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Abstract. This study presents a systematic comparison on the performance of different metamodeling techniques in the 

analysis of variability in sheet metal forming processes. For this purpose, three steel grades (DC06, DP600 and HSLA340) 

are selected as reference materials and two sheet metal forming processes are considered: the U-Channel and the Square 

Cup forming processes. The sources of variability selected for this study are the Young’s modulus, the isotropic hardening 

law parameters, the anisotropy coefficients and the initial thickness of the sheet metal; the variability is described for all of 

them by a probabilistic normal distribution. The process outputs selected for analysis are the springback and maximum 

thinning, in case of the U-Channel forming process, and the maximum equivalent plastic strain and maximum thinning, in 

case of the Square Cup deep-drawing. Firstly, a number of random simulations is performed for each material and forming 

process. Then, metamodeling techniques based on 2nd degree polynomial RSM and three Kriging methods (Simple, 

Ordinary and Universal Kriging) are established, and their performance is evaluated. The results show that the performance 

of Kriging metamodels is generally better than RSM; also, the performance of RSM metamodels is strongly dependent on 

the number of design (training) points, which is not the case for Kriging metamodels. 

INTRODUCTION 

The analysis of sheet metal forming processes is often based on deterministic approaches, excluding the variability 

inherent to the material and process parameters. Variability analyses of sheet metal forming processes have recently 

been carried out in the literature, typically combining Finite Element Analysis (FEA) with metamodeling techniques 

such as Response Surface Methodology (RSM) and Kriging [1–3]. In this regard, metamodeling techniques establish 

mathematical relationships between the numerical inputs (e.g. material properties, geometrical characteristics and 

process parameters) and the numerical simulation outputs of forming processes (or responses). To our knowledge, no 

systematic comparison has been made so far on the performance of different metamodeling techniques in the analysis 

of variability of forming processes; in literature, the choice of the metamodeling technique is made presumptively, 

without prior analysis of its suitability to the problem under study. In this work, the performances of Kriging and RSM 

metamodels are evaluated for two distinct types of sheet metal forming processes: the U-Channel and the Square Cup 

deep-drawing, to try to understand the impact of the type of response. Moreover, the study is performed considering 

materials with distinct hardening and anisotropic behaviour. 
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METAMODELING 

RSM and Kriging are metamodeling techniques since they allow establishing mathematical relationships between 

the design variables (i.e. sources of variability) and the simulated outputs (i.e. responses) of forming processes. The 

vector of design variables is defined as x=xi, i=1,..., p, where p is the total number of sources of variability (inputs). 

In order to fit the response measurements, it is necessary to evaluate the response z(x) for a predefined set of design 

points, xd, such that z(xd)=zd
k, k=1,..., n, where n is the total number of random simulations performed. This also 

allows defining a design matrix Xd=xd
ik, with i=1,..., p and k=1,..., n. 

RSM is a regression model that fits a polynomial function to a set of known points. In this work, a quadratic 

function is used, as follows: 
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where z(x) is the estimated response for a given set of inputs x and β0, βi, βij and βii are the set of RSM coefficients, 

which can be organized in the vector of unknowns β, with a dimension equal to the total number of RSM coefficients: 

β=
20.5 1.5 1p p  . Note that for n<β the system of equations is underdetermined while for n>β it is overdetermined, 

i.e. there is a unique solution only when n=β. Thus, for n≠β, the least square solution is determined. This means that 

for n<β the Euclidean norm ||β|| is minimized, imposing that z= Hβ; where H is the linear system matrix. For n>β it 

is the Euclidean norm ||z-Hβ|| that is minimized. 

Kriging is an interpolation technique that estimates the response z(x), for a given set of inputs x, as a sum of two 

functions, a trend function f(x) and a residual function R(x): 

 ( ) ( ) ( )z f R x x x . (2) 

Kriging estimates the residual function R(x) as a weighted sum of the residuals R(xα), evaluated at the design points 

located in the neighbourhood of the estimation point, xe. Assuming that all design points are in the neighbourhood of 

the estimation point, xe: 
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where wα are the Kriging weights, n is the total number of known points, z(xα) is the response for the predefined set 

of design points xα at known point α, and f(xα) is the trend function at xα. The Kriging weights are determined by 

solving a system of linear equations, which is established based on the matrix of covariance between each pair of 

known points, C. The covariance function C(|xi-xj|) chosen in this study corresponds to the Gaussian model: 
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where |xi-xj| is the Euclidean distance between the points xi and xj, and a and b are the parameters of the Gaussian 

model. The parameters a and b are fitted to quantify how the responses are related through distances between pairs of 

points. The three Kriging variants selected in this work, Simple Kriging (SK), Ordinary Kriging (OK) and Universal 

Kriging (UK), differ in their treatments of the trend function f(x). For SK, it is assumed that the trend function is a 

constant and known value f(x) = m, which corresponds to the mean value of the known responses. Therefore, the 

response estimation for SK is given by: 
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Therefore, the system of linear equations is defined as follows: 

 ik k iC w c , with i, k=1,..., n, (6) 

where C is the square matrix of covariance between each pair of known points and c is the vector of covariance 

between the design points, xα, and the estimation point, xe. For OK, it is assumed that the trend function is a constant 

and unknown mean in the neighbourhood of each estimation point, f(x) = m(x). The response estimation for OK is 

given by: 
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The unknown mean m(x) is filtered by imposing 
1

1
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 , to ensure an unbiased solution, i.e. 
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x x . In this case, the calculation of the Kriging weights requires including an additional equation 

in the system shown in Eq. (6), as follows: 
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where λ is a Lagrange multiplier. For UK, it is assumed that the trend function is a linear or higher-order function. In 

this work a linear trend function is used, 0 1
( )

p

i ii
f a a x


 x , where ai, i=0,..., p, are the coefficients of the linear 

function. In this case, the calculation of the Kriging weights requires adding p extra lines and columns to the ordinary 

Kriging system of equations (see Eq. (8)), as follows: 
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where xd
ki, with k=1,..., n and i=1,..., p corresponds to the coefficients of the design matrix, Xd; xe

i are the values of 

each design variable at the estimation point and λi are the Lagrange multipliers. 

STUDY CASES 

This section presents the details of the numerical models of the U-Channel and Square Cup forming processes, 

including the materials considered and the relevant input variables. The procedure adopted for generating and 

evaluating both Kriging and RSM metamodels is also described. 

Numerical Models  

The numerical models of the U-Channel and Square Cup forming processes are represented in Figure 1. Both 

processes comprise three main elements: the blank holder, the die and the punch. The blank holder force is assumed 

constant and equal to 4.9 kN during both forming processes, which end after a total punch displacement of 30 mm, in 

case of the U-Channel forming, and 40 mm, in case of the Square Cup forming. The initial dimensions of the blank of 

the U-Channel and Square Cup forming processes are, respectively, 150×35×0.78 mm3 and 75×75×0.78 mm3. The 

material is considered orthotropic. Due to material and geometry symmetries, only one fourth of the blank is simulated 

for the Square Cup deep-drawing process, considering a finite element mesh with 1800, 8-node hexahedral solid 

elements. For the U-Channel, only half of the blank is considered and boundary conditions are set to guarantee a plain 

strain state along the width of the blank, which enables the use of a total of 450, 8-node hexahedral solid elements. 

 
 

(a) (b) 

FIGURE 1. Representation of the finite element models for the study cases: (a) U-Channel; (b) Square Cup 
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The numerical simulations were carried out with the in-house finite element code DD3IMP, developed and 

optimized for simulating sheet metal forming processes [4]. The forming tool geometry was modelled using Nagata 

patches [5]. The contact with friction is described by Coulomb’s law, with a friction coefficient of 0.144. The 

constitutive model adopted in this study assumes (i) the isotropic elastic behaviour described by the generalised 

Hooke’s law and (ii) the plastic behaviour described by the orthotropic Hill’48 yield criterion combined with Swift 

isotropic hardening law. The Hill’48 yield criterion is described as follows: 
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where σxx, σyy, σzz, τxy, τyz and τxz are the components of the Cauchy stress tensor defined in orthotropic coordinate 

system of the material; F, G, H, L, M and N are the anisotropy parameters and Y is the flow stress. The condition G + 

H = 1 is assumed and so Y is represented by the uniaxial tensile stress along the rolling direction of the sheet. The 

parameters L and M are assumed equal to 1.5, as in isotropy (von Mises). The parameters F, G, H and N can be related 

with the anisotropy coefficients r0, r45 and r90, as follows: 

 0 0 0 90 45

90 0 0 0 90 0

( )(2 1)1 1
,  ,  ,  

( 1) 1 1 2 ( 1)

r r r r r
F G H N

r r r r r r

 
   

   
. (11) 

The Swift hardening law is expressed by: 
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where p  is the equivalent plastic strain and C, Y0 and nh are material parameters. Two types of numerical simulation 

outputs were considered for each forming process: (i) springback and maximum thinning, for the U-Channel process, 

and (ii) maximum equivalent plastic strain and maximum thinning, for the Square Cup deep-drawing. 

Materials  

Three different steels are considered for each forming process: DC06, DP600 and HSLA340. For each of these 

materials, a normal distribution is assumed for describing the variability of the following inputs: C, Y0 and nh of the 

Swift hardening law; Young’s Modulus, E; anisotropy coefficients r0, r45 and r90, and initial sheet thickness, t0. The 

mean (µ) and standard deviation (𝜎) values of each parameter are detailed in Table 1. 

 

Metamodel Generation and Evaluation  

Based on the normal distribution of each input shown in Table 1, 60 sets of inputs were randomly generated for 

each material. Numerical simulations of the U-Channel and Square Cup forming processes were performed for each 

of these randomly generated inputs, x, with a total of 3 (materials) × 60 (sets of inputs) = 180 simulations for each 

forming process. For each material, the numerical simulations of each forming process were grouped into two sets: 

one training set, xd, with n simulations for generating Kriging and RSM metamodels, and one testing set, xe, with k 

simulations for evaluating the performance of the generated metamodels, by comparing the estimated/predicted output 

values with those obtained by numerical simulation. The root mean square relative error (RMSRE) is used to evaluate 

the performance of each metamodel: 
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where zi and iz  are the simulated and predicted response values for the set of testing inputs xe, respectively. In a first 

approach, the two sets were defined with an equal dimension, i.e. n = k= 30. It should be noted that in this case the 

TABLE 1. Values of µ and 𝜎 for each input of the three materials considered 

Materials  
C 

[MPa] 
nh 

Y0 

[MPa] 
E [GPa] r0 r45 r90 

t0  

[mm] 

DC06 
µ 565.32 0.259 157.12 206 1.790 1.510 2.270 0.780 

𝜎 26.85 0.018 7.16 3.85 0.051 0.037 0.121 0.013 

DP600 
µ 1093.0 0.187 330.30 210 1.010 0.760 0.980 0.780 

𝜎 52.46 0.02 9.64 7.35 0.04 0.03 0.06 0.01 

HSLA340 
µ 673.0 0.131 365.30 210 0.820 1.070 1.040 0.780 

𝜎 32.30 0.011 10.67 7.35 0.033 0.039 0.061 0.005 



number of training simulations for each RSM metamodel is less than the number of RSM coefficients β=45, (for p=8 

inputs – see Equation 1). In a second approach, the two sets were defined as n=45 and k=15; in this case, the number 

of training simulations for each RSM metamodel equals β, and the solution for β is unique. A total of 48 metamodels 

were generated for each forming process, each corresponding to a material (3), type of response (2), metamodeling 

technique (4) and training/testing set (2). 

RESULTS 

Table 2 presents the RMSRE values obtained for the metamodels generated with the U-Channel and Square Cup 

processes. Overall, the Kriging techniques (UK in particular) present better predictions than RSM, achieving values 

of RMSRE below 5%, with the only exception being the prediction of the maximum thinning in the Square Cup deep-

drawing using DP600 and 30 training simulations. In some cases, such as the prediction of maximum equivalent 

plastic strain for the Square Cup deep-drawing using HSLA340, all Kriging techniques give similar performances, 

while in other cases UK performs better than SK and OK (the only exception is the prediction of the maximum thinning 

in the Square Cup deep-drawing using DP600 and 30 training simulations). It can be concluded that, for the cases 

where all Kriging techniques give similar performances, the trend function f(x) is constant, which makes both SK and 

OK techniques competitive with UK. For the remaining cases, UK performs better than SK and OK because the trend 

function f(x) is not constant. Also, the values of RMSRE for Kriging metamodels generated from 30 and 45 training 

simulations are relatively close to each other. However, some of the models with n=45 underperform the models with 

n=30, which can be related with stronger oscillations of the metamodel when a higher number of interpolation 

(training) points is used, leading to an increase in the values of RMSRE. 

TABLE 2. Values of RMSRE (%) obtained for the Kriging and RSM metamodels of the U-Channel and Square Cup processes.  

The RSM metamodels generated with n=30 training simulations and evaluated with k=30 testing simulations 

achieve values of RMSRE ranging from 5.46% in case of maximum thinning in the U-Channel process using DC06 

(see Table 2), to 13.13% in case of maximum thinning in the Square Cup deep-drawing using DP600. Globally, the 

RSM metamodels generated with 45 training simulations present higher RMSRE values than those obtained with 30 

training simulations (the only exception being the prediction of maximum equivalent plastic strain in the Square Cup 

deep-drawing using HSLA340). This can be associated with metamodel overfitting (forced fitting) to the training 

points, leading to poor prediction capabilities (i.e. high values of RMSRE). Figure 2(a) shows the correspondence 

between the numerical simulation and predicted responses of maximum thinning in the U-Channel, with DC06, using 

Universal Kriging and RSM metamodels with 30 (“RSM (30/30)”) and 45 (“RSM (45/15)”) training simulations. The 

dispersion in the RSM results, namely RSM (45/15), is more pronounced than in Kriging; the case of RSM with 30 

training simulations generates a more balanced metamodel than RSM (45/15). Figure 2(b) shows the evolutions of 

||β|| and RMSRE with the number of training points (from 30 to 60). The idea is to analyse the separated influence of 

the constant, linear, interaction and quadratic terms (see Equation 1) in the values of RMSRE, through the respective 

U-Channel  Springback Maximum Thinning 

 Train/Test DC06 DP600 HSLA340 DC06 DP600 HSLA340 

SK 
30/30 2.83 3.47 1.52 0.73 1.43 3.14 

45/15 3.90 2.73 3.87 1.54 1.16 2.71 

OK 
30/30 2.77 3.48 1.52 0.74 1.43 3.12 

45/15 4.09 2.73 3.83 1.54 1.14 2.66 

UK 
30/30 2.77 1.62 1.52 0.74 1.43 1.24 

45/15 2.97 1.46 1.59 0.66 0.92 1.26 

RSM 
30/30 7.71 7.41 8.48 5.46 6.60 8.42 

45/15 63.69 26.49 25.12 29.83 47.03 11.24 

Square Cup  Maximum Equivalent Plastic Strain Maximum Thinning 

 Train/Test DC06 DP600 HSLA340 DC06 DP600 HSLA340 

SK 
30/30 0.31 0.42 0.71 1.92 5.98 4.44 

45/15 0.30 0.40 0.72 2.19 4.05 4.07 

OK 
30/30 0.32 0.42 0.71 1.92 5.98 4.45 

45/15 0.30 0.40 0.71 2.19 4.08 4.09 

UK 
30/30 0.23 0.42 0.70 1.92 6.66 3.46 

45/15 0.30 0.40 0.71 2.19 2.89 3.93 

RSM 
30/30 7.51 7.46 9.92 6.81 13.13 9.48 

45/15 25.95 35.6 3.38 337.89 406.71 18.14 



values of β0, ||βi||, ||βij|| and ||βii||. According to this figure, similar evolutions with the number of training points of 

RMSRE and ||βij|| (related with the interaction terms) are observed. When the number of training points is equal to 45, 

the RSM metamodel overfits the training points, leading to a peak value of RMSRE associated to a relatively high 

value of ||βij||, when compared to the values of ||βi|| and || βii||. When the number of training points is less or higher than 

45, the relative values of ||βi||, ||βij||, ||βii|| and RMSRE reduce. In the first case (<45), the least squares solution leads to 

interpolation to the training points with relatively low values of ||βi||, ||βij|| and ||βii||, close to each other. In the latter 

case (>45), interpolation does not occur and the least squares solution leads to relatively low values of ||βi||, ||βij|| and 

||βii||, close to zero. In both cases, near-constant RSM metamodels are generated, i.e. the values of β0 and ||β|| are 

relatively close to each other. 

  

(a) (b) 

FIGURE 2. (a) Correspondence between the simulated and predicted response values of maximum thinning in the U-Channel 

process with DC06, obtained by UK and RSM metamodels; (b) ||β|| and RMSRE vs. number of RSM training points.  

CONCLUSIONS 

In this work, Kriging and RSM metamodeling techniques were applied to describe the variability in the results of 

two sheet metal forming processes, the U-Channel and Square Cup processes. In general, Kriging (namely Universal 

Kriging) proved to be the most reliable metamodeling technique, allowing accurate response predictions for all study 

cases. The performance of the RSM metamodels showed to be strongly dependent on the number of design (training) 

points, which was not the case for Kriging metamodels. In this context, it can be concluded that the performance of 

the metamodels depends not only on the type of response, material and forming process under analysis, but it may 

also strongly depend on the total number of training points used to generate the metamodels. 
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