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Resumo 

A doença de Alzheimer (DA) é a mais comum forma de demência humana e, de 

momento, não possui um critério de diagnóstico bem definido, embora, neste contexto, se 

dê ênfase ao uso de biomarcadores, provenientes de neuroimagens. Técnicas de imagem 

como a ressonância magnética (RM), tomografia de emissão de positrões e imagem de tensor 

de difusão são usadas, quer separadamente, quer numa abordagem multimodal, no estudo e 

na classificação da DA.  As abordagens multimodais concentram-se maioritariamente no uso 

de biomarcadores baseados na ressonância magnética, que são posteriormente combinados 

com outro tipo de neuroimagem ou dados biológicos. 

Nesta tese, propomos analisar os efeitos da combinação dos dados provenientes 

das 3 modalidades de imagem, bem como estudar a informação complementar que é dada 

através da combinação de cada modalidade. Para alcançar este objetivo começámos por criar 

classificadores base, um para cada modalidade de imagem, e depois examinamos os efeitos 

da sua combinação, usando técnicas de ensemble. 

Os resultados obtidos mostram que a combinação das 3 modalidades de imagem 

melhora a performance geral dos classificadores base (exatidão-98%, sensibilidade-99%, 

especificidade-97%), mas não apresentam uma melhoria significativa em relação ao uso da 

combinação de apenas MRI+PIB (exatidão-98%, sensibilidade-99%, especificidade -98%) 

ou MRI+DTI (exatidão-97%, sensibilidade-94%, especificidade-99%). Mais ainda, a 

combinação de PIB+DTI (exatidão-91%, sensibilidade-93%, especificidade-90%) não 

mostrou qualquer melhoria em relação aos classificadores base, o que sugere uma falta de 

informação complementar entre estas duas modalidades de imagem. 

Estas descobertas podem representar benefícios clínicos não apenas para as 

instituições, reduzindo custos, mas também para o bem-estar do paciente, reduzindo o 

desconforto causado pelo longo tempo de aquisição de imagens PET e removendo a 

necessidade de exposição a radiação ionizante. 
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Abstract 

Alzheimer’s disease (AD) is the most common form of dementia in humans and 

currently it does not have a defined diagnostic criterion, although, nowadays, it emphasizes 

the use of neuroimaging biomarkers. Magnetic resonance imaging (MRI), positron emission 

tomography (PET) and diffusion tensor imaging (DTI) are used, either alone or in 

multimodal approaches, in the study and classification of AD. Today’s multimodal 

approaches focus on the use of MRI related biomarkers, as a base, and then combining them 

with other type of imaging or biological data. 

Here we propose to analyse the effects of the combination of the data from the 

three imaging modalities, as well as study the complementary information, provided from 

the combination of each modality. To achieve this goal, we start by creating base classifiers, 

one for each different imaging modality, and then examine the combination effects, using 

ensemble techniques. 

The results show that the combination of all three imaging modalities improves 

the general performance of the base classifiers (accuracy-98%, sensitivity-99%, specificity-

97%), however, it did not show a significant improvement over the use of the combination 

of just MRI+PIB (accuracy-98%, sensitivity-99%, specificity-98%) or MRI+DTI (accuracy-

97%, sensitivity-94%, specificity-99%). Furthermore, the combination of PIB+DTI 

(accuracy-91%, sensitivity-93%, specificity-90%) did not show any improvement over the 

base classifiers, suggesting a lack of complementary information between the two imaging 

modalities. 

These findings could represent clinical benefits not only for the institutions, by 

reducing costs, but also for the patient’s wellbeing by reducing the discomfort caused by the 

lengthy acquisition time of the PET scans and by removing the need of exposure to ionizing 

radiation. 

 

Keywords Alzheimer’s Disease (AD), Multimodal Approach, Machine 

Learning, Classification, Diagnosis, Ensemble Learning 
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TERMS AND ABBREVIATIONS 

AD – Alzheimer’s Disease 

CN – Cognitively Normal 

MRI – Magnetic Resonance Imaging 

PET – Positron Emission Tomography 

PIB – Pittsburgh Compound-B 

DTI – Diffusion Tensor Imaging 

MCI – Mild Cognitive Impairment 

NFTs – Neurofibrillary Tangles 

Aβ – Amyloid Beta 

PS – Presenilin 

APP – Amyloid Precursor Protein 

GM – Grey Matter 

WM – White Matter 

CSF – Cerebrospinal Fluid 

ML – Machine Learning 

SVM – Support Vector Machine 

LR – Logistic Regression 

ROI – Region of Interest 

SUVR – Standard Uptake Value Ratio 

FBM – Filter Based Method 

EBM – Embedded Based Method 
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1. INTRODUCTION 

The past few years prompted a significant improvement of living conditions and 

thus a substantial extension of human lifespan, which ultimately propelled the increasing 

occurrence of neurodegenerative diseases1. 

Alzheimer’s disease (AD) is one of these conditions 1–3.  

Considered to be the most prevalent form of human dementia, AD affects the 

entirety of the brain, hence, its primary characteristic is the progressive loss of memory, 

more noticeable concerning episodic memories which are formed in the hippocampus1,2. 

To aid patients suffering from Alzheimer’s disease, it is crucial to mitigate its 

progression, which is primarily attained by providing an early and definitive diagnosis of the 

condition 3,4. 

In this context, the use of medical imaging, such as Positron Emission 

Tomography (PET), Magnetic resonance (MRI) and Diffusion Tensor (DTI), has been of 

utmost importance in AD’s diagnosis and study, considering that it allows technicians and 

neurologists to identify lesions in the brain, either by analysing MR images or by seeing, in-

vivo, radiotracer labelling of neurofibril plaques of beta-amyloid, through PET images1,2. 

However, despite the significant help provided by these imaging techniques, a 

definitive diagnosis is only possible post-mortem2,5,6.  

This restriction ultimately led to advances in the field of computer science, which 

included the creation of new and more precise tools, capable of diagnosing AD, even in its 

prodromal state.  

Within these successful advances we come upon machine learning, frequently 

used in the generation of classifiers that are able to distinguish between normal patients and 

patients with AD 7,8. In turn, the classifiers can be obtained by using only one type of 

neuroimaging (PET or MRI), or using a multimodal approach, that combines two different 

types of neuroimaging (PET combined with MRI) 9. 

Undoubtedly, the use of classifiers in AD has been incredibly remarkable and it 

has provided numerous of acceptable and precise results in the diagnosis of the condition, 

but science is in a constant development9. Therefore, to improve the accuracy of the obtained 

results even further, data from other methods can be added: DTI, Diffusion Tensor Imaging. 
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However, this situation brings up other issues that should be carefully 

considered, such as the high magnitude of correlations within the collected data, leading to 

excessive interdependence, as well as the debatable application of the three classifiers in AD 

diagnosis. Thus, it is essential to study and analyse if the combination of the methods does, 

in fact, improve the accuracy of the diagnosis, or if it is overall unnecessary, and the risk of 

exposing patients to ionizing radiation (in the case of PET imaging) and put them through 

extreme discomfort is not worth it. 

The fundamental ambition of this thesis is to investigate the use of three different 

classifiers, based on three types of imaging modalities, and in due time, to evaluate and 

compare each of their performances.  

Moreover, a new classifier ensemble will be created, through a multimodal 

approach combining all of the classifiers, and later assessed, to estimate the significance of 

the improvement in the AD diagnosis, as well as the complementarity between the different 

data.  

It is arguable that this improvement might not add much significance in the 

diagnosis. The question remains whether the complementarity between the data is an 

advantageous tool. These issues are relevant to assess whether diagnosis can be achieved 

while sparing participants from discomfort and increased number of unnecessary 

examinations. 

Lastly, this thesis will be organized into 5 chapters. In Chapter 2 we will present 

a review of the current literature about the thesis theme. Chapter 3 explains the general 

workflow of the study. Chapter 4 shows the results from the study. Finally, Chapter 5 

exposes the main conclusions drawn from the study. Furthermore, an Appendix Chapter is 

also included, and all the complementary data can be found there. 
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2. LITERATURE REVIEW 

Literature review was done following a systematic revision approach. Firstly, we 

start by searching the PubMed library (https://www.ncbi.nlm.nih.gov/pubmed/) for all 

relevant publication with the following search phrase:  

(("Alzheimer Disease"[Mesh]) AND ("Diagnostic Imaging"[Mesh] OR 

"Positron-Emission Tomography"[Mesh] OR "Magnetic Resonance Imaging"[Mesh] OR 

“Diffusion Tensor Imaging” OR "Multimodal Imaging"[Mesh]) AND ("Machine 

Learning"[Mesh] OR “Multi-Kernel learning” OR "Classification"[Mesh]) AND 

("Diagnosis"[Mesh])) 

The search results show 168 papers from which 134 were excluded due to a 

variety of reasons: 

- 21 were not classification problems; 

- 12 were classification between Alzheimer’s disease (AD) and other form of 

dementia; 

- 11 use deep learning classification; 

- 41 use a different PET radiotracer or use functional MRI; 

- 20 were about the ability to predict the conversion from mild cognitive 

impairment (MCI) to AD; 

- 16 were not open access; 

- 1 was a study using mice; 

- 12 were not related. 

After this selection, 39 papers or books were further added to the pool for better 

understanding the various topics. 
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2.1. Alzheimer’s disease 

The fear of losing oneself and one’s own memories is constant these days, 

mainly for the elderly. 

Since the turning of the century, the human lifespan has considerably increased, 

and people are living longer and with more quality than ever before1. And although this 

longevity allows people to have a happier and more fulfilling life, it also brings cells closer 

to their biological limit, causing an emergence of new kinds of complications and age-related 

diseases. 

An example of such conditions is dementia, a condition that has been affecting 

the older population increasingly every year. Dementia is described as “an acquired global 

impairment of intellect, memory and personality, but without impairment of 

consciousness”10 and it is classified as an organic mental disorder, in which an underlying 

causative organic factor is always present10.  

The most common organic origin that results in a state of dementia is 

Alzheimer’s disease (AD)1–3. 

Alzheimer’s disease is a neurodegenerative disease characterized by the 

appearance of two distinct types of lesions in the brain that culminate in a state of dementia, 

and ultimately lead to the patient’s death. These lesions are known as the neurofibrillary 

tangles (NFTs), composed of tau protein that aggregates in the intracellular space of the 

neurons, and the neuritic amyloid plaques (or senile plaques), composed of abnormal 

amyloid beta (Aβ) protein that aggregates on the extracellular space of the neurons1. 

2.1.1. Origin and causes 

Genetic evidence indicates that the inheritance of mutations in several genes 

causes autosomal dominant familial AD (fAD), while the presence of certain alleles of 

ApoE4 carries a significant risk of putative sporadic disease1 

Some genetic risk factors for AD include mutations in different chromosomes: 

on the chromosome 1, a mutation in presenilin (PS)2; on the chromosome 14, a mutation in 

PS1; on the chromosome 19, different susceptibility alleles of ApoE, and on the chromosome 

21, a mutation in the amyloid precursor protein (APP) gene1,6,11. 
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The fAD form is highly dependent on genetics and only accounts for 5% of all 

AD cases11. This form is related to the mutation on the PS1, PS2 and APP genes that can in 

some cases, be inherited as autosomal dominant starting to manifest itself earlier than it 

would in sporadic cases (<65 years of age)11. 

The PS1 and PS2 genes are highly homologous and conserved multi-pass 

transmembrane proteins, involved in Notch1 signal pathways, which are critical in the 

determination of the cell’s fate1. Also, a mutation in these genes causes the increased 

production of abnormal Aβ protein11. Approximately 50% of early-onset fAD is linked to 

90 mutations in PS1 and there are also data suggesting that a small number of PS2 mutations 

can cause dominant fAD1. 

The APP gene is a type I transmembrane protein, which can be found in different 

isoforms. It exists abundantly in the nervous system and it is transported anterograde, from 

the cell’s body to the terminals, as stated earlier. Although its specific functions remain to 

be defined, it is known that some APP mutations are linked to the fact that fAD can change 

the processing of APP, as well as influence the biology of Aβ, by increasing toxic peptides, 

which ultimately results in the formation of the senile plaques1,11. 

The sporadic form of the disease occurs in 95% of all the cases of AD. This form 

is associated with the ApoE gene, though 60% of the sporadic cases are not related to the 

ApoE gene, leaving a vast number of AD cases without a known cause11.  

ApoE is a lipid transporter present in the blood that binds amyloid proteins. This 

lipoprotein exists in three possible variations in humans: ApoE2, ApoE3 and ApoE4. The 

ApoE3 allele is the most common, existing approximately in 78% of the population, but it 

is the ApoE4 allele who has a major influence in AD2,11.  

This allele exists in 14% of the population, and, according to clinic-based 

studies, its frequency in patients with late-onset (>65 years of age) is 50%, suggesting that 

its presence increases the risk of AD1. 
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2.1.2. Clinical manifestations and Diagnosis 

Clinically, this disease manifests itself most often as a progressive memory loss 

and cognitive impairment, as a consequence of the dysfunction and death of specific 

populations of neurons, mainly those involved in processes of memory and cognition, even 

though a generalized atrophy of the whole brain can also be seen1. This loss of neurons 

results from the slow accumulation of lesions within the brain over a long period of time5. 

Initially, the disease often manifests itself as a clinical entity, known as mild 

cognitive impairment (MCI), usually characterized by memory complaint and impairments 

on formal testing, with otherwise intact general cognition, preserved daily activities, as well 

as an absence of overt dementia1.  

MCI is considered by many as a transitional state between normal aging and 

early AD. After a period of time, the early stage of MCI either evolves into AD, accompanied 

by the appearance of the symptoms mentioned earlier, or it can subside and go back to a 

normal aging state1. 

Currently, there are no specific diagnostic laboratory tests for AD, given that this 

diagnosis is not an exact method (no perfect standard), except neuropathology after the death 

of the patient, and it can only be made in a range of probability. Despite this, there are a 

variety of tests that may enhance diagnostic accuracy12.  

The current diagnostic criteria for AD are positron emission tomography (PET), 

magnetic resonance imaging (MRI) and the examination of body fluids (eg., CSF) and non-

neural tissues1,12,13. 

The use of PET with radiolabelled Pittsburgh Compound B (PIB) often shows 

AB amyloid burden in vivo. This happens because once the PIB compound binds, with high 

affinity, to Aβ, it creates patterns that are reflective of the Aβ burden in the brain. Patients 

with AD show a retention of the radiotracer in areas of the brain in which there is an 

accumulation of Aβ amyloid (insoluble aggregates)1.  

MRI often discloses regional brain atrophy, particularly in the hippocampus and 

entorhinal cortex, also providing rates of atrophy which ultimately correlate with the decline 

of the patient’s clinical status. This technique provides consistent data and may have 

predictive value for the diagnosis1,12. 

Regarding the examination of body fluids as well as of non-neural tissues, 

patients with AD usually have low levels of Aβ peptides and, sometimes, increased levels 
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of tau protein in the cerebral spinal fluid (CSF), when compared with cognitively normals. 

However, these values have high variability between patients, which makes them poor for 

diagnosis1,12. 

Summarizing, the clinical diagnosis of AD, in its sporadic or familial form, 

includes the use of biological biomarkers, such as the analysis of CSF, and imaging 

biomarkers, such as MRI and PET. 

2.2. Neuroimaging 

Over the past decades, neuroimaging techniques, such as magnetic resonance 

imaging (MRI), functional MRI (fMRI), positron emission tomography (PET) and diffusion 

tensor imaging (DTI), have made a profound influence in the advancement of neuroscientific 

research and clinical application9. 

 The fundamental aim of neuroimaging is to discover information about a yet 

poorly understood disease as well as to provide a set of well-defined biomarkers, capable of 

making an early diagnosis14–16.  

These imaging biomarkers are being effectively utilized in both diagnosis and 

prognosis of various neurologic diseases, given their inherent capability of visualization and 

quantitative measurement of brain structural, functional and metabolic information. 

Therefore, it is imperative to develop and improve tools as powerful as these 

neuroimaging techniques, that may help not only in diagnosing, but also in monitoring, in 

vivo, the disease progression, in the evaluation and the development of novel therapeutic 

approaches guided by their use as accurate biomarkers17.  

As stated in the previous chapter, the criteria for diagnosing Alzheimer’s disease 

(AD) emphasizes the use of neuroimaging biomarkers18. Today, it is possible, using 

neuroimaging tools, to capture and visualize some of the underlying pathologic traits of AD, 

in vivo. The data extracted from these tools provides a better understanding of the structural, 

functional and metabolic changes that occur in an AD patient’s brain13,19.  

Although neuroimaging is used in the diagnosis of AD, the inherited non-focal 

disease pathology is able to generate different patterns of structural degeneration of brain 

tissue, thus making it challenging to identify the most relevant imaging markers13,19 . 

The best and more commonly used neuroimaging method to evaluate structural 

damage of brain tissue is MRI.  
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MRI is a non-invasive technique that does not require the use of ionizing 

radiation, has outstanding contrast between grey and white matter and also an excellent 

spatial resolution13, that depending on the acquisition protocol can go as low as 1mm14,20,21. 

Due to these traits and with the use of T1-weighted high-resolution structural images, it is 

observed that when neuron population loss accures, there is a global atrophy of both grey 

and white matter tissues as well as an enlargement of the ventricles13 (Figure 2.1).  

 

 
Figure 2.1 Example of the axial view of MRI scan. a) Brain with Alzheimer’s. b) Normal aging brain. 

 

MRI images can also provide quantitative features, based on brain morphometry 

and cortical thickness measures, used in AD/CN classification, thus providing biomarkers 

capable of assisting in the diagnosis9,14–16,22,23. 

There is a broad spectrum of MRI contrast mechanisms, in addition to T1-

weighted imaging, which allows the extraction of different structural or functional 

biomarkers.  

One of the most important contrast mechanisms is the measurement of signal 

attenuation, resulting from water diffusion. Diffusion tensor imaging (DTI) is able to map 

and characterize the three-dimensional diffusion of water. The voxels of a DTI image are 

diffusion tensors and each one of these tensors is a [3x3] matrix (1) that correspond to the 

diffusion rates in each combination of directions24, for example, the Dxx element of the 

diffusion tensor represents the diffusion along the x axis. 
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 𝐷 =

𝐷𝑥𝑥 𝐷𝑥𝑦 𝐷𝑥𝑧

𝐷𝑦𝑥 𝐷𝑦𝑦 𝐷𝑦𝑥

𝐷𝑧𝑥 𝐷𝑧𝑦 𝐷𝑧𝑧

 (1) 

The diffusion tensor and, as consequence, the diffusion tensor image is estimated 

from raw diffusion weighted (DW) images. DW image acquisition is a complex procedure 

and out of the scope of this thesis. However, the notion that these images are very sensitive 

to Eddy currents, subject motion and magnetic field inhomogeneities are important to 

implement DTI studies and to know how to process this type of data24,25. The methods used 

to correct these distortions will be further explored in the section 2.4. 

Direct interpretation of DTI at each voxel is a challenging or even and impossible 

task (Figure 2.2). However, the various characteristics of the diffusion tensor (1) allows the 

extraction of different values providing an in vivo marker of the microstructure and 

organization of the tissue24. Studies using this DTI-derived values reveal a difference 

between AD and cognitively normal populations. Note that DTI evaluates water diffusion 

patterns, which are correlated with the structural integrity of the tissues, thus providing 

structural information9,13,26. 

 

 
Figure 2.2 Example of the axial view of a DTI. a) Brain with Alzheimer’s. b) Normal aging brain. 

 

Structural biomarkers are useful in assisting the diagnosis of AD. However, there 

are other types of biomarkers, assessing alterations in function and metabolism, that can be 

extracted from other neuroimaging techniques. 

For example, PET has been a powerful imaging method for studying AD, 

through the use of different radiotracers, namely the 18F-Fluorodeoxyglucose (FDG) tracer, 
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which provides a better knowledge of the glucose metabolism of the neuronal tissue, and the 

11C-Pittsburgh Compound B (PIB) tracer, which enhances the senile plaques, which in turn 

allow us to identify the abnormal Aβ protein burden (Figure 2.3) 13,15,19. 

 

 
Figure 2.3 Example of the axial projection of a PIB-PET scan. a) Brain with Alzheimer’s. b) Normal aging 

brain. 

 

Through PIB-PET technique, it is possible to acquire quantitative data by 

calculating the ratio between the tracer accumulation in a specific region of the brain and a 

non-specific region, that does not accumulate the tracer. This ratio is commonly known as 

the standardized uptake value ratio (SUVR) and it has also been used as a biomarker capable 

of assisting in the diagnosis27,28. 

As mentioned before, these imaging biomarkers give, on their own, valuable 

information for the diagnosis of AD, but a more accurate diagnosis can be provided by 

combining two or more of these biomarkers. This kind of approach is generally denominated 

a multimodal approach9,17. 

Despite everything, the analysis of such neuroimaging data is not a 

straightforward process and may present some challenges.  

Neuroimaging provides an enormous dimensional image, containing several 

measurements on the respective image voxels, and in order to extract the useful biomarkers 

mentioned earlier, it is necessary to convert this image into something smaller, capable of 

being analysed without the loss of important information9,19.  

This process was firstly made through manual segmentation of regions of 

interest, but this approach was slow, prone to human bias and error, and it had a high risk of 
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losing information. Therefore, a solution that arose naturally was the automation and 

standardization of the extraction of potential biomarkers useful for diagnosis assistance9,19. 

Although this strategy of automation is indeed better, compared to the one previously used, 

it also has the disadvantage of creating large amounts of data, which are hard to analyse in 

its totality. 

Hence, there is a need to develop new frameworks capable of analysing and 

giving meaning to data and machine learning seems to be a great solution, since it offers a 

systematic and automatic approach to the problem, besides being an objective classification 

framework able to analyse large amounts of data7,9.  

This kind of tool has the ability to learn from previous data and from that, it can 

objectively classify/predict two different populations, as well as analyse complex high-

dimensional data and detect subtle patterns within these images, which may unfold some 

knowledge into the unknown physiopathological processes of the disease7,9. 

2.3. Computer-Aided Diagnostics 

Developing a systematic and automatic approach, capable of creating objective 

and accurate classifications or predictions, could have a huge impact in the clinical world.  

Also, being able to make an earlier and a definitive diagnostic and therefore 

starting therapeutic treatments before any irreversible damage has taken place, provides not 

only a better chance of regaining some function, but it also grants a better life quality of the 

patient. 

Additionally, a faster diagnosis without lengthy specialist investigations and 

with the removal of  human subjectivity, making it only based on quantitative information, 

could, in theory, be useful to identify individuals that do not show any symptoms and 

therefore are in a ‘preclinical state’ of the disease3,14,15,29,30. 

In order to achieve this, computer-aided diagnostics has greatly evolved, and it 

has shown fantastic results, sometimes being even more accurate than a specialist’s 

opinion7,8. 

Machine learning (ML) has gained a lot of attention recently, because instead of 

a human, it is a machine who performs the analysis of the data and gives a probability for 

the final diagnostic conditions. 
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ML is more than just computer code designed to perform a specific and 

previously known task7,8. In all simplicity, ML is a group of algorithms that can learn from 

a set of data and posteriorly make predictions or decisions when in contact with new data7. 

Different kinds of learning algorithms can be used in ML, but ultimately their final goal is 

the same: being able to learn from data in order to predict an outcome7. However, ML is 

supposed to be used as a diagnosis aid tool and never as a replacement for trained 

professionals. 

So how can a machine learn? Just as humans do: teachers in schools use different 

methods to teach kids new information, and we do the same with machines, also using 

different methods according to the addressed problem7. 

Relatively to the concept of “learning”, ML can be divided into supervised 

methods or unsupervised methods7,8. 

In supervised methods, both the input data and the expected output set of 

categories are provided to the computer, and using a suitable algorithm, it constructs a model 

capable of discriminating the different sets of categories. Therefore, in this learning type, the 

machine learns from what is already previously known7,8. 

By contrast, in unsupervised methods only the features are provided to the 

algorithm. In this learning method, the machine does not have previous knowledge of the 

outcome and must figure out a way to differentiate the input data. This ultimately leads to 

data mining and knowledge discovery through the identification of patterns invisible to the 

human eye7. 

One field that is expanding the use of supervised learning methods for computer-

aided diagnosis is neurosciences.  

Neurodegenerative diseases, such as AD, are being investigated using these 

techniques which allow the detection of complex and subtle patterns in neuroimaging data7,8. 

Previously it was stated that one of the criteria for AD diagnosis is the use of 

neuroimaging biomarkers, and that there is high-dimensional data that can be retrieved from 

them, data that can be posteriorly used in supervised methods of machine learning. This 

offers a fast, systematic and standardized way of diagnosing AD using only neuroimages, 

since high-dimensional classifiers can be formed and used as a diagnosis tool8,9.  

A typical AD classifier framework is composed by five building blocks: dataset, 

feature generation, feature selection, feature-based classification and validation 9,31.  
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The classifier’s aim is to, given a training dataset and the associated output 

variables, try to solve a model that better adjusts the training data in order to achieve the 

desirable output variables. So, the ultimate goal is to create a model capable of predicting 

accurately and automatically the outputs corresponding to new inputs provided by new 

datasets20 

 

Dataset: The dataset must include a large number of individuals, also known as 

cases, with well-defined clinical properties, that are used for the classification problem, such 

as a clinical diagnosis and pathologic measures, also known as input data. 

This dataset is then divided into a training set and a testing set. The training data 

set must be large enough to reliably characterize the disease and account for the inter-subject 

variability31. The testing data set is used in order to validate and analyse the performance of 

the classifier. 

 

Feature Generation: The input data, in this particular case AD-related 

‘features’, such as anatomical or functional characteristics of the disease, is retrieved from 

the subjects using different neuroimaging modalities: structural MRI (sMRI), functional 

MRI (fMRI), diffusion tensor imaging (DTI), PIB-PET, and FDG-PET9,31.   

The term “features” refers to the transformation applied to raw medical imaging 

data and it has the ambition of achieving more informative and quantitative measures. These 

features must be appropriate and meaningful for the specific classification problem, be 

comparable across all subjects, and if possible, have a biological value9,31. To better 

understand this, a feature can be as global as the total intracranial volume or as specific as 

the intensity of a voxel.  

Considering that neuroimaging data is high-dimensional, it is predictable that the 

number of possible features extracted is high-dimensional as well, and for that reason it is 

often necessary to reduce this high-dimensionality of the input data9,31. The feature 

generation and the dimensional reduction for the different neuroimaging modalities is going 

to be explained more extensively in section 2.5. 
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Feature Selection: After the extraction and the dimensional reduction of the 

features it is possible to select a subset of features in the training set9,19. 

There are two main reasons to justify the use of feature selection. Firstly, using 

a selected subset tends to improve the global performance of the classification by removing 

non-informative and confusing features. The other reason is that selecting only the 

significative features that contribute to the classification problem can help understand the 

multivariate physiopathology of the underlying disease that is being studied9,19. 

More about feature selection in the Section 2.6. 

 

Classification: This algorithm is responsible for the creation of a model capable 

of separating the training data, using the output data (also known as labels), into two distinct 

groups or clinical states: cognitively normal (CN) or diseased subjects, in this case AD 

patients9. The model parameters can also be adjusted in order to achieve a more optimized 

discrimination between the two labels.  

Many algorithms may be used to create this model such as, linear regression 

(LR), support vector machine (SVM) and neural networks, but their final classification intent 

ends up always being the same9,31. 

 

Model Validation: The final phase is the validation of the model created in the 

previous step, based on new data that were already correctly preprocessed in the same way 

as the training data. Testing the model through new and different data, not used in the training 

step, is the best way to evaluate the performance and ability of the developed model in 

generalizing a systematic rule to divide the data9,31. 

Cross-validation techniques are widely used to unbiasedly estimate the 

performance values of the classifier, avoiding overfitting9,31. An illustration of this is K-fold 

cross-validation, which consists in dividing the training data into k different subgroups but 

leaving the one subgroup for testing. This process is then repeated until all subgroups have 

been tested and the average error is estimated in all the runs9,31. 

More about the algorithms and their evaluation in Section 2.7. 

 

In conclusion, it is worth noting that in recent years a new way of approaching 

the computer-aided diagnosis has appeared. Instead of taking advantage of only a single 
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neuroimaging modality, studies are now focusing in the use of a multimodal approach to 

solve the classification paradigm of AD. 

These new classifiers are using the same framework as the previous ones, but 

now they use features from different combinations of imaging modalities, for example, they 

join MRI with PIB-PET data. This usually improves the performance of the classifiers9. 

2.4. Preprocessing of Neuroimages 

Before generating features from neuroimaging data, standard preprocessing 

must be executed.  

Preprocessing is the term used to describe all of the transformations the original 

data suffers, in order to prepare and improve for posterior statistical analysis. These applied 

transformations depend on the type of neuroimaging used.  

In this chapter the standard preprocessing of the neuroimaging sources of data 

used in this particular study (MRI, PET and DTI data) will be characterized. 

 

Magnetic Resonance Imaging (MRI): 

MRI brain images allows the detection of brain structural changes in-vivo. To 

take advantage of this powerful tool various techniques were developed to allow the 

extraction of relevant data. 

The most common way of analysing MRI is through morphometric pattern 

analysis. However, this analyse techniques require the previous preprocessing of the brain 

images30,32. 

The standard preprocessing pipeline involves intensity normalization, spatial 

normalization, tissue segmentation and smoothing19–22,26,33,34. 

 

Intensity Normalization (Bias Correction): The signal intensity of magnetic 

resonance acquired from homogeneous tissue is rarely uniform. The same tissue presents a 

smooth variation in values across an image, which is usually a result of poor radio frequency, 

gradient-driven Eddy currents and the anatomy of the subject35. 
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Although this intensity difference has little or no impact in visual diagnosis, it 

usually affects the ability to perform automatic segmentation, which requires a certain 

amount of intensity homogeneity within every tissue35,36. 

The most common way to correct this bias is to use the nonparametric and 

nonuniform intensity normalization (N3) algorithm19–22,26,33,34,36. 

 

Tissue Segmentation: Structural data, that is presented in the images, is often 

unnecessary or not useful for a specific study, since some structures have no biological or 

statistical value in the classification problem at hand19,21–23,33,37,38. 

A solution to this is segmentation, which appears as a way to divide the brain 

into distinct tissue types sections, which in turn allows the selection of those mostly involved 

in the physiopathology of the disease. This segmentation divides the brain into three different 

tissues: grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF), excluding the 

skull and other non-brain tissues19,21,22,33,35,37,38. 

 

Spatial Normalization: Every brain is unique and diverges immensely from all 

others, namely in terms of size and shape Therefore their differences can only be comparable 

if the corresponding images are translated onto a common shape and size35. This process is 

commonly called spatial normalization.  

Spatial normalization is a procedure that allows the registration of data, from the 

individual subject-space to a standard-space. In order to normalize the data, a template and 

a source image are always needed4,39. In this case, the template image is the brain on a 

standard space to which the source image will be registered.  

There are numerous standard-spaces such as Tailairach, Tournoux and MNI, and 

each one uses different coordinate systems. 

After selecting the template image, a transformation matrix is constructed from 

the source image, which allows it to be registered to the template image space. 

The normalization step place all images at the same coordinate system permitting 

to perform statistical analysis and comparison among subjects39. 
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Smoothing: Smoothing is typically done by applying a Gaussian linear filter 

with a full-with half maximum (FWHM) between 4 and 16 mm, and it is used for several 

reasons34,40. 

On one hand the process of smoothing tends to increase the signal to noise ratio 

by striping the high frequencies, that represent the small changes at the voxel level. This 

allows a better visualization of the larger scale changes, which become more apparent if the 

small changes are removed40. 

Another reason for smoothing is that it allows to mitigate some of the effects of 

the structural misalignments, resultant from normalization35,40. 

Finally, smoothing provides data that follows a gaussian distribution, making it 

more suitable for statistical analysis and to be used in classification problems35,40,41. 

 

Positron Emission Tomography (PET): 

PIB-PET data is preprocessed following similar principles as MRI data with 

some exceptions. Firstly, PIB-PET volumes, that are generally acquired in a long period 

(~90 minutes)42, are summed either for the full-time frame or for specific acquisition periods.  

The sum volumes are then preprocessed, which involves coregistration, if 

possible, spatial normalization and finally smoothing27,28,42–47. 

 

Coregistration: Coregistration allows the combination of functional data from 

PET with anatomical information provided by structural T1 imaging48. The main advantage 

of coregistration is that it enables the visualization of functional data within an anatomical 

space, improving the capability of locating the activated zones or zones of accumulation, 

depending on the utilized radiotracer48. 

This preprocessing step consists in transforming the individual voxels from the 

PET image (functional images) and align them with the correct voxels in the real brain space 

(structural image)48. Furthermore, this allows transformations applied onto the structural 

images, such as normalization, to also be applied to the functional ones with better results.   
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Diffusion Tensor Imaging (DTI): 

The most complex and sensitive form of data in this project also involves the 

most complex form of analysis. Due to the sensitive nature of the diffusion weighted (DW) 

images previously stated, DTI is sensible to various types of distortions, which must be 

corrected to allow further analysis of the data25. The standard preprocessing pipeline of DTI 

involves the correction of the distortion caused by Eddy Currents, Head Motion and EPI, 

Skull stripping and Spatial Normalization14,18,26,49–52. 

 

Eddy Currents, Head Motion and EPI distortion Correction: Distortions 

caused by eddy currents, head motion and EPI distortion are the most common artifacts in 

DTI images. Therefore, a logical preprocessing step is needed for a correction of such 

artifacts25. 

Eddy currents are loops of electrical current induced by a changing magnetic 

field. This electric current in turn generates yet another magnetic field that opposes the 

original one. An ever-changing magnetic field applied in a MRI scan is able to create these 

currents, that in the case of DTI imaging, since the signal to noise ratio is low, have a huge 

impact on the image data retrieved25. 

Both eddy currents and head motion can be corrected simultaneously, through 

registration procedures. For eddy currents corrections they can be achieved through an affine 

registration to the b0 image, as for the head motion, those can be corrected using a rigid body 

registration to b0
25. 

The b-value (bi) is a parameter of diffusion weighted imaging (DWI) and is 

defined as the diffusion-weighting. The b-value is measured in s/mm2 and its optimum value 

for the brain tissue is situated between 700 and 1300 s/mm2 with the value of 1000 s/mm2 

being the most commonly used. Therefore, the b0 image is the non-diffusion image that is 

acquired in the beginning of each DWI protocol and that is use for the construction of the 

DTI and for further corrections as seen before24. 

EPI distortions are originated form magnetic field inhomogeneities and causes 

the anatomy of the brain to appear warped nonlinearly. These distortions are being corrected 

using field maps and with the correspondence to the anatomical image25. 
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Skull Striping: Skull stripping is an optional step also used in the analyse of 

DTI data. This step is a specific way of segmentation, with the aim of removing the skull, as 

well as the non-brain areas from the analysis. Although optional, it is widely recommended 

since it is able to improve coregistration and normalization results, as well as reducing the 

data size25. 

2.5. Feature Generation 

In this chapter the subject of feature generation will be more detailed, containing 

a detailed analysis of the techniques used in the generation of features from the different 

medical imaging modalities9,31. 

As stated in the section 2.3, features result from the transformation of raw data 

and they are used as inputs in classification problems. Features must be a good representation 

of the data being used, and because of that each medical imaging modality requires a 

different approach to feature generation9,31. 

The three modalities of imaging that will be used in this study are Magnetic 

Resonance Imaging (MRI), amyloid-Positron Emission Tomography (PIB-PET) and 

Diffusion Tensor Imaging (DTI). 

2.5.1. Magnetic Resonance Imaging (MRI) 

Cerebral neurodegeneration, present in Alzheimer’s Disease (AD), is 

characterized by cellular dysfunction, which leads to a progressively larger scale 

pathologies, such as damages to synapses, degeneration of axons and ultimately neuronal 

death (1). This neurodegenerative process, and as a consequence of that, the loss of neuronal 

mass is a diffuse process and it affects parts of the brain in an unequal severity. Brain 

structures such as the hippocampus, temporal and cingulate gyri, as well as the precuneus, 

are commonly the most affected ones9. 

The degradation and atrophy of the brain tissue is generally measured using 

MRI, more specifically structural MRI, and it serves as a valuable marker to evaluate the 

progression of the AD pathology. The physiopathology of AD leads to profound structural 

changes, such as thinning of the cortical surface, variation in the density of the tissue and 

structural volume alteration.  



 

 

Differential diagnosis of Alzheimer’s disease based on multimodal imaging data (MRI, PIB, DTI) 
  

 

 

34  2019 

 

Knowing that these alterations occur during the onset of the disease, makes the 

development of different methods for analysing the MRI brain images, more or less obvious. 

Morphometric pattern analysis, such as voxel-based morphometry (VBM), deformation-

based morphometry (DBM), tensor-based morphometry (TBM) and surface-based 

morphometry (SBM) are the most commonly used methods in AD classification 

studies9,22,30,32,53. 

However, there are other methods that do not require nonlinear alignments of the 

voxels, which are used in order to achieve inter-subject correspondence. Instead they use 

feature-based morphometry15,54. 

2.5.1.1. Morphometric Analysis 

 

The morphometric analysis can be divided in volume-based or surface-based. 

The volume-based analysis methods are voxel-based morphometry (VBM), deformation-

based morphometry (DBM) and tensor-based morphometry (TBM). The surface-based 

analysis method is SBM.  

VBM is based on voxel-wise measures of local brain tissue density after 

accounting for global differences in the brain's anatomy. From this, brain tissue density 

changes can be captured and used as biomarkers, by creating density maps that represent 

volume changes. To assure inter-subject comparison is, in fact, meaningful, each voxel must 

be aligned to a standard space to guarantee that voxels of different brains are in the same 

brain region22,30,32,53,55. 

Besides through density, the brain volume changes can be characterized with the 

use of deformation or tensor measures, such as DBM and TBM. 

Both in DBM and TBM, the images are registered into a standard reference 

space, and the analysis is done by comparing the parameters of the resulting deformation 

fields, either directly or from derived measures22,30,32,55. 

More specifically, DBM compares directly the deformation fields that describe 

the moving direction of every voxel in an alignment. It is optimized by an algorithm that 

aligns the voxels in the brain image to the ones in the template. The moving direction of the 

voxels can be used as a biomarker since detected differences of values can be used to 

distinguish between healthy control and diseased brains22,30,32,55. 
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In TBM, the most commonly used measure is the determinant of the Jacobian 

matrix, which is derivative of the deformation field and ultimately it represents the local 

volume change. Depending on the value of the determinant, it is possible to establish if the 

brain region is either expanded, if the determinant value is greater than one, or contracted, if 

it is lesser than one. The expansion and contraction of brain regions can be used as a 

biomarker of the diseases16,22,30,32. 

Volume-based analysis is the most traditional way of analysing brain structural 

alterations. However, in recent years, the developing and refinement of other type of tools 

allowed the development of surface-based analysis methods, that are more sophisticated and 

capable of studying more specific metrics, such as cortical thickness and surface area.  

SBM is a surface-based analysis method and it primarily derives morphometrics 

measures from geometric models of the cortical surface. This cortical surface is extracted 

using two lines, that represent the boundaries between the grey/white matter and the grey 

matter and the meninge dura layer or CSF. These lines are then filled with a mesh of 

triangles. The point where the triangles meet is called vertex, and its coordinates are stored 

and posteriorly used for measurements. For example, the area of the sum of this mesh of 

triangles can be used to calculate the surface area of the cortex53. 

All these analysing tools can be used for feature generation methods in AD 

related classification studies. The main feature generation methods utilizes density maps or 

cortical surface maps, which can also be used in combination in order to improve the 

classification capability9. 

2.5.1.1.1. Density maps-based methods 

Density map-based methods are able to quantify the atrophy levels, through the 

examining of density maps of white matter (WM), grey matter (GM) and cerebrospinal fluid 

(CSF) (Figure 2.4). The density maps can be constructed using voxel-based morphometry 

(VBM) or others analyse tools. The creation of feature vectors from density maps can then 

be divided into two: using density maps as a whole34 or reduce them in order to construct 

smaller vectors8,9,18. 
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Figure 2.4 Example of tissue Density maps. a) Grey Matter density map. b) White Matter density map. 

 

Using the density maps as a whole seems appealing since all the data can be used 

as features. However, this approach suffers the drawback of the dimensionality curse. Since 

each voxel is a feature in this method, the number of features becomes far superior compared 

with the number of available subjects. Because of this, the classification rule applied to the 

training dataset is constructed only by chance and thus it prevents the final classification 

algorithms to select the classification rules capable of generalize to new input data9. 

In order to compensate this potential problem, features have to be reduced, and 

this is possible using different approaches such as supervised or unsupervised feature-

reduction methods, extraction from pre-defined atlases and adaptive ROIs, to reduce 

dimensionality9. 

Supervised or unsupervised feature-reduction methods are same used for feature 

selection methods and will be discussed in section 2.6. 

 

Predefined atlases: 

Predefined atlases-based methods consist in dividing the brain in several 

anatomical meaningfully label regions of interest (ROI), built upon a pre-defined atlas 

template. In these methods the brain images are mapped to the atlas template and the features 

values generated from each of the defined regions labels8,9,55. 

Various anatomical label atlases can be used, each one constructed on its own 

predefined atlas template. Examples are automated anatomical labelling (AAL) atlas (Figure 
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2.5 a), laboratory of neuroimaging (LONI) atlas, Neuromorphometrics (Figure 2.5 b) and 

many others (1,35, 65). 

 

 

Figure 2.5 Examples of label atlases. a) ALL atlases. b) Neuromorphometrics atlases. 

 

State of the art methods using these methods for feature generation and support 

vector machine (SVM) have achieved accuracy values as low as 84.00%33 and high as 

94.50%9. 

Furthermore, these methods can be used as single atlas or in multi-atlas 

approach. The goal of multi-atlas approach is to reduce the bias of mapping the brain images 

to each atlas template22,33,55. 

Using a multi atlas approach in combination with SVM achieve accuracies 

between 92.57%22 and 93.83%55. 

 

Adaptive regions of interest: 

Atlas-based methods apply static label ROI in order to generate meaningful data 

to study the disease. 

However, sometimes knowledge of the abnormal regions is not a possibility and 

the used of static ROI may not be able to capture the true nature of the progression of the 

disease that can span multiple predefined ROI. 

Contraries to atlas-based methods, adaptive regions of interest methods allow 

the creation of ROI that are disease specific9,33. 

Adaptive ROIs are generated by performing watershed segmentation on the 

density maps (Figure 2.6). Watershed segmentation is a traditional image segmentation 
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approach, vastly used in medical image analysis and it divides images into different regions, 

according to similarities in the local intensity22,56. 

 

 

Figure 2.6 Example of adaptive ROIs. a) Adaptive ROIs generated form Grey Matter density maps. b) 
Adaptive ROIs generated form White Matter density maps. (Adaptation)56 

 

Furthermore, adaptive ROIs analyses, as the predefined atlas-based methods, can 

be done from a single atlas or from multiple atlas template22,56. 

In the single atlas approach the subjects are firstly registered to one particular 

atlas template, and then followed by the calculation of adaptive ROIs and the corresponding 

regional volumetric measures. On the other hand, in the multi-atlas approach, each atlas 

creates a unique set of ROIs, and since one subject is registered to different atlas templates, 

different tissue maps are generated, according to the atlas used. The different volume 

measures calculated from the adaptive ROIs can then be concatenated for classification 

purposes or used in ensemble classification techniques9,22,56. 

Using these methods in combination with SVM it is possible to achieve 

performance accuracies between 91.64% and 94.30%9. 

2.5.1.1.2. Cortical Surface-based methods 

Cortical surface methods use surface-based morphometry (SBM) to create 

cortical surface maps9,57 (Figure 2.7), that enable more precise measures of cortical atrophy, 

since they actually assess the thickness of the cortex in millimetres rather than the difference 

in volume provided by density maps57. These kinds of methods are able to detect subtle 

changes in the thickness of the cortical surface that are not easily measurable in the early 
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stages of the disease. Therefore, it can be affirmed that cortical surface data is a powerful 

tool on its own, as well as a complementary source to regional volumetric maps9. 

 

 
Figure 2.7 Cortical surface map. 

 

From the cortical surface maps measures are extracted from all the vertices of a 

surface. There are two main sources of features that can extracted from this type of analysis: 

volumetric and geometric9. 

The features calculated from volumetric analysis include a variety of 

morphological values, such as cortical thickness, surface area and grey matter volume. From 

geometric analysis it is possible to extract measures of sulcal depth, metric distortion and 

mean curvature9,23. 

Similarly to the density maps case, these measures can be used as a whole or 

they can be reduced applying feature reduction methods, such as supervised/unsupervised 

feature-reduction-based (section 2.6) and atlas-based methods9. 

 

 

 

 

 



 

 

Differential diagnosis of Alzheimer’s disease based on multimodal imaging data (MRI, PIB, DTI) 
  

 

 

40  2019 

 

Atlas-based methods: 

These methods are similar to those described in the previous section “Predefined 

atlases”, however, instead of using structural templates, which are used for volume analysis, 

they rely on atlases that reflect the surface space9,57. 

In order to extract features, the original brain images are registered onto a 

standardized stereotaxic space. Posteriorly, cortical maps are constructed using the various 

regions from existing surface atlas, so that the generated features are representative of 

different regions, instead of being calculated at each voxel, allowing a reduced number of 

features9,57. 

Using these methods it is expected to obtain accuracy values between 86.10% 

and 95.00%9. 

2.5.1.2. Feature-based morphometry 

Rather than using traditional methods of analysis for feature generation, the 

feature-based analysis methods compare brain images based on image features, not requiring 

the voxel alignment that is applied in the morphometric methods54. 

Images usually have information that can be converted into features, but some 

of these features may not be suitable for a particular classification problem. Therefore, their 

extraction must be done in order to obtain only the most informative features of the images 

for the classification task at hand, which at the same time reduces the complexity of the 

representation15. 

Studies involving MRI for Alzheimer’s classification used two methods in order 

to generate features: scale-invariant feature transforms (SIFT) and Oriented FAST and 

Rotated BRIEF (ORB). Other methods can also be used, such as Laguerre Circular Harmonic 

Functions coefficients15,54. 

These methods are used in computer vision as tools to detect and describe key 

points which summarise and describe local features in images.  

SIFT features are generated using a Gaussian kernel at different scales 

(variances) convolved with the original image, in order to originate the Difference-Of-

Gaussian (DOG), which in turn is used to extract the key points of the images. Features 

generated by this method are robust to distortion, as well as to noise and to resolution. The 

main disadvantage of this method is that it imposes a large computational burden15,54. 
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The ORB method is computationally more efficient that SIFT and it is based on 

a FAST key point detector which has similar matching performance, but is less affected by 

image noise and capable of being used in real-time performance15. 

This kind of approach to feature generation is recent and the features extracted 

do not have any biological value. However, these techniques can shed some light to new 

regions of interest that should be further investigated. 

 

2.5.2. PIB-PET 

One of the most well-known traits of Alzheimer’s Disease (AD) is the 

accumulation of ꞵ-amyloid peptide in the extracellular space of the neurons. This 

accumulation is considered the core molecular feature of AD27,28. Positron emission 

tomography (PET) imaging with the 11C-Pittsburgh Compound B (PIB) tracer is currently 

used in nuclear medicine imaging to visualize and evaluate the burden of the β-amyloid in 

patients with AD27,28. 

The evaluation of the brain amyloid burden is done using a quantitative 

approach, known as Quantification, that allows the generation of biological relevant metrics 

that can be used for classification problems. 

Quantification is possible given the inherent capability of measuring, at the voxel 

level, the intensity signal related to the actual quantification of the underlying source 

distribution. It deduces a direct link between the concentration of activity in organs/tissues 

across time, and the fundamental physiologic parameters of the biological processes, at a 

cellular level58. 

The most commonly used quantization method is the Standard Uptake Value 

(SUV). SUV are metric values calculated form regions of interest (ROI) or from individual 

voxel values. The SUV value can represent the mean intensity of the voxels in a ROI or can 

be defined by the maximum intensity value27,28,42–47. 

Using the different SUV values, the standard uptake value ratio (SUVR) can be 

calculated. 

SUVR is a dimensionless value obtained from the ratio between the SUV from 

a particular tissue or voxel and the SUV from a region where the accumulation of the 
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radiotracer is not expected, a reference area. The SUVR is posteriorly normalized for body 

weight and injected dose to allow intrasubject comparison27,45. 

The normalized SUVR from each target region is then used as a feature in the 

classification problem.  

Another option to create a feature is to combine all the regions, forming a 

composite SUVR. This composite SUVR is used in binary classification, in which subjects 

above a threshold are considered amyloid positive, and those below are considered amyloid 

negative27,28. 

Using SUVR as features is expected to achieve accuracy values as low as 

85.70%46 and as high as 96.00%28,42. 

2.5.3. Diffusion Tensor Imaging (DTI) 

The physiopathology process of Alzheimer’s Disease (AD) is progressive and 

starts with cellular dysfunction and culminating in cell death. The progression of AD is 

associated with alterations in the microstructure and organization of the tissues, which 

normally restrict water motion and thus change the diffusion patterns of the water 

molecules24. 

The alteration of the water molecules diffusion patterns is detected with DTI and 

it allows the extraction of biomarkers, useful in the classification of the disease. Since these 

patterns are sensitive to the alteration of the tissues microstructures, DTI not only allows the 

characterization of the end stages of the disease, but it also provides a better insight of the 

small initial structural changes, making DTI a powerful tool in the classification of the 

disease and also in the prediction of the conversion from MCI to AD24. 

As mentioned in section 2.2, DTI is used to analyse the diffusion patterns of the 

water assessed by a diffusion tensor. From this diffusion tensor it is possible to extract 

different diffusion values or to reconstruct the white matter (WM) tracts, showing the 

connectivity of the different brain regions, known as tractography9,14. Both of these 

properties are being used to extract features for AD/CN classification. And depending on 

how features are extracted, they can be classified into three different methods: diffusion 

maps analysis, tractography and connectivity network measures9. 
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2.5.3.1. Diffusion maps analysis 

Meaningful measurements are impossible to be directly extracted from DTI. The 

diffusion matrix at each voxel must be simplified creating simple scalar maps similar to those 

used for MRI analyses24,25,51,52. 

The diffusion tensor can be diagonalized and from this transformation it is 

possible to extract three eigenvectors (ε1, ε2, ε3), representative of the principal diffusion 

directions, and the corresponding three eigenvalues (λ1, λ2, λ3), representative of the diffusion 

magnitudes. Combining the eigenvectors and the eigenvalues it is possible to represent the 

diffusion as an ellipsoid24,25,59. 

Metrics such as mean diffusion (MD) (2) and fractional anisotropy (FA) (3) can 

be calculated from the eigenvalues and used to create diffusion maps that reflect the different 

diffusion patterns of the tissues14,18,40,49,59. These values are commonly used for AD/CN 

classification since empirical data shows that AD patients show lower FA and higher MD 

values in comparison to CN.  

 𝑀𝐷 =  
𝜆1 + 𝜆2 + 𝜆3

3
 (2) 

 𝐹𝐴 =  √
(𝜆1 − 𝑀𝐷)2 + (𝜆2 − 𝑀𝐷)2 + (𝜆3 − 𝑀𝐷)2

2(𝜆1
2 + 𝜆2

2 + 𝜆3
2)

 (3) 

These diffusion maps (Figure 2.8 a), Figure 2.8 b)) can be used as a whole in 

voxel based analysis or they can be reduced and analysed according to label atlas based 

methods9,14,18,26,40,49,59. 

 

 
Figure 2.8 Examples of diffusion maps. a) MD diffusion map. b) FA diffusion map. c) FA diffusion map 

with coloured fiber orientation. 
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Also, the information from the eigenvectors can be visualized in these diffusion 

maps by assigning a colour to each diffusion axis59 ( Figure 2.8 c). 

The use of FA and MD maps as features for AD/CN classification shows 

accuracy values between 76.00% and 89.00%9,14,60. 

2.5.3.2. Tractography methods 

Tractography can be considered an extension of DTI, through which the 

directional information, that is stored in the diffusion tensor, is used to construct virtual, 

three-dimensional, white matter maps. These maps are constructed based on similarities 

between the diffusion properties of the neighbouring voxels, in terms of the diffusion 

measurements as well as their orientation9,59. 

Tractography represents the path of least resistance to the water diffusion59. 

White matter tracts are mainly made of myelinated axons and represent all sorts of 

connections in the central nervous system.   

These methods use tractography in order to construct the white matter tracts, 

instead of using voxels or label atlas as a tool for feature generation. After the construction 

of the white matter tracts, they are clustered into various tract bundles, based on an 

anatomical atlas. From these tract bundles, diffusion parameters are calculated and used as 

features for classification9,14. 

Using tractography for feature generation in AD/CN classification problems lead 

to accuracy values between 80.60% and 85.00%9,14. 

2.5.3.3. Connectivity Network Measure methods 

The obtained DTI images are divided into anatomical regions, which contain 

fibers, from which several features can be calculated, and in which it is seen a development 

of connectivity networks that permits a derivation of a collection of network measures, used 

for classification9. 

The connectivity networks are based on regional features, such as fiber count, 

averages of on-fiber FA or MD values and the three principal diffusivities. The network 

measures extracted are raw connectivity matrices, global efficiency, transitivity, path-length, 

modularity, radius and diameter. These measures may be used as features for classification9. 

These methods are being used in MCI/AD conversion prediction rather than 

being a simple AD/CN classifier. 
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2.5.4. Multimodal Studies 

The previous sections have given a wider vision of the different modalities of 

neuroimaging that allow the extraction of biomarkers, which yield complementary 

information about the disease. Thereby, the use of these modalities improves our 

understanding of the vast and complex physiopathology processes behind AD9. 

In multimodal studies the goal is to explore and integrate the different 

biomarkers in a single classification framework. This purpose is achieved with the use of 

two different strategies: one in which the features from the different neuroimaging 

modalities are concatenated into one single data set and the other in which specialized fusion 

methods are used to exploit the multimodal data9. 

2.5.4.1. Straightforward feature concatenation 

Straightforward feature concatenation is by far the simplest of the two previously 

mentioned methods that explore the complementary information between the different data 

sources. In this method, the features from the neuroimaging modalities are simply 

concatenated forming a new feature vector that contains all the information. All features 

from the different modalities are treated as equal in the classification problem9. 

The main component of the multimodal studies is structural MRI. Features from 

structural MRI have been combined with other data: another imaging modality or some other 

factors such as genetics, cognitive tests and even demographics data9. 

These methods achieve classification accuracies between 85.00% and 100.00%9. 

2.5.4.2. Specialized Fusion Methods 

While the previous method seems appealing, due to its own inherent simplicity, 

it suffers from a major flaw. By treating all features equally, there is no way to account for 

their different natures. A major problem arises from this situation when one modality has 

more features than the rest or when the features from one modality have more variation on 

a much larger scale. These factors can lead to prediction models, from classification 

algorithms trained with concatenated features, that ignore some modalities9. 

In order to solve this problem, specialized fusion methods are used to ensure that 

the complementary information from all modalities is being used, either by combining the 

results of classification rules from the individual modalities or by using special combination 

rules to combine features before training9. 
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Ensemble classifier techniques offers a variety of methods to study and combine 

the complementary information from the different sources and will be further explored in 

more detailed in section 2.8. 

When applied to the AD/CN classification problem these techniques shown high 

performance with accuracy values between 85.00% and 95.95%9. 

2.6. Feature Selection 

Neuroimaging data are large in scale, even after the application of the reduction 

techniques previously mentioned and this high dimensionality presents a serious challenge 

to the existing learning methods. This is known as the curse of dimensionality20,61–63. 

The large number of features, in relation to the number of cases, causes the 

learning model to overfit, which results in a degeneration of the performance and in an 

incapability to adapt to new data. To address this problem, various dimensional reduction 

techniques have been studied, and they now represent an important branch in machine 

learning and data mining research areas61–63. 

Feature selection is a widely employed technique that reduces dimensionality. 

The goal of feature selection is to choose a small subset of relevant features from the original 

ones, according to an evaluation criterion, leading to a process that provides a better learning 

performance, lower computational cost and a better model interpretability. Depending on 

whether the data is labelled or not, the technique can be categorized in supervised, 

unsupervised and semi-supervised61–63. 

Real world classification problems require supervised learning where the 

underlying class probabilities and class-conditional probabilities are unknown, and each case 

is associated with a designed class label61,62. 

The relevance of each variable is unknown in andvance, and due to that, to 

provide a better representation of the problem, many candidate features are introduced, 

which in turn results in the existence of irrelevant that do not contribute to the classification 

but affects the learning process, or redundant features that in nothing contribute to the 

classification problem. Removing these kinds of features allows a decrease in the learning 

time and generally produces a better and more robust classifier61,62. 
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Regardless of the technique used, a typical feature selection method consists of 

four steps, subset generation, subset evaluation, stopping criterion and result validation61,62. 

The end goal is to achieve a subset of features that is suited for the problem. 

Subset generation produces a set of candidate features using one of the following 

strategies62: 

▪ The specified size of the subset of features that optimizes an evaluation 

measure; 

▪ The smaller size of subset that satisfies a certain restriction on evaluation 

measures; 

▪ In general, the subset with the best commitment among size and 

evaluation measure;  

Following the choice of one of the previous strategies, there is an evaluation of 

the subset, using a specific criterion. These two steps are repeated until the stopping criteria 

is reached and the best features are selected, taking in account that they are later subjected 

to validation63. 

Although there are many feature selection methods, this chapter will be mainly 

focused on the supervised techniques, since they seem to be the best suited to our work. 

Considering that the features are independent or near-independent, these supervised feature 

selection methods can be broadly organized into filter, wrapper, embedded and hybrid 

methods20. Additional models have been devised for datasets with structured features, where 

dependencies exist, and for streaming features61,63. 

The focus will be on methods for independent or near-independent features, 

mainly those involved in classification tasks.  

2.6.1. Filter Methods 

Filter methods rely on the data’s characteristics and evaluate features without 

utilizing any classification algorithms20,61–63. With filter methods it is possible to rank 

features individually, univariate scheme or in subsets, multivariate scheme. Therefore, is 

easy to foresee the capability of the multivariate scheme to handle redundant features.  

These methods typically consist of two parts.  

Firstly, the features are evaluated and ranked. In this phase, different techniques 

can be used to develop measures that allow the ranking of each feature. These measures can 
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be classified into information, distance, consistency, similarity and statistical. In the end, the 

features with highest ranking are chosen to train the induction algorithm61–63.  

There is a large variety of filtering methods thanks to the combination of the way 

that features are evaluated, and the measure used to rank them. However, not all filtering 

methods can be used for the data mining task, and depending on the task, they vary61–63. A 

summary of most commonly used filter methods for classification are listed in Table 2.1. 

 

Table 2.1 Summary of the most common filter methods. (Adaptation)63 

Name Ranking Technique 

Information gain information 

Gain ration information 

Correlation statistical 

Chi-square statistical 

Inconsistency criterion consistency 

Relief and ReliefF distance 

Laplacian Score similarity 

 

2.6.2. Embedded Methods 

Embedded methods, similarly to wrapper methods, utilize learning algorithms to 

evaluate the features20,61–63. The key difference between these two methods it is that in the 

embedded methods, feature selection is done during the learning phase, meaning that the 

learning algorithm is not only ranking the features for posterior selection but is actively 

selecting the best features as well. These methods are thus embedded in the learning 

algorithm either as its normal or extended functionality61–63. 

These methods combine the advantages of both the filter and wrapper methods, 

specifically the speed of filter methods, only running the learning algorithm one time, which 

in turn leads to a reduction of the computational cost and the feature biases from wrapper 

methods61–63. 
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The most common embedded methods include various types of decision tree 

algorithms, such as CART and random forest, but also other different algorithms like 

adaptive lasso and elastic net regularization61–63. 

 

Referencing section 2.5, these feature selection methods can also be used to 

reduce the dimensionality of neuroimaging features. By assuming each voxel as a feature, 

these selection methods allow the reduction of the n voxels to a subset that can be used in 

classification algorithms. Also, using these methods for reducing the dimensionality of 

features, it is possible to extract new regions of interest for different diseases9. 

2.7. Classification Algorithms 

As seen in section 2.3, Machine Learning (ML) can be used in assisting 

diagnosis. Supervised machine learning algorithms are applied in classification, being able 

to categorize new data from prior given information, improving the ability to make a 

diagnosis.  

Choosing the most suitable learning algorithm for the data is an important step 

and will ultimately affect the performance of the classification model31,64. Depending on the 

problem at hand, the performance of the model can be evaluated based in different 

classification parameters such as accuracy, sensitivity, specificity and the area under the 

Receiver Operating Characteristic (ROC) curve (AUC). Prediction accuracy is often the 

chosen one21,31,34,64. 

The performance parameters can be extracted from the confusion matrix (Figure 

2.9). 



 

 

Differential diagnosis of Alzheimer’s disease based on multimodal imaging data (MRI, PIB, DTI) 
  

 

 

50  2019 

 

 

Figure 2.9 Confusion matrix.  

In the Figure 2.9 TP stands for true positives and represent subjects correctly 

identified as positives, TN stands for true negatives and represent subjects correctly 

identified as negative, FP stands for false positives and represents subjects incorrectly 

identified as positive and finally FN stands for false negatives and represents subjects 

incorrectly identified as negative. 

Through the confusion matrix, accuracy, sensitivity, specificity and balanced 

accuracy can mathematically be defined as: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4) 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑁 + 𝐹𝑃
 (5) 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑃 + 𝐹𝑁
 (6) 

 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
+

𝑇𝑁

𝑇𝑁 + 𝐹𝑁
)/2 (7) 

 

These prediction parameters can be calculated through different methods. The 

simplest approach is to split the data in three parts: two-thirds are for training and the 

remaining third is used to test the performance64. 

Another approach, known as cross-validation, randomly divides the data in k 

different and even sized subgroups: k-1 subgroups are used for training and the remaining 

group is used for testing31,64. The process runs iteratively leaving a different group for testing 
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in each run and computing, at the end, the mean of the evaluation parameters computed at 

each run. 

A special case of cross-validation can also occur, when k is equal to the number 

of cases in the data. Each subset is composed of only a single instance and the method is 

known as leave-on-out31,64. 

The results from these methods, not only can evaluate the global performance of 

the different learning algorithms but also allows to choose the best model that maximizes 

the prediction parameter31. 

The most common learning algorithms for AD classification are logistic 

regression (LR) and support vector machine (SVM)9. 

2.7.1. Logistic Regression 

Regression analysis is a form of classification technique which investigates the 

relation between a dependent (label) and an independent (features) variable65. 

Logistic Regression (LR) is one type of regression analysis and it can be used as 

a classifier. This type of regression is considered a statistical model in which a logit curve is 

fitted to the data, modelling the probability of occurrence of a class65–67. 

This kind of regression can only be applied to binary problems, where the 

dependent variable is dichotomous65,67, but with the use strategies such as ‘one against all’, 

it can also be applied to multi class problems, where the dependent variable can assume more 

than two states. 

The first step of a LR classifier consists in building a logit link function65,66, 

which is a simple transformation that contains the natural log of the odds of the dependent 

variable, occurring or not65,66. 

 ln (
𝑃(𝑦|𝑥)

1 − 𝑃(𝑦|𝑥)
) =  𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑛𝑥𝑛 (8) 

To fit the logistic model, represented in equation (8) towards one set of data, the 

values of the n unknown parameters β must be estimated65. To achieve that purpose different 

estimation methods are used such as noniterative weighted least squares, discriminant 

function analysis and maximum likelihood65. 
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Maximum likelihood estimation algorithm is the most commonly used method 

and it is presented as default in the logistic regression routines of the major software’s 

packages65. The fitted model can then be used to classify new data. 

The main advantages of this learning algorithms are that it can be applied in a 

wide range of problems, since the output is interpreted as probability and they can handle 

nonlinearity, interaction effect and power terms. However, it requires a large sample size in 

order to achieve stable results and it also suffers from multicollinearity problems67. 

As a final note, is important to point out that LR allows the extraction of the 

different values of the β parameters that reflect how the variable contributes to the final 

prediction. These values can possibly be used to further study the importance of each feature 

and to interpret them directly. 

2.7.2. Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a powerful, state-of-the-art algorithm based 

on concepts from the Statistical Learning Theory66,68. This algorithm was designed as a tool 

to solve supervised learning problems and has strong regularization properties that 

theoretically prevent the model from overfitting67,68. 

Geometrically, this method can be interpreted as the search for the optimal 

separating N-dimensional hyperplane, that separates two data classes64,68. The distance 

between the points of either side of the hyperplane and the hyperplane itself is known as 

margin. The goal of the algorithm is thus to maximize the margin and create the largest 

possible distance with a minimum error rate64,68, which means that the greater the margin, 

the better the generalization error of the classifier will be64,68. 

SVM can classify linearly separable and non-linearly separable data64,68. 

If the data is linearly separable, the SVM analysis will attempt to find the N-

dimensional hyperplane that allows the separation of the classes. Afterwards, the optimal 

hyperplane, that is the one which maximizes the margin, is chosen from an infinite number 

of hyperplanes. The data points lying on the margin of the chosen hyperplane are the support 

vector. The solution for the model is represented as a linear combination of these points only 

(Figure 2.10)64,68. 
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Figure 2.10  Visual representation of the SVM analyses (Adaptation)69. 

 

However, if the data is non-linearly separable, as in most of real-world problems, 

the SVM analysis will not be able to find a linear N-dimensional hyperplane capable of 

dividing the classes. Instead of fitting a nonlinear N-dimensional hyperplane to the data, the 

SVM algorithm will map the data to a higher-dimensional space and define the hyperplane 

there64,68.  

This new higher-dimensional space is called feature space. The data is mapped 

to the feature space through a mapping function 𝛟, where a linear solution represents a 

nonlinear solution in the original data space (Figure 2.11)64,68. 

 

 
Figure 2.11 Visualization of the mapping function (Adaptation)70. 
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In the feature space, the mapping function appears only as the data through dot 

products in the form64,68, 

 

 ϕ =  ϕ(𝑥1)𝑇 ∗ ϕ(𝑥𝑗) (9) 

Furthermore, if there is a kernel function K, 

 

 𝐾(𝑥𝑖 , 𝑥𝑗) ≡  ϕ(𝑥1)𝑇 ∗ ϕ(𝑥𝑗) (10) 

 

𝛟 does not need to be determined. Instead, K is the only function needed to be 

used on the training data. Therefore, these kernel functions are a special class of functions 

that allow the calculation of internal products directly in the feature space64,66,68. 

Many kernel functions may be used, depending on the problem at hand, and 

choosing the right one will definitely improve the classification performance. The most 

common kernels used in SVM are the linear kernel, polynomial and the radial basis function 

(RBF)68. 

 

 

The parameter c in equation (11) is and optimal constant. Furthermore, in the 

equations (12) and (13), the parameters, 𝛾, r and d are kernel parameters and they can be 

adjusted to obtain better performances. Also, the parameter c, is the penalty parameter of the 

error term and it is always greater than 068. 

Among all of the previous kernels, the most popular is the RBF, because it has 

lesser hyper parameters in relation to the polynomial kernel, it has less numerical difficulties 

and it maps samples in a nonlinear way68. 

The major flaws of these methods are their complexity, in the choice of the 

kernel and respective parameters and their limitation in speed and size67,68. 

 𝐿𝑖𝑛𝑒𝑎𝑟 𝐾𝑒𝑟𝑛𝑒𝑙: 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖
𝑇 ∗  𝑥𝑗 + 𝑐  (11) 

 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝐾𝑒𝑟𝑛𝑒𝑙: 𝐾(𝑥𝑖 , 𝑥𝑗) = (𝛾𝑥𝑖
𝑇 ∗  𝑥𝑗 + 𝑟) 𝑑 (12) 

 𝑅𝐵𝐹 𝐾𝑒𝑟𝑛𝑒𝑙: 𝐾(𝑥𝑖 , 𝑥𝑗) = exp (−𝛾|𝑥𝑖 − 𝑥𝑗|
2

) , 𝛾 > 0 (13) 
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However, they present high performance, they have a good generalization ability 

and they prevent overfitting67. 

2.8. Classifier Ensemble 

Inspired by human social learning behaviours, ensemble methods are statistical 

and computational learning methods, that seek several opinions before making a decision71. 

Ensembles represent the combination of individual classifier characteristics, 

such as their prediction or learning algorithm, and have the goal of improving upon the 

individual classifier’s performances64,71–73. 

Empirical data has shown that the combination of different classifiers can indeed 

improve the final prediction and it be applied in different fields71,73. 

One field in particular is when different data sources are available71. As 

discussed in the section 2.5.4.2, the specialized fusion techniques applied to multimodal 

approaches are none other than ensemble methods. 

The reasons used in order to explain the better performance of these methods 

over a single learner can be classified roughly into three categories: overfitting avoidance, 

computational advantage and representation71,72. 

The first reason is referent to the cases where small amounts of data are available. 

In these types of cases, the individual learning may find different hypotheses predicting the 

training data, with lower training error - optimal solution - but are incapable of generalizing 

this to future given data71,72. Therefore, the combination of different classifiers reduces the 

risk of choosing only one of these hypotheses, and as consequence improves the general 

performance71,72. 

The second reason is concerning the sense that individual classifiers may get 

stuck at a local optimal solution. During the training phase, an error function is minimized 

in order to find the best solution. However, the error function can present different local 

minima that unable the learning algorithm to reach the global optimal solution. By 

combining different models, ensemble methods can avoid this suboptimal solutions and find 

a better solution71,72. 

The last reason arises from the possibility that the optimal hypothesis could be 

outside the space of any single model. Therefore, the combination of different models 
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expands the space of representable functions that now can embrace the true optimal 

hypothesis71,72. 

Ensemble techniques can be divided into two phases71–73. The first phase 

involves the process of generation of a set of different base classifiers72,73. This is followed 

by the second phase, the combination phase, where the output of the different base classifiers 

is combined into a single output72,73. 

There is a great variety of methods for both the generation and the combination 

of the base classifiers. This makes the classification and organization of the ensemble 

methods difficult71. 

Regarding the generation phase, ensemble methods can be classified as either 

non generative or generative71. 

Generative methods focus more on the generation phase. These methods actively 

generate sets of base classifiers and their main focus is to intervene on the learning of these 

classifiers or on the structure of the data, in order to improve diversity as well as the accuracy 

of the base classifiers71,72. This ought to be achieved using several approaches such as input 

manipulation, manipulated learning algorithm, partitioning and hybridization72,73. 

On the other hand, non-generative methods do not actively generate new base 

classifiers. Instead, these methods restrict themselves to combine, in the best suitable way, a 

set of previously well-designed base classifiers71. The focus is not on the generation phase, 

but only on the combination phase. 

In regard to the combination phase, ensemble methods can be divided into either 

fusion or selection methods71,73. 

Fusion methods refer to the process of integration of the base classifier’s outputs 

into a single output. Methods such as weighting and meta-learning are commonly used71–73. 

In weighting methods, the ensemble output is given through assigning weights 

to each base classifier72. These methods are best suited when the base classifiers have 

comparable performances72. 

The most common and simplest weighting method is majority voting71,72. The 

idea behind this method is to define the final output as the class which collects the majority 

of votes from the base classifiers71,72. 

Meta-learning methods have more than one learning stage71,72, which means that 

the output of the base classifiers serves as input to the meta-learner, which in turn generates 
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the final output71,72. These methods are suitable for cases where the base classifiers have 

different performances and are trained in different subspaces72. 

Selection methods are another approach to combine the decision of base 

classifiers. These methods try to find the optimal subset of base classifiers generated and 

presuppose that not all base classifiers contribute to a final decision and that only a restrict 

group can achieve the best possible performance73. After the selection of a final set of 

classifiers, the output of the ensemble model can be divided in picking the base classifier 

with the best performance or in combining, in some way, the set of classifiers71. Static and 

dynamic selection are the selection methods used in this combination technique and further 

information can be found in71,73. 

Combining different techniques from both generation and combination, a vast 

number of ensemble methods can be constructed. 

 

 

 

 

  



 

 

Differential diagnosis of Alzheimer’s disease based on multimodal imaging data (MRI, PIB, DTI) 
  

 

 

58  2019 

 

 



 

 

  Methods 

 

 

Daniel Andrade Pinho Agostinho  59 

 

 

3. METHODS 

Chapter 3 will focus in the representation and exploration of the general 

workflow of this study. The chapter is divided in 6 sections, describing the different methods 

used to analyse and evaluate each neuroimaging modalities. 

3.1. Participants 

To achieve the goal of the thesis the original data were divided into four groups. 

Each group was constructed in the most balanced way possible and used for 

different objectives. 

In Table 3.1 we summarize the information of the four groups. 

 

Table 3.1 Demographics for the study population. 

 CN (n=21) AD (n=20) 

Age (years) 65.9±6.8 66.3±6.9 

Gender (male/female) 10/11 10/10 

a) MRI   

 CN (n=21) AD (n=17) 

Age (years) 65.9±6.8 66.4±7.3 

Gender (male/female) 10/11 8/9 

b) PIB   

 CN (n=20) AD (n=17) 

Age (years) 66.4±6.5 65.8±7.3 

Gender (male/female) 10/10 9/8 

c) DTI   

 CN (n=20) AD (n=16) 

Age (years) 66.4±6.5 65.6±7.4 

Gender (male/female) 10/10 9/7 

d) Ensemble   
Age value is defined as mean ± standard deviation 
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3.2. Preprocessing 

The first common step between all the image modalities was converting all the 

images from DICOM format to NII format. Afterwards, standard preprocessing was applied, 

before further data processing.  

The preprocessing of the T1-weight MR brain imagens started by manually 

aligning each image, so that origin of the image was the anterior commissure (AC). This step 

is important since the preprocessing tools used assume that the origin of the image is there. 

After the alignment, T1-weighted MR brain images were preprocessed using the 

Computational Anatomy Toolbox version 12 (CAT12), (www.neuro.uni-

jena.de/cat/index.html), for Statistical Parametric Mapping 12 (SPM12), 

((www.fil.ion.ucl.ac.uk/spm/software/spm12/), in the MatLab environment, 

(www.mathworks.com). The images were preprocessed using the segment data option of the 

toolbox. This preprocessing can be roughly summed to the following: tissue inhomogeneity 

correction; tissue segmentation into grey matter (GM), white matter (WM) and cerebrospinal 

fluid (CSF); spatial normalization into the ICBM space using the Dartel template. 

PET-PIB images were preprocessed using SPM12. Firstly, the sum image that 

reflects the total accumulation was calculated and then coregisted to the corresponded T1-

weighted image. This allows the application of the same spatial normalization 

transformation from the T1-weighted image to the PET-PIB image, providing a more 

accurate spatial normalization.  

The sum image was spatially normalized to the T1 MRI template ICBM152, 

given by SPM12. The normalized images were then visually inspected in order to verify the 

existence of flagrante imperfections.  

Lastly, the normalized imagens were smoothed, using SPM12 smoothing and a 

gaussian smoothing kernel, with full width at half maximum (FWHM) of 8mm. 

From the Diffusion Weighted images (DWIs), the Diffusion Tensor Images 

(DTI) were constructed using ExploreDTI, (www.exploredti.com). DTI was then corrected 

for head motion, eddy currents and EPI distortions, with deformation axes set to [1 0 0] and 

image type set to FA. After the correction, the DTI was spatially normalized to FA atlas 

template SRI24, (www.nitrc.org/frs/?group_id=214) or to FA atlas template IIT Human 

http://www.neuro.uni-jena.de/cat/index.html
http://www.neuro.uni-jena.de/cat/index.html
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.mathworks.com/
http://www.exploredti.com/
http://www.nitrc.org/frs/?group_id=214
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Brain Atlas, (www.nitrc.org/frs/?group_id=432) or to FA atlas template ICBM, 

(identifiers.org/neurovault.collection:264). 

3.3. Feature Generation 

After preprocessing the neuroimages, features were generated in order to be 

posteriorly be used in classification problems. 

Tissue density maps, from the preprocessed T1-weighted MR images, were then 

analysed using region or label-based morphometry (RBM). RBM, is a type of predefined 

atlas analysis that allows the estimation of regional tissue volumes and cortical thickness 

values from different volumes or surface based atlas maps.  

This method was implemented using the CAT12 toolbox for SPM 12, in MatLab 

environment, and both volumetric features and surface features were generated. 

The Cobra, Hammers, Neuromorphometrics and lpba40 atlas were used to 

generate volumetric features from the different brain tissues: White Matter (WM), Grey 

Matter (GM) and Cerebrospinal Fluid (CSF). The resulting absolute values were then used 

as features for the classification. 

Surface features were generated from a2009, DK40 and HCP brain surface atlas. 

The feature values extracted from the different atlas regions of interest were Thickness and 

Gyrification values. 

In Table 3.2 we summarize the results of MRI feature generation and how we 

define each model. 

Table 3.2 MRI-based models 

Atlas Modality Model Name 

Cobra 
GM 𝐶𝑜𝑏𝑟𝑎𝐺𝑀 

WM 𝐶𝑜𝑏𝑟𝑎𝑊𝑀 

Hammers 

GM 𝐻𝑎𝑚𝑚𝑒𝑟𝑠𝐺𝑀 

WM 𝐻𝑎𝑚𝑚𝑒𝑟𝑠𝑊𝑀 

CSF 𝐻𝑎𝑚𝑚𝑒𝑟𝑠𝐶𝑆𝐹 

Lpba40 GM 𝐿𝑝𝑏𝑎40𝐺𝑀 

Neuromorphometrics 
GM 𝑁𝑒𝑢𝑟𝑜𝐺𝑀 

CSF 𝑁𝑒𝑢𝑟𝑜𝐶𝑆𝐹 

http://www.nitrc.org/frs/?group_id=432
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A2009 
Gyrification 𝑎2009𝐺𝑦𝑟𝑖 

Thickness 𝑎2009𝑇ℎ𝑖𝑐𝑘 

DK40 
Gyrification 𝐷𝐾40𝐺𝑦𝑟𝑖 

Thickness 𝐷𝐾40𝑇ℎ𝑖𝑐𝑘 

HCP 
Gyrification 𝐻𝐶𝑃𝐺𝑦𝑟𝑖 

Thickness 𝐻𝐶𝑃𝑇ℎ𝑖𝑐𝑘 

 

For the preprocessed PET-PIB images, 19 regions of interest masks were 

applied, and the mean value of intensity extracted. These regions values were then 

normalized to dose injected and the body mass index (BMI), defined as (14): 

 𝐵𝑀𝐼 =  
𝑤𝑒𝑖𝑔ℎ𝑡 (𝑘𝑔)

ℎ𝑒𝑖𝑔ℎ𝑡 (𝑚)2
 (14) 

Furthermore, the final set of features were generated using Standard Uptake 

Value Ratio (SUVR). The SUVR was calculated for all the regions of interest using different 

reference regions: Cerebellum, WM and the GM, and the final models are defined as 

𝑆𝑈𝑉𝑅𝐶𝑒𝑟𝑒, 𝑆𝑈𝑉𝑅𝑊𝑀 and 𝑆𝑈𝑉𝑅𝐺𝑀 respectively.  

 All three different regions were defined on the T1 MRI template ICBM152. 

DTI features were generated following a similar structure to T1-weighted MR 

images, but instead of generating volumetric or surface values, in this case diffusion metrics 

were extracted from different label atlas: lpba40, (www.nitrc.org/frs/?group_id=214), Desikan, 

Destrieux, (www.nitrc.org/frs/?group_id=432), Hammers and JHU, 

(identifiers.org/neurovault.collection:264). Using the ExploreDTI software, 

(www.exploredti.com/), the diffusion metrics were generated from the different atlas.  

Only the mean fractional anisotropy (FA) and mean diffusivity (MD) of the 

various atlas regions were considered as features. 

Table 3.3 summarizes the results of DTI feature generation and how we define 

each model. 

 

 

 

 

https://www.nitrc.org/frs/?group_id=214
https://www.nitrc.org/frs/?group_id=432
https://identifiers.org/neurovault.collection:264
http://www.exploredti.com/
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Table 3.3 DTI-based models. 

Atlas Modality Model Name 

Lpba40 
FA 𝐿𝑝𝑏𝑎40𝐹𝐴 

MD 𝐿𝑝𝑏𝑎40𝑀𝐷 

Desikan 
FA 𝐷𝑒𝑠𝑖𝑘𝑎𝑛𝐹𝐴 

MD 𝐷𝑒𝑠𝑖𝑘𝑎𝑛𝑀𝐷 

Destrieux 
FA 𝐷𝑒𝑠𝑡𝑟𝑖𝑒𝑢𝑥𝐹𝐴 

MD 𝐷𝑒𝑠𝑡𝑟𝑖𝑒𝑢𝑥𝑀𝐷 

Hammers 
FA 𝐻𝑎𝑚𝑚𝑒𝑟𝑠𝐹𝐴 

MD 𝐻𝑎𝑚𝑚𝑒𝑟𝑠𝑀𝐷 

JHU 
FA 𝐽𝐻𝑈𝐹𝐴 

MD 𝐽𝐻𝑈𝑀𝐷 

3.4. Feature Selection 

After feature generation, feature selection methods were applied using R Study 

environment, https://www.r-project.org/, in order to select the best feature subset of each 

model. Due to the limited number of cases a limit of 8 features was set, 1 feature for each 5 

cases to be selected. 

In order to validate the selection, two different methods of feature selection were 

applied: a filter based method (FBM) and an embedded based method (EBM). 

Both feature selection methods are composed of two phases, the first is a ranking 

phase here the features are ranked using a defined criterion and the second is a refined 

selecting phase that intends to remove irrelevant and redundant features. 

The filter based method consists of using Student’s t-test to rank each feature 

individually, accordingly to their t-value. To achieve this the data is divided into two groups, 

one with the CN cases and other with the AD cases, and the t-student test is applied for all 

the variables individually extracting the t and p values for each variable. 

After sorting the features, from the highest to the lowest t-values, they were 

filtered, using the criteria of p<0.05. Only features with p values smaller than 0.05 are 

selected and used in the next phase. 

https://www.r-project.org/
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Afterwards, a refined filter was applied, using the Pearson correlation (r). The 

Pearson correlation was calculated for all variables and a nxn matrix created. In this matrix 

each row represents a feature and the colons the Pearson correlation between the variable 

and all the others. 

Using this correlation matrix, we removed all the features that had an absolute 

correlation value greater than 0.55 (│r│> 0.55) in relation to the most important feature, 

which is the one with highest t-value and placed at the first row of the correlation matrix. 

Furthermore, the resultant features were evaluated, from the second row until the 

n-1 row. The cut-off criteria in this case was an absolute correlation value greater than 0.70 

(│r│> 0.70), those that exceed that value were excluded (Figure 3.1 a). 

Theoretically, the main objective of this refined filter is to try to achieve 

orthogonality between the main feature and all the other features as well as to remove the 

redundant information from features. 

The embedded based method is similar to the filter based method, applying the 

same refined filter technique. The main difference is on how the features are ranked. 

In this method the features are ranked according to the importance of each 

variable, which is given by a classification algorithm, in this case, we used random forest. 

All variables were divided in sets of 8 features constructed randomly and the 

data was divided in two groups to simulate the final environment that will be used to train 

the final classifiers. The learning algorithm was used on the different sets of features and the 

importance of each feature stored. This process was repeated 2000 times and the final value 

of importance was established as the mean importance value of each feature. 

After extracting the final importance value, the features were sorted form the 

biggest to the smallest importance values and a filter was applied to remove all the features 

that exhibited an importance value lesser than 0.55 times of the most important feature. This 

was done to prevent the use of possible irrelevant features (Figure 3.1 b). 



 

 

  Methods 

 

 

Daniel Andrade Pinho Agostinho  65 

 

 

Figure 3.1 Illustration of the feature selection methods used. a) Filter Based Method (FBM). b) Embedded 

Based Method (EBM). 

 

3.5. Classification 

All the classifiers were constructed using Python 3.7, https://www.python.org/, 

and resorting to the scikit-learn package, https://scikit-learn.org/stable/. 

Before any learning algorithm has been applied, all feature vectors were 

standardized to zero mean and variance one. This was achieved by subtracting the mean to 

each feature vector, and then dividing it by the standard deviation (15). This was meant to 

improve the performance of the learning algorithm. 

 

 𝑥′ =
𝑥 −  𝑥̅

𝜎
 (15) 

 

With all the data standardized, the data was split into two groups, 80% used for 

training and 20% for testing. The splitting was performed such that both groups were as 

balanced as possible. 

The training group was evaluated, using 8-fold cross validation, and assured that 

every fold was balanced. The best performance model from the training set was then selected 

using the criteria of best accuracy and validated using the test data (Figure 3.2). The values 

https://www.python.org/
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of accuracy, sensitivity, specificity and the ROC curve and AUC, from this last evaluation 

where stored and used to evaluate the final performance of the model. 

 

 

Figure 3.2 Scheme of the process used for validation of all models. 

 

This process was repeated 2000 times, and the classifiers overall performance 

was primarily evaluated using the mean ROC curve and the mean AUC. 

Furthermore, parameters such as mean accuracy, sensitivity and specificity were 

used in order to distinguish the classifiers that have similar performance measurements, as 

well as to select those that will be used in the ensemble phase. 

The learning algorithms applied were the support vector machine (SVM) and the 

logistic regression. 

SVM classifier was constructed using the radial basis function (RBF) kernel, the 

gamma value set to “scale” and the value of C set to the default value of 0.1. 

The logistic regression was constructed with the random state set to 0 and the 

multi class set to “auto”, and was solved using the “lbfgs” solver, taking into account that all 

of the other parameters were left as default. 

The goal here was to construct three robust base classifiers, one for each image 

modality, that can be used in the ensemble phase. 
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3.6. External Validation 

In order to perform external validation, we gather another dataset, obtained from 

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu).  

The ADNI was launched in 2003 as a public-private partnership, led by Principal 

Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether 

serial magnetic resonance imaging (MRI), positron emission tomography (PET), other 

biological markers, and clinical and neuropsychological assessment can be combined to 

measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease 

(AD). 

The data downloaded from ADNI database, were organized into three groups of 

data that were constructed aiming to validate. The demographics information of each group 

is summarized in Table 3.4. 

 

Table 3.4 Demographics for the ADNI external data. 

 CN (n=164) AD (n=166) 

Age (years) 76.5±5.9 75.1±7.9 

Gender (male/female) 77/87 83/83 

a) External MRI   

 CN (n=31) AD (n=24) 

Age (years) 79.5±5.8 74.4±8.0 

Gender (male/female) 19/12 18/6 

b) External PIB   

 CN (n=71) AD (n=77) 

Age (years) 72.7±7.2 73.7±8.4 

Gender (male/female) 28/43 40/37 

c) External DTI   
 

Age value is defined as mean ± standard deviation 

 

To evaluate the performance of our classifiers, the most promising classifiers 

were test with these external data. For each modality, the external data were processed in the 
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same way as before. Following this, the classifiers were evaluated from the most promising 

to the least until one, from each image modality, could perform in a similar pattern as in the 

internal data. 

For each classifier, the performance of each classifier was evaluated using a 

similar strategy as before (Figure 3.2). Here 100 models were create using the previous 

method and the one with the best performance selected to be validated with the external data. 

This process was repeated 1000 times and for each run the values of accuracy, sensitivity, 

specificity and balanced accuracy stored. As in the previous method the final performance 

of the classifier was defined as the mean values of the performance parameters extracted. 

 

 

Figure 3.3 Scheme of the process used for external validation of the models. 

 

3.7. Ensemble Classifiers 

The performance of the final classifiers was tested with all the internal data and 

the potential of combining all the image modalities was assessed. 

To ensemble the classifiers a non-generative weighted fusion technique was 

used, and the previously constructed and validated classifiers were combined in order to 

generate a final decision. 

The base classifiers were combined using a weight value between 0 and 1, that 

was applied to the predicted probability, given from each of the base learning algorithm. 

 

 𝑌𝑖 = 𝑐1𝑦1𝑖
+ 𝑐2𝑦2𝑖

+ 𝑐3𝑦3𝑖
 (16) 
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In equation (16), 𝑌𝑖 stands for the final ensemble prediction probability, 𝑦1𝑖
 for 

the predicted probability, given by the classifier trained using a MRI-based model, 𝑦2𝑖
 for 

the predicted probability, given by the classifier trained using a PIB-based model and 𝑦3𝑖
 for 

the predicted probability, given by the classifier trained using a DTI-based model. Lastly, 

𝑐1, 𝑐2 and 𝑐3 are weights applied to the different modalities, such as c1+c2+c3 = 1. 

In order to evaluate the overall performance of the ensemble method, the 

individual classifiers, one for each modality, were constructed as in the same way as before 

(Figure 3.2). As in the external validation, also here, 100 models were constructed for each 

classifier and the one with the best performance selected to predict the ensemble data. The 

prediction of each classifier were then combined using the equation (16) and the performance 

parameters of accuracy, sensibility and specificity stored. The final performance of the 

ensemble method was defined as the mean value of the performance parameters. 

Furthermore, the mean ROC curves from the individual classifiers and the ensemble 

classifier where also calculated. 

 

 

Figure 3.4 Scheme of the process used for validation of the ensemble technique. 

 

The validation of the ensemble technique was also tested using the external data, 

but unfortunately, only the validation through the combination of MRI and DTI models was 

possible from the external data collected. 
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4. RESULTS AND DISCUSSION 

4.1. Feature Selection 

In this section we present the results of the feature selection methods. 

Due to the high number of models tested, Table 4.1 shows a summary of the 

results. The full list can be consulted in Table S.1. 

 

Table 4.1 Summary of the feature selection methods 

Model Feature Selection 

Method 

Number of total 

Features 

Final Number of 

Features 

𝑵𝒆𝒖𝒓𝒐𝑮𝑴 EBM 
142 

41 

FBM 10 

𝑯𝑪𝑷𝑻𝒉𝒊𝒄𝒌 EBM 
362 

202 

FBM 54 

𝑫𝒆𝒔𝒊𝒌𝒂𝒏𝑭𝑨 EBM 
84 

58 

FBM 6 

𝑺𝑼𝑽𝑹𝑾𝑴 EBM 
19 

2 

FBM 3 

EBM: Embedded Based Method; FBM: Filter Based Method 

 

From Table 4.1 it is possible to conclude that the general tendency is that the 

embed based method (EBM) allows the selection of more features in relation to the filter 

based method (FBM). The exception is the 𝑆𝑈𝑉𝑅𝑊𝑀 model. These tendencies remain true 

for all the other models, not shown in this table, but presented in Table S.1. 

Another important subject to analyse is about the features that are selected by 

each method. 

In Figure 4.1, we present the results of the ranking phase of the two feature 

selection methods for the 𝑁𝑒𝑢𝑟𝑜𝐺𝑀model. Due to the number of features we only choose to 

present the top 15 features. 
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Figure 4.1 Results of feature ranking for 𝑵𝒆𝒖𝒓𝒐𝑮𝑴 model, a) FBM features ranking. b) EBM features 

ranking. A glossary for the acronym’s names can be found in Table S.5. 

 

Although in different order, is possible to perceive from Figure 4.1 that both 

methods considered the same bag of features as the most relevant. The fact that two different 

methods consider the same features as the best, allows us to the be more confident that, for 

each model, the final set of features will be composed of the most relevant for the problem 

in question. 

Furthermore, due to ours feature selection method refined filter phase, the final 

sets of features depend on the most important feature and might differ slightly or in some 

cases differ a lot. Figure 4.2 shows the final feature set of the previous model shown. It is 

possible to notice the difference between the two final sets even though they rank the same 

feature as the most important. 



 

 

  Results and Discussion 

 

 

Daniel Andrade Pinho Agostinho  73 

 

 
Figure 4.2 Final feature set for the 𝑵𝒆𝒖𝒓𝒐𝑮𝑴 model. a) FBM final set of features. b) EBM final set of 

features. A glossary for the acronym’s names can be found in Table S.5. 

 

Although only the results from one model are being presented, all of the other 

models follow the same trend, here the feature ranking method selects the same bag of 

features as the most important and the final set differ from each other due to the refined filter 

phase. The remaining results can be consulted in Supplement A. 

4.2. Base Classifiers Evaluation 

In this section we present the performance of the base classifier’s models for 

AD/CN classification, using SVM and Logistic Regression (LR). 

To facilitate the analysis this section is divided into three subsections, each one 

corresponding to modality of image. The full list of the classifier’s performance can be found 

in Table S.6. 
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4.2.1. MRI-Based Classifiers 

 

Table 4.2 and Table 4.3 present a summary of the performance of the volume-

based and surface-based classifiers, respectively. For each model, the area under the 

Receiving Operating Characteristic (ROC) curve (AUC), mean accuracy, mean sensitivity 

and mean specificity are shown. The full data can be found in Table S.6. 

 

Table 4.2 Summary of the classification performance of volume-based classifiers. 

AUC value is defined as (mean ± standard deviation) 

SVM performance was evaluated primarily by the AUC values and was divided 

in two (Table 4.2). SVM EBM shows a similar median performance for 𝐶𝑜𝑏𝑟𝑎𝐺𝑀 

(0.87±0.13) and the 𝐻𝑎𝑚𝑚𝑒𝑟𝑠𝐺𝑀 (0.85±0.15) models, and ranges from 𝐿𝑝𝑏𝑎40𝐺𝑀 

(0.76±0.21) to 𝑁𝑒𝑢𝑟𝑜𝐺𝑀 (0.96±0.07) model. Regarding SVM FBM it can be notice that 

𝐻𝑎𝑚𝑚𝑒𝑟𝑠𝐺𝑀 and 𝐿𝑝𝑏𝑎40𝐺𝑀 presented the smallest AUC (0.76±0.21) and (0.77±0.17), 

respectively. The 𝑁𝑒𝑢𝑟𝑜𝐺𝑀 (0.93±0.09) model performs the best, and 𝐶𝑜𝑏𝑟𝑎𝐺𝑀 (0.87±0.13) 

has a median performance. 

LR performance was evaluated in the same way as SVM (Table 4.2). LR EBM 

shows a similar pattern to SVM EBM with the smallest performance for 𝐿𝑝𝑏𝑎40𝐺𝑀 

(0.78±0.16) model, two median performance models 𝐶𝑜𝑏𝑟𝑎𝐺𝑀 (0.84±0.14) and  

Model 

Feature 

Selection 

Method 

SVM Logistic Regression 

AUC 
Mean 

Accuracy 

Mean 

Sensitivity 

Mean 

Specificity 
AUC 

Mean 

Accuracy 

Mean 

Sensitivity 

Mean 

Specificity 

𝑪𝒐𝒃𝒓𝒂𝑮𝑴 
EBM 0.87±0.13 76.13% 76.06% 76.19% 0.84±0.14 76.14% 73.28% 79.00% 

FBM 0.87±0.13 82.08% 73.63% 90.54% 0.83±0.14 72.76% 74.09% 71.44% 

𝑯𝒂𝒎𝒎𝒆𝒓𝒔𝑮𝑴 
EBM 0.85±0.15 74.79% 66.14% 83.44% 0.86±0.12 78.68% 74.60% 82.75% 

FBM 0.76±0.21 72.92% 67.26% 78.57% 0.83±0.14 73.09% 71.51% 74.68% 

𝑳𝒑𝒃𝒂𝟒𝟎𝑮𝑴 
EBM 0.76±0.21 70.28% 61.16% 79.40% 0.78±0.16 70.21% 66.65% 73.78% 

FBM 0.77±0.17 73.93% 67.23% 80.64% 0.85±0.13 73.99% 76.66% 71.32% 

𝑵𝒆𝒖𝒓𝒐𝑮𝑴 
EBM *0.96±0.07 *92.05% 86.78% 97.32% 0.93±0.09 85.13% 76.98% 93.27% 

FBM *0.93±0.09 *86.02% 82.70% 89.34% 0.95±0.08 86.98% 84.98% 89.53% 

**𝑪𝒐𝒃𝒓𝒂𝑾𝑴 
EBM 0.87±0.13 76.13% 76.06% 76.19% 0.92±0.10 80.64% 78.41% 79.00% 

FBM 0.86±0.13 77.06% 73.63% 90.54% 0.91±0.10 79.34% 77.54% 81.54% 
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𝐻𝑎𝑚𝑚𝑒𝑟𝑠𝐺𝑀 (0.86±0.12) and a higher performance 𝑁𝑒𝑢𝑟𝑜𝐺𝑀 (0.93±0.09). LR FBM shows 

three similar performance 𝐶𝑜𝑏𝑟𝑎𝐺𝑀 (0.83±0.14), 𝐻𝑎𝑚𝑚𝑒𝑟𝑠𝐺𝑀 (0.83±0.14) and 𝐿𝑝𝑏𝑎40𝐺𝑀 

(0.85±0.13) models and a higher performance 𝑁𝑒𝑢𝑟𝑜𝐺𝑀 (0.95±0.08). 

Figure 4.3 depicts the mean ROC curves for each analysis presented in Table 

4.2. Graphs a) and c) were derived from SVM using the EBM and FBM feature selection 

methods respectively. Graphs b) and d) were derived from LR using EBM and FBM feature 

selection methods respectively. 

 

 
Figure 4.3 Mean ROC curve of Volume-based models. a) SVM classifiers using EBM feature set. b) 

Logistic Regression classifiers using EBM feature set. c) SVM classifiers using FBM feature set. d) Logistic 

Regression classifiers using FBM feature set. 

 

 

 

 



 

 

Differential diagnosis of Alzheimer’s disease based on multimodal imaging data (MRI, PIB, DTI) 
  

 

 

76  2019 

 

Table 4.3 Summary of the classification performance of surface-based classifiers. 

AUC value is defined as (mean ± standard deviation) 

 

The surface-based classifiers (Table 4.3) were evaluated in the same way as the 

volume-based classifiers (Table 4.2). 

SBM EBM shows a 𝐷𝐾40𝐺𝑦𝑟𝑖 model with the smallest AUC (0.76±0.18) and 

three similar high performances for the 𝑎2009𝐺𝑦𝑟𝑖 (0.91±0.10), 𝑎2009𝑇ℎ𝑖𝑐𝑘 (0.90±0.11) and 

𝐻𝐶𝑃𝑇ℎ𝑖𝑐𝑘 (0.93±0.09) models. Regarding SVM FBM it is possible to notice a similar 

performance for 𝑎2009𝐺𝑦𝑟𝑖 (0.85±0.13) and  𝑎2009𝑇ℎ𝑖𝑐𝑘 (0.84±0.14) models. The 

𝐷𝐾40𝐺𝑦𝑟𝑖 model performs the worst (0.78±0.17) and the 𝐻𝐶𝑃𝑇ℎ𝑖𝑐𝑘 (0.93±0.09) model 

performs the best. 

LR EBM shows a similar pattern to SVM EBM with three similar high 

performances from the 𝑎2009𝐺𝑦𝑟𝑖 (0.89±0.11),  𝑎2009𝑇ℎ𝑖𝑐𝑘 (0.92±0.10) and 𝐻𝐶𝑃𝑇ℎ𝑖𝑐𝑘 

(0.89±0.11) models and a 𝐷𝐾40𝐺𝑦𝑟𝑖 model with the smallest AUC value (0.80±0.15). Lastly, 

LR FBM as SVM FBM shows a similar median performance for 𝑎2009𝐺𝑦𝑟𝑖 (0.89±0.11) and 

 𝑎2009𝑇ℎ𝑖𝑐𝑘 (0.85±0.13) models, and ranges from 𝐷𝐾40𝐺𝑦𝑟𝑖 (0.82±0.14) to 𝐻𝐶𝑃𝑇ℎ𝑖𝑐𝑘 

(0.93±0.08). 

Figure 4.4 illustrates the mean ROC curves for each analysis presented in Table 

4.3. Graphs a) and c) were derived from SVM using the EBM and FBM feature selection 

methods respectively. Graphs b) and d) were derived from LR using EBM and FBM feature 

selection methods respectively. 

Model 

Feature 

Selection 

Method 

SVM Logistic Regression 

AUC 
Mean 

Accuracy 

Mean 

Sensitivity 

Mean 

Specificity 
AUC 

Mean 

Accuracy 

Mean 

Sensitivity 

Mean 

Specificity 

𝒂𝟐𝟎𝟎𝟗𝑮𝒚𝒓𝒊 
EBM 0.91±0.10 83.01% 86.98% 79.04% 0.89±0.11 81.91% 81.84% 81.99% 

FBM 0.85±0.13 76.45% 77.70% 75.20% 0.89±0.11 81.37% 83.37% 79.46% 

𝒂𝟐𝟎𝟎𝟗𝑻𝒉𝒊𝒄𝒌 
EBM 0.90±0.11 81.89% 81.93% 81.87% 0.92±0.10 84.78% 84.01% 85.54% 

FBM 0.84±0.14 81.47% 82.76% 80.18% 0.85±0.13 80.13% 79.53% 80.74% 

𝑫𝑲𝟒𝟎𝑮𝒚𝒓𝒊 
EBM 0.76±0.18 69.13% 73.14% 65.11% 0.80±0.15 67.88% 66.79% 68.98% 

FBM 0.78±0.17 69.57% 73.99% 65.15% 0.82±0.14 68.84% 69.65% 68.03% 

𝑯𝑪𝑷𝑻𝒉𝒊𝒄𝒌 
EBM *0.93±0.09 *84.28% 83.055 85.495 0.89±0.11 83.16% 80.71% 85.60% 

FBM *0.93±0.09 *88.07% 84.59% 91.55% 0.93±0.08 87.02% 85.15% 88.89% 
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Figure 4.4 Mean ROC curve of Surface-based classifiers. a) SVM classifiers using EBM feature set. b) 

Logistic Regression classifiers using EBM feature set. c) SVM classifiers using FBM feature set. d) Logistic 

Regression classifiers using FBM feature set. 

 

The results shown that our MRI-based classifiers have an overall great potential 

in the AD/CN classification. Also, when comparing the performance of our models with 

those used in the state of the art, our best performing model for both volume (92.05%) and 

surface-based (88.07%) methods has shown a similar performances to those used in the state 

of the art with performance intervals of (84.00% and 94.50%)9,22,33,55 and (86.70 and 

95.00%)9 respectively. 

Our models show in general high accuracy and a better specificity than 

sensitivity. Furthermore, it is possible to see that EBM models have the tendency of 

performing in a similar or better way than the FBM models which was also expected. 

Regarding the learning algorithms we did not see a great disparity between SVM 

and LR models. Both have similar performances, though, we can make the case that overall 
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the SVM models can have a slight advantage in their performance when considering the 

mean accuracy, sensitivity and specificity.  

Even with no optimization of our classifier’s parameters, they have achieved an 

excellent ability for AD/CN classification and can only be improved. 

One model present in Table 4.2 and which is not mentioned in the analysis is the 

𝐶𝑜𝑏𝑟𝑎𝑊𝑀 model. WM models are not usually used in the study of AD/CN classification. 

However, the 𝐶𝑜𝑏𝑟𝑎𝑊𝑀 model has shown a performance similar to the GM models and the 

study of the WM regions selected for this classifier (Supplement A) could be an interesting 

study topic. 

4.2.2. PIB-Based Classifiers 

 

Similarly to the previous analyses we start by presenting in Table 4.4 the results 

of the classification performance of PIB-based classifiers. For each model we present the 

area under the Receiving Operating Characteristic (ROC) curve (AUC), mean accuracy, 

mean sensitivity and mean specificity. The full data can be found in Table S.6. 

 

Table 4.4 Classification performance of PIB based models. 

AUC value is defined as (mean ± standard deviation) 

 

Here both SVM and LR analyses, as well as EBM and FBM analyses, shows 

similar performing models. The values of AUC for all models are always above 0.90 and 

very close to each other. 

Model 

Feature 

Selection 

Method 

SVM Logistic Regression 

AUC 
Mean 

Accuracy 

Mean 

Sensitivity 

Mean 

Specificity 
AUC 

Mean 

Accuracy 

Mean 

Sensitivity 

Mean 

Specificity 

𝑺𝑼𝑽𝑹𝑪𝒆𝒓𝒆 
EBM 0.94±0.10 86.96% 96.03% 80.16% 0.96±0.07 91.34% 97.13% 87.0% 

FBM 0.95±0.08 87.55% 95.77% 81.59% 0.97±0.05 87.99% 93.10% 84.16% 

𝑺𝑼𝑽𝑹𝑮𝑴 
EBM *0.97±0.06 *92.34% 98.63% 87.63% 0.95±0.07 88.12% 93.05% 84.43% 

FBM 0.97±0.06 87.66% 96.27% 81.20% 0.96±0.07 87.65% 91.60% 84.69% 

𝑺𝑼𝑽𝑹𝑾𝑴 
EBM *0.93±0.10 *90.53% 92.00% 89.43% 0.95±0.07 89.81% 88.93% 90.48% 

FBM *0.93±0.11 *93.80% 99.63% 89.43% 0.96±0.07 90.81% 90.93% 90.71% 
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Like in the previous analysis, Figure 4.5 shows the mean ROC curves for each 

analysis presented in Table 4.4. Graphs a) and c) were derived from SVM using the EBM 

and FBM feature selection methods respectively. Graphs b) and d) were derived from LR 

using EBM and FBM feature selection methods respectively. 

 

 

Figure 4.5 Mean ROC curve of PBI-based classifiers. a) SVM classifiers using EBM feature set. b) Logistic 

Regression classifiers using EBM feature set. c) SVM classifiers using FBM feature set. d) Logistic 

Regression classifiers using FBM feature set. 

 

Even though our classifiers were not optimized, PIB-based classifiers 

demonstrate a great ability in the AD/CN classification with excellent values of AUC for all 

the models.  

These classifiers show an overall high value of accuracy and contrarily to MRI-

based classifiers a higher sensitivity compare to specificity. 
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SVM and LR have similar performances and as in the MRI-based methods, and 

as in the previous results, we can see a general better performance with SVM than with LR. 

Furthermore, all the regions used as reference show an equal great potential to 

be used in classification problems 

In addition, all our classifiers shown performances that are in accordance with 

those find in the in the state of the art with performances between 85.70% and 96.00%28,42,46. 

 

4.2.3. DTI-Based Classifiers 

 

In Table 4.5 we present a summary of the performance of DTI-based classifiers. 

For each model we present the area under the Receiving Operating Characteristic (ROC) 

curve (AUC), mean accuracy, mean sensitivity and mean specificity. The full data can be 

found in Table S.6. 

 

Table 4.5 Summary of the classification performance of DTI based classifiers. 

AUC value is defined as (mean ± standard deviation) 

 

As similarly to the previous analyses both SVM and LR assessment were 

performed in both feature selection methods and the AUC was the criteria chosen to 

primarily evaluate their performance (Table 4.5).  

Model 

Feature 

Selection 

Method 

SVM Logistic Regression 

AUC 
Mean 

Accuracy 

Mean 

Sensitivity 

Mean 

Specificity 
AUC 

Mean 

Accuracy 

Mean 

Sensitivity 

Mean 

Specificity 

𝑫𝒆𝒔𝒊𝒌𝒂𝒏𝑭𝑨 
EBM *0.86±0.14 *79.84% 76.17% 82.09% 0.81±0.17 70.77% 78.16% 73.54% 

FBM 0.86±0.14 79.06% 71.43% 84.78% 0.83±0.16 77.41% 73.65% 80.23% 

𝑫𝒆𝒔𝒕𝒓𝒊𝒆𝒖𝒙𝑴𝑫 
EBM 0.84±0.15 77.29% 72.12% 81.18% 0.82±0.15 73.54% 65.37% 79.68% 

FBM *0.92±0.10 *88.12% 81.67% 92.96% 0.92±0.11 87.92% 83.13% 91.51% 

𝑱𝑯𝑼𝑭𝑨 
EBM 0.80±0.19 76.69% 66.15% 84.59% 0.78±0.17 74.26% 67.72% 79.18% 

FBM *0.83±0.17 *79.55% 71.55% 86.16% 0.81±0.17 76.35% 71.78% 79.77% 

𝑳𝒑𝒃𝒂𝟒𝟎𝑴𝑫 
EBM 0.85±0.15 75.02% 67.57% 80.61% 0.83±0.16 73.71% 63.70% 81.21% 

FBM 0.75±0.21 73.36% 67.45% 77.80% 0.83±0.15 75.06% 69.65% 79.11% 
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SVM EBM shows an overall similar performance between all models with AUC 

values ranging from 0.80 to 0.90. The 𝐽𝐻𝑈𝐹𝐴 (0.80±0.19) model seems to have a slight lower 

performance than the 𝐷𝑒𝑠𝑖𝑘𝑎𝑛𝐹𝐴 (0.86±0.14), 𝐷𝑒𝑠𝑡𝑟𝑖𝑒𝑢𝑥𝑀𝐷 (0.84±0.15) and 𝐿𝑝𝑏𝑎40𝑀𝐷 

(0.85±0.15) models. SVM FBM analyses reveal a lower performing 𝐿𝑝𝑏𝑎40𝑀𝐷 (0.75±0.21) 

model, one median performing 𝐽𝐻𝑈𝐹𝐴 (0.83±0.17) model and two higher performing 

𝐷𝑒𝑠𝑖𝑘𝑎𝑛𝐹𝐴 (0.86±0.14) and 𝐷𝑒𝑠𝑡𝑟𝑖𝑒𝑢𝑥𝑀𝐷 (0.92±0.10) models.  

LR EBM analyses shows that all the models have similar performance. The four 

models have AUC values around 0.80. The LR FBM analyses show three equally performing 

for the 𝐷𝑒𝑠𝑖𝑘𝑎𝑛𝐹𝐴 (0.83±0.16), 𝐽𝐻𝑈𝐹𝐴 (0.81±0.17) and 𝐿𝑝𝑏𝑎40𝑀𝐷 (0.83±0.15) models and 

a slightly higher performance for the 𝐷𝑒𝑠𝑡𝑟𝑖𝑒𝑢𝑥𝑀𝐷 (0.92±0.11) model. 

Figure 4.6 illustrates the mean ROC curves for each analysis presented in Table 

4.5. Graphs a) and c) were derived from SVM using the EBM and FBM feature selection 

methods respectively. Graphs b) and d) were derived from LR using EBM and FBM feature 

selection methods respectively. 
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Figure 4.6 Mean ROC curve of DTI-based classifiers. a) SVM classifiers using EBM feature set. b) Logistic 

Regression classifiers using EBM feature set. c) SVM classifiers using FBM feature set. d) Logistic 

Regression classifiers using FBM feature set. 

 

The DTI-based classifiers show a lower overall performance than MRI-based 

and PIB-based classifiers in AD/CN classification but follow the same pattern as the MRI-

based classifiers with higher specificity and lower sensitivity.  

SVM classifiers show a better overall performance than the LR classifiers. 

Contrarily to the MRI and PIB-based models, the FBM methods show a slightly 

better performance than the EBM, opposing the general notion that EBM models perform 

better than FBM models. 

Alone, these models show some potential for AD/CN classification, though, 

better feature generation methods and classifier optimization is needed to possibly achieve 

the performance of both the MRI and PIB-based classifiers. However, it is noteworthy to 
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point out that we managed to achieve a comparable and equal performance to those used in 

state DTI-based classifiers with performance between 76.00% and 89.00%9,14,60. 

The global analyse of all the base classifiers seems to favour the use of SVM 

rather than LR. With this in mind, in the ensemble method we will use SVM based classifiers 

to stud the complementarity between the data. Furthermore, the most promising SVM 

models were tested, by order of performance, until one achieves a reasonable performance 

with the external data. 

4.3. External Validation 

This section is dedicated to present the performance results from the most 

promising based classifiers using the ADNI external data. Table 4.6 presents the most 

promising classifiers from each modality. All the classifiers in Table 4.6 were SVM based. 

 

Table 4.6 Best performing classifiers for each modality. 

Image 

Modality 
Models AUC 

Mean 

Accuracy 

Mean 

Sensitivity 

Mean 

Specificity 

MRI 

𝑁𝑒𝑢𝑟𝑜𝐺𝑀 EBM 0.96±0.07 92.05% 86.78% 97.32% 

𝐻𝐶𝑃𝑇ℎ𝑖𝑐𝑘 FBM 0.93±0.09 88.07% 84.59% 91.55% 

𝑁𝑒𝑢𝑟𝑜𝐺𝑀 FBM 0.93±0.09 86.02% 82.70% 89.34% 

PIB-PET 

𝑆𝑈𝑉𝑅𝐺𝑀 EBM 0.97±0.06 92.34% 98.63% 87.63% 

𝑆𝑈𝑉𝑅𝑊𝑀 FBM 0.93±0.11 93.80% 99.63% 89.43% 

𝑆𝑈𝑉𝑅𝑊𝑀 EBM 0.93±0.10 90.53% 92.00% 89.43% 

DTI 

𝐷𝑒𝑠𝑡𝑟𝑖𝑒𝑢𝑥𝑀𝐷 FBM 0.92±0.10 88.12% 81.67% 92.96% 

𝐷𝑒𝑠𝑖𝑘𝑎𝑛𝐹𝐴 EBM 0.86±0.14 79.84% 76.17% 82.09% 

𝐽𝐻𝑈𝐹𝐴 FBM 0.83±0.17 79.55% 71.55% 86.16% 

AUC value is defined as (mean ± standard deviation) 

 

Starting with the MRI-based classifiers (Table 4.6 a)) we tested the 𝑁𝑒𝑢𝑟𝑜𝐺𝑀 

EBM classifier. Using this classifier in the external data we obtain a 78.19% accuracy, 

74.12% sensitivity, 82.29% specificity and a 78.20% balanced accuracy. Furthermore, the 

mean ROC curve was also calculated showing an AUC value of 0.85±0.02. 
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These results show that the 𝑁𝑒𝑢𝑟𝑜𝐺𝑀 EBM classifier has a lower performance 

with the external data than with the internal data as expected. However, it is still a good 

result specially since the classifier was trained with a sample that only have 40 cases and 

tested with a sample that have 330 cases. Furthermore, the classifier presents the same 

performance pattern in both internal and external data in what concerns specificity and 

sensitivity values. Figure 4.7 shows the comparison of the performance of the 𝑁𝑒𝑢𝑟𝑜𝐺𝑀 

EBM classifier between internal and external data. 

 

 

Figure 4.7 Comparison of the performance of the 𝑵𝒆𝒖𝒓𝒐𝑮𝑴 EBM classifier. Internal data balanced accuracy 
is considered as the same as the accuracy since the internal data is almost perfectly balanced. 

 

With these results, and for time reasons, we opt to not test more MRI-based 

classifiers besides the 𝑁𝑒𝑢𝑟𝑜𝐺𝑀 EBM classifier which will be used to represent the MRI 

modality in the ensemble phase. 

Following the analysis of the MRI-based classifiers, we analysed the PIB-based 

classifiers. From Table 4.6 b), we start by evaluating the 𝑆𝑈𝑉𝑅𝐺𝑀 EBM. Using this classifier 

in external data we obtained an accuracy of 59.73%, a sensitivity of 63.93%, a specificity of 

56.48%, a balanced accuracy of 60.21% and an AUC of 0.71±0.03. This classifier had a 

disappointing performance in the external data, far from what we originally expected. 

However, it has shown the pattern of better sensitivity in relation to specificity previously 
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seen in the in internal data. In the Figure 4.8 we show a comparison between the performance 

of the 𝑆𝑈𝑉𝑅𝐺𝑀 EBM classifier both in the internal and external data. 

 

 

Figure 4.8 Comparison of the performance of the 𝑺𝑼𝑽𝑹𝑮𝑴 EBM classifier. Internal data balanced accuracy 
is considered as the same as the accuracy since the internal data is almost perfectly balanced. 

 

Due to the overall close performance of the PIB-based methods, we decided that 

we were not satisfied with this external performance and decided to further evaluate the other 

classifiers. 

The next in line was the 𝑆𝑈𝑉𝑅𝑊𝑀 FBM. When tested in the external data this 

classifier obtained an accuracy of 69.55%, a sensitivity of 81.69%, a specificity of 60.16%, 

a balance accuracy of 70.92% and an AUC of 0.81±0.02. This classifier shown a better 

performance than previous and the same performance pattern of the PIB-based classifiers. 

Figure 4.9 portrays a comparison between the performance of the 𝑆𝑈𝑉𝑅𝑊𝑀 FBM classifier 

in both the internal and external data. 
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Figure 4.9 Comparison of the performance of the 𝑺𝑼𝑽𝑹𝑾𝑴 FBM classifier. Internal data balanced accuracy 
is considered as the same as the accuracy since the internal data is almost perfectly balanced. 

 

Due to this improvement in performance, and the fact that the next classifier has 

a similar performance as this one, we decided to also evaluate it in the external data. 

The evaluation of the 𝑆𝑈𝑉𝑅𝑊𝑀 EBM classifier with the external reveals an 

accuracy of 76.87%, sensitivity of 87.90%, specificity of 68.33%, a balance accuracy of 

78.11% and an AUC of 0.81±0.04. 

Figure 4.10 shows a comparison between the performance of the 𝑆𝑈𝑉𝑅𝑊𝑀 FBM 

classifier in both the internal and external data. 
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Figure 4.10 Comparison of the performance of the 𝑺𝑼𝑽𝑹𝑾𝑴 EBM classifier. Internal data balanced 
accuracy is considered as the same as the accuracy since the internal data is almost perfectly balanced. 

 

Comparing all the PIB-based classifiers we can conclude that the 𝑆𝑈𝑉𝑅𝑊𝑀 EBM 

classifier shows the better performance in the external validation. Furthermore, this classifier 

has a comparable behaviour in the internal and external data. With this in mind, we decided 

that the 𝑆𝑈𝑉𝑅𝑊𝑀 EBM classifier will be the one that represents the PIB modality in the 

ensemble. 

Finally, we evaluated the DTI-based classifiers. Similarly, to the previous two 

analyses we started by evaluating the most promising classifier. The 𝐷𝑒𝑠𝑡𝑟𝑖𝑒𝑢𝑥𝑀𝐷 FBM, 

was tested with the external data and it was obtained an accuracy of 47.97%, sensitivity of 

1.29%, specificity of 98.59%, balance accuracy of 49.96 and an AUC of 0.83±0.03. In the 

Figure 4.11 we show a comparison between the performance of the 𝐷𝑒𝑠𝑡𝑟𝑖𝑒𝑢𝑥𝑀𝐷 FBM 

classifier both in the internal and external data. 
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Figure 4.11 Comparison of the performance of the 𝑫𝒆𝒔𝒕𝒓𝒊𝒆𝒖𝒙𝑴𝑫 FBM classifier. Internal data balanced 
accuracy is considered the same as the accuracy since the internal data is almost perfectly balanced. 

 

Although it is a promising classifier in the internal data, the external validation 

shows that the 𝐷𝑒𝑠𝑡𝑟𝑖𝑒𝑢𝑥𝑀𝐷 FBM classifier has an extremely poor performance. This 

classifier shows a different performance pattern in the external data comparing with the 

internal data. Furthermore, this classifier is practically uncapable of identifying AD cases 

and it identifies all the cases as CN. 

The next logical classifier, the 𝐷𝑒𝑠𝑖𝑘𝑎𝑛𝐹𝐴 EBM, was tested with the external 

data and it was obtained an accuracy of 62.79%, sensitivity of 54.31%, specificity of 71.98%, 

balance accuracy of 63.15 and an AUC of 0.69±0.05. Figure 4.12 describes a comparison 

between the performance of the 𝐷𝑒𝑠𝑖𝑘𝑎𝑛𝐹𝐴 EBM classifier both in the internal and external 

data. 
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Figure 4.12 Comparison of the performance of the 𝑫𝒆𝒔𝒊𝒌𝒂𝒏𝑭𝑨 EBM classifier. Internal data balanced 
accuracy is considered as the same as the accuracy since the internal data is almost perfectly balanced. 

 

The results from this classifier shown a better correspondence between the 

internal and external data results. Also, this classifier shows a similar performance pattern 

regarding sensitivity and specificity in the external and internal data.  

The performance of this classifier was considered satisfactory and the 

𝐷𝑒𝑠𝑖𝑘𝑎𝑛𝐹𝐴 EBM was chosen to represent the DTI modality in the ensemble. 

In conclusion, we were able to construct at least three robust classifiers, one for 

each modality, that not only have a good performance in the internal data but also perform 

reasonably well in the external data. Special attention should be given to the MRI and PIB-

based classifiers that show an incredibly capacity for generalization. The DTI-based 

classifier shows some ability for generalization, but for alone usage it is not recommendable. 

4.4. Ensemble Classification 

In this section we present the evaluation of the ability of our ensemble method 

as well as the complementarity between all the neuroimaging modalities in the internal data 

and the combination effects of MRI and DTI-based classifiers in the external data. 

Table 4.7, summarizes the results of each classifier selected as well as the 

ensemble result of combining all three modalities. The weights applied were 1/3, 1/3 and 1/3 

for MRI, PIB and DTI-based classifiers respectively.  
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Table 4.7 Results from the ensemble of all the neuroimaging modalities on the internal data. 

Weights (1/3, 1/3, 1/3) Mean Accuracy Mean Sensitivity Mean Specificity 

MRI-based classifier 95.09% 90.17% 99.02% 

PIB-based classifier 88.76% 88.13% 89.26% 

DTI-based classifier 92.59% 90.76% 94.06% 

Ensemble classifier 98.11% 99.16% 97.27% 

 

Analysing the Table 4.7, it is possible to notice that the ensemble result is 

superior than individual base classifiers except for the specificity. This suggests that there is 

complementary information between the neuroimaging modalities that make possible to 

improve the global final performance of the classification. 

Figure 4.13 shows the mean ROC curves for each classifier presented in Table 

4.7 

 

Figure 4.13 Ensemble and all base classifier’s mean ROC curve comparison. 

Furthermore, we evaluated the effects of only combining the modalities in pairs. 

In the Table 4.8, we show the results of only combining MRI and PIB-based 

classifiers. The classifiers were combined using an equal weight of 1/2 for both modalities. 
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Table 4.8 Results from the ensemble of MRI and PIB-based classifiers on the internal data. 

Weights (1/2, 1/2) Mean Accuracy Mean Sensitivity Mean Specificity 

MRI-based classifier 95.13% 90.24% 99.04% 

PIB-based classifier 88.75% 88.23% 89.17% 

Ensemble classifier 98.05% 98.59% 97.62% 

 

Comparing the ensemble results from Table 4.7 and Table 4.8, it is possible to 

observe that the addition of the DTI-based classifier only had a small impact. Moreover, the 

combination of only MRI and PIB-based classifiers shows an improvement in performance 

except for specificity. 

Figure 4.14 shows the mean ROC curves for each classifier presented in Table 

4.8. 

 

 

Figure 4.14 Ensemble and (MRI+PIB) base classifier’s mean ROC curve comparison. 

 

We also evaluated the performance of combining the MRI and DTI-based 

classifiers. Table 4.9, presents the results of this combination. The classifiers were combined 

using an equal weight of 1/2 for both modalities. 

 



 

 

Differential diagnosis of Alzheimer’s disease based on multimodal imaging data (MRI, PIB, DTI) 
  

 

 

92  2019 

 

Table 4.9 Results from the ensemble of MRI and DTI-based classifiers on the internal data. 

Weights (1/2, 1/2) Mean Accuracy Mean Sensitivity Mean Specificity 

MRI-based classifier 95.04% 90.04% 99.04% 

DTI-based classifier 92.55% 90.58% 94.13% 

Ensemble classifier 97.30% 94.62% 99.43% 

 

From the results of the Table 4.9 it is possible to see that MRI and DTI-based 

classifiers have a similar performance as both the combination of all modalities and the 

combination of only MRI and PIB. Furthermore, in this combination all the performance 

parameters were superior in the ensemble than in the individual base classifiers. However, 

it is noteworthy to see that the individual DTI-based classifiers have a slightly better 

performance than the individual PIB-based classifier. 

Figure 4.15 presents the mean ROC curves for each classifier presented in Table 

4.9. 

 

 

Figure 4.15 Ensemble and (MRI+DTI) base classifier’s mean ROC curve comparison. 
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The last analysis from the internal data was to evaluate the effects of combining 

PIB and DTI-based classifiers. 

 

Table 4.10 Results from the ensemble of PIB and DTI-based classifiers on the internal data. 

Weights (1/2, 1/2) Mean Accuracy Mean Sensitivity Mean Specificity 

PIB-based classifier 88.75% 88.21% 89.18% 

DTI-based classifier 92.34% 90.27% 94.10% 

Ensemble classifier 91.28% 92.61% 90.22% 

 

From the Table 4.10 it is possible to perceive that the combination of PIB and 

DTI-based classifiers had an overall negative impact only improving the sensitivity of the 

ensemble classifier. 

In the Figure 4.16 we show the mean ROC curves for each classifier presented 

in Table 4.10. 

 

 

Figure 4.16 Ensemble and (PIB+DTI) base classifier’s mean ROC curve comparison. 

 

The results presented above allows the conclusion that using MRI as a base and 

combining it with one other modality produces the best results. Furthermore, it is possible 
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to see that there is complementarity between MRI and PIB (Table 4.8) as well as between 

MRI and DTI (Table 4.9). In contrast, there is no evidence of complementarity between PIB 

and DTI (Table 4.10). 

Also, all the ensemble results shown have similar performance than those find 

in the state of the art that had shown performance accuracy values between 85.00% and 

95.95%9. 

In the Figure 4.17 we present the comparison of performance between all the 

ensemble classifiers. 

 

 
Figure 4.17 Comparison of the ensemble performances. 

 

Analysing Figure 4.17 we see that the combination of all the neuroimaging 

modalities has the same performing impact as combining only two except for when using 

PIB and DTI. It is then arguable that the use of the all three neuroimaging modalities for AD 

classification does not improve the final classification ability. 

Lastly, we evaluated the ensemble performance in the external data. In the Table 

4.11 we show the results of only combining MRI and DTI-based classifiers on the external 

data. The classifiers were combined using an equal weight of 1/2 for both modalities. 
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Table 4.11 Results from the ensemble of MRI and DTI-based classifiers on the external data. 

Weights (1/2, 1/2) Mean Accuracy 
Mean 

Sensitivity 

Mean 

Specificity 

Mean Balanced 

Accuracy 

MRI-based classifier 78.02% 73.92% 82.47% 78.19% 

DTI-based classifier 62.73% 54.46% 71.70% 63.08% 

Ensemble classifier 78.59% 77.15% 80.16% 78.66% 

 

Form the analysis of the Table 4.11 it is possible to establish that the ensemble 

of the classifiers had some effect improving the overall performance except for the 

specificity. This behaviour is similar to the ensemble of MRI and PIB based when using the 

internal data. 

Moreover, it is important to point out that the DTI-based classifier had a much 

lower performance with the external data than the MRI-based classifier and despite this fact 

it contributes in a relatively significant way to the improvement of the global ensemble 

performance specially improving the sensitivity. 

In the Figure 4.18 we show the mean ROC curves for each classifier presented 

in Table 4.11. 

 

Figure 4.18 Ensemble and (MRI+DTI) base classifiers ROC curve comparison using external data. 
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5. CONCLUSION AND FUTURE WORK 

The major goal of this thesis was to evaluate the effects of a multimodal 

approach that combined three different imaging modalities (MRI, PIB and DTI). From the 

results of our ensemble technique we can conclude that the combination of all three imaging 

modalities does not represent a significant improvement in relation to the traditional use of 

two imaging modalities. 

Furthermore, we can see that the combination of just MRI+PIB or just MRI+DTI 

had comparable performances, which showed that both PIB and DTI provide complementary 

information towards the AD/CN classification problem. Also, the combination of PIB+DTI 

did not provide any improvement, which may be because they provide similar information 

regarding the AD/CN classification. 

Due to this, it could be possible in the future to base the diagnosis of AD in only 

MRI and DTI imaging data without the need of using PIB-PET images. This could bring 

some benefits for the patient, that will not be required to be submitted to ionization radiation 

from the radioactive tracers as well as a lower discomfort caused from the lengthy acquisition 

protocols of PIB-PET (~90 minutes)42 in comparison to those of MRI and DTI (between 5 

and 15 minutes)24.  

Moreover, the use of only MRI and DTI images only requires the use of one 

machine. However, the use of PIB-PET images is still a powerful tool for the study of the 

disease’s pathology. 

Other conclusions that we can also extract from this work can be summarized 

into three topics: feature extraction, feature selection and classification. 

Our way of extracting features from of the all images provided some good results 

but it can be further optimized or replaced with more efficient methods that may allow better 

results in the classification process. 

Relatively to feature selection both of our methods seem to achieve good and 

similar results. However, when putting one against the other in the external data analysis, 

the embedded based methods show a better ability to generalization and a better 

performance. 
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Classification performances were generally high in the internal data despite the 

lower number of cases. The evaluation of the methods show that DTI-based classifiers have 

lower performance values than MRI and PIB-based classifiers. This tendency was also 

verified in the external data were the MRI and PIB-based classifiers showed an excellent 

performance and the DTI-based classifier struggled to perform better than chance. However, 

when using all the data in the ensemble, the DTI-based classifier had a similar performance 

as the others and even outperformed the PIB-based classifier.  

One classification finding that was relatively expected was the decrease in 

performance seen when validating using the external data. It is possible that this decrease is 

a consequence of the use of different acquisition protocols when obtaining the images due 

to the type of scanner that was used. Other possible reason for this difference could be the 

in the morphology of the data itself, however, since both the internal and external data have 

similar demographic profiles is unlikely that the difference observed between the two 

analysis can be attributed to this. 

It is also noteworthy to refer that all the classifiers used in this thesis were not 

optimized and performing grid search for some parameters the classification may be 

improved. Furthermore, the relatively small number of cases that we initial had to perform 

this work was a limitation, reducing the number of possible features that we can used.  

Since our classifier’s already have a considerable high performance, feature 

work should consider the use of more features. This could improve significantly the ability 

of generalization of the classifier, that is more important for diagnosis purposes. 

Future work, build on the findings present here, should be focused in 

constructing a larger data sample and on, if possible, improving the base classifiers, specially 

the DTI-based. It could be interesting to study the effects of using the external data to 

construct the initial classifiers and then validate in the internal data or even to combine the 

two data sets into an even larger one. However, this kind of analyse is very time intensive 

and due to the nature of this work it would be impossible to develop all these ideas in the 

short time given. 
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SUPPLEMENT A 

Supplementary data can be found here, and the codes used to obtain all the results 

can be found in https://github.com/Daniel-Agostinho/Thesis.git. 

Feature Selection all data 

Table S.1 Feature Selection results. 

Model 

Feature 

selection 

method 

Total Number 

of features 

Final Number 

of features 

𝑪𝒐𝒃𝒓𝒂𝑮𝑴 
EBM 

52 
16 

FBM 2 

𝑪𝒐𝒃𝒓𝒂𝑾𝑴 
EBM 

52 
20 

FBM 6 

𝑯𝒂𝒎𝒎𝒆𝒓𝒔𝑮𝑴 
EBM 

68 
14 

FBM 7 

𝑯𝒂𝒎𝒎𝒆𝒓𝒔𝑾𝑴 
EBM 

68 
13 

FBM 1 

𝑯𝒂𝒎𝒎𝒆𝒓𝒔𝑪𝑺𝑭 
EBM 

68 
3 

FBM 4 

𝑳𝒑𝒃𝒂𝟒𝟎𝑮𝑴 
EBM 

56 
13 

FBM 2 

𝑵𝒆𝒖𝒓𝒐𝑮𝑴 
EBM 

142 
41 

FBM 10 

𝑵𝒆𝒖𝒓𝒐𝑪𝑺𝑭 
EBM 

142 
11 

FBM 5 

𝒂𝟐𝟎𝟎𝟗𝑮𝒚𝒓𝒊 
EBM 

152 
144 

FBM 25 

𝒂𝟐𝟎𝟎𝟗𝑻𝒉𝒊𝒄𝒌 
EBM 

152 
57 

FBM 16 
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𝑫𝒌𝟒𝟎𝑮𝒚𝒓𝒊 
EBM 

72 
67 

FBM 13 

𝑫𝒌𝟒𝟎𝑻𝒉𝒊𝒄𝒌 
EBM 

72 
20 

FBM 9 

𝑯𝑪𝑷𝑮𝒚𝒓𝒊 
EBM 

362 
358 

FBM 41 

𝑯𝑪𝑷𝑻𝒉𝒊𝒄𝒌 
EBM 

362 
202 

FBM 54 

𝑺𝑼𝑽𝑹𝑪𝒆𝒓𝒆 
EBM 

19 
1 

FBM 1 

𝑺𝑼𝑽𝑹𝑮𝑴 
EBM 

19 
2 

FBM 5 

𝑺𝑼𝑽𝑹𝑾𝑴 
EBM 

19 
2 

FBM 3 

𝑳𝒑𝒃𝒂𝟒𝟎𝑭𝑨 
EBM 

56 
21 

FBM 1 

𝑳𝒑𝒃𝒂𝟒𝟎𝑴𝑫 
EBM 

56 
12 

FBM 6 

𝑫𝒆𝒔𝒊𝒌𝒂𝒏𝑭𝑨 
EBM 

84 
58 

FBM 6 

𝑫𝒆𝒔𝒊𝒌𝒂𝒏𝑴𝑫 
EBM 

84 
26 

FBM 9 

𝑫𝒆𝒔𝒕𝒓𝒊𝒆𝒖𝒙𝑭𝑨 
EBM 

164 
130 

FBM 9 

𝑫𝒆𝒔𝒕𝒓𝒊𝒆𝒖𝒙𝑴𝑫 
EBM 

164 
61 

FBM 19 

𝑯𝒂𝒎𝒎𝒆𝒓𝒔𝑭𝑨 
EBM 

68 
37 

FBM 5 

𝑯𝒂𝒎𝒎𝒆𝒓𝒔𝑴𝑫 
EBM 

68 
24 

FBM 4 

𝑱𝑯𝑼𝑭𝑨 
EBM 

48 
24 

FBM 7 

𝑱𝑯𝑼𝑴𝑫 
EBM 

48 
18 

FBM 5 

 



 

 

  Supplement A 

 

 

Daniel Andrade Pinho Agostinho  111 

 

Atlases Region of Interest (ROI) Glossary 

Table S.2 Cobra volume atlas acronym’s names. 

ROI acronym ROI name 

Striatum Striatum 

GloPal Globus Pallidus 

Tha Thalamus 

AntCerebLI_II Anterior Cerebellar Lobule I-II 

AntCerebLIII Anterior Cerebellar Lobule III 

AntCerebLIV Anterior Cerebellar Lobule IV 

AntCerebLV Anterior Cerebellar Lobule V 

SupPostCerebLVI Superior Posterior Cerebellar Lobule VI 

SupPostCerebCI 
Superior Posterior Cerebellar Lobule 

Crus I 

SupPostCerebCII 
Superior Posterior Cerebellar Lobule 

Crus II 

SupPostCerebLVIIB 
Superior Posterior Cerebellar Lobule 

VIIB 

InfPostCerebLVIIIA 
Inferior Posterior Cerebellar Lobule 

VIIIA 

InfPostCerebLVIIIB 
Inferior Posterior Cerebellar Lobule 

VIIIB 

InfPostCerebLIX Inferior Posterior Cerebellar Lobule IX- 

InfPostCerebLX Inferior Posterior Cerebellar Lobule X 

AntCerebWM Cerebellar White Matter 

Amy Amygdala 

HCA1 Hippocampus CA1 

Sub Subiculum 

For Fornix 

CA4 CA4/Dentate Gyrus 

CA2_3 CA2/CA3 

Stratum.L… 
Stratum, Stratum 

Radiatum/Lacunosum/Moleculare 

Fimbra Fimbria 

MamBody Mammillary body 

Alveus Alveus 
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Table S.3 Hammers volume atlas acronym’s names. 

ROI acronym ROI name 

Hip Hippocampus 

Amy Amygdala 

AntMedTeLo Anterior Medial Temporal Lobe 

AntLatTeLo Anterior Lateral Temporal Lobe 

Amb+ParHipGy Ambient and Parahippocampus Gyri 

SupTemGy Superior Temporal Gyrus 

InfMidTemGy Inferior Middle Temporal Gyri 

FusGy Fusiform Gyrus 

Cbe Cerebellum 

Bst Brainstem 

Ins Insula 

LatOcLo Lateral Occipital Lobe 

AntCinGy Anterior Cinguli Gyrus 

PosCinGy Posterior Cinguli Gyrus 

MidFroGy Middle Frontal Gyrus 

PosTeLo Posterior Temporal Lobe 

InfLatPaLo Inferior Lateral Pariatal Lobe 

CauNuc Caudate Nucleus 

AccNuc Accumbens Nucleus 

Put Putamen 

Tha Thalamus 

Pa Pallidum 

CC Corpus Callosum 

LatTemVen Lateral Temporal Ventricle 

3thVen Third Ventricle 

PrcGy Precentral Gyrus 

RecGy Gyrus Rectus 

OrbFroGy Orbito-Frontal Gyri 

InfFroGy Inferior Frontal Gyrus 

SupFroGy Superior Frontal Gyrus 

PoCGy Postcentral Gyrus 

SupParGy Superior Parietal Gyrus 

LinGy Lingual Gyrus 

Cun Cuneus 
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Table S.4 Lpba40 volume atlas acronym’s names. 

ROI acronym ROI name 

SupFoG Superior Frontal Gyrus 

MidFoG Middle Frontal Gyrus 

InfFroG Inferior Frontal Gyrus 

PrcG Precentral Gyrus 

MidOrbG Middle Orbitofrontal Gyrus 

LatOrbG Lateral Orbitofrontal Gyrus 

rRecG Gyrus Rectus 

rPoCG Postcentral Gyrus 

SupParG Superior Parietal Gyrus 

SupMarG Supramarginal Gyrus 

AngG Angular Gyrus 

PCu Precuneus 

SupOccG Superior Occipital Gyrus 

MidOccG Middle Occipital Gyrus 

InfOccG Inferior Occipital Gyrus 

Cun Cuneus 

SupTemG Superior Temporal Gyrus 

MidTemG Middle Temporal Gyrus 

InfTemG Inferior Temporal Gyrus 

ParHipG Parahippocampal Gyrus 

LinG Lingual Gyrus 

FusG Fusiform Gyrus 

Ins Insula 

CinG Cingulate Gyrus 

Cau Caudate 

Put Putamen 

Hip Hippocampus 

CBeL Cerebellar Lobe 

Bst Brainstem 
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Table S.5 Neuromorphometrics volume atlas acronym’s names. 

ROI acronym l ROI name 

3thVen Third Ventricle 

4thVen Fourth Ventricle 

Acc Accumbens 

Amy Amygdala 

Bst Brainstem 

Cau Caudate 

ExtCbe Exterior Cerebellum 

CbeWM Cerebellum White Matter 

CbrWM Cerebral White Matter 

CSF CSF 

Hip Hippocampus 

InfLatVen Inferior Lateral Ventricle 

LatVen Lateral Ventricle 

Pa Pallidum 

Put Putamen 

ThaPro Thalamus Proper 

VenVen Ventral Ventricle 

OC Optic Chiasm 

CbeLoCbe1-5 Cerebellar Lobule Cerebellar Vermal Lobules I-V 

CbeLoCbe6-7 Cerebellar Lobule Cerebellar Vermal Lobules VI-VII 

CbeLoCbe8-10 Cerebellar Lobule Cerebellar Vermal Lobules VIII-X 

BasCbr+FobBr Basal Cerebrum and Forebrain Brain 

AntCinGy Anterior Cingulate Gyrus 

AntIns Anterior Insula 

AntOrbGy Anterior Orbital Gyrus 

AngGy Angular Gyrus 

Ca+Cbr Calcarine and Cerebrum 

CenOpe Central Operculum 

Cun Cuneus 

Ent Entorhinal Area 

FroOpe Frontal Operculum 

FroPo Frontal Pole 

FusGy Fusiform Gyrus 

RecGy Gyrus Rectus 

InfOccGy Inferior Occipital Gyrus 

InfTemGy Inferior Temporal Gyrus 

LinGy Lingual Gyrus 

LatOrbGy Lateral Orbital Gyrus 

MidCinGy Middle Cingulate Gyrus 

MedFroCbr Medial Frontal Cerebrum 

MidFroGy Middle Frontal Gyrus 
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MidOccGy Middle Occipital Gyrus 

MedOrbGy Medial Orbital Gyrus 

MedPoCGy Medial Postcentral Gyrus 

MedPrcGy Medial Precentral Gyrus 

SupMedFroGy Superior Medial Frontal Gyrus 

MidTemGy Middle Temporal Gyrus 

OccPo Occipital Pole 

OccFusGy Occipital Fusiform Gyrus 

InfFroGy Inferior Frontal Gyrus 

InfFroOrbGy Inferior Frontal Orbital Gyrus 

PosCinGy Posterior Cingulate Gyrus 

PCu Precuneus 

ParHipGy Parahippocampus Gyrus 

PosIns Posterior Insula 

ParOpe Parietal Operculum 

PoCGy Postcentral Gyrus 

PosOrbGy Posterior Orbital Gyrus 

Pa Planum Polare 

PrcGy Precentral Gyrus 

Tem Temporal 

SCA Subcallosal Area 

SupFroGy Superior Frontal Gyrus 

Cbr+Mot Cerebrum and Motor 

SupMarGy Supramarginal Gyrus 

SupOccGy Superior Occipital Gyrus 

SupParLo Superior Parietal Lobule 

SupTemGy Superior Temporal Gyrus 

TemPo Temporal Pole 

InfFroAngGy Inferior Frontal Angular Gyrus 

TemTraGy Temporal Transverse Gyrus 
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Feature Selection Ranking of Features 

 

 
Figure S.1 Top ranking features for the Cobra GM model. a) FBM method. b) EBM method. 

 
Figure S.2 Top ranking features for the Cobra WM model. a) FBM method. b) EBM method. 
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Figure S.3 Top ranking features for the Hammers GM model. a) FBM method. b) EBM method. 

 
Figure S.4 Top ranking features for the Hammers WM model. a) FBM method. b) EBM method. 
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Figure S.5 Top ranking features for the Hammers CSF model. a) FBM method. b) EBM method. 

 
Figure S.6 Top ranking features for the Lpba40 GM model. a) FBM method. b) EBM method. 
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Figure S.7 Top ranking features for the Neuromorphometrics GM model. a) FBM method. b) EBM method. 

 
Figure S.8 Top ranking features for the Neuromorphometrics CSF model. a) FBM method. b) EBM method. 
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Figure S.9 Top ranking features for the a2009 Gyrification model. a) FBM method. b) EBM method. 

 
Figure S.10 Top ranking features for the a2009 Thickness model. a) FBM method. b) EBM method. 
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Figure S.11 Top ranking features for the DK40 Gyrification model. a) FBM method. b) EBM method. 

 
Figure S.12 Top ranking features for the DK40 Thickness model. a) FBM method. b) EBM method. 
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Figure S.13 Top ranking features for the HCP Gyrification model. a) FBM method. b) EBM method. 

 
Figure S.14 Top ranking features for the HCP Thickness model. a) FBM method. b) EBM method. 
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Figure S.15 Top ranking features for the SUVR Cerebellum model. a) FBM method. b) EBM method. 

 
Figure S.16 Top ranking features for the SUVR GM model. a) FBM method. b) EBM method. 
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Figure S.17 Top ranking features for the SUVR WM model. a) FBM method. b) EBM method. 

 
Figure S.18 Top ranking features for the Desikan FA model. a) FBM method. b) EBM method. 
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Figure S.19 Top ranking features for the Desikan MD model. a) FBM method. b) EBM method. 

 
Figure S.20 Top ranking features for the Destrieux FA model. a) FBM method. b) EBM method. 
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Figure S.21 Top ranking features for the Destrieux MD model. a) FBM method. b) EBM method. 

 
Figure S.22 Top ranking features for the Hammers FA model. a) FBM method. b) EBM method. 
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Figure S.23 Top ranking features for the Hammers MD model. a) FBM method. b) EBM method. 

 
Figure S.24 Top ranking features for the JHU FA model. a) FBM method. b) EBM method. 
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Figure S.25 Top ranking features for the JHU MD model. a) FBM method. b) EBM method. 

 
Figure S.26 Top ranking features for the Lpba40 FA model. a) FBM method. b) EBM method. 
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Figure S.27 Top ranking features for the Lpba40 MD model. a) FBM method. b) EBM method. 

Feature Selection Final Feature Sets 

 
Figure S.28 Final feature set for the Cobra GM model. a) FBM method. b) EBM method. 



 

 

Differential diagnosis of Alzheimer’s disease based on multimodal imaging data (MRI, PIB, DTI) 
  

 

 

130  2019 

 

 
Figure S.29 Final feature set for the Cobra WM model. a) FBM method. b) EBM method. 

 

 
Figure S.30 Final feature set for the Hammers GM model. a) FBM method. b) EBM method. 
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Figure S.31 Final feature set for the Hammers WM model. a) FBM method. b) EBM method. 

 
Figure S.32 Final feature set for the Hammers CSF model. a) FBM method. b) EBM method. 
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Figure S.33 Final feature set for the Lpba40 GM model. a) FBM method. b) EBM method. 

 
Figure S.34 Final feature set for the Neuromorphometrics GM model. a) FBM method. b) EBM method. 
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Figure S.35 Final feature set for the Neuromorphometrics CSF model. a) FBM method. b) EBM method. 

 
Figure S.36 Final feature set for the a2009 Gyrification model. a) FBM method. b) EBM method. 
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Figure S.37 Final feature set for the a2009 Thickness model. a) FBM method. b) EBM method. 

 
Figure S.38 Final feature set for the DK40 Gyrification model. a) FBM method. b) EBM method. 
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Figure S.39 Final feature set for the DK40 Thickness model. a) FBM method. b) EBM method. 

 
Figure S.40 Final feature set for the HCP Gyrification model. a) FBM method. b) EBM method. 
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Figure S.41 Final feature set for the HCP Thickness model. a) FBM method. b) EBM method. 

 
Figure S.42 Final feature set for the SUVR Cerebellum model. a) FBM method. b) EBM method. 
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Figure S.43 Final feature set for the SUVR GM model. a) FBM method. b) EBM method. 

 
Figure S.44 Final feature set for the SUVR WM model. a) FBM method. b) EBM method. 
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Figure S.45 Final feature set for the Desikan FA model. a) FBM method. b) EBM method. 

 
Figure S.46 Final feature set for the Desikan MD model. a) FBM method. b) EBM method. 
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Figure S.47 Final feature set for the Destrieux FA model. a) FBM method. b) EBM method. 

 
Figure S.48 Final feature set for the Destrieux MD model. a) FBM method. b) EBM method. 
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Figure S.49 Final feature set for the Hammers FA model. a) FBM method. b) EBM method. 

 
Figure S.50 Final feature set for the Hammers MD model. a) FBM method. b) EBM method. 
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Figure S.51 Final feature set for the JHU FA model. a) FBM method. b) EBM method. 

 
Figure S.52 Final feature set for the JHU MD model. a) FBM method. b) EBM method. 
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Figure S.53 Final feature set for the Lpba40 FA model. a) FBM method. b) EBM method. 

 
Figure S.54 Final feature set for the Lpba40 MD model. a) FBM method. b) EBM method. 
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Individual classifier performance 

 

Table S.6 Performance results for all models. 

Model 

Feature 

Selection 

Method 

SVM Logistic Regression 

AUC 
Mean 

Accuracy 

Mean 

Sensitivity 

Mean 

Specificity 
AUC 

Mean 

Accuracy 

Mean 

Sensitivity 

Mean 

Specificity 

𝑪𝒐𝒃𝒓𝒂𝑮𝑴 

EBM 0.87±0.13 76.13% 76.06% 76.19% 0.84±0.14 76.14% 73.28% 79.00% 

FBM 0.87±0.13 82.08% 73.63% 90.54% 0.83±0.14 72.76% 74.09% 71.44% 

𝑪𝒐𝒃𝒓𝒂𝑾𝑴 

EBM 0.88±0.12 78.43% 79.04% 77.04% 0.92±0.10 80.64% 78.41% 82.88% 

FBM 0.86±0.13 77.06% 77.69% 76.44% 0.91±0.10 79.34% 77.54% 81.54% 

𝑯𝒂𝒎𝒎𝒆𝒓𝒔𝑮𝑴 

EBM 0.85±0.15 74.79% 66.14% 83.44% 0.86±0.13 78.68% 74.60% 82.75% 

FBM 0.77±0.20 72.92% 67.26% 78.57% 0.83±0.14 73.09% 71.51% 74.68% 

𝑯𝒂𝒎𝒎𝒆𝒓𝒔𝑾𝑴 

EBM 0.51±0.24 58.36% 58.24% 58.49% 0.71±0.18 63.22% 60.34% 66.10% 

FBM 0.50±0.23 58.27% 56.57% 59.96% 0.74±0.17 64.29% 62.30% 66.27% 

𝑯𝒂𝒎𝒎𝒆𝒓𝒔𝑪𝑺𝑭 

EBM 0.85±0.14 75.37% 77.01% 73.73% 0.83±0.15 73.51% 65.70% 81.33% 

FBM 0.79±0.17 71.65% 72.24% 71.06% 0.86±0.12 74.94% 70.09% 79.79% 

𝑳𝒑𝒃𝒂𝟒𝟎𝑮𝑴 

EBM 0.76±0.20 70.28% 61.16% 79.40% 0.77±0.17 70.21% 66.65% 93.27% 

FBM 0.78±0.17 73.93% 72.24% 71.06% 0.85±0.13 73.99% 76.66% 71.32% 

𝑵𝒆𝒖𝒓𝒐𝑮𝑴 

EBM 0.96±0.07 92.05% 86.78% 97.32% 0.93±0.09 85.13% 76.8% 93.27% 

FBM 0.93±0.09 86.02% 82.70% 80.64% 0.95±0.08 86.98% 84.098% 89.53% 

𝑵𝒆𝒖𝒓𝒐𝑪𝑺𝑭 

EBM 0.84±0.15 76.13% 80.34% 71.91% 0.84±0.15 75.96% 69.91 82.00% 

FBM 0.61±0.23 60.94% 64.78% 57.10% 0.79±0.16 68.48% 66.69% 70.28% 

𝒂𝟐𝟎𝟎𝟗𝑮𝒚𝒓𝒊 

EBM 0.91±0.10 83.01% 86.98% 79.04% 0.89±0.12 81.91% 81.84% 81.99% 

FBM 0.86±0.13 76.45% 77.70% 75.20% 0.89±0.11 81.37% 83.37% 79.46% 

𝒂𝟐𝟎𝟎𝟗𝑻𝒉𝒊𝒄𝒌 

EBM 0.90±0.11 81.89% 81.93% 81.87% 0.92±0.1 84.78% 84.01% 85.54% 

FBM 0.84±0.15 81.47% 82.76% 80.18% 0.84±0.13 80.13% 79.53% 80.74% 

𝑫𝑲𝟒𝟎𝑮𝒚𝒓𝒊 

EBM 0.75±0.19 69.13% 73.14% 65.11% 0.80±0.15 67.88% 66.79% 68.98% 

FBM 0.78±0.18 69.57% 73.99% 65.15% 0.81±0.14 68.84% 69.65% 68.03% 

𝑫𝑲𝟒𝟎𝑻𝒉𝒊𝒄𝒌 

EBM 0.79±0.17 72.19% 71.01% 73.36% 0.83±0.14 72.95% 71.94% 73.96% 

FBM 0.82±0.15 75.07% 74.86% 75.28% 0.82±0.14 75.19% 75.78% 74.60% 
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𝑯𝑪𝑷𝑮𝒚𝒓𝒊 

EBM 0.94±0.08 83.11% 73.65% 92.56% 0.95±0.07 88.25% 83.85% 92.66% 

FBM 0.96±0.07 85.59% 79.51% 91.98% 0.96±0.06 89.49% 86.05% 92.93% 

𝑯𝑪𝑷𝑻𝒉𝒊𝒄𝒌 

EBM 0.93±0.09 84.27% 83.05% 85.49% 0.90±0.11 83.16% 80.71% 85.60% 

FBM 0.93±0.09 88.07% 84.59% 91.55% 0.93±0.09 87.02% 85.15% 88.89% 

𝑺𝑼𝑽𝑹𝑪𝒆𝒓𝒆 

EBM 0.94±0.09 87.71% 95.92% 81.26% 0.96±0.07 91.01% 97.47% 86.18% 

FBM 0.95±0.07 88.06% 96.67% 81.60% 0.97±0.05 87.69% 93.02% 83.70% 

𝑺𝑼𝑽𝑹𝑮𝑴 

EBM 0.97±0.06 91.98% 98.66% 87.01% 0.96±0.07 88.44% 93.23% 84.85% 

FBM 0.97±0.06 87.15% 95.73% 80.71% 0.96±0.06 87.56% 91.02% 84.98% 

𝑺𝑼𝑽𝑹𝑾𝑴 

EBM 0.93±0.10 90.68% 92.78% 89.10% 0.95±0.07 89.99% 89.20% 90.58% 

FBM 0.94±0.10 93.52% 99.72% 88.90% 0.96±0.07 90.64% 90.73% 90.56% 

𝑫𝒆𝒔𝒊𝒌𝒂𝒏𝑭𝑨 

EBM 0.86±0.15 79.84% 76.67% 82.23% 0.81±0.16 75.13% 70.88% 78.31% 

FBM 0.86±0.14 79.68% 72.48% 85.08% 0.83±0.16 77.63% 73.73% 80.55% 

𝑫𝒆𝒔𝒊𝒌𝒂𝒏𝑴𝑫 

EBM 0.66±0.24 62.00% 52.70% 68.98% 0.74±0.18 64.90% 57.81% 70.21% 

FBM 0.85±0.15 76.66% 63.72% 86.38% 0.81±0.16 70.64% 58.27% 79.91% 

𝑫𝒆𝒔𝒕𝒓𝒊𝒆𝒖𝒙𝑭𝑨 

EBM 0.66±0.25 65.66% 63.23% 67.49% 0.68±0.19 62.29% 57.81% 70.21% 

FBM 0.66±0.24 66.31% 55.63% 74.31% 0.76±0.18 71.51% 69.02% 73.38% 

𝑫𝒆𝒔𝒕𝒓𝒊𝒆𝒖𝒙𝑴𝑫 

EBM 0.84±0.15 77.60% 72.15% 81.69% 0.83±0.15 74.21% 66.25% 80.19% 

FBM 0.93±0.10 88.14% 81.68% 92.68% 0.92±0.11 87.45% 82.90% 90.88% 

𝑯𝒂𝒎𝒎𝒆𝒓𝒔𝑭𝑨 

EBM 0.79±0.19 76.77% 63.80% 86.50% 0.70±0.21 69.06% 65.72% 71.58% 

FBM 0.72±0.22 74.12% 57.68% 86.45% 0.76±0.20 75.53% 72.95% 77.46% 

𝑯𝒂𝒎𝒎𝒆𝒓𝒔𝑴𝑫 

EBM 0.72±0.22 69.52% 55.63% 79.94% 0.70±0.20 67.11% 54.17% 76.81% 

FBM 0.73±0.22 70.83% 53.67% 83.70% 0.71±0.20 68.23% 53.43% 79.33% 

𝑱𝑯𝑼𝑭𝑨 

EBM 0.80±0.19 77.24% 67.15% 84.81% 0.79±0.17 74.71% 68.15% 79.64% 

FBM 0.83±0.17 79.35% 71.05% 85.58% 0.80±0.17 76.16% 71.20% 79.89% 

𝑱𝑯𝑼𝑴𝑫 

EBM 0.61±0.26 63.86% 47.47% 76.16% 0.74±0.19 68.29% 62.08% 72.94% 

FBM 0.68±0.25 69.22% 53.53% 80.99% 0.75±0.19 71.86% 66.28% 76.05% 

𝑳𝒑𝒃𝒂𝟒𝟎𝑭𝑨 

EBM 0.72±0.24 71.34% 65.37% 75.81% 0.78±0.18 72.96% 63.43% 80.10% 

FBM 0.67±0.26 69.26% 53.77% 80.88% 0.77±0.02 73.58% 68.72% 77.23% 

𝑳𝒑𝒃𝒂𝟒𝟎𝑴𝑫 

EBM 0.86±0.15 75.29% 6.32% 81.04% 0.82±0.16 76.18% 65.78% 83.98% 

FBM 0.75±0.20 73.76% 67.78% 78.25% 0.83±0.16 74.91% 69.98% 78.60% 
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Individual Classifiers mean ROC curve 

 
Figure S.55 Mean ROC curves of the Cobra GM model. a) SVM EBM. b) LR EBM. c) SVM FBM. d) LR FBM. 

 
Figure S.56 Mean ROC curves of the Cobra WM model. a) SVM EBM. b) LR EBM. c) SVM FBM. d) LR FBM. 
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Figure S.57 Mean ROC curves of the Hammers GM model. a) SVM EBM. b) LR EBM. c) SVM FBM. d) LR FBM. 

 

 

Figure S.58 Mean ROC curves of the Hammers WM model. a) SVM EBM. b) LR EBM. c) SVM FBM. d) LR FBM. 
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Figure S.59 Mean ROC curves of the Hammers CSF model. a) SVM EBM. b) LR EBM. c) SVM FBM. d) LR FBM. 

 
Figure S.60 Mean ROC curves of the Lpba40 GM model. a) SVM EBM. b) LR EBM. c) SVM FBM. d) LR FBM. 
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Figure S.61 Mean ROC curves of the Neuro GM model. a) SVM EBM. b) LR EBM. c) SVM FBM. d) LR FBM. 

 

Figure S.62 Mean ROC curves of the Neuro CSF model. a) SVM EBM. b) LR EBM. c) SVM FBM. d) LR FBM. 
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Figure S.63 Mean ROC curves of the a2009 Gyrification model. a) SVM EBM. b) LR EBM. c) SVM FBM. d) LR 

FBM. 

 
Figure S.64 Mean ROC curves of the a2009 Thickness model. a) SVM EBM. b) LR EBM. c) SVM FBM. d) LR 

FBM. 
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Figure S.65 Mean ROC curves of the DK40 Gyrification model. a) SVM EBM. b) LR EBM. c) SVM FBM. d) LR 

FBM. 

 
Figure S.66 Mean ROC curves of the DK40 Thickness model. a) SVM EBM. b) LR EBM. c) SVM FBM. d) LR 

FBM. 
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Figure S.67 Mean ROC curves of the HCP Gyrification model. a) SVM EBM. b) LR EBM. c) SVM FBM. d) LR 

FBM. 

 
Figure S.68 Mean ROC curves of the HCP Thickness model. a) SVM EBM. b) LR EBM. c) SVM FBM. d) LR FBM. 
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Figure S.69 Mean ROC curves of the SUVR Cerebellum model. a) SVM EBM. b) LR EBM. c) SVM FBM. d) LR 

FBM. 

 
Figure S.70 Mean ROC curves of the SUVR GM model. a) SVM EBM. b) LR EBM. c) SVM FBM. d) LR FBM. 
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Figure S.71 Mean ROC curves of the SUVR WM model. a) SVM EBM. b) LR EBM. c) SVM FBM. d) LR FBM. 

 

 
Figure S.72 Mean ROC curves of the Desikan FA model. a) SVM EBM. b) LR EBM. c) SVM FBM. d) LR FBM. 

 

 



 

 

Differential diagnosis of Alzheimer’s disease based on multimodal imaging data (MRI, PIB, DTI) 
  

 

 

154  2019 

 

 
Figure S.73 Mean ROC curves of the Desikan MD model. a) SVM EBM. b) LR EBM. c) SVM FBM. d) LR FBM. 

 
Figure S.74 Mean ROC curves of the Destrieux FA model. a) SVM EBM. b) LR EBM. c) SVM FBM. d) LR FBM. 
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Figure S.75 Mean ROC curves of the Destrieux MD model. a) SVM EBM. b) LR EBM. c) SVM FBM. d) LR FBM. 

 
Figure S.76 Mean ROC curves of the Hammers FA model. a) SVM EBM. b) LR EBM. c) SVM FBM. d) LR FBM. 
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Figure S.77 Mean ROC curves of the Hammers MD model. a) SVM EBM. b) LR EBM. c) SVM FBM. d) LR FBM. 

 

Figure S.78 Mean ROC curves of the JHU FA model. a) SVM EBM. b) LR EBM. c) SVM FBM. d) LR FBM. 
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Figure S.79 Mean ROC curves of the JHU MD model. a) SVM EBM. b) LR EBM. c) SVM FBM. d) LR FBM. 

 

Figure S.80 Mean ROC curves of the Lpba40 FA model. a) SVM EBM. b) LR EBM. c) SVM FBM. d) LR FBM. 
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Figure S.81 Mean ROC curves of the Lpba40 MD model. a) SVM EBM. b) LR EBM. c) SVM FBM. d) LR FBM. 

 




