi-discrete solution um

h ≈ uh(tm) on the discrete set {tm}M
m=1. The

explicit Euler (EE) method is a single step method that uses the initial value u0
h = uh(0) to compute

consecutively a sequence of approximations {um
h }m resorting only to the approximation from the

previous step to compute the current approximation.
The EE method for (3.100) to advance from um

h to um+1
h , separated by a time step ∆t can be written

as follows:
um+1

h = um
h −∆tAhum

h . (3.102)

In order to prove the stability and convergence of the method we need two results:
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Lemma 3.19. (Energy identity) Let {um
h }m be the EE approximation of (3.100). Then, there holds∥∥um+1

h

∥∥2
V +2∆t (um

h ,Ahun
h)V = ∥um

h ∥
2
V +∥∆tAhum

h ∥
2
V . (3.103)

Proof. We calculate the norm of um+1
h using the recursion (3.102) and get∥∥um+1

h

∥∥2
V = ∥um

h −∆tAhum
h ∥

2
V = ∥um

h ∥
2
V −2∆t (um

h ,Ahun
h)V +∥∆tAhum

h ∥
2
V . (3.104)

Theorem 3.20. (Boundness of Ah on Vh) For all vh ∈Vh there holds

∥Ahvh∥V ≤Chc0h−1∥vh∥V , (3.105)

with the associated constant Ch = c0Cinv +CbndC′
bnd .

Proof. We show with (3.66) and Corollary 3.13 that for all vh ∈Vh there holds

∥Ahvh∥V ≤ c2
0∥∇h × vh∥V +CSC′

Sh−1∥vh∥V . (3.106)

As we defined CS =Cbndc1/2
0 and C′

S =C′
bndc1/2

0 , the second term in (3.106) meets the bound (3.105).
Now, according to the definition of the broken curl and the V -norm we have for all vh = [Hh,Eh]

T ∈Vh,

∥∇h × vh∥2
V = ∑

K∈Th

∥∇× vh∥2
V (K) = ∑

K∈Th

∥∥∥∥∥
[

µ1/2∇×Hh

ε1/2∇×EH

]∥∥∥∥∥
2

L2(K)6

= ∑
K∈Th

(
µ∥∇×Hh∥2

L2(K)3 + ε∥∇×Eh∥2
L2(K)3

)
. (3.107)

We have
∥∇×Hh∥L2(K)3 ≤ |Hh|H1(K)3 = ∥∇Hh∥L2(K)3×3 ≤C2

invh−2
K ∥Hh∥L2(K)3 , (3.108)

where we used the inverse inequality (A.21) componentwise in the last estimate. Analogously, we
have

∥∇×Eh∥L2(K)3 ≤C2
invh−2

K ∥Eh∥L2(K)3 , (3.109)

Inserting this into (3.107), we get

∥∇h × vh∥2
V =C2

inv ∑
K∈Th

h−2
K

(
µ∥∇Hh∥2

L2(K)3 + ε∥Eh∥2
L2(K)3

)
.

=C2
inv ∑

K∈Th

h−2
K ∥vh∥2

V (K) ≤C2
invh−2

∑
K∈Th

∥vh∥V (K)2 =C2
invh−2∥vh∥2

V , (3.110)

where we used (3.40) in the last inequality.

3.8.2 Stability

We will see that each method is stable only if the time step size is bounded with respect to the meshsize
h. This condition is called the CFL condition.
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Definition 3.21. (CFL-conditions). Let ρ be a positive number. We say that the step size ∆t satisfies
the usual CFL condition if it holds

∆t ≤ ρ

(
h
c0

)2

. (3.111)

Lemma 3.22. (Stability for EE) Let {um
h }m be the EE approximation of (3.100). Then, under the CFL

condition (3.111), there holds
∥um

h ∥2
V ≤C1∥u0

h∥2
V , (3.112)

with the associated constant C1 = exp
(
C2

hρtm
)
.

Proof. From the energy identity (3.103) we have∥∥um+1
h

∥∥2
V +2∆t (um

h ,Ahun
h)V = ∥um

h ∥
2
V +∥∆tAhum

h ∥
2
V . (3.113)

The term ∥∆tAhum
h ∥2

V can be estimated by the bound (3.105) of the discrete operator Ah,∥∥um+1
h

∥∥2
V +2∆t (um

h ,Ahun
h)V ≤ ∥um

h ∥
2
V +C2

hc2
0∆t2h−2 ∥um

h ∥
2
V . (3.114)

Using the CFL-condition yields∥∥um+1
h

∥∥2
V −∥um

h ∥2
V +2∆t (um

h ,Ahun
h)V ≤C2

hρ∆t ∥um
h ∥

2
V . (3.115)

Let us denote C0 :=C2
hρ. Summing (3.115 from 0 to m−1 gives

∥um
h ∥2

V +2∆t
m−1

∑
l=0

(
ul

h,Ahul
h

)
V
≤ ∥u0

h∥2
V +C0∆t

m−1

∑
l=0

∥ul
h∥2

V , (3.116)

which implies

∥um
h ∥2

V ≤ ∥u0
h∥2

V +C0∆t
m−1

∑
l=0

∥ul
h∥2

V . (3.117)

This inequality meets the assumptions of the discrete Gronwall Lemma A.4 and its use provides the
estimate

∥um
h ∥2

V ≤ eC0m∆t∥u0
h∥2

V . (3.118)

Inserting this bound in the RHS of (3.116) gives

∥um
h ∥2

V +2∆t
m−1

∑
l=0

(
ul

h,Ahul
h

)
V
≤ ∥u0

h∥2
V +C0∆t

m−1

∑
l=0

eC0l∆t∥u0
h∥2

V

≤

(
1+C0∆t

m−1

∑
l=0

eC0l∆t

)
∥u0

h∥2
V . (3.119)

Note that the sum ∆t ∑
m−1
l=0 eC0l∆t is a lower sum of the monotonically increasing function eC0t and thus

we can deduce

∆t
m−1

∑
l=0

eC0l∆t ≤
∫ tm

0
eC0s ds =C−1

0 (eC0tm −1). (3.120)
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Combining the last two inequalities yields

∥um
h ∥2

V +2∆t
m−1

∑
l=0

(
ul

h,Ahul
h

)
V
≤ eC0tm∥u0

h∥2
V . (3.121)

(3.112) follows from the skew-adjointness of Ah (3.67).

3.8.3 Convergence

In order to prove the convergence of the EE method, we are going to need some preliminary results.
The bounds for the projection error are known from Lemmas A.15 and A.16.

Lemma 3.23. (Bounds for projection errors) Let u ∈ HN′+1(K)6 for some N′ ≤ N. The following
error bounds hold

∥eπ∥L2(Ω)6 ≤ChN′+1|u|HN′+1(K)6 (3.122)

and
∥eπ,K∥L2(F)6 ≤ChN′+1/2|u|HN′+1(K)6 (3.123)

where C is independent of both h and K.

Lemma 3.24. Let u ∈ HN′+1(Th)
6 for some N′ ≤ N. Then, for all ϕh = [φh,ψh]

T ∈ Vh and for all
γ > 0 there holds

(Aheπ ,ϕh)V ≤C
(

γh2N′ |u|HN′+1(Th)6 +
1
γ
∥ϕh∥2

V

)
, (3.124)

where C is independent of h.

Proof. We have

(Aheπ ,ϕh)V =c0(eE
π ,∇h ×φh)L2(Ω)3 − c0(eH

π ,∇h ×ψh)L2(Ω)3

+ c0 ∑
F∈F i

h

[(
{{eE

π}}F ,nF × [[φh]]F
)

L2(F)3 +
(
{{eH

π }}F ,nF × [[ψh]]F
)

L2(F)3

]
+ c0 ∑

F∈Fb
h

(eH
π ,nF ×ψh)L2(F)3 . (3.125)

Since eπ = [eH
π ,e

E
π ]

T is the projection error and ∇h ×φh, ∇h ×ψh ∈Vh, we have

(eE
π ,∇×φh)L2(Ω)3 = 0, (eH

π ,∇×ψh)L2(Ω)3 = 0 (3.126)
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and the first two terms vanish. The remaining terms can be bounded by using the Cauchy-Schwarz
inequality, the triangle inequality, Lemma 3.23 and the discrete trace inequality A.12 as follows:

(
{{eE

π}}F ,nF × [[φh]]F
)

L2(F)3 ≤
1
2
∥eE

π,K + eE
π,KF

∥L2(F)3∥nF × (φKF −φK)∥L2(F)3

≤ 1
2

(
∥eE

π,K∥L2(F)3 +∥eE
π,KF

∥L2(F)3

)(
∥φKF∥L2(F)3 +∥φK)∥L2(F)3

)
≤C

(
hN′+1/2

K |E|HN′+1(K)3 +hN′+1/2
KF

|E|HN′+1(KF )3

)
·
(

h−1/2
K ∥φK∥L2(Ω)3 +h−1/2

KF
∥φKF∥L2(Ω)3

)
.

By using h = maxK hK and applying Young’s inequality A.2 to each of the products we get

(
{{eE

π}}F ,nF × [[φh]]F
)

L2(F)3 ≤Cγh2N′
(
|E|HN′+1(K)3 + |E|HN′+1(KF )3

)
+C

1
γ

(
∥φK∥L2(Ω)3 +∥φKF∥L2(Ω)3

)
.

(3.127)
Bounding the other terms analogously and summing over all faces, the lemma is proven.

Theorem 3.25. (Convergence for EE) Let u be the solution of (3.13) and um
h the discrete solution of

the problem (3.100). Assume that u ∈C(0,T ;HN+1(Th)
6) and u′′ ∈C(0,T ;V ). Then, under the CFL

condition (3.111), the error em
h := um

h −πhu(tm) is bounded by

∥eM
h ∥2

V ≤CEE

(
∆t2

∫ T

0
∥u′′(t)∥2

V dt +h2N max
t∈[0,T ]

|u(t)|HN+1(Th)6

)
, (3.128)

where the constant CEE is independent of h and u.

Proof. For the exact solution, resorting to a Taylor expansion, we have

u(tm+1) = u(tm)+∆t
∂u
∂ t

(t)+
∫ tm+1

tm
(tm+1 − tm)

∂ 2u
∂ t2 (t) dt. (3.129)

For ηm+1 :=
∫ tm+1

tm (tm+1 − t) ∂ 2u
∂ t2 (t) dt it holds

∥η
m+1∥V ≤ ∆t

∫ tm+1

tm
∥u′′(t)∥V dt = O(∆t2). (3.130)

As ∂u
∂ t =−Au, taking the L2-projection of (3.129) yields

πhu(tm+1) = πhu(tm)−∆tAhu(tm)+πhη
m+1. (3.131)

Subtracting (3.131) from (3.100) gives the error recursion

em+1
h = em

h −∆tAhem
h +∆tAhem

π −πhη
m+1. (3.132)

Taking the V -inner product with em
h and using

(em+1
h ,em

h )V =
1
2
(
∥em+1

h ∥V −∥em+1
h − em

h ∥2
V +∥em

h ∥2
V
)
, (3.133)
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we get

∥em+1
h ∥2

V −∥em
h ∥2

V +2∆t(Ahem
h ,e

m
h )V = ∥em+1

h − em
h ∥2

V +2∆t(Ahem
π ,e

m
h )V −2(πhη

m+1,em
h )V . (3.134)

For the second term of the RHS we use Lemma 3.24 with γ = 1 and we get

∥em+1
h ∥2

V −∥em
h ∥2

V ≤ ∥em+1
h − em

h ∥2
V +C∆th2N |u(tm)|2HN+1(Th)6 +C∆t∥em

H∥2
V −2(πhη

m+1,em
h )V .

(3.135)
For the last term we use Young’s inequality A.2 and the stability of the L2-projection:

(πhη
m+1,em

h )V ≤ ∆t

(∥∥∥∥ηm+1

∆t

∥∥∥∥2

V
+∥em

h ∥2
V

)
. (3.136)

Now we bound the first term of the RHS of (3.135). From (3.132) we conclude

∥em+1
h − em

h ∥2
V = ∥−∆tAhem

h +∆tAhem
π −πhη

m+1∥2
V

≤ 3
(
∥∆tAhem

h ∥2
V +∥∆tAhem

π ∥2
V +∥η

m+1∥2
V
)
.

By using Theorem 3.20, we bound the first term as

∥∆tAhem
h ∥2

V ≤C∆t2h−2∥em
h ∥2

V . (3.137)

As Aheπ = Ah(u−πhu) = πhAu−Ahπu, Lemma 3.16 implies

∥∆tAhem
π ∥2

V ≤C∆t2h2N+2∥u(tm)∥2
HN+1(Th)6 . (3.138)

Gathering all inequalities we have

∥em+1
h ∥2

V −∥em
h ∥2

V ≤C∆t(1+∆th−2)∥em
h ∥2

V +C∆t(h2N +∆th2N+2)|u(tm)|2HN+1(Th)6 +C∆t
∥∥∥∥ηm+1

∆t

∥∥∥∥2

V
.

(3.139)
After taking the CFL condition (3.111) into account and using (3.130), we get

∥em+1
h ∥2

V −∥em
h ∥2

V

≤C∆t
(

1+
ρ

c2
0

)
∥em

h ∥2
V +C∆t

(
h2N +

ρ

c2
0

h2N+4
)
|u(tm)|2HN+1(Th)6 +C∆t

∫ tm+1

tm

∥∥u′′(t)
∥∥2

V dt

≤C∆t∥em
h ∥2

V +C∆th2N |u(tm)|2HN+1(Th)6 +C∆t
∫ tm+1

tm

∥∥u′′(t)
∥∥2

V dt. (3.140)
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Summing over m, we get

∥eM
h ∥2

V −∥e0
h∥2

V

≤C∆t
M−1

∑
m=0

∥em
h ∥2

V +C∆th2N
M−1

∑
m=0

|u(tm)|2HN+1(Th)6 +C∆t
M−1

∑
m=0

∫ tm+1

tm

∥∥u′′(t)
∥∥2

V dt

≤C∆t
M−1

∑
m=0

∥em
h ∥2

V +C∆th2N max
t∈[0,T ]

|u(t)|2HN+1(Th)6 +C∆t
∫ T

0

∥∥u′′(t)
∥∥2

V dt. (3.141)

Applying the discrete Gronwall theorem A.4, we get

∥eM
h ∥2

V ≤ (1+C∆t)M
[
C∆th2N max

t∈[0,T ]
|u(t)|2HN+1(Th)6 +C∆t

∫ T

0

∥∥u′′(t)
∥∥2

V dt
]

≤C
[

h2N max
t∈[0,T ]

|u(t)|2HN+1(Th)6 +∆t2 max
t∈[0,T ]

∥∥u′′(t)
∥∥2

V

]
(3.142)

and the theorem is proven.



Chapter 4

Computational results

Having proven the stability and convergence of the dG method and using a temporal discretization
method, we must be able to obtain the numerical results that corroborate the theoretical results. We are
also interested in simulating the scattering through the human’s retina, which can be done resorting to
the scattered field formulation.

Thus, we intend to adapt the Matlab code from [12] for the two-dimensional vacuum Maxwell’s
equations in TM mode to the TE mode for inhomogeneous isotropic media with PEC conditions and
proceed with the necessary simulations. This Matlab code used a fourth order four stage Runge-Kutta
method as the temporal discretization method. This method has an order of convergence of ∆ts, where
s is the number of stages of the Runge-Kutta method. We chose to use this method for the temporal
discretization because in a previous work (see [16]) we used the Runge-Kutta method for the temporal
discretization for the unidimensional case. We have already seen that usually the error in time is
dominated by the error in space, and it is not easy to observe the order of convergence in time. Thus
we will only analyse the spatial convergence.

4.1 The problem

We intend to solve the two-dimensional Maxwell’s equations in the TE mode for homogeneous
isotropic media with PEC boundary conditions. Thus, we have the following problem: Solve for
u = [H,E]T : (0,T )×Ω → R2 such that

ε
∂Ex

∂ t
=

∂Hz

∂y
in (0,T )×Ω, (4.1a)

ε
∂Ey

∂ t
=−∂Hz

∂x
in (0,T )×Ω, (4.1b)

µ
∂Hz

∂ t
=

∂Ex

∂y
−

∂Ey

∂x
in (0,T )×Ω. (4.1c)

E(0,x,y) = E0 in Ω (4.1d)

H(0,x,y) = H0 in Ω (4.1e)

n×E = 0 on (0,T )×∂Ω (for PEC) (4.1f)
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where E = (Ex,Ey), H = (Hz) and Ω ∈ R2, the permittivity ε and the permeability µ of the medium
are space-dependent and the E0 and H0 are the initial values for the electric field and the magnetic
field, respectively.

4.1.1 The numerical flux

In the implementation of the dG method we use the numerical fluxes computed using Riemann
conditions according to [12]. The numerical fluxes for the three dimensionsal case are

−[n×H − (n×H)∗] =− 1
2{{Z}}

n× (ZKF [[H]]−αn× [[E]]) , (4.2a)

[n×E − (n×E)∗] =
1

2{{Y}}
n× (YKF [[E]]+αn× [[H]]) (4.2b)

for the equations for the electric and magnetic fields, respectively. This allows us the possibility of
piecewise constant material coefficients, represented by

ZK =
1

YK
=

√
µK

εK
, (4.3a)

ZKF =
1

YKF

=

√
µKF

εKF

(4.3b)

as the local impedance and conductance, respectively. The parameter α is used to control dissipation,
for example: α = 0 for the central fluxes and α = 1 for the upwind fluxes.

The numerical flux for the TE form is

n · (F −F∗) =
1
2


− 1

{{Z}}ZKF ny[[Hz]]−α (nxn · [[E]]− [[Ex]])

1
{{Z}}ZKF nx[[Hz]]+α (nyn · [[E]]− [[Ey]])

1
{{Y}}YKF (nx[[Ey]]−ny[[Ex]])−α[[Hz]]

(4.4)

4.1.2 The boundary conditions

The PEC boundary conditions are implemented by applying the mirror principle as n×EKF =−n×EK

and n×HKF = n×HK [10]. Therefore the jumps at the outer boundary are set as

[[EX ]] = 2(Ex)K , [[Ey]] = 2(Ey)K , [[Hz]] = 0. (4.5)

4.2 Implementation of dG method

According to the notation of the previous chapter, we have the following semi-discrete problem: We
search for ũh = [H̃h, Ẽh]

T ∈C1(0,T ;Vh) such that

mh

(
∂ ũh

∂ t
(t),ϕh

)
+ah(ũh(t),ϕh) = 0, ∀ϕh ∈Vh. (4.6)
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The bilinear form ah is given in (3.30b) and mh is given in (3.30a) and accords with

mh(
∂ ũh

∂ t
,ϕh) =

(
∂ ũh

∂ t
(t),ϕh

)
V
. (4.7)

Let us choose a basis of Vh consisting of Np = (N+1)(N+2)
2 vectors, where N is the polynomial

degree we use in the dG discretization. We denote the basis with Vh = {ϕ1, . . . ,ϕNp}. The dG
approximation ũh(t) is an element of the space Vh. Thus there is a unique coefficient vector uh(t) =
[uh,1(t), . . . ,uh,Np(t)]

T ∈ RNp such that

ũh(t) =
Np

∑
m=1

uh,m(t)ϕm. (4.8)

For (4.6) it is equivalent to hold for all ϕh ∈Vh or to hold for all basis functions ϕm ∈ Vh. Using this
concept and using (4.7) and (4.8), we have that the problem

Np

∑
m=1

(ϕm,ϕl)V u′h,m(t)+
Np

∑
m=1

ah (ϕm,ϕl)uh,m(t) = 0, ∀l = 1, . . . ,N (4.9)

is equivalent to (4.6). Thus we define the mass and stiffness matrices.

Definition 4.1. (Mass and stiffness matrix) We define the mass matrix M̃ ∈ RNp×Np as

M̃ := [(ϕm,ϕl)V ]
Np
l,m=1 , (4.10)

and the stiffness matrix Ã ∈ RNp×Np as

Ã := [ah (ϕm,ϕl)]
Np
l,m=1 , (4.11)

Due to the definition of the space Vh, both matrices are sparse and the mass matrix is block
diagonal and symmetric positive, thus invertible.

We write the following equivalent formulation of (4.9):

M̃u′
h(t)+ Ãuh(t) = 0. (4.12)

As M̃ is invertible, we get
u′

h(t) =−M̃−1Ãuh(t). (4.13)

This is the semi-discrete scheme to which we apply a temporal discretization method, such as the
Runge-Kutta method.

In order to proceed with the temporal discretiztion, we divide the time interval [0,T ] into M
subintervals by the equidistants points

0 = t0 < t1 < · · ·< tM = T, (4.14)

where tm = m∆t for m = t0, . . . , tM. A temporal discretization method (in this case the Runge-Kutta
method) allows us obtain the discrete solution um

h ≈ uh(tm).
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4.3 Spatial order of convergence

The computational domain is Ω = (−1,1)2, which is triangulated with K non-overlapping straight-
sided triangles. An example of the triangular mesh used to space discretize the Maxwell’s equations
in TE mode is presented in Figure 4.1.

Fig. 4.1 Example of mesh for K = 50.

On each triangle we define

Np =
(N +1)N +2)

2
(4.15)

nodal points, where N is the order of the polynomial approximation.

We begin by considering the case where ε = µ = 1 and T = 1. The initial conditions are

Ex(x,y,0) = 0, (4.16a)

Ey(x,y,0) = 0, (4.16b)

Hz(x,y,0) = cos(πx)cos(πy). (4.16c)

We introduce the source terms P(x,y, t) Q(x,y, t) and R(x,y, t) in order to more easily find examples
of problems with known exact solutions, thus allowing us to compute the error of the mathematical
solution. Introducing the source terms, we have the following Maxwell’s equations in the TE mode:

ε
∂Ex

∂ t
=

∂Hz

∂y
+P(x,y, t), (4.17a)

ε
∂Ey

∂ t
=−∂Hz

∂x
+Q(x,y, t), (4.17b)

µ
∂Hz

∂ t
=

∂Ex

∂y
−

∂Ey

∂x
+R(x,y, t). (4.17c)

(4.17d)
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The source terms are defined such that the exact solution allows for the initial conditions (4.16). If the
exact solution is

Ex(x,y, t) =−π cos(πx)sin(πy)sin(t), (4.18a)

Ey(x,y, t) = π sin(πx)cos(πy)sin(t), (4.18b)

Hz(x,y, t) = cos(πx)cos(πy)cos(t), (4.18c)

the source terms are given by

P(x,y, t) = (1− ε)π cos(πx)sin(πy)cos(t), (4.19a)

Q(x,y, t) = (ε −1)π sin(πx)cos(πy)cos(t), (4.19b)

Hz(x,y, t) = (2π
2
µ)cos(πx)cos(πy)cos(t). (4.19c)

In order to analyse the spatial order of convergence we use a fixed time-step (∆t = 10−4). We
compute the error

Error = ∥eM
h ∥V (4.20)

as defined in Theorem 3.25.

Now we refine the used mesh for various degrees of polynomial approximation for the central
flux. The results are represented in Table 4.1. The spatial order of convergence is given by

Order =
log
(
∥eM

h ∥V/∥eM
h∗∥V

)
log(h/h∗)

, (4.21)

where uh and uh∗ denote the numerical solutions computed for two consecutive meshes of diameter
h and h∗. The results obtained for the spatial order of convergence are approximately the expected,
as we have shown in Chapter 3 that the numerical solution converges to the exact solution as the
meshsize tends to zero with convergence rate hN for the central fluxes case.

4.4 Scattered field formulation

In order to detect subcellular changes in the retina, such as the variation of size and shape of each
structure, we can solve Maxwell’s equations and then compute the backscattered light intensity.

We begin by separating the electromagnetic fields u = [H,E]T into two fields: the incident fields
ui = [H i,E i]T and the scattered components us = [Hs,Es]T , thus we have

H = Hs +H i and E = Es +E i. (4.22)

Assuming that the incident field ui is also a solution of the Maxwell’s equations (4.1), with coefficients
ε i and µ i being the relative permittivity and permeability of the medium in which the incident field
propagates in the absence of scatterers, we insert (4.22) into (3.10) and, using the linearity of these
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Table 4.1 The L2-error and spatial order of convergence for the central flux.

N K h Error Order

1

32 0.5 2.3202
50 0.4 1.8622 0.99

200 0.2 1.1442 0.70
800 0.1 0.6323 0.86
3200 0.05 0.3268 0.95

2

32 0.5 1.1164
50 0.4 0.8348 1.30

200 0.2 0.1191 2.31
800 0.1 0.1684 2.08
3200 0.05 0.0098 2.03

3

32 0.5 0.2753
50 0.4 0.1459 2.85

200 0.2 0.0199 2.87
800 0.1 0.0025 2.97
3200 0.05 3.3291E-04 2.93

4

32 0.5 0.0602
50 0.4 0.0250 3.94

200 0.2 0.0016 4.01
800 0.1 1.1121E-04 3.81
3200 0.05 6.1035E-05 0.87

equations, we obtain the scattered field formulation

ε
∂Es

x

∂ t
=

∂Hs
z

∂y
+P (4.23a)

ε
∂Es

y

∂ t
=−

∂Hs
z

∂x
+Q (4.23b)

µ
∂Hs

z

∂ t
=

∂Es
x

∂y
−

∂Es
y

∂x
+R, (4.23c)

with the source terms

P(x,y, t) = (ε i − ε)
∂E i

x

∂ t
, (4.24a)

R(x,y, t) = (ε i − ε)
∂E i

y

∂ t
, (4.24b)

Q(x,y, t) = (µ i −µ)
∂H i

z

∂ t
. (4.24c)

We intend to apply the method to a real problem modelling the retina’s layers. The outer nuclear
layer (ONL) is mostly populated by the cells bodies of light sensitive photoreceptor cells (rods and
cons) [11]. The nucleus is the biggest organelle in the photoreceptor cell’s soma and presents a high
refractive index difference to the surrounding medium. Therefore the light scattering is mainly caused
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by the nucleus [22]. Thus the outer nuclear layer is modeled as a group of spherical nuclei (the
scatterers) in a homogeneous medium.

The first approach to model this problem is to consider the case of a single nucleus in the ONL.
Thus we have a two dimensional square domain which contains a circle to represent the single nucleus,
that is, the circle is the part of the domain where the permittivity is different.

Let us consider the previous problem (4.1), in Ω= (−2,2)2 and T = 1. In order to avoid reflections
we chose a domain large enough to prevent the influence of the PEC boundary conditions.

We consider the magnetic permeability and the electric permittivity to be constants ε i = 1 and
µ = 1. We consider the permittivity ε = 1.2 for

{
(x,y) ∈ Ω : x2 + y2 ≤ 0.09

}
and ε = 1 otherwise.

We define the incident wave as the planar wave E i
y(x,y, t) = cos(10(x− t)).

The results obtained for central fluxes (α = 0), time step ∆t = 0.002, final time T = 1 and
approximation polynomial degree N = 6 are illustrated in Figure 4.2, which shows the evolution of Hz

with time.

Fig. 4.2 Numerical solution computed for N = 6 and K = 800





Chapter 5

Conclusion

Throughout this work, we presented the Maxwell’s equations and some properties like the constitutive
relations and the boundary conditions, which allowed us to write the reduced problem for isotropic
media. We intended to formulate and analyse a fully discrete method for this problem.

We established the discontinuous Galerkin method with central fluxes to deal with the spatial
discretization of Maxwell’s equations in a homogeneous medium with PEC boundary conditions and
proved its stability and a convergence rate of O(hN), where N is degree of polynomial approximation
used in the discretization. For the temporal discretization we used the explicit Euler method, proving
its stability and convergence rate of O(∆t) when applied to the semi-discrete scheme that results from
the dG method for Maxwell’s equations.

Assuming that the physical system is isotropic and homogeneous in the z-direction, we formulated
the problem for two dimensions and used this formulation to obtain numerical results, that corroborate
the theoretical convergence rates. We used the scattered field formulation in order to simulate the
propagation of an electromagnetic wave through a domain that models the case of a single nucleus. In
order to obtain the computational results, we used the fourth-order four stage Runge-Kutta method for
the temporal discretization.

As the main goals of this work were to study a fully discrete method for Maxwell’s equations and
implement it, we can say that these goals were achieved.

The next steps in this work would be to adapt the dG method to deal with PMC and SM-ABC
boundary conditions and to study the dG method with upwind fluxes, which would allow us to achieve
a higher convergence rate. Then, it would be interesting to analyse the stability and convergence of
the Runge-Kutta method. We could also try to adapt the dG method to the anisotropic case, in order to
better model the retina’s layers.

As far as the numerical results are concerned, it would be interesting to implemenent the
anisotropic case and to progressively increase the level of complexity of the domain in order to
better model the behaviour of a electromagnetic wave through the retina’s layers during an OCT.
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Appendix A

Auxiliary results

Theorem A.1. (Stone’s theorem, [21, Theorem 1.36]) Let H be a Hilbert space and A : D(A)→ H
be a linear operator with dense domain, that is, D(A) = H. Then, A generates a C0-group of unitary
operators if and only if A is skew-adjoint.

Theorem A.2. (Young’s inequality) Let x, y ≥ 0 be real numbers. Then, there holds for every γ > 0

xy ≤ 1
2

γx2 +
1
2

γ
−1y2.

We call this inequality the weighted Young’s inequality. The usual Young’s inequality is obtained by
choosing γ = 1.

Theorem A.3. (Continuous Gronwall lemma, [7, Proposition 2.1]) Let T ∈R+∪{∞}, f ,g ∈ L∞(0,T )
and c ≥ 0. Furthermore, let g be a monotonically increasing, continuous function and let f satisfy

f (t)≤ g(t)+ c
∫ t

0
f (s), a. e. in [0,T ].

Then, there holds
f (t)≤ ectg(t).

Theorem A.4. (Discrete Gronwall lemma, [7, Proposition 4.1]) Let {an}n, {bn}n ⊂ R be two se-
quences, c ≥ 0 and τ > 0 be two constants. Let {bb}n be a monotonically increasing and let {an}n

satisfy

an ≤ bn + cτ

n−1

∑
m=0

am, n = 1,2, . . . ,

with initial value a0 ≤ b0. Then, there holds

an ≤ (1+ cτ)nbn ≤ ecnτbn.

A.1 Broken polynomial spaces

We now look into broken versions of Sobolev spaces Hm(Ω) and of the graph space H(curl,Ω) as
well as broken versions of the gradient and the curl operator [20].
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A.1.1 The broken Sobolev space Hm(Th)

Let m ≥ 0 be an integer. We define the broken Sobolev space as

Hm(Th) :=
{

v ∈ L2(Ω)
∣∣∀K ∈ Th : v|K ∈ Hm(K)

}
, (A.1)

and endue it with the norm: For v ∈ Hm(Th),

∥v∥2
Hm(Th)

:=
m

∑
n=0

|v|2Hn(Th)
, |v|Hn(Th) := ∑

K∈Th

|v|2Hn(K). (A.2)

Using the continuous trace inequality [20, Chapter 1], we see that for all function v ∈ H1(Th) and for
all mesh elements K ∈ Th the trace v|∂K on the boundary of the elements is well defined and it holds

∥v∥L2(∂K) ≤C∥v∥1/2
L2(K)

∥v∥1/2
H1(K)

. (A.3)

We define a broken gradient operator acting on the broken Sobolev space H1(Th). Obviously, this
operator also acts on the broken polynomial spaces.

Definition A.5. (Broken gradient) The broken gradient ∇h : H1(Th)→ L2(Ω)d is defined such that,
for all v ∈ H1(Th),

(∇hv)|K := ∇(V |K), ∀K ∈ Th. (A.4)

Now we will distinguish the usual Sobolev spaces from their broken versions in more detail. The
usual Sobolev spaces are subspaces of their broken versions, that is, for every integer m ≥ 0, we have

Hm(Ω)⊂ Hm(Th). (A.5)

Moreover, it is proven in [20, Lemma 1.22] that for functions in H1(Ω) the variational gradient
coincides with the broken gradient, that is, for all v ∈ H1(Ω),

∇v = ∇hv. (A.6)

But, the reverse does not generally hold true. The main difference is that while the broken Sobolev
spaces contain functions having nonzero jumps at interfaces, functions in the usual Sobolev spaces
must have zero jumps across any interface. The exact statement translates into the following lemma:

Lemma A.6. (Characterization of H1(Ω), [20, Lemma 1.23]) A function v ∈ H1(Ω) belongs to
H1(Ω) if and only if

[[v]]F = 0, ∀F ∈ F i
h. (A.7)

A.1.2 The broken graph space H(curl,Th)

Analogously to the definition of the broken Sobolev spaces Hm(Th), we define the broken version of
the graph space H(curl,Ω) as

H(curl,Th) :=
{

v ∈ L2(Ω)3|∀K ∈ Th : v ∈ H(curl,K)
}
. (A.8)
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We also define a broken version of the curl operator.

Definition A.7. (Broken curl) The broken curl ∇h× : H(curl,Th)→ L2(Ω)3 is defined such that, for
all v ∈ H(curl,Th),

(∇h × v)|K := ∇× (v|K), ∀K ∈ Th. (A.9)

Next we establish the relation between H(curl,Ω) and its broken version H(curl,Th) in a result
equivalent to the relation between Sobolev spaces and their broken counterparts.

Lemma A.8. (Broken curl on H(curl,Ω)) We have H(curl,Ω)⊂ H(curl,Th). Furthermore, for all
v ∈ H(curl,Ω),

∇h × v = ∇× v. (A.10)

Lemma A.9. (Characterization of H(curlΩ)) A function v ∈ H1(Th)
3 belongs to H(curl,Ω) if and

only if
nF × [[v]]F = 0, ∀F ∈ F i

h. (A.11)

In later sections, when considering the space H(curl,Ω)∩H1(Th)
3, it is critical that its function

only admit zero tangential jumps across interfaces.

A.1.3 Broken polynomial space

After constructing a mesh of the domain Ω, we turn to the construction of finite function spaces. In
our case this consists of piecewise polynomials.

The polynomial space Pk
d

Let k ≥ 0 be an integer and α = (α1, . . . ,αd) ∈ Nd
0 be a multi-index with

|α|l1 =
d

∑
i=1

αi ≤ k. (A.12)

Furthermore let x = (x1, . . . ,xd) be a vector in Rd and let us use the convention

xα :=
d

∏
i=1

xαi
i . (A.13)

Then the function pα defined as

pα : Rd → R, x 7→ γαxα , (A.14)

where γα ∈ R is a coefficient, is a polynomial of d variables of total degree at most k. Hence, the set

Pk
d :=

p : Rd → R
∣∣∣∃(γα)⊂ R : p(x) = ∑

|α|l1≤k
γαxα

 (A.15)
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is the space of all polynomials of d variables with degree at most k. Its dimension is

dim(Pk
d) =

(
k+d

k

)
=

(k+d)!
k!d!

. (A.16)

A.1.4 The broken polynomial space Pk
d(Th)

Let K ∈ Th be a mesh element. Then, we define Pk
d(K) as

Pk
d(K) :=

{
p|K : K → R

∣∣p ∈ Pk
d

}
. (A.17)

Then, the broken polynomial space Pk
d(Th) on the mesh Th now consists of functions which are

polynomials on each mesh element, that is,

Pk
d(Th) :=

{
v ∈ L2(Ω)

∣∣∀K ∈ Th : v|K ∈ Pk
d(K)

}
. (A.18)

It follows that
dim(Pk

d(Th)) = card(Th)×dim(Pk
d). (A.19)

A.2 Admissible Mesh Sequences

One of the main goals of this work is to prove the convergence of dG methods, that is, to prove that,
as the meshsize tends to zero, the error between the approximate solution and the exact solution
also tends to zero. One of the most important concepts used to prove this is that of admissible mesh
sequences. So let us consider the mesh sequence

TH := (Th)h∈H , (A.20)

where H denotes a countable subset R+ having 0 as only accumulation point.

In the following we consider the shape- and contact-regular mesh sequences [20, Definition 1.38].
The stated properties are necessary for the convergence analysis. For further information on this issue
we refer to [20, Section 1.4.1].

A.2.1 Geometric properties

We have previously defined FK as the set of faces composing the boundary of an element K and N∂ as
the maximum number of mesh faces composing the boundary of elements in Th. Then, for shape- and
contact-regular meshes, we can relate these quantities and the meshsize h through following lemma:

Lemma A.10. (Bound on card(FK) and N∂ , [20, Lemma 1.41]) Let TH be a shape- and contact-
regular mesh sequence. Then, for all h ∈ H and all K ∈ Th, card(FK) and N∂ are uniformly bounded
in h.
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A.2.2 Inverse and trace inequality

We state two inequalities for the broken polynomial spaces Pk
d(Th) on a shape- and contact-regular

mesh, which are used for analyzing dG methods. The inverse inequality provides an upper bound on
the gradient of discrete functions and the discrete trace inequality that provides an upper bound on the
face values of discrete functions.

Lemma A.11. (Inverse inequality, [20, Lemma 1.44]) Let TH be a shape. and contact-regular mesh
sequence. Then, for all h ∈ H, all K ∈ Th and all vh ∈ Pk

d(Th),

∥∇vh∥L2(K)d ≤Cinvh−1
K ∥vh∥L2(K). (A.21)

The constant Cinv depends only on d, k and the shape- and contact-regularity parameters.

Lemma A.12. (Discrete trace inequality, [20, Lemma 1.46]) Let TH be a shape- and contact-regular
mesh sequence. Then, for all h ∈ H, all K ∈ Th, all F ∈ FK and all vh ∈ Pk

d(Th),

∥vh∥L2(F) ≤Ctrh
−1/2
K ∥vh∥L2(K). (A.22)

The constant Ctr only depends on d, k and the shape- and contact-regularity parameters.

Lemma A.13. (Continuous trace inequality, [20, Lemma 1.49]) Let TH be a shape- and contact-
regular mesh sequence. Then, for all h ∈ H, all K ∈ Th. all F ∈ FK and all v ∈ H1(Th),

∥v∥2
L2(F) ≤Ccti

(
2∥∇v∥L2(K)d +dh−1

K ∥v∥L2(K)

)
∥v∥L2(K), (A.23)

where the constant Ccti depends on d and the shape- and contact-regularity parameters.

A.2.3 Polynomial approximation

In dG methods we look for the approximate solution in the piecewise polynomial space Pk
d(Th).

Therefore, it is of the utmost importance to guarantee the construction of the mesh sequence allows for
optimal polynomial approximation. Thus we define in which sense we require that the mesh sequence
admits optimal polynomial approximation through the next definition. We refer to [20, Section 1.4.4]
for details.

Definition A.14. The mesh sequence TH has optimal polynomial approximation properties if, for all
h ∈ H, all K ∈ Th, and all polynomial degree k, there is a linear interpolation operation Ik

K : L2(K)→
Pk

d(K) such that, for all s ∈ {0, . . . ,k+1} and all v ∈ Hs(K), we have

|v− Ik
Kv|Hm(K) ≤Capphs−m

K |v|Hs(K), ∀m ∈ {0, . . . ,s}, (A.24)

where the constant Capp is independent of both K and h.

We assume that the mesh-sequence TH is admissible, that is, that it is shape- contact-regular and
has optimal polynomial approximation properties in the sense of Definition A.14.



58 Auxiliary results

In the later error analysis we will often use the L2-orthogonal projection onto the broken polyno-
mial space Pk

d(Th) defined as πL2

h : L2(Ω)→ Pk
d(Th) such that for all v ∈ L2(Ω),

(πL2

h v.ϕh)L2(Ω) = (v,ϕh)L2(Ω), ∀ϕh ∈ Pk
d(Th). (A.25)

Admissible mesh sequences provide optimality of the L2-projection in the following sense:

Lemma A.15. (Optimality of L2-orthogonal projection) Let TH be an admissible mesh sequence.
Then, for all s ∈ {0, . . . ,k+1} and all v ∈ Hs(K), there holds

|v−π
L2

h v|Hm(K) ≤C′
apphs−m

K |v|Hs(K), ∀m ∈ {0, . . . ,s}. (A.26)

The constant C′
app is independent of both K and h.

The following bound for polynomial approximations on mesh faces is a direct consequence
of (A.26) and the continuous trace inequality from Lemma A.13.

Lemma A.16. (Polynomial approximation on mesh faces) Under the assumption of Lemma A.15 with
s ≥ 1 it holds for all h ∈ H, all K ∈ Th, and all F ∈ FK ,

|v−π
L2

h v|L2(F) ≥C′′
apphs−1/2

K |v|Hs(K), (A.27)

with constant C′′
app independent of both K and h.
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