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Abstract

Evolutionary Algorithms (EAs) are algorithms inspired in the process of natural
selection, and are among the most popular methods in multiobjective optimization.
As objectives are typically conflicting with one another, instead of a single optimal
solution, there is usually a set of optimal solutions which, together, form a trade-off
surface. The choice of the best solution depends on the preferences of a Decision
Maker (DM), which arise from subjective information not contained in the multiob-
jective optimization problem formulation itself. In the absence of such preference
information, an optimization algorithm should be able to cover the optimal trade-
off surface as well as possible, in order to increase the chance that at least one
satisfactory solution is presented to the (unknown) DM.

One of the main steps of an EA is selection which is aimed at focusing on the
best solutions, but must also maintain a sufficient level of diversity in the population.
A very successful selection approach consists in optimizing a measure of the quality
of the population as a whole, accounting simultaneously for individual quality and
population diversity. Such EAs are called indicator-based EAs, as they rely on
set-quality indicators to perform selection. Indicator-based EAs are currently state-
of-the-art algorithms in Evolutionary Multiobjective Optimization (EMO).

More recently, the notion of selection in EAs has been linked to the Portfolio
Selection Problem (PSP), which is well known in Finance. In this analogy, individ-
uals are seen as assets whose returns are random variables that are characterized by
their expected values and covariance matrix. Balancing between good and diverse
solutions in a population becomes analogous to balancing expected return and risk,
respectively, in financial portfolios. In particular, it has been empirically shown that
such a balance in EMO selection can be achieved using the risk-adjusted performance
index known as Sharpe ratio, without modification, as a new quality indicator in
the context of a particular formulation of random individual return related to the
concept of dominated hypervolume.

The focus of this thesis is the subset selection problem at the core of selection
in EMO algorithms, but from the more general point of view of Portfolio Selection.
Two lines of work are followed. The first one consists in improving those state-of-the-
art algorithms that are based on the hypervolume indicator, which is a well known
and theoretically supported, but computationally expensive, quality indicator. The
second line of work goes beyond subset selection: a new type of indicators based
on the Sharpe ratio is studied, both theoretically and experimentally, shedding new
light on selection, fitness assignment and preference integration in EMO algorithms.

Keywords: Evolutionary Algorithms, Multiobjective Optimization, Portfolio Selec-
tion, Subset Selection, Hypervolume Indicator, Sharpe Ratio
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Resumo

Os Algoritmos Evolutivos (AEs) são algoritmos inspirados no processo de selecção
natural e estão entre os métodos mais utilizados em optimização multiobjectivo.
Como tipicamente os objectivos são contraditórios entre si, em vez de existir uma
única solução óptima, existe um conjunto de soluções óptimas que, juntas, formam
uma superfície de trade-off. A escolha da melhor solução depende das preferências do
decisor, que resultam de informação subjectiva não contida na formulação do prob-
lema multiobjectivo. Na ausência desta informação sobre preferências, um algoritmo
de optimização deve ser capaz de cobrir a superfície de trade-off o melhor possível,
de modo a aumentar as hipóteses de que, pelo menos, uma solução satisfatória seja
apresentada ao decisor (desconhecido).

Um dos principais passos de um AE é a selecção, que visa priveligiar as melhores
soluções mas deve também manter um nível suficiente de diversidade na população.
Uma abordagem bem sucedida para selecção consiste em optimizar uma medida de
qualidade da população como um todo, tendo simultaneamente em conta a qualidade
de cada indivíduo e a diversidade da população. A estes AEs dá-se o nome de AEs
baseados em indicadores, e estão actualmente entre o estado da arte em Optimização
Multiobjectivo Evolutiva (OME).

Recentemente, a noção de selecção em AEs tem sido ligada ao Problema de Se-
lecção de Portfólios (PSP), que é muito conhecido em Finanças. Nesta analogia, os
indivíduos são vistos como activos cujos retornos são variáveis aleatórias caracteri-
zadas pelo seus valores esperados e por uma matriz de covariância. Balancear entre
boas soluções e soluções diferentes numa população torna-se análogo a balancear
retorno esperado e risco, respectivamente, em portfólios financeiros. Em particular,
já foi mostrado empiricamente que este balanceamento na selecção em OME pode
ser obtido usando, sem qualquer modificação, um índice de desempenho que tem
em conta o risco e que é conhecido como rácio de Sharpe, como um novo indicador
de qualidade no contexto de uma determinada formulação de retorno individual
aleatório relacionado com o conceito de hipervolume dominado.

O foco desta tese é o problema de selecção de subconjuntos que está no cerne da
selecção em algoritmos de OME, mas do ponto-de-vista mais geral de Selecção de
Portfólios. Foram seguidas duas linhas de trabalho. A primeira consiste em melhorar
os algoritmos estado da arte baseados no indicador de hipervolume, que é um indi-
cador muito conhecido e com bases teóricas, mas cujo cálculo é computacionalmente
dispendioso. A segunda linha de trabalho vai além da selecção de subconjuntos: es-
tudar um novo tipo de indicadores baseados no rácio de Sharpe, tanto teórica como
experimentalmente, abrindo uma nova perspectiva sobre a selecção, atribuição de
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aptidão e integração de preferências em algoritmos de OME.

Palavras-chave: Algoritmos Evolutivos, Optimização Multiobjectivo, Selecção de
Portfólios, Selecção de Subconjuntos, Indicador de Hipervolume, Rácio de Sharpe
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Chapter 1

Introduction

1.1 Motivation
Everyday, people have to make decisions, conscientiously or not, over the different
alternatives to solve a given task/problem. Such alternative solutions will typically
have both advantages and disadvantages, some of which may be translated into
objectives that one wishes to maximize or minimize. For example, when choosing
the path to work, one might want to spend less time (objective 1) and travel the
shortest distance (objective 2), or when booking a hotel room, one might want to
find the closest one to the city center (objective 1), but minimize the money spent
(objective 2) while maximizing the room comfort (objective 3). For problems like
these, the ideal solution, which is the best in all objectives, seldomly exists. Indeed,
objectives are typically conflicting, i.e., it may not be possible to improve in one
objective without degrading another. For example, it is common that the closer a
hotel is to the city center, the more expensive it is. Consequently, there is frequently
more than one optimal solution.

When searching for the best option, one typically does not want to be over-
whelmed with too many choices. At the same time, one wants to find the solution
that suits her/him best or is, at least, good enough. From the booking services
point-of-view, it should take into account that different clients have different (and
typically unknown) preferences. Providing just a few options such that it is likely
that one satisfies the client would be ideal. This is a subset selection problem where
the booking service may have hundreds of options, but has to select a small subset
to show to the client, who ultimately will decide on one solution. In a sense, one
might look at the subset of options selected by the booking service as an investment
in those options, where the relative amount of investment is reflected by the order
in which the options are listed. This problem can thus be interpreted as the more
general Portfolio Selection Problem (PSP).

In (multiobjective) optimization problems such as the above problem of planning
a path to work, solutions are not typically known at hand. They have to be searched
for before a set of solutions can be presented to the Decision Maker (DM). For
that purpose, methods such as mathematical programming solvers and Evolutionary
Algorithms (EAs) are used to generate solutions and to search for the optimal ones.
The latter stand out for their ability to simultaneously search for multiple solutions
and for not depending on specific problem characteristics (e.g., linearity, convexity,
differentiability).
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EAs also face the subset/portfolio selection problem, but multiple times. They
go through many solutions, and typically cannot keep all of them. Having to choose
(or invest in) some solutions over others is inevitable. A typical run of an EA consists
of several iterations (called generations) each of which consists of two main steps:
selection and generation of new solutions from old ones. Selection in indicator-based
EAs consists in finding a subset of limited size that maximizes the indicator, which
reflects the quality of a set of solutions in a scalar value. Typically, a fitness value
is then assigned to every selected solution with implications on which solutions are
used for generating new ones. Usually, the greater the fitness a solution has the
more likely it is to be used for that purpose. In some way, this can be viewed as
investing in solutions to be used to, hopefully, generate better solutions.

Together with the subset selection problem, the fitness assignment problem in
EAs can be viewed as a portfolio selection problem. A recent approach aims at solv-
ing such a portfolio selection problem through the maximization of a risk-adjusted
performance index, the Sharpe ratio. The initial results make this a promising
approach and open up new opportunities for the integration of preferences.

Ultimately, the way an evolutionary algorithm makes choices regarding the se-
lection of solutions, can be viewed as a reflection of some kind of preferences. Un-
derstanding these preferences, i.e., the characteristics of what is considered the best
subset is very important to help ensure that the DM will find a satisfactory (set of)
solution(s). For that purpose, it is essential to study in depth the methods used for
solving the subset/portfolio selection problem at the core of EAs.

1.2 Summary
The central subject of this thesis is the study of the subset selection problem through
the more general perspective of portfolio selection, with focus on theoretically sup-
ported methods. The first step was to work with a state-of-the-art quality indicator,
and the second step was to go beyond subset selection and study a new type of indica-
tors based on portfolio selection. In particular, this thesis aims at 1) understanding
and providing an extensive overview on the theoretically supported hypervolume
indicator, 2) improving the practical tools for computing problems related to the
hypervolume indicator, in particular, hypervolume-based subset selection problems,
and, 3) validating the use of portfolio selection in the context of EMO through
Sharpe ratio maximization and providing the base tools for its theoretical and ex-
perimental analysis. The thesis document is organized as follows:

Chapter 2 – Multiobjective Optimization This chapter provides the back-
ground on multiobjective optimization and decision making and the motivation for
using evolutionary algorithms in this context, with a focus on selection. Particular
emphasis is given to the theoretical aspects of indicator-based selection and to the
reinterpretation of selection in EAs as a portfolio selection problem.

Chapter 3 – The Hypervolume Indicator The goal of this chapter is to moti-
vate the development of new and faster algorithms to compute hypervolume-related
problems. This is achieved, firstly, by highlighting the properties of the hypervolume
indicator and its importance to EMO and, secondly, by showing the difficulties asso-
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ciated with solving the several hypervolume-related problems arising in connection
with subset selection based on the hypervolume indicator.

Chapter 4 – Hypervolume Subset Selection The central subject of this chap-
ter is the Hypervolume Subset Selection Problem (HSSP), which consists in select-
ing k solutions out of a set of n solutions such that the hypervolume indicator is
maximized. This chapter improves upon the state-of-the-art by proposing several
algorithms for problems with a low number of objectives. In particular, new al-
gorithms dedicated to the computation and update of hypervolume contributions
lead to improvements to the computation of the HSSP in the special case where
k = n − 1. Moreover, new algorithms for the greedy approximation of the general
HSSP are proposed, and the theoretical guarantees of such approaches are studied.

Chapter 5 – Portfolio Selection This chapter considerably extends the work
initiated in the paper where selection in EMO is reinterpreted as a Portfolio Selection
Problem [133], and a fitness-assignment method based on the maximization of the
Sharpe ratio under a given interpretation of random individual return is proposed.
The positive results observed in [133] have given strength to this new perspective on
selection, indicating that it is worth studying in more depth, and opening multiple
paths/opportunities for further research. The main goal of this chapter is to provide
theoretical support to the view of selection in EAs as a portfolio selection problem.
With the theoretical analysis of the indicator proposed by Yevseyeva et al. [133], and
the discussion of extensions of such an indicator to different types of problems, this
chapter provides tools for the proposal and analysis of other indicators formalizing
this view through the maximization of the Sharpe ratio.

Chapter 6 – Portfolio Selection in EMO The goal of this chapter is, firstly,
to discuss the suitability of using greedy approaches to approximate the HSSP in
EA selection instead of much more expensive exact algorithms, and, secondly, to
discuss the suitability of indicators based on the Sharpe ratio for performing selec-
tion and fitness assignment by interpreting them together as a portfolio selection
problem. An experimental study is presented, where each of these selection algo-
rithms was integrated into a fairly simple evolutionary algorithm, and the resulting
EMO algorithms were applied to a number of benchmark problems.

1.3 Contributions
The main contributions of this thesis are the following.

• An extensive review of computational problems related to the hypervolume
indicator and of algorithms available to solve those problems. This review
includes a rundown of the best/most adequate algorithms for each specific
problem depending on the number of dimensions considered. The theoretical
properties of the hypervolume indicator and of hypervolume-based selection
algorithms are reviewed as well.

• New algorithms to efficiently compute and/or update the hypervolume indica-
tor and hypervolume contributions in three and four dimensions [83]. These
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algorithms are shown to either match or outperform the state-of-the-art in
terms of performance.

• New algorithms to approximate the HSSP in three and four dimensions using a
greedy decremental approach [83]. Additionally, an approximation guarantee
is derived for such an approach.

• A new algorithm to approximate the HSSP in three dimensions using a greedy
incremental approach [85, 86]. An approximation guarantee is provided by
connecting to known results in the literature.

• Formalization of the class of Sharpe ratio indicators and, presentation of the-
oretical and experimental results on a particular instance called the Hypervol-
ume Sharpe ratio indicator [82, 81] (HSR indicator). The theoretical studies on
HSR indicator cover proofs of monotonicity, independence of one of two refer-
ence points, and scaling independence under linear transformations. Moreover,
it is shown that the HSR indicator always selects, at least, two points in the
Pareto front (if that many exist).

• The optimal µ-distributions of the HSR indicator on two-dimensional linear
fronts, and the corresponding optimal investments, are derived [81]. Such op-
timal µ-distributions are shown to be exactly the same as for the hypervolume
indicator [81]. For other fronts, optimal µ-distribution approximations were
numerically obtained and compared to the corresponding approximations for
the hypervolume indicator.

• Experimental studies on the integration of the HSR indicator for both en-
vironmental selection and fitness assignment. The results in synthetic and
benchmark problems show the suitability of integrating such an indicator in
an EMOA.

• Description of other instances of the Sharpe ratio indicator class, one aimed
at constrained optimization problems and another at problems where each
solution maps to a set of nondominated points in objective space instead of a
single point.

• Source code for the developed algorithms for hypervolume-based problems
is made available online at https://github.com/apguerreiro/gHSS and at
https://github.com/apguerreiro/HVC.
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Chapter 2

Multiobjective Optimization

2.1 Optimization
Solving an optimization problem consists in finding solutions that minimize or max-
imize one or more objectives. Without loss of generality, minimization is assumed
in this work. Formally, an optimization problem with d ≥ 1 objectives to be mini-
mized [109, 112] can be formulated as follows:

min
x∈Ω

f(x) = [f1(x), f2(x), . . . , fd(x)]
T (2.1)

where Ω denotes the set of feasible points in decision space, or feasible set, and
f : Ω → Rd. The target set Rd is called the objective space. Throughout the text,
subscripts are used to refer to coordinates of points or vectors (e.g., fi(x) denotes
the ith coordinate of vector function f(x) above). The feasible set is defined as:

Ω = {x ∈ S | ci(x) = 0 and cj(x) ≥ 0, i ∈ E , j ∈ I} (2.2)

where S is called the decision space, ci : S → R for all i ∈ E ∪ I, and sets E and I
are disjoint sets of integer indices referring to the equality constraints and inequality
constraints, respectively. An inequality constraint cj (j ∈ I) is said to be active at a
feasible solution x if cj(x) = 0, and is said to be inactive if cj(x) > 0. The union of
the indices of all equality constraints with those of all active inequality constraints
at a feasible solution x is called the active set, A(x):

A(x) = E ∪ {j ∈ I | cj(x) = 0} (2.3)

Single-objective (d = 1) and multiobjective (d ≥ 2) optimization problems are
considerably different. When the optimization problem has only one objective func-
tion, all solutions can be compared to one another with respect to their single objec-
tive value and, therefore, the feasible set is a totally pre-ordered set. On the other
hand, if the problem is a multiobjective optimization problem, then the feasible set
may be a partially pre-ordered set. Recall the path-to-work example from Chapter 1.
If only the distance is to be minimized, solutions are easily compared/sorted based
on their single objective value. If the time spent is also to be minimized, it might
be the case that two solutions cannot be sorted because one takes a shorter amount
of time and the other path is shorter.
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2.1.1 Single-Objective Case
Optimization algorithms may or may not be able to guarantee that the solutions they
return are optimal. In the single-objective case, optimality may be checked if the
problem being solved belongs to a class for which appropriate optimality conditions
are known, such as problems with a smooth objective function.

If a (single) objective function f and the functions ci, i ∈ E ∪I, are twice contin-
uously differentiable, then the following definitions and optimality conditions [112,
p. 320-321] are applicable.

Definition 2.1 (LICQ). Given a point x∗ and the active set A(x∗), a linear inde-
pendence constraint qualification (LICQ) is said to hold if the set of active constraint
gradients {∇ci(x∗), i ∈ A(x∗)} is linearly independent.

In order to formulate the optimality conditions, the Lagrangian function is de-
fined:

L(x, λ) = f(x)−
∑
i∈E∪I

λici(x) (2.4)

The following first-order necessary conditions are know as the Karush-Kuhn-Tucker
conditions (KKT conditions):

Theorem 2.1 (First-Order Necessary Conditions). Suppose that x∗ is a local
solution of (2.1) and that the LICQ holds at x∗. Then, there is a Lagrange multiplier
vector λ∗ with components λ∗

i , i ∈ E ∪ I, such that the following conditions are
satisfied at (x∗, λ∗):

∇xL(x∗, λ∗) = 0, (2.5a)
ci(x

∗) = 0, for all i ∈ E (2.5b)
ci(x

∗) ≥ 0, for all i ∈ I (2.5c)
λ∗ ≥ 0, for all i ∈ I (2.5d)

λ∗
i ci(x

∗) = 0, for all i ∈ E ∪ I (2.5e)

Since the last KKT condition (2.5e) implies that the Lagrange multipliers λ∗
i cor-

responding to inactive inequality constraints ci at a local solution x∗ are zero, the
first KKT condition (2.5a) may also be written as:

∇xL(x∗, λ∗) = ∇f(x∗)−
∑

i∈A(x∗)

λ∗
i∇ci(x∗) = 0 (2.6)

The first-order conditions are necessary, but not sufficient to establish that a
given solution x ∈ Ω is optimal. That is, an optimal solution must satisfy the KKT
conditions but, in general, satisfying them does not ensure optimality. Only in some
particular cases are the KKT conditions also sufficient. For example, when the
problem is convex, i.e., when the objective function and the inequality constraints
are convex and the equality constraints are affine [20, p. 244].
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2.1.2 Multiobjective Case
In the general d-objective case, d ≥ 2, there may be no solution that minimizes all ob-
jectives simultaneously. Instead, there are multiple optimal solutions, each of which
cannot be improved with respect to any objective without suffering degradation in
another objective. The feasible set is then a partially pre-ordered set with respect
to the Pareto-dominance relation. Consider two feasible solutions, x, y ∈ Ω and
their corresponding images in objective space, u = f(x) and v = f(y), both in Rd.
Dominance between solutions x and y and between (the corresponding) objective
vectors, or points, u and v are defined as follows [57, 92]:

Definition 2.2 (Weak dominance). A solution x ∈ Ω is said to weakly dominate
a solution y ∈ Ω, iff ui ≤ vi for all 1 ≤ i ≤ d. This is represented as x ⪯ y. Similarly,
u is said to weakly dominate v, and this is represented as u ≤ v.

Definition 2.3 ((Strict) Dominance). A solution x ∈ Ω is said to (strictly)
dominate a solution y ∈ Ω, iff u ≤ v and v ≰ u. This is represented as x ≺ y.
Similarly, u is said to dominate v, and this is represented as u < v.

Definition 2.4 (Strong dominance). A solution x ∈ Ω is said to strongly domi-
nate a solution y ∈ Ω, iff ui < vi for all 1 ≤ i ≤ d. This is represented as x ≺≺ y.
Similarly, u is said to strongly dominate v, and this is represented as u≪ v.

Definition 2.5 (Incomparability). Two solutions x, y ∈ Ω are said to be incom-
parable iff neither u ≤ v nor v ≤ u are true. This is represented as x ∥ y. Similarly,
u and v are said to be incomparable, and this is represented as u ∥ v.

Definition 2.6 (Indifference). Two solutions x, y ∈ Ω are said to be indifferent,
iff both f(x) ≤ f(y) and f(y) ≤ f(x) are true. This is represented as x ∼ y. In this
case, u and v are identical (u = v).

Definition 2.7 (Pareto-optimality). A feasible solution x ∈ Ω is called Pareto-
optimal, or efficient, iff there is no y ∈ Ω such that f(y) < f(x) is true. The set of all
Pareto-optimal solutions is called the Pareto-optimal set, while the corresponding
image in objective space is called the Pareto-optimal front.

Definition 2.8 (Non-dominated point). If a feasible solution x ∈ Ω is Pareto-
optimal, then u = f(x) is called a nondominated point.

The following definitions extend the concept of dominance to sets (in objective
space only) as proposed in [148], but the terminology and notation adopted have
been slightly revised for greater clarity:
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Definition 2.9 (Weak Set Dominance). A set A ⊂ Rd is said to weakly dominate
a set B ⊂ Rd iff ∀b∈B, ∃a∈A | a ≤ b. This is represented as A ⪯ B.

Definition 2.10 ((Strict) Set Dominance). A set A ⊂ Rd is said to (strictly)
dominate a set B ⊂ Rd, iff A ⪯ B and B ̸⪯ A. This is represented as A ≺ B.

Definition 2.11 ((Strict) Elementwise Set Dominance). A set A ⊂ Rd is said
to (strictly) dominate a set B ⊂ Rd elementwise, iff A ̸= ∅ and ∀b∈B, ∃a∈A | a < b.
This is represented as A ≺· B.

Definition 2.12 (Strong Set Dominance). A set A ⊂ Rd is said to strongly
dominate a set B ⊂ Rd, iff A ̸= ∅ and ∀b∈B, ∃a∈A | a ≪ b. This is represented as
A ≺≺ B.

Definition 2.13 (Set Indifference). Two point sets A,B ∈ Ω are said to be
indifferent, iff both A ⪯ B and B ⪯ A are true. This is represented as A ∼ B.

Definition 2.14 (Non-dominated point set). A set of points A = {u1, . . . , un ∈
Rd} is said to be a nondominated point set, iff ∀u,v∈A, u ̸= v ⇒ u ∥ v.

The widely adopted dominance relation reflects the weakest assumptions on so-
lution comparison. Other relations could be used instead of dominance, such as the
lexicographic order (prioritizes objectives) and the max-order [58]. However, using
other relations encompasses stronger assumptions regarding DM preferences.

2.2 Decision Making
In multiobjective optimization, the existence of a Decision Maker (DM) is often
assumed, and the optimization method is regarded as a tool to help the DM select
the most preferable solution from the Pareto-optimal set. The Decision Maker is seen
as an entity that has additional subjective information about the problem, known as
preference information, which may allow one to discriminate among incomparable
solutions. Multiobjective optimization methods may be classified into one of four
classes depending on how DM preferences are used: no preference methods, a priori
methods, interactive methods and a posteriori methods [110].

When no DM preferences are available at all, no-preference methods are used,
and assumptions are made in order to arrive at a reasonable compromise solution.
A priori methods use preference information to reformulate the problem, usually
as a single-objective optimization problem. Interactive methods use DM preference
information throughout their execution, allowing the DM to specify, and adjust,
his/her preferences at each iteration, until a satisfactory solution is found. Finally, a
posteriori methods search for Pareto-optimal solutions without using any preference
information, and return to the DM the set of the best solutions found, whether
they are known to be optimal or not. The DM subsequently chooses one solution
according to his/her preferences.
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2.2.1 Decision Analysis
Decision Analysis (DA) is the area of Operational Research that aims at helping de-
cision makers make better choices through mathematical models. It starts with the
formulation of the problem at hand. The problem is analyzed so as to identify and,
formalize the criteria and constraints that should be taken into account and which
characterize the possible actions (alternatives, solutions, ....) to choose from and
their consequences. DA also defines the whole interaction process with the Decision
Maker(s) and the formalization of their preferences. Typically, the whole process
aims at providing a recommendation at the end. The problematic of providing a
recommendation is typically classified in one of three types: the choice, sort and
rank problematics [115]. In particular, the choice problematic is concerned with
aiding with the selection of a few good actions, to help determine which actions
to select and which to discard. The problematic of sorting is concerned with the
classification of actions into predefined, and possibly ordered, categories. Finally,
the ranking problematic is concerned with sorting all actions to provide a partial,
or even, a total pre-order among them. In this case, actions are classified into
classes and such classes are ranked, where actions in the same class are considered
indifferent to one another.

The problem’s nature may differ in several aspects, such as in criteria, Decision
Makers, preferences and, uncertainty regarding any of the previous aspects [115]. In
particular, problems may vary in the number of criteria (singlecriterion or multicrite-
ria), where each criterion is interpreted as a different point of view over the problem
and may be of different types (e.g. representable in ordinal or cardinal scale). The
number of Decision Makers may vary. Considering just one or multiple ones has
considerably different implications, for example, transitivity of preferences may not
be guaranteed with multiple DMs. Preferences may be expressed in different ways.
For example, as pairwise comparisons between actions, expressing preference for an
action over another, or as a ranking over the different criteria. Uncertainty may lie
at the level of the outcome/consequence of the available actions (risky choices [56]).
For example, the action of throwing a coin in the air holds uncertainty on whether
it will turn heads or tails. There can also be uncertainty regarding what the DM
preferences are and whether the model chosen correctly represents those preferences.

Decision Analysis has several subfields depending on the problem characteristics.
One of them is Multiple Criteria Decision Aiding (MCDA), which typically covers
the problems characterized by having multiple criteria, one Decision Maker, and
certainty regarding the outcome of actions. MCDA pays particular attention to the
interaction with the DM so as to better understand and model his/her preferences.
The MCDA methods for integrating preferences can be roughly divided into two
categories, those based on a synthesizing criterion (e.g., criteria-aggregation meth-
ods) and those based on synthesizing preference relational system (e.g., outranking
methods). The first translates to transforming the multicriteria problem into a sin-
glecriterion one by mapping actions into a single value, leading to a total pre-order
among actions. This is typically achieved through a function that aggregates the
multiple criteria and where the weight associated to each criterion reflects its im-
portance compared to the remaining ones. MAUT (Multi Attribute Utility Theory)
methods are examples of synthesizing criterion methods, where it is assumed that
there is a utility function that models the DM preferences, i.e., a function that as-
signs a value to every action, reflecting how happy the DM is with such an action.
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Figure 2.1: Decision Maker and Evolutionary Algorithms interaction.

The methods based on the synthesizing preference relational systems consist of suc-
cessive pairwise comparisons between actions. Outranking methods are an example
of such methods, which typically provide a binary relation among actions. See [115]
for an overview of MCDA methods.

2.2.2 Evolutionary Multiobjective Optimization
In Evolutionary Multiobjective Optimization (EMO), Evolutionary Algorithms (EAs)
are applied to multiobjective optimization (MO) problems to search for a good ap-
proximation of the Pareto front. EAs are particularly suitable in this context because
of their flexibility and their ability to work simultaneously with multiple solutions.
In particular, they do not depend on information such as gradients nor do they
require objective functions to fulfill requisites such as being continuous or differ-
entiable. In addition, they can provide, at once, multiple mutually nondominated
solutions to the DM (see Sections 2.3 and 2.4 for more details on how EAs work).

The areas of EMO and MCDA share a common ground and somewhat comple-
ment each other, which justifies the approximation between the two communities
in the last years. On the one hand, EMO has significantly contributed with meth-
ods to search for Pareto-optimal solutions while a lot of work has been done in the
MCDA community towards the distinction of conflicting actions (in the optimiza-
tion context, these actions represent solutions) by working on the interpretation and
formalization of DM preferences. The work by Fonseca and Fleming [64, 66] shows
an example of how both areas can interact.

A Decision Maker seldom has a clear and complete understanding of his/her
preferences, and these may be influenced by how much he/she is (un)aware of exist-
ing feasible solutions, whether Pareto-optimal or not. Fonseca and Fleming [64, 66]
presented decision making as a process where the DM and the optimization can
learn from each other. The acquired knowledge can help the DM provide better
informed preference information, and the EA provides better solutions according to
the refined preferences. Figure 2.1 reproduces the model as presented in [64, 66].

In the model represented in Figure 2.1, the DM may provide a priori preference
knowledge to the EA or not. If not, the EA may start without making assumptions
about the DM preferences, and will aim at providing a good approximation of the
whole Pareto front. A good approximation is typically interpreted as a set of solu-
tions as close as possible to, and well spread along, the Pareto front. Thus, with the
information provided by the EA, the DM can learn about the general tradeoff in
objective space and, consequently, make better informed judgments, and refine its
preferences. The DM can then supply the refined preference information to the EA
that, in turn, can use it to discard nondominated solutions uninteresting to the DM
that otherwise might have been considered promising, and provide more solutions
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that are of interest to the DM. The loop may continue until the DM is satisfied
with one or more solutions presented by the EA. During such a process, the DM is
free to change his/her mind over his/her preferences as he/she learns more about
the solution space. Nevertheless, it is clear that the inclusion of the DM preferences
within the EAs is a desirable feature when such information is available.

2.3 Evolutionary Algorithms
The first known references to Evolutionary Algorithms (EAs) were made in the
1950s [69]. Since then, many EA variants have been proposed, but they are all in-
spired in the idea that, in a (biological) population under natural selection, only the
fittest individuals survive and reproduce, leading to increasingly fit populations with
each generation. From a computational point of view, individuals can be seen, for
example, as encoding possible solutions subject to some notion of quality. Individu-
als with higher quality are more likely to pass their genes on to the next generation.
Individuals can be combined with each other and/or be perturbed slightly to gener-
ate new individuals, which is analogous to the reproduction and mutation processes
that occur in nature.

Evolutionary Algorithms have been applied in several areas, such as optimization
problem solving, simulation of natural and artificial systems, adaptation, and so
on [73]. The general framework of Evolutionary Algorithms and their operators will
be described next, in more or less general terms, while its details and implications
in a multiobjective context will be discussed at the end of this section and in the
subsequent one.

2.3.1 Algorithm
The structure of Evolutionary Algorithms, depicted in Figure 2.2, is characterized by
the following steps: population initialization, fitness assignment, parental selection,
recombination, mutation, environmental selection and checking of the termination
criterion. The existing EA methodologies differ in the representation used and in the
chosen operators [123]. There are three main families of methodologies: Evolution-
ary Programming [63], Evolution Strategies [114, 121] and Genetic Algorithms [88],
which have progressively become less distinct from each other as the area continues
to mature.

The various steps of a generic Evolutionary Algorithm will be explained next.

Population and Representation

The generation of the initial population is the first step of an EA. The population
has a predetermined size, µ, which usually remains constant during EA execution,
and the initial individuals are usually generated at random. Each individual may
be characterized by a genotype and a phenotype. The genotype encodes the char-
acteristics of the individual, for example, as a binary string. The phenotype is the
corresponding object in the space of the original problem. Note that a given geno-
type decodes to a single phenotype, but the opposite may not be true. For example,
the integer solution 4 may be encoded as 0100, so 0100 is the genotype and 4 the
phenotype. A representation also includes the mapping from the genotypes to the
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Figure 2.2: Evolutionary Algorithm.

phenotypes. Genotypes may be represented as binary strings, real-valued vectors,
sequences of instructions, discrete structures such as permutations and graphs, or
combinations of any of these, and be of fixed or variable length [59].

The representation should be chosen based on the problem and on the recombina-
tion and mutation operators. These operators are the ones responsible for defining
the individual’s neighborhood, which influences the EA’s performance, while the
representation has impact at the implementation level and on execution time.

Fitness Assignment

After generating the initial population, individuals are evaluated according to a
quality measure, and are subsequently assigned a real fitness value through fitness
assignment [59]. The function that maps individuals to a fitness value is called
the fitness function. The higher the quality of an individual according to some
problem-dependent notion of quality, the higher the fitness should be. Frequently,
the assigned fitness also reflects other aspects such as those related to how much an
individual differs from others in the population and/or how much (quality) it adds
to the population. Also, some of the individuals may not be valid individuals. For
example, in a constrained optimization problem, an invalid individual would be one
that does not satisfy all problem constraints. If invalid individuals may be generated
by the algorithm, it is common practice to penalize them at this stage by assigning
them a low fitness value.

Parental Selection

The following phase is parental selection and is problem-independent. This oper-
ator selects individuals according to their fitness to obtain the parents that will
be recombined to generate new individuals. Selection may be performed through
probabilistic or deterministic mechanisms, but the fittest individuals should have
higher chances of being selected for breeding. There are several sampling methods,
such as roulette-wheel selection [73], tournament selection [74] and Stochastic Uni-
versal Sampling (SUS) [11], and so on. One important characteristic of selection
(understood as the combination of fitness assignment and sampling mechanisms)
is selection pressure. The stronger the selection pressure is, the more the fittest
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Figure 2.3: A crossover example.

individuals will be selected over weaker individuals, which may lead to premature
convergence. On the other hand, if selection pressure is too low, more promising
solutions will be exploited at very low rates, and the population may not converge
at all.

Recombination and Mutation

Recombination and mutation are variation operators which lead to the generation
of new individuals. Depending on the EA instance, either one or both operators
may be used. When both operators are used, there is usually a high probability of
applying recombination, whereas mutation is typically applied with low probability.
Typically, in the case of recombination, two individuals, (the parents) are randomly
picked using some selection method, and are recombined to generate new solutions.
Examples of the recombination (crossover) operator are the single-point and multi-
point crossover, among many others. The choice of this operator depends on the
problem, and its implementation depends on the representation used. An example
of the single-point crossover operator is depicted in Figure 2.3, where solutions are
encoded as binary strings. It consists in choosing a cutting point in each individual
(if they are fixed-length then the cut point is the same), and generating two new
individuals, concatenating the first part of the first parent with the last part of the
second, and vice-versa.

The mutation operator is an operator that usually introduces small changes in
a candidate solution, but it may also be a very important operator. There are dif-
ferent points of view on the mutation operator [59]. Some authors look at mutation
as a complementary operator to recombination, whose goal is to perturb the solu-
tion slightly in order to introduce small amounts of diversity. The other point of
view looks at mutation as a powerful mechanism by itself, avoiding the need for a
recombination operator.

Environmental Selection

After recombination and/or mutation, the new individuals are evaluated and fitness
is assigned to them. After this phase, the environmental selection occurs. This
operator determines which individuals among those currently in the population move
to the next generation together with which offspring. Two common environmental
selection methods are represented as (µ, λ) and (µ + λ), where µ is the population
size and λ is the number of new individuals generated at each generation. This
notation was introduced in Evolution Strategies [18]. The first selection method,
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(µ, λ), assumes that λ > µ and replaces the current generation by µ of the new λ
individuals. The second selection method, (µ+λ), passes on to the next generation
µ individuals chosen among the individuals in the population and the new ones.
The way in which the µ individuals that will continue to the next generation are
selected may vary. The best ones may be chosen, or a tournament selection or
other technique may be used. (µ + λ) selection has the important characteristic of
enabling the algorithm to always preserve the best solutions found throughout the
generations. It is therefore, an elitist strategy.

Termination criteria

The algorithm runs until a termination criterion is met. This criterion may be the
number of past iterations, or the accumulated number of generated offspring (for
optimization problems this is sometimes called the number of function evaluations),
or some level of quality that individuals must reach, the number of iterations without
improvement, or even some measure of (the lack of) population diversity.

On the choice of operators

If the representation and, in particular, the operators are not chosen carefully, the
algorithm may converge prematurely. The population may become very similar and
stagnate, preventing other important regions of the search space from being explored.
Moreover, the representation and the operators used may strongly influence the pop-
ulation’s ability to evolve. For example, in an optimization context, the algorithm
may never be able to reach the optimal solution if the operators do not guarantee
that the whole decision space can be reached.

Although new EAs are frequently proposed as a specific combination of opera-
tors, there is freedom to replace operators. Such modifications may improve an EA
performance for some problems. Due to the amount of combinations of operators
and of parameter settings (e.g., combination/mutation rate) it is hardly possible
to ensure the best combination for each problem instance. With the availability of
tools for the automatic design of EAs [19] and the growing theoretical knowledge on
parameter setting [55], more focus can be given to the design of operators and on
the study of their properties in order to understand their advantages and their lim-
itations. The subsequent work of finding an appropriate combination of operators
and parameter settings for each problem may be, carefully, left for such automatic
design tools to decide.

2.3.2 Evolutionary Multiobjective Optimization Algorithms
In Evolutionary Multiobjective Optimization Algorithms (EMOAs), each individual
typically represents a solution and thus, by working with a set of solutions (popula-
tion), EAs have the ability to simultaneously explore different regions of the objective
space. This is particularly desirable in multiobjective optimization because it allows
to find multiple mutually nondominated solutions that approximate, in a single run,
the Pareto front. Although only a finite subset of the Pareto front may be found
by the EMOA, that is typically the end goal. When the Pareto front is too large or
even infinite, the task of finding the whole Pareto front becomes unbearable and it
is usually undesirable for the DM to have to go through too many solutions. Hence,
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the goal of EMOAs is to find a representative and finite subset of Pareto-optimal
solutions. To do so, maintaining a good and diverse set of solutions is crucial. How-
ever, due to the conflicting nature of objectives, that task is not trivial, as having
to choose between mutually nondominated solutions is seldom avoidable.

Preference Information

The quality of the approximations produced by an EMOA is highly affected by the,
either explicit or implicit, preferences reflected in the fitness assignment and the
environmental selection, as these operators are determinant to the EAs ability to
explore regions of interest and to retain the best solutions. Fitness assignment is
part of the evaluation of solutions. Such evaluation can be viewed as a three-phase
process: evaluate each solution into objective values, evaluate solution cost/value
based on such objective values to reflect the utility of the solution to the DM and,
assign fitness based on such a cost/value [66]. The three evaluations reflect how
good a solution is from three different perspectives: from the problem, the DM and
the search process points of view. Sometimes the objective value (in single-objective
optimization) or the cost is directly used as fitness. Environmental selection defines
which solutions are more worth keeping, which is typically related to their quality.

Whenever preference information is available, either provided by a MCDA tech-
nique and/or based on domain knowledge, it can be integrated into the EA to help
decide which nondominated solutions to favour. When no (explicit) preference infor-
mation is available, only weak assumptions can be made with certainty, such as the
fact that a dominated solution should never be preferred over a nondominated one,
or that any feasible solution is preferable to an infeasible one. However, even these
assumptions can be viewed as preference information. Different (explicit/implicit)
preference information and different methods to integrate preferences leads to (pos-
sibly) different strategies and (possibly) different outcome solutions. Some work has
been done towards the integration of preference information in EAs [146, 147, 66].
The preferability relation [66] is an example of a decision making framework that can
be integrated in EAs, which allows to accommodate weak assumptions and other
types of relational preference information through objective/constraint prioritiza-
tion and/or the establishment of goals. See [28] for an up-to-date overview of how
preference information has been included in EMOAs.

Consider the example of using the preferability relation to reflect preferences over
solutions of constrained optimization problems [66]. By specifying a high priority
vector (on constraints) and a low priority vector (on objectives) as suggested in [66],
pairs of solutions are compared first according to constraint values and only if both
satisfy all constraints are they compared based on objectives. An (infeasible) solu-
tion is preferable to another solution if 1) the former is better than or equal to the
latter in all of its unsatisfied constraints, and is strictly better in at least one of them,
or 2) both solutions are equal in the constraints which the former violates, and the
latter violates more constraints or is dominated by the former with respect to the
objectives. Thus, a feasible solution is always preferable to an infeasible one. The
comparison of feasible solutions is equivalent to Pareto dominance relation. Incom-
parable feasible solutions remain incomparable under such a preferability relation
and so do infeasible solutions failing to satisfy the above criteria of comparability.
Hence, a pre-order on feasible and infeasible solutions is induced.

An example of the incorporation of the preference information reflected by the
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preferability relation in an EA is to assign a cost to each solution reflecting how many
solutions are preferable to it, thus providing a total order among solutions. Conse-
quently, in the above example, better (i.e., lower) cost is given to feasible solutions
over infeasible ones. Such costs are taken into account in the fitness assignment,
whereas environmental selection may use it, for example, to rank solutions and sub-
sequently select the better ranked ones. Thus, fitness assignment may provide higher
chances of reproduction to feasible solutions and environmental selection can ensure
that infeasible solutions are selected only after all feasible ones are selected. Hence,
the EMOA reflects a preference for generating solutions in the neighborhood of,
and keeping, the nondominated (feasible) solutions. However, the equal cost (zero)
assigned to nondominated feasible solutions reflects indifference between them and
thus, selection in such a case is somewhat random, which may result in a poorly
spread approximation.

With or without DM preference information, it is frequently hard to have enough
information to resolve all incomparabilities and thus, have a total order on solutions
that is certainly in agreement to the DM. To attenuate the lack of complete knowl-
edge of preference information, EMOAs typically aim at maximizing their chances of
satisfying the DM by seeking a good and diverse (in objective space) set of solutions.
Towards this goal, EMOAs have to resolve the (remaining) incomparabilities, partic-
ularly in selection by deciding which nondominated solutions to keep/discard, and
how this is done is crucial for EMOA success. Such decisions go beyond DM prefer-
ence information and may be viewed as EMOA preferences. Thus, it is important
to analyze selection methods to understand the EMOAs inner preferences.

2.4 Selection in EMOAs
In general, multiobjective EAs are developed with two main goals in mind: searching
for the best solutions towards the Pareto front, and searching for a diverse set
of solutions [142]. The notion of diversity is subjective, and depends on the DM
preferences. However, when these are not known, it is generally understood as a
set of solutions well (e.g., evenly) spread along the Pareto front. If only the first
goal is considered, the EA may converge to a small region of the front. If only the
second goal is considered, the algorithm may not be able to approach the Pareto
front at all. Traditionally, these two goals were considered separately. For example,
fitness assignment would usually assign fitness according to some notion of individual
quality and then these fitness values would be modified in order to penalize solutions
in crowded regions given some notion of neighborhood. Subsequently, indicator-
based approaches were proposed, focusing on the population quality as a whole,
combining individual quality and population diversity into a single measure.

Even if additional preference information is not available, the fitness assignment
and environmental selection implicitly induce preferences [147]. The methods used
in the literature either induce these preferences over solutions (through methods to
evaluate solutions and optionally using a diversity preservation technique), or over
sets (through quality indicators), or by decomposing the multiobjective problem
into a finite set of single-objective ones (decomposition methods). More recently,
a new method that looks at environmental selection and fitness assignment as a
portfolio selection problem [133], tackles both tasks at once, which somewhat induces
preferences both over sets and over solutions. The different selection methods and
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the theoretical properties that characterize their inner preferences are discussed next.

2.4.1 Methods Focused on Individual Quality
The main goal of EAs is to improve the individuals of the population at each gen-
eration. This is performed by giving higher chance of reproduction to the most
promising solutions, expecting that those can lead to even better solutions. The
main EA components responsible for achieving this goal of searching towards bet-
ter individuals are fitness assignment and selection. However, in the presence of
multiple conflicting objectives, it is not easy to define what a good and accurate
measure of individual quality is. EAs use a fitness scalar to indicate how promising
an individual is, which suggests the need for a function to map each objective vector
onto a scalar.

In this subsection, the three main methods used to drive the population towards
better solutions are explained. Aggregation-based and Pareto-based methods work
by defining suitable fitness assignment strategies. Population-based methods typi-
cally apply different selection strategies to obtain different subsets of populations.

Aggregation-based methods

The most obvious way to assign a scalar value to an objective vector is by linearly ag-
gregating the objective values. Therefore, the multiobjective problem is transformed
into a single-objective optimization problem in the following way:

min
x∈Ω

d∑
i=1

wifi(x) (2.7)

where wi ≥ 0, and at least one of the weights is strictly positive. Usually, objective
functions are normalized in some way, and assigning weights to each objective usually
requires prior knowledge. In the literature, there are several alternative methods to
aggregate objective values, namely [65]:

1. Target vector optimization

2. Goal attainment

3. Multiple Attribute Utility Analysis (MAUA)

4. Constraint handling with penalty function

5. Many others.

For instance, target vector optimization consists of defining a goal for each ob-
jective and assigning fitness according to the distance from solutions to this goal
vector, where this distance should be minimized and different notions of distance
can be used. The general disadvantage of aggregation-based methods is the need
for prior knowledge in order to set appropriate weights and/or goals, which is often
not an easy task.
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Population-based methods

Population-based [142] (also known as Criteria-based) methods rely on selecting
different individuals based on different fitness functions at each iteration. In the
simplest case, each fitness function accounts for each of the objectives, so that a
different objective is used to evaluate individuals at each time. The classical example
of a population-based method is VEGA [120] which divides the mating pool into d
equal-sized parts, and each one is filled using a different objective. Other methods
are surveyed in [142, 65]

Pareto-based methods

Pareto-based approaches [65] rely on the notion of Pareto dominance to assign fit-
ness to individuals. For example, fitness may be assigned based on the number of
solutions which dominate or are dominated by each individual. For example, Fon-
seca and Fleming [64, 65] proposed a method based on the number of individuals
that dominate each solution (dominance rank). In this case, since the nondominated
points have no points dominating them, the nondominated points have the highest
fitness values. Another method is the nondominated sorting used in NSGA-II [53],
also known as dominance depth where solutions are ranked in classes in the follow-
ing way. Every nondominated solution is assigned rank 0 and then removed, those
solutions among the remaining ones that become nondominated are assigned rank
1 and, also removed. This procedure is repeated until there are no more solutions
to rank. Lastly, there is the dominance strength used by SPEA2 [143] where the
strength of an individual is defined to be equal to the number of solutions it domi-
nates. In SPEA2 the (raw) fitness of an individual is computed based on the sum of
the strength of the individuals that dominate it. In such a case, the lower the raw
fitness the better.

One advantage of Pareto-based approaches is that, in contrast to some aggregation-
based methods, they are not sensitive to non-convex Pareto fronts. Although Pareto-
based methods correctly privilege nondominated solutions, they are prone to genetic
drift. Genetic drift occurs when several solutions have the same fitness value, as it
happens among nondominated solutions. This may cause the algorithm to concen-
trate only in a small region of the Pareto front due to stochastic errors in selection.
Note that the described Pareto-dominance methods partition the population in dom-
inance classes [147] and, alone, do not distinguish solutions in the same dominance
class.

2.4.2 Diversity Preservation Techniques
When the methods to guide the EA search described in the previous subsection are
used without any auxiliary mechanisms, they tend to converge to a limited part
of the Pareto front. To address this, several diversity preservation techniques may
be used. This subsection is dedicated to the description of some common diversity
preservation techniques, most of which include what can be seen as population
density information. This information is used to penalize individuals in more densely
populated regions of the decision or objective space. The higher the density in
the region where an individual is located is, the lower are its chances of being
selected. Hence, most diversity preservation techniques fall into one of the following
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Figure 2.4: Diversity preservation techniques.

three statistical density estimation related categories [142]: Kernel methods, Nearest
Neighbor techniques and Histograms. These techniques, will be briefly explained
next.

Kernel methods

Kernel methods are based on a so-called kernel function, which is function of a
distance between two individuals. Kernel methods compute the density estimate by
summing the values of the kernel function given the distances of an individual to all
other individuals.

The most popular diversity preservation technique of this type is fitness sharing,
which defines a niche as a region of radius σshare around each individual. See Fig-
ure 2.4(a) for an example. The density estimate for an individual p is computed
based on the distances between individual p and all individuals inside its neighbor-
hood only, normalized by σshare. After the density estimate is computed, individual
fitness is penalized, by dividing it by the density estimation. The underlying idea
is that an individual fitness is shared with its neighbors. The main disadvantage of
fitness sharing is the need to set σshare.

Nearest neighbor

As the name says, in the nearest neighbor method, the density estimator around an
individual is based on the distance to its k-nearest neighbors. The most popular
technique of this type is Crowding. One example of crowding in Multiobjective
EAs [53] is one that sums the crowding distance for each objective. The crowding
distance for each objective is the normalized difference between the closest point
with a higher value, and the closest point with a lower value of that objective. See
Figure 2.4(b) for an example. Deb et al. [53], use this crowding distance to untie
solutions with the same (dominance depth) rank in a tournament, where the winner
is the one with higher crowding distance. The advantage of this method with respect,
for example, to fitness sharing, is that it may be easier to set k than σshare.

Histograms

Histogram methods [96, 142] consist of dividing the objective space into equal-size
rectangular non-overlapping regions, called cells or boxes. The neighborhood of a
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point is therefore restricted to the box where it is located. The density of the box is
defined by the number of individuals in that box. Figure 2.4(c) shows an example.

There are histogram variants where the box size is adjusted during the algo-
rithm’s execution, according to the current minimum and maximum value of each
objective. Histogram methods have the advantage of being computationally more
efficient than with Kernel and nearest neighbor methods.

2.4.3 Decomposition Methods
Decomposition methods [135] decompose the multiobjective optimization problem
into multiple single-objective optimization problems. One way to do that is by defin-
ing a finite set of aggregation functions. For each of these functions, the solution
in the population that minimizes it is selected to be part of the next generation.
Therefore, if the parameters of the aggregating functions are appropriately set, di-
versity is implicit, and the algorithm tends to find good approximations that are
also reasonably well distributed.

2.4.4 Methods Based on Set Quality
A popular trend in multiobjective evolutionary algorithms is the use of quality indi-
cators to support selection [141, 16]. Quality indicators first appeared as methods
for the performance assessment of EMOAs and soon, quality indicator-based selec-
tion became state-of-the-art selection methods in EMOAs. This was due to the
ability of quality indicators to explicitly favor a combination of the best solutions
and diversity, in a cooperative way, and due to their (theoretical) properties.

Quality indicator-based selection

A set-quality indicator is a function that maps sets of points in Rd onto real val-
ues [140]. In the context of indicator-based EMOAs, sets of bounded size maximizing
or minimizing some quality indicator are of interest. In (µ+λ) environmental selec-
tion, for example, an optimal subset of µ new parents is sought among all subsets of
the current population of µ parents and λ offspring. More generally, indicator-based
EMOAs search for a bounded-size subset X of the feasible set Ω, such that the cor-
responding image in objective space f(X) is an optimal subset of f(Ω) with respect
to a set-quality indicator given a maximum subset size. Without loss of generality,
indicator-based subset selection [10, 37] can be formulated as follows:

Problem 2.1 (Subset Selection Problem (SSP)). Given a set S ⊂ Rd, an
integer k ≥ 0, and a quality indicator I : 2R

d → R, find a discrete point subset
A ⊆ S such that |A| ≤ k and

I(A) = max
B⊆S
|B|≤k

I(B)

In multiobjective optimization, the values assigned to sets by a quality indicator
are typically expected to reflect the proximity of the points in those sets to the
Pareto front, as well as the extent and uniformity of their distribution in objective
space. Furthermore, quality indicators should not contradict Pareto dominance,

20 Chapter 2



Portfolio Selection in Evolutionary Algorithms

r

f1(x)

f2(x)

(a)

r

f1(x)

f2(x)

p

(b)

Figure 2.5: Hypervolume Indicator.

but incomparable sets can be assigned seemingly arbitrary values. Therefore, qual-
ity indicators can be understood as preference models allowing any two sets to be
compared and, as long as the corresponding indicator values are different, the pre-
ferred one to be identified. If the indicator values are equal, the sets are said to be
indifferent with respect to those preferences.

The hypervolume indicator [68] and the additive ϵ-indicator [141] are examples of
set-quality indicators known to be monotonic with respect to Pareto dominance [140]
which ensures that selection favours dominating over dominated solutions. This
and other properties of set-quality indicators help understand their guarantees and
limitations when used for selection in EMOAs. The properties of indicator-based
selection methods are discussed in Section 2.4.6.

Hypervolume-based selection methods The Hypervolume Indicator (also known
as S-metric or Lebesgue measure) is probably the most widely used quality indica-
tor in Evolutionary Multiobjective Optimization. It is defined as the measure of the
region dominated by the points in a nondominated point set and bounded above by
a reference point r. This region is the shaded region in Figure 2.5(a). The contri-
bution of a point is the measure of the region exclusively dominated by that point.
Figure 2.5(b) shows the contribution of the point p in light gray.

A popular EA based on hypervolume-based selection is SMS-EMOA [16]. SMS-
EMOA uses a (µ + 1) strategy, i.e., it maintains a µ-size population, generates a
new individual at each iteration, and the best µ individuals among the old µ indi-
viduals and the new individual are chosen to become part of the next generation.
Given the µ + 1 individuals, the selection of the µ individuals of the next genera-
tion is performed by sorting individuals in classes using nondominated sorting (see
section 2.4.1 on Pareto-based methods) and then removing the individual that con-
tributes the least hypervolume to the set of worst ranked solutions. A variant of this
selection method consists of removing the least contributor only if all individuals
are mutually nondominated (they are all assigned the same rank). If not, then the
individual that became dominated first (more generations ago) is the one that is
excluded [89]. SMS-EMOA achieves similar results with either technique.

No matter which of the two hypervolume-based selection methods explained
above is used, it is certain that the algorithm only includes a newly generated
point in the next generation if it is not worse than the current worst individual
in the population. Note that both methods have different notions of what is the
worst individual in the presence of dominated points, but when the population
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only contains nondominated points, both agree on the worst being the one that
contributes less hypervolume. This procedure ensures that, if the reference point is
kept unchanged,1 the hypervolume indicator of the nondominated solutions in the
population never decreases.

There are other selection methods based on the hypervolume indicator. For
example, Zitzler and Künzli [141] proposed a general indicator-based evolutionary
algorithm (IBEA) before SMS-EMOA. One of the indicators tested in IBEA was
a binary version of the hypervolume indicator, i.e., an indicator based on the stan-
dard unary hypervolume indicator that assigns a real value to an ordered pair of
individuals. This binary indicator is used to compute the fitness of each individual.
DM preferences may be included in EMOAs using the alternative weighted hyper-
volume indicator [138], where preference information is provided through a weight
distribution over the objective space.

Other indicator-based selection methods Most of the set-quality indicator-
based selection methods are based on the hypervolume indicator, but other alter-
natives exist. For example, Zitzler and Künzli [141] proposed the use of a binary
indicator, the additive ϵ-indicator. Given two points u and v, the additive ϵ-indicator
of the pair (u, v) is the minimum value that must be added to all components of
v in order for u to weakly dominate point v (assuming minimization). The au-
thors report that the IBEA algorithm with a fitness assignment function based on
the additive ϵ-indicator (and also with the binary hypervolume indicator) is able
to outperform other more traditional EAs that seek converge and diversity in two
distinct steps. Another example is the selection based on the contribution to the R2-
indicator [43, 124], an indicator that allows preference information to be accounted
through the definition of multiple utility functions.

2.4.5 Portfolio Selection Approach

Portfolio selection [108] can be seen as a generalization of subset selection that
consists in assigning non-negative weights to all elements of the parent set so as
to maximize some function, or functions, of those weights. This class of problems
commonly arises in finance (e.g., in the stock market), where the parent set is a
set of assets in which to potentially invest, each weight represents the amount of
capital to be invested in the corresponding asset, and the function(s) to be optimized
model(s) the financial performance of the resulting portfolio given the performance
of the individual assets and the amounts invested in them.

In the classical Markowitz formulation [108], the performance of individual assets
is modelled by means of random variables representing their (uncertain) financial
return, and it is assumed that the corresponding expected values, variances and
covariances are either known or can be estimated. Similarly, portfolio performance
is assessed in terms of expected return, to be maximized, and return variance, to be

1In the original version of SMS-EMOA [16] the reference point is updated at each generation
(only for problems in d ≥ 3 dimensions), and thus the hypervolume indicator of the population
may decrease during the run.
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minimized. Formally:

max
x

n∑
i=1

rixi = rTx (2.8a)

min
x

n∑
i=1

n∑
j=1

qijxixj = xTQx (2.8b)

subject to
n∑

i=1

xi = 1, xi ∈ [0, 1], i = 1, . . . , n (2.8c)

where n is the number of assets, ri denotes the expected return of asset i, and the
covariance of the returns of assets i and j is denoted by qij. The unknown solution is
represented by x = (x1, . . . , xn)

T , where each xi denotes the fraction of the available
capital to be invested in asset i.

Typically, assets with high expected return entail higher risks, and low risk
assets have low expected return. Investing in similar assets usually leads to a high
variability and therefore higher risk, while distinct assets have low variability. It is
thus advisible not to invest only in high expected return assets nor in very similar
assets. The investor has to find a portfolio that balances the risk and the overall
expected return and only through diversification of assets is it possible to reduce
the risk for a given expected return.

Since there are two objectives in the above formulation, there is generally a set
of Pareto-optimal portfolios within which higher expected return can only come at
the expense of higher return variance, i.e., higher risk. Therefore, an investor must
select a suitable compromise solution such that the expected return compensates for
the risk taken. An also classical formalization of this idea is the performance index
known as reward-to-volatility ratio, or Sharpe ratio [49], the maximization of which
leads to an efficient risk-balanced portfolio:

Problem 2.2 (Sharpe-Ratio Maximization). Let A = {a(1), . . . , a(n)} be a non-
empty set of assets, let vector r ∈ Rn represent the expected returns of these assets
and let matrix Q ∈ Rn×n be the covariance matrix of asset returns. Let each
component xi of the investment vector x ∈ [0, 1]n denote the investment in asset a(i).
Find a global solution, x∗, of:

max
x∈[0,1]n

h(x) =
rTx− rf√

xTQx
(2.9a)

subject to
n∑

i=1

xi = 1 (2.9b)

where rf represents the return of a baseline riskless asset, and h(x) is the Sharpe
Ratio of x.

Although Problem 2.2 is a non-linear programming problem and may not be easy
to solve, by homogenizing h(x) it can be restated as an equivalent convex quadratic
programming (QP) problem provided that Q is positive definite [49]:

Chapter 2 23



Portfolio Selection in Evolutionary Algorithms

Problem 2.3 (Sharpe-Ratio Maximization – QP Formulation).

min
y∈Rn

g(y) = yTQy (2.10a)

subject to
n∑

i=1

(ri − rf ) yi = 1 (2.10b)

yi ≥ 0, i = 1, . . . , n (2.10c)

The two problems are equivalent in the sense that the optimal solution x∗ of
Problem 2.2 can be determined from the optimal solution y∗ of Problem 2.3 (x∗ =
y∗/
∑n

i=1 y
∗
i ), and vice-versa.

So far, the set of assets A was considered to be fixed, and therefore both r and
Q were constant. In this work, the notation hA(x) and gA(y) will be used instead
of h(x) and g(y), respectively, to highlight the dependence of these functions on the
set of assets when it is allowed to vary.

Yevseyeva et al. [133] noticed that the Portfolio Selection can be easily related
to Evolutionary Algorithms in the following way: individuals are seen as assets and
the expected return of an asset/individual can be related to individual quality as
the probability of satisfying the DM preferences. Moreover, similar individuals have
a high risk associated with them, since it is likely that if one does not satisfy the
DM, neither will the other. Fitness can then be seen as the investment in an indi-
vidual. Therefore, the goal of an EA is to invest in the individuals (assign fitness)
in such a way that expected return is maximized (good individuals are chosen for
reproduction) and risk is minimized (lack of diversity is avoided). Thus, with a suit-
able interpretation of return of an individual, the expected returns (vector r) and
covariances between individuals (matrix Q) can be estimated. Environmental selec-
tion and fitness assignment problems can then be directly interpreted as a portfolio
selection problem and solved, for example, through the Sharpe-ratio maximization
problem (Problem 2.2).

Still according to Yevseyeva et al.’s [133], the return of each individual in an
EMOA population depends on the preferences of a Decision Maker (DM). It is
further assumed that such preferences are not fully known in advance and that
the associated uncertainty can be described by some probabilistic model. As a
result, individual (asset) returns are random variables whose expected values and
variances/covariances can be computed or estimated in some way. Finally, returns
are assumed to be additive across individuals.

This interpretation of an individual’s return, lead to a formulation where ex-
pected return and covariances are computed based on the hypervolume indicator.
DM preferences are expressed in terms of a goal vector, not known in advance, and a
solution is considered acceptable if the corresponding objective vector weakly dom-
inates that goal vector. Otherwise, it is considered unacceptable. The expected
return of a solution is the probability of that solution being acceptable to the
DM, assuming a uniform distribution of the DM’s goal vector in an orthogonal
range [l, u] = {x ∈ Rd | l ≤ x ≤ u}, where l, u ∈ Rd are such that l ≪ u,
and d denotes the number of objectives. For the ith individual in a population
A = {a(1), . . . , a(n)} ⊂ Rd, this is represented by component pi of a vector p, whereas
the return covariance between the ith and jth individuals is represented by element
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Figure 2.6: Examples of the regions measured to compute pi and pij given a point
set A = {a(1), a(2), a(3)} ⊂ R2 (from [81]).

qij of a matrix Q (i, j = 1, . . . , n). Let:

pij(l, u) =
Λ([l, u] ∩ [a(i),∞[ ∩ [a(j),∞[)

Λ([l, u])
=

∏d
k=1 max(uk −max(a(i)k , a

(j)
k , lk), 0)∏d

k=1(uk − lk)
(2.11a)

ri(l, u) = pi(l, u) = pii(l, u) (2.11b)
qij(l, u) = pij(l, u)− pi(l, u) pj(l, u) (2.11c)

where l, u ∈ Rd are two reference points and Λ(·) denotes the Lebesgue measure [16]
of the region in the argument. Note that pij is, therefore, the normalized hypervol-
ume indicator of the region jointly dominated by a(i) and a(j) inside the region of
interest, [l, u]. For the sake of readability, P = [pij]n×n and Q = [qij]n×n will be
assumed to have been previously calculated and, therefore, parameters l and u from
expressions (2.11) will be omitted as long as no ambiguity arises. It follows from
the definition of qij that Q = P − ppT .

Assuming without loss of generality that l = (0, 0)T and u = (1, 1)T , and thus
Λ([l, u]) = 1, the areas of the shaded regions in Figures 2.6(a) to 2.6(f) are exactly
p1, p2, p3, p12, p13 and p23, respectively. Note that pi is the area of the subregion
of [l, u] that is dominated by a(i), while pij is the area of the subregion of [l, u]
simultaneously dominated by a(i) and a(j). Since, as depicted in Figure 2.6(f), a(3)
is dominated by a(2), it follows that p23 = p3. By observing Figure 2.6 note that,
the more similar two solutions are in the objective space, the higher will be pij and
their covariance, whereas the more distinct they are, the lower will be pij, and so
will their covariance.

On the other hand, the actual return of a portfolio in this model is simply
the sum of individual returns, which are either 0 (unacceptable) or 1 (acceptable),
weighted by the corresponding investments xi, i = 1, . . . , n. In other words, it is
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(a) (b) (c)

Figure 2.7: The optimal investment (from [133]).

the proportion of investment allocated to acceptable solutions, the expected value
and variance of which are precisely

∑n
i=1 pixi and

∑n
i=1

∑n
j=1 qijxixj, respectively

(refer to expressions (2.8a) and (2.8b)). If constant investment in each solution is
assumed, then expected return becomes proportional to the expected number of
solutions acceptable to a random DM. In contrast, the hypervolume indicator is
proportional to the probability of there being at least one acceptable solution under
the same conditions.

Yevseyeva et al. [133] observed how the optimal investment is distributed for
a population whose individuals in the objective space are equally spaced on a lin-
ear front with -1 slope, and for a randomly generated population. These results
are reproduced in Figure 2.7(a) and 2.7(b), respectively, where the area of the cir-
cle around a point is proportional to the investment in the solution that maps to
that point. In Figure 2.7(a) it is possible to observe that the optimal investment
seems to be the one where the investment is equally distributed. In Figure 2.7(b),
strictly positive investment is only given to nondominated solutions and solutions
in less crowded regions have higher fitness. Therefore, these figures indicate that
the investment is split in such a way that good solutions receive strictly positive
investment and diversity is preserved.

Moreover, an interesting fact is that this formulation allows constraints on the
investment to be added easily. Figure 2.7(c) shows an example of the optimal portfo-
lio when the maximum investment in one solution is 2

n
, where n is the total number

of individuals. In this case, it is possible to observe that the optimal investment
is such that the best solutions receive as much investment as possible, and the re-
maining investment is shared by some of the worst solutions. This behavior has
been known in EAs as Disruptive Selection [101], but it is noteworthy that, in this
case, it emerges from the very mathematical formulation of portfolio selection. This
suggests that it may be possible to model other selection methods traditionally used
in EAs in terms of a PSP.

Portfolio Optimization Selection Evolutionary Algorithm (POSEA)

Yevseyeva et al. [133] also proposed the Portfolio Optimization Selection Evolu-
tionary Algorithm (POSEA), a (µ + λ) Evolutionary Algorithm that includes the
Portfolio Selection formulation in the selection process. In the first iteration, after
generating the initial population, the Sharpe ratio maximization problem is solved
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using a quadratic programming solver, and the investment is used as the fitness of
each individual. SUS (Stochastic Universal Sampling) is used to select λ individuals
for reproduction from the µ individuals in the population. For the environmental
selection, the Sharpe ratio is maximized considering the µ + λ individuals and the
λ individuals with worst fitness (investment) are chosen to die. Note that after the
first iteration, the Sharpe ratio does not have to be recomputed for the remaining
µ if all discarded individuals were assigned zero fitness. In that case, environmen-
tal selection and fitness assignment are performed in a single step. In fact, that
can be ensured by adding an integer constraint such that a maximum of µ points
are assigned strictly positive investment. However, such a constrained Sharpe-ratio
maximization problem is no longer a convex quadratic programming problem.

Experiments performed by Yevseyeva et al. [133] on a multiobjective knapsack
problem showed that viewing selection as a Portfolio Selection Problem is promising.
In such experiments, only the mutation operator was used, and was applied to all
new individuals. The results confirmed that using the proposed selection method
based on Portfolio Selection, POSEA was able to find and maintain a good and
diverse set of solutions.

Portfolio Selection vs Subset Selection

From a quality indicator point of view, environmental selection is in itself a subset
selection problem, where µ out of µ+ λ solutions have to be selected such that the
indicator is maximized. This problem can be viewed as a particular case of portfolio
selection with a constraint on the number of assets into which to invest, where all
the selected solutions are assigned equal (strictly positive) investment (cardinality
constraint).

When environmental selection is implemented just as a subset selection prob-
lem, fitness assignment has to be performed separately. Portfolio selection allows
environmental selection and parental selection to be treated as a single problem.

2.4.6 Properties of Selection Methods
In (µ + λ) strategies, the population typically works as a bounded archive that se-
lects the best µ solutions to keep. Environmental selection can then be viewed as
what is called an archiver, a method to update the archive as new solutions are
generated [36]. Ideally, dominated solutions should never be preferred over domi-
nating ones, otherwise the quality of the population may degrade and convergence
to the Pareto front might not be possible [147, 106]. For example, the Pareto-based
selection methods used in NSGA-II and SPEA2 cannot guarantee that future pop-
ulations/archives are not worse than past ones with respect to Pareto dominance,
while selection methods based on the maximization of the hypervolume indicator,
as in [98, 60], can [106]. Ideally, the implicit/explicit integration of preference infor-
mation should provide a refinement of the Pareto-dominance towards a total order
on solutions or on sets of solutions [87, 147].

In general, indicator-based selection methods are advantageous due to their prop-
erties that allow conclusions to be drawn about their ability to converge to the Pareto
front, and the characterization of sets of solutions they give preference to. Among
the main reasons for the popularity of the hypervolume indicator are its theoretical
properties.
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An overview of relevant properties of set-quality indicators can be found in [140].
Among those properties, parameter independence, sensitivity to scaling, monotonic-
ity, and optimal µ-distributions, are considered in this work. While monotonicity
properties allow some conclusions to be drawn about how indicator-optimal subsets
relate to the Pareto front, the study of optimal µ-distributions (where µ = k in
Problem 2.1) provides a more complete characterization of such optimal subsets,
including how they depend on the indicator’s parameters and/or on the scaling of
the objectives.

Parameter independence

Set-quality indicators may include free parameters which affect how indicator values
are computed and, thus, the corresponding preference structure. The hypervolume
indicator, for example, has the coordinates of a reference point as its parameters.
The location of this reference point provides some degree of control over how much
preference is given to the presence of points on the boundaries of the Pareto front
in a set, but the appropriate choice of a reference point depends on the number of
objectives and on the shape of the Pareto front [4, 40, 91]. At least for fronts other
than linear fronts, setting this reference point remains an open question.

Broadly speaking, indicator parameters are useful as long as they offer the deci-
sion maker an effective and well-understood means of expressing their preferences,
but the more parameters there are, the more difficult it may be to translate given
preferences into suitable parameter settings. One special case concerns parameters
which do not actually influence the order which the quality indicator defines on the
set of all subsets of the objective space, although they do affect indicator values. In
that case, the quality indicator is said to be independent of those parameters, which
may nevertheless be required.

Sensitivity to objective scaling

If the values taken by a set-quality indicator remain unchanged under coordinatewise
strictly monotonic transformations of the objective space, then that indicator is said
to be scaling invariant [140]. It follows naturally that indicators that do not depend
on actual objective values, such as the cardinality indicator and the indicator defined
as the fraction of the points in the (finite) Pareto front that are weakly dominated
by the points in a given set, have this property.

A weaker form of insensitivity to scaling is called scaling independence, and
consists in the order defined by a quality indicator being preserved under scaling
transformations, possibly accompanied by corresponding transformations of the indi-
cator’s parameters. Both scale invariance and scale independence can be weakened
by restricting the transformations considered to, e.g., affine, or even linear, transfor-
mations.

Monotonicity

Monotonicity properties formalize the empirical notion of agreement between indi-
cator values and set dominance. Considering maximization of the indicator, with-
out loss of generality, monotonicity of a set-quality indicator with respect to a
set-dominance relation is defined as follows [140]:
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Definition 2.15 (Monotonicity). A set-indicator I is weakly monotonic with
respect to a set-dominance relation R (or weakly R-monotonic, for short) if, given
two point sets A,B ⊂ Rd, A R B implies I(A) ≥ I(B). If A R B implies I(A) >
I(B), the indicator is strictly monotonic with respect toR (or strictlyR-monotonic).

It is generally accepted that quality indicators used in EA environmental se-
lection or in performance assessment should be weakly ⪯-monotonic at the very
least, so that a set of points is never considered to be worse than any set it dom-
inates, and that indifferent sets remain so with respect to the indicator. Nonethe-
less, as pointed out by Zitzler et al. [140], weak ⪯-monotonicity does not guar-
antee that all indicator-optimal subsets of up to a given size include points on
the Pareto front. Indeed, even a quality indicator whereby all point sets are as-
signed the same value has this property. Still, ⪯-monotonicity does guarantee
that at least one subset of the Pareto front is indicator-optimal, provided that
an indicator-optimal subset of f(Ω) does exist (see [5]), as stated in the following
Lemma [81]. The set of all nondominated points in a set X ⊂ Rd is denoted by
nondominated(X) = {q ∈ X | ∀t∈X, t ≤ q ⇒ q ≤ t}.

Lemma 2.1. Let S ⊂ Rd be a non-empty set, let P = nondominated(S), and let I be
a weakly ⪯-monotonic set-quality indicator. For each integer k ≥ 0, if an optimal
subset of S with respect to I and k exists, then there is a subset A∗

k ⊆ P of size
|A∗

k| = min(k, |P|) that is also an optimal subset of S with respect to I given k, i.e.,

I(A∗
k) = max

B⊆S
|B|≤k

I(B) .

Proof. For k = 0, there is a single subset of the given size (the empty set), which
is therefore indicator-optimal. For k > 0, this is proved by contradiction. Assume
that there is no such subset A∗

k. Then, there must be an indicator-optimal subset
B ⊂ S of size up to k such that |B ∩ P| < min(k, |P|). Let A ⊆ P be a point set
constructed as follows. Beginning with A = ∅, for each point in B, add to A a point
in P that weakly dominates it. Then, continue adding to A points from P not yet in
A until |A| = min(k, |P|). By this construction, A ⪯ B, which implies I(A) ≥ I(B)
due to the weak ⪯-monotonicity of I. Therefore, A is also indicator-optimal, and a
contradiction arises.

Inclusion of points on the Pareto front in all indicator-optimal subsets up to a
given size can still be guaranteed by requiring strict monotonicity with respect to
a suitable non-weak set-dominance relation [81]. This is summarized in Table 2.1,
but note that strict ≺≺-monotonicity is not sufficient. Consider a set composed of
two points, one of which strictly, but not strongly, dominates the other. A strictly
≺≺-monotonic indicator may assign equal value to any subset of this set, even if it
is also weakly ⪯-monotonic. So, the subset containing only the dominated solution
can be indicator-optimal despite not including the only point on the Pareto front.

In contrast, a strictly ≺·-monotonic indicator leads to all indicator-optimal sub-
sets including at least one point on the Pareto front:

Lemma 2.2. Let S ⊂ Rd be a non-empty set, let P = nondominated(S), let I be a
strictly ≺·-monotonic set-quality indicator, and let k be a positive integer. If A∗

k ⊂ S
is an optimal subset of S with respect to I given k, then |A∗

k ∩ P| ≥ 1.
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R |A∗
k ∩ P|

≺≺ ≥ 0
≺· ≥ 1
≺ min(k, |P|)

Table 2.1: Consequences of strict indicator monotonicity with respect to set-
dominance relations R, where A∗

k denotes an indicator-optimal set of size up to
k and P denotes the Pareto front.

Proof. Assume that there is a non-empty indicator-optimal subset B ⊂ S such that
|B| ≤ k and B ∩ P = ∅. Consequently, P ≺· B. Let A ⊆ P be a subset of points
constructed by adding to the empty set, for each point in B, a point in P that strictly
dominates it, and note that 1 ≤ |A| ≤ k. Since A ≺· B by construction, and the
indicator is strictly ≺·-monotonic, it follows that I(A) > I(B), which contradicts
the assumption that B is indicator-optimal.

Finally, strict ≺-monotonicity guarantees that all indicator-optimal subsets ei-
ther contain or are maximum-size subsets of the Pareto front:

Lemma 2.3. Let S ⊂ Rd be a non-empty set, let P = nondominated(S), let I be a
strictly ≺-monotonic set-quality indicator, and let k be a positive integer. If A∗

k ⊂ S
is optimal with respect to I given k, then |A∗

k ∩ P| = min(k, |P|).

Proof. Assume that there is a non-empty indicator-optimal subset B ⊂ S such
that |B| ≤ k and |B ∩ P| < min(k, |P|). Consequently, P ≺ B. Let A ⊆ P be
a subset of points constructed by adding to the empty set, for each point in B, a
point in P that weakly dominates it, and then adding any other points from P until
|A| = min(k, |P|). Since A ≺ B by construction, and the indicator is strictly ≺-
monotonic, it follows that I(A) > I(B), which contradicts the assumption that B is
indicator-optimal.

Ideally, quality indicators should be strictly ≺-monotonic [148, 140], so that any
slight improvement of a point set over another is always reflected by a higher indi-
cator value being assigned to the former, and that the indicator is maximized by
sets containing the whole Pareto front. The hypervolume indicator and some of its
variants [138, 70] are the only indicators known to possess such a property, provided
(at least) that the reference point is strongly dominated by all points in the parent
set. However, this comes at a potentially high computational cost, as the hyper-
volume indicator cannot be computed exactly in polynomial time in the number of
objectives unless P = NP [32]. Most other popular set-quality indicators, such as
the ϵ-indicator [140] and those in the R-indicator family [140, 43] are known to be
weakly ⪯-monotonic and, at best, strictly ≺≺-monotonic, as is the case with the
ϵ-indicator [148]. A notable exception is the Averaged Hausdorff Distance indica-
tor [117], which is known not to be weakly ⪯-monotonic. However, a more detailed
analysis suggests that the degree to which the ⪯-monotonicity condition is violated
depends on the maximum subset size and on the shape of the Pareto front, at least
in the two-objective case [116].
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Optimal µ-distributions

Beyond whether or not indicator-optimal subsets include points on the Pareto front,
a more complete characterization of such optimal subsets has been sought through
the study of so-called optimal µ-distributions, where µ refers to the maximum subset
size. This entails determining actual indicator-optimal subsets for given (families of)
Pareto fronts or, at least, some aspect of the location of the corresponding points
in objective space. For indicators that are strictly ≺-monotonic, the analysis can
be somewhat simplified by noting that all points in an indicator-optimal subset
of sufficiently small size must lie on the Pareto front (Lemma 2.3). Otherwise, it
may still be appropriate to restrict the analysis to points on the Pareto front if the
indicator is weakly ⪯-monotonic (Lemma 2.1), but failing that all point subsets
must be considered.

Most studies to date only consider the two-objective case. Concerning the hyper-
volume indicator such studies showed that, for example, for a linear front in the two
objective case, there is a unique optimal distribution where all points are uniformly
spaced. In the case of the R2-indicator with a weighted Tchebycheff utility function,
using µ weight vectors uniformly distributed in weight space also leads to unique,
uniform distributions on linear fronts [43].

Given the absence of more general theoretical results, numerical approaches have
been used to approximate optimal µ-distributions and the corresponding (maximum)
indicator values on two-objective [38, 72], and even three-objective [72], continuous
benchmark problems.

2.5 Concluding Remarks
Selection plays an import role in EMOAs. It is through selection that preference
information, whether explicit or implicit, influences the search process. The theoreti-
cal characterization of selection methods allows us to better understand how EMOAs
behave and, consequently, to better foresee their outcomes, and to make better use
of EMOAs. Indicator-based selection methods look at selection as a subset selec-
tion problem and can be studied as such. Hypervolume-based selection methods are
among those with better theoretical properties, and thus among the state-of-the-art.
For this reason, they will be further studied in the next two chapters (Chapters 3
and Chapters 4).

Portfolio selection-based methods provide a promising perspective on selection
and fitness assignment. It remains to be shown whether this more general perspec-
tive can be at least as theoretically supported as, and be competitive in practice
with, the existing selection methods based on subset selection, as well as which ad-
ditional advantages it may bring to EAs in general. This new perspective motivates
the work in Chapter 5.
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Chapter 3

Hypervolume Indicator

The hypervolume set-quality indicator maps a point set in Rd to the measure of
the region dominated by that set and bounded above by a given reference point,
also in Rd. It was first referred to as the “size of the space covered” [144, 145],
and as “size of the dominated space” [137]. Alternative designations have also been
used, such as S-metric [145, 17] and “Lebesgue measure” [62]. Different definitions
of this indicator have been proposed. For example, it has been defined based on
the union of polytopes [145] and, more generally based on the (integration of the)
attainment function [138, 77]. The problem of computing the hypervolume indicator
is known to be a special case of Klee’s Measure Problem (KMP) [14], which is the
problem of measuring the region resulting from the union of axis-parallel boxes. The
hypervolume indicator is, in fact, a special case of KMP on unit cubes, and of KMP
on grounded boxes [134]. See [30] for a review on KMP’s special cases and their
relation to one another.

The hypervolume indicator was first proposed as a method for assessing mul-
tiobjective optimization algorithms [145]. It evaluates the optimizer outcome by
simultaneously taking into account the proximity of the points to the Pareto front,
diversity, and spread, which are the features most commonly used for evaluation
when DM preferences are not available [139]. The indicator’s unique properties
quickly led to its integration in EMOAs, as a bounding method for archives [98],
as an environmental selection method [60], as a ranking method [90], and as fitness
assignment method [141, 10, 147]. The integration of preferences in the indica-
tor [138, 3, 41] has also been the subject of discussion, and so has the integration of
diversity in the decision space [125]. Currently, the hypervolume indicator is one of
the indicators used in the Black-Box Optimization Benchmarking (BBOB) tool [42]
to continuously evaluate the external archive containing all nondominated solutions
EMOAs generate during their execution.

The merits of the hypervolume indicator for performance assessment are well rec-
ognized, and so are the benefits of incorporating it in EMOAs. However, its main
drawback lies in its computational cost. This is particularly relevant as hypervolume-
based EMOAs and benchmarking tools such as BBOB depend heavily on its com-
putation. This imposes strong limitations on the number of objectives considered
and/or on EMOA parameters such as the number of generations and number of
offspring. In order to overcome such a limitation, approximation algorithms [10]
have been proposed, as well as objective reduction methods [44].

In the following sections, the theoretical advantages and the computational issues
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surrounding the hypervolume indicator will be discussed in more detail, mostly in
the context of EMOAs. In Section 3.1, the hypervolume indicator and some related
problems are formally defined, and its properties are reviewed in Section 3.2. In Sec-
tion 3.3, hypervolume-based algorithms for environmental selection are discussed.
A review of the state-of-the-art algorithms for hypervolume-related problems is pro-
vided in Section 3.4. The data sets commonly used for evaluating the performance
of hypervolume-related algorithms are presented in Section 3.5, as well as some
new data sets that will be used in Chapter 4. Concluding remarks are drawn in
Section 3.6.

3.1 Hypervolume-related Problems

3.1.1 Notation
Spaces (x, y)-, (x, y, z)- and (x, y, z, w)-spaces will be referred to as, 2-, 3- and

4-dimensional spaces or, for brevity, as 2D, 3D and 4D spaces, respectively.

Problem size The lower-case letter n is used for the problem size, which is typically
the size of the input set.

Number of dimensions The lower-case letter d is used to represent the number
of dimensions considered.

Points and sets Points are represented by lower-case letters (in italics) and sets
by Roman capital letters. For example, p, q ∈ Rd and X, S ⊂ Rd.

Coordinates (for d ≤ 4) Letters x, y, z and w in subscript denote the coordinates
of a point in an (x, y, z, w)-space. This notation is used only for spaces up to
4 dimensions. For example, if p ∈ R3 then p = (px, py, pz).

Coordinates (general case d ≥ 2) In general d-dimensional spaces, an index in
subscript is used to identify the coordinate. For example, if p ∈ Rd then
p = (p1, p2, . . . , pd), where pi denotes the ith coordinate of p, i ∈ {1, . . . , d}.

Enumeration Numbers in superscript are used to enumerate points or sets, e.g.,
p1, p2, p3 ∈ Rd and S1, S2 ⊂ Rd.

Projections Projection onto (d − 1)-space by omission of the last coordinate is
denoted by an asterisk. For example, given the point set X = {p, q} ⊂ R3,
p∗ and X∗ denote the projection of the point p and of the point set X on the
(x, y)-plane, respectively, i.e., p∗ = (px, py) and X∗ = {(px, py), (qx, qy)}.

3.1.2 Definitions
The hypervolume indicator [98, 144] is formally defined as follows:

Definition 3.1 (Hypervolume Indicator). Given a point set S ⊂ Rd and a
reference point r ∈ Rd, the hypervolume indicator of S is the measure of the region
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weakly dominated by S and bounded above by r, i.e.:

H(S) = Λ

∪
p∈S
p≤r

[p, r]


where [p, r] = {q ∈ Rd | p ≤ q and q ≤ r} and Λ(·) denotes the Lebesgue measure.
Alternatively:

H(S) = Λ({q ∈ Rd | ∃p ∈ S : p ≤ q and q ≤ r})

Since a fixed reference point, r, is assumed throughout this thesis, it is omitted as
an argument of H(·) function. Figure 3.1(a) shows a two-dimensional example of
the hypervolume (an area) and Figure 3.2(a) shows a three-dimensional example (a
volume).

The hypervolume contribution of a point set to some reference point set [36, 39]
is formally defined based on the definition of hypervolume indicator:

Definition 3.2 (Hypervolume Contribution of a Point Set). Given two point
sets X, S ⊂ Rd, and a reference point r ∈ Rd, the (hypervolume) contribution of X
to S is:

H(X, S) = H(X ∪ S)−H(S \ X)

Note that if X ∩ S = ∅ then the contribution of X to S is simply H(X, S) = H(X ∪
S)−H(S). See Figure 3.1(b) for a two-dimensional example. The particular case of
|X| = 1 is used more frequently and is defined as in [36]:

Definition 3.3 (Hypervolume Contribution). The hypervolume contribution
of a point p ∈ Rd to a set S ⊂ Rd is:

H(p, S) = H(S ∪ {p})−H(S \ {p})

The hypervolume contribution of a point is sometimes referred in the literature
as the incremental hypervolume or the exclusive hypervolume [128]. Moreover, the
contribution of a point p to the empty set is sometimes called the inclusive hypervol-
ume [128]. See Figures 3.1(c) and 3.2(b) for two-dimensional and three-dimensional
examples of a hypervolume contribution, respectively.

As pointed out in [36], the above Definition 3.3 is consistent with the case where
p ∈ S, and the contribution is the hypervolume lost when p is removed from S, as
well as with the case where p /∈ S, and the contribution of p is the hypervolume
gained when adding p to S. While this is certainly convenient, it does not reflect the
fact that the hypervolume gained by “adding” a point p to a set already including
it is zero. However, this last situation can be handled easily as a special case by
checking whether S includes p before applying the definition.

In some cases, such as when determining the decrease in the contribution of a
given point p ∈ Rd to a set S ⊂ Rd due to the addition of another point q ∈ Rd

to S, it is also useful to consider the contribution dominated simultaneously and
exclusively by two points.
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Figure 3.1: Examples in two-dimensions: (a) hypervolume indicator (dark gray re-
gion), (b) hypervolume contribution of a point set (light gray region), (c) hypervol-
ume contribution of a point (light gray region), (d) joint hypervolume contribution
(mid gray region), and (e) delimiters of p3 (p2 and p4), as well as dominated point
(p3∨p1), represented by a filled circle, and nondominated points (p3∨p2) and (p3∨p4),
elements of J, represented by hollow circles (see text for more details).

(a) H({p1, . . . , p4}) (b) H(p3, {p1, p2, p4})

Figure 3.2: Three-dimensional examples: (a) hypervolume indicator (opaque vol-
ume), (b) hypervolume contribution (transparent volume).

Definition 3.4 (Joint Hypervolume Contribution). The joint hypervolume
contribution of p, q ∈ Rd to S ⊂ Rd is:

H(p, q, S) = H((S \ {p, q}) ∪ {p ∨ q})−H(S \ {p, q})
where ∨ denotes the join, or component-wise maximum between two points.
Figures 3.1(d) shows an example for the two-dimensional case and Figure 3.3 for the
three-dimensional case. In the d = 3 example, Figure 3.3(a) shows the individual
contribution of p3 and p4 to S = {p1, p2}, which partially overlap. This partially
overlapped volume is the joint contribution (represented in transparent gray in Fig-
ure 3.3(d)). This joint contribution can also be interpreted as the region of the
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(a) H(p3,S), H(p4,S) (b) H(p3,S) (c) H(p4,S) (d) H(p3, p4,S)

Figure 3.3: Three-dimensional example, based on Figure 3.2(a), of the joint contri-
bution of p3 and p4 to S = {p1, p2}, i.e., H(p3, p4, {p1, p2}). Contributions are shown
in transparent gray and red. Transparent red highlights the part of a contribution
also dominated by the omitted point.

contribution of p3 to S that is also dominated by p4 (the transparent red region in
Figure 3.3(b)). Analogously, it can be interpreted as the region of the contribution
of p4 to S that is also dominated by p3 (the transparent red region in Figure 3.3(c)).

Moreover, the contribution of a point p to a set S is bounded above by certain
points q ∈ S that shall be referred to as delimiters, and are defined as follows:

Definition 3.5 (Delimiter). Given a point set S ⊂ Rd and a point p ∈ Rd, let
J = nondominated({(p ∨ q) | q ∈ S \ {p}}), where nondominated(X) = {s ∈ X |
∀t∈X, t ≤ s ⇒ s ≤ t} denotes the set of nondominated points in X. Then, q ∈ S is
called a (weak) delimiter of the contribution of p to S iff (p∨ q) ∈ J. If, in addition,
H(p, q, S) > 0, then q is also a strong delimiter of the contribution of p to S.

Note that J is the smallest set of points weakly dominated by p that delimits its
contribution to S, that is, H(p, S) = H(p, J). Consequently, all q ∈ J are such that
H(p, q, J) > 0, and J is such that H(p, S) = H({p})−H(J). Figure 3.1(e) shows an
example where the contribution of p3 is delimited only by p2 and p4, where both p2

and p4 are strong delimiters.
Non-strong delimiters can only exist when S contains points with repeated coor-

dinates. In the example of Figure 3.4(a), p4 and p5 are strong delimiters while p2

and p3 are not strong but only weak delimiters. This means that, in practice, only
one point in such a group of delimiters is needed to bound the contribution of p. If
one of them is deleted, then the contribution of p remains unchanged, whereas it
increases if all are deleted.

The following extension to the notion of delimiter will also be needed in this
work:

Definition 3.6 (Outer Delimiter). Given a point set S ⊂ Rd and a point p ∈ Rd,
q ∈ S is called an outer delimiter of the contribution of p to S if it is a delimiter of
the contribution of p to {s ∈ S | p ̸≤ s}. A delimiter, q, of the contribution of p to
S is called an inner delimiter if it is not an outer delimiter, i.e., if p ≤ q.

In general, outer delimiters may not be actual, or proper, delimiters in the sense
of Definition 3.5, in particular, when p shares a coordinate with a point in S. In
the example of Figure 3.4(b), points p3, p4, p5 are the (proper) delimiters of the
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(a) (b)

Figure 3.4: Examples of the delimiters of the contribution of p to a point set con-
taining points with repeated coordinates.
contribution of p to S, of which p3 and p4 are inner delimiters. There are two outer
delimiters, p2 and p5. Point p2 is not a proper delimiter of the contribution of p to
S because (p ∨ p3) = p3 < (p ∨ p2).

3.1.3 Problems
Many computational problems related to the hypervolume indicator can be found
in the literature. The following problems are needed in the context of this work,
and are based on definitions given in Emmerich and Fonseca [61]. Recall that the
reference point is considered to be a constant.

Problem 3.1 (Hypervolume). Given an n-point set S ⊂ Rd and a reference point
r ∈ Rd, compute the hypervolume indicator of S, i.e., H(S).

Problem 3.2 (OneContribution). Given an n-point set S ⊂ Rd, a reference
point r ∈ Rd and a point p ∈ Rd, compute the hypervolume contribution of p to S,
i.e., H(p, S).

Problem 3.3 (AllContributions). Given an n-point set S ⊂ Rd and a reference
point r ∈ Rd, compute the hypervolume contributions H(p, S) of all points p ∈ S to
S.

Problem 3.4 (AllContributions2). Given an n-point set S ⊂ Rd, an m-point
set R ⊂ Rd such that S ∩ R = ∅ and a reference point r ∈ Rd, compute the
hypervolume contributions H(p,R) of all points p ∈ S to R.

Note that, by definition, the contributions of two points p, q ∈ S to S never
overlap in Problem 3.3 while in Problem 3.4, the contributions of p, q ∈ S to a point
set R may overlap. For example, in Figure 3.1(d), if R = {p1, p4} and S = {p2, p3},
the contribution of p2 to R includes the region in lighter gray, and so does the
contribution of p3 to R, in addition to the respective (exclusively) dominated white
regions. However, in Problem 3.3, if S = {p1, . . . , p4} then their contributions reduce
just to the respective white regions, i.e., do not include the joint contribution.

Problem 3.5 (LeastContributor). Given an n-point set S ⊂ Rd and a reference
point r ∈ Rd, find a point p ∈ S with minimal hypervolume contribution to S.

Sometimes, the above problems are computed for a sequence of sets that differ
in a single point from the previous one, either by adding a point to (Incremental
case) or by removing a point from (Decremental case) the previous set.
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Problem 3.6 (UpdateHypervolume). Given an n-point set S ⊂ Rd, the refer-
ence point r ∈ Rd, the value of H(S), and a point p ∈ Rd, compute:

• Incremental: H(S ∪ {p}) = H(S) +H(p, S), where p /∈ S.

• Decremental: H(S \ {p}) = H(S)−H(p, S), where p ∈ S.
Problem 3.7 (UpdateAllContributions). Given an n-point set S ⊂ Rd, a
reference point r ∈ Rd, the value of H(q, S) for every q ∈ S, and a point p ∈ Rd:

• Incremental: Compute H(q, S ∪ {p}) = H(q, S) − H(p, q, S) for all q ∈ S,
and also H(p, S), where p /∈ S.

• Decremental: Compute H(q, S \ {p}) = H(q, S) +H(p, q, S) for all q ∈ S \
{p}, where p ∈ S.

Problem 3.8 (UpdateAllContributions2). Given an n-point set S ⊂ Rd, an
m-point set R ⊂ Rd, a reference point r ∈ Rd, the value of H(q,R) for every q ∈ S,
and a point p ∈ Rd:

• Incremental: Compute H(q,R ∪ {p}) = H(q,R) − H(p, q,R) for all q ∈ S,
where p /∈ R ∪ S.

• Decremental: Compute H(q,R \ {p}) = H(q,R) + H(p, q,R) for all q ∈ S,
where p ∈ R and p /∈ S.

Finally, based on the definition by Bader and Zitzler [10], the Hypervolume
Subset Selection Problem (HSSP)1 is formally defined here as:
Problem 3.9 (HSSP). Given a n-point set S ⊂ Rd and an integer k ∈ {0, 1, . . . , n},
find a subset A ⊆ S such that |A| ≤ k and:

H(A) = max
B⊆S
|B|≤k

H(B)

The complement problem of the HSSP is defined as:
Problem 3.10 (HSSPComplement). Given a n-point set S ⊂ Rd and an integer
k ∈ {0, 1, . . . , n}, find a subset C ⊆ S such that |C| ≥ (n− k) and:

H(C, S) = min
B⊂S

|B|≥(n−k)

H(B, S)

If A ⊆ S is a solution to the HSSP given k and S, then S \A is a solution to the
HSSPComplement, and vice-versa.

Note that, in the above problems, S is usually a nondominated point set, even
though this is not mandatory. Any dominated point q ∈ S has a null contribution to
S. However, if q is dominated by a single point p ∈ S, then the contribution of p to
S will be lower than what it would be if q /∈ S. Moreover, the incremental scenarios
of Problems 3.6 to 3.8 explicitly require that p /∈ S because the adopted definition
of hypervolume contribution does not handle adding a point to a set in which it is
already included, as discussed before, nor does it consider the multiset that would
result from such an operation. If such cases become relevant, the hypervolume
contribution of repeated points in a multiset should be considered to be zero.

1Note that, the HSSP has also been defined in [3] as the subset selection problem with respect
to the Weighted Hypervolume Indicator of which the hypervolume indicator is a special case.
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Relation between problems

Most of the problems listed above are not expected to be efficiently solved for an
arbitrary number of dimensions d. For example, problems Hypervolume [32] and
OneContribution [33] are known to be #P-hard. Even deciding if a point is
the least contributor is #P-hard [33]. Moreover, HSSP was recently shown to be
NP-hard [31] for d ≥ 3. Although these are not encouraging results for an arbitrary
d, this does not mean that efficient algorithms to compute the hypervolume-related
problems exactly, or to approximate the HSSP cannot be developed for a fixed and
small d. To develop such efficient algorithms, it is important to understand how the
various hypervolume problems relate to each other or if they arise as subproblems.

All problems above (Problems 3.1 to 3.10) are intrinsically related. For most of
them, it is possible to solve each one by solving one or more instances of the others.
Consequently, state-of-the-art algorithms frequently exploit these relations.

It is clear from Definition 3.3 that any algorithm that computes Hypervolume
(Problem 3.1) can also be used to compute OneContribution (Problem 3.2).
Moreover, the UpdateHypervolume problem (Problem 3.6) can be solved by
computing either Hypervolume given S∪{p} or OneContribution given S and
p. On the other hand, the Hypervolume problem can be computed by solving a
sequence of UpdateHypervolume problems as new points are added to a set. For
example, consider S = {p1, p2, p3}, the hypervolume H(S) can be computed as the
sum H(p1, {}) +H(p2, {p1}) +H(p3, {p1, p2}), more generally:

H(S) =
n∑

i=1

H(pi, {p1, . . . , pi−1}) = H(p1, {})+H(p2, {p1})+. . .+H(pn, {p1, . . . , pn−1})

where S = {p1, . . . , pn}. In fact, when such points are sorted according to dimen-
sion d, then the sequence of subproblems become (d − 1)-dimensional problems,
as exploited by the dimension-sweep approach (see Section 3.4.1). Dedicated al-
gorithms to solve UpdateHypervolume (and the other update problems) can
take advantage of previous calculations and data structures to avoid redundant
(re)computations and consequently, to save time.

It should also be clear that any algorithm that computes OneContribution
can be used to compute AllContributions (Problem 3.3), and vice-versa. Algo-
rithms to solve AllContributions can also be used to solve LeastContributor
(Problem 3.5), by computing all contributions and then selecting a point with min-
imal contribution, although it is not strictly required to know all contributions to
find the least contributor (see IHSO [B4] algorithm in Section 3.4.3). In the absence
of dedicated algorithms, UpdateAllContributions (Problem 3.7) can be solved
by recomputing all contributions (AllContributions).

Analogously to Problem 3.3, algorithms to compute OneContribution can
also be used to compute AllContributions2 (Problem 3.4) problem. Moreover,
UpdateAllContributions2 (Problem 3.8) can also be solved by recomputing the
contributions (AllContributions2). Despite the similarities, AllContributions
and AllContributions2 are distinct to the point that one cannot be straightfor-
wardly used to solve the other. The same observation applies to the corresponding
update problems (UpdateAllContributions and UpdateAllContributions2).

The definition of HSSP suggests that it can be solved by enumerating all sub-
sets of size k and computing the hypervolume indicator of each one. Similarly,
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HSSPComplement can be computed in an analogous way. However, this is ob-
viously not practical as the time required would quickly be unacceptable unless
n is sufficiently small and k is either very small or close to n. Moreover, recall
that an optimal solution to the HSSP can be obtained from an optimal solution
to HSSPComplement and vice-versa. For the particular case of k = n − 1, the
LeastContributor problem provides the solution to the HSSP by definition.

Finally, it is important to have in mind that the way problems are solved has
effect on the precision of the calculations. As pointed out by Russo and Fran-
cisco [119], computing the contribution of a point as the subtraction of two large
hypervolumes raises precision problems. It is thus recommended to avoid subtract-
ing hypervolumes as much as possible and, ideally, performing subtractions only
between coordinates. For example, regarding numerical stability, using a specific
algorithm to compute OneContribution may be preferable to using an algorithm
for Hypervolume to compute the contribution based on a subtraction.

Section 3.4 gives more details on the relation between hypervolume-based prob-
lems by explaining the existing algorithms and the techniques used by them.

3.2 Properties
As an indicator that imposes a total order among point sets, the hypervolume in-
dicator is biased towards some type of distribution of the points on a front [138].
Understanding that bias by studying its properties allows to better understand the
underlying assumptions on DM preferences (see Subsection 2.4.6 for a description
of the properties here discussed).

The hypervolume indicator is well acknowledged by its properties. It is strictly
≺-monotonic and it is scaling independent [137, 97]. This implies that it is maximal
for the Pareto front and that scaling objectives does not affect the order imposed
on point sets (see Subsection 2.4.6).

Concerning optimal µ-distributions in two dimensions, the exact location of the
points in an optimal subset of a given size µ is known only for continuous linear
fronts [4]. In this case, there is a unique optimal subset where all points are on the
Pareto front and uniformly spaced between two outer points, the position of which
depends both on the reference point and on the two extreme points of the Pareto
front [40]. General fronts have also been studied, but only in terms of point density
on the Pareto front when the number of points µ tends to infinity [4]. Unfortunately,
the results available for the two-objective case do not generalize easily to three
objectives, and not much is known about optimal µ-distributions in this case. The
main results concern whether there is a setting of the reference point guaranteeing
the inclusion of a front’s extreme points in the optimal µ-distribution [2, 122] and
the derivation of the optimal µ-distributions for the special case of Pareto fronts
consisting of a line segment embedded in a three-objective space [122].

Very recently, Ulrich and Thiele [126] showed that the hypervolume indicator is
a submodular function, i.e., given a decision space X and a function z : 2X → R, z
is submodular if:

∀A,B ⊆ X , z(A) + z(B) ≥ z(A ∪ B) + z(A ∩ B) (3.1)

Submodularity is an important property as it relates to convexity in combinatorial
optimization [107]. Additionally, a submodular function z is non-decreasing (or
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monotone) if:
∀A ⊆ B ⊆ X , z(A) ≤ z(B) (3.2)

The hypervolume indicator is a non-decreasing submodular function [126]. See [111]
for alternative equivalent definitions of (non-decreasing) submodular functions and
examples. Because the Hypervolume Subset Selection Problem (HSSP) consists
of maximizing a submodular function subject to a cardinality constraint [71], the
approximation of HSSP by means of a (incremental) greedy approach has an ap-
proximation guarantee [111]. Hence, the subset obtained by selecting k points from
S one at a time so as to maximize the hypervolume gained at each step is a (1−1/e)-
approximation to the hypervolume of an optimal subset, i.e., the ratio between the
greedy solution and the optimal solution is greater than or equal to (1−1/e) ≃ 0.63.2

3.3 Hypervolume-based Archiving Algorithms
The population in (µ+ λ)-selection EAs works as a bounded archive of µ solutions
where the method used for environmental selection can be viewed as an Archiving
Algorithm (AA). Such a (µ+ λ)-archiving algorithm is used at every generation to
select a set of µ solutions, P′, out of the µ solutions of the parent population, P,
plus the new λ offspring, Q, i.e., P′ ⊆ P ∪ Q. Hypervolume-based EMOAs aim at
finding a µ-sized subset of the Pareto front that maximizes the hypervolume indica-
tor, i.e., finding the optimal solution for the HSSP (see Problem 3.9) given k = µ
and considering the feasible set of solutions for a problem. For that purpose, they
use Hypervolume-based AAs which can be described as (µ + λ)-AAs that use a
hypervolume-related measure to select P′, for example, by selecting the µ-sized sub-
set of P∪Q with maximum hypervolume indicator value, or by sequentially selecting
a point based on its hypervolume contribution. The first known Hypervolume-based
AA was a (µ + 1) AA [98] that selects µ solutions to retain by greedily discarding
the least contributor which, in such a setting (λ = 1), allows for optimal selection
regarding the hypervolume indicator. Such an AA is also used in the well-known
SMS-EMOA [16].

Hypervolume-based AAs have to decide which solutions to keep based on the
current population and offspring, i.e., without the knowledge of future offspring or
past (discarded) solutions. Therefore, in general, they are not able to retain the
optimal subset (the optimal µ-distribution) even though they may have seen all
solutions in the optimal subsets. Consequently, the guarantees of convergence of
such archiving algorithm, and consequently of the EMOAs using them, have been a
topic of interest. This section is based on the article by Bringmann and Friedrich [36]
that reviews and extends the convergence theory of hypervolume-based AAs.

3.3.1 Classes
There are four main classes of hypervolume-based AAs based on the guarantees con-
cerning the selected µ solutions with respect to the parent population of µ solutions

2It is important to note that a tighter approximation bound was derived [103] very recently.
The new bound relies both in n and k while the previous (1 − 1/e) bound did not. A weak but
simple form of the new bound is: 1−

(
1− m

k

) (
1− 1

k

)k−m. It is tighter for k > n
2 by acknowledging

that in that case a greedy and an optimal solution must agree in m points where m is at least
2k − n. Therefore, any reference to the old (1− 1/e) bound is also valid for the new bound.
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and the current set of λ offspring solutions:

1. Nondecreasing: The hypervolume of the µ selected solutions is equal or
higher than the hypervolume of the parent population.

2. Increasing: The hypervolume of the µ selected solutions is strictly higher
than the hypervolume of the parent population or equal if there is no subset
of µ solutions with higher hypervolume.

3. Locally Optimal: The hypervolume of the µ selected solutions is the maxi-
mum with respect to all µ-sized subsets among all solutions from the parent
population and the offspring.

4. (Decremental) Greedy: The µ solutions are selected using a decremental
greedy algorithm, i.e., by iteratively discarding the least contributor until only
µ solutions remain.

Note that Bringmann and Friedrich [36] refer to archiving algorithms using a
decremental greedy algorithm just as “greedy” archiving algorithm. Therefore, their
results do not directly apply to any other type of greedy algorithm such as incre-
mental ones (see Section 3.4.5 on “Greedy Algorithms”).

From the definitions, it is clear that any Locally Optimal AA is also Increasing
and any Increasing AA is also Nondecreasing, although the reverse is not true. A
(µ + λ)-archiving algorithm that uses an algorithm to solve HSSP exactly (see Sec-
tion 3.4.4), where k = µ and n = µ+ λ, is a Locally Optimal AA and consequently,
an Increasing and a Nondecreasing AA. The decremental greedy (µ+ λ)-AA is also
Locally Optimal if λ = 1 (i.e., n = µ + 1 and k = µ). On the contrary, if λ > 1
an AA purely based on a decremental greedy algorithm is not even guaranteed to
be Nondecreasing. However, if the subset selected by the decremental greedy algo-
rithm is only accepted by the archiver if it does not have lower hypervolume than
the parent population, then the archiver is Nondecreasing. Such greedy archivers
will be referred to as Nondecreasing Decremental Greedy (µ+ λ)-AA.

3.3.2 Convergence Analysis
The convergence of Archiving Algorithms can be analyzed based on effectiveness
and on competitiveness. The former focuses on how close an archiving algorithm
can get to the (hypervolume of an) optimal subset of the Pareto front maximizing
the HSSP for k = µ (optimistic analysis). The latter, also referred to as a measure of
regret, focuses on how far an archiving algorithm can get from the µ-sized subset of
the set of all visited points with higher hypervolume (pessimistic analysis). Both are
independent of the underlying methods used for creating the initial population and
for generating offspring. The successive offspring generations are seen as a sequence
of arbitrary λ-sized solution sets. In both analysis, a worst-case initial population
is considered, i.e., any µ-sized set of feasible solutions can be the initial population.
A best case would be the optimal solution which is not considered of interest. For
the sequence of offspring sets, a best case is considered for the effectiveness analysis,
while a worst case is considered for the competitiveness analysis. Formally:
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Archiving Algorithm Convergence behavior
Nondecreasing (µ+ λ), λ < µ There is no

(
1 + 0.1338

(
1
λ −

1
µ

)
− ϵ
)
-approximate, ϵ > 0

Increasing (µ+ λ), λ = µ Effective
Locally optimal (µ+ λ), λ = µ Effective
Increasing (µ+ λ), λ < µ (2− λ/µ+ ϵ)-approximate, ϵ > 0

Locally optimal (µ+ λ), λ < µ (2− λ/µ+ ϵ)-approximate, ϵ > 0

Nondecreasing (µ+ λ) There is no (1.1338− 0.1338/µ− ϵ)-competitive, ϵ > 0

Increasing (µ+ λ) There is no (µ− ϵ)-competitive, ϵ > 0

Increasing (µ+ λ), µ = 1 µ-competitive
Locally optimal (µ+ λ) µ-competitive

Table 3.1: Convergence of (µ+ λ)-archiving algorithms

Effectiveness An archiving algorithm is said to be effective iff, for any initial
population, there is always a sequence of offspring sets such that an optimum is
achieved, i.e., a population corresponding to a subset that maximizes the hypervol-
ume indicator for µ solutions is always found.

α-approximate If an archiving algorithm is not effective, one can ask how close
to the optimum it can get. In such cases, an archiving algorithm is said to be α-
approximate iff, for any initial population, there is always a sequence of offspring
sets such that a population with at least 1/α times the hypervolume of an optimal
µ-sized subset is reached.

α-competitive An archiving algorithm is said to be α-competitive, iff for any
initial population and any sequence of offspring sets (that may explore just a small
portion of the objective space), a population with, at least, 1/α times the hypervol-
ume of the optimal µ-sized subset among all visited points is always reached. This
gives an indication whether the archiver is able to consistently maintain the best
subset of points among all points seen.

Ideally, an archiving algorithm would be effective. That would mean that,
whichever the initial population is, there is always a sequence of offspring such that
the AA is able to find an optimal µ-sized subset. Moreover, it is desirable that an
algorithm is α-competitive such that α is (close to) one, which would mean that the
AA never loses the best subset among all visited points. However, intuitively, such
property does not seem achievable for α = 1 in general, as the choice of solutions in
the optimal subset for HSSP depends on the available solutions to choose from, i.e.,
without any knowledge of future solutions.

Theoretical Convergence Summary

Table 3.1 summarizes the theoretical convergence results stated by Bringmann and
Friedrich [36]. Note that all results for Increasing AAs are also valid for the corre-
sponding Locally Optimal AAs.

Looking at Table 3.1 it is possible to state that a Locally Optimal (and increasing)
(µ + 1)-AA, such as SMS-EMOA [16], although not effective (unless µ = 1), it is
(2− 1

µ
+ ϵ)-approximate, for any ϵ > 0. This means that, for every problem, there is
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a sequence of offspring for which the ratio between the hypervolume of SMS-EMOA
last population and the hypervolume of the optimal µ-sized subset is better than
(2− 1

µ
+ϵ)−1. However, there is no nondecreasing (µ+λ)-AA for λ < µ such that it is

β-approximate, where β =
(
1 + 0.1338

(
1
λ
− 1

µ

)
− ϵ
)
. This means that there is, at

least, a problem instance and an initial population for which 1
β
is an upper bound for

the approximation ratio of the hypervolume of SMS-EMOA final population. That
is, given that λ is 1, then the ratio is lower than 1

β
< 1

1.1338
≃ 0.88199 if µ is large

and lower than 1
β
< 1

1.0669
≃ 0.93729 if µ = 2.

Although results on effectiveness for nondecreasing (µ+ λ)-AAs with λ ≥ µ are
unknown, those AAs that are also Increasing are effective. Moreover, unless µ = 1,
there is no Increasing, and consequently no Locally optimal (µ + λ)-AA that is 1-
competitive, i.e., there is always an initial population and an offspring sequence such
that the AA does not maintain the best µ-sized subset and thus, does not reach an
optimal solution. Using λ ≥ µ for locally optimal AAs is suggested in [36] to ensure
that the archiver has the ability to reach an optimal population.

Regarding Decremental Greedy (µ + λ)-AA, the convergence guarantees for in-
creasing and locally optimal AAs hold if λ = 1, otherwise no guarantees apply unless
the Nondecreasing version is considered.

3.4 Algorithms
This section gives an overview of the state-of-the-art algorithms for the hypervolume-
related problems described in Section 3.1. The techniques and paradigms used in
such algorithms are described first (see Subsection 3.4.1). The following four subsec-
tions provide an overview of the existing algorithms for computing the hypervolume
indicator, hypervolume contributions, the HSSP and greedy approximations to the
HSSP, respectively. More focus is given to techniques and algorithms related to
those that will be proposed in Section 4 through detailed and illustrative examples.
These illustrative examples are also intended to introduce the use of 2-dimensional
projections of 3-dimensional example problems. This type of illustration is exten-
sively used in Section 4 to help explain the proposed algorithms.

In order to make the referencing of algorithms easier, the state-of-art algorithms
are identified by a name and also alphanumerically. A letter and a number (e.g.[A2])
is assigned to each algorithm. The letter identifies to which problem the algorithm
relates to (A – hypervolume indicator, B – hypervolume contributions, C – HSSP,
D – greedy approximation to the HSSP) and the number is assigned according to
the order in which they are introduced in the following sections. For example, algo-
rithm [B4] is the fourth algorithm related to hypervolume contributions introduced
(Section 3.4.3). Links to available implementations are given with the description
of each algorithm.

For the following chapter, a complete understanding of the techniques described
in Section 3.4.1 is not required except for the Dimension-Sweep paradigm. The same
is true for the algorithms, although understanding HV3D, HV4D (see [A4] and [A6]
in Section 3.4.2, respectively), EF and UHV3D (see [B2] and [B5] in Section 3.4.3,
respectively) is recommended. For a quick overview of the available and the fastest
algorithms both with respect to runtime and to asymptotic complexity, see the
“Remarks” at the end of Sections 3.4.2 to 3.4.5.
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-y-x

-z

(a) 3D example (b) 2D projection at z =
rz

p point
p1 (5, 5, 1)
p2 (7, 3, 2)
p3 (1, 7, 4)
p4 (8, 1, 5)
p5 (4, 2, 6)
p6 (2, 4, 8)

Figure 3.5: Three-dimensional base example and the corresponding projection on
the (x, y)-plane. The reference point is r = (10, 10, 10).

3.4.1 Techniques
Figure 3.5 shows a 3-dimensional example that is used for illustration purposes
throughout this section. Moreover, n is used to represent the input size.

Inclusion-Exclusion Principle

The inclusion-exclusion principle is a technique consisting of sequentially iterating
over an inclusion step followed by an exclusion step, where the ith step involves
some computation for every combination of i points. This technique is discussed
in [8] for the Hypervolume: The hypervolume indicator of a set S ⊂ Rd of n
points is the sum of the hypervolume (indicator) of every subset with a single point,
minus the hypervolume of the component-wise maximum of each pair of points,
plus the hypervolume of the component-wise maximum of each subset with three
points, minus the hypervolume of the component-wise maximum of each subset of
four points, and so on. This technique can be very inefficient, if applied as explained
above since it is exponential in the number of points, Θ(2n).

Dimension Sweep

Dimension sweep is a paradigm [113] which has been widely used in the development
of algorithms for hypervolume-related problems (e.g. [A2], [A8], [A3], [A4], [A6]). A
problem involving n points in Rd is solved with this paradigm by visiting all points
in ascending (or descending) order of one of the coordinates, solving a (d − 1)-
dimensional subproblem for each point visited, and combining the solutions of those
subproblems. The subproblems themselves can often be solved using dimension
sweep as well, until a sufficiently low-dimensional base case is reached, which can
be solved easily by a dedicated algorithm. However, the time complexity of the
resulting algorithms typically increases by an O(n) factor per dimension.

A typical dimension-sweep algorithm for Hypervolume problem works as fol-
lows. Input points are sorted and visited in ascending order of the last coordinate.
The d-dimensional dominated region is partitioned into n slices by axis-parallel cut
hyperplanes defined by the last coordinate value of each input point and the reference
point. The desired hypervolume indicator value is the sum of the hypervolumes of
all slices, and the hypervolume of a slice is the hypervolume of its (d−1)-dimensional
base multiplied by its height. The base of a slice is the (d − 1)-dimensional region
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dominated by the projection of the points below it according to dimension d onto
the corresponding cut hyperplane. The height of a slice is the difference between
the values of the last coordinate of two consecutive points.

Figure 3.6(a) exemplifies how the volume in the example of Figure 3.5 could
be split in n = 6 (horizontal) slices. This division and the computation of the
volume for this example is further detailed in the explanation of HV3D (see [A4]) in
Section 3.4.2. Figure 3.6(b) shows a splitting of the base area of the topmost slice
in Figure 3.6(a).

(a) (b)

Figure 3.6: Example of: (a) the slice division of the volume in Figure 3.5(a) and;
(b) of the area of the corresponding topmost slice.

The algorithms for hypervolume-based problems using dimension-sweep differ
mostly in the (d − 1)-dimensional subproblem considered. For example, for the
Hypervolume problem, one option would be to compute the (d − 1)-dimensional
hypervolume indicator of the base of the slice from scratch or avoid the full compu-
tation by updating the hypervolume of the base of the previous slice.

Spatial Divide-and-Conquer

This technique consists of splitting the d-dimensional hypervolume into two parts
and recursively solving each part until a problem easy to solve is reached. The
problem is split into two subproblems according to the median point, p, of a given
dimension i, i.e., the ⌈(n+ 1)/2⌉th point with lowest coordinate i. The axis parallel
hyperplane at the value pi of coordinate i divides the hypervolume in two parts.
The first part refers to a subproblem containing the ⌊n/2⌋ points below p in the ith

coordinate and the reference point is the one of the current problem but projected
on the splitting hyperplane. The second subproblem contains all n points, but the
⌊n/2⌋ points below p in the ith coordinate are projected onto the splitting hyperplane.
Figure 3.7 shows an example of these two subproblems where coordinate i = 3 is
used for splitting and the median point p4 is the splitting point p.

This approach is used, for example, by HOY algorithm (see [A7] in Section 3.4.2)
to compute Hypervolume and by Bringmann and Friendrich’s algorithm (see [B1]
in Section 3.4.3) to compute AllContributions. An orthogonal partition tree is
typically used as the underlying data structure, as in the mentioned algorithms. In
that case, the hyperrectangle bounded below by the component-wise minimum of
the initial point set and above by the reference point is recursively partitioned in
axis parallel regions, and each one of them is associated to a node. Moreover, the
typical base case of the recursion (a leaf of the partition tree) is when a partition
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(a) First subproblem (b) Second subprob-
lem

Figure 3.7: Example of the volume division in Figure 3.5(a) using the spatial divide-
and-conquer approach.

consisting of a trellis is reached. A trellis is a region (hyperrectangle) where every
point in the subproblem dominates that region in all coordinates except one [14].

Multidimensional Divide-and-Conquer

The Multidimensional Divide-and-Conquer paradigm [13] is a well-known paradigm
in Computational Geometry and is used for problems such as computing the max-
ima (or minima) of a point set and finding the closest pair [13]. In such cases,
a d-dimensional problem with n points is divided in three subproblems, two d-
dimensional subproblems of size n/2 and a (d − 1)-dimensional subproblem of size
n (the merge step). Each of the subproblems is solved recursively using the same
approach until a problem easy to solve is reached.

(a) First subproblem (b) Second subprob-
lem

(c) Merge step

Figure 3.8: Example of the volume division in Figure 3.5(a) using the multidimen-
sional divide-and-conquer approach.

Figure 3.8 gives an example of the three possible subproblems for the hypervol-
ume indicator. Similarly to the Spatial Divide-and-Conquer, the median point of
a given coordinate i can be used for splitting. However, in this case, the second
subproblem only considers the ⌈n/2⌉ points with equal or higher coordinate i than
the splitting point. The third subproblem consists of computing the contribution
of the set of points in the first subproblem with respect to the set of points in the
second subproblem. HVDC3D [78] (see [A5] in Section 3.4.2) is the only algorithm
for hypervolume-based problems that uses this paradigm.
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Bounding Technique

The bounding technique is the technique of projecting points onto the surface of an
axis parallel d-dimensional box [26, 34] and discarding the points that become dom-
inated, in d-dimensional space. In practice, it consists of determining the auxiliary
set J in the definition of delimiter (see Definition 3.5), where J is the smallest set
of points weakly dominated by p that delimits its contribution. It is used in several
algorithms (e.g. [129, 128, 105]), in particular, to compute hypervolume contribu-
tions.

(a) Hypervolume
Contribution

(b) Bounding (c) Filtering

Figure 3.9: Example of the bounding technique for the contribution of p1, in Fig-
ure 3.5(a).

See Figure 3.9 for an example. Figure 3.9(a) shows the hypervolume of a set
of points S = {p2, . . . , p6} from Figure 3.5 and the hypervolume contribution of
p1 (in transparent yellow). Figure 3.9(b) shows the bounding technique, where all
points (not dominated by p1) are projected on the surface of the region dominated
by p1, and where the gray axis-parallel box shown is the volume dominated by such
projections. Then, only the nondominated points among those projected points are
kept (see Figure 3.9(c)).

This technique is used in the computation of hypervolume contributions because
these projections are enough to delimit the contribution of p1 and because the abso-
lute position of the delimiters resulting in those projections is irrelevant, i.e., have
no influence on the contribution of p1. Moreover, this bounding technique allows to
further discard the points that are not delimiters of the contribution of p1 as they
are unnecessary to compute it.

Objective Reordering

Problems in computational geometry such as those related to the hypervolume in-
dicator are invariant with respect to objective reordering and, in particular, to the
case where it is equivalent to rotation. See the example in Figure 3.10 of a vol-
ume in (x, y, z) coordinate system (see Figure 3.10(a)) and its counter-clockwise
(see Figure 3.10(b)) and clockwise rotations (see Figure 3.10(c)), corresponding to
the (y, z, x) and (z, x, y) coordinate systems, respectively. Reordering objectives is
important since, although the result of the computation does not change, it can
have an impact on the implementation runtime [130]. For example, Dimension-
Sweep approaches are usually sensitive to objective ordering as a particular order
may result in more dominated points further in the recursion than others. While et
al. [130] proposed several heuristics to determine the best objective order to con-
sider. Algorithms such as WFG (see Section 3.4.2) benefit with the integration
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of such heuristics, by repeating it in several steps of the computation of the hy-
pervolume indicator, which results in fast algorithms in practice in many data set
instances.

-y-x

-z

(a) (x, y, z)

-z-y

-x

(b) (y, z, x)

-x-z

-y

(c) (z, x, y)

Figure 3.10: Example of Figure 3.5(a) considering three of the six objective order
possible.

Dynamic Programming

Dynamic Programming (DP) is used for solving combinatorial optimization prob-
lems that can be broken down into subproblems which overlap and which have op-
timal substructure. The optimal substructure property guarantees that the optimal
solution to a problem can be constructed from the optimal solution to its subprob-
lems [48]. A DP approach consists of splitting a problem into several subproblems,
solving each of them if it has not been solved before and store its solution in order
to efficiently look it up the next time the solution to that subproblem is required.
Each of the subproblems is usually further divided in a similar way, until a small
problem easy to solve, a base case, is reached.

Dynamic Programming is used in algorithms to solve the HSSP. In an HSSP
problem considering an initial set of n points and k as the subset size desired, the
solution obtained with this technique is, for example, constructed based on the
solution of O(n) subproblems of size k−1. Similarly, the solution of each subproblem
of size k− 1 may be constructed based on the solutions to O(n) subproblems of size
k − 2 and so on. See Section 3.4.4 for more algorithmic details.

Local Upper Bounds

The orthant containing a given set of n nondominated points in Rd and limited above
by the reference point r ∈ Rd consists of two disjoint regions, the region dominated
by such a set and the search region [95]. In multiobjective optimization, the latter
is the promising region where to look for (more) optimal solutions. Recall that the
hypervolume indicator can be defined as the union of boxes bounded below by a
point in the nondominated point set and above by the reference point. Analogously,
the search space is also defined by the union of boxes which are unbounded below
and bounded above by local upper bounds [93]. The set of local upper bounds can
be roughly defined as the nondominated point set of the search region considering
maximization (see Figure 3.11). These local upper bounds can be computed from
the given set of n points and the reference point. In d = 2 there are n + 1 local
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upper bounds and in d = 3 there are 2n+1 [52]. In the general d ≥ 2 case there are
Ω(nd/2 logn) upper bounds [93, 95]. Such local upper bounds can be determined and
used for the computation of the hypervolume indicator (see [A11] in Section 3.4.2).

Figure 3.11: Example of the points which are the local upper bounds (points
u1, . . . , u5 represented by crosses, ×) given the nondominated point set {p1, . . . , p4}.

Branch-and-Bound

In a typical branch-and-bound approach to a combinatorial maximization problem,
the algorithm recursively solves a given problem by dividing it (branching) in one or
more subproblems and avoiding the computation of subproblems that definitely will
not lead to optimal solutions (through bounding). Every recursion call fixes one more
(set of) component(s) of the solution and thus represents the subproblem associated
with a partial solution. To avoid further recursions, an upper bound on the best
solution value achievable from such a partial solution is computed. If such a bound
is worse (is lower) than the best solution computed so far, than that subproblem
is skipped. Such approach is used to solve HSSP and/or HSSPComplement
(see [C7] in Section 3.4.4).

3.4.2 Hypervolume Indicator
There are many algorithms to compute the Hypervolume problem. This section
overviews only the most conceptually distinct ones (that are based on a different
paradigm/technique) and the fastest ones according either to their asymptotic com-
plexity or to their runtime efficiency. The list of algorithms excluded from this
overview include some algorithms based on problems for which the Hypervolume
is a particular case (e.g. [29, 46, 134]) and others specific to the Hypervolume com-
putation (e.g. [8, 27]), approximation algorithms (e.g., HypE [10]) and algorithms
based on parallelization (e.g., [105, 119]). Of all algorithms presented, the descrip-
tions of HV3D and HV4D are the most detailed due to their importance for the next
chapter.

Algorithms

[A1] Lebesgue Measure Algorithm (LebMeasure)
The LebMeasure algorithm [62] was one of the first algorithms proposed to compute
Hypervolume for any number of dimensions (d > 1). The algorithm maintains
a list of points, S ⊂ Rd, initially set to the input point set. The first step is to
remove a point p from S and to compute and accumulate the hypervolume of an
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hypercube inside the region exclusively dominated by p. This is the hypercube
bounded below by p and bounded above in every coordinate i ∈ {1, . . . , d} by bi,
the lowest i-th coordinate value in the point set {q ∈ S | pi ≤ qi}. To account for
the part of the contribution of p to S not yet computed, d new points are added to
S, each one is a projection of p onto an axis-parellel hyperplane at bi in coordinate
i. Then, dominated points are removed from S. These steps are repeated until S
is empty. Although LebMeasure was presented as a polynomial-time algorithm, its
time complexity was later shown to be exponential in d: O(nd) [127].

[A2] Hypervolume by Slicing Objectives (HSO)
The HSO algorithm [97, 131]3 is a direct application of the dimension sweep ap-
proach to the computation of Hypervolume problem. HSO works exactly as ex-
plained in the previous section (see under “Dimension sweep”) and has O(nd−1)-time
complexity. Several algorithms were proposed based on HSO, considering different
(d−1)-dimensional subproblems, data structures and/or base cases or by combining
it with other techniques (e.g., FPL [A3] and WFG [A8]).

[A3] Fonseca, Paquete and López-Ibañez’s algorithm (FPL) 4

The FPL algorithm [68] is based on HSO and has O(nd−2 logn) time complexity and
O(n) space complexity. FPL improves upon HSO through the use of more efficient
data structures, the caching of previous computations and the use of a better base
case for the recursion. In particular, FPL maintains points sorted according to
every dimension in circular doubly linked lists. In an FPL recursion call, points are
removed from (some) lists in decreasing order of a given dimension and are reinserted
in reverse order. This behavior enables constant time insertions. Moreover, when
a new point is visited in an i-th dimensional subproblem, it adds contribution only
to the (i − 1)-th dimensional slices above it in dimension i − 1. Thus, if (i − 1)-th
dimensional slices below that point have been previously computed then FPL has
that information stored and does not need to recompute them as HSO does. Finally,
FPL stops the recursion at d = 3 where it uses HV3D (see [A4]).

[A4] Beume et al.’s algorithm for d = 3 (HV3D) 5

HV3D [15] is a dimension-sweep algorithm for the d = 3 case with Θ(n logn) time
complexity and O(n) space complexity. Given a point set S = {p1, . . . , pn} ⊂ R3, the
Hypervolume problem is computed in HV3D by dividing the volume in slices (see
the example in Figure 3.6(a)) from bottom up as detailed in Figure 3.12. Each pair of
figures show the three-dimensional representation of a slice and its two-dimensional
base (on the (x, y)-plane).

Assume that p1z ≤ p2z ≤ . . . ≤ pnz . Every point marks the beginning of the slice
immediately above it and the closing of the slice immediately below it (with the
exception of the lowest point in z-coordinate). Consequently, the height of the i-th
slice is pi+1

z −piz, where i = 1, . . . , n−1, and the height of the last slice is rz−pnz (see
Figure 3.12). The base of a slice is delimited only by the set of points below it that
are nondominated on the (x, y)-plane. In the example (see Figure 3.12(e)), p1 and p2

do not delimit the base of slice 5 because p5 delimits it and dominates both of them
3The algorithm was proposed in [97] and was later named and studied in more detail in [131].

While et al. [131] also assign independent authorship of such an algorithm to E. Zitzler, and provide
a reference to source code (ftp://ftp.tik.ee.ethz.ch/pub/people/zitzler/hypervol.c).

4An implementation is made available by the authors: http://lopez-ibanez.eu/hypervolume
5An implementation is made available by the authors with FPL [A3]
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(a) Slice 1 (between p1z and p2z) (b) Slice 2 (between p2z and p3z)

(c) Slice 3 (between p3z and p4z) (d) Slice 4 (between p4z and p5z)

(e) Slice 5 (between p5z and p6z) (f) Slice 6 (between p6z and rz)

Figure 3.12: The splitting of the volume in Figure 3.5(a) into 6 slices and the
corresponding 2-dimensional bases.

in their 2-dimensional projection. Therefore, p4, p5 and p6 are enough to compute
the base of slice 5 and p1 and p2 can be discarded as they do not delimit slice 5 nor
any slice above it. The hypervolume indicator of S = {p1, . . . , p6} is therefore:

H(S) = (p2z − p1z) H({p1∗})
+ (p3z − p2z) H({p1∗, p2∗})
+ (p4z − p3z) H({p1∗, · · · , p3∗})
+ (p5z − p4z) H({p1∗, · · · , p4∗})
+ (p6z − p5z) H({p3∗, · · · , p5∗})
+ (rz − p6z) H({p3∗, . . . , p6∗})

Instead of explicitly computing the base area of each slice from scratch as ex-
pressed above, HV3D computes them more efficiently by computing two-dimensional
contributions. Every point p ∈ S dominates the area [(px, py), (rx, ry)] between pz
and rz, and so it dominates that area in all slices above p according to z-coordinate.
Therefore, the base area of the slice that begins at z = pz can be computed as the
base area of the slice that ends at z = pz plus the contribution of p∗ to the points
delimiting the base of that slice (see Figure 3.12(a) to 3.12(f)). Therefore, H(S) can
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(a) H(p5∗, {p1∗, . . . , p4∗})(b) H(p2∗, {p1∗, p3∗, p4∗}) (c) H(p1∗, {p3∗, p4∗}) (d) H(p5∗, {p3∗, p4∗})

Figure 3.13: Update of the base area of slice 5 (see Figure 3.12(e)).

be computed as:

H(S) = (p2z − p1z) H(p1∗, {})
+ (p3z − p2z) (H({p1}) +H(p2∗, {p1∗}))
+ (p4z − p3z) (H({p1∗, p2∗}) +H(p3∗, {p1∗, p2∗})
+ (p5z − p4z) (H({p1∗, · · · , p3∗}) +H(p4, {p1∗, · · · , p3∗}))
+ (p6z − p5z) (H({p1∗, · · · , p4∗}) +H(p5, {p1∗, · · · , p4∗}))
+ (rz − p6z) (H({p3∗, · · · , p5∗}) +H(p6, {p3∗, · · · , p5∗}))

Note that the left-hand side of the sum term in each line is the result of the sum on
the right-hand side of the multiplication in the previous line (e.g., H({p1∗, · · · , p3∗}
in the fourth line is equal to the sumH({p1∗, p2∗})+H(p3∗, {p1∗, p2∗}) in the previous
line). HV3D solves the Hypervolume problem in this way, by computing the slices
from bottom up and, by storing and updating the base of the last slice computed.
This corresponds to solving a sequence of 2-dimensional UpdateHypervolume
problems.

In detail, HV3D works as follows. Given an n-point set S ⊂ R3, points in S are
sorted and visited in ascending z-coordinate order. Each point p ∈ S marks the
beginning of a new slice, the base area of which is computed by updating the area
of the base of the previous slice (if it exists). This is illustrated in Figure 3.13(a),
where the darker gray region represents the base of the previous slice to be updated
when p = p5 is visited (slice 4 depicted in Figure 3.12(d)). To that end, the points
visited so far whose projections on the (x, y)-plane are mutually nondominated are
kept sorted in ascending order of the y coordinate using a height-balanced binary
tree, T. In the example of Figure 3.13(a), T = {p4, p2, p1, p3}. For each p ∈ S, the
point q ∈ T with qy < py and the least qx such that qx > px (p4 in the example) is
determined in O(logn) steps by searching T. Then, the contribution of p∗ to T∗ is
computed by visiting the successors of q in T in ascending order of y until a point
is found whose projection is not dominated by p∗ (in the example, p3).

Let the set of points in T that are weakly dominated by p on the (x, y)-plane be
denoted by Q = {q ∈ T | p∗ ≤ q∗}. Points in Q are visited in ascending order of
y-coordinate and for each point q ∈ Q, the contribution of q∗ to T∗ is computed and
subtracted from the area of the base of the previous slice in constant time, and q is
removed from T in O(logn) time. In the example of Figure 3.13(a), Q = {p2, p1}
and therefore, the contribution of p∗ = p5∗ to T∗ = {p1∗, . . . , p4∗} is computed as:

H(p5∗,T∗) = −H(p2∗, {p1∗, p3∗, p4∗})−H(p1∗, {p3∗, p4∗}) +H(p5∗, {p3∗, p4∗})
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The contribution of p2∗ to T∗ = {p1∗, . . . , p4∗} (see the darker region in Figure 3.13(b))
is computed and p2 is removed from T. Then, the contribution of p1∗ to T∗ =
{p1∗, p3∗, p4∗} (see the darker region in Figure 3.13(c)) is computed and p1 is re-
moved from T. Afterwards, the area of the region exclusively dominated by p∗,
(p4x − px)× (p3y − py) (see Figure 3.13(d)), is determined and added to the current
base area. Finally, p is added to T in O(logn) time once the base area has been
updated. The volume of the slice is computed and T contains the points delimiting
its base, i.e., T = {p4, p5, p3}.

In the above, each point in S is visited twice: once when it is added to T and again
when it is removed from T. Since all of the corresponding operations are performed
in O(logn) time, the algorithm has amortized O(n logn) time complexity.

[A5] Divide-and-Conquer algorithm for d = 3 (HVDC3D) 6

HVDC3D [78], as HV3D, has optimal Θ(n logn) time complexity and O(n)-space
complexity for the d = 3 case of Hypervolume problem. It directly applies the
Multidimensional Divide and Conquer paradigm as explained in the previous section.

[A6] Guerreiro et al.’s algorithm for d = 4 (HV4D) 7

HV4D [84, 78] is an O(n2)-time and O(n)-space algorithm for the particular case of
d = 4 of the Hypervolume problem. Although it has worse time complexity than
Chan’s algorithm [A9], it is currently the fastest one among the algorithms with
available implementations.

HV4D algorithm is an extension of HV3D to four dimensions where a sequence of
three-dimensional UpdateHypervolume problems is solved via the corresponding
OneContribution problems using similar techniques to those in the EF algorithm
(see [B2]). Points in the input set S ⊂ R4 are visited in ascending order of the last
coordinate, partitioning the dominated region into four-dimensional slices. For each
p ∈ S, the base volume of the new slice is computed by updating the volume of the
base of the previous slice with the contribution of p∗ to the projection on (x, y, z)-
space of the points visited so far.

For that purpose, the points visited so far whose projections are nondominated
are stored in a data structure, L. The contribution of each p∗ ∈ S∗ to L∗ is computed
in linear time using UHV3D (see [B5]), provided that points in L are sorted in two
lists in ascending order of the y and z coordinates, respectively and, provided that
L∗ ∪ {p∗} is a nondominated point set. However, even though S is a nondominated
point set, S∗ may not be and consequently, p∗ may dominate some points in L∗. To
fulfill the last requirement of UHV3D, the contribution H(p∗,L∗) is computed in a
similar way as in HV3D. Hence, one by one, each point q ∈ L such that p∗ ≤ q∗ is
removed from L and the contribution of q∗ to L∗ is computed using UHV3D, which is
then subtracted from the volume of the previous slice. Afterwards, the contribution
H(p∗,L∗) is computed and added to the current volume and p is added to L.

Since a three-dimensional contribution is computed at most twice for each input
point, once when it is added to L and once in case it is removed from L, then O(n)
calls to UHV3D are performed and consequently, the time complexity of HV4D
amortizes to O(n2).

6There is an implementation of this algorithm but is available only upon request to the author.
7An implementation is made available by the authors: https://github.com/apguerreiro/

HV4D.
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[A7] Hypervolume Overmars and Yap (HOY) 8

HOY algorithm [14] has O(nd/2 logn) time complexity, although it was initially
thought to have O(nd/2) time complexity [17] due to a gap in the analysis and which
is acknowledged in [14]. It is based on an algorithm for Klee’s measure problem by
Overmars and Yap and uses a streaming variant of an orthogonal partition tree as the
underlying data structure. Only O(n) space complexity is required by constructing
the referred tree on-the-fly instead of storing it completely as in the classical variant
which would require O(nd/2) space complexity.

HOY is based on the Spatial Divide-and-Conquer paradigm (see the previous
section). It measures the hypervolume dominated by a given point set A ⊂ Rd inside
the region bounded by a lower and an upper reference point, ℓ and u, respectively.
The set A is initialized as the set of input points, u to the given reference point and ℓ
to the component-wise minimum of all input points. HOY recursively partitions the
considered space, firstly using dimension one. In a given call, let i denote the last
dimension used to partition the current partition. Then, HOY checks if dimension
i satisfies certain criteria for partitioning, otherwise, it checks dimension i + 1 and
so on. The recursion base case is achieved when the (d-dimensional) dominated
region of the current partition forms a trellis. Moreover, before HOY is used, points
are previously sorted according to dimension d. This allows to shrink the space
partition considered in each recursive call by visiting points in A in ascending order
of dimension d until a point q that dominates the (d − 1) projection of the space
partition is found. In such case, the hypervolume of the space region between qd
and ud is computed right away and ud can be set to qd.

[A8] Walking Fish Group algorithm (WFG) 9

WFG algorithm [129] is currently one of the fastest for computing the hypervol-
ume indicator in many dimensions, particularly for d > 7 (see the experimental
results in [102]), even though it is not asymptotically the fastest. WFG was initially
reported to have O(2n+1) time complexity [129] but Renaud et al. [102] recently
tightened this upper bound to O(nd−1) and presented a lower bound of Ω(nd/2 logn).

WFG is an algorithm mainly based on the bounding technique and on ideas
from the inclusion-exclusion principle, and is further optimized by integrating ideas
of dimension-sweep and objective reordering. In particular, WFG works as follows.
Points in a given set X ⊂ Rd are sorted and visited in ascending order of dimension
d. For each point p ∈ X visited, the (d − 1)-dimensional contribution of p to the
set of already visited points, S (i.e., H(p∗, S∗)), is then computed and multiplied by
the difference (rd− pd). The hypervolume of S is the sum of all such multiplications.
The contribution H(p∗, S∗) is computed by subtracting to the hypervolume of {p∗}
the hypervolume of the set S∗ but bounded by p∗, i.e., H(p∗, S∗) = H(p∗, J) =
H({p∗}) − H(J), where J is the set obtained with the bounding technique (see
Section 3.4.1). In its turn, H(J) is computed recursively with WFG. In practice,
WFG alternates between OneContribution and Hypervolume problems.

The bounding technique in combination with dimension sweep allows many
points to become dominated and thus plays an important role in reducing the re-
quired computational effort. This helps placing WFG among the fastest for many

8An implementation is made available by the authors: ls11-www.cs.tu-dortmund.de/people/
beume/publications/hoy.cpp

9An implementation is made available by the authors: http://www.wfg.csse.uwa.edu.au/
hypervolume/
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dimensions (d > 4).

[A9] Chan’s algorithm (Chan)
Chan’s algorithm [47] has O(nd/3 polylog n) time complexity which is currently the
best time complexity to compute Hypervolume for d ≥ 4. Chan’s paper proposes
an algorithm for the general case of Klee’s Measure problem and then derives an
algorithm for the special case of the hypervolume indicator (referred as the union
of arbitrary orthants). Chan’s algorithm is a spatial divide-and-conquer algorithm
combined with a procedure to simplify partitions that is repeated every few levels
of cutting, reducing the number of boxes a partition contains. One of the main
differences to HOY is the method used for selecting the dimension to be used for
partitioning which changes at every level of recursion, first it uses dimension one,
then dimension two, and so on.

Despite its good time complexity, no implementation was found available online.

[A10] Quick Hypervolume (QHV) 10

QHV [118] is an algorithm for the general case of Hypervolume problem that is
based on quicksort. This algorithm can be viewed as a type of spatial divide-and-
conquer but instead of dividing the hypervolume in two as discussed in the example
given in Section 3.4.1, QHV splits it in 2d regions. To compute Hypervolume for
a point set S ⊂ Rd, first a point p ∈ S is selected to take the role of a pivot. The
point in S with greatest contribution to the empty set is selected for this purpose.
The pivot splits the d-dimensional space in O(2d) hyperoctants sharing a corner at
p and p is discarded. The two hyperoctants referring to the regions that contain the
points dominating p or the points that p dominates are discarded. QHV is called
recursively for each of the remaining hyperoctants (still partially dominated by S)
with the points inside that region and the projection on the hyperplanes delimiting
the hyperoctant of the points that partially dominate it. QHV includes a subrotine
to discard dominated points from each hyperoctant. The hypervolume of S is the
sum of the hypervolume returned from the recursive calls plus the contribution of p
to the empty set. In base cases with up to 10 points, a simple algorithm as HSO or
based in the Inclusion-Exclusion principle is used.

In the worst-case, QHV has O(n(d + logn−2)2nd) time complexity and O(ndn2)-
space complexity. However, its performance depends on the characteristics of the
data set considered. For example, the authors showed that the time complexity on
data sets where points are uniformly distributed over a hypersphere isO(dn1.1 logn−2 n).
In practice, QHV was observed to be competitive with WFG. Although a parallel
version of QHV exists [119], only the sequential version is taken into account in this
thesis.

[A11] Hypervolume Box Decomposition Algorithm (HBDA) 11

Lacour et al. [102] proposed an algorithm to compute Hypervolume in any num-
ber of dimensions. This algorithm, HBDA, computes the hypervolume indicator
by partitioning the dominated region into O(n⌊ d

2
⌋) axis-parallel boxes and adding

up the corresponding hypervolumes. The partitioning results from computing all
local upper bounds, where each box is associated to one local upper bound. The
incremental version of the algorithm (HBDA-I) runs in O(n⌊ d

2
⌋+1) time and is char-

10An implementation is made available by the authors: http://web.tecnico.ulisboa.pt/luis.
russo/QHV/#down

11An implementation is made available by the authors: https://github.com/renaudlr/hbda
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acterized by computing a sequence of n UpdateHypervolume problems, allowing
input points to be processed in any order. Since the current box decomposition must
be stored across iterations, O(n⌊ d

2
⌋) space is required. By processing input points

in ascending order of any given coordinate, the memory requirements are reduced
to O(n⌊ d−1

2
⌋), and the time complexity is improved to O(n⌊ d−1

2
⌋+1). HBDA-NI (the

non-incremental version) has been shown to be competitive in d ≥ 4 dimensions,
but its memory requirements are a limiting factor for large d.

[A12] Cox and While algorithm for d = 4 (HV4DX) 12

HV4DX was proposed by Cox and While [50] as an alternative version of HV4D to
compute Hypervolume for d = 4. In HV4DX, for each point p ∈ S ⊂ R4 visited,
the contribution of p∗ to the set of previously visited points, L∗, is also partitioned
in axis-parallel boxes. The differences lie on how this partitioning is done and in
not having the requirement that L∗ ∪ {p∗} is a nondominated point set. Without
such requirement, HV4DX does not have to previously remove the points dominated
by p∗ nor to recompute the corresponding contributions, as HV4D does. Although
HV4DX is claimed to improve upon HV4D, the experimental results presented in
Section 4.1.3 do not support those claims.

Remarks

Table 3.2 summarizes the described algorithms. It indicates for how many dimen-
sions they can be used for (d) and for which they are recommended (d′) based on
their runtime performance and/or time complexity. Moreover, it indicates whether
an implementation of such algorithms is available online and which are the paradigm-
s/techniques used (see Section 3.4.1) by each one of them. The bottom part of Ta-
ble 3.2 summarizes the best algorithms regarding time complexity and/or runtime
performance (based on the experimental results presented in [118, 102]).

As an optimal Θ(n logn)-time algorithm and the fastest in practice for d = 3,
HV3D is the recommended algorithm for d = 3. For d ≥ 4, Chan’s algorithms is
recommended as it has the best time complexity, but, because no implementation is
available and there is no information on how it performs in practice, other algorithms
are recommended as alternatives. For d = 4, HV4D is the fastest one. For d = 5, 6,
HBDA-NI [102] held the best runtimes while for d ≥ 7 it is not always clear which
is the fastest one among WFG, QHV and HBDA-NI, particularly because their
ranking seems to be strongly dependent of the input data. Since HBDA-NI only
outperformed the other two in the experiments in [102] in a specific data set that is
particularly difficult for WFG (see the “Hard” Data set in Section 3.5) and because
its memory requirements grow exponentially with d, HBDA-NI is not recommended
for d ≥ 7. In such cases, WFG and QHV are preferable. It is unclear which of
the two is the fastest, because the experimental results presented in [118] concluded
that QHV is the fastest while in [102] WFG was the fastest one.

Note that, most of the currently fastest algorithms available (HV3D, HV4D and
WFG) are all dimension-sweep based. Each one solves a sequence of subproblems
smaller in the number of dimensions and in a way that avoids recomputing ev-
erything from scratch and/or that tries to reduce the problem size. For example,
HV3D and HV4D solve Hypervolume by iterating over UpdateHypervolume

12An implementation is made available by the authors: http://www.wfg.csse.uwa.edu.au/
hypervolume/#code
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Algorithm d d′ Time-complexity Available Characteristics
LebMeasure [A1] ≥ 2 - O(nd) ? -

HSO [A2] ≥ 2 - O(nd−1) Yes DS
HVDC3D [A5] 3 - O(n logn) No* MDC, DS

HOY [A7] ≥ 2 - O(nd/2 logn) Yes SDC, DS
Chan [A9] ≥ 4 ≥ 4 O(nd/3polylog n) No SDC
FPL [A3] ≥ 2 2 O(nd−2 logn) Yes DS

HV3D [A4] 3 3 Θ(n logn) Yes DS
HV4D [A6] 4 4 O(n2) Yes DS

HBDA-NI [A11] ≥ 2 5, 6 O(n⌊ d
2
⌋) Yes LUBs

WFG [A8] ≥ 2 ≥ 7 Ω(nd/2 logn) Yes IE, B, DS
QHV [A10] ≥ 2 ≥ 7 O(n(d+ logn−2)2nd) Yes SDC

Table 3.2: Algorithms for the Hypervolume problem. (DS - Dimension-sweep, IE
- Inclusion-Exclusion, B - Bounding Technique, SDC - Spatial Divide-and-Conquer,
MDC - Multidimensional Divide-and-conquer, LUBs - Local Upper Bounds).

(incremental scenario) while WFG alternates between OneContribution and
Hypervolume problems and takes advantage of the bounding technique, and by
doing so they all reduced the computational costs required when compared to HSO.

3.4.3 Hypervolume Contributions
Hypervolume-based selection is typically related to the AllContributions and/or
the HSSP problems, while the Hypervolume problem is more related to the per-
formance evaluation of EMOAs. The computation of hypervolume contributions
is frequently required either directly by the EMOA selection method (e.g., in the
special case of k = n− 1 of HSSP, or for ranking), or indirectly, in the inner steps
of hypervolume-related algorithms (e.g., in algorithms to approximate the HSSP).
Although algorithms for Hypervolume can also be used to compute contributions
by solving a sequence of Hypervolume problems, it is typically more advantageous
to use algorithms particular to such problems. Thus, the algorithms in Section 3.4.2
should be used only as last resort, when there is no problem-specific alternative.

This section focuses on algorithms for problems related to the exact computation
of hypervolume contributions, in particular: AllContributions, OneContribution,
LeastContributor and the UpdateAllContributions problem. Only the
state-of-the-art algorithms are described. Those (non-competitive) algorithms purely
based on HSO (e.g., [136]) and approximation algorithms (e.g., [10, 33]) were left
out. Due to their importance to this thesis, EF and UHV3D are explained in more
detail.

Algorithms for AllContributions problem

[B1] Bringmann and Friedrich algorithm (BF1)
Bringmann and Friedrich [35] proposed an algorithm for the HSSPComplement
problem (see BF [C1]). Given a point set X ⊂ Rd of n points and a subset size k,
the algorithm computes the contribution to X of every subset of n − k points. In
the particular case of k = n − 1, the algorithm computes the contribution of every
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subset of size 1, i.e., the AllContributions problem. For this particular case, the
algorithm has O(nd/2 logn) time complexity and will be here referred to as BF1.

[B2] Emmerich and Fonseca algorithm (EF) 13

EF is a dimension-sweep algorithm proposed by Emmerich and Fonseca [61] for the
d = 3 case of the AllContributions problem and has Θ(n logn) time complexity
and O(n) space complexity. This algorithm extends HV3D to the computation of the
contributions of all points in a nondominated set X ⊂ R3. As in HV3D, EF visits all
points in X in ascending order of z coordinate while maintaining a balanced binary
tree T. This tree plays the same role as in HV3D, that is, to maintain the visited
points (nondominated on the (x, y)-plane) that delimit the base of the current slice.
These are now also the points whose contributions are being computed, and when
the projection of a point becomes dominated and the point is removed from T, it
also means that its contribution is fully computed. Therefore, in addition to the
data structure used in HV3D, for each point p ∈ X visited, a box partition of the
contribution of p∗ to T∗ is stored in a doubly-linked list, and the box partitions of
the corresponding delimiters in T∗ are updated. Individual boxes are characterized
by their lower and upper corners in all three dimensions, although they are initially
unbounded above in the z dimension.

Boxes are stored until another point in X that (partially) dominates them on
the (x, y)-plane is visited. In particular, for each p ∈ X, all boxes associated with
the inner delimiters of p∗ are closed. Closing a box means setting the z coordinate
of its top corner to pz, computing its volume and adding it to the current value of
the contribution of the associated point, and discarding that box. Boxes partially
dominated by p∗ are also closed, and are replaced by a new box accounting for the
base area that remains not dominated by p∗. All box operations are performed
in O(1) time, and since at most O(n) boxes are created and closed, the algorithm
retains the O(n logn) time complexity of HV3D. UHV3D also does the partitioning
of the contribution of a point in boxes in the same way as EF. See in the description
of UHV3D ([B5]) a detailed and illustrated explanation of this box partitioning.

Emmerich and Fonseca [61] also proposed a Θ(n logn) algorithm for the d = 2
case. In this case, it is easy to see that all (box-shaped) contributions can be
computed in linear time after sorting X.

[B3] Exclusive (Contribution) Quick Hypervolume (exQHV) 14

The authors of QHV (see [A10]) extended the algorithm for the AllContributions
problem in any number of dimensions [119]. The main differences to QHV are: 1)
the need to store all contributions instead of a single value; 2) the point used as
pivot and; 3) the exclusion of dominated points. In the case of QHV, the point p
with greatest contribution to the empty set is the pivot. Because the contribution
of p also has to be computed, the authors decided not to use p as pivot, but to use
instead the point p′ with greatest contribution to the empty set among the points
obtained from the coordinate-wise maximum between p and each point in the hype-
roctant. In QHV, all dominated points in an hyperoctant are discarded. However,
in exQHV, points dominated by a single point are needed for computing the contri-
bution of the point dominating it and therefore, only the points dominated by two

13An implementation is made available by the authors: http://liacs.leidenuniv.nl/
~csnaco/index.php?page=code

14An implementation is made available by the authors: http://web.tecnico.ulisboa.pt/luis.
russo/QHV/#down
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(a) Contribution (b) Box partitioning

Figure 3.14: Example of a contribution, H(p, S), and of its division in boxes, where
S = {s1, . . . , s12}.

or more points are excluded from each hyperoctant. As in QHV, an algorithm such
as HSO or based on the Inclusion-Exclusion principle is used for small cases with
up to 10 points. Such algorithms were also adapted to compute contributions.

Algorithms for OneContribution problem

[B4] Incremental HSO (IHSO)
IHSO [24, 25] is an algorithm for computing the contribution of a single point, p ∈ Rd,
to a set of points X ⊂ Rd, i.e., for the OneContribution problem. It is based on
HSO, but only the contribution of p to X is split into slices whose hypervolumes are
summed up at the end. Points that are not delimiters of the contribution of p to X
are ignored. Additionally, an objective reordering heuristic is used to choose a good
order in which to process the objectives. IHSO works even if some points in X are
dominated by p.

There is an improved version of IHSO that uses FPL’s data structure (see [A3]).
It was proposed as part of IIHSO [27] which is an algorithm for the Hypervolume
problem that uses IHSO to iteratively solve OneContribution problems.

[B5] Guerreiro et al.’s update algorithm (UHV3D) 15

HV4D algorithm [A6] iterates over a procedure to solve the incremental case of
UpdateHypervolume for d = 3 by solving a OneContribution problem in
d = 3. This procedure is interesting by itself and relevant for this thesis, which
justifies its detachment from HV4D. The standalone version of this procedure will
be called here as UHV3D. This approach computes the contribution of a point p ∈ R3

to a point set S ⊂ R3 though its correctness and efficiency is guaranteed only if: 1)
S∪{p} is a nondominated point set and; 2) S is previously stored in a data structure
consisting of two linked lists sorted according to y- and z-coordinates, respectively.

UHV3D computes a three-dimensional contribution in the same way as EF does
for all contributions, i.e., by partitioning it into axis-parallel boxes and by summing
up their volumes. Figure 3.14(a) shows an example of the contribution of p to
S = {s1, . . . , s12} and Figure 3.14(b) shows how it is partitioned in boxes (8, in this
case). The projections on the (x, y)-plane in Figure 3.15 illustrate the first steps of
the computation of such contribution. The contribution is computed in two steps.
The two-dimensional base of the contribution (see Figure 3.15(a)) is first partitioned
into boxes, by sweeping the points in S in ascending order of y. Then, all points

15An implementation made available by the authors integrated in HV4D [A6] code
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Figure 3.15: Example of the box update in the computation of the contribution from
the example in Figure 3.14, projected on the (x, y)-plane. Note that s1z < . . . < s7z <
pz < s8z < . . . < s12z .

q ∈ S such that qz > pz are visited in ascending order of z, and for each of these
points, the boxes that are (partially) dominated by q∗ are updated.

First, consider that S is split into two sets, S1 = {q ∈ S | qz ≤ pz} and S2 =
{q ∈ S | qz > pz}. Then, the delimiters of the contribution of p to S1 on the (x, y)-
plane are stored in S′ by sweeping S1 in ascending order of the y-coordinate. In the
example, S2 = {s8, . . . , s12}, S1 = {s1, . . . , s7} and S′ = {s2, . . . , s7}. By visiting
the points in S′ in ascending order of y-coordinate, a sorted list of |S′| − 1 non-
overlapping boxes is constructed. The z-coordinate of the bottom of every box is
set to pz and the top is left unbounded. Figure 3.15(b) shows the boxes associated
to point p at z = pz. Then, points q ∈ S2 are visited in ascending order of the
z-coordinate and for each one, the list of boxes is updated so as to represent the
contribution of p∗ at z = qz. To that end, every box b (partially) dominated by q
on the (x, y)-plane is closed, i.e., its top is set to qz, its lower left corner, bl, is set to
(max(blx, qx),max(bly, qy), blz) and the box is discarded after its volume is computed
and added to the contribution computed so far. Afterwards, a new (single) box
is added to account for the region not dominated by q∗ and which was covered
by the recently discarded boxes before the lower corner update. For example, in
Figure 3.15(c), q∗ = s8∗ partially dominates boxes b4 and b5 and so box b6 is added
(see Figure 3.15(d)). When q = s9 (see Figure 3.15(d)), boxes b1,b2, b3 are closed
and a single box is added to account the area of b3 not dominated by s9∗. When all
boxes are closed (in the example, all boxes are closed after processing q = s12), the
contribution of p to S is fully computed.

A box is only inserted at, and removed from, the beginning or the end of the list
of boxes. Therefore, all operations on boxes are performed in constant time and a
maximum of O(n) boxes is created and closed. Splitting S takes O(n), however, it
is used here only for clarity. Visiting points in S in ascending order of y (and then
z) and skipping those that do not fulfill the conditions of S′ (of S2) also takes O(n)
time. Hence, the contribution of p to S is computed in amortized O(n) time.

As a standalone algorithm to compute the OneContribution problem for
d = 3, UHV3D is suitable for the incremental scenario of UpdateHypervolume
and for the decremental scenario as well. Moreover, UHV3D can also be used for
the UpdateAllContributions problem, although n calls would be required.
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Algorithms for LeastContributor

[B6] Incremental HSO* least contributor algorithm (IHSO*)
IHSO* [24] is an algorithm based on IHSO (see [B4]) for the LeastContributor
problem. In the search for the least contributor, IHSO* tries not to have to fully
compute all contributions. Of all tested schemes, Bradstreet et al. [24] concluded
that the best to avoid full computations is to use an objective reordering heuristic
combined with Best-First-Queueing (BFQ). At each step of BFQ, the point with the
currently lowest (partially) computed contribution is picked and a “bit” more of its
contribution is computed. A parameter of BFQ defines how much a “bit” more is.
This process continues until a point with its contribution fully computed is picked
and this is the least contributor. However, the notion of a “bit of contribution”
has to be reasonably defined, i.e., if the considered granularity is too large, then all
contributions are computed, if too small, then an excessive number of iterations is
required. The time complexity of IHSO* is not reported. IHSO* authors also pro-
posed an algorithm to update the least contributor under single-point changes [22],
i.e., to identify the (new) least contributor after adding or removing a point.

[B7] Incremental WFG least contributor algorithm (IWFG) 16

IWFG [128, 51] is an algorithm for the computation of the LeastContributor and
is the result of a combination between WFG (see [A8]) and IHSO* (see [B6]). It uses
the best-first queuing mechanism of IHSO* to gradually update contributions until
the least contributor is found. Therefore, in IWFG, the contribution of each point is
divided in slices and the first slice associated to each point is computed using WFG.
Then, repeatedly, the point with the lowest (partially) computed contribution is
picked and its next slice is computed also using WFG. The algorithm stops when the
selected point is one whose contribution is fully computed (is the least contributor).
Cox and While [51] proposed an improved version of IWFG that uses a new slicing
scheme and reordering of objectives for each point which led to better runtimes and
to outperform IHSO*. The time complexity of IWFG is not reported.

Algorithms for UpdateAllContributions

[B8] Hupkens and Emmerich update algorithm for 2D (UHVC2D)
Hupkens and Emmerich [89] proposed an algorithm, here called UHVC2D, to update
the contributions of every point in a set X ⊂ R2 to the set X itself under single-point
changes to X (incremental and decremental cases of UpdateAllContributions),
in the d = 2 case. This algorithm has O(n) space complexity and O(logn) time
complexity provided that X is a nondominated set and is previously stored sorted
along a coordinate in a balanced binary tree. Igel et al. [90] had previously proposed
an update method very similar to UHVC2D. However, it was proposed as a part of a
procedure for ranking solutions and only the decremental scenario was contemplated.

Note that there are at most two delimiters of the contribution of a point p ∈ X
to a nondominated set X ⊂ R2 and each point in X only delimits the contribution of
its delimiters. Therefore, UHVC2D does a O(logn)-time search in the tree storing X
to find the delimiters of the contribution of the point p being added/removed. The
contribution of each delimiter and of p is then updated inO(1) time. The incremental

16An implementation made available by the authors: http://www.wfg.csse.uwa.edu.au/
hypervolume/
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case has an extra step to remove points in X dominated by the new point before
the contribution update. As the tree insertion/deletions are performed in O(logn),
UHVC2D performs in amortized O(logn) time per point. Moreover, note that the
algorithm could be easily applied to the UpdateHypervolume problem for d = 2.

Remarks

Table 3.3 summarizes the information regarding the algorithms described in this sec-
tion. It reports the best algorithms for each problem and the number of dimensions
for which they can be used, the corresponding time complexities (if known) and
indicates whether an implementation is available online. In the latter case, a “Yes*”
means that an implementation is not exactly available but is easy to implement/ob-
tain. In the case of UHVC2D, the algorithm is easily implemented. In the case of
UHV3D and WFG, although the algorithms were not originally proposed for solving
the indicated problem, with some (simple) modifications/adaptations to HV4D and
WFG, respectively, they can be used for that purpose. In the case of WFG, re-
call that it explicitly solves several OneContribution problems in its inner steps
(see [A8]). The code for WFG available online can be easily modified to make use of
that inner step to compute just the OneContribution and even to compute the
AllContributions problem. This is more advantageous than iterating over the
original WFG and use it to compute every contribution as the difference between
two hypervolumes (see Definition 3.3). Finally, the reported time complexities of
UHVC2D and UHV3D assume that the data structures were previously set up. In
the incremental scenario, these complexities represent the worst-case complexity if
{p}∪S is a nondominated point set. Otherwise, if p may dominate points in S, then
they represent the amortized complexities per point for a sequence of n calls (i.e., n
incremental updates to an initially empty set S).

For the AllContributions problem, EF and BF1 are the recommended al-
gorithms for d = 3 and d > 3, respectively. As there is no available implemen-
tation of BF1, exQHV and WFG are both recommended as alternatives. For the
OneContribution problem, UHV3D and WFG are the recommended algorithms
for d = 3 and d > 3, respectively. For the LeastContributor problem and
d ≥ 2, IWFG is recommended, however, it may be more advantageous to use an
algorithm for the AllContributions problem and then identify the least con-
tributor (for example, in the experiments in Section 4.2.3 EF was more efficient
than IWFG for d = 3). For the UpdateAllContributions problem, UHVC2D
is recommended for d = 2, while for d > 2 the best alternative is to use the al-
gorithms recommended for the AllContributions problem. Due to the absence
of algorithms dedicated to the explicit computation of the AllContributions2
and UpdateAllContributions2 problems, the recommendation is to iterate over
algorithms for OneContribution. In the case of d = 3, computing either prob-
lem would have a cost of O(mn) after sorting R, where n = |R| and m = |S| (see
Definitions 3.4 and 3.8) using UHV3D.

On dominated points Although most algorithms presented so far are expected
to be used only for nondominated point sets, they may have to somehow deal with
dominated points. For example, HV3D (see [A4]) and UHV3D (see [B5]) have to
compute OneContribution problems in d = 2 (for the base of the contribution
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Problem Algorithm d Time-complexity Available

AllContributions

BF1 [B1] ≥ 2 O(nd/2 logn) No
EF [B2] 2, 3 O(n logn) Yes

exQHV [B3] ≥ 2 - Yes
WFG [A8] ≥ 2 Ω(nd/2 logn) Yes*

OneContribution
IHSO [B4] ≥ 2 - No

UHV3D [B5] 3 O(n) Yes*
WFG [A8] ≥ 2 Ω(nd/2 logn) Yes*

LeastContributor IHSO* [B6] ≥ 2 - No
IWFG [B7] ≥ 2 - Yes

UpdateAllContributions UHVC2D [B8] 2 O(logn) Yes*

Table 3.3: Algorithms for computing hypervolume contributions related problems.

of the new point) which consists of computing H(p, S) where p ∈ R2 and S ⊂ R2

and where p may dominate some points in S (see the example if Figure 3.12). Many
algorithms use a work-around. In HV3D (and also in HV4D, but for d = 3), one by
one, each point in S dominated by p (the set of all is Q = {q ∈ S |p ≤ q}) is removed
from S in O(logn), its contribution to S is computed and afterwards H(p, S \Q) is
computed. Even though the time complexity of OneContribution computation
amortizes to O(logn) per input point along HV3D, a single OneContribution
computation has O(n logn) worst-case time complexity (similarly, the worst case
time complexity of a single call to UHV3D is O(n2) if dominated points are allowed).
Moreover, the information concerning the inner delimiters of the contribution of p
to S is lost. In algorithms where a contribution must be successively updated, this
information is required, and thus dominated points have to be dealt differently. For
example, in order to update a 2-dimensional contribution, UHV3D keeps a list of
boxes that implicitly store information concerning all of its delimiters, allowing it
to have full information concerning the exact shape of the contribution of p.

3.4.4 Exact Algorithms for the HSSP
Although the computation of the hypervolume indicator raised a lot of interest in the
last decade and better algorithms have successively been proposed (see Section 3.4.2),
there have been fewer contributions for the HSSP, which is a NP-hard problem.
There is currently no algorithm for d > 3 that does not check every combination
of k points. Only for d = 2, 3, are there a few algorithms that avoid that much
computation. The existing algorithms to compute the HSSP exactly are described
next.

For the algorithm description, let X ⊂ Rd be a nondominated point set such
that |X| = n and that an optimal subset of size k ∈ {1, . . . , n} out of those n points
needs to be selected. Let r ∈ Rd be a reference point such that every point in X
strongly dominates it.

Algorithms

The first algorithm for the general d-dimensional case for the exact computation
of the HSSP was proposed in 2010 [35] and explicitly checks every combination of
(n− k) points to discard. Most of the remaining algorithms are focused on the par-
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ticular cases of 2 and 3 dimensions. In 2009, a O(kn2)-time dynamic programming
algorithm was proposed for the d = 2 case [3]. Faster algorithms were proposed
only recently, one in 2014 by Bringmann and Friedrich [37] with O(nk + n logn)
time complexity, and two other in 2016 by Kuhn et al. [100] of which the asymp-
totically fastest one has O(k(n − k) + n logn) time complexity. The algorithms by
Kuhn et al. [100] rely on alternative formulations of the HSSP, one as a k-link short-
est path (k-LSP) problem and another as an Integer Linear Programming (ILP)
problem. These are interesting formulations even though the former works only
for the 2-dimensional case and the generalization of the latter to any number of
dimensions [99, 76] has a number of constraints exponential in d.

More recently, Bringmann et al. [31] proposed an algorithm for d = 3 with O(n
√
k)

time complexity, while for the general d-dimensional case, Gomes [75, 76] proposed
a branch-and-bound algorithm. Apart from these two very recent algorithms (from
2017) that will be listed and only briefly characterized at the end, all other algorithms
referred above are described next in some detail, first the general algorithm and then
those specific to the low-dimensional cases (d = 2, 3).

[C1] General Algorithm by Bringmann and Friedrich (BF)
The algorithm by Bringmann et al. [35] solves the HSSPComplement problem,
i.e., it finds the subset S ⊆ X of (n − k) points that contributes the least to the
hypervolume of the whole set X. This algorithm will be called BF here. As HOY
(see [A7]), BF is an adaptation of Overmars and and Yap’s algorithm. It uses a
partition tree to store the leaf partitioning (of a spatial divide-and-conquer). The
contribution to X of every subset of (n− k) points are explicitly computed by sum-
ming up, among every leaf, the hypervolume indicator of the regions associated to
each of these subsets. The algorithm has a O(nd/2 logn+nn−k) time complexity and
O(min(nd/2, nn−k))-space complexity [31]. Consequently, this algorithm is adequate
for high values of k (small n − k), in particular for n − k ≤ d/2, but for small
values of k it may become too expensive. For n − k = 1, the algorithm solves the
AllContributions problem (see BF1 [B1]).

[C2] O(kn2) Dynamic Programming Algorithm (DPHSS)
Auger et al. [3] proposed a bottom-up Dynamic Programming (DP) algorithm for
the 2-dimensional SSP problem with respect to the weighted hypervolume indicator,
of which HSSP is a special case. The algorithm explained next focuses only on this
particular case and will be referred to here as DPHSS. DPHSS has O(kn2) time com-
plexity17 and O(kn)-space complexity. However, if only the maximal hypervolume
value of a k-sized subset is needed and not the subset itself then only O(n)-space
complexity is required.

Given a nondominated point set X = {p1, . . . , pn} ⊂ R2 where pjx < pj+1
x for

j = 1, . . . , n−1 without loss of generality, and given a subset size k ∈ {1, . . . , n}, let
(i, t) denote the subproblem of finding a subset S ⊂ X maximizing the hypervolume
indicator such that S ⊆ {pi, . . . , pn}, pi ∈ S and |S| ≤ t, where i ∈ {1, . . . , n} and
t ∈ {1, . . . , k}. Let P (i, t) denote an optimal solution to subproblem (i, t) and let
subproblems (i, 1) and (n, t) be the base cases with optimal solutions P (i, 1) = {pi}
and P (n, t) = {pn}, respectively. For t > 1 and i < n, the optimal substructure
property lies in the fact that if the leftmost point is removed from an optimal solution

17The time complexity reported in the original paper is O(n3) [3] but O(kn2) is a tighter upper
bound, as reported in [37].
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S = P (i, t) to the subproblem (i, t), then the obtained subset S \ {pi} is an optimal
solution to subproblem (j, t−1) where pj denote the leftmost point in S\{pi}. Thus,
an optimal solution to subproblem (i, t) is obtained from P (i+1, t−1), . . . , P (n, t−1)
by finding, in linear time, a j ∈ {i + 1, . . . , n} for which H({pi} ∪ P (j, t − 1)) is
maximized. Note that such a hypervolume is computed in constant time. Computing
the solution to subproblems (1, t), . . . , (n, t) thus takes O(n2) time for each t ∈
{1, . . . , k} leading, together with the initial sorting, to an overall O(kn2 + n logn)
time complexity. The optimal solution to the HSSP is given by the best solution
among P (1, k), . . . , P (n, k).

[C3] HypSSP 18

Bringmann et al. [37] proposed HypSSP, an O(n(k+ logn))-time algorithm for the 2-
dimensional HSSP. Analogously to DPHSS, HypSSP requires O(n)-space complexity
if only the hypervolume value of the optimal subset(s) is required, and O(nk)-space
complexity if such subset is also needed. The description of HypSSP in [37] consid-
ers maximization, but to preserve the consistency and clarity, the description here
considers minimization.

Given a nondominated point set X = {p1, . . . , pn} ⊂ R2 where pjx < pj+1
x for

j = 1, . . . , n− 1 without loss of generality, the reference point pn+1 = r and given a
subset size k ∈ {1, . . . , n}, let (i, t) denote the subproblem of finding a subset S ⊆
{p1, . . . , pi−1} maximizing the hypervolume indicator with respect to the reference
point (pix, ry) such that |S| ≤ t, where i ∈ {1, . . . , n + 1} and t ∈ {0, . . . , k}. Let
P (i, t) denote an optimal solution to subproblem (i, t) and let subproblems (i, 0) and
(1, t) be the base cases with optimal solution P (i, 0) = P (1, t) = {} (the hypervolume
indicator of which is zero). For i > 1 and t > 0, let pj be the rightmost point in an
optimal subset S = P (i, t) to subproblem (i, t), where j ∈ {1, . . . , i− 1}. Then, the
optimal substructure property lies in the fact that if the rightmost point is removed
from S then the obtained subset S \ {pj} is an optimal solution to subproblem
(j, t − 1). The optimal solution to subproblem (i, t) is obtained from subproblems
(1, t−1), . . . , (i−1, t−1) by finding a j ∈ {1, . . . , i−1} for which H(P (j, t−1)∪{pj})
with respect to the reference point (pix, ry) is maximized. In HypSSP, for each
t ∈ {1, . . . , k}, subproblems (2, t), . . . (n + 1, t) are efficiently computed altogether
in, an overall, amortized linear time. To this end, the value of H(P (j, t− 1)∪{pj}),
for each j ∈ {1, . . . , n}, is modelled as a linear function of the reference point (x, ry)
where x ∈ [pjx, p

n+1
x ]. The algorithm takes advantage of the fact that the maximum

value over the set of the n linear functions forms a x-monotone polygonal chain,
to compute P (2, t), . . . , P (n + 1, t) in a single sweep. Since these computations are
performed k times (for t = 1, . . . , k), the algorithm plus the initial sorting holds
O(kn+n logn). The optimal solution to the HSSP is given by the optimal solution
to subproblem (n+ 1, k), i.e., P (n+ 1, k).

[C4] ILP Formulation 19

Kuhn et al. [100] formalized the HSSP in the d = 2 case as an Integer Linear
Programming (ILP) problem, which was later extended for the d ≥ 3 case [99, 76].
With such a formalization, an adequate ILP solver can then be used to solve it. The

18An implementation is made available by the authors: http://hpi.de/friedrich/docs/code/
ssp.zip

19The author of the formulation for the d = 3 case (Tobias Kuhn) implemented an algorithm
formalizing the problem and using GLPK to solve it (which is used in the experiments of the next
Chapter) however, such implementation is not available online.
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ILP formulation will be explained next just for the d = 2 case with the purpose of
providing some insight.

Let the point set X = {p1, . . . , pn} ⊂ R2 be such that that p1, . . . , pn are sorted
in ascending order of the x-coordinate. Consider that the area dominated by the
point set X is split in O(n2) boxes, as in Figure 3.16, where the box (i, j) is the
area commonly and exclusively dominated by points pi, . . . , pj w.r.t. X. Let the
boxes (i, j) such that i = j be called as outer boxes (those dominated by a single
point) and as inner boxes otherwise. The area of each of these boxes is precalculated
and a variable xij is associated to each of them indicating whether it is selected or
not. Hence, the ILP formulation consists of maximizing the sum of the area of the
selected boxes under the following restrictions: i) exactly k of the n outer boxes are
selected; ii) every inner box is selected only if at least one outer box dominating it
is selected. For example, in Figure 3.16, box (2, 3) can only be selected if box (2, 2)
and/or box (3, 3) is selected, i.e., if p2 and/or p3 is chosen.
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Figure 3.16: Dominated region division.

Similarly, the above ILP formulation can be extended to the d > 2 case [99, 76],
in which case the dominated region is split in O(nd) boxes. The resulting problem
has O(nd) constraints and thus, solving it requires Ω(nd) space and time complexity.

[C5] k-Link Shortest Path Formulation (k-LSP) 20

The k-Link Shortest Path is the problem of finding the shortest path but restricted
to k-sized paths. In the formulation of the HSSPComplement for 2 dimensions as
a k-link Shortest Path [100], each node represents a point of the point set X ⊂ R2 and
considers two additional nodes, source and target. Consider that points p1, . . . , pn

are sorted in ascending order of the x-coordinate and that directed arcs only exist
from pi to pj if i < j. The weight of the arc between pi and pj is the area dominated
by the set {pi+1, . . . , pj−1} which is not dominated by X, i.e., H({pi+1, . . . , pj−1},X).
Note that the weight of the arc that goes from pi to pj where j = i+ 1 is zero. Let
S be the set of points in the sequence of l− 1 nodes in the shortest path with l links.
Then, S is the optimal subset for the HSSP problem with k = l − 1 points. Note
that the cost of feasible paths is the contribution of sets of n− k to X. The HSSP
problem formulated as a k-link shortest path problem, here called k-LSP, can be
solved using Dynamic Programming (DP).

Kuhn et al. [100] proved that the digraph that results from this formulation has
a property called the (concave) Monge property and so the time complexity of the
DP can be improved to O(k(n − k) + n logn) time complexity (see [100] for more
details). Note that O(k(n − k) + n logn) time and O(n) space complexities are

20An implementation is made available by the authors: https://eden.dei.uc.pt/~paquete/
HSSP/hypervolume-subset.zip
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obtained if an optimal subset is not required but only its hypervolume value, while
if both are required, then both complexities increase to O(n2).

The running time of k-LSP increases as k grows from 1 to n/2 and then decreases
as k progresses from n/2 to n, i.e., to select t points or to remove t requires roughly
the same amount of time. This is a distinct behavior from the other DP algorithms,
DPHSS (see [C2]) and HypSSP (see [C3]). Unfortunately, this approach cannot be
extended to d = 3 [100]. In comparison with HypSSP, the experimental results
in [100] show that both algorithms are competitive, where HypSSP is faster than
k-LSP for smaller values of k while the latter is faster for k closer to n. The turning
point seems to be around 3n/5.

[C6] Bringmann, Cabello and Emmerich algorithm for d = 3 (BCE3D)
Bringmann et al. [31] proposed an algorithm for the d = 3 case of HSSP that runs in
nO(

√
k) time, which will be called BCE3D here. This is the first algorithm that applies

Dynamic Programming to solve HSSP in the d = 3 case. The idea resides in the fact
that the boundary of the volume of a point set S can be described by a planar graph
with O(|S|) vertices. This planar graph has a separator with O(

√
|S|) vertices and

the idea is to use such separator to split the problem into two subproblems. The
time-complexity is related to the maximum number of partitions which is nO(

√
k).

This means that it is possible to solve the HSSP for d = 3 without checking every
combination of k points out of the n initial points.

[C7] Branch-and-bound algorithm (B&B) 21

Gomes [75, 76] proposed a Branch-and-Bound (B&B) algorithm to solve the HSSP
for d ≥ 2 dimensions. Gomes formulated the subproblem (AP , RP , NP ) as a parti-
tion of the initial point set X, where AP , RP and NP represent the points already
selected, the discarded ones and the ones yet to be decided upon, respectively. The
first call is represented by (∅, ∅,X) and the branching consists of either moving a
point p fromNP to AP (i.e., select p) or moving a point p fromNP to RP (i.e., discard
p), where p is the point in NP that contributes the most to AP . Consequently, the
first feasible solution obtained (and the first lower bound), is equal to that obtained
by a(n incremental) greedy algorithm (see gHSS [D2]) and thus, has an approxi-
mation guarantee. Gomes proposed three different methods to compute bounds,
one based on the greedy incremental algorithm (see [D2]), and two others based on
hypervolume contributions where one relates to AllContributions problem and
the other to AllContributions2 problem (see [75, 76] for more details).

The experimental results presented by Gomes [75, 76] for d = 3, 4 show inter-
esting results since it outperformed solving the ILP formulation ([C4]) in the case
of d = 3. In fact, such experiments benefited from the various algorithms proposed
in Chapter 4 for updating contributions and for the greedy approximation of the
HSSP. The performance of the B&B algorithm is similar to k-LSP in the sense that
it is slower for k somewhere close to n/2 and becomes faster as k either decreases
or increases.

Remarks

Table 3.4 summarizes the existent algorithms for solving HSSP exactly, indicating
the number of dimensions(d), and whether or not there is an implementation avail-

21An implementation is made available by the author: https://github.com/rgoomes/hssp
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Algorithm d d′ Time-complexity Available Paradigm
BF [C1] ≥ 2 ≥ 4 O(nd/2 logn+ nn−k) No SDC

DPHSS [C2] 2 - O(kn2) ? DP
HypSSP [C3] 2 2 O(nk + n logn) Yes DP
k-LSP [C5] 2 2 O(k(n− k) + n logn) Yes digraph-based, DP

ILP [C4] 2,3 - Ω(nd) Yes* ILP
BCE3D [C6] 3 3 nO(

√
k) No DP

B&B [C7] ≥ 2 ≥ 3 - Yes Branch-and-Bound

Table 3.4: Exact Algorithms for the HSSP

able online (“Available”). Column d′ indicates for which number of dimensions each
algorithm is the most indicated/faster.

For the 2-dimensional case, the currently fastest algorithms are HypSSP and
k-LSP, the former for small values of k and the latter for k close to n. It is worth
emphasizing the performance of k-LSP (and of B&B) that, unlike other algorithms
whose runtime either monotonically increases or decreases as k approximates n, k-
LSP is progressively slower as k approximates n/2 and then becomes faster as k
approximates n. For the 3-dimensional case, the best alternative is to use the B&B
algorithm as it was shown to be faster than the ILP solver [75, 76] and is available
online. Because there are no experimental results for the BCE3D algorithm, it is
not clear how the algorithm would compare against the B&B algorithm and so it is
also marked in the table as one of the recommended algorithms for d = 3. For d > 3,
the B&B algorithm is likely the best alternative, otherwise it would be necessary
to consider all possible subsets of size n − k (with BF) which can be very time
consuming.

Even though the B&B algorithm is the best available alternative for d ≥ 3, the
runtime required for large n rapidly increases (for example, in Gomes [75, 76], for
d = 3, k = n/2 and n close to 100, the algorithm took 100 seconds for some data
sets). Therefore, B&B is recommended only for specific cases such as small n, or
k close to either 1 or n. For any other cases in d ≥ 3, if an approximation to the
HSSP is enough, a greedy algorithm should be preferable.

On the extension of the d = 2 algorithms to d ≥ 3 In the study of optimal
distributions for the 3-dimensional case, there are up to n points that influence the
optimal placement of a point and its contribution, i.e., there are up to n delimiters of
the contribution of a point, while for the d = 2 case, there are just 2 [2]. Therefore,
the choice of a point may depend on all other points. Consequently, that makes
the extension of dynamic programming algorithms for the 2-dimensional case to the
3-dimensional case more difficult.

3.4.5 Greedy Algorithms for the HSSP
The greedy approximation of HSSP is an alternative to the computationally ex-
pensive exact algorithms, in particular for d > 2. Several greedy approaches were
proposed in the literature. Most of these approaches are generic approaches that
rely on hypervolume-based algorithms and thus, implementing them with different
algorithms lead to different instances of such approaches. This means that the time
complexity and runtime of an instance of a generic greedy approach depends on the
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underlying hypervolume-based algorithm used to implement it, but the approxima-
tion result does not. Four generic greedy approaches and the corresponding fastest
instances are described and discussed next. Additionally, and as in the previous
section, a very recent approximation algorithm to the HSSP is acknowledged at the
end, but is not explained in detail.

Similarly to Section 3.4.4, for the algorithm description, let X ⊂ Rd be a non-
dominated point set such that |X| = n and that an optimal subset, Sopt ⊆ X, of size
k ∈ {1, . . . , n} needs to be selected. Let r ∈ Rd be a reference point such that every
point in X strongly dominates it.

[D1] Decremental Greedy Approach (gHSSD)
Bradstreet et al. [23, 21] proposed the decremental greedy approach (referred to as
“Greedy Front Reduction”) namely gHSSD. In gHSSD, n − k points are discarded
from X one at a time so as to maximize the hypervolume retained at each step. See
Section 4.3 for more details on gHSSD.

The greedy decremental approach requires that, at every iteration, the con-
tribution to X of (some) points still in X be updated. One way to implement
this greedy approach is to use an algorithm to solve the LeastContributor
problem at each iteration without having to keep the contributions of all points
still in X updated (e.g., IWFG [B7]). Alternatively, an algorithm to compute
UpdateAllContributions can be used. If none is available, an algorithm to
compute AllContributions can be used instead.

For d = 2, the best instance of gHSSD is with UHVC2D (see [B8]) to solve
UpdateAllContributions problem in O(logn) time, which leads to an instance
with O((n+(n−k)) logn) time complexity. For d ≥ 3, gHSSD has to be implemented
based on algorithms for the AllContributions problem. For d = 3, the best
instance has O((n − k)n logn) time complexity by using EF algorithm (see [B2])
while for d > 3, the best instance has O(knd/2 logn) time complexity by using BF1
algorithm (see [B1]). All of the above gHSSD instances only require O(n)-space
complexity even when the points in the optimal greedy subset are sought.

Bader and Zitzler [10] proposed a “one shot” version of gHSSD that computes
all contributions and then removes at once the n−k points that contribute the least.
This version leads to poorer approximations and is thus recommended only when
updating contributions is computationally expensive, i.e., for high values of d.

Regarding theoretical results, the currently known results on gHSSD are not
very optimistic. Let Sg be the (decremental) greedy solution given X ⊂ Rd and
k ∈ {1, . . . , |X|}. Bringmann and Friedrich [35] showed that the approximation ratio
to the HSSPComplement problem, i.e., the ratio (H(X)−H(Sg))/(H(X)−H(Sopt),
can be arbitrarily large, even though in many cases it is one or close to one. In
particular, they showed that there is a set of points X ⊂ Rd such that |X| = n ≥ 4
and d ≥ 3 for which this ratio is higher or equal to κ ≥ 1 for k = n − d, . . . , n − 2.
That is the case of the set X = {(1 + ϵ, 1 + ϵ, 1 + ϵ), (1 + ϵ + σ, 1, 1), (1, 1 + ϵ +
σ, 1), (1, 1, 1 + ϵ + σ)}, considering maximization and the reference point (0, 0, 0),
where ϵ = 1

2κd2
and σ = d2ϵ2.

[D2] Incremental Greedy Approach (gHSS)
Bradstreet et al. [23] also proposed the greedy incremental approach (referred to as
“Greedy Front Addition”) which will be called here as gHSS. In gHSS, k points are
selected from X one at a time so as to maximize the hypervolume gained at each
step. See Section 4.4 for more details on gHSS.
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The greedy incremental approach requires that, at every iteration, the contri-
bution to S of (some) points still in X have to be updated, where S is the set of
already selected points and |S| ≤ k. Thus, gHSS can be computed as a sequence
of UpdateAllContributions2 problems. However, due to the absence of ded-
icated algorithms for Problems 3.8 and 3.4, and because algorithms specific for
Problems 3.7 and 3.3 cannot be straightforwardly applied to solve them, algorithms
for the OneContribution problem are currently the best option for computing
gHSS.

For the general d ≥ 2 case, one option is to instantiate gHSS with IHSO (see [B4])
in order to compute the required contributions, one by one. For d = 3, the best
alternative is to use UHV3D (see [B5]) to compute each contribution in linear time.
Such an instance of gHSS would have O(k2n) time complexity by noting that the
contribution of every point p ∈ X to S (i.e., H(p, S)) has to be computed, at most,
k times and, each time, |S| has no more than k points. Similarly, HV4D (see [A6])
could be used for d = 4, leading to O(k3n) time complexity. For d > 4, the best
alternative is to either iterate over the version of WFG (see [A8]) adapted to compute
OneContribution (see “Remarks” in Section 3.4.3), or over Chan’s algorithm
(see [A9]) to compute Hypervolume.

Regarding theoretical results, the fact that the HSSP consists of maximizing a
submodular function subject to a cardinality constraint automatically provides an
approximation guarantee of (1 − 1/e) with the incremental greedy approach (see
Section 3.2). Let Sg be the (incremental) greedy solution, then approximation ratio
to the HSSP problem, i.e., the ratio H(Sg)/H(Sopt) is, at least, (1− 1/e).

[D3] Local Search (LS)
Bradstreet et al. [21, 23] also proposed a Local Search (LS) Approach based on
the premise that for large n and small values of k it may be advantageous to try
out several sets of size k, i.e., perform several cheap computations instead of the
more demanding ones of updating all contributions (e.g., as in gHSSD). In LS, a
k-size subset S of X is initially selected randomly. Then, a small number of points
is (randomly) replaced by others in X \ S and the new subset is accepted if the
hypervolume indicator has improved. This replacing step is repeated until a time
limit is exceeded. Basseur et al. [12] proposed two similar approaches, one called the
first-improvement hill-climbing local search (here referred to as FHLS) and another
called Greedy Sequential Insertion (GSI). As LS, both of them randomly select a
k-sized point set, but the replacement step is more restricted as they only swap a
single point by another. In the case of FHLS, the main difference to LS, is that
FHLS is more exhaustive as it only stops when no swap leads to an improvement.
In the case of GSI, it tests the swapping in of each point left out just once, and the
swap is done in a greedy way by adding a new point to the set and excluding the
least contributor.

In [21], LS was compared against the gHSSD (combined with HSO) and it was
concluded that the former was able to find subsets with equal or better hypervolume
in less time than those found by the latter, when k < n/2. However, later in [23],
with a faster implementation of gHSSD and the new gHSS (both combined with
IHSO), LS performed worse when given the same (and even twice the) time taken by
gHSSD and gHSS. Nevertheless, with the current state-of-the-art where algorithms
such as HV4D and WFG could make LS and gHSS faster and algorithms as EF, BF
and IWFG could make gHSSD faster, it is not clear which greedy approach could be
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now more advantageous, which would provide better solutions in less amount of time.
Moreover, note that the time complexity of LS-based algorithms depend not only on
the hypervolume-based algorithms used to evaluate the k-sized subsets, but also on
the number of times such algorithms are called. For example, in FHLS, Ω(k(n− k))
subsets are evaluated, i.e., the Hypervolume problem is solved Ω(k(n− k)) times.
In the case of GSI, the LeastContributor problem is computed n− k times.

[D4] Global Simple Evolutionary Multiobjective Optimizer (GSEMO)
Friedrich and Neumann [71] proposed GSEMO, a multiobjective evolutionary al-
gorithm that is expected to achieve a (1 − 1/e)-approximation to the HSSP in
O(n2(logn + k)) iterations. In GSEMO, each individual in the population encodes
a subset S of X, which represents a solution to the HSSP. GSEMO considers the
(maximization) of a bi-objective problem, where the first objective is the hypervol-
ume indicator of the encoded set S if |S| ≤ k and is −1 otherwise, while the second
objective is the number of points left out of S, i.e., |X \ S|.

In GSEMO, the population is initialized with a single randomly generated indi-
vidual. In each iteration of GSEMO, an individual from the population, representing
a subset S, is chosen uniformly at random and each point is added/removed to/from
S with probability 1/n. The new individual is inserted in the population only if it
is not weakly dominated and if so, all individuals in the population it dominates
are discarded. Note that the population will keep at most n + 1 solutions as the
second objective can only have values 0, . . . , n and only the solution with highest
hypervolume indicator for each of these values is kept.

In short, in GSEMO, O(n2(logn+k)) different subsets have to be evaluated until
a subset of size k that is an (1−1/e)-approximation is expected to be found. There-
fore, the time complexity of the overall algorithm is the number of iterations/evalu-
ations multiplied by the time complexity needed to compute the hypervolume indi-
cator of each solution and the best one is obtained with Chan’s algorithm (see [A9]).

[D5] Efficient Polynomial-time Approximation Scheme (EPTAS)
Very recently, Bringmann et al. [31] proposed an algorithm based on Dynamic Pro-
gramming to approximate the HSSP for any constant number of dimensions d, that
runs in O(nϵ−d(logn + k + 2O(ϵ−2 log 1/ϵ)d))) and has an approximation guarantee of
O(1− ϵ) to the optimal solution. The algorithm provides a subset S of size at most
k with the approximation guarantee, but does not provide the exact value of H(S)
only an approximation. To compute it exactly, an algorithm as the ones described
in Section 3.4.2 should be used, which would increase the time complexity of O(n2)
of EPTAS when d ≥ 6.

Remarks

The most advantageous combination of each greedy approach with state-of-the-art
hypervolume-based algorithms, for each number of dimensions, are shown in Ta-
ble 3.5. This list includes the combinations that lead to algorithms with the best time
complexity and includes the currently fastest alternatives than can be constructed
from implementations found online. In the case of the time-complexity analysis of
LS, t stands for the number of k-sized subsets evaluated. Hypervolume-based al-
gorithms with available implementations but that are not available in combination
with the greedy approach, and yet should be easily integrated, have Availability
marked as “Yes*”. Note that in the case of d = 2, there are very efficient algorithms
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Algorithm Auxiliar Alg. d d′ Time-complexity Avail.

gHSSD [D1]

UHVC2D [B8] 2 2 O((n− k) logn) Yes*
EF [B2] 3 3 O((n− k)n logn) Yes*

BF1 [B1] ≥ 2 ≥ 4 O((n− k)nd/2 logn) No
IWFG [B7] ≥ 2 ≥ 4 - Yes
WFG [A8] ≥ 2 ≥ 4 O((n− k)nd−1) Yes*

gHSS [D2]

UHV3D [B5] 3 3 O(k2n) Yes*
HV4D [A6] 4 4 O(k3n) Yes*
WFG [A8] ≥ 2 ≥ 5 O(kdn) Yes*
Chan [A9] ≥ 2 ≥ 4 O(nk(d+3)/3polylog k) No

LS [D3]

HV3D [A4] 2, 3 2, 3 O(tk log k)) Yes*
HV4D [A6] 4 4 O(tk2) Yes*
WFG [A8] ≥ 2 ≥ 5 O(tkd−1) Yes*
Chan [A9] ≥ 2 ≥ 4 O(tkd/3polylog k)) No

GSEMO [D4]

HV3D [A4] 2, 3 2, 3 O(n3(logn+ k)) Yes*
HV4D [A6] 4 4 O(n4(logn+ k)) Yes*
WFG [A8] ≥ 2 ≥ 5 - Yes*
Chan [A9] ≥ 2 ≥ 4 O(n(d+6)/3polylog n(logn+ k)) No

EPTAS [D5] ≥ 2 ≥ 2 O(n2) No

Table 3.5: Greedy Algorithms for the HSSP.

to compute HSSP exactly (see Section 3.4.4) and thus, it is questionable whether a
greedy algorithm is useful in this case. Anyway, this case is also considered in this
summary for completeness.

For the greedy decremental approach, UHVC2D and EF are the recommended
algorithms for d = 2 and d = 3, respectively. For the remaining ones, BF could
be used but since it is not available online, the alternative is to use either IWFG
or WFG. Due to the lack of experimental results comparing IWFG and WFG (and
BF1), it is not clear which is the best one in practice. For the remaining greedy
approaches, for d = 3 and d = 4, the recommended algorithms are HV3D and HV4D,
respectively. For d > 4, WFG is the best alternative. Chan’s algorithm has better
time complexity than HV4D and WFG, however due to the absence of comparison
studies and of an implementation it is not clear whether it would perform faster.

Currently, only gHSS and EPTAS provide approximation quality. However, the
best one cannot be decided based on these guarantees as these only provide a lower
bound and do not imply which algorithm performs better in practice. Moreover, a
lack of an approximation guarantee does not mean either that an algorithm cannot
perform better in practice than those that have it.

Finally, when comparing generic greedy algorithms such as gHSSD, gHSS, LS
and GSEMO, it is important to have in mind that the runtime required by them
relies on an algorithm for a hypervolume-based problem and the choice of such an
algorithm does not impact the approximation quality. Thus, it is important to have
studies comparing the quality of the approximation independently of the algorithms’
runtime as better algorithms for hypervolume-based problems may be developed in
the future which would lead to faster instances of such generic greedy algorithms.
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3.5 Data Sets
To test the performance of the algorithms for hypervolume-related problems, data
sets representing different front shapes are typically used. The data sets22 listed in
this section are the ones relevant for this thesis and include some of the most used,
and new ones as well. As these data sets are used in the next two chapters, this
section also includes a description of how they were generated.

Every point p in a n-sized point set X ⊂ [0, 1]d was generated in the following
way, depending on the front that X represents:

Linear:

pi =
|Xi|∑d
j=1 |Xj|

, Xi ∼ Uniform(0, 1), for i = 1, .., d

(Spherical) Convex:

pi = 1− |Xi|/||X||, Xi ∼ Normal(0, 1), for i = 1, .., d

(Spherical) Concave:

pi = |Xi|/||X||, Xi ∼ Normal(0, 1), for i = 1, .., d

Wave-w (d = 2):

p1 = X1 cos
(
−π

4

)
− Y1 sin

(
−π

4

)
, p2 = X1 sin

(
−π

4

)
+ Y1 cos

(
−π

4

)
+ 1,

X1 =
√
2Z1, Y1 = r · cos(2wπZ1)− r,

Z1 ∼ Uniform(0, 1), r =
0.2

w

Degenerate (d = 3):

p1 = cos
(π
2
X
)
cos
(π
4

)
, p2 = cos

(π
2
X
)
sin
(π
4

)
, p3 = sin

(π
2
X
)
,

X ∼ Normal(0, 1)

Cliff (d = 3):

pi = 1− |Xi|/∥X∥, Xi ∼ Normal(0, 1), for i = 1, 2

p3 ∼ Uniform(0, 1)

Cliff (d = 4):

pi = 1− |Xi|/∥X∥, Xi ∼ Normal(0, 1) for i = 1, 2

pj+2 = 1− |Yj|/∥Y ∥, Yj ∼ Normal(0, 1) for j = 1, 2

Hard (d = 4 and n is even):

pj =

(
n+ 2j

2n
,
n− j − 1

n
,
j

n
,
n− 2j − 2

2n

)
for j = 0, . . . ,

n

2
− 1

pj = (plw, p
l
z, p

l
y, p

l
x) for j = n

2
, . . . , n− 1 where l = j − n

2
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Figure 3.17: Data sets: linear (left), concave (middle) and convex (right) in two,
three and four dimensions in first to third row, respectively.

Some data sets are specific to a given number of dimensions d which is indicated
right after the data set name. Figures 3.17 and 3.18 illustrate the data sets. Most
of the data sets are known from the literature, namely, linear, convex and concave
are the most common [54, 129, 61], the degenerate front is the Pareto front for the
DTLZ5 test problem [54], cliff (in d = 3) is a data set where all points are nondom-
inated in their projection onto the (x, y)-plane [61] and the hard data set [102] 23

was constructed as a difficult data set for WFG algorithm (see [A8]). Additionally,
an extended version of cliff to d = 4 is described, and so is a mixed convex/concave
front, so that not all data sets represent either fully convex or fully concave fronts.

Apart from the Hard data set, for every data set and number of dimensions
(2, 3 or 4), 105 points were randomly generated. All smaller sets of points where
sampled from the initial 105 points. For each size n, a set of n points was created

22A script to generate most of the data sets used is available at: https://github.com/
apguerreiro/DataSetGenerator

23The description of the hard data set presented here is a simplified version for d = 4 of the one
proposed by Lacour et al. [102], where the relative position between points is maintained but not
the absolute values of their coordinates. A script to generate the original hard data set is made
available by the author at: https://github.com/renaudlr/moo-nondominated-sets
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Figure 3.18: Data sets: wave-1 and wave-3 in d = 2 (top figures), cliff (middle left)
and degenerate (middle right) in d = 3, and cliff (bottom left) and hard data set
(bottom right) in d = 4.

by randomly selecting n points from the initial set. The Hard data set (for d = 4)
was the only where points were (deterministically) generated as described for each
size n. Moreover, all data sets are normalized to the range [0, 1].

3.6 Concluding Remarks
In this chapter, the properties of the hypervolume indicator were reviewed, namely,
strict monotonicity, scaling independence, optimal µ-distributions, and submodu-
larity. These properties tell us what sets the indicator prefers, i.e., which sets the
indicator is expected to benefit (closer to the Pareto front and well spread, but de-
pending on the slope of the front). The properties of archiving algorithms based on
the hypervolume were also reviewed, which indicate what to expect from the out-
come of Archiving Algorithms that perform environmental selection based on the
indicator. Moreover, given the characteristics of the archivers, some settings can

Chapter 3 77



Portfolio Selection in Evolutionary Algorithms

be recommended, e.g., if the archiver uses an exact algorithm for the HSSP, then
the strategy that should provide better results is the (µ + µ) strategy. All of these
properties reinforce the interest in hypervolume-based selection in EMOAs.

The last sections reviewed the existing algorithms for hypervolume-based prob-
lems relevant to EMOAs. Although there has been a significant improvement in the
computation of the hypervolume indicator over the last years, the same cannot be
said for the remaining problems. The use of a particular algorithm for computing
hypervolume contributions and the HSSP is still limited. In particular, the use of
hypervolume-based selection in EMOAs is still limited in the many-objective case
(d > 4), but even the low dimensional cases would benefit greatly from more efficient
algorithms with fast implementations. Furthermore, without knowing how to solve
the low dimensional cases very efficiently, there is not much hope of having fast
algorithms for many-objective cases.

The improvements on algorithms for the hypervolume indicator may be relevant
and extendable for the computation of contributions due to the close relation be-
tween the two problems. For the HSSP, the most recent algorithms for d = 2, 3 show
that it is possible to compute HSSP exactly without testing every possible combina-
tion of k-sized subsets from a set of n points. However, even for d = 3 the existing
algorithms still do not seem to be efficient/fast enough unless k and/or n are small.
The alternative may be to use very fast but less precise algorithms. Therefore, in-
vesting in greedy algorithms and in understanding their guarantees/properties may
result in interesting alternatives.

Overall, the interest in hypervolume-based EMOAs, the theory supporting the
hypervolume indicator and the difficulties faced in the computation of hypervolume-
related problems were highlighted in this chapter. These aspects motivate the inter-
est of this thesis in the indicator, and justify the investment in faster algorithms for
hypervolume-related problems, which are presented in the next chapter.
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Hypervolume Subset Selection

The theoretical advantage of the hypervolume indicator and of performing subset
selection based on such an indicator in the context of Evolutionary Algorithms were
exposed in the previous Chapter 3, as well as the drawbacks concerning computa-
tional costs. These drawbacks impose a limit to hypervolume-based EMOAs on
the number of dimensions considered, number of generations, the population size
and/or number of offspring. Selection in EMOAs based on the exact HSSP has
been restricted mainly to k = n− 1 and to d = 2, 3. Greedy approaches have been
proposed although not much is known about their approximation guarantees.

This chapter focuses on three main goals. The first goal is to significantly re-
duce the computational burden of hypervolume-based subset selection in EAs for
low dimensional problems. This is achieved with new algorithms to compute/update
hypervolume contributions, which lead to a faster computation of the HSSP given
k = n−1, and to faster (decremental/incremental) greedy algorithms for the HSSP
in d = 3, 4. The efficient update of hypervolume contributions at the core of these
algorithms is also useful for steady-state EMOAs. The second goal is to extend the
knowledge on the theoretical properties of the above greedy algorithms. Finally, the
third goal is to provide insight on the performance of hypervolume-based subset se-
lection, particularly in the context of evolutionary algorithms and to bridge practical
and theoretical results. This is achieved through extensive experimental studies on
the approximation quality of such greedy algorithms for one-time subset selection as
well as on the approximation quality of archiving algorithms (for sequential subset
selection) based on exact and on decremental/incremental greedy algorithms.

This chapter is organized as follows. Section 4.1 describes new algorithms to
compute and update the hypervolume indicator in d = 3, 4, which are then extended
in Section 4.2 to compute hypervolume contributions. Section 4.3 is dedicated to the
decremental greedy approximation of the HSSP where new algorithms are proposed
for d = 3, 4 by making use of the algorithms proposed in the previous section, and an
approximation bound is derived. Section 4.4 is dedicated to the incremental greedy
approximation of the HSSP where new algorithms for d = 2, 3 are proposed, and it is
shown that there is no approximation bound for the HSSPComplement using this
approach. The greedy algorithms are then experimentally evaluated in Section 4.5
for one-time subset selection. In Section 4.6, the theoretical and practical aspects
of using such greedy approaches in archiving algorithms are addressed by providing
experimental results on their performance. Finally, the chapter’s concluding remarks
are drawn in Section 4.7.
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4.1 Computation of the Hypervolume Indicator
In this section, HV3D (see [A4]) is modified in order to allow for incremental and
decremental updates in linear time, resulting in a new algorithm that will be called
HV3D+. This is achieved by preprocessing the input points and setting up a data
structure to support the subsequent hypervolume calculation. Hypervolume updates
are performed by updating the data structure to reflect the insertion or the removal
of a point and either recomputing the new hypervolume as a whole or computing
the corresponding contribution. By iterating over such updates in three dimensions,
a new O(n2)-time algorithm for four dimensions is obtained as an alternative to
HV4D (see [A6]).

The point set {s1, . . . , s14} in the example of Figure 4.1 will be used in this
and the following section, mostly to explain the computation of the contribution of
p = s10 to that set in (x, y, z)-space and in the (x, y)-plane at z = pz. Therefore,
the contribution of p is highlighted and the hypervolume of the points below p in
z-coordinate are shed gray in the projections onto the (x, y)-plane.

(a) (b)

Figure 4.1: An example in three-dimensions where s1z < · · · < s14z and p = s10. All
points are nondominated except s14, which is dominated by s10.

4.1.1 Three Dimensions
Data Structures

Maintaining the set of points visited so far whose projections on the (x, y)-plane are
nondominated and being able to access them in ascending order of the y coordinate
are key aspects of both HV3D and HV3D+. Let S represent a data structure for
that purpose, which can be either a balanced binary tree, or a linked list. Note
that, since S∗ contains nondominated points only, ascending order of coordinate y
is equivalent to descending order of coordinate x.

Consider the following operations on S, as well as the corresponding operations
obtained by switching the roles of the x and y coordinates. It is assumed that s ∈ S,
p ∈ R3, and q <L p for all q ∈ S, where q <L p denotes that q is lexicographic less
than p in dimensions z, y, x. Thus, qz ≤ pz.
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Algorithm 4.1 genericSweepy(p,S, s)
Require: s = outerDelimiterx(p,S)
1: e← nexty(s, S)
2: procedureA(S, p, s, e)
3: while px ≤ ex do
4: q ← e
5: e← nexty(e)
6: procedureB(S, p, q, e)
7: procedureC(S, p, q, e)
8: return info

heady(S) Return the point q ∈ S with the smallest qy.

nexty(s, S) Return q ∈ S with the smallest qy > sy.

remove(s, S) Remove s from S.

outerDelimitery(p, S) Return the point q ∈ S with the smallest qy > py such that
qx < px.

removeDominatedy(p, S, s) If s = outerDelimiterx(p, S), remove all points q ∈ S
such that p∗ ≤ q∗ from S, and return them sorted in ascending order of qy.

computeAreay(p, S, s) If s = outerDelimiterx(p, S), compute and return the area of
the region exclusively dominated by p∗ with respect to S∗.

addy(p, S, s) Insert p into S if sy < py < nexty(s, S) or py < heady(S). In the latter
case, s should be NULL.

Operation outerDelimiter requires time in O(logn) if S is a binary tree and in
O(n) if it is a linked list. Operations head, next, add and remove take O(1) time on
a linked list (because s ∈ S) and, in general, O(logn) time on a balanced binary
tree. On a tree, head can also be implemented in constant time just by caching a
pointer to the head node.

Operations removeDominated and computeArea both follow the template pre-
sented in Algorithm 4.1. Points q ∈ S whose projections are dominated by p∗ (inner
delimiters) are visited in ascending order of qy by starting at s = outerDelimiterx(p, S),
which must be passed as an input argument, and stopping at the first subsequent
point e such that p∗ ̸≤ e∗. Routines procedureA, procedureB and procedureC, re-
spectively, represent the pre-processing, processing and post-processing operations
associated with the sequence of points visited. In operation removeDominated, an
empty point list is initialized in procedureA. In procedureB, the visited points q
are added to that list, and are removed from S by invoking remove(q, S), whereas
procedureC does nothing. The list is returned as info. In operation computeArea,
the area of the rectangle [(px, py), (sx, ey)] is computed, and is stored in info in
procedureA. Similarly, the area of [(px, qy), (qx, ey)] is computed and added to info
in procedureB. As before, procedureC does nothing, but this routine will become
important later, in Section 4.2.

Returning to the example of Figure 4.2(a) given p, S = {s5, . . . , s9}, and s =
s9, the delimiters of p∗ are visited starting at s9 and stopping at s5. Operation
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(a) (b)

Figure 4.2: Computing the contribution of p∗ to T∗.

removeDominated removes points s8, s7 and s6 from S, and returns them in this
order in a list, whereas computeArea returns the area exclusively dominated by p∗,
and leaves S unmodified. To compute this area, computeArea divides it in axis-
parallel boxes as depicted in the example of Figure 4.2(b). procedureA computes the
area of box b1, while boxes b2, b3 and b4 are computed in this order, each one in a
call to procedureB. Note that this is an alternative to the method used in HV3D
(see [A4]) to compute the contribution of p∗. In this case it is not necessary to
remove dominated points beforehand and this will be an important aspect further
ahead to the computation and update of contributions (see Section 4.2). Since the
processing of each point in removeDominated and computeArea is dominated by the
complexity of add, next and remove, the resulting time complexity upper bounds are
O(t) on lists and O(t log |S|) on binary trees, where t denotes the number of inner
delimiters of p∗.

Preprocessing

Algorithm 4.2 reproduces the sequence of binary-tree operations performed in HV3D.
Input points are stored and visited in ascending lexicographic order of coordinates
z, y and x to ensure data-structure consistency and well-defined operations in the
presence of repeated z coordinates. For each p ∈ Q, its rightmost outer delimiter,
s, is looked up in binary tree T (line 4). Then, the points in T whose projections
are dominated by p∗ are removed (line 5), and p is added to T (line 8). Pointers to
the outer delimiters of p∗ in T∗ are saved as attributes of p (p.cx and p.cy in lines 6
and 7) for future use. Sentinel nodes in T guarantee that such outer delimiters
always exist.

As in HV3D, each input point is visited at most twice, once when it is added
to T, and again if it has to be removed from T, at a cost of O(logn) time in both
cases. Determining and saving the outer delimiters of each point (lines 4, 6 and 7)
also takes O(logn) time per input point. Therefore, this preprocessing is performed
in O(n logn) time.

Note that, although the input set X is required to be a nondominated point set,
dominated points in Q can be easily detected and discarded at no extra cost by
checking immediately after line 4 whether nexty(s, S) dominates p, and skipping to
the next input point if it does.
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Algorithm 4.2 HV3D+ – Preprocessing
Require: X ⊂ R3 // a set of n nondominated points
Require: r ∈ R3 // the reference point
1: Q← X // linked list sorted in ascending lexicographic order of coordinates z, y,

x
2: T← {(rx,−∞,−∞), (−∞, ry,−∞)} // binary tree sorted in ascending order of

dimension y
3: for each p ∈ Q do
4: s← outerDelimiterx(p,T)
5: removeDominatedy(p,T, s)
6: p.cx← s
7: p.cy ← nexty(s,T) // same as outerDelimitery(p,T)
8: addy(p,T, s)
9: return Q

Hypervolume Computation

Algorithm 4.3 can be seen as a reimplementation of HV3D using a linked list, L,
instead of a binary tree, T, and follows the same structure as Algorithm 4.2. How-
ever, the outer delimiters of each input point are now required to be known in
advance as a result of preprocessing. This allows all next, add and remove operations
to be implemented in constant time, as explained earlier in the “Data Structures”
subsection.

The hypervolume indicator is computed in a similar way to HV3D. Variables
area and vol are used to store, respectively, the area dominated by the points in
L∗ and the volume of the region dominated by the points visited so far up to the
current point, p. The volume is accumulated in vol at the beginning of the loop by
multiplying the current (base) area by the height of the current slice (line 4). The
area dominated by the points in L∗ is updated by adding the contribution H(p∗,L∗)
to the current area (line 6). Finally, the total volume is updated with the volume
of the last slice (line 10), and returned.

Since all inner delimiters visited in computeArea are immediately removed in
removeDominated, and the complexity of both of these functions is now linear in the
number of such delimiters, the complexity of Algorithm 4.3 amortizes to O(n).

Data Structure Updates

Adding a new point u to the data structure maintained by HV3D+ requires setting
attributes u.cx and u.cy, updating the corresponding attributes of the remaining
points in the lexicographically sorted list Q, and inserting u into Q. These operations
are performed in linear time in a single sweep of Q, as follows (cy attributes are
updated in a similar way, but with the roles of the x and y coordinates switched):

• Set u.cx to the point q ∈ Q with the smallest qx > ux such that qy < uy and
q <L u. If such a point is not unique, the alternative with the smallest qy is
preferred.

• For q ∈ Q, set q.cx to u iff uy < qy and u <L q, and either qx < ux < (q.cx)x
or ux = (q.cx)x and uy ≤ (q.cx)y.
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Algorithm 4.3 HV3D+ – Hypervolume computation
Require: X ⊂ R3 // a set of n nondominated points
Require: r ∈ R3 // the reference point
Require: Q // a linked list containing X sorted in ascending order of dimension z with

p.cx and p.cy set for all p ∈ Q
1: L ← {(rx,−∞,−∞), (−∞, ry,−∞)} // linked list sorted in ascending order of

dimension y
2: vol, area, z ← 0
3: for each p ∈ Q do
4: vol ← vol + area · (pz − z)
5: s← p.cx
6: area← area+ computeAreay(p,L, s)
7: removeDominatedy(p,L, s)
8: addy(p,L, s)
9: z ← pz

10: vol ← vol + area · (rz − z)
11: return vol // H(X)

• Insert u into Q immediately before the point q ∈ Q with the lexicographically
smallest q such that u <L q.

As an example, let s10 in Figure 4.1 (b) be the new point u to be inserted, and Q
contain all of the remaining points. Then, s10.cx is set to s9 and s10.cy is set to s5.
Also, s12.cy, which is s7 before s10 is inserted, is set to s10.

Although one may require that Q ∪ {u} be a nondominated point set, handling
dominated points arising from the insertion of u is simple. If u is dominated by
points in Q, which can be checked in constant time per point while sweeping Q,
then u is simply discarded. If some points in Q are dominated by u, they will not
be referenced as delimiters (cx or cy) of any nondominated point in Q∪{u}. This is
because any references to points dominated by u will either be made by other points
dominated by u or have been updated to refer to u itself. Such dominated points
can either be simply removed from Q or be marked as such and remain in Q as it
will be the case in Section 4.2.

Removing a point u ∈ Q also requires updating the cx and cy attributes of the
remaining points, as follows:

• For every p ∈ Q \ {u} such that p.cx = u, set p.cx to the point q ∈ Q \ {u}
with the smallest qx > px such that qy < py and q <L p (and analogously
for p.cy). If such a point is not unique, the alternative with the smallest qy
(respectively, qx) is preferred.

Assuming that Q does not contain any dominated points, this is also achieved
in linear time by performing essentially the same sequence of operations in Algo-
rithm 4.2, but using a linked list, L, instead of binary tree, T, and replacing the call
to outerDelimiterx by p.cx. In addition, if p.cx = u, variable s should be set to p.cy
instead, and the roles of dimensions x and y should be reversed in lines 5 to 8, for
that iteration.

In the example of Figure 4.1 (b), let s10 be the point u to be removed from
Q, and p = s12 be the current point. Hence, s12.cx = s9, s12.cy = s10, and L =
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{s11, s5, s6, s7, s8, s9}. Then, the points in L whose projections p∗ dominates (s8) are
removed from L, and s12.cy is set to nexty(s12.cx,L) = s7.

Hypervolume Updates

Having established how to update the HV3D+ data structure in linear time, it is
clear that UpdateHypervolume can also be computed in linear time by using
Algorithm 4.3 to recompute Hypervolume after updating the data structure. Al-
ternatively, the value of the hypervolume indicator can be updated with the contri-
bution of the point u to be added to, or removed from, Q. Although the contribution
of u can be computed while the data structure is being updated in both cases, for
simplicity only the case where the point has not yet been added to or has already
been removed from Q is explained here.

The OneContribution computation begins with the construction of a list con-
taining all points in {p ∈ Q | pz ≤ uz} whose projections are inner or outer delimiters
of the contribution of u∗ to the projection of that set. This list, L, can be set up in
linear time as in Algorithm 4.3, by sweeping Q while pz ≤ uz. Having constructed L,
the contribution of u∗ to L∗ is computed and stored in a variable, area, and points
p ∈ Q such that pz > uz are visited in ascending order of pz until a point such that
p∗ ≤ u∗ is found.

For each visited point, p, the contribution of u is updated by accumulating the
product of area by the height of the current slice in another variable, vol, and area
is updated by subtracting the joint contribution H(p∗, u∗,L∗) from it. H(p∗, u∗,L∗)
is computed by calling either computeAreay(p ∨ u,L, p.cx) or computeAreax(p ∨
u,L, p.cy), depending on the relative position of p with respect to u. Then, all
points that are no longer outer or inner delimiters of the contribution of u∗ on the
plane z = pz are removed from L, and p is added to L if it made area decrease. When
u does not dominate p, computing the joint contribution of p∗ and u∗ and removing
the required points from L always entails starting at one end of L, which requires
linear time in the number of points removed. On the other hand, when u ≤ p, such
a linear time operation is made possible by the availability of attributes p.cx and
p.cy, as before. Therefore, the time complexity of the whole OneContribution
computation amortizes to O(n).

The procedures used to compute a three-dimensional contribution in HV3D+ and
in HV4D are rather alike, and although the latter is tightly integrated in the main
algorithm, it also considers both the incremental and the decremental scenarios,
and could easily be made available standalone. The main differences lie in the
data structures used (a list of points versus a list of boxes) and, more crucially,
in how dominated points are handled. In HV4D, computing the three-dimensional
contribution of a point u to the current set of points requires removing any points
dominated by u from the current set first and computing their contributions, as
well. Although this is done in linear time per point when there are no dominated
points, and amortizes to linear time per point over a complete four-dimensional
Hypervolume computation, the complexity of computing a single contribution in
HV4D is not linear in general, whereas it is always linear in HV3D+.

Another advantage of HV3D+ is that it can be directly used to recompute the
hypervolume indicator with Algorithm 4.3 after moving the reference point, as long
as it remains strongly dominated by every point stored in the data structure.
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4.1.2 Four Dimensions
The hypervolume indicator in four dimensions can be computed in O(n2) time by
performing a sequence of HV3D+ updates, leading to a new algorithm, HV4D+. As
in HV4D, points in X ⊂ R4 are visited in ascending w-coordinate order, dividing the
dominated region into n slices. For each visited point, p, the volume of the three-
dimensional base of the current slice is computed by adding the contribution of p∗
to the volume of the previous slice. Because p∗ may dominate points in X∗ visited
previously, handling dominated points is a must. Not having to remove points whose
projections are dominated is an important feature in extending the approach to the
computation of all contributions in four dimensions (see Section 4.2.2).

4.1.3 Experimental Results
To evaluate the potential impact of the proposed algorithms in practice, they were
evaluated experimentally and compared to their most direct competitors in the
literature, considering a number of relevant scenarios and concrete data sets.

Experiment Setup

The proposed algorithms were implemented in C. All codes used in the experiments
1 were compiled with gcc 5.3.1 and flags -march=corei7 -O3. Tests were run on an
Intel Core i7-3612QM 2.10GHz CPU with 6MB cache and 8GB of RAM.

To evaluate the performance of the algorithms, cliff and (concave) spherical
data sets (see Section 3.5) containing 105 points each were generated at random.
All smaller sets of points were generated by sampling the initial sets of 105 points
at random. Additionally, hard data sets for d = 4 (see Section 3.5) were generated
for every set size n ≤ 105 considered. The reference point used was (1, . . . , 1).

The plots presented next show runtimes for growing numbers of points on the
above types of data sets. Because many algorithms for the hypervolume indicator
are sensitive to objective reordering, each data point and the corresponding error
bar on a plot represent the average, minimum and maximum runtimes over all
permutations of the objectives for a single set instance (6 permutations for d = 3,
and 24 for d = 4). Due to the computational effort required, smaller sets of up to
104 points were considered in some experiments. In general, greater variability was
observed on cliff data sets than on spherical data sets.

Runtimes

Figure 4.3 (a) shows that HV3D+ is generally faster than the original HV3D at
computing Hypervolume in three dimensions, despite sweeping input sets twice.
The runtime of HBDA-NI appears to grow quadratically, as expected.

Results for the case of an initially empty unbounded archive whose hypervolume
indicator value was updated each time a single point from a given test set was added
to it are presented in Figure 4.3 (b). Since all test sets contained only nondominated
points, the size of the archive increased with every new point. Concerning HV3D, the
hypervolume indicator was computed n times for growing archive size k = 1, . . . , n,

1The source code for the proposed HV3D+ and HV4D+ algorithms is available within the HVC
package at https://github.com/apguerreiro/HVC.
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(a) Hypervolume computation for d = 3

(b) Sequential incremental UpdateHypervolume for d = 3

(c) Hypervolume computation for d = 4

Figure 4.3: Runtime performance of algorithms on different hypervolume indicator
problems and data sets: cliff (left) and spherical (right).

Figure 4.4: Runtime performance of algorithms for Hypervolume computation for
d = 4 on the hard data set.
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resulting in an O(n2 logn)-time algorithm for this scenario. This is compared to
HV3D+ linear-time updates, where recomputing the hypervolume indicator for each
new point is denoted by HV3D+-R, and computing and adding the contribution of
the new point to the current value of the indicator is denoted by HV3D+-U. Both
update approaches take O(n2) time on the whole problem. It can be seen that
both HV3D+-R and HV3D+-U clearly outperform HV3D, with speed-ups of up to
23 and 47 times on cliff data sets, and up to 25 and 68 times on spherical data sets,
respectively. HV3D+-U was up to 3 times faster than HV3D+-R. HBDA-I is slightly
faster than HV3D+-R, but is still outperformed by HV3D+-U, which was up to twice
as fast as HBDA-I.

Finally, Figures 4.3 (c) and 4.4 show that the default HV4D+ (based on single
contribution updates) and a variant HV4D+-R based on full recalculation updates
are competitive with HV4D for Hypervolume computation in four dimensions,
with HV4D+ generally matching or exceeding the performance of HV4D. Although
the quadratic time complexity of HBDA-NI for d = 4 can be observed on the hard
data set (Figure 4.4, left), it exhibited sub-quadratic behavior on the cliff data set,
where it clearly outperformed the other algorithms. Nevertheless, it was up to 3
times slower than HV4D+ on the other data sets.

Finally, the claimed [50] performance improvement of HV4DX (see [A12]) over
the O(n2)-time HV4D algorithm2 could not be observed. Not only was it up to twice
as slow on average as the original HV4D implementation on the cliff and spherical
data sets (Figure 4.3 (c)), it also exhibited cubic runtime growth on the hard data
set (Figure 4.4, right).
4.1.4 Practical Implications
The HV3D+ algorithm matches the current upper bound of O(n) on the time com-
plexity for computing the UpdateHypervolume problem in the d = 3 case if
S∪{p} is a nondominated point set (a time complexity obtained with UHV3D [B5]).
On the other hand, if S contains points dominated by p (in the incremental case),
then HV3D+ improves the current upper bound from O(n logn) to O(n). More-
over, HV3D+ also improves the time-complexity of the problem of recomputing the
hypervolume indicator after changing the reference point from O(n logn) to O(n).
Practical implications of these algorithms include at least the following:

• Potentially fast/faster implementation of benchmarking tools such as BBOB [42],
with efficient on-the-fly updates.

• Faster (re)computation of the hypervolume indicator after changing the refer-
ence point.

• Extendable to the analogous all-contributions cases (see next Section).

In addition, the proposed data structures, preprocessing and computation techniques
are likely to be useful in the development of more efficient algorithms for other related
problems, namely for the computation of local upper bounds (see Section 3.4.1),
and for the computation and update of the Expected Hypervolume Improvement
(EHVI) [132].

2Version 1.2 [80] was used.
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4.2 Computation of All Hypervolume Contribu-
tions

HV3D+ lends itself to further extension to the computation and update of all hyper-
volume contributions. A new AllContributions algorithm for three dimensions,
named HVC3D, supports contribution updates in linear time, and is proposed next.
Two update scenarios are considered:

Nondominated sets Any dominated points are ignored and/or removed as de-
scribed in Subsection 4.1.1 (in “Preprocessing” and “Data Structure Updates”)
and do not affect the value of the individual contributions of nondominated
points. This is sufficient to implement SMS-EMOA, for example.

Dominated points A new point may dominate existing ones (incremental sce-
nario), in which case its individual contribution is also delimited by the points
it dominates. This allows a new O(n2) algorithm to be constructed for the
AllContributions problem in four dimensions.

More general scenarios involving dominated points can in principle be addressed
using similar techniques, but their relevance is not clear at present.

4.2.1 Three Dimensions
Data Structures

To support the computation of individual contributions, the HV3D+ data structure
is extended with additional point attributes. For each point p ∈ Q, the area of
the current base of its contribution is stored in p.a, the current volume of this
contribution is stored in p.v, and the z-coordinate value up to which the volume p.v
has been computed is stored in p.z. Moreover, to support the handling of dominated
points, the number of points that dominate p and a pointer to one of those points are
stored in p.nd and p.dom, respectively. Since the initial set of points, X, is required
to contain only nondominated points, p.nd is initialized to zero and p.dom is set
to NULL. Whenever a point that dominates p is added to Q, p.nd is incremented,
and p.dom is set to that point. As discussed later in Subsection 4.1.4, points which
become dominated by more than one point will be discarded.

In HVC3D, the set of points visited so far whose projections on the (x, y)-plane
are nondominated is maintained in a doubly-linked list, L, sorted in ascending y-
coordinate order (and, therefore, also in descending order of the x coordinate). This
list plays exactly the same role as L in HV3D+. Moreover, each point q ∈ L maintains
in q.L a list of the points visited so far whose projections are outer or inner delimiters
of the current exclusive contribution of q∗. In the example of Figure 4.5 (a), before
p is processed, L contains s5, . . . , s9, i.e., the points delimiting the base (bottom
figure) of the last slice processed (top figure). The current exclusive contribution of
each of these points in L to that slice are depicted as transparent volumes in the top
figure, and their bases are depicted in medium gray in the bottom figure, facilitating
the identification of each one’s outer and inner delimiters. In particular, list s5.L
contains points s6, s4, s3, s1, and a sentinel, in this order. These are the delimiters
of the base of the contribution of s5 in that slice as can be observed in Figure 4.5 (a).
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s9z ≤ z ≤ pz pz ≤ z < s11z pz ≤ z < s11z

(a) Before adding p (b) Reduce areas dominated
by p∗

(c) After adding p

Figure 4.5: Contribution of each point, before adding a point p, when the contribu-
tions are decreased, and after adding p.

Finally, a new operation based on Algorithm 4.1 is defined:

updateVolumey(p, S, s) If s = outerDelimiterx(p, S), for each point q ∈ S whose
projection q∗ is an outer or inner delimiter of the contribution of p∗ to S∗, add
the volume of the current contribution slice, q.a · (pz − q.z), to q.v, and set
q.z = pz.

In this case, procedureA, procedureB and procedureC in Algorithm 4.1 all perform
the same operations, but on different points, respectively s = outerDelimiterx(p, S),
all q ∈ S such that p∗ ≤ q∗, and e = outerDelimitery(p, S). Just like the other
operations based on Algorithm 4.1, updateVolume requires O(t) time, where t is the
number of points dominated by p∗ in S∗. In the example of Figure 4.5 (a), given p,
L = {s5, . . . , s9} and s = s9, updateVolume(p,L, s) updates the values of attributes
v and z of points s5, . . . , s9.

Computing All Contributions

As an extension of HV3D+ to the computation of AllContributions, HVC3D
consists of an O(n logn)-time preprocessing step, identical to Algorithm 4.2, followed
by an actual computation step, which is detailed in Algorithm 4.4. Points p ∈ Q
are visited in ascending z-coordinate order, as in Algorithm 4.3. Considering that
all points are nondominated (first scenario), each point is processed in lines 6 to 21
of Algorithm 4.4.

The processing of nondominated points is divided into three main parts. In the
first part (lines 6 to 11), the volumes associated with the outer and inner delimiters
of p∗ in L∗ are updated, and the base area of the contribution of p, depicted in
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Algorithm 4.4 HVC3D – AllContributions Computation
Require: X ⊂ R3 // a set of n points
Require: r ∈ R3 // the reference point
Require: Q // a linked list sorted in ascending order of dimension z containing X ∪
{(−REALMAX,−REALMAX, rz)} with p.cx, p.cy, p.nd and p.dom set for all p ∈ Q

1: L ← {(rx,−∞,−∞), (−∞, ry,−∞)} // linked list sorted in ascending order of
dimension y

2: for each p ∈ Q do
3: p.v ← 0
4: p.z ← pz
5: if p.nd = 0 then
6: updateVolumey(p,L, p.cx)
7: p.a← computeAreay(p,L, p.cx)
8: p.L← removeDominatedy(p,L, p.cx)
9: addy(p.cx, p.L,NULL)
10: addx(p.cy, p.L,NULL)
11: addy(p,L, p.cx)
12: q ← p.cy
13: q.a← q.a− computeAreay(p ∨ q, q.L, heady(q.L))
14: removeDominatedy(p ∨ q, q.L, heady(q.L))
15: remove(heady(q.L), q.L)
16: addy(p, q.L,NULL)
17: q ← p.cx
18: q.a← q.a− computeAreax(p ∨ q, q.L, headx(q.L))
19: removeDominatedx(p ∨ q, q.L, headx(q.L))
20: remove(headx(q.L), q.L)
21: addx(p, q.L,NULL)
22: if p.nd = 1 then
23: q ← p.dom
24: q.v ← q.v + q.a · (pz − q.z)
25: q.z ← pz
26: q.a← q.a− computeAreay(p, q.L, p.cx)
27: removeDominatedy(p, q.L, p.cx)
28: addy(p, q.L, p.cx)
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light gray in Figure 4.5 (a), is computed. Then, the points whose projections are
dominated by p∗ (s8, s7, s6) are moved from L to p.L, as their contribution is zero
above the plane z = pz, and copies of p.cx and p.cy (s9 and s5), corresponding to
the outer delimiters of p∗, are added at each end of p.L, so that the contribution of
p can be updated efficiently in subsequent iterations. Finally, p is inserted into L.

In the second part (lines 12 to 16), the base area of the contribution of point
q = p.cy is updated, as p∗ dominates part of the region dominated by q∗. To that
end, the joint contribution of q∗ and p∗ to q.L∗ is subtracted from q.a, the points
whose projections are dominated by p∗ are removed from q.L, and the head of this
list is replaced by p. Now referring to Figure 4.5 (b), q = s5 and q.L contains
{s6, s4, s3, s1} plus the sentinel. The joint contribution of p and q to q.L in the next
slice (between pz and s11z ) is depicted as the dark region dominated by both points
and whose base is depicted in the bottom figure. Its computation (line 13) involves
visiting the points from s6 to s1. Then, s4 and s3 are discarded (line 14) and s6

is replaced by p at the head of q.L (lines 15 and 16). At this point, q.L contains
the outer and inner delimiters of the exclusive contribution of q∗ at z = pz, namely
points p, s1 and the sentinel, as Figure 4.5 (c) illustrates.

The base area of the contribution of p.cx is updated analogously in the third part
(lines 17 to 21). The last point in Q to be visited is (−REALMAX,−REALMAX, rz),
the sentinel, which forces the computation of the contributions of all input points to
complete and the results for all points p ∈ X ⊂ Q to be made available in p.v at the
end of the run. Here, −REALMAX denotes a finite value less than any coordinate
of any input point.

Note that the contribution of a point is updated only when its contribution to
the (x, y)-plane decreases, which happens only if it is an outer or inner delimiter of
the current point p. In the volume update in line 6 when, for example, the outer
delimiter q = s5 of p is updated, q.a stores the area of the region in medium gray
dominated by s5 in the bottom Figure 4.5 (a) and q.z contains the z-coordinate value
at which p.a was last updated (and up to which q.v is also updated), in this case,
q.z = s6z. Thus, the value q.a · (pz − q.z) added to q.v in updateVolume corresponds
to the contribution of s5 to all slices between s6z and s10z , including the contribution
depicted at the top of Figure 4.5 (a). The value q.a is updated in line 13 to correspond
to the base of its contribution in the next slice (see Figure 4.5(c)) and q.z is set to
pz. As the outer delimiters of p have contribution above pz, they are kept in L while
its inner delimiters are removed from L as their contributions are fully computed
at z = pz. All of these inner and outer delimiters are still needed to compute the
contribution of p above z = pz and so they are kept in p.L.

In the second scenario, Q may contain dominated points due to incremental
updates to the data structure. Such updates are performed exactly as described in
Subsection 4.1 with respect to point attributes cx and cy, but any points p ∈ Q
which are dominated by a new point u to be inserted are also marked as such by
incrementing p.nd and setting p.dom = u. Note that, although the hypervolume
contribution of a dominated point is zero by definition, if it is dominated by a single
point, it also decreases the contribution of that point, which is why such dominated
points must remain in Q. On the other hand, points dominated by two or more
points do not affect the exclusive contribution of any of those points, and can be
discarded. The insertion of new dominated points is not considered in this scenario.

Points p ∈ Q which are dominated by a single point (p.nd = 1) are processed
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s13z ≤ z ≤ s14z s14z ≤ z ≤ rz s14z ≤ z ≤ rz

(a) Before adding s14z (b) Reduce areas dominated
by s14∗z

(c) After adding s14z

Figure 4.6: Contribution of each point, before adding the dominated point s14, when
the contribution of s10 is decreased, and after adding s14.

in lines 23 to 28. After updating the volume q.v associated with q = p.dom, the
contribution of p∗ to q.L∗ is computed and subtracted from q.a. Then, any points
in q.L whose projections are simultaneously dominated by p∗ and q∗ are discarded,
and p is inserted into q.L. In the example of Figure 4.6,3 p = s14 is dominated
(only) by s10 and the contribution that is not retained by s10 because of s14 is
represented in dark gray in Figure 4.6(b). Therefore, p.nd = 1 and q = p.dom = s10.
Also, p.cx = s12, p.cy = s6 and q.L = {s12, s7, s6, s5}. The contribution of p∗ to q.L∗

(line 26) is computed by visiting points s12, s7 and s6. Then, s7 is discarded (line 27)
and p is added to q.L (line 28). At the end of the iteration, s10.L = {s12, s14, s6, s5}
contains the points whose projections are delimiters of s10∗ at z = s14z .

In Algorithm 4.4, each point in p ∈ Q is added to L (line 11) once. Moreover,
each p other than the sentinel is added at most once to a list associated with a point
in L as an inner delimiter (lines 8 or 28). Although the same point may be an outer
delimiter (cx or cy) of several other points in Q, at most four outer delimiters are
added to lists associated with points in L in each iteration (p.cx and p.cy are added
to p.L in lines 9 and 10, and p is added to two lists in lines 16 and 21). Therefore, at
most (n+1)+n+4(n+1) = 6n+5 points are added to lists, which is also an upper
bound on the number of points removed. In each iteration of the algorithm, points
other than p are visited only to update the corresponding volumes or to update some
area. This involves O(1)-time operations on each of those points through calls to
updateVolume and computeArea. Every point visited in those calls is either discarded
right after (in removeDominated) or is an outer delimiter, and the number of outer
delimiters visited in each call is a constant. Consequently, the time-complexity of

3Note that point s9 was missing in Figure 4(d) in [83].
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Algorithm 4.4 amortizes to O(n).

Updating All Contributions

By updating the HVC3D data structure and recomputing all contributions with
Algorithm 4.4, the UpdateAllContributions problem can now be solved in O(n)
time. Moreover, analogously to HV3D+, HVC3D can be directly used to update all
contributions in linear time after the reference point is changed. Although HVC3D
extends the HV3D+ data structure with additional point attributes, attributes cx
and cy are still updated in linear time exactly as described in Subsection 4.1. When
new points may dominate existing ones, attributes nd and dom also need to be
updated as explained in the previous subsection, which is also carried out in linear
time. All other point attributes are for Algorithm 4.4’s own use, and do not need
to be updated on single point insertion or removal.

A potentially faster alternative is suggested by the very definition of Problem 3.7
(UpdateAllContributions). It consists in computing the contribution of the
point u to be added to Q as described in Subsection 4.1 (which is not needed when
removing a point), as well as the joint contributions of u and p to Q, for each strong
delimiter p ∈ Q of the contribution of u, thus avoiding unnecessary computations.
Going back to the example depicted in Figure 4.1 (b), if the contributions of the
points in X = {s1, . . . , s9, s11, . . . , s14} are known and u = p is the new point to be
added to X, the contributions of s1, . . . , s4, s11 and s13 remain unchanged, and there
is no need to recompute them.

Since it may be difficult to know in advance which delimiters are strong and
whether an outer delimiter is a proper delimiter or not, let D1 denote the set of
all inner and outer delimiters of u in Q. Points in D1 are used to compute the
contribution of u, but they are also the points whose exclusive contribution may
be decreased by the addition of u to Q. Therefore, in order to update their joint
contribution with u, their own inner and outer delimiters must be considered. The
set of points that are inner and outer delimiters of the joint contribution between
u and individual points in D1, but not of the contribution of u, will be denoted
by D2 ⊆ Q \ D1. The remaining points in X \ (D1 ∪ D2) can be ignored. In
Figures 4.1(a) and 4.1(b), D1 = {s5, . . . , s9, s12, s14}, D2 = {s1, s3, s4, s11, s13}, and
s2 can be ignored. Note that points s1, s3, s4 and s11 are in D2 because they delimit
the contribution of (u ∨ s5), but not that of u.

Recall the computation of the contribution of u to Q as described in Subsec-
tion 4.1. After saving the current contributions and setting p.v = 0 for all p ∈ Q,
the points in {p ∈ Q | pz ≤ uz} whose projections are inner or outer delimiters of
the contribution of u∗ to the projection of that set are added to list L ⊆ D1. Then,
for each q ∈ L, a list q.L is constructed containing the outer and inner delimiters of
the joint contribution between u∗ and q∗ at z = uz. All of these lists can be set up
in linear time as in Algorithm 4.4, by sweeping Q while pz ≤ uz. In Figure 4.5 (a),
considering u = p, L = {s5, . . . , s9}. Then, for each point q∗ ∈ L∗, the area of the
region previously dominated exclusively by q∗ that is also dominated by u∗ at z = uz

is computed in linear time, and stored in q.a. These regions are depicted in dark
gray in Figure 4.5 (b).

After these initialization steps, the points p ∈ Q such that pz > uz are visited
in ascending order of pz. These points are skipped unless they decrease the area
associated with u or with any of the points in L. The joint contribution between p∗
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and u∗ is computed and stored in p.a. Moreover, for each point q ∈ L, the associated
volume is updated as usual, and the area of the region jointly dominated by q∗, u∗

and p∗ is computed and subtracted from q.a.
The algorithm ends once all points in Q have been visited or after two points

dominating u∗ are encountered, as from that point onwards the joint contribution of
u and any other point must be zero. Finally, if u is to be added to Q, the computed
joint contributions are subtracted from the corresponding original values, and the
HVC3D data structure is updated. If u was removed from Q, then the data structure
has already been updated, and it suffices to add the computed joint contributions
to their corresponding previous values.

4.2.2 Four Dimensions
Similarly to HV4D+, a new algorithm named HVC4D for the AllContributions
problem in four dimensions is obtained by performing a sequence of HVC3D updates,
as follows. Given a nondominated point set X ⊂ R4, points in X∪{(−∞,−∞,−∞, rw)}
are sorted in ascending w-coordinate order, stored in a linked list Q, and visited in
that order. For each visited point, p, the contribution of p∗ to the projection, S∗,
of the (initially empty) set, S, of points visited before p is computed, and the con-
tributions of its inner and outer delimiters in S∗ ∪ {p∗} are updated as described
in Subsection 4.1.4. Then, p is added to S, and the contribution of each point in
S∗ is multiplied by the difference between the w-coordinate of the next point in Q
and pw to obtain the hypervolume of the current four-dimensional slice of each indi-
vidual contribution. Slice hypervolumes are accumulated separately for each point
to obtain the corresponding contributions in four dimensions. Since the algorithm
performs n linear-time HVC3D updates, the time complexity of this algorithm is
O(n2).

Handling points which are dominated in three dimensions is required to correctly
compute AllContributions in four dimensions because a point q∗ ∈ S∗ which
is dominated by a single point p∗ ∈ S∗ decreases the contribution of p∗. Since
dominated points are not considered in the EF algorithm, iterating over EF without
modification to compute all contributions in four dimensions would not work.

4.2.3 Experimental Results
As in Section 4.1.3, the proposed algorithms4 were compared to the most direct
competitors with available implementations, and the same data sets were consid-
ered, namely, cliff, (concave) spherical and hard data sets. All algorithms were
implemented in C and the experimental setup was identical to that of Section 4.1.3.

Runtimes

Regarding the computation of AllContributions in three dimensions, it can be
observed in Figure 4.7 (a) that HVC3D remains competitive with EF, as expected.
HVC3D and EF were 2 to 14 times faster than exQHV. In comparison to a dedicated

4The source code for the proposed HVC3D+ and HVC4D+ algorithms is available within the
HVC package at https://github.com/apguerreiro/HVC.
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adaptation of WFG5, here referred to as WFG-c, they were 34 to 728 times faster
in the tests performed. Since computing AllContributions can also be used
to identify a least contributor, IWFG was included in the comparison, but it was
nevertheless 21 to 456 times slower than HVC3D or EF.

Figure 4.7 (b) shows the runtimes for the sequential update of all contributions
in three dimensions on the unbounded archive setup described earlier in connection
with Figure 4.3 (b). Similarly to HV3D in that case, EF was called n times when
filling an archive of size n, corresponding to an overall O(n2 logn) time complexity.
The two HVC3D variants, -R (recomputing) and -U (contribution updates), take
overall O(n2) time due to the linear-time updates. Both HVC3D-U and HVC3D-
R clearly outperform EF in this scenario, showing speed-ups of up to 56 and 21,
respectively. HVC3D-U performed up to 4 times faster than HVC3D-R.

Results for the simulation of a bounded archive similar to the environmental
selection process in SMS-EMOA are presented in Figure 4.7 (c). A fixed archive of
size 200 was updated n − 200 times by each algorithm by adding a new point and
then removing a least contributor. In the case of HVC3D-U, contributions were
updated after adding the new point and again after removing a least contributor.
On the other hand, since contributions only need to be known after a new point
is added in order to identify the least contributor, with HVC3D-R only the data
structure was updated when a least contributor is removed. Insertion of a new point
caused a data structure update followed by the computation of all contributions.
Similarly, contributions were recomputed only on point insertions when using EF.
The runtimes include the computation of the initial archive with 200 solutions, in
O(n logn) time in all cases. HVC3D-U and HVC3D-R were up to 50 and 30 times
faster than EF, respectively. The results show that, even though contributions were
recomputed by HVC3D-R only half the time, it was still up to 2 times slower than
HVC3D-U.

Finally, runtimes for AllContributions in four dimensions are shown in Fig-
ure 4.8, where HVC4D is compared to exQHV,WFG-c, HV4D and HBDA-NI. HV4D
and HBDA-NI are called n + 1 times for each set, and therefore the whole compu-
tation has a time complexity of O(n3). As expected, HVC4D significantly outper-
formed both HV4D and HBDA-NI, with observed speed-ups ranging between 45
and 1069 and between 81 and 2270, respectively. HV4D and HBDA-NI were also
significantly outperformed by WFG-c, but HVC4D was still 3 to 372 times faster
than WFG-c. IWFG was also included for reference. Note that computing all con-
tributions with WFG-c took fairly the same time as identifying the least contributor
with IWFG. The exQHV algorithm seems the most sensitive to the data. It showed
almost linear behavior in the cliff and, in particular, the spherical data set, but
also showed slightly worst than quadratic behavior in the hard data set. Although
exQHV has a tendency to outperform HVC4D in the large cliff and spherical data
sets, it was, in general, slower than HVC4D in the tests performed. In particular,
exQHV was able to perform twice as well as HVC4D with 104 in the cliff data set,
but otherwise was up to 10 times slower on the cliff and spherical data sets. On the
hard data set, HVC4D was 21 to 93 times faster than exQHV.

5Version 1.11 of WFG was adapted to iterate over the function used to compute the contribution
of a single point, which is faster than iterating over WFG as such.
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Figure 4.7: Runtime performance of algorithms on different all contribution prob-
lems and data sets: cliff (left) and spherical (right).
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Figure 4.8: Runtime performance of algorithms for all contributions in four dimen-
sions on the cliff (left), spherical (middle) and hard (right) data sets.
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4.2.4 Practical Implications
The HVC3D algorithm improves the current upper bound on the time complexity of
UpdateAllContributions in three dimensions from O(n logn) to O(n). Using
this algorithm in HVC4D improves the current upper bound on the complexity of
AllContributions in four dimensions from O(n2 logn) to O(n2) time. Practical
implications of these algorithms include at least the following:

• Faster implementation of the decremental greedy approximation to the HSSP,
and consequently, of the exact solution to the HSSP for k = n−1, in three and
four dimensions, which can now be computed in at most O(n(n− k)+n logn)
and O(n2(n− k)) time, respectively.

• Faster implementation of archive-based EMO algorithms such as SMS-EMOA,
also in three and four dimensions, even when the reference point is adjusted
as the population moves towards the Pareto Front. Steady-state algorithms
in d = 3 should benefit the most from the update procedures.

• Faster implementation of Branch-and-Bound techniques whose bounds rely on
the solution of AllContributions problems (e.g., [75, 76]).

4.3 Decremental Greedy Algorithms for the HSSP
In this section, a general decremental greedy algorithm for the HSSP [23, 35]
(see [D1]) is explained. Subsequently, specialized algorithms for 3 and 4 dimen-
sions are proposed. In the last section, an approximation bound to the HSSP is
derived.

4.3.1 General Algorithm Revisited
Given a nondominated point set X ⊂ Rd, where |X| = n and k ∈ {1, . . . , n}, the
decremental greedy algorithm for HSSP (Problem 3.9) removes n − k points from
X, one at a time, always excluding the point that contributes the least hypervolume
to the remaining points in X [23, 35]. Algorithm 4.5 gives the pseudo-code for such
a greedy algorithm, gHSSD. In gHSSD, the contribution of each point q ∈ X to the
set X itself (line 2) is computed first and stored in q.c. Afterwards, the point p in X
with minimal contribution is selected (line 4) and is removed from X (line 5). Then,
the contribution of each of the remaining points in X is updated (line 7), i.e., for
each q ∈ X the portion of the hypervolume dominated by q that was dominated only
by p is added to q.c. Lines 4 to 7 are repeated until only k points remain in X.

Note that ties may occur, i.e., at some point, more than one point may have
the (same) lowest contribution. In such cases, it is correct to choose any of the tied
points. However, ties that are resolved differently, will possibly result in different
subsequent intermediate and final greedy solutions, both with respect to the set of
points selected and, thus, to the corresponding hypervolume indicator value.

Algorithm 4.5 performs a single computation of the AllContributions prob-
lem (lines 1 and 2) and the consecutive computation of several decremental cases of
UpdateAllContributions problem (lines 6 and 7). Its time complexity depends
on how these computations are performed, particularly the latter. As discussed in
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Algorithm 4.5 gHSSD(X, k, r)
Require: X ⊂ Rd, k ∈ N+, r ∈ Rd

1: for all q ∈ X do
2: q.c← H(q,X)
3: for i = 1..n− k do
4: p← argminq∈X{q.c}
5: X← X\{p}
6: for all q ∈ X do
7: q.c← q.c+H(p, q,X)
8: return X

Section 3.4.5 (see description of gHSSD [D1]), using different methods for these com-
putations lead to different instances of gHSSD. Without specific algorithms available
for the UpdateAllContributions problem, the current asymptotically best in-
stances of gHSSD in d = 3, 4 are obtained using state-of-the-art algorithms for the
AllContributions problem. These instances of gHSSD are obtained with EF in
d = 3 case and with BF in d = 4 (see Table 3.5), leading to O((n − k)n logn) and
O((n− k)n2 logn) time complexities, respectively.

4.3.2 2-Dimensional Example
Figure 4.9 shows an example of applying gHSSD to a 2-dimensional problem. Each
column in the table in Figure 4.9(e) represents an iteration of the algorithm and
each row shows the contribution of a point in X with respect to X itself as points
are removed from X. Therefore, the cells not dashed in the ith column show the
points in the greedy solution of k = n − (i − 1), i.e., i − 1 points were removed,
which also corresponds to an intermediate solution for k < n− (i− 1). A bold value
in a column corresponds to the lowest contribution, indicating which point will be
removed from X in that iteration. Figures 4.9(a)-(d) show the set X for the first
four iterations and the contributions of the points in X.

The first step of the algorithm (line 2 in Algorithm 4.5) is to compute the contri-
bution of every point p ∈ X to X itself, which corresponds to the first column in the
table. Then, in iteration 1 of the for loop in line 3, since p1 contributes the least to
X, it is removed from X (line 5). The contributions of the points remaining in X are
updated (line 7) to account for the removal of p1 from X. For example, the contri-
bution of p2 is updated by adding the area of the contribution that was previously
dominated exclusively by p2 and p1 (the area between (2, 9) and (3, 10)). Formally,
H(p2, {p2, . . . , p7}) = H(p2, {p1, . . . , p7}) + H(p2, p1, {p1, . . . , p7}) = 2 + 1 = 3. In
this case, the contributions of p3, . . . , p7 do not change. After the contribution up-
date step, the contributions of every point still in X are known as shown in the
second column of the table. In iteration 2, p4 is the point that contributes the least
to X, and so it is removed from X and the contribution of the remaining points in
X are updated. The algorithm repeats the select and update steps until k points
remain in X. For a given k < n, the greedy solution contains the points that, in the
kth column from the right, correspond to cells not dashed. For example, for k = 3,
the greedy solution can be seen in the fifth column, which corresponds to |X| = 3,
and is X = {p3, p5, p7}, for which H(X) = 39.

Regarding ties, in the example of Figure 4.9, the lowest value of the x-coordinate
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|X|
H(p,X) 7 6 5 4 3 2 1

p

p1 1 - - - - - -
p2 2 3 3 3 - - -
p3 2 2 3 3 12 12 28
p4 1 1 - - - - -
p5 2 2 4 6 6 8 -
p6 1 1 1 - - - -
p7 2 2 2 3 3 - -

(e) Contributions with respect to X

Figure 4.9: Example of the decremental greedy algorithm for approximating HSSP
in 2 dimensions.

was used as a tiebreaker. If a different criterion was used to untie, a different greedy
solution might be obtained. For example, consider that the lowest y-coordinate
was used as the tiebreaker instead. Then, the greedy solution for k = 1 would be
X = {p2} and H(X) = 24 instead of X = {p3} and H(X) = 28, since the order of
exclusion would be p6, p4, p1, p7, p3, p5 instead of p1, p4, p6, p2, p7, p5.

4.3.3 Algorithms for d = 3, 4

The algorithms proposed in Section 4.2 can be used to asymptotically improve in-
stances of gHSSD for the d = 3 and d = 4 cases. In the specific case of d = 3, the
updating feature of HVC3D (see Section 4.2.1) make it particularly suited to the
gHSSD, as it can be used first to compute AllContributions and setup all the
data structures and then to consecutively efficiently update all contributions (with
either -R or -U versions). Therefore, by instantiating gHSSD (Algorithm 4.5) with
HVC3D, the state-of-the-art time complexity is improved to O((n − k)n + n logn)
time. Let us call this instance of Algorithm 4.5 by gHSSD3D. For d = 4, instanti-
ating gHSSD to use HVC4D from Section 4.2.2 to compute AllContributions
improves the time complexity to O((n − k)n2). Such an instance will be called
gHSSD4D.

4.3.4 A Naive Bound for the Approximation Ratio to the
HSSP

Although there is no approximation bound to HSSPComplement using a decre-
mental greedy approach, that does not imply that one for the approximation of the
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HSSP does not exist. In fact, an approximation bound for the HSSP, albeit a
pessimistic one, can be derived. The proof is based on the observation that the con-
tribution of the least contributor is at most 1

|X|H(X) which can easily be shown by
contradiction, noting that otherwise the sum of all contributions would be greater
than H(X). The bound is formalized as follows.

Theorem 4.1. Given a non-empty point set X ⊂ Rd where |X| = n, a reference
point r ∈ Rd and k ∈ {1, . . . , n}, let Sk and Sk,opt be an incremental greedy and an
optimal subset of HSSP for size k, respectively. Then,

H(Sk)

H(Sk,opt)
≥ k

n
(4.1)

Proof. Since Sn = X, and since the greedy approach always discards the point
that contributes the least to the current set, then the hypervolume lost at step
t ∈ {1, . . . , n− k} is, at most, 1

|Sn−t+1|H(Sn−t+1). Therefore,

H(Sn−t) ≥ H(Sn−t+1)− 1

n− t+ 1
H(Sn−t+1)

⇔ H(Sn−t) ≥ n− t

n− t+ 1
H(Sn−t+1)

Using this recurrence, the following is deduced for k ∈ {1, . . . , n− 1}:

H(Sk) ≥ k

k + 1
H(Sk+1) ≥

n−1∏
j=k

j

j + 1
H(X) = k

n
H(X)

Consequently, the following proves the theorem:

H(Sk)

H(Sk,opt)
≥ H(Sk)

H(X) ≥
k
n
H(X)
H(X) =

k

n

Note that, by considering X to be a nondominated point set and that every point in
X strongly dominates r, then H(Sk,opt) < H(X) holds for every k ∈ {1, . . . , n − 1}.
Thus, the bound is not tight for k < n.

Finally, one can conjecture of such a bound holding also for decremental greedy
algorithms to approximate nondecreasing submodular functions in general. An ar-
gument similar to the one above should be enough to prove the conjecture.

4.4 Incremental Greedy Algorithms for the HSSP
In this section, a general incremental greedy algorithm for the HSSP [23], gHSS
(see [D2]), is explained. Subsequently, specialized algorithms for 2 and 3 dimensions
are proposed.

Chapter 4 101



Portfolio Selection in Evolutionary Algorithms

Algorithm 4.6 gHSS(X, k, r)
Require: X ⊂ Rd, k ∈ N+, r ∈ Rd

1: S← {}
2: for all q ∈ X do
3: q.c← H(q, S)
4: for i = 1..k do
5: p← argmaxq∈X{q.c}
6: X← X\{p}
7: for all q ∈ X do
8: q.c← q.c−H(p, q, S)
9: S← S ∪ {p}

10: return S

4.4.1 General Algorithm Revisited
Given a nondominated point set X ⊂ Rd, where |X| = n, in the greedy algorithm

for the HSSP (Problem 3.9), k ≤ n points from X are chosen and stored in S, one at
a time, always selecting the point that contributes the most hypervolume to the set
of points already chosen. For that reason, in gHSS (Algorithm 4.6), the contribution
of each point q ∈ X to the initially empty set S (line 3) is computed first and is
stored in q.c. Afterwards, the point p in X with maximal contribution is picked
(line 5). Then, the contribution of the remaining points in X to S ∪ {p} is updated
(line 8), i.e., the portion of the contribution of each q ∈ X that is dominated by p is
removed. Finally, p is moved from X to S (lines 6 and 9). Lines 5 to 9 are repeated
until S contains k points.

Note that, as with the gHSSD, ties may occur as more than one point may have
the (same) highest contribution. As before, it is acceptable to choose one of them
arbitrarily even though that may influence the greedy solution obtained.

Algorithm 4.6 reduces to the consecutive computation of several incremental
cases of UpdateAllContributions2 problem (lines 7 and 8). Note that although
lines 2 and 3 also correspond to the AllContributions2 problem, its computa-
tion is trivial because in this case R is the empty set (R = {}). As discussed
in Section 3.4.5 (see description of gHSS [D2]) neither the algorithms to compute
UpdateAllContributions nor those to compute AllContributions can be
applied directly to update/compute the contribution of every point q ∈ X to S.
Without specific algorithms for the AllContributions2 problem, the only viable
instances of gHSS are based on computing multiple OneContribution problems,
i.e., by computing, one by one, either H(p, q, S) or H(q, S ∪ {p}) for every q ∈ X.
The current asymptotically best instances of gHSS for d = 3 is with UHV3D (see
Table 3.5), or even with HV3D+ (either -U or -R versions) proposed in Section 4.1,
either way resulting in an algorithm with O(k2n) time complexity.

4.4.2 2-Dimensional Example
Figure 4.10 shows an example of how the greedy algorithm can be applied to a
set of nondominated points X = {p1, . . . , p7} in two-dimensional space for k up to 7.
Figure 4.10 illustrates which points are selected by the greedy algorithm and in which
order. Figures 4.10(a)-(d) show the evolution of sets X and S in the first 4 iterations,
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(a) S = {}
X = {p1, . . . , p7}
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(b) S = {p3}
X = {p1, p2, p4, . . . , p7}
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(c) S = {p3, p5}
X = {p1, p2, p4, p6, p7}
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(d) S = {p3, p5, p2}
X = {p1, p4, p6, p7}

|S|
H(p, S) 0 1 2 3 4 5 6

p

p1 9 2 2 1 1 - -
p2 24 3 3 - - - -
p3 28 - - - - - -
p4 25 5 1 1 1 1 -
p5 24 8 - - - - -
p6 14 6 2 2 1 1 1
p7 9 5 3 3 - - -

(e) Contributions with respect to S

Figure 4.10: Example of the incremental greedy algorithm (gHSS2D) for the HSSP
in 2 dimensions.

and depict the corresponding contributions of the points in X to S. The table in
Figure 4.10(e) shows the values of these contributions for every iteration of the
algorithm. Each column corresponds to an iteration of the algorithm, and is labeled
with the size of the set of selected points, |S|. Each row shows the contribution of
a point in X as set S grows. Consequently, column i shows the contribution to S of
each point not yet selected at iteration i. The values in bold indicate which point
from X is selected in each iteration. Note that column i shows both the points in
the greedy solution for k = i (the dashed cells) and an intermediate solution for
k > i. Thus, any particular case where k < n leads to performing just the first k
steps of the example.

The first step of the algorithm (line 3 in Algorithm 4.6) is to compute the contri-
bution of every point p ∈ X to S = {}, which corresponds to the first column in the
table. Then, in iteration 1 of the for loop in line 4, since p3 contributes the most to
S = {}, it is selected and moved from X to S (lines 6 and 9). The contributions of
the points remaining in X are updated (line 8) to account for the addition of p3 to
S. For example, the contribution of p1 is updated by subtracting the area of its con-
tribution that becomes dominated by p3 (the area between (3, 9) and r). Formally,
H(p1, {p3}) = H(p1, {}) − H(p1, p3, {}) = 9 − 7 = 2. The same calculations are
performed for p2, p4, . . . , p7. After the contribution update step, the contributions
of every point still in X to S = {p3} are known as shown in the second column of
the table. In iteration 2, p5 is the point that contributes the most to S = {p3}, and
so it is selected and moved from X to S. Note that, in such a case, the contributions
of p1 and p2 remain the same with the addition of p5 to S, and so only those of p4,
p6 and p7 have to be updated. The algorithm repeats the select and update steps
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until k points are selected. As in the example of gHSSD, the lowest value of the
x-coordinate was used as a tiebreaker (for example, in the third iteration p2 was
selected instead of p7). In Figure 4.10, the greedy solution for k ≤ n is formed by
the first k points of the sequence: p3, p5, p2, p7, p1, p4, p6. For a given k < n, the
greedy solution contains the points that, in the column k, correspond to dashed
cells. For example, for k = 3, the greedy solution can be seen in the fourth column,
which corresponds to |S| = 3, and is S = {p2, p3, p5} for which H(X) = 39. Note
that, although in this example the hypervolume indicator of the final and every
intermediate solution was the same for both gHSSD and gHSS, this is not expected
to happen in general.

The following sections show how H(p, q, S) can be efficiently computed in the 2-
and 3-dimensional cases.

4.4.3 Algorithm for d = 2

The algorithm proposed in this section (gHSS2D) deals with the particular case of
gHSS in 2 dimensions. In gHSS2D, a simple procedure can be used to update the
contributions of the unchosen points in line 8 of Algorithm 4.6. Assume that points
in X ∪ S are kept sorted in ascending order of the y-coordinate (and in descending
order of the x-coordinate). Therefore, every point q ∈ X ∪ S needs to keep the
information of the next and of the previous point in X∪S which is determined once
by sorting X in a pre-processing step.

Because a contribution is represented by a rectangle, every q ∈ X stores its
contribution (q.c) and also the corresponding upper bound. All upper bounds are
initially set to the reference point. Let t1 and t2 be the closest points in S to the
left and to the right of p, respectively. Then, for each point p chosen, the points to
its left are visited, in ascending order of coordinate y, until t1 is reached. Similarly,
the points to its right are visited until t2 is reached. Every point q ∈ X between
t1 and p has the upper bound previously set to (t2x, t

1
y) and therefore, the quantity

H(p, q, S) is (t2x−px)× (t1y− qy), and the upper bound is set to (px, t
1
y). Points q ∈ X

between p and t2 have H(p, q, S) = (t2x− qx)× (t1y− py) and their upper bound is set
to (t2x, py).

The time complexity of gHSS2D is Θ(n(k + logn)) because the initial sorting
costs Θ(n logn)-time and, for each point p chosen, up to n contributions have to
be computed, where each contribution is computed in constant time. A worst case
example is the set of n points {(−i,−2n−i+1 + 1) | i ∈ {1, . . . , n}} with r = (0, 0).
Note that gHSS2D and the exact algorithms [37, 100] have similar time complexities.
However, the greedy version should be easier to implement and, because it is very
simple and uses simple data structures, it is very fast in practice.

4.4.4 Computing OneContribution in d = 3

The efficient computation of the OneContribution problem in 3 dimensions is an
important aspect of the incremental greedy algorithm for the HSSP developed in the
next section. Therefore, an O(n) time algorithm is explained here which can be seen
as a hybrid between UHV3D (see [B5]) and the modified version of HV3D+ (from
Section 4.1) for the OneContribution problem briefly explained in Section 4.1.1
(see subsection on “Hypervolume Updates”). It is a simplistic version of the two,
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Figure 4.11: Example of the computation of the contribution H(p, S), where S =
{s1, . . . , s12}. It is assumed that s1z < · · · < s7z < pz < s8z < · · · < s12z .

consisting of the sweeping of the former and the area update of the latter, leaving out
the box-division of the contribution used in UHV3D and the additional information
required by the data structure of HV3D+ (cx and cy). The resulting algorithm for
computing OneContribution in d = 3 is described next using Figure 4.11 for
illustration. It will be referred to as IHV3D.

Given a point p ∈ R3 and a set S ⊂ R3 of n points, the contribution H(p, S) is
computed in IHV3D by sweeping the points q ∈ S such that qz > pz in ascending
order of the z coordinate, and partitioning the 3-dimensional contribution in hor-
izontal slices. The contribution of p is the sum of the volumes of all slices. The
volume of a slice is the area of the base of that slice multiplied by its height. The
height of a slice is the absolute difference between the two consecutive points defin-
ing that slice. The base is delimited by the projection onto the (x, y)-plane of the
first point defining that slice and the points below it in z. Thus, S is split into two
sets, S1 = {q ∈ S | qz ≤ pz} and S2 = {q ∈ S | qz > pz}. In addition, a set of
points whose projections on the (x, y)-plane delimit the area exclusively dominated
by p in each iteration, S′, is maintained. This set of mutually nondominated points
is initialized with such points in S1 to represent the base of the first slice.

Both the splitting of S and the initialization of S′ are performed in linear time.
In the example of Figure 4.11(a), S1 = {s1, . . . , s7}, S2 = {s8, . . . , s12} and S′ =
{s2, . . . , s7}. Note that at most two points in S′ are not dominated by p on the
(x, y)-plane, one above and to the left, and another below and to the right (s2 and
s7 in the example).

The area of the base of the first slice is computed by adding up the areas of the
non-overlapping rectangles into which the base is partitioned (see Figure 4.11(b))
as the points in S′ are visited in ascending order of y. Then, the points in S2 are
visited in ascending order of z. For each new point, the volume of the current slice is
computed and the area of its base is updated to obtain the base area of the next slice.
In the example, the first point visited is s8. Therefore, the area of the base of the
bottom slice is multiplied by s8z− pz. Then, the base area is updated by subtracting
the area of the region that is now dominated also by s8 (see Figure 4.11(c)). This
area is computed by visiting the points in S′ that are dominated by s8 on the (x, y)-
plane. In the example, these are points s2 and s3, which are subsequently replaced in
S′ by s8. Hence, S′ becomes S′ = {s8, s4, . . . , s7}. The procedure for s9 is similar (see
Figure 4.11(d)). Visited points that do not dominate part of the region dominated
by p are skipped (e.g. s10).
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Figure 4.12: Example where X = {q1, . . . , q7}, S = {s1, . . . , s10} and p is the last
point removed from X and to be added to S. (a) shows X, S and p, (b) shows
how much volume p will add to S (transparent region). (c) shows a cut at z = pz
and the 2-dimensional projection of all points in (a). In (c), points in X are rep-
resented with circles, and points in S are represented with squares. The squares
and circles painted gray have higher z coordinate than p and the remaining ones
have lower z coordinate than p. As can be seen in (a), when X ∪ S ∪ {p} is
sorted in ascending order of the z coordinate, the following sequence is obtained:
q1, s1, . . . , s7, q2, . . . , q4, p, s8, q5, q6, s9, q7, s10.

The algorithm continues until a point in S2 that dominates p on the (x, y)-plane
is found, s12 in the example. The volume of the last slice is computed by multiplying
the current base area by (s12z − s11z ). In IHV3D, all sets are implemented as sorted
lists, and sentinels are used to ensure that limiting points such as s2, s7 and s12

always exist. IHV3D has an amortized O(n) time complexity because each point in
S is visited once when it is added to S′ and a second time when it is removed from
S′, and all operations on S′ are performed in constant time.

4.4.5 Algorithm for d = 3

The algorithm that deals with the particular case of gHSS in 3 dimensions (gHSS3D)
is presented in this subsection. This subsection starts by defining the data structures,
some notation and procedures used by the algorithm. Then, the algorithm itself
and, in particular, the update of the contribution of the points in X in line 8 of
Algorithm 4.6 are detailed. This subsection finishes with a discussion of the time-
complexity of gHSS3D.

The main aspect of gHSS3D is how UpdateAllContributions2 is solved,
i.e., how the contributions of points in X are updated. For an easier understanding
of how those are performed in gHSS3D, the problem depicted in Figure 4.12 will be
used as an example. The figure shows an intermediate iteration of Algorithm 4.6,
where some points have already been moved from X to S. Note that Figure 4.12 does
not intend to illustrate an actual choice of points by gHSS3D, and that the update
procedure presented here is independent of the choice of points moved from X to S.
The only assumptions about X and S are that they are disjoint sets and X ∪ S is a
nondominated point set. In Figure 4.12(a), the contribution to S of every point in
X is shown. The transparent (yellow) volume in Figure 4.12(b) shows more clearly
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Algorithm 4.7 gHSS3D(X, k, r)
Require: X ⊂ Rd, k ∈ N+, r ∈ Rd

1: X is sorted in ascending order of all dimensions
2: S← {(rx,−∞,−∞), (−∞, ry,−∞), (−∞,−∞, rz)}
3: for all q ∈ X do
4: q.c← (rx − px)× (ry − py)× (rz − pz)
5: for i = 1..k do
6: initialize q.v to 0 for all q ∈ X
7: p← argmaxq∈X{q.c}
8: X← X\{p}
9: X′ ← X
10: for all o ∈ {(x, y, z), (z, x, y), (y, z, x)} do
11: (x, y, z)← o // Change coordinate order
12: X1 ← {q ∈ X′ | p∗ ≤ q∗ and pz ≥ qz}
13: X2 ← {q ∈ X′ | p∗ ≥ q∗ and pz ≤ qz}
14: S1, S2 ← splitz(S, pz)
15: jointContributions1(p, S1, S2,X1, r)
16: jointContributions2(p, S1, S2,X2, r)
17: X′ ← X′\(X1 ∪ X2)
18: for all q ∈ X do
19: q.c← q.c− q.v
20: S← S ∪ {p}
21: return S

the volume that p adds to S. Any point in X whose contribution to S lies partially
in that yellow region has to have that volume removed from its contribution, as it
becomes dominated. 2D projections as the one in Figure 4.12(c) will be used further
in this paper.

In the context of gHSS3D, the procedure to solve the UpdateAllContributions2
problem is explained just for the incremental scenario. However, since it consists of
computing joint contributions, the decremental scenario is similar.

Data structures and procedures

In gHSS3D, doubly linked lists are used to maintain the sets of points sorted, and
sentinels ensure that there is always a point in the limiting conditions. Algorithm 4.7
keeps both sets X and S sorted in ascending order of all coordinates. Each point
q ∈ X keeps some information associated to it, such as area (q.a), volume (q.v),
height (q.z) and contribution (q.c). The first three values are temporary values that
are used to compute the volume H(p, q, S) which will be subtracted from q.c, the
contribution of q. The value q.z indicates the value of the third coordinate up to
which volume q.v has been updated, and q.a keeps the area dominated at height q.z.
p∗ and S∗ will denote the projections of p and S onto the (x, y)-plane, respectively.

Given X, S ⊂ R3 represented by sorted lists and the points p, q ∈ R3 and h ∈ R,
the following procedures are available.

nexty(p, S) The point following p in S with respect to coordinate y, for p ∈ S.

heady(S) The point q ∈ S with the least qy.
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miny(p, S) The point q ∈ S with the least qy > py such that qx ≤ px.

addFirsty(p, S) Add point p to S where p becomes heady(S).

minima(S) Return the points that are not dominated on the (x, y)-plane , i.e., {q ∈
S | ∄t ∈ S : t∗ ≤ q∗, t ̸= q}.

splity(S, h) Given h ∈ R, split S in two sets, S1 and S2 such that S1 = {q ∈ S | qy ≤
h} and S2 = {q ∈ S | qy > h} and return S1 and S2.

area(p, S) The quantity H(p∗, S∗).

updateVolume(X, h) Given h ∈ R, for each point q ∈ X, update its volume, save it
in q.v and update q.z, i.e., compute q.v ← q.v+ q.a× (h− qz) and set q.z ← h.

initializeBases(X, p, S) For each point q ∈ X, compute H(p∗, q∗, S∗) and save it in
q.a.

updateAreas(p,X, S) For each q ∈ X compute q.a← q.a−H(p∗, q∗, S∗).

Procedures next, head, min, addFirst and split are also available for coordinates x
and z and, apart from split and min, they all run in constant time. splity has a cost
of O(|S2|) because it is the cost of finding the break point by sweeping points in
descending order of coordinate y. The remaining procedures have linear cost w.r.t.
the total size of the input sets, i.e., either O(|X|), O(|S|) or O(|S| + |X|). Both
initializeBases and updateAreas will be explained in more detail in Subsection 4.4.3.
All procedures that modify or return a subset of a given sorted set guarantee that
the returned sets are also sorted according to the coordinate used for sweeping the
points. These procedures may also guarantee that those points are sorted according
to other coordinates, if needed. More information about those procedures will be
given in the next subsections. Note that, if a set of nondominated points on the
(x, y)-plane is sorted in ascending order of one coordinate, then it is also sorted
according to the other coordinate, but in descending order.

Main loop of gHSS3D

gHSS3D follows the same working principle as gHSS, but, instead of updating the
contributions of points in X one by one (lines 4 and 8 in Algorithm 4.6), the (x, y, z)-
space is divided into 8 octants with a common vertex at p, and the contributions
of the points in each pair of opposite octants are updated at the same time (lines 9
to 17 in Algorithm 4.7).

The two octants corresponding to the region that dominates p and the region
dominated by p are ignored because they do not contain any points. The remaining
three pairs of octants are all updated in the same way, except that a different coordi-
nate order is considered for each pair. The order is set in such a way that a different
dimension is used as the z-coordinate in each case (lines 10-17 of Algorithm 4.7).

Given a coordinate order o ∈ {(x, y, z), (z, x, y), (y, z, x)}, the two octants con-
sidered when order o is selected are those that contain sets X1 ⊆ X and X2 ⊆ X,
defined as follows. X1 contains the points in X that are dominated by p in the
first two dimensions of o, but are equal to or better (i.e., lower) than p in the third
dimension. X2 contains the points in X that dominate p in the first two dimensions
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Figure 4.13: The subproblems X1 and X2 for the three objective orders considered,
o = {(x, y, z), (y, z, x), (z, x, y)}.

of o but are equal to or worse (i.e., higher) than p in the third dimension. Fig-
ure 4.13 shows how the set X from the example in Figure 4.12 is split into octants,
and shows X1 and X2 according to the objective order considered. In Figure 4.13(a),
points are assigned colors, each associated with a single octant. Figures 4.13(b),
4.13(c) and 4.13(d) show the corresponding sets X1 and X2 according to objective
order (x, y, z), (y, z, x) and (z, x, y), respectively. Note that considering a different
objective order is equivalent to rotating the space.

Lines 9 and 17 of Algorithm 4.7 guarantee that no point in X is updated more
than once in case there are points with repeated coordinates, i.e., points on the
boundary between two octants. The computation of q.v = H(p, q, S) for q ∈ X1 and
q ∈ X2 is detailed in Algorithms 4.9 and 4.8, respectively.

Updating contributions of points in X

Consider the case where the order considered is o = (x, y, z). In the example given,
X1 = {q1, q3, q4} and X2 = {q6, q7}, as depicted in Figure 4.13(b). The update pro-
cedure for the remaining coordinate orders is similar (Figures 4.13(c) and 4.13(d)).
Figure 4.14 shows (in red) the joint contributions of p with each point in X1 (Fig-
ures 4.14(a) to 4.14(c)) and with each point in X2 (Figures 4.14(d) and 4.14(e)),
which have to be computed and removed. Note that, in the case of p1, there is no
joint contribution with p. Furthermore, note that some of the joint contributions
(partially) overlap, for example, those of p with q3 and of p with q4.

The update procedure will be explained first for X2 and then for X1. In both
cases, the algorithms are built upon IHV3D (explained in Section 4.4.4). Therefore,
Algorithm 4.7 splits S into S1 and S2. In this case only, function split takes O(n)-
time as it has to guarantee that S1 and S2 are sorted according to all dimensions.
Set S′ is also maintained along the execution of both Algorithms 4.9 and 4.8, and is
initialized as the subset of S1 that delimits the area dominated by p. In the example,
we have that S1 = {s1, . . . , s7}, S2 = {s8, . . . , s10} and S′ = {s3, . . . , s7} (initial set).

In the case of X2 (X2 = {q6, q7}), all points dominate p on the (x, y)-plane, and
have higher z-coordinate. Therefore, if X2 is sorted in ascending order of z, then,
given any q ∈ X2 and its previous point u in X2, the joint contribution of q with
p is equal to the joint contribution of u with p above the value qz of coordinate z.
Moreover, the contribution of q when it is headz(X2) is equal to the contribution of
p above the value qz of coordinate z. Figure 4.15(a) shows the joint contributions
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Algorithm 4.8 jointContributions2(p, S1, S2,X2, r)

1: S′ ← {q ∈ minima(S1) | p∗ ≤ q∗} ∪ {minx(S1),miny(S1)}
2: p.a← area(p, S′)
3: u← p
4: L← X2 ∪ S2

5: q ← headz(L)
6: while q ∈ X2 or q∗ ≰ p∗ do
7: if q ∈ S2 then
8: if qx ≤ px then
9: S′,T← splity(S′, qy)

10: p.a← p.a− area(p ∨ q,T ∪ {headx(S′)})
11: addFirstx(q, S′)
12: else
13: S′,T← splitx(S′, qx)
14: p.a← p.a− area(p ∨ q,T ∪ {heady(S′)})
15: addFirsty(q, S′)
16: updateVolume({u}, qz)
17: u.a← p.a
18: else
19: updateVolume({u}, qz)
20: q.a← p.a
21: q.z ← qz
22: q.prev← u
23: u← q
24: q ← nextz(q,L)
25: updateVolume({u}, qz)
26: vol← 0
27: while u ̸= p do
28: vol← vol + u.v
29: u.v ← vol
30: u← u.prev
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(a) H(q1,S) (b) H(q3,S) (c) H(q4,S)

(d) H(q6,S) (e) H(q7,S)

Figure 4.14: Individual contributions to S (dark gray plus red region) of the points
in X1 = {q1, q3, q4} and in X2 = {q6, q7}. The region of each contribution that is
dominated by p is in red.

of p with each point in X2 = {q6, q7}. Note that the joint contribution of q7 with p
is equal to the joint contribution of q6 with p for z ≥ q7z . The joint contribution of
q6 with p is equal to the contribution of p for z ≥ q6z . Thus, if the volume between
z = uz and z = qz is associated only to u, then the joint contribution of every
q ∈ X2 can be calculated by accumulating the volume associated to each point while
visiting X2 in descending order of z. Hence, in Algorithm 4.8, the previous point
u ∈ X2 of each q ∈ X2 is stored in q.prev.

Algorithm 4.8 behaves just like IHV3D, i.e., in the algorithm, S′ is used to
maintain the points delimiting the area of p at height z = qz, and points in S2 are
visited in ascending order of z in order to update the area of p and to compute the
slice volume (lines 8 to 15). Additionally, X2 is swept along with S2 in ascending
order of the z-coordinate by merging the two lists (line 4). The last point visited
from X2 is recorded as u (except for first initialization of u, which is a sentinel),
and its volume (line 16) and area (line 17) are updated when the area of p (p.a)
is updated. Whenever the current point q ∈ X2 ∪ S2 belongs to X2, the volume
simultaneously dominated by u and p bounded below by uz becomes bounded above
by qz (line 19) and stays associated to (and only to) u. The contribution of p above
qz becomes associated to q (lines 20 and 21) and q is set as the new u (line 23). In
that way, each part of the contribution p (a consecutive set of slices) is associated
to a single point of X2. When the first point from S2 that dominates p on the
(x, y)-plane is found (s10), the volume of the last point from X2 is updated (line 25).
Figures 4.15(b) and 4.15(c) show the two slices (whose volume is) associated to
q6, and Figure 4.15(d) shows the only slice associated to q7. Lastly, q ∈ X2 are
visited again but in descending order of the z-coordinate, and their volumes are
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(a) H(p, q6,S) and
H(p, q7,S)

(b) Slice 1 (c) Slice 2 (d) Slice 3

Figure 4.15: The (partially overlapping) joint contributions of every point in X2 =
{p6, p7} with p and their division in slices.

accumulated and added to the next visited points (lines 27 to 30). In the example,
the volume associated to q6 is stored in vol, and corresponds to its joint contribution
with p. Then the volume associated to q7 is added to vol, corresponding now to the
joint contribution of q7 and p.

In the case of points q ∈ X1, not every point has its contribution reduced with
the addition of p to S, as it is the case of q1 in Figure 4.14(a). In Algorithm 4.9,
a set X′ ⊆ X1 is used to keep the points of X1 whose joint contributions with p
are still being computed. X′ is initialized in linear time with the points in X1 that
need to be updated, i.e., those points such that q∗ ∈ X1∗ is not dominated by S′∗.
Figure 4.16(a) shows the joint contributions of p with every point in the initial
set X′ = {q3, q4}, which partially overlap. Figures 4.16(b) to 4.16(d) show how
these joint contributions are split into slices by the algorithm. The computation of
H(p, q, S) for each q ∈ X′ is performed in two main steps, the computation of the
base area of the volume H(q ∨ p, S′) (line 3) and the area updates (lines 13 and 21).
Figures 4.17 and 4.18 will be used as examples of these steps, respectively. Note that
the base areas of the volumes H(q ∨ p, S′) correspond to the base areas in the red
volume in Figure 4.16(b), while the base areas of the red volumes of Figures 4.16(c)
and 4.16(b) correspond to the subsequently updated areas.

Figure 4.17(a) corresponds to Figure 4.16(b) in the cut plane at z = pz and shows,
also in red, the base areas of q3 and q4 to be computed, which overlap partially. The
base areas are initialized in linear time by computing H(p∗, S′∗)−H(p∗, S′∗ ∪ {q∗}),
for each q ∈ X′. The areas associated to points in X′ are initialized with H(p∗, S′∗),
which was previously computed in linear time in line 2 of Algorithm 4.8. The value
H(p∗, S′∗ ∪ {q∗}) is computed in two sweeps. Points q ∈ S′ ∪ X′ are first visited in
ascending order of x and the area dominated by p between px and each qx is computed
in a cumulative way. When a point from X′ is visited, the area accumulated so far is
subtracted from the area associated with that point. In Figures 4.17(b) and 4.17(c),
the striped area is the accumulated area that is subtracted from q4.a and q3.a,
respectively. The remaining area to be subtracted, i.e., the area between py and qy
to the right of px, is computed in an analogous way by sweeping points in S′ ∪ X′

in ascending order of the y-coordinate. Note that, in the second sweep, it is also
necessary to add to q.a the area bounded below by p and above by q, for each q ∈ X′,
as it was subtracted twice.

Figure 4.18 shows the update of the areas of points in X′ (lines 13 and 21). The
volumes are updated in lines 12 and 20. This corresponds to the cases where a point
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Algorithm 4.9 jointContributions1(p, S1, S2,X1, r)

1: S′ ← {q ∈ minima(S1) | p∗ ≤ q∗} ∪ {minx(S1),miny(S1)}
2: X′ ← {q ∈ X1 | p∗ ≤ q∗ and ∄t ∈ S′ : t∗ ≤ q∗}
3: initializeBases(X′, p, S′)
4: L← S2

5: q ← headz(L)
6: while q∗ ≰ p∗ do
7: if qx ≤ px then
8: S′,T← splity(S′, qy)
9: t← headx(S′)
10: X′,A← splity(X′, qy)
11: B← {u ∈ X′ | ux < tx}
12: updateVolume(A ∪ B, qz)
13: updateAreasy(p ∨ q,B,T ∪ {headx(S′)})
14: addFirstx(q, S′)
15: else
16: S′,T← splitx(S′, qx)
17: t← heady(S′)
18: X′,A← splitx(X′, qx)
19: B← {u ∈ X′ | uy < ty}
20: updateVolume(A ∪ B, qz)
21: updateAreasy(p ∨ q,B,T ∪ {heady(S′)})
22: addFirsty(q, S′)
23: q ← nextz(q,L)

in S′ cuts above the area dominated by p (lines 7 to 14 and s8 in Figures 4.18(a)
and 4.18(b)) or to the right (line 16 to 22 and s9 in Figure 4.18(c) and 4.18(d)).
Points q ∈ S2 are visited in ascending order of z-coordinate, as in IHV3D. Looking
at the case where q = s8, let T be the set of points in S′ with higher y-coordinate
than s8y (T = {s5, . . . , s7}). In Algorithm 4.9, set T is first removed from S′ (S′ =
{s3, . . . , s7}), in O(|T|)-time, through function split. Thus, S′ becomes S′ = {s3, s4}).
T is kept sorted according to the y-coordinate. Similarly, set A is removed from X′

(X′ = {q3, q4}) in O(|A|)-time, also through split (line 10). Set A contains the
points that are dominated by q∗ on the (x, y)-plane, i.e., those that have no more
contribution above qz (A = {}). Finally, the areas associated with the points in X′ to
the left of the point that delimits q at right (t = s4) have to be updated. Therefore,
those points are stored in B (line 11, B = {q3, q4}). The volumes of points in B∪A
are updated in O(|A|+ |B|)-time (line 12). Then, in procedure updateAreas (line 13),
points u ∈ B∪T are visited in descending order of coordinate x. For each u visited,
the area dominated by p∨ q to the right of u is accumulated. Whenever the visited
point u belongs to B, the area computed so far is subtracted from u.a. Therefore,
the update of the areas of points in B costs O(|B| + |T|). At last, q is added to S′

(S′ = {s8, s4, s3}). The updated areas (and the updated X′ and S′) are depicted in
Figure 4.17(b), which corresponds to Figure 4.16(c) at the cut plane z = s8z.

When qy ≤ py, the procedure is analogous. Note that, in the example of Fig-
ure 4.18(c), q = s9 and A = {q3}. Therefore, q3 is removed from X′ and its volume is
updated. X′ becomes {q4}, then t = s8, B = {q4}, and, at the end of that iteration,

Chapter 4 113



Portfolio Selection in Evolutionary Algorithms

(a) H(p, q3,S) and
H(p, q4,S)

(b) Slice 1 (c) Slice 2 (d) Slice 3

Figure 4.16: The (partially overlapping) joint contributions of every point in
{p3, p4} ⊂ X1 with p and their division in slices.
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Figure 4.17: Example of how the base area of each points in X′ = {p3, p4} is com-
puted in initializeBases(X′, p, S′).

S′ = {s8, s9} and X′ = {q4}. The updated areas (and the updated X′ and S′) are
depicted in Figure 4.18(d), which corresponds to Figure 4.16(d) at the cut plane
z = s9z. Algorithm 4.9 terminates when the first point q that dominates p on the
(x, y)-plane is found (s10).

Time-complexity

In Algorithm 4.7 (gHSS3D), points are sorted in O(n logn)-time and their contri-
butions are initialized in linear time. Then, the contributions of points in X are
updated k times by sweeping those points considering three different coordinate or-
ders. For each coordinate order, the points of two disjoint sets are updated, X1 and
X2 in Algorithms 4.9 and 4.8, respectively. Lines 11 to 14 and 17 have linear cost,
while Algorithm 4.8 (line 16) has amortized linear time. Algorithm 4.9 (line 15)
has amortized O(nk)-time, but the amortization is along the entire execution of
Algorithm 4.7.

Algorithm 4.8 inherits the O(n) time complexity of IHV3D. As in IHV3D, the
base area associated with p is computed in linear time (line 2). Afterwards, points
in S are only visited once when they are added to S′ (line 1, 11 or 15), and once
again if they are removed from S′ (lines 9 and 13) and are used to update the area
of p (lines 10 and 14). Points in X2 are used in constant time operations in the first
while loop (lines 16 to 25), and are all visited once again, to update their volumes
(lines 27 to 30).

The time complexity of Algorithm 4.9 is analyzed by considering all calls (a
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Figure 4.18: Example of how points from S2 are used in Algorithm 4.9 to update
the areas of points in X1.

maximum of k ≤ n) from Algorithm 4.7. The analysis shows that some steps
amortize to O(n)-time for each call of Algorithm 4.9, while others are worse than
linear in a single call, but result in O(nk)-time across the k possible calls. In the
worst scenario of the latter case (a single call), each point in the final set S (the
greedy solution) may be compared against all other points a constant number of
times.

In Algorithm 4.9, it is guaranteed that each point is visited only if its area
or volume has to be updated or if it delimits the contribution of the area being
computed. The operations performed to maintain S′ (lines 8, 16, 14 and 22) are
the same as in Algorithm 4.8, so these operations amortize to linear time. As with
S′, points from X1 are added once to X′ (line 2) and are removed once from X′

(line 10 or 18). Therefore, maintaining X′ also amortizes to linear time. It remains
to explain how many times points in B ⊂ X′ are visited. Constructing B has a cost
O(|B|), and procedure updateAreas has a cost of O(|B|+ |T|). Since the points in T
were previously removed from S′, they are used by updateAreas only once. However,
in the worst case, B is equal to X′ in every iteration of Algorithm 4.9, and points
are never removed from X′. This means that procedure updateAreas has a cost of
O(n), leading to O(kn)-time complexity over |S2| ≤ k iterations.

Basically, the role of updateAreas is to compare each point in X with points in
S. However, in this procedure, each point in X is compared against each point in S
once throughout the execution of gHSS3D. As |S| ≤ k always holds, all executions
of updateAreas, and of updateVolume, amortize to O(nk). This can be checked by
noting that a point u ∈ X1 ⊆ X is only compared to a point s ∈ S2 ⊂ S if s delimits
the contribution of u. These points are compared only because the region where s
delimits the contribution of u is dominated by p. Therefore, after p is added to S, the
point s will not delimit the contribution of u anymore. This is because p ≤ (u ∨ s)
and pz < sz, which means that u has no contribution to S∪{p} above the value pz of
coordinate z (H(u, s, (S∪{p})\{s}) = 0). Moreover, note that (p∨u) < (s∨u), and,
thus, according to Definition 3.5 i.e., the definition of delimiter, s is not a delimiter
of the contribution of u to S∪{p}. Consequently, u will not be compared again with
s. In the example of Figure 4.18, neither q3 nor q4 will be compared against s8 or s9
in any future execution of procedure updateAreas. In the examples of Figures 4.14(b)
and 4.14(c) it can be seen that, after removing the part of the point contribution in
red, the remaining volume, in dark gray, is delimited by neither s8 nor s9. Therefore,
Algorithm 4.7 has amortized O(nk)-time complexity.

Although gHSS3D has O(n(k + logn))-time complexity, if it is used repeatedly
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for a fixed k and a growing set of n solutions by iteratively adding new small sets
of m ≪ n solutions, then these sets may be previously sorted in O(m logm), and
inserted in the data structures (linked lists) in O(n + m) time. Therefore, the set
of k solutions selected can be updated in O((n + m)k + m logm) time in such a
scenario.

Finally, at the core of gHSS3D (and of gHSS2D) is a procedure, relevant by itself,
for the UpdateAllContributions2 problem. Such an update procedure is well
suited for both incremental and decremental scenarios of such a problem. A single
call has O(|S| · |R|) time complexity (where S is the set of points whose contributions
to R have to be updated). When used sequentially for the incremental scenario (as
in gHSS) the number of operations amortize to linear time per point added to R.

4.4.6 No Approximation Ratio for the HSSPComplement
The incremental greedy approach provides an approximation bound for the HSSP.
However, theoretical results on the approximation to the HSSPComplement are
currently unknown. In fact, similarly to the decremental greedy approach, there is
no approximation bound to the HSSPComplement using an incremental greedy
approach, i.e., the ratio of the contribution of the points left out to the set of chosen
points between the greedy and the optimal solution, can be arbitrarily large:

Theorem 4.1. For all d ≥ 2, and for all ε ≥ 1, there is a point set X ⊂ Rd where
|X| = n = 3, for which the incremental greedy and optimal subsets of HSSP given
size k = 2, Sg and Sopt, respectively, are such that

H(X)−H(Sg)

H(X)−H(Sopt)
= ε (4.2)

Figure 4.19: Example of a bad case for gHSS.

Proof. The theorem is proved with an example for d = 2, and then it is extended for
the general case of d ≥ 2. Let r = (0, 0) be the reference point, and let X = {p, q1, q2}
be such that:

p = (−ε− 1,−ε− 1)

q1 = (−ε− 2,−ε)
q2 = (−ε,−ε− 2)

Set X is depicted in Figure 4.19. For ε ≥ 1, the following holds: H({q1, p}) =
H({q2, p}) ≤ H({q1, q2}). Thus, Sopt = {q1, q2} is an optimal subset for k = 2. In
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gHSS, p is selected first as it contributes the most to the empty set and, as q1 and q2

contribute equally to {p}, let us assume that q1 is chosen next and so Sg = {p, q1}.
Therefore:

H(Sopt) = ε2 + 4ε (4.3)
H(Sg) = ε2 + 3ε+ 1 (4.4)
H(X) = ε2 + 4ε+ 1 (4.5)

Then, the result in Theorem is deduced for n = 3 and d = 2:

H(X)−H(Sg)

H(X)−H(Sopt)
=

ε2 + 4ε+ 1− ε2 − 3ε− 1

ε2 + 4ε+ 1− ε2 − 4ε
=

ε

1
(4.6)

For the general case of d ≥ 2, it is enough to set r = (0, . . . , 0) and set the
remaining coordinates of points in X to −1 as it does not influence the calculations.

4.5 Comparison of Greedy Algorithms for the HSSP
Different aspects of the incremental and decremental greedy approaches are analyzed
in this section. The aim is to show that both approaches are able to find subsets
with good approximation ratio, far from the theoretical bound, that are visually
well-distributed and similar to the optimal subset. The aim is also to show that the
greedy solutions are computed in a short amount of time, and to determine in which
settings of n and k each of the greedy algorithms proposed is more advantageous.
Therefore, the analysis is divided in three parts. The first is an analysis of the
approximation results (see Figures 4.20 to 4.23 and Tables 4.1 and 4.2), the second
is an analysis of the best subsets found with each approach (see Figures 4.24 to 4.27)
and the last one is an analysis of the algorithms’ runtime (see Figures 4.29 and 4.30).

The proposed algorithms, gHSS2D, gHSS3D6 and gHSSD3D7, were implemented
in C and compiled with gcc version 4.7.2. All tests were run on an Intel(R) Core(TM)
i7-3612QM CPU @ 2.10GHz with 6 MB of cache and 8 GB of RAM. To obtain the
exact solutions for the HSSP, a Java implementation of HypSSP (see HypSSP [C3]
in Section 3.4.4) was used for the 2-dimensional case. Regarding the 3-dimensional
case, optimal results were obtained with the HSSP Integer Linear Programming
(ILP) formulation (see ILP [C4] in Section 3.4.4), and solved with the GNU Linear
Programming Toolkit.

The algorithms were tested with the following data sets (see Section 3.5): the
linear front, the (spherical) convex front and the (spherical) concave front both for
the 2 and 3-dimensional cases. Additionally, wave fronts with 1, . . . , 5 and 10 convex
regions were used in the 2-dimensional case and the degenerate front was used in
the 3-dimensional case. The reference point was set to (1, 1) and to (1, 1, 1) in the
two- and the three-dimensional cases, respectively. Plots will be used to show some
example data sets and results on all runs are summarized in tables.

6The source code of gHSS2D and gHSS3D algorithms is available at https://github.com/
apguerreiro/gHSS (version 1.1 [79] was the one used).

7The source code is available at https://github.com/apguerreiro/HVC.
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4.5.1 Approximation Quality
The evaluation of the approximation quality of the greedy solutions will be based
on two ratios, the hypervolume ratio and the uncovered hypervolume ratio. The
former is concerned with the approximation to the HSSP and the latter to the
HSSPComplement. Given a point set X ⊂ Rd such that |X| = n, let Sg ⊆ X and
Sopt ⊆ X be the greedy and the optimal k-sized subsets for the HSSP, respectively.
Given a reference point, the hypervolume ratio is given by:

H(Sg)

H(Sopt)
(4.7)

which is at most 1. The unconvered hypervolume ratio is given by:

H(X)−H(Sg)

H(X)−H(Sopt)
(4.8)

which is at least 1 and where the valueH(X)−H(Sg) is the uncovered hypervolume of
Sg, i.e., the contribution of the set of discarded points, X\Sg, to Sg. The hypervolume
ratio is used to confirm the theoretical bounds, and to show that gHSS and gHSSD
performed better than their respective approximation bounds to the HSSP in all
tests. In fact, both algorithms performed better than each other’s bound, as well.
The uncovered hypervolume ratio is used for additional insight regarding the greedy
approximations as the hypervolume ratio tends to be less informative as k and
n grow. Furthermore, the hypervolume ratio is more sensitive to the reference
point, the farther away is the reference point, the higher is the ratio and thus, less
informative. This ratio is also used to confirm that neither gHSS nor gHSSD provide
an approximation bound to the HSSPComplement.

Figures 4.20 and 4.21 show the results on the 2-dimensional and the 3-dimensional
data sets, respectively, regarding the hypervolume indicator and the uncovered hy-
pervolume of the approximate and exact solutions, for growing values of k. Addition-
ally, Tables 4.1 and 4.2 summarize the results of all tests performed related to the two
ratios for the 2- and 3-dimensional case, respectively. For the 2-dimensional case, the
data sets tested had sizes n = 10, 20, . . . , 100, 200, . . . , 1000 and for the 3-dimensional
case, had sizes n = 10, . . . , 50, except for the linear front where n = 10, 20, and the
convex front where n = 10, . . . , 40, due to the excessive amount of time required by
the ILP solver.

Let us look at the first two rows in both figures and at the left-hand side of
both tables. In those, the hypervolume indicator values of the selected k-sized
subsets and the hypervolume ratio show that the greedy algorithms are able to
find subsets whose hypervolume is very close or equal to the optimal subsets. The
hypervolume ratio between the incremental greedy and the optimal solution was
always found to be greater than 0.8929, which is much better than the theoretical
bound of (1−1/e) ≃ 0.6321. On the other hand, although the theoretical bound for
the decremental greedy proved in Section 4.3.4 is quite pessimistic, particularly for
small k, gHSSD was also always found to achieve a high hypervolume ratio which
was always greater than 0.8259. Moreover, the plots show that for both greedy
approaches the approximation ratio was generally lower for smaller values of k, with
k = 2 being the subset size that most often led to the lowest approximation ratio.
For k ≥ n/2, the ratio was found to be either 1 (an optimum was found) or very
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Figure 4.20: The hypervolume indicator (first row), the hypervolume ratio (second
row), the uncovered hypervolume (third row) and the uncovered hypervolume ratio
(forth row) for a fixed set size n = 100 and growing subset size k in a 2-dimensional
problem.
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Figure 4.21: The hypervolume indicator (first row), the hypervolume ratio (second
row), the uncovered hypervolume (third row) and the uncovered hypervolume ratio
(forth row) for a fixed set size n = 50 (concave and degenerate) and n = 40 (convex)
and growing subset size k in a 3-dimensional problem.
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hypervolume ratio uncovered hypervolume ratio
gHSS gHSSD gHSS gHSSD

data set min min min avg max min avg max
linear 0.9361 0.8394 1.0 1.1064 1.5322 1.0 1.0323 1.1685
convex 0.9439 0.8227 1.0 1.1020 2.9303 1.0 1.0348 1.3783
concave 0.9351 0.8376 1.0 1.0968 2.5803 1.0 1.0310 1.1236
wave-1 0.9611 0.8577 1.0 1.0985 2.7231 1.0 1.0333 1.5172
wave-2 0.9837 0.9243 1.0 1.1019 1.7586 1.0 1.0324 1.3633
wave-3 0.9836 0.9176 1.0 1.1001 1.4233 1.0 1.0326 1.4446
wave-4 0.9813 0.9658 1.0 1.1017 8.9046 1.0 1.0331 1.2895
wave-5 0.9256 0.8259 1.0 1.0945 2.6936 1.0 1.0330 1.2827
wave-10 0.8929 0.9151 1.0 1.0965 1.7817 1.0 1.0310 1.2565

Table 4.1: Minimum hypervolume ratio, and minimum, average and maximum un-
covered hypervolume ratio of the approximations for the 2-dimensional HSSP for
each data set, and considering all k ∈ {1, . . . , n}, and all sizes n tested.

hypervolume ratio uncovered hypervolume ratio
gHSS gHSSD gHSS gHSSD

data set min min min avg max min avg max
linear 0.9416 0.8855 1.0 1.1937 2.3966 1.0 1.0486 1.1574
convex 0.9698 0.8475 1.0 1.0130 1.0896 1.0 1.0073 1.1247
concave 0.9847 0.9504 1.0 1.0156 1.1791 1.0 1.0062 1.1545

degenerate 0.9147 0.9715 1.0 1.0696 1.7081 1.0 1.0196 1.1211

Table 4.2: Minimum hypervolume ratio and minimum, average and maximum un-
covered hypervolume ratio of the approximations for the 3-dimensional HSSP for
each data set, and considering all k ∈ {1, . . . , n}, and all sizes n tested.

close to 1. Finally, the tables show that the minimum hypervolume ratio achieved
by gHSS in a data set is generally higher than those achieved by gHSSD.

Because the hypervolume of the optimal (and the greedy) subsets rapidly achieve
values close to the hypervolume of the whole set, as k grows, the hypervolume
ratio does not provide much information about which greedy algorithm provides
better approximation. Therefore, the third and forth rows in Figures 4.20 and 4.21
provide more insight. The third row plots the uncovered hypervolume, which shows
how much of the hypervolume of the full set is left out by the greedy and optimal
subsets. The plots show how small the uncovered hypervolume is, which justifies the
hypervolume ratios being close to one. For example, in Figure 4.20(b), for k = n/2,
the hypervolume of the optimal subset is close to 0.775, and the corresponding
uncovered hypervolume is on the order of 10−3. Even if a greedy algorithm finds a
subset that leaves out 10 times more area than the optimal subset, the approximation
ratio is at least 0.988.

The forth row of plots in the figures show the uncovered hypervolume ratio while
the right hand-side of Tables 4.1 and 4.2 summarize the results concerning all tests
performed for each data set. The plots show that, in spite of gHSS providing, in
general, better minimum value of hypervolume ratio (the higher the better) than
gHSSD, the uncovered hypervolume ratio (the less the better) of gHSS seems slightly
worst and less stable than of gHSSD, even for small values of k. The table results
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also confirm that, on average, gHSSD has better uncovered hypervolume ratio and,
in most cases, also provides lower maximum values of this ratio than gHSS.

As there is a data set for gHSS and another for gHSSD for which the un-
covered hypervolume ratio can grow arbitrarily, Figures 4.22 and 4.23 show how
both algorithm behave in those two data sets. Figures 4.22 shows the hypervol-
ume, the uncovered hypervolume and the two corresponding ratios, for the bad
data set for gHSSD, which was described in Section 3.4.5 considering maximiza-
tion (see in the description of gHSSD [D1]). Since minimization is assumed here,
that data set was transformed by taking the negative of the points, adding 2 to
every coordinate and normalizing all points by dividing each coordinate by 2, i.e.,
X = {(1− ϵ, 1− ϵ, 1− ϵ)/2, (1− ϵ+ σ, 1, 1)/2, (1, 1− ϵ− σ, 1)/2, (1, 1, 1− ϵ− σ)/2},
where ϵ = 1

2κd2
and σ = d2ϵ2. The reference point was set to (1, 1, 1). Figure 4.22

shows the results for n = 4 and two settings of κ, namely, for κ = 1 and κ = 100.
Figure 4.22 shows indeed that the uncovered hypervolume ratio is higher than κ
for gHSSD and k = 1. However, the hypervolume ratio is higher than 0.92 and,
as κ grows, the amount of uncovered hypervolume becomes a lot smaller than the
hypervolume indicator of the subsets. Thus, despite the growth of the uncovered
hypervolume ratio, the hypervolume ratio gets even closer to 1. gHSS shows a better
performance in this particular data set than gHSSD, as expected.

Figures 4.23 is analogous to Figure 4.22 but is concerned with the bad data set
for gHSS. The data set used is the one described in the proof of theorem 4.1, but
normalized and translated to the positive orthant. The d = 2 case is considered and
the reference point was set to (1, 1). Figure 4.23 shows the results for n = 3 and
two settings of ε, namely, for ε = 1 and ε = 100. The plots confirm that indeed,
the uncovered hypervolume ratio may grow arbitrarily for gHSS as well. Once
again, although the unconvered ratio visibly grows as ε grows, so does the difference
between the hypervolume of the selected subset in comparison to the uncovered
hypervolume. Consequently, in spite of the high uncovered hypervolume ratio, the
hypervolume ratio is close to 1.

To conclude, both greedy algorithms find good approximations to the HSSP, in
particular for k > 2, although gHSSD seems slightly more stable. Both approaches
were shown to obtain consistently and considerably better approximation ratios
to the HSSP (hypervolume ratio) than their theoretical bounds, even tough the
obtained approximation ratio to the HSSPComplement (uncovered hypervolume
ratio) can grow arbitrarily with any of the two approaches.

4.5.2 Selected Subsets
Figure 4.24 shows the subsets selected with the greedy algorithms, gHSS and gHSSD,
and with the exact algorithm, HypSSP, given k = 1, 2, 3, 4, 10 and the 2-dimensional
linear data set. The subsets selected by HypSSP (middle column) visibly approxi-
mate a uniformly distributed point set. This is expected as the optimal µ-distribution
in a linear front is such that all points are equally spaced. This also means that,
optimal subsets for k and k + 1 are not expected to have points in common (when
k < n/2). Therefore, it is very likely that even if gHSS finds the optimal solution
for k points, it will not be able to find the optimal solution for k + 1 points. For
example, gHSS found the optimal solution for k = 1, but not for k = 2. However,
the points selected by gHSS for k = 2 are in the optimal solution for k = 3 and
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Figure 4.22: The hypervolume indicator, the uncovered hypervolume and the corre-
sponding ratios, respectively, from left to right, for the bad data set for gHSSD, in
d = 3, with n = 4 and two different settings of κ.
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Figure 4.23: The hypervolume indicator, the uncovered hypervolume and the cor-
responding ratios, respectively, from left to right, for the bad data set for gHSS, in
d = 2, with n = 3 and two different settings of ε.
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therefore, gHSS also finds the optimal solution for k = 3 but not for k = 4.
Comparing the subsets selected by gHSS and gHSSD, gHSSD clearly selected a

worse subset for k = 1, and a slightly better one for k = 2 than gHSS did. For
the remaining plotted cases they both found good subsets, i.e., with hypervolume
values close to the optimal ones, and whose distributions become more similar to
the optimal ones as k grows. Figure 4.25 shows the selected subsets for other fronts,
where n = 100 and k = 10, and the conclusions are similar. Both greedy approaches
were able to find more or less well distributed subsets. gHSSD found slightly better
subsets for the convex and the concave data sets, while gHSS found slightly better
subsets for the wave data sets regarding the respective hypervolume indicator values.

Similarly to Figure 4.24, Figure 4.26 shows the selected subsets for k = 1, 2, 3, 4
and 10, but for the d = 3 case on a convex front, and shows the corresponding
volumes. Additionally, Figure 4.27 shows the volume left out by the discarded
points (the uncovered hypervolume). Once more, gHSS and gHSSD sometimes find
non-optimal subsets but these are usually well distributed and the corresponding
hypervolume values are close to that of the optimal subset. Moreover, as k increases,
the greedy subsets become more similar to the optimal one. Figures 4.28 shows
more examples on other fronts, and the observations are similar. In this case, the
hypervolume of the subsets chosen by gHSSD were slightly better than those chosen
by gHSS.

Overall, the results suggest that both greedy approaches are able to find more
or less well distributed subsets with hypervolumes close to the optimal ones, and, in
general, none of them can be said to consistently find better subsets than the other.
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Figure 4.24: Subsets produced by gHSS, HypSSP and gHSSD, respectively, from
left to right, for a 2-dimensional linear front. The selected solutions are represented
as black dots, and the region dominated by them is shaded gray. The corresponding
area is given in the title of each plot. The remaining solutions (blue crosses, ×) are
discarded. The data corresponds to cases where n = 100 and rows from first to last
represent, respectively, k = 1, 2, 3, 4, 10.
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Figure 4.25: Subsets produced by gHSS, HypSSP and gHSSD respectively, from
left to right, for 2-dimensional concave and convex fronts (top two rows), and for
the wave fronts, i.e., mixed convex/concave fronts (bottom two rows). The selected
solutions are represented as black dots, and the region dominated by them is shaded
gray. The corresponding area is given in the title of each plot. The remaining
solutions (blue crosses, ×) are discarded. The data corresponds to cases where
n = 100 and k = 10.
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Figure 4.26: The subsets chosen (with solid volume) by each algorithm from a set
of n = 40 points in a 3-dimensional convex front. The rows represent, from first to
last, the solutions for k = 1, 2, 3, 4, 10. The hypervolume indicator for each subset
is in the upper right corner as well as the name of the algorithm that produced it.
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Figure 4.27: The same as Figure 4.26 but with the contribution of the discarded
points shown in transparent yellow.
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Figure 4.28: The subsets chosen by each algorithm in 3-dimensional fronts. The
data in the first two rows correspond to the concave front, where n = 40 and
k = 10. The top row shows the subsets chosen with solid volume, and the bottom
row shows, in addition, the contribution of the discarded points with transparent
yellow. Analogously, the bottom last rows correspond to the linear front, where
n = 20 and k = 5. The hypervolume indicator for each subset is in the upper right
corner as well as the name of the algorithm that produced it.
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4.5.3 Runtime
Figure 4.29 and 4.30 shows the behaviour of gHSS2D, gHSS3D and gHSSD3D (using
HVC3D-U) for different settings of n and k. The average runtimes of 13 runs on
the convex and degenerate fronts (the latter only for the algorithms for the d = 3
case) are depicted (other fronts produced similar results to those on the convex data
set). Figures 4.29(a) and 4.29(d) clearly show the quadratic growth of the runtime
of all algorithms for growing set size n and k = n/2. Still, selecting k = 5000 out of
n = 10000 points on the convex data set was performed in less than 1 second in 2
dimensions, and, at most, in 2 seconds in the 3-dimensional case, where gHSSD3D
took about 1 second and gHSS3D took about 2 seconds. On the degenerate data
set, the performance of gHSSD3D was similar, but gHSS3D performed worse, where
selecting half of n = 10000 required about 5 seconds.
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Figure 4.29: Runtime of gHSS2D, gHSS3D and gHSSD3D for the convex (first
row) and the degenerate (second row) data sets for: varying n and k (first column);
varying n and a fixed k (second column); and a fixed n and varying k (third column).

The second column of plots (Figures 4.29(b) and 4.29(e)) shows the runtime for
growing set size n and fixed k = 500. Regarding gHSS2D and gHSS3D, although
runtimes appear to grow slightly faster than linearly for small n, for n > 3000, the
runtime growth of both algorithm is essentially linear. The same can be observed
for growing subset size k and fixed n = 10000, in the third column of plots (Fig-
ures 4.29(c) and 4.29(f)). The observed runtimes are in agreement with their time
complexity of O(n(k + logn)). Regarding gHSSD3D, its runtime growth when k is
fixed, in the second column of plots, is essentially quadratic. When n is fixed, in the
third column of plots, contrary to the other algorithms and the other settings of n
and k, the runtime of gHSSD3D decreases as k grows. The behavior of gHSSD3D
in these plots is in agreement with its time-complexity of O(n(n−k+ logn)), which
has a quadratic growth of the runtime with increasing n, and a decreasing runtime
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with growing k and fixed n.
Seeing gHSS be faster for smaller values of k and gHSSD be faster for higher

values of k was expected due to each one’s incremental/decremental nature. Fig-
ures 4.29 and 4.30 set a threshold on the value of k with respect to n, from which
one algorithm is faster than the other, in the d = 3 case. Namely, gHSSD3D is faster
for k > n

3
and k > n

8
for the convex and the degenerate data set, respectively. The

reason why the threshold is not always very close to n
2
as could be expected, may

be explained by the additional overhead gHSS3D has in comparison to gHSSD3D.
Firstly, regarding the update procedure, gHSS3D has to repeat it three times con-
sidering a different objective order each time, while gHSSD3D only needs to sweep
points once. Secondly, in the decremental case (gHSSD3D), a point is discarded at
each iteration and once that happens, that point is not needed anymore, and thus
is not visited again, while in the incremental case (gHSS3D), all points have to be
visited everytime a new point is selected, because every point is either not selected
yet and its contribution has to be updated, or it is a selected point and it may be
needed to delimit the contributions of the other points. Therefore, gHSS3D works
with a constant number of points in every iteration of the algorithms main loop,
while gHSSD3D works with a decreasing number of points.

1000 10000
number of points (n)

0.001

0.01

0.1

1

10

se
co

n
d
s

gHSSD3D
gHSS3D
gHSS2D

(a) convex, k = n
4

1000 10000
number of points (n)

0.001

0.01

0.1

1

10

se
co

n
d
s

gHSSD3D
gHSS3D
gHSS2D

(b) convex, k = n
2

1000 10000
number of points (n)

0.001

0.01

0.1

1

10

se
co

n
d
s

gHSSD3D
gHSS3D
gHSS2D

(c) convex, k = 3n
4

1000 10000
number of points (n)

0.001

0.01

0.1

1

10

se
co

n
d
s

gHSSD3D
gHSS3D

(d) degenerate, k = n
4

1000 10000
number of points (n)

0.001

0.01

0.1

1

10

se
co

n
d
s

gHSSD3D
gHSS3D

(e) degenerate, k = n
2

1000 10000
number of points (n)

0.001

0.01

0.1

1

10

se
co

n
d
s

gHSSD3D
gHSS3D

(f) degenerate, k = 3n
4

Figure 4.30: The runtime of gHSS2D, gHSS3D and gHSSD3D for the convex (first
row) and the degenerate (second row) data set. Each column represents a different
setting of k. From left to right, k is n

4
, n

2
and 3n

4
, respectively.

Figure 4.30 shows the performance of gHSS2D, gHSS3D and gHSSD3D for grow-
ing n and k, where k is set to either n

4
, n

2
or 3n

4
. These plots shows that the smaller

the ratio n
k
is, the faster gHSSD3D is in comparison to gHSS3D. As observed previ-

ously, gHSS3D only outperforms gHSSD3D on the convex front and with small k,
in this case, for k = n

4
. In the remaining cases, gHSSD3D runs up to 20 times faster

than gHSS3D, and is faster even when compared to gHSS2D on the convex data set,
when k = 3n

4
.
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The very small amount of time spent by the greedy algorithms with n set to a
few hundred of solutions is very appealing for environmental selection in EMOAs.
In a typical scenario such as a population of µ = 200 individuals and λ = µ offspring,
each environmental selection step should not require more than 10−2 seconds with
either gHSS3D or gHSSD3D, as can be inferred from Figures 4.30(b) and 4.30(e).
The runtime is expected to be even smaller because it is not likely that all µ + λ
individuals are consistently nondominated.

To conclude, both gHSS3D and gHSSD3D are very fast in practice, especially
when compared to the amount of time that an algorithm to compute HSSP exactly
would require. Depending on the particular setting of n and k, one can be more
advantageous than the other with respect to runtime. For growing n and fixed
k, gHSSD3D shows a quadratic behavior while gHSS shows almost linear behav-
ior and therefore, gHSS3D is more advantageous than gHSSD3D in such scenario.
Otherwise, gHSSD3D is preferable to gHSS3D unless k is very small compared to n.

4.5.4 Remarks on the Greedy Algorithms

In Section 4.3, the decremental greedy algorithm was shown to provide a (k/n)-
approximation to the optimal solution of the HSSP, and new instances for d = 3, 4
were proposed. The new algorithms gHSSD3D and gHSSD4D have a worst-case
time complexity of O(n(n− k) + n logn) and O(n2(n− k)), respectively, and both
improve the state-of-the-art algorithms by a logn factor. In Section 4.4, incremental
greedy algorithms for the HSSP in two (gHSS2D) and three (gHSS3D) dimensions
were proposed, providing a (1− 1/e)-approximation to the optimal solution in each
case. Both of them have a worst-case time complexity of O(n(k + logn)), which
is better than other incremental greedy instances based on iterating over existing
algorithms to compute the OneContribution problem (see Section 3.4.5).

The two-dimensional version of the incremental greedy algorithm, gHSS2D, has
a worst-case time complexity similar to the complexity of exact algorithms for the
same problem [37, 100]. However, it does have the advantage of being very simple to
implement and very fast in practice. The time complexity of the three-dimensional
version, on the other hand, and of gHSSD3D as well, is considerably lower than
that of the corresponding exact algorithms, which are nO(

√
k) (see [C6]), and Ω(n3)

due to the Ω(n3) constraints in the ILP formulation (see [C4]). Moreover, the
greedy algorithms are more memory efficient, requiring only O(n) space. In the
four-dimensional case, the difference in the time complexities is even more evident
when comparing that of gHSSD4D with the O(n2 logn + nn−k) time complexity of
the only known exact algorithm (see [C1]).

Regarding the quality of the approximation, the results obtained experimentally
with gHSS (and even with gHSSD) were much better than the guaranteed approx-
imation factor, staying within at least 0.89 of the optimal values, in comparison
to the theoretical (1 − 1/e) ≃ 0.63212. Although the approximation guarantee of
k/n of the decremental counterpart is poor for small values of k, the experimental
results suggest that this ratio is far from being tight as the observed ratio stayed
within at least 0.82. Despite the known approximation guarantees, both approaches
provided good approximations. Regarding runtime, the former was shown to be
more advantageous for smaller values of k and the latter for greater values of k.
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The theoretical and experimental results show that the new algorithms, for both
approaches, should provide an interesting alternative to much more computationally
expensive exact algorithms for hypervolume-based multiobjective selection and/or
archiving in the three-objective case. Moreover, the proposed algorithms are suited
for post-processing evaluation of EMOAs (fixed k and variable n scenario), particu-
larly the incremental greedy one, providing bounds on the hypervolume of the best
subset of k solutions among all solutions generated by the EMOA up to given points
in its execution. In this case, such bounds could be updated in O((n+m)k+m logm)
whenm new solutions are added to an existing set of n previously processed solutions.

From an algorithmic perspective, the algorithms for the three dimensional case
are the most relevant as they can avoid recomputing everything from scratch. It
is important to highlight that the usefulness of the update procedures in gHSS3D
and gHSSD3D (i.e., the HVC3D+) is not restricted to the incremental/decremental
greedy approaches. Those update procedures are independent of the order in which
points are selected/discarded, implying that they can be used in other scenarios,
and can even be combined and used to add and to discard points arbitrarily, which
could be useful for other types of greedy algorithms, for example.

4.6 Greedy Hypervolume-based Archiving Algo-
rithms

Recall from Chapter 3.3 that a (µ + λ) Hypervolume-based archiving algorithm
(or (µ + λ) Hypervolume-based archiver) purpose is to be consecutively used in an
EMOA to perform environmental selection. It is used to select the µ solutions of
the next population given the solutions in the µ-sized parent population and the
λ-sized offspring set, and seeks the maximization of the hypervolume indicator of
the selected µ-sized subset. An exact algorithm for the HSSP used for this purpose
(given k = µ) is classified as a locally optimal archiving algorithm. A decremental
greedy subset-selection algorithm (gHSSD) by itself, is classified as a (decremental)
greedy archiving algorithm. Analogously, an incremental greedy subset-selection
algorithm (gHSS), by itself, is here classified as an incremental greedy archiving
algorithm. The latter two, in general, do not guarantee that the hypervolume of
the new population is better than that of the parent population. However, greedy
algorithms can also be used in combination with the broader class of nondecreasing
archiving algorithms, which provide such guarantee. A nondecreasing archiving
algorithm (see Algorithm 4.10) uses an auxiliary algorithm to select a subset of µ
solutions (see line 1), such as a greedy algorithm, and only accepts that subset if
its hypervolume indicator is not lower than that of the parent population. Let us
call an instance of Algorithm 4.10 where gHSSD is used in line 1 as nondecreasing
decremental greedy archiving algorithm, and as nondecreasing incremental greedy
archiving algorithm, if gHSS is used instead.

The studies on effectiveness and competitiveness allow to learn the limitations
and guarantees that an archiving algorithm (or archiver, for short) provides to an
EMOA that uses it for (environmental) selection, despite the variation operators it
may use. These studies can show whether an archiving algorithm stands any chance
of ending up finding an optimal µ-sized subset for the HSSP, whatever is the ini-
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Algorithm 4.10 General nondecreasing archiving algorithm
Require: P // Population with size µ

Require: Q // Offspring set with size λ

1: P′ ← subsetSelection(P ∪Q, µ)
2: if H(P′) ≥ H(P) then
3: P← P′

4: return P

tial population. If not, they may be able to state how close it can get (study of
effectiveness). They can also show whether an unlucky sequence of offspring may
dictate the loss of important points, and how adverse can that be (study of compet-
itiveness). If the archiver’s guarantees and limitations are known, then, regardless
of the variation operators chosen, it is also known that the algorithms are expected
to perform better/worse than certain established bounds.

Note that the theoretical studies on effectiveness and competitiveness do not
completely capture the dynamics of an Hypervolume-based EMOA as it is subject
to variation operators that typically delimit the neighborhood of the current popu-
lation, and consequently, the offspring population. Moreover, since these theoretical
studies cover any possible problem instance, the bounds may not be tight for many
of them. For example, in effectiveness studies, having a single initial population for
which there is not a sequence of offspring such that the archiving algorithm is able
to reach the optimal solution, is enough to say that it is not effective. However, this
may be just a particular initial population among many for which there is such a
sequence. On the other hand, the existence of a sequence for which the archiving
algorithm is effective, does not ensure that, in practice, it can be generated, as the
generation of sequences will be restricted by variation operators. Competitive analy-
sis can be more informative in the sense that it may allow us to say that, whichever
the initial population and offspring sequence (and thus, variation operators), then
a certain quality guarantee is always achieved. Despite the (possibly) limited con-
clusions that may be drawn from these theoretical studies regarding effectiveness
and competitiveness, they are an important first step to understanding archiving
algorithms.

In this Section, the greedy and exact archiving algorithms are tested on different
fronts and different settings of µ and λ and, when possible, the experimental results
are compared to the known theoretical ones.

4.6.1 Convergence Quality
In the study by Knowles et al. [98], the (µ + 1)-locally optimal hypervolume-based
archiving algorithm was studied by observing the hypervolume of the last archive
for 30 permutations of a sequence of m mutually nondominated points. That is,
the sequence of m points is used to simulate the environmental selection, where
the first µ points compose the initial population, and the remaining ones compose a
sequence of λ-sized chunks, which represent a sequence of offspring sets. Repeatedly,
the archiving algorithm takes the current population and the new offspring set, and
selects µ points to compose the new population. That study was restricted to small
sequences of, at most, m = 200 points and µ was between 10% and 90% of m. With
the current state-of-the-art algorithms, this study can now be extended for λ > 1, for
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bigger sequences and populations, and include a comparison to the optimal µ-sized
subset to the HSSP given the m points (in the d = 2 case). In particular, the case
of λ = µ for which the locally optimal archiver is effective can be tested. Moreover,
the greedy and the locally optimal archiving algorithms can be compared.

A similar study to that in Knowles et al. [98] is provided here for the archiving
algorithms based on the incremental and decremental greedy subset-selection algo-
rithms, gHSS and gHSSD, respectively. When possible, these are compared against
a (locally optimal) archiving algorithm using an exact algorithm for the HSSP. The
intention of this study is to get an insight into how well the greedy archivers are
able to keep the best solutions compared to one another and to a locally optimal
archiver for different settings of µ and λ.

Note that, in theory, no nondecreasing (µ+λ)-archiver is expected to consistently
retain the best subset among all solutions seen (see Section 3.3.2). Moreover, only
the increasing archivers (which include locally optimal archivers) such that λ ≥ µ,
are effective, i.e., there is at least a sequence of offspring that allows the archiver
to achieve the global optimum subset. The following study also allow us to observe
how close or detached the theory is from the average performance of the archivers.
For example, to check if known bounds are, in general, tight, or whether they are
too attached to a particular sequence and that in practice the algorithm consistently
performs better/worse.

Experimental Setup

Five types of archiving algorithms were tested: a locally optimal, an incremental
greedy, a nondecreasing incremental greedy, a decremental greedy, and a nondecreas-
ing decremental greedy archiving algorithm. In the plots, the archiving algorithms
will be identified by the name of the subset-selection algorithm used, i.e., the locally
optimal one is identified by HypSSP (only for the d = 2 case), and the incremental
and decremental greedy ones are identified by gHSS and gHSSD, respectively. For
the nondecreasing version of the greedy archiving algorithms, the algorithm used
will be proceeded by “-ND”, i.e., gHSS-ND and gHSSD-ND.

Several data sets (see Section 3.5) for the d = 2 and d = 3 cases were used,
and for each one, a sequence of m = 105 (nondominated) points was randomly
generated. For each data set, 30 permutations of the original sequence were con-
sidered. Every combination of an archiver and a parameter setting (of µ and λ)
was tested on the same 30 sequence permutations. Therefore, any two archivers
using the same setting for µ and λ, visit points exactly in the same sequence of
chunks of points. The parameter setting considered were: µ ∈ {10, 100, 200, 500}
and λ ∈ {1, ⌊µ

4
⌋, µ

2
, µ, 2µ, 4µ, 10µ}. For d = 3, running ILP just for m = 50 would

take hours and because preliminary experiments showed that results for small values
of m, µ and λ did not provide additional relevant information, only the results for
the greedy archivers are presented in that case.

Plots

Figures 4.31 and 4.32 show the results in the d = 2 case for the concave and the
wave-2 data sets, respectively. Each plot refers to an archiving algorithm, and shows
the boxplots for the hypervolume ratio between the hypervolume indicator of the
final archive, and the optimal µ-sized subset for the HSSP given the set of all m
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points. The exception is the boxplots marked with “*” in the x-axis, which refer to
the hypervolume ratio of the subset selected by the subset-selection algorithm used
within the archiving algorithm, given the set of all m points. Figure 4.33 shows the
results for the convex data set in the d = 3 case. In this case, with the absence of
the optimal subsets, only the results for the greedy algorithms are shown and the y-
axis represents the hypervolume indicator and not the hypervolume ratio. However,
recall that gHSSD is exact for λ = 1 and so it can somehow be used as reference.

Exact subset selection: For each value of µ, the locally optimal archiver (see
HypSSP) performed better than all greedy archivers, independently of their λ setting.
This is observed both for the average ratio which is higher with the locally optimal
archiver, and for the ratio variation which is smaller than for most greedy archivers.
As expected in this case, the larger is λ (with fixed µ), the more accurate the archiver
is.

Increasing µ: As µ increases, all archiving algorithms became more accurate, i.e.,
achieve better hypervolume ratios and vary less (note that, in spite of the box size
in the figures, from the top row to the bottom row, as µ grows, the range of the
y-axis gets smaller). For example, in Figure 4.31, for µ equal to 10, 100, 200, and
500, all algorithms achieve a ratio higher than 0.9860, 0.9986, 0.9993, and 0.9998,
respectively.

Increasing λ: In general, greater values of λ were only (slightly) better for the
locally optimal archiver (see HypSSP). For the two greedy decremental archivers (see
gHSSD and gHSSD-ND), the results were better for smaller values of λ. The same
is observed for the nondecreasing incremental greedy archiver (see gHSS-ND) in the
d = 2 case, whereas in the d = 3 case, in most settings of µ the approximation quality
achieved decreases as λ increases up to 2·µ, and improves as λ grows from that value
up to 10 · µ. The incremental greedy archiver (see gHSS), is the most consistent
archiver of all, as changing λ barely affects the quality of the final populations. In
most cases, the most advantageous setting of λ for the greedy archivers was λ = 1,
even with the incremental greedy ones (see gHSS). This observation was expected
for the decremental greedy archivers (see gHSSD).

Nondecreasing vs (possibly) decreasing: In most cases, the nondecreasing
version of greedy archivers (see gHSS-ND and gHSSD-ND) performed better for
the same settings of µ and λ. The nondecreasing version (see gHSS-ND) of the
incremental greedy archiver (see gHSS) is not as consistent across different settings
of λ as the later, particularly in the d = 2 case.

Incremental greedy vs decremental greedy: The known approximation ra-
tios for gHSS and gHSSD, of (1 − 1/e) and k/n, respectively, provide a better
guarantee by gHSS for greater values of λ (i.e., small k), and a better guarantee by
gHSSD for smaller values of λ. Despite this, in most cases the decremental greedy
archiver (see gHSSD) produced better results than the incremental one (see gHSS)
for the same setting of µ and λ. This is also observed for the nondecreasing versions.
Among all, the nondecreasing decremental greedy archive (see gHSSD-ND) was the
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one that more consistently produced better results than the other greedy archivers,
particularly with λ = 1.

Final greedy archive vs overall greedy solution: An interesting results is that,
comparing to the overall greedy solution of gHSSD given the set of m points (labeled
with * in the plots), the final populations of the two decremental greedy archives (see
gHSSD and gHSSD-ND) were better in most cases. Similar observations can be made
for the greedy solution of gHSS when compared to the nondecreasing incremental
greedy archiver (see gHSS-ND). This indicates that these greedy algorithms tend
to find better subsets if they update the greedy solution as they receive point in
sequences of small chunks (particularly if λ < µ), than if the whole point set is
known in advance.

Relating with theory: The result on competitiveness sets a lower bound that can
be directly observed/confirmed in the experiments performed. The locally optimal
(see HypSSP) archiver is µ-competitive. Therefore, it was known beforehand that
the hypervolume ratio achieved by this archiving algorithm in the experiments was,
at least, 1

µ
. For example, for µ = 10 and µ = 500, the minimum hypervolume ratio

guaranteed is 0.1 and 0.002, respectively. This is confirmed and is extremely far from
the hypervolume ratios observed which were higher than 0.99 in all cases. Moreover,
the hypervolume ratios observed for the nondecreasing greedy archivers were higher
than 0.96 in all cases, even though there is no (1.1338− 0.1338/µ− ϵ)-competitive
nondecreasing archiver, which means that, for large µ, there is at least one case for
which the nondecreasing archiver cannot achieve a ratio of 0.75.

The results presented show that there are slight differences in using an exact al-
gorithm for the HSSP, or an incremental/decremental greedy algorithm to approx-
imate the HSSP, within archiving algorithms. Although using an exact algorithm
clearly outperforms the use of a greedy one, they all achieve absolute ratios values
very close to 1, especially as µ grows. Nevertheless, the results indicate that, an
exact algorithm for the HSSP should always be preferred (when an efficient one is
available) to a greedy one independently of the setting of λ to be used, although
one with λ ≥ µ (for which the archiver is effective) is preferable. In particular, the
experiments indicate that using an exact algorithm in a steady-state setting (λ = 1),
such as in SMS-EMOA, should be preferable to using a greedy algorithm with any
setting of λ, including in a generational (λ = µ) setting. For λ > 1, and in the
absence of an efficient exact algorithm, greedy algorithms are a good alternative,
especially within a nondecreasing version of the archiver. In particular, the non-
decreasing decremental greedy archiving algorithm showed slightly better results,
especially for λ ≤ µ, where the smaller λ is, the better.

Note that the above conclusions/recommendations are based on the observed
capability of the archiving algorithms to retain good solutions given the same initial
population and sequence of offspring sets. However, these experiments do not cover
the dynamics of EMOAs introduced, for example, by the variation operators. In
combination with the archiver, these will influence the solutions that will be gen-
erated, and EMOA convergence. Consequently, EMOAs using different archiving
algorithms will very likely generate different solutions, and in different sequences,
even if the initial population, µ, and λ are the same. Moreover, it will not always
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Figure 4.31: Results for 30 permutation sequences of m = 105 points on the concave
data set in the d = 2 case. The title in each plot indicates the name of the subset-
selection algorithm and, in parenthesis, the value of µ used (a different one per
each row). The y-axis indicates the hypervolume ratio between the hypervolume
indicator of the final archive and the optimal µ-sized subset for the HSSP given the
m points. The x-axis indicates the values of λ used or an asterisk (“*”) referring to
the µ-sized subset selected by the respective algorithm given the set of all m points.
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Figure 4.32: These boxplots are analogous to those in Figure 4.31 but with respect
to the wave-2 data set in the d = 2 case.
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Figure 4.33: These boxplots are similar to those in Figure 4.31 but refer to the
convex data set in the d = 3 case, and the y-axis indicate the hypervolume indicator
instead of the hypervolume ratio.
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be the case that the union of the µ individuals and the λ offspring will all be non-
dominated, particularly in the earlier stages of the evolution. Therefore, there will
be less than µ+ λ solutions to choose from.

Finally, the experiments indicate that the theoretical results, although important
for understanding the archivers under extreme situations, may be very far from most
of practical cases.

4.7 Concluding Remarks
Computational problems related to the hypervolume indicator frequently arise in
connection with the design, implementation, and experimental evaluation of evo-
lutionary algorithms and other metaheuristics for multiobjective optimization. Ar-
guably, the development of algorithms for such problems in the literature has taken
three main directions to date, one aiming for algorithms that are fast in practice, es-
pecially for large numbers of objectives, a second one focusing on algorithm complex-
ity in relation to the number of objectives, and a third directed at low-dimensional
cases. The last direction typically encompasses two and three objectives, with occa-
sional incursions into four objectives, which remain the most common use cases in
multiobjective optimization in spite of growing interest in so-called many-objective
optimization, and for which it has been possible to develop algorithms that are both
asymptotically efficient, or even optimal, and very fast in practice.

In this chapter, new algorithms for the computation and update of hypervolume
contributions were developed by building upon existing algorithmic approaches to
the computation of the hypervolume indicator in three and four dimensions. A
novel O(n logn)-time preprocessing step for the three-dimensional case was the key
ingredient in the development of O(n)-time algorithms for the subsequent computa-
tion of Hypervolume, OneContribution and AllContributions, as well as
for the corresponding UpdateHypervolume and UpdateAllContributions
problems in three dimensions, even under reference point changes. As a direct re-
sult, a novel algorithm for AllContributions in four dimensions was obtained,
and a new time complexity upper bound of O(n2) was established for this problem.
Using the proposed algorithms, the decremental greedy approximation to the HSSP
(and an exact solution to the HSSP in the k = n − 1 case) can now be computed
in O(n(n − k) + n logn) and O(n2(n − k)) time, in three and four dimensions, re-
spectively. The experimental results obtained indicate that the better complexity
bounds achieved by the proposed algorithms do translate into considerable speed-ups
in practice. Following the same principle of developing efficient algorithms aimed at
low dimensions, O(n(k+ logn)) time algorithms for the incremental greedy approx-
imation to the HSSP in the d = 2, 3 cases were proposed.

Although neither the incremental nor the decremental greedy approaches provide
an approximation ratio to the HSSPComplement, they do provide an approxima-
tion ratio to the HSSP of (1 − 1/e) and k/n, respectively, and in the experiments
they performed much better than these approximation ratios. EMOA simulations
where these greedy algorithms where used within archiving algorithms for environ-
mental selection also showed promising results. These observations and the runtime
performance of the new greedy algorithms indicate that these approaches may be
good alternatives to the very expensive exact algorithms for the HSSP, and may
be adequate for environmental selection in EMOAs. In fact, since the decremental
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greedy approach is optimal for k = n − 1, the new algorithms provide a speed up
on the exact computation of HSSP in this case. The steady-state SMS-EMOA di-
rectly benefits from these speed-ups, and in d = 3 can benefit even more by taking
advantage of HVC3D+ to efficiently update the contributions of the individuals.

The usefulness of the proposed algorithms goes beyond decremental/incremental
greedy selection and beyond environmental selection. For example, with efficient al-
gorithms to compute AllContributions, these can be used for fitness assignment.
Another example is the fact that the developed algorithms for updating contributions
have already been useful in the proposal of the first branch-and-bound algorithm
for the HSSP [75, 76].
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Chapter 5

Portfolio Selection

The previous chapter was focused on the view of environmental selection in EAs
as a subset selection problem. That work was aimed at addressing the limitations
of one of the most popular methods for that purpose, the theoretically supported
hypervolume indicator. This chapter takes a step back to rethink environmental
selection, fitness assignment and DM preference integration as a portfolio selection
problem (PSP), of which subset selection is a particular case. This new view started
with the work by Yevseyeva et al. [133], and was materialized as a new indicator.
Such work opened a path for a class of indicators modeled after portfolio selection
problems, facilitating the expression of preferences, possibly without requiring as
much computational effort as the hypervolume indicator. The mathematical formu-
lation and the initial results let anticipate a new type of theoretically supported
indicators.

The Hypervolume Sharpe-Ratio (HSR) indicator [133, 82] consists of maximizing
the Sharpe ratio of a PSP resulting from a particular way of modeling uncertainty
with respect to unknown DM preferences over the objective space. Other methods
for modeling uncertainty would result in different indicators. Therefore, a class of
Sharpe-ratio indicators can be formalized, and each uncertainty model results in a
new instance of such a class. This chapter has two main goals. The first goal is
to study the HSR indicator mainly theoretically but also experimentally, providing
tools for the theoretical study of Sharpe ratio-based indicators. The second goal
is to explore different instances of the Sharpe-ratio class by considering models
expressed by different preference relations, in order to account for problems other
then traditional (unconstrained) multiobjective optimization problems.

This chapter begins with the formalization of the class of Sharpe-ratio indicators
(Section 5.2). The indicator proposed in the original paper [133] is then presented
as an instance of this class in Section 5.3. Then, first-order necessary optimality
(or Karush-Kuhn-Tucker) conditions are used to prove some theoretical properties
of the HSR indicator in Section 5.4, while other characteristics of the indicator
are only empirically studied in Section 5.5. The results are compared against the
hypervolume indicator. The last two sections are dedicated to two new Sharpe-ratio
indicator instances which extend the HSR indicator in two different ways. These
extensions are aimed at covering two types of problems not contemplated by the HSR
indicator namely set-valued optimization problems (in Section 5.6) and constrained
multiobjective optimization problems (in Section 5.7).
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5.1 Notation
Throughout the text, subscripts are used to refer to coordinates of points or vectors
(e.g., ai denotes the ith coordinate of vector/point a ∈ Rd), whereas bracketed
superscripts will be used for enumeration (e.g., a(1), a(2), a(3) ∈ Rd). Moreover, in
this chapter, the asterisk (“*”) is used to denote optimality of a point (vector) or of
a point set, which is different from the previous two chapters.

5.2 Sharpe-Ratio Indicator
The return of a solution depends on the DM preferences. As typically these prefer-
ences are not fully known, probabilistic models can be used to describe the associated
uncertainty, such as the one described in Section 2.4.5. In general, different models
of preference uncertainty lead to different random returns and, thus, to different al-
locations of investment when the Sharpe ratio is maximized (Problem 2.2). A broad
class of indicators based on the Sharpe ratio can be defined as follows:

Definition 5.1 (Sharpe-Ratio Indicator). Given a non-empty set of assets A =
{a(1), . . . , a(n)}, the corresponding expected return, r, and covariance matrix, Q, the
Sharpe-ratio indicator is given by

ISR(A) = max
x∈Ω

hA(x) (5.1)

where Ω ⊂ [0, 1]n is the set of investment vectors that satisfy the constraints of
Problem 2.2.

Note that the Sharpe-ratio indicator simultaneously evaluates the quality of a
set in terms of a scalar, ISR(·), and, as a by-product, the relative importance of each
solution in the set through the optimal investment vector x∗.

5.3 Hypervolume Sharpe-Ratio Indicator (HSR)
Let the Sharpe ratio hA(x) for the set of solutions A where r and Q are defined as
in (2.11) be represented by hA

HSR(x, l, u), and similarly for gA(y) and gA
HSR(y, l, u).

Analogously to the Sharpe-ratio indicator, the Hypervolume Sharpe-Ratio (HSR)
indicator is formally defined as follows:

Definition 5.2 (Hypervolume Sharpe-Ratio Indicator). Given a non-empty
point set A = {a(1), . . . , a(n)} ⊂ Rd, the points l, u ∈ Rd such that l ≪ u, the
expected return p and the covariance Q computed as in (2.11), the hypervolume
Sharpe-ratio indicator IHSR(A, l, u) is given by:

IHSR(A, l, u) = max
x∈Ω

hA
HSR(x, l, u) (5.2)

where Ω ⊂ [0, 1]n is the set of investment vectors that satisfy the constraints of
Problem 2.2.
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5.3.1 Mathematical Analysis of the HSR Indicator
Computing the HSR indicator amounts to solving a convex quadratic programming
problem (Problem 2.3). Furthermore, as Yevseyeva et al. [133] point out, it follows
from the definition of qij that the return of the riskless asset under this model
must be rf = 0. Consequently, Problem 2.3 may be simplified by noting that
constraint (2.10b) must always be satisfied. Therefore, the following is true for any
feasible vector y:

yTQy =
n∑

i=1

n∑
j=1

pijyiyj −
n∑

i=1

piyi

n∑
j=1

pjyj =
n∑

i=1

n∑
j=1

pijyiyj − 1 = yTPy − 1 (5.3)

Note that this simplification applies to any model of preference uncertainty as long
as rf = 0. Under these conditions, and adopting the notation and conventions of
Nocedal and Wright [112], Problem 2.3 can be restated as follows:

Problem 5.1 (Sharpe-Ratio Maximization – Alternative QP formulation).

min
y∈Rn

yTPy (5.4a)

subject to c1(y) =
n∑

i=1

piyi − 1 = 0 (5.4b)

ci+1(y) = yi ≥ 0, i = 1, . . . , n (5.4c)

This problem can be analyzed using the classical first-order necessary optimality
conditions, or Karush-Kuhn-Tucker (KKT) conditions [112, p. 321]. Clearly, the
objective function yTPy and all constraints are continuously differentiable. Since
all constraints are linear, all active constraints must also be linear, which is a suit-
able constraint qualification [112, p. 338f]. The KKT conditions state that, if y∗ is
a locally optimal solution, and the above conditions hold, then there is a Lagrange
multiplier vector λ∗ such that all components associated with inactive constraints
are zero (complementarity condition), and all components associated with inequal-
ity constraints are nonnegative. Moreover, the gradient with respect to y of the
Lagrangian function at y∗ is zero. This is denoted by ∇yL(y∗, λ∗) = 0.

The Lagrangian function for Problem 5.1 is:

L(y, λ) = yTPy − λ1(p
Ty − 1)−

n∑
i=1

λi+1yi (5.5)

and the corresponding partial derivatives with respect to yk, k = 1, . . . , n, are:

∂L(y, λ)
∂yk

= 2
n∑

i=1

pkiyi − pkλ1 − λk+1 (5.6)

Finally, note that Problems 2.3 and 5.1 have exactly the same optimal solution(s)
by construction. Since Problem 2.3 is a convex quadratic programming problem,
the KKT conditions are sufficient for a globally minimal solution, and the solution
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is unique if Q is positive definite [112, p. 464f]. By computing the gradient of the
Lagrangian function of Problem 2.3 and noting that pTy = 1 as in expression (5.3),
it can be easily shown that any solution satisfying the KKT conditions of either
problem also satisfies the KKT conditions of the other problem. Even though the
value of Lagrange multiplier λ1 is not the same in both cases, this is of no consequence
as this multiplier is associated with an equality constraint. Therefore, the KKT
conditions are also sufficient for a global solution of Problem 5.1.

5.4 Properties of the HSR Indicator
The rich mathematical structure of the HSR indicator allows its properties to be
rigorously investigated. In the following, the optimal investment is shown to be
invariant to the setting of the lower reference point l under certain (mild) conditions,
but not to the setting of u. Varying l can also be interpreted as applying certain
linear transformations to the objective space, under which the indicator is scaling
independent. Weak ⪯-monotonicity and strict ≺·-monotonicity of the HSR indicator
are then proved. The derivation of the optimal µ-distributions on two-objective
linear fronts concludes the present analysis.

5.4.1 Reference Points and Linear Scaling
The upper reference point, u, can have a significant impact in the HSR indicator.
Note that the optimal (and only possible) allocation of investment to a single-point
set is given by x = (x1) = 1, and that the corresponding value of the HSR indicator
is
√

p1/(1− p1). Consequently, the higher p1, the higher the indicator value.
As an example, consider two single-point sets A = {(1, 2)T} and B = {(2, 1)T},

and a lower reference point, l = (0, 0)T . Setting the upper reference point u = (3, 4)T ,
pA
1 = 1/3 and pB1 = 1/4, which means that IHSR(A, l, u) > IHSR(B, l, u). However,

if the upper reference point is set to u′ = (4, 3)T instead, then IHSR(A, l, u′) <
IHSR(B, l, u′). Consequently, the upper reference point affects both the values of
the HSR indicator and the order imposed by this indicator on sets. As it will be
seen in Subsection 5.4.3, the choice of the upper reference point generally affects the
optimal investment, as well.

In contrast, the location of the lower reference point, l, can be shown to have
no effect on the optimal investment in a non-empty point set A ⊂ Rd as long as u
remains unchanged, and a ∈ [l, u[ = {x ∈ Rd | l ≤ x ≪ u} holds true for all a ∈ A.
Moving l subject to these conditions is equivalent to applying a linear transformation
to the objective space, with u as the center of the transformation. Thus, in practice,
only one parameter of the HSR indicator needs to be set (the upper reference point,
u). Formally:

Theorem 5.1. Let A ⊂ Rd be a non-empty point set, let l, u ∈ Rd be two reference
points such that ∀a∈A, l ≤ a≪ u, and let x∗ ∈ [0, 1]n be such that

∑n
i=1 x

∗
i = 1 and

IHSR(A, l, u) = hA
HSR(x

∗, l, u). If l′ ∈ Rd is such that {l′} ⪯ A, then x∗ also satisfies
IHSR(A, l′, u) = hA

HSR(x
∗, l′, u).

Proof. Recall expression (2.11a) for the value of pij(l, u) given a point set A =
{a(1), . . . , a(n)} ⊂ Rd, and let p(l, u) = [pii(l, u)]n×1 and P (l, u) = [pij(l, u)]n×n,
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where i, j = 1, . . . , n, as before. P (l′, u) can be related to P (l, u) in the following
way:

P (l′, u) =
v

v′
P (l, u) (5.7)

where v = Λ([l, u]) and v′ = Λ([l′, u]), and similarly for p(l′, u) and p(l, u).
Consider an instance of Problem 2.3 where rf = 0, r = p(l′, u) and Q = P (l′, u)−

p(l′, u)p(l′, u)T , and let y′ denote the vector of decision variables of that instance.
Equality constraint (2.10b) can be rewritten as:

p(l′, u)Ty′ = 1 ⇔
v

v′
p(l, u)Ty′ = 1 ⇔

p(l, u)Ty = 1

(5.8)

by performing the change of variable y = y′v/v′. Similarly, with the same change of
variable and the simplification pointed out in (5.3), the objective function (2.10a)
can be rewritten as:

gA
HSR(y

′, l′, u) = y′
T
P (l′, u)y′ − 1

= y′
T v

v′
P (l, u)y′ − 1

=
v′

v
yTP (l, u)y − 1

=
v′

v
gA

HSR(y, l, u) +
v′

v
− 1

(5.9)

Since v′/v is positive, and the constraints on y and y′ are equivalent, the constrained
optimal solution y′∗ of gA

HSR(y
′, l′, u) can be obtained from the constrained optimal

solution y∗ of gA
HSR(y, l, u) simply by reverting the change of variable, i.e., y′∗ =

y∗v′/v. Consequently, the optimal investment vector

x∗ =
y∗∑n
i=1 y

∗
i

=
y′∗∑n
i=1 y

′∗
i

(5.10)

is the same in both cases, and the Theorem is proved.

Note that changing some components of the lower reference point, l, while keep-
ing the remaining ones fixed is equivalent to linearly scaling the corresponding ob-
jectives with respect to the remaining ones. Thus, the placement of l can also be
seen as a way of linearly scaling the objective functions as long as this reference
point continues to dominate all points in A. By Theorem 5.1, scaling the objective
space under these conditions does not affect the optimal investment.

Scaling the objective space through l comes down to multiplying pi and pij by
a positive constant as in the above proof. Observing the Sharpe ratio expression
h(x) in Problem 2.2, the HSR indicator is not scaling invariant, i.e., scaling the
objective space will affect the indicator value. However, the HSR indicator is scaling
independent under these linear transformations, as shown next.

Theorem 5.2 (Linear-Scaling Independence of IHSR). Let A,B ⊂ Rd be two
non-empty point sets and l, u ∈ Rd be two reference points such that ∀a∈A,b∈B, l ≤ a≪
u and l ≤ b ≪ u. If IHSR(A, l, u) ≤ IHSR(B, l, u), then IHSR(A, l′, u) ≤ IHSR(B, l′, u)
holds true for any l′ ∈ Rd such that {l′} ⪯ A ∪ B.
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Proof. Let pA, PA and QA denote, respectively, the expected return vector, the
matrix of expected returns and the return covariance matrix associated with point
set A given reference points l and u. Analogously, let p′A, P ′A and Q′A represent
the same entities associated with point set A, but given reference points l′ and u.
As stated in (5.7), changing the lower reference point from l to l′ results in the
multiplication of the return probabilities by a constant factor t = Λ([l, u])/Λ([l′, u]).
In other words, P ′A = t PA, which implies p′A = t pA, and similarly for set B.

Recall that the optimal investment, denoted below by xA and xB, is invariant
to the choice of the lower reference point (Theorem 5.1), and note that both the
numerator and the denominator of the Sharpe ratio of these portfolios must be
strictly positive. Consequently,

IHSR(A, l′, u) ≤ IHSR(B, l′, u) ⇔
hA

HSR(x
A, l′, u) ≤ hB

HSR(x
B, l′, u) ⇔

p′A
T
xA√

xAT
Q′A xA

≤ p′B
T
xB√

xBTQ′B xB
⇔

t pAT
xA√

t xAT
PA xA − t2 xAT

pA pAT
xA
≤ t pBT

xB√
t xBTPB xB − t2 xBTpB pBTxB

⇔

xAT
pA pAT

xA

(1/t)xAT
PA xA − xAT

pA pAT
xA
≤ xBT

pB pBT
xB

(1/t)xBTPB xB − xBTpB pBTxB
⇔

1

t

(
xAT

pA pAT
xA
)(

xBT
PB xB

)
≤ 1

t

(
xBT

pB pBT
xB
)(

xAT
PA xA

)

(5.11)

Since the constant t vanishes from the inequality, which includes the case where
the lower reference point is not changed (t = 1), the Theorem is proved.

5.4.2 Monotonicity
Monotonicity properties can be stated for the HSR indicator by building upon the
following auxiliary results. As in expression (2.11), let pij denote the probability
that two points a(i), a(j) ∈ Rd are both acceptable to the same DM for some integer
i and j, and let pi = pii.

Lemma 5.3. Suppose that two points a(1), a(2) ∈ Rd and two reference points l, u ∈
Rd are such that l ≤ a(2) < a(1) ≪ u. Then, for all a(3) ∈ [l, u[, the following holds
true:

p1p23 ≤ p13p2 (5.12)

Proof. Without loss of generality, consider that l = (0, . . . , 0) and u = (1, . . . , 1)
and, therefore, Λ([l, u]) = 1. Assume that, for some choice of a(3) ∈ [l, u[,

p1p23 > p13p2 ⇔∏d
k=1

(
1− a

(1)
k

)(
1−max

(
a
(2)
k , a

(3)
k

))
>

∏d
i=1

(
1−max

(
a
(1)
k , a

(3)
k

))(
1− a

(2)
k

)
(5.13)
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Clearly, if a(i)k = 1 for some i ∈ {1, 2, 3} and k, the inequality is false. Otherwise,
there should be at least a dimension k ∈ {1, . . . , d} for which the following holds
true:(

1− a
(1)
k

)(
1−max

(
a
(2)
k , a

(3)
k

))
>

(
1−max

(
a
(1)
k , a

(3)
k

))(
1− a

(2)
k

)
(5.14)

If a(1)k ≥ a
(3)
k , it follows that:(

1− a
(1)
k

)(
1−max

(
a
(2)
k , a

(3)
k

))
>

(
1− a

(1)
k

)(
1− a

(2)
k

)
⇔

a
(2)
k > max

(
a
(2)
k , a

(3)
k

) (5.15)

which is clearly false. Otherwise, a(3)k > a
(1)
k ≥ a

(2)
k , and expression (5.14) is equiva-

lent to (
1− a

(1)
k

)(
1− a

(3)
k

)
>

(
1− a

(3)
k

)(
1− a

(2)
k

)
⇔

a
(2)
k > a

(1)
k

(5.16)

which contradicts the assumption that a(2) < a(1). Therefore, expression (5.13) is
false, and the Lemma is proved.

Lemma 5.4. Let l, u ∈ Rd be two reference points such that l ≪ u, and let A =
{a(1), . . . , a(n)} ⊂ [l, u[, where n ≥ 2, be a point set. If a(2) < a(1), then the investment
vector x∗ ∈ [0, 1]n that maximizes the hypervolume Sharpe ratio for set A is such
that x∗

1 = 0.

Proof. Consider the alternative QP formulation of Sharpe-ratio maximization given
in Problem 5.1, and recall that if y∗ denotes an optimal solution of this problem,
x∗ = y∗/

∑n
i=1 y

∗
i is an optimal solution of Problem 2.2.

By contradiction, assume that y∗1 > 0. By the KKT conditions, λ∗
2 = 0 (comple-

mentarity) and

∂L(y∗, λ∗)

∂yk
= 2

n∑
i=1

pkiy
∗
i − pkλ

∗
1 − λ∗

k+1 = 0 (5.17)

for all k = 1, . . . , n. Considering only the first two partial derivatives (k = 1, 2), this
implies:

p1
∂L(y∗, λ∗)

∂y2
− p2

∂L(y∗, λ∗)

∂y1
= 0 ⇔ (5.18)

2
n∑

i=1

(p1p2i − p1ip2) y
∗
i = p1λ

∗
3 (5.19)

To be a valid Lagrange multiplier, λ∗
3 ≥ 0. However, by Lemma 5.3, no term of

the sum can be positive, so neither can the sum itself. Moreover, the first term
of the sum is clearly negative, since p21 = p1 < p2 due to a(2) < a(1). Therefore,
no Lagrange multiplier vector λ∗ exists for which the KKT conditions are satisfied
when y∗1 > 0, and consequently such a y∗ cannot be optimal. Since y∗1 = 0 implies
x∗
1 = 0 as noted above, the Lemma is proved.
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For suitable choices of reference points, the HSR indicator can now be shown
to be both weakly ⪯-monotonic and strictly ≺·-monotonic, but not strictly ≺-
monotonic.

Theorem 5.5 (Weak ⪯-Monotonicity of the HSR Indicator). Given two
reference points l, u ∈ Rd such that l≪ u and two non-empty point sets A,B ⊂ [l, u[
such that A ⪯ B, IHSR(A, l, u) ≥ IHSR(B, l, u).

Proof. Consider IHSR(A ∪ B). Since A ⪯ B, any points in B \ A are dominated
points in A ∪ B, and, by Lemma 5.4, are assigned zero investment. Therefore,
IHSR(A∪B) = IHSR(A) must hold true. Assume that IHSR(B) > IHSR(A). Then, an
investment strategy in A ∪ B with a Sharpe ratio greater than IHSR(A ∪ B) exists
(whereby all points in A\B are given zero investment), which is a contradiction and
proves the Theorem.

Theorem 5.6 (Strict ≺·-Monotonicity of the HSR Indicator). Given two
reference points l, u ∈ Rd such that l≪ u and two non-empty point sets A,B ⊂ [l, u[
such that A ≺· B, IHSR(A, l, u) > IHSR(B, l, u).

Proof. As before, consider IHSR(A∪B). Since A ≺· B, all points in B are dominated
points in A ∪ B, and, therefore, IHSR(A ∪ B) = IHSR(A). Assume that IHSR(B) ≥
IHSR(A). Then, an investment strategy in A ∪ B with a Sharpe ratio greater than
or equal to IHSR(A∪B) exists whereby all points in A \B are given zero investment,
and strictly positive investment is given to at least one point in B. Since such a
point is strictly dominated in A ∪ B, a contradiction arises due to Lemma 5.4, and
the Theorem is proved.

Note that the empty set is excluded in the above theorems because the HSR indicator
is not defined for the empty set (see Definition 5.2). However, if IHSR(∅, l, u) ≜ 0,
for example, the same properties can be easily shown to apply also when the empty
set is considered.

Lemma 5.7 (Lack of Strict ≺-Monotonicity of the HSR Indicator). Given
two reference points l, u ∈ Rd such that l ≪ u, there are at least two point sets
A,B ⊂ [l, u[ such that A ≺ B and IHSR(A, l, u) ≤ IHSR(B, l, u).

Proof. Let l = (0, 0), u = (1, 1), and consider the sets A = {a(1), a(2), a(3)} and
B = {a(1), a(3)}, where a(1) = (0, 1 − a), a(2) = (1 − b, 1 − b), a(3) = (1 − a, 0), and
0 < a < b ≤ 2a/(a + 1) < 1. Then, y = [1/(2a), 0, 1/(2a)]T satisfies the KKT
conditions of Problem 5.1 for set A with corresponding Lagrange multiplier vector
λ = [λ1, 0, λ3, 0]

T , where λ1 = 1 + 1/a and λ3 = 2b − λ1b
2 ≥ 0. Since the optimal

investment in point (1− b, 1− b) is zero, it follows that IHSR(A, l, u) = IHSR(B, l, u)
despite the fact that A ≺ B.

The strict≺·-monotonicity property of the HSR indicator guarantees, by Lemma 2.2,
that at least one point in an indicator-optimal subset must lie on the Pareto front
of the original set. The following result leads to a slightly stronger statement.

Lemma 5.8. Let l, u ∈ Rd be two reference points such that l ≪ u, let A =
{a(1), . . . , a(n)} ⊂ [l, u[, and let P = nondominated(A). If |P| ≥ 2, the optimal
solution, y∗, of Problem 5.1 given A, l and u is such that at least two points in P
are assigned strictly positive investment.
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Proof. The equality constraint c1(y) =
∑n

i=1 piyi = 1 implies that y∗i > 0 for at
least one i ∈ {1, . . . , n}. Also, by Lemma 5.4, all points in A \ P are assigned zero
investment.

By contradiction, assume without loss of generality that a(1), a(2) ∈ P, y∗1 > 0,
and y∗j = 0 for all j = 2, . . . , n. Since constraint c2(y) = y1 ≥ 0 is not active, the
associated Lagrange multiplier, λ∗

2, must be zero for the KKT conditions to hold.
Furthermore, λ∗

3 must be nonnegative due to constraint c3(y) = y2 ≥ 0 being active.
Taking the partial derivatives of the Lagrangian function (5.5) with respect to y1
and y2, it follows that:

2
n∑

i=1

pi1y
∗
i − p1λ

∗
1 = 0

2
n∑

i=1

pi2y
∗
i − p2λ

∗
1 − λ∗

3 = 0

⇔
{

2p1y
∗
1 − p1λ

∗
1 = 0

2p12y
∗
1 − p2λ

∗
1 − λ∗

3 = 0

⇔
{

λ∗
1 = 2y∗1

λ∗
3 = 2p12y

∗
1 − 2p2y

∗
1

⇔
{

—
λ∗
3 = 2y∗1(p12 − p2) < 0

(5.20)

Note that p12 < p2 because a(1) and a(2) are incomparable to each other. Since
y∗1 > 0 and (p12 − p2) < 0, λ∗

3 is negative, and y∗ cannot be optimal.

Theorem 5.9. Let l, u ∈ Rd be two reference points such that l≪ u, let S ⊂ [l, u[ be
a non-empty point set, let P = nondominated(S), and let k ≥ 2 be a positive integer.
If |P| ≥ 2 and A∗

k ⊂ S is an optimal subset of S with respect to IHSR given k, then
|A∗

k ∩ P| ≥ 2.

Proof. Consider a non-empty indicator-optimal subset B ⊂ S such that |B| ≤ k.
Since B∩P cannot be empty by Lemma 2.2, assume that B∩P = {b}. Consequently,
for each point in B \ {b}, there is a point in P that strictly dominates it. Let A ⊆ P
be a subset of points constructed by adding to {b}, for each point in B \ {b}, one
point in P that strictly dominates it, and then adding one more point from P not
yet in A, if needed, to ensure that 2 ≤ |A| ≤ k. Since A ⪯ B by construction,
IHSR(A) ≥ IHSR(B) by Theorem 5.5. Furthermore, since any points in B \ A are
dominated points in A ∪ B, by Lemma 5.4 they are assigned zero investment, and
consequently IHSR(A∪B) = IHSR(A). Finally, by Lemma 5.8, at least two points in
A ∪ B, of which at most one may also be in B, will be assigned positive investment
when computing IHSR(A∪B). This implies that IHSR(A) = IHSR(A∪B) > IHSR(B),
which contradicts the assumption that B is indicator-optimal.

5.4.3 Optimal µ-Distributions on Two-Objective Linear Fronts
Although the HSR indicator is not strictly ≺-monotonic, its weak ⪯-monotonicity
implies, by Lemma 2.1, that there exists at least one indicator-optimal set of up
to a given size that is a subset of the Pareto front. Moreover, by Lemma 5.4, all
HSR-optimal subsets are such that all points that contribute to the indicator value
are nondominated with respect to the original set. Therefore, only points on the
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Pareto front need to be considered in the study of the optimal µ-distributions of the
HSR indicator. Here, that study is further restricted to bounded continuous fronts
in the two-objective case and, in particular, to linear fronts.

Definition 5.3 (Two-Objective Bounded Continuous Nondominated Front).
Consider s(1), s(2) ∈ R such that s(1) < s(2), and let f : [s(1), s(2)]→ R be a bounded,
continuous, strictly decreasing function. Then, X = {(v, f(v)) | s(1) ≤ v ≤ s(2))} is
a two-objective bounded continuous nondominated front. If f is a linear function,
X is also called a two-objective (bounded, continuous) linear front.

Problem 5.1 can now be reformulated to include the position of the points on a
given front as variables.

Problem 5.2 (µ-Distribution Optimization). Given two reference points l, u ∈
R2 such that l ≪ u, an integer µ = n > 0, and a (bounded) continuous nondom-
inated front X ⊂ [l, u], defined according to Definition 5.3, such that at least one
point in X strongly dominates u, find a globally optimal solution, (y∗, v∗), of:

min
y∈Rn,v∈Rn

g(y, v) = yTPy (5.21a)

subject to c1(y, v) =
n∑

i=1

piyi − 1 = 0 (5.21b)

c2(y, v) = −s(1) + v1 ≥ 0 (5.21c)
c3(y, v) = s(2) − vn ≥ 0 (5.21d)
cj(y, v) = yi ≥ 0, j = i+ 3, i = 1, . . . , n (5.21e)
cj(y, v) = −vi + vi+1 ≥ 0, j = i+ 3 + n, i = 1, . . . , n− 1 (5.21f)

where v = (v1, . . . , vn) represents the x-coordinates of n points in X, P = [pij]n×n,
the expected return pi = pii, and, for i ≤ j,

pij = pji =
(u2 − f(vi))(u1 − vj)

(u2 − l2)(u1 − l1)
(5.22)

The set {(v∗i , f(v∗i )) | i = 1, . . . , n} is an optimal µ-distribution of the HSR indicator
on X, and x∗ = y∗/

∑n
i=1 y

∗
i is the corresponding optimal investment.

Constraints (5.21c) and (5.21d) guarantee that all points (vi, f(vi)) in a feasible
solution of the problem are contained in the nondominated front X, and constraints
(5.21f) ensure that the n points are sorted in ascending order of their first coordinate.

Like Problem 5.1, this problem can be analyzed using the KKT conditions. Pro-
vided that f is continuously differentiable, so are the objective function and all
constraints. However, the objective function is no longer a convex quadratic func-
tion, and constraint c1 is no longer linear, due to the dependence of pi (and pij) on
vi (and vj), which considerably complicates the analysis. For this reason, only linear
fronts are considered in the remaining of this work. Illustrative examples of linear
fronts are given in Figure 5.1.

Nondegeneracy

The analysis of Problem 5.2 begins with the observation that any candidate solution
at which any of the constraints (5.21e) and (5.21f) are active, or such that any of the
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(a) s(1) > l1, s
(2) < u1 (b) s(1) = l1, s(2) = f−1(l2) (c) s(1) = f−1(u2), s(2) = u1

Figure 5.1: Examples of linear fronts and the corresponding s(1) and s(2).

expected returns pi = 0, i = 1, . . . , n, is degenerate in the sense that it is equivalent
to another solution with fewer than µ distinct points, all of which receiving positive
investment.

Lemma 5.10. Let X be a linear front such that f(v) = −mv + b, where m, b ∈ R
and m > 0, and let v0 = (b − u2)/m and vn+1 = u1. Then, any globally optimal
solution (y∗, v∗) of Problem 5.2 with µ = n points is such that v0 < v∗i < v∗i+1 < vn+1

for all i = 1, . . . , n− 1, and y∗i > 0 for all i = 1, . . . , n.

Proof. The proof is made by induction on the number of points, µ.

Base case 1 When µ = 1, any solution such that v1 = v0 or v1 = v2 is infeasible,
as it corresponds to p1 = 0, and violates constraint c1. Therefore, any globally
optimal (y∗, v∗) must be such that v0 < v∗1 < v2 and y∗1 > 0.

Base case 2 For µ = 2, let (y, v) denote a feasible candidate solution. The fol-
lowing assumptions are equivalent in the sense that they lead to degenerate
solutions that correspond to a single point set, {(v1, f(v1))}, where v1 must
obey v0 < v1 < v3:

• y2 = 0

• v2 = vi, i = 0, 1, 3

By Lemma 5.8, under any of the above assumptions on (y, v) and for any
v′2 ̸= v1 such that v0 < v′2 < v3, there is a feasible solution (y′, v′) such that
v′1 = v1, y′1 > 0, y′2 > 0, and y′TPy′ < yTPy. Therefore, any globally optimal
solution (y∗, v∗) for µ = 2 must also be nondegenerate.

Inductive step To show that any globally optimal solution of Problem 5.2 for
µ = n ≥ 3 must be nondegenerate under the hypothesis that this is true for
µ = n − 1, let (y, v) denote a feasible solution for the case where µ = n such
that, for some integer j ∈ {2, . . . , n− 1}:

yi > 0 for all i = 1, . . . , j − 1, j + 1, . . . , n

v0 < · · · < vj−1 < vj+1 < · · · < vn+1

(5.23)

The following assumptions on (y, v) are equivalent in the sense that they lead
to degenerate solutions that correspond to the same (n− 1)-point set:
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• yj = 0

• vj = vi, i = 0, . . . , j − 1, j + 1, . . . , n+ 1

Under any of these assumptions, y(n−1) = (ȳ1, . . . , ȳj−1, ȳj+1, . . . , ȳn), where
ȳi = yi if vi ̸= vj and ȳi = yi+yj if vi = vj, and v(n−1) = (v1, . . . , vj−1, vj+1, . . . , vn)
represent a nondegenerate feasible solution (y(n−1), v(n−1)) for the case where
µ = n− 1.
Without loss of generality, consider the case where yj = 0 and, for convenience,
let vj = (vj−1+vj+1)/2. Under the induction hypothesis, if (y(n−1), v(n−1)) were
itself degenerate, it could not be optimal for the case where µ = n− 1. Conse-
quently, (y, v) could not be optimal for the case where µ = n either, because
yTPy = y(n−1)TP (n−1)y(n−1), where P (n−1) denotes the matrix obtained from
P by removing row and column j.
Proceed by assuming that y is an optimal solution of Problem 5.1 given the set
of points {(vi, f(vi)) | i = 1, . . . , n}. Then, there must be a Lagrange multiplier
vector λ such that λj+1 ≥ 0, reflecting the fact that constraint cj+1(y) = yj ≥ 0
is active, and λj = λj+2 = 0, as the corresponding constraints are not active.
The KKT condition on the gradient of the Lagrangian function implies that:

∂L(y, λ)
∂yj−1

+
∂L(y, λ)
∂yj+1

= 2
n∑

i=1

(
p(j−1)i + p(j+1)i

)
yi − (pj−1 + pj+1)λ1 = 0

⇔
2

n∑
i=1

(
p(j−1)i + p(j+1)i

)
yi

pj−1 + pj+1

= λ1

(5.24)
Plugging λ1 above into the condition on the partial derivative of the La-
grangian function with respect to yj, it follows that:

∂L(y, λ)
∂yj

= 2
n∑

i=1

pjiyi − pjλ1 − λj+1 = 0

⇔ 2
n∑

i=1

pjiyi −
2

n∑
i=1

(
p(j−1)i + p(j+1)i

)
yi

pj−1 + pj+1

pj − λj+1 = 0

⇔ 2

pj−1 + pj+1

n∑
i=1

[
(pj−1 + pj+1)pji −

(
p(j−1)i + p(j+1)i

)
pj
]
yi = λj+1

(5.25)
Since yj = 0, the term[

(pj−1 + pj+1)pji −
(
p(j−1)i + p(j+1)i

)
pj
]
yi (5.26)

is 0 for i = j. Recalling that vj = (vj−1+ vj+1)/2, pi = pii, and that, for i ≤ j:

pij = pji =
(u2 − f(vi))(u1 − vj)

(u2 − l2)(u1 − l1)

=
m (vi − v0)(vn+1 − vj)

(u2 − l2)(u1 − l1)

(5.27)

154 Chapter 5



Portfolio Selection in Evolutionary Algorithms

the remaining terms are equal to:

−m2(vj+1 − vj−1)
2(2vn+1 − vj−1 − vj+1)(vi − v0) yi

4 (u2 − l2)2(u1 − l1)2
if i < j (5.28)

−m2(vj+1 − vj−1)
2(vj−1 + vj+1 − 2v0)(vn+1 − vi) yi

4 (u2 − l2)2(u1 − l1)2
if i > j (5.29)

Under the assumptions (5.23) placed on (y, v), all of these terms are strictly
negative, and therefore so is λj+1. Consequently, y is not an optimal solution
of Problem 5.1, and there is a nondegenerate feasible solution (y′, v) of Prob-
lem 5.2 at which y′TPy′ < yTPy. Therefore, any globally optimal solution
(y∗, v∗) for µ = n must also be nondegenerate.

By Lemma 5.10, none of the constraints c4 to c2n+2 of Problem 5.2 are active at
the optimum when X is a linear front, and the corresponding Lagrange multipliers
λ4 to λ2n+2 must be equal to zero. In contrast, inequality constraints c2 and c3 may
be active, and equality constraint c1 is necessarily active, but the gradients of these
constraints with respect to (y, v) are clearly linearly independent for all nondegener-
ate solutions, where all components of ∇yc1(y, v) = p are positive. Consequently, the
Linear Independence Constraint Qualification [112, p. 320] holds at those solutions,
and the Lagrangian function for Problem 5.2 can be written as:

L(y, v, λ) = yTPy − λ1 (
∑n

i=1 piyi − 1)− λ2 (−s(1) + v1)− λ3 (s
(2) − vn) (5.30)

Optimal investment

The partial derivatives of the Lagrangian function with respect to yk, k = 1, . . . , n,
are:

∂L(y, v, λ)
∂yk

= 2
n∑

i=1

pkiyi − pkλ1 (5.31)

For a given v, setting these partial derivatives to zero and satisfying constraint c1
leads to a system of n+1 linear equations and n+1 variables, which can be written
in matrix form as follows: 2P −p

pT 0


 y

λ1

 =

 0

1

 (5.32)

Considering again a linear front such that f(v) = −mv + b, m > 0, and the cor-
responding values pi = pii and pij = pji obtained in expression (5.27), solving the
above system leads to:

yi =
vi+1 − vi−1

w
(5.33a)

λ1 =
2(vn+1 − v0)

w
(5.33b)
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Figure 5.2: Optimal investment for two sets of 30 points on a linear front. Left:
equally spaced points. Right: randomly placed points. Circle area is proportional
to assigned investment. l = (0, 0) and u = (1, 1).

for i = 1, . . . , n, where v0 = (b− u2)/m, vn+1 = u1, and

w =
m

(u2 − l2)(u1 − l1)

n∑
i=1

(vn+1 − vi) (vi+1 − vi−1) (vi − v0) (5.34)

is clearly positive for any nondegenerate solution. Consequently, λ1 is positive, too.
In addition, since

n∑
i=1

yi =
1

w

n∑
i=1

(vi+1 − vi−1) =
vn+1 − v0 + vn − v1

w
(5.35)

the corresponding (optimal) investment vector x is such that:

xi =
vi+1 − vi−1

vn+1 − v0 + vn − v1
(5.36)

for all i = 1, . . . , n. This means that the optimal investment in each point on a
linear front must be proportional to the distance between its two direct neighbours
regardless of its position between those neighbours. This is reminiscent of the crowd-
ing distance in NSGA II [53], and confirms what was experimentally observed by
Yevseyeva et al. [133] (see Figure 5.2).

Optimal placement

The partial derivatives of the Lagrangian function with respect to the components
of v are:

∂L(y, v, λ)
∂v1

= y21
∂p1
∂v1

+ 2
n∑

k=2

y1yk
∂p1k
∂v1
− λ1y1

∂p1
∂v1
− λ2 (5.37a)

∂L(y, v, λ)
∂vi

= y2i
∂pi
∂vi

+ 2
n∑

k=1
k ̸=i

yiyk
∂pik
∂vi
− λ1yi

∂pi
∂vi

(5.37b)

∂L(y, v, λ)
∂vn

= y2n
∂pn
∂vn

+ 2
n−1∑
k=1

ynyk
∂pnk
∂vn

− λ1yn
∂pn
∂vn

+ λ3 (5.37c)
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for i = 2, . . . , n− 1. Plugging expressions (5.33a) and (5.33b) into the above partial
derivatives eliminates y and λ1 from them. Setting the resulting expressions to zero
leads to a system of n nonlinear equations and n+2 variables that simplifies to the
following equations:

vi − vi−1 = vi+1 − vi, i = 2, . . . , n− 1 (5.38a)

(v1 − v0)− (v2 − v1) = λ2
w2(u2 − l2)(u1 − l1)

m (v2 − v0)(vn+1 − v0)
(5.38b)

(vn+1 − vn)− (vn − vn−1) = λ3
w2(u2 − l2)(u1 − l1)

m (vn+1 − vn−1)(vn+1 − v0)
(5.38c)

The above conditions imply that an optimal solution (y∗, v∗) of Problem 5.2 must
be such that the inner points v∗2 to v∗n−1 are evenly spaced between the two outer
points, v∗1 and v∗n. As a consequence, by expressions (5.33a) and (5.36), all inner
points receive equal investment. In turn, the outer points v∗1 and v∗n depend on the
front end points, s(1) and s(2), and on v0 and vn+1.

Since the Lagrange multipliers λ∗
2 and λ∗

3 associated with an optimal solution
must not be negative, and the fractions in the right-hand sides of equations (5.38b)
and (5.38c) are clearly positive, the optimal placement of the outer points v∗1 and
v∗n is such that the distances from v∗1 to v0 and from v∗n to vn+1 are greater than or
equal to the distances from v∗1 to v∗2 and from v∗n to v∗n−1, respectively. Consequently,
v∗1 ≥ (v0 + v∗2)/2 and v∗n ≤ (v∗n−1 + vn+1)/2, and the optimal investment in each of
the outer points, v∗1 and v∗n, is greater than or equal to the investment in any of the
inner points.

The actual value of v∗ can now be derived by considering equations (5.38) to-
gether with the problem constraints c2 and c3. Supposing that both c2 and c3 are
not active, the Lagrange multipliers λ∗

2 and λ∗
3 are zero, and it follows from equations

(5.38) that:
v∗i = v0 + i

vn+1 − v0
n+ 1

, i = 1, . . . , n (5.39)

Moreover, this requires that:

s(1) < v∗1 = v0 +
vn+1 − v0
n+ 1

(5.40)

s(2) > v∗n = vn+1 −
vn+1 − v0
n+ 1

(5.41)

Now suppose that constraint c2 is active and c3 is not active. Then,

v∗1 = s(1) ≥ v0 +
vn+1 − v0
n+ 1

(5.42)

where the inequality is just the negation of condition (5.40), and λ∗
3 = 0. It follows

from equations (5.38a) and (5.38c) that:

v∗i = s(1) + (i− 1)
vn+1 − s(1)

n
, i = 1, . . . , n (5.43)

Furthermore, since constraint c3 is not active:

s(2) > v∗n = vn+1 −
vn+1 − s(1)

n
(5.44)
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which is a stricter condition than (5.41).
Similarly, supposing that constraint c2 is not active and c3 is active, if follows

that:

v∗n = s(2) ≤ vn+1 −
vn+1 − v0
n+ 1

(5.45)

v∗i = v0 + i
s(2) − v0

n
, i = 1, . . . , n (5.46)

and

s(1) < v∗1 = v0 +
s(2) − v0

n
(5.47)

which is also stricter than condition (5.40).
Finally, both constraints are active in all other cases, i.e. whenever:

s(1) ≥ v0 +
s(2) − v0

n
(5.48)

s(2) ≤ vn+1 −
vn+1 − s(1)

n
(5.49)

and it follows directly from equation (5.38a) that:

v∗i = s(1) + (i− 1)
s(2) − s(1)

n− 1
, i = 1, . . . , n (5.50)

The following main result can now be stated:

Theorem 5.11 (Optimal µ-Distribution of the HSR Indicator). Given two
reference points l, u ∈ R2, l ≪ u, a (bounded) linear nondominated front X =
{(v, f(v)) | s(1) ≤ v ≤ s(2))} ⊂ [l, u], where f(v) = −mv + b, m, b ∈ R, and
m > 0, such that at least one point in X strongly dominates u, and a positive
integer µ = n, the optimal µ-distribution of the HSR indicator on X is the set
{(v∗i , f(v∗i )) | i = 1, . . . , n} ⊂ X, where, letting v0 = (b− u2)/m and vn+1 = u1:

v∗i =


v0 + i vn+1−v0

n+1
if s(1) < v0 +

vn+1−v0
n+1

∧ s(2) > vn+1 − vn+1−v0
n+1

s(1) + (i− 1) vn+1−s(1)

n
if s(1) ≥ v0 +

vn+1−v0
n+1

∧ s(2) > vn+1 − vn+1−s(1)

n

v0 + i s(2)−v0
n

if s(1) < v0 +
s(2)−v0

n
∧ s(2) ≤ vn+1 − vn+1−v0

n+1

s(1) + (i− 1) s(2)−s(1)

n−1
if s(1) ≥ v0 +

s(2)−v0
n

∧ s(2) ≤ vn+1 − vn+1−s(1)

n

(5.51)

Moreover, the corresponding optimal investment is given by:

y∗i =
v∗i+1 − v∗i−1

w∗ (5.52)

x∗
i =

v∗i+1 − v∗i−1

vn+1 − v0 + v∗n − v∗1
(5.53)

for i = 1, . . . , n, where

w∗ =
m

(u2 − l2)(u1 − l1)

n∑
i=1

(vn+1 − v∗i ) (v
∗
i+1 − v∗i−1) (v

∗
i − v0) (5.54)

and, with a slight abuse of notation, v∗0 = v0 and v∗n+1 = vn+1.
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(a) m = 1, b = 10, s(1) = 0, s(2) = 10
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(b) m = 1, b = 10, s(1) = 4, s(2) = 6
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(c) m = 1/2, b = 5, s(1) = 2, s(2) =
10
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(d) m = 2, b = 10, s(1) = 1, s(2) = 4

Figure 5.3: Optimal distribution and investment for µ = 7 points on various linear
fronts. Circle area is proportional to assigned investment. l = (0, 0) and u = (10, 10).

Proof. The above analysis already establishes that degenerate solutions cannot be
globally optimal (Lemma 5.10) and that (y∗, v∗) is the only nondegenerate solution
of Problem 5.2 that satisfies the KKT conditions. To show that it is indeed a
minimal solution, note that the feasible region of Problem 5.2 is bounded above
and below with respect to v, whereas it is bounded below with respect to y, but
not necessarily bounded above (depending on s(1) and s(2)). However, given that
yi ≥ 0 for all i = 1, . . . , n, the objective function yTPy is clearly bounded below by
zero. Furthermore, yTPy tends to +∞ whenever any component of y does so if the
solution is not degenerate, and to a sub-optimal value if the solution is degenerate.
Since it is also a continuous function, it must have a (global) minimum, and the
corresponding nondegenerate feasible solution must be finite. Given that there is
only one nondegenerate solution that satisfies the KKT conditions, such a solution
must be both a locally and globally minimal solution.

Examples

Figure 5.3 shows the optimal µ-distributions considering µ = 7 points and their
corresponding optimal investment for linear fronts with different slopes and different
domain boundaries. The blue solid lines represent the fronts. The area of the circle
around each point is proportional to the investment assigned to it.

It can be seen that all points are equally spaced, and that all inner points are
assigned equal investment, whereas the outer points may be assigned greater or equal
investment than the inner points depending on the location of the front end points.
In particular, front end points that are sufficiently far away from the corresponding
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Figure 5.4: Illustration of which extreme points, if any, are included in the optimal
µ-distribution for a linear front defined by f(v) = −mv + b, v ∈

[
0, b

m

]
, depending

on the location of the reference point. After [40].

upper boundaries of the region of interest receive greater investment than the inner
points.

5.4.4 Comparison with the Hypervolume Indicator
The results obtained for the optimal µ-distribution of the HSR indicator on two-
objective linear fronts are consistent with those reported in the literature for the
hypervolume indicator [40]. In particular, all points are uniformly spaced on the
front, and the outer points may or may not coincide with the front’s extreme points.
It remains to show whether the outer points are exactly the same for both indicators
(given an appropriate setting of the reference points, l and u).

For the HSR indicator, the outer points of the optimal µ-distribution on a linear
front depend only on how s(1), s(2), v0 and vn+1 relate to one another, see the branch
conditions in expression (5.51). This implicitly answers the question of whether the
front’s extreme points, (s(1), f(s(1))) and (s(2), f(s(2))), are included in the optimal µ-
distribution or not. In contrast, for the hypervolume indicator, this issue was studied
from the point of view of where to place the reference point in order to include none,
just one, or both extreme points of the linear front [40]. The connection between
the results on the outer points of the optimal µ-distributions of the two indicators
is not evident, and deserves further attention.

Brockhoff [40] showed how the inclusion of one or both extreme points in the
optimal µ-distribution of the hypervolume indicator on a given linear front f(x) =
−mx+b,m, b ∈ R+, with bounded domain

[
0, b

m

]
, without loss of generality, depends

on the position of the reference point, which he denoted by r (not to be confused
with the return vector r in Subsection 2.4.5).

Brockhoff concluded that, as illustrated in Figure 5.4, if the reference point
is weakly dominated by the point

(
n

n−1
b
m
, n
n−1

b
)
(case IX), then both extremes are

included in the optimal µ-distribution. Otherwise, the left extreme point is included
only if r2 ≥ n+1

n
b − f(r1)

n
, and the right extreme point is included only if r1 ≥

n+1
n

b
m
− f−1(r2)

n
. If none of the above conditions are satisfied, then none of the

extreme points are included in the optimal µ-distribution. In particular, this is
obvious for r ≤

(
b
m
, b
)
. Moreover, when the left extreme point is not included, the

left outer point is v1 = v2+v0
2

, and when the right extreme point is not included, the
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right outer point is vn = vn+1+vn−1

2
, where vn+1 = r1 and v0 = f−1(r2) as defined

previously. This is deduced from equation (8) in [40], by noting that Fl = r2 when
the left extreme point is not included, and Fr = r1 when the right extreme point is
not included.

With an appropriate setting of the reference points l and u, the outer points of
the optimal µ-distribution of the two indicators can be shown to be exactly the same.
Assume, as in Brockhoff’s study [40], that the linear front is given by f(x) = −mx+b,
where m, b ∈ R+, and has bounded domain

[
0, b

m

]
. Then, the left and right extreme

points are (0, b) and
(

b
m
, 0
)
, respectively. Recall that, by Theorems 5.1 and 5.2, the

exact location of the lower reference point, l, does not affect the optimal investment
as long as l weakly dominates every point in the front, and, by Theorem 5.11, neither
does it affect the optimal µ-distribution of the HSR indicator on linear fronts. Thus,
it suffices to assume that l ≤ (0, 0).

Setting u = r, and as with the hypervolume indicator, if the left extreme point
is not included in the optimal µ-distribution of the HSR indicator then v1 = v2+v0

2

(branches 1 and 3 of equation (5.51)), and if the right extreme point is not included,
then vn = vn+1+vn−1

2
(branches 1 and 2 of equation (5.51)). It is therefore sufficient to

show that the conditions under which each extreme point is included in the optimal
µ-distribution are the same for both the HSR and the hypervolume indicators.

In the following analysis, it is always assumed that the (upper) reference point
u = r is such that it is strongly dominated by at least one point in the bounded
linear front. To match the conditions of Theorem 5.11, which requires the front
to be contained in the region of interest [l, u], any part of the front that does not
weakly dominate u is discarded by adjusting the end points of the domain to s(1) =
max(0, v0) and s(2) = min

(
b
m
, vn+1

)
, where v0 = f−1(r2) and vn+1 = r1. This is

consistent with the fact that such points have zero return and, therefore, cannot be
included in the optimal µ-distribution anyway.

The analysis is split into four scenarios, each relating to one of the four possible
locations of the reference point r, represented in terms of v0 and vn+1, relatively to
the point

(
b
m
, b
)
. Each of these scenarios is then linked to the corresponding case(s)

from I to IX in Figure 5.4 that reflect the results for the hypervolume indicator.
Figure 5.5 illustrates the four scenarios in more detail, and establishes the connection
between Figure 5.4 and the notation used in Section 5.4.3.

The scenarios are the following:

1. v0 > 0 and vn+1 <
b
m
(case I)

In this scenario, s(1) = v0 and s(2) = vn+1 (see Figure 5.5(a)). It is clear that
the first branch of expression (5.51) is satisfied in this case. This indicates
that, when r ≤

(
b
m
, b
)
, none of the extreme points with x-coordinate s(1)

and s(2) are included (and neither are the original extreme points, (0, b) and
( b
m
, 0)). Furthermore, points are equally spaced between v0 and vn+1, as for

the hypervolume indicator.

2. v0 ≤ 0 and vn+1 <
b
m
(cases IV and VII)

In this scenario, s(1) = 0 and s(2) = vn+1 (see Figure 5.5(b)). Since s(2) = vn+1,
only the conditions on s(2) of branches 1 and 2 of expression (5.51) are satisfied,
and, therefore, the right extreme point is not included. By manipulating the
condition on s(1) of (one of) those branches while taking into account that
s(1) = 0, f(x) = −mx + b, and f(v0) = r2, it is possible to conclude that the
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(a) case I (b) cases IV and VII

(c) cases II and III (d) cases V, VI, VIII and IX

Figure 5.5: Possible locations of the reference point, r, relatively to the point
(

b
m
, b
)
.

The grey area indicates the region considered in each case.

left extreme point is included (i.e., branch 2 applies) only if r2 ≥ n+1
n
b− f(r1)

n
.

3. v0 > 0 and vn+1 ≥ b
m
(cases II and III)

In this scenario, s(1) = v0 and s(2) = b
m
≤ vn+1 (see Figure 5.5(c)). Since

s(1) = v0, only the conditions on s(1) of branches 1 and 3 of expression (5.51)
hold and, therefore, the left extreme point is not included. By manipulating
the condition on s(2) of (one of) those branches while taking into account that
s(2) = b

m
, f(x) = −mx + b, v0 = f−1(r2), and vn+1 = r1, it is possible to

conclude that the right extreme point is included (i.e., branch 3 applies) only
if r1 ≥ n+1

n
b
m
− f−1(r2)

n
.

4. v0 ≤ 0 and vn+1 ≥ b
m
(case V, VI, VIII and IX)

In this last scenario, s(1) = 0 and s(2) = b
m

(see Figure 5.5(d)). To see whether
or not the extreme points are included, the conditions on r1 and r2 for which
the fourth branch in expression (5.51) applies, which corresponds to case IX,
are derived first. Then, the remaining cases V, VI and VIII are studied by
negating either or both of those conditions.

(a) (case IX) Taking into account that v0 = f−1(r2) and vn+1 = r1, the con-
ditions on s(1) and s(2) of the fourth branch in (5.51) can be manipulated
in order to get to the equivalent conditions r2 ≥ n

n−1
b and r1 ≥ n

n−1
b
m
,

respectively. If r is such that both conditions are met then both extreme
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points are included.
(b) (case VI) If r1 ≥ n

n−1
b
m

and r2 < n
n−1

b, then b ≤ r2 < n
n−1

b, and
the condition on s(1) in the fourth branch of expression (5.51) is not
satisfied. However, the condition on s(2) in branch 3 can be shown, by
contradiction, to be satisfied for r within the specified range. Therefore,
branch 3 applies, and only the right extreme point is included.

(c) (case VIII) If r1 < n
n−1

b
m

and r2 ≥ n
n−1

b, then b
m
≤ r1 < n

n−1
b
m
, and

the condition on s(2) in the fourth branch of expression (5.51) is not
satisfied. However, the condition on s(1) in branch 2 can be shown, by
contradiction, to be satisfied for r within the specified range. Therefore,
branch 2 applies, and only the left extreme point is included.

(d) (case V) If neither r2 ≥ n
n−1

b nor r1 ≥ n
n−1

b
m

are satisfied, then it
follows that b

m
≤ r1 < n

n−1
b
m

and b ≤ r2 < n
n−1

b. By manipulating the
condition on s(1) in branch 2 as done before for cases IV and IIV, it follows
that, if r2 ≥ n+1

n
b− f(r1)

n
, branch 2 applies and the left extreme point is

included. Analogously, by manipulating the condition on s(2) in branch 3
as done before for cases II and III, it follows that, if r1 ≥ n+1

n
b
m
− f−1(r2)

n
,

then branch 3 applies and the right extreme point is included. Finally,
if neither neither the condition on s(1) in the second branch nor the
condition on s(2) in the third branch are satisfied, then both conditions
in the first branch of expression (5.51) must be satisfied, and none of the
extreme points are included in the optimal µ-distribution.

Summing up, the optimal µ-distribution for the HSR indicator on a linear front
is exactly the same as for the hypervolume indicator.

5.5 Experimental Results
The aim of this section is to provide insight into the optimal µ-distributions and
corresponding optimal investment for the HSR indicator on other than linear 2-
dimensional fronts, through numerical approximations. The influence of the ref-
erence points is investigated as well. Firstly, the optimal investment is investi-
gated in Section 5.5.1, by observing how it is distributed among random and evenly
distributed point sets on several fronts (Figures 5.6 and 5.7). Secondly, in Sec-
tion 5.5.2, the optimal µ-distributions and corresponding optimal investments are
approximated (Figures 5.9 and 5.10) and compared to analogous approximations for
the hypervolume indicator.

5.5.1 Optimal Investment
Figures 5.6 and 5.7 show the optimal investment assigned by HSR indicator on 20
points randomly and evenly distributed, respectively, on different fronts (columns),
and for different settings of the reference points l and u (rows). The plots depict the
orthogonal space [l, u] after normalization. The first row represents the base line,
where the front domain is [0, 1] and the reference points are l = (0, 0) and u = (1, 1).
The second to fourth rows correspond to shifting either one or the two reference
points away from the front and along a straight line containing the points (0, 0)
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Figure 5.6: Examples of the optimal investment of HSR indicator on 20 points
randomly distributed along linear, convex, concave and wave-3 fronts, respectively
from left to right. The first row shows fronts in the [0, 1] domain where l = (0, 0) and
u = (1, 1). The second to fourth rows correspond to the front in the first row but
with l and u respectively set as follows: l = (−1,−1) and u = (1, 1), l = (−0.5,−0.5)
and u = (1.5, 1.5), l = (0, 0) and u = (2, 2), and l = (0, 0) and u = (2, 1). The plots
show the [l, u] space after normalization. The region dominated by the points with
strictly positive investment is filled gray. The Sharpe ratio assigned to each point
set is shown in the title.
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Figure 5.7: Examples of fronts and settings of l and u analogous to those in Figure 5.6
where instead of starting with points randomly distributed on the [0, 1] domain, they
are evenly distributed.
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and (1, 1). The settings of l and u are such that the distance between every pair of
points is kept the same for the three settings. In practice, such settings correspond
to shrinking the front in the first row and translating them along the diagonal going
through points (0, 0) and u = (1, 1). Unlike in the other rows, the settings of l
and u in the last row do not preserve the proportion between axes. Note that, in
Figure 5.7, moving u only along the y-axis (as in the last row) is symmetrical to
moving it only along the x-axis. Moreover, as proved in Section 5.4.1, the plots in
the second row show that changing l does not affect the optimal investment.

Each point is represented in the plots either as a blue circle or a red square,
representing whether the point was assigned an investment higher or lower than
1e−16, respectively. The blue points will be the center of a circle whose area is
proportional to the investment assigned to that point. Therefore, the higher the
area of a circle around a point is, the higher was the investment in that point.

In the case of linear fronts (first column of both figures), as expected from the
theoretical results, the investment in a point is directly related to distance between
its two neighbors. The further apart they are from each other, the higher is the
investment in the point. If points are evenly distributed, then so is the investment.
The investment in extreme points depends on the upper reference point, u. Moving
u away increases the investment in the extreme points. As expected, all (nondomi-
nated) points in a linear front have a strictly positive investment.

In the case of convex fronts (second column of both figures), all points are also
assigned strictly positive investment. It seems that, as in the case of the linear front,
the investment in the extreme points increases as the upper reference point u moves
away from the front, although it does not increase as much. The scale distortion
(last row) seems to have an effect on the convex front different from the effect on
the linear front. In this case, there is a shift of investment from the side of the front
further away from l in the y-coordinate to the side of the front (and the points)
closer to l (this can be observed comparing the first and the last rows). This seems
to happen so that more investment is assigned to points with higher expected return.

On concave fronts (third column), the observations are not exactly the same.
The experiments show that some nondominated points are assigned zero investment
or at least, it is very close to zero. Consider that the direct neighbors of a point are
the closest points on each side that have strictly positive investment. In that case,
the (positive) investment in a point seems to be related to the distance between its
direct neighbors and to how much investment is assigned to them. The investment
in a point also seems to depend on how far from u it is. The points in the concave
region have positive investment if the front is close enough to u, but as it moves
towards l, investment decreases and, if far enough apart from u, investment goes to
zero. In that case, the investment in the inner points (points in the concave region)
is transferred to the extreme points of the front. In the fifth row of both figures,
more points on one side of the front have positive investment. The right extreme
receives most of the investment, which is much more than the left extreme receives.
This may be because the right extreme point has the highest expected return of all
points. The remaining investment is assigned to points in left side. It seems that the
other points on the right side of the front receive (almost) no investment because of
how much is assigned to the right extreme point.

The wave-3 front that has both concave and convex regions provides a better
insight into the optimal investment on arbitrary fronts. It is observable that prefer-
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ence is given to extreme points, and to points in convex regions (knees) over points
in concave regions. The preference for convex regions is also evident in Figure 5.8,
which shows how changing the position of a point inside the region bounded by the
two closest points to it affects the optimal investment, considering points evenly
distributed on different fronts. It can be observed that moving a point closer to l
results in assigning more investment to it and less to its closest neighboring points.
On the other hand, as the point is moved closer to u, the investment it gets decreases,
and more is assigned to its closest neighbors.

Comparing Figures 5.6 and 5.7, sets of points evenly distributed were preferred
over the randomly distributed ones, i.e., they all had higher Sharpe ratios. On linear
fronts, that is a characteristic of the optimal µ-distribution on such fronts. However,
Figure 5.7 indicates that such an observation does not generalize to other fronts,
i.e., the optimal µ-distribution on an arbitrary front does not consist of a set of
uniformly distributed points. The results indicate that, optimal µ-distributions are
such that points are concentrated on the extremes and on convex regions.

5.5.2 Approximating Optimal µ-Distributions
The exact optimal µ-distributions and corresponding optimal investment for the
HSR indicator are now known for two-dimensional linear fronts. As extending such
results to other fronts is not trivial, the alternative is to empirically approximate
the optimal µ-distributions. This section shows numerical approximation results for
different fronts and for different settings of the reference points. Moreover, such
optimal µ-distribution approximations are compared to those for the hypervolume
indicator.

Experimental Setup

To approximate the optimal µ-distribution of an indicator for a given front, a non-
linear solver from the scipy python module was used (scipy.optimize.fmin_slsqp). A
vector, the bounds for each variable, and a function to be optimized are passed to
the solver. The µ-sized vector represents the x-coordinates of µ points in the front,
and the bounds represent the corresponding domain ranges.

As the considered fronts are continuous and differentiable, the y-coordinates
can be determined from the x-coordinates. Therefore, the function receives the
vector, determines the corresponding y-coordinates (depending on the front being
considered) and then, computes and returns the indicator value. The solver is
used to approximate the vector of x-coordinates that minimizes the negative of the
function, i.e., to approximate the optimal µ-distribution that maximizes an indicator
for the front under consideration. Two indicators were considered, the HSR indicator
and the hypervolume indicator. In the former case, the function to be optimized
receives the vector and after computing the corresponding expected returns and the
covariance matrix, computes the optimal investment using a QP solver and returns
the corresponding Sharpe ratio. In the latter case, the hypervolume indicator is
computed and returned.

The results presented show, for each front and setting of the reference points, the
best approximation for µ = 10 obtained after 30 repetitions with different random
starting vectors. The first experiments were ran for 2-dimensional continuous and
differentiable fronts restricted to the [0, 1] × [0, 1] region, similar to those used in
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Figure 5.8: Example of the change in investment with the change of location of a
single point in different fronts.

Section 5.5.1. The fronts considered were the concave, convex and the wave-w (where
w ∈ {1, 3}) fronts (see Section 3.5). The remaining experiments were made on
fronts that result from applying the same transformation as in Section 5.5.1 through
different settings of the reference points and normalizing the space afterwards.
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Results

Figures 5.9 and 5.10 show the approximated optimal µ-distributions for the HSR
indicator (odd columns) and for the hypervolume indicator (even columns). The
settings of l and u for each row are the same as those for Figures 5.6 and 5.7. In
this case, Figure 5.9 shows the results for the convex and the concave fronts and
Figure 5.10 shows the results for the wave-1 and wave-3 fronts. The plots also show
the Sharpe ratio and hypervolume values for each distribution. Always recall that
these are just approximations and therefore, the conclusions have to be carefully
drawn. For example, note that, for the concave fronts in the forth row of Figure 5.9,
the approximated distribution for the hypervolume indicator leads to a better Sharpe
ratio than that found for the HSR indicator.

The first conclusion is that, in general, a higher Sharpe ratio does not imply a
higher hypervolume, and vice-versa. Compare, for example, the first two plots of
the first row of Figure 5.9 and notice that the first one has higher Sharpe ratio but
lower hypervolume indicator than the second plot. This and the results in the figures
indicate that, in contrast to linear fronts, the optimal µ-distributions of HSR and
hypervolume indicators are not the same, in general. In particular, this is clearly
suggested by the results on the concave and wave fronts.

Concerning the convex front, both approximations are similar. The µ-distribution
for the HSR indicator seems to be such that points are more or less evenly dis-
tributed, but slightly more closer to one another than that for the hypervolume
indicator. In the case of the concave front, points are more evenly spaced in the
optimal µ-distributions for the hypervolume indicator. In both cases, the approxima-
tions indicate that, when the front is close enough to u, the optimal µ-distributions
tend to be almost the same for the two indicators. Moreover, as the front is farther
away from the upper reference point, the results indicate that the distance between
the outer points and their single neighbor increases more than the distance between
an inner point and its inner-point neighbors. This seems to be more evident in the
case of HSR indicator, to the point that it may not even be worthwhile to invest
in inner points if the front is far away enough from u. Hence, it may be the case
that, for some fronts and some settings of u, there is an optimal µ-distribution for
the HSR indicator that has less than µ points, which does not happen in the case
of the hypervolume indicator. However, as mentioned before, these are just approx-
imations and, therefore, this conclusion is not certain, particularly because of the
(clearly sub optimal) results in the fourth row of Figure 5.9.

In the case of the wave-w (w ∈ {1, 3}), the results in Figure 5.10 indicate that,
for the HSR indicator, points are preferably concentrated in convex regions, more
so than in the case of the hypervolume indicator, and fewer points are placed in
concave regions. Once again, the results indicate that the optimal µ-distribution of
the HSR indicator may contain fewer than µ points, as the results show some points
with (very close to) zero investment.

5.6 Extended Hypervolume Sharpe-Ratio Indica-
tor

The model on which the HSR indicator is based considers the uncertainty of a
single Decision Maker regarding the quality of solutions that are mapped onto a
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Figure 5.9: Examples of the approximation of optimal µ-distributions for the HSR
indicator (odd columns) and corresponding optimal investment and for the hyper-
volume indicator (even columns) for the convex front (first two columns) and the
concave front (last two columns). Each row represents a different setting for l and u,
the same used in Figures 5.6 and 5.7. The Sharpe ratio (SR) and the hypervolume
indicator (HV) of each point set is shown in the plot title.
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Figure 5.10: Examples of the approximation of optimal µ-distributions for the HSR
indicator (odd columns) and corresponding optimal investment and for the hyper-
volume indicator (even columns) for the wave-1 front (first two columns) and the
wave-3 front (last two columns). Each row represents a different setting for l and u,
the same used in Figures 5.6 and 5.7. The Sharpe ratio (SR) and the hypervolume
indicator (HV) of each point set is shown in the plot title.
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unique point in objective space. However, several problems benefit from a problem
formulation where each solution in the decision space is mapped onto a set of (non-
dominated) points in the objective space. The HSR indicator can be easily extended
to handle such a formulation.

In this section, problems with set-valued solutions are explained in Section 5.6.1
using application examples. The additional difficulties raised in evaluating such
solutions in comparison to solutions of (unconstrained) multiobjective optimization
problems are discussed also in Section 5.6.1. The uncertainty model for the problems
with set-based solutions is formulated in Section 5.6.2, and experiments on the
resulting instance of the Sharpe-ratio class are shown and discussed in Section 5.6.3.

5.6.1 Motivation
In multiobjective optimization, a solution in decision space is typically mapped onto
a single point in objective space. However, for some problems, a mapping onto a set
of (nondominated) points in objective space may provide additional insight to the
DM, and allow a reduction on the search space and/or on the dimensionality of the
objective space. Such problems will be referred to here as Set-Valued Optimization
(SVO) Problems. Figure 5.11 shows an example of the mapping between decision
space and objective space for this type of problems. Such a mapping is expressed
as a function f : Ω→ 2R

d , where Ω and Rd represent the decision and the objective
spaces, respectively, and 2R

d denotes the power set of Rd. In set-valued optimization
with set-optimization criteria [1], a solution x ∈ Ω is a minimizer of f iff for all x′ ∈ Ω
such that f(x′) ⪯ f(x) then f(x) ⪯ f(x′). In the problems explored in this section,
f maps onto a finite point set of which only the nondominated points are considered
to be of relevance. Therefore, let us restrict to the case where f maps onto a discrete
and finite nondominated point set. Problems to which the above formulation applies
include: problems where solutions are evaluated over multiple points in time for
which objective values increase/decrease monotonically (e.g., the electrical network
restoration problem [45]); problems where solutions have to be evaluated under the
same objectives considering multiple scenarios (e.g., multiobjective games [7], worst
case robustness [6]); the problem of optimizing a limited-size set of solutions to a
MO problem (e.g., population of-sets EAs [9]). In such problems, each solution has
to be evaluated considering the set which it is mapped onto.

Electrical Network Restoration Problem

The electrical network restoration problem [45] is based on the need to re-configure
an electrical network after one or more failures occur, e.g., due to adverse weather
conditions, causing some parts of the network to become disconnected and, thus left
without electricity. To restore the power in the network, a sequence of maneuvers
has to be performed, where each maneuver consists in the activation/deactivation of
a link between nodes in the network. These are performed in stages, for example, a
stage may consist of a maneuver to deactive a link and another to activate another
link. In general, the goal is to find which maneuvers to perform (which are grouped in
stages) and in which order to perform the stages. By grouping maneuvers in stages,
candidate solutions can be constructed in a way that no part of the network with
electricity becomes disconnected after each stage. The electrical network should be
reconfigured in such a way that the load is recovered as quickly as possible and the
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x
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Figure 5.11: Example of 3 solutions in the decision space and the corresponding
point sets in the objective space (identified by arrows of the same type and points
of the same shape and color) of a set-valued optimization problem.

amount of unrecovered load is minimized, while satisfying all problem constraints
at all steps.

Although the ideal solution would recover the full load in the shortest amount
of time, it is also important for the DM to understand how much time is required
and how much load is restored after every stage. This allows, for example, to help
avoid having to pay fines to each client when the load is not established soon enough.
Thus, the DM is interested not only in the evaluation of the solution after all stages
are performed, but also after each intermediate stage. For example, suppose that
there are two stages, A and B, that can be performed in any order but where A
recovers 70% while B recovers the remaining 30% of the unattended load, and that
both require one hour to be performed. Although the load is fully restored after
performing the two stages, it is more advantageous for the DM to perform stage A
first because more load will be restored sooner.

Carrano et al. [45] proposed to map every solution in the decision space into a
nondominated point set in a two-dimensional objective space. They considered the
minimization of the accumulated time required by the maneuvers/stages (objective
1) and the minimization of the unrecovered load (objective 2). In such a case, the set
of points in objective space corresponding to the evaluation of a solution represents
the evolution of the objective values as the stages are performed. In the above
example, the solution where stage B is performed after A, would be mapped into
the following two-point set {(1, 30), (2, 0)}. One of the benefits of this model is the
reduction of the search space, as there is no need to consider solutions encoded by
another solution, i.e., consisting of only the first stages of another solution.

Other Problems

Multiobjective Games [7] are another example where mapping each solution onto a
point set may provide additional insight and possibly lead to better decision making.
Each player’s plan of action carries payoffs to each player (e.g., in checkers, it may
be related to the number of pieces lost by each one). In such problems, the players
have d objectives to optimize which are related to the payoffs at the end of the game
(e.g., each player wishes to maximize the number of pieces lost by the opponent and
minimize its own). Each player has several strategies that she/he may follow, where
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each one defines a course of action for the whole game (e.g., move the piece that is
closer to the opponent’s side). To optimize its own payoffs, a player has to choose a
strategy, taking into account all strategies that the opponent may follow. Therefore,
there are multiple payoff vectors associated to each player’s strategy (solution), one
for each of the opponent’s possible strategies. From the point-of-view of one of the
players, a worst-case scenario is considered, where for each of her/his strategies only
the most beneficial strategies for the opponent are considered. Thus, each solution
maps to a nondominated point set in the objective space.

Worst case robustness problems [6] consider that solutions are subject to uncer-
tainties and thus, several scenarios have to be considered when evaluating them. In
such a case, each solution is mapped to a set of points in the objective space, one
point for each scenario considered. The goal is to find the best and most reliable/ro-
bust solutions to guarantee, as much as possible, the satisfaction of the problem
constraints under the problem-related uncertainties. This is achieved by optimizing
the worst case, which means that only the scenarios for which the solution performs
the worse have to be considered. In practice, it translates to considering only the non-
dominated points each solution maps to. In such problems, the goal is to minimize
the worst case, and preference is given to solutions whose worst-case performance
map to a set of points with reduced spread (related to less uncertainty).

In population-based EMOAs working on sets of solutions, the goal is to find
the “best” subset of optimal solutions (e.g., regarding a quality indicator) for a
given multiobjective problem, where each individual represents a candidate subset.
Therefore, such EMOAs aim at solving set-valued optimization problems. These
and other EA methods for solving different SVO problems require individuals to
be evaluated based on the corresponding point sets, and environmental selection on
such individuals translates to performing subset selection on sets of point sets.

Evaluating Solutions

The evaluation of set-valued solutions adds another level of difficulty to the assess-
ment of solutions and to the assessment of sets of solutions in comparison to the
traditional formulation of a multiobjective optimization problem. The same ques-
tions apply: What is a good solution? What is a good (diverse) set of solutions? It
is still clear that a (set-)dominated solution should not be preferred over a dominat-
ing one while nondominated solutions cannot be easily discarded without additional
information regarding DM preferences. Under no preference information, although
a (subjective) notion of diversity, related to the spread of solutions, is commonly
accepted in the (single-point) multiobjective optimization case, it does not easily
extend to set-valued optimization problems. That is, should it be related to having
each solution covering one specific region of the objective space? Or each solution
covering the objective space as much as possible? Or having solutions mapping to
different set sizes?

The assessment/ranking and selection of solutions in EAs highly influences its
capability to approach optimal solutions and to present the DM with a diverse set of
good solutions. Although fitness assignment and selection in EAs for SVO problems
becomes more difficult, it is important to understand the inner preferences imposed
by the selection and/or fitness assignment method used, in order to understand
its guarantees and the (possible) limitations imposed. It would be ideal to have an
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indicator with good properties such as monotonicity with respect to a set-dominance
relation and which could be studied regarding (set-based) µ-distributions.

As highlighted by Carrano et al. [45], most of the well-known EMOAs are not
easily adapted to carry out the optimization considering the set-based formulation.
Thus, currently, the methods used for fitness assignment and selection result mostly
from the adaptation of the methods used in well-known EMOAs such as SPEA2 and
NSGA-II. These adapted methods resemble the two-step selection frequently used
to rank solutions in traditional multiobjective optimization before the introduction
of quality indicators. This two-step selection consists of a step to select “the best”
solutions followed by step to impose diversity, or to break ties, based on crowding.
The selection methods used in [45, 7, 6, 9] are briefly described and discussed next.

In the proposal by Carrano et al. [45], the ranking of solutions is based firstly on
splitting them into two sets, one containing all solutions that map to, at least, one
nondominated point (considering all points associated to all solutions) and another
containing all remaining solutions. Any solution in the first set is preferred to any
other in the second set. The second criterion for sorting solutions in each of the two
sets is based on a modified version of dominance strength from SPEA2. In SPEA2
the raw fitness of a solution corresponds to the raw fitness of the single point which
the solution is mapped to (see Section 2.4.1 on “Pareto-based methods” for more
details). In the modified version, the raw fitness is the sum of the raw fitness of all
points in objective space in which the solution is mapped.

Using the method by Carrano et al. [45], the solutions in the example in Fig-
ure 5.12 are first divided in sets {C,D} and {A,B} (the solutions of the first are
the preferred ones) and then ranked inside each set by their raw fitness. Thus, the
final rank of solutions is: C,D,A,B. Although all solutions mapping into, at least,
one nondominated point among all solutions, are preferred to any other that does
not, it is possible to see that a dominated solution might be strictly preferred to the
solution that dominates it w.r.t. set-dominance. For example, solutions mapping to,
at least, one of the following points are the preferred ones: c(1), c(2), c(3), d(1). That
is, solutions C and D. However, solution A is preferred (has lower raw fitness) to B
although B dominates A.

Figure 5.12: Example of the raw fitness as proposed by Carrano et al. [45] for
four solutions whose corresponding point sets in two-objective space are depicted.
The four point sets are A = {a(1)}, B = {b(1), b(2), b(3)}, C = {c(1), c(2), c(3)}, and
D = {d(1), d(2)} which are represented by circles, squares, diamonds and stars, re-
spectively.
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Avigad et al. [6, 7] proposed a method based on NSGA-II for comparing/evalu-
ating the quality of solutions for the worst-case robustness problem. The proposed
method is also a two-step method to rank solutions. The first step is based on the
nondominated sorting of NSGA-II to rank groups of solutions and then an adapted
version of the additive ϵ-indicator is used to rank solutions in the same rank group.
However, the nondominated sorting is based on a relation between solutions which is
not compatible with set-dominance due to the problem’s characteristics. Therefore,
it will not be further detailed.

u

x

y

l

g
(1)

f
(1)

f
(2)

e
(1)

e
(2)

Figure 5.13: Example of the point sets in the two-dimensional objective space associ-
ated to three solutions. The three point sets are E = {e(1), e(2)}, F = {f (1), f (2)} and
G = {g(1)} which are represented by squares, diamonds and circles, respectively.

In one of the environmental selection methods used by Bader et al. [9], solutions
are ranked and then selected based on the hypervolume indicator value associated
to the point set to each solution is mapped. In that case, it may happen that a
solution mapped to a point not dominated by any other solution is ranked worse
than a dominated solution. This can be observed in the example of Figure 5.13,
where, based on this method, solutions are ranked in the following order: F, E, G.
Thus, if subset selection (environmental selection) is to be performed to select two of
them, the clearly dominated solution (E) is preferred over a nondominated solution
(G).

Discussion

From a critical point-of-view, the method by Carrano et al. [45] for ranking solutions
focuses mainly on the individual quality of a point in the objective space rather than
on the quality of the set in which it belongs to. As a consequence, the good/bad
evaluation of a solution may be highly influenced by a single point in the correspond-
ing set. Moreover, a nondominated point set (e.g., B) may be considered worse than
one it dominates (e.g., A). On the other hand, although the quality of the point
set is taken into account in a ranking method based on a quality indicator, such as
the method described in [9], as a subset selection method it may still contradict the
Pareto dominance notion extended to sets of points sets.

It is reasonable to admit that in cases where, at the end, only the best point in
the set is selected by the DM, focusing on the individual quality of the points in
objective space associated with a solution, as in [45], may be desirable. However,
if, in the end, the DM’s decision relies on a subset or the complete set of points
associated with a solution, then important solutions or even optimal ones can be
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easily lost. For example, in Figure 5.12, B might be more interesting to a DM
interested in the whole set than C or D. Moreover, focusing on point-set quality
and not accounting for the quality of the set of solutions (set of point sets) as a whole
while performing environmental selection may lead to convergence to sub-optimal
solutions due to loss of diversity.

Subset selection, which is relevant to the environmental selection step in EAs
as performed in the above methods, i.e., based on ranking, resembles the methods
used in EMOAs before the prominence of quality indicators such as the hypervolume
indicator. Quality indicators stood out because they implicitly favor good and
diverse sets of solutions by considering the quality of the set of solutions as a whole
and not the quality of individual solutions by themselves. That has allowed the
properties, such as monotonicity and optimal µ-distributions, to be studied and
understood. It remains unknown to what extent the selection methods for SVO
problems described above possess such properties.

5.6.2 Formulation
Let us consider the set-valued optimization (SVO) problem as the problem of mini-
mizing a function f : Ω → 2R

d , where Ω denotes the decision space, and the target
space is the power set of the objective space Rd. The SVO problem provides a more
general formulation of the traditional multiobjective optimization problem where the
image A of a solution is now a non-empty finite point set instead of a single point.
Therefore, to accommodate SVO problems, the underlying uncertainty model of
the HSR indicator has to be extended. In this case, the DM preferences are also
expressed in terms of a single goal vector assumed to follow a uniform distribution
over an orthogonal range [l, u] in objective space, where l, u ∈ Rd. Moreover, individ-
ual return (or acceptability) is also a Bernoulli random variable which takes a value
of 1 or 0 depending on whether the corresponding individual solution is acceptable
or not, respectively. The main differences with respect to the HSR indicator are
the definition of image of a solution and of what is an acceptable individual. These
definitions are extended as follows:

• There are n ≥ 1 individuals in the population. To each individual i, i = 1, ..., n,
corresponds a non-empty and finite set A(i) of m(i) nondominated objective
vectors, i.e., A(i) ⊂ Rd, such that |A(i)| = m(i) ≥ 1.

• Individuals are either acceptable or not acceptable, depending on whether or
not there is a point in the corresponding set that weakly dominates the random
goal vector, respectively.

Note that the preference model used in the HSR indicator (see Section 2.4.5) is a
special case of the above model where m(i) = 1 for all i ∈ {1, ..., n}.

The expected return ri of an individual i as described above is:

ri = pi =

Λ

(
[l, u] ∩

( ∪
a∈A(i)

[a,∞[

))
Λ([l, u])

(5.55)

i.e., ri is the proportion of the objective space in [l, u] which is dominated by A(i).
The probability to simultaneously accepting two individuals i and j is proportional
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to the measure of the objective space in [l, u] which is simultaneously dominated by
both A(i) and A(j):

pij =

Λ

(
[l, u] ∩

( ∪
a∈A(i)

[a,∞[

)
∩

( ∪
b∈A(j)

[b,∞[

))
Λ([l, u])

(5.56)

As before, the covariance between individuals (i) and (j) is given by:

qij = pij − pipj (5.57)

and rf = 0 under such a model.
Figure 5.14 considers a set of three individuals {A(1),A(2),A(3)} and shows, in

gray, the region measured to compute pi and pij, where i, j ∈ {1, 2, 3}, assuming,
without loss of generality, that l = (0, 0) and u = (1, 1). In the example, m(1) = 4,
m(2) = 3 and m(3) = 3.
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Figure 5.14: An example of the region measured to compute pij, given the individuals
A = {A(1),A(2),A(3)} where A(i) ⊂ R2 and i = 1, 2, 3. The points in A(1), A(2) and
A(3) are represented as squares, circles and diamonds, respectively. The region
measured to compute p1, p2 and p3 is depicted in gray in Figures (a), (b) and (c),
respectively, and the region measured to compute p12, p13 and p23 is depicted in dark
gray in Figures (d), (e) and (f), respectively.

Although general, this model may be computationally expensive. Computing the
probability pi requires computing the hypervolume indicator of m(i) points, while
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computing the probability pij for i ≠ j requires computing first the point set defining
the second layer of the Empirical Attainment Function (EAF) [67] (such point set
defines the region simultaneously attained by the two sets), and then the hypervol-
ume indicator of such point set. Although computing all of this requires linear time
in m(i)+m(j) for d = 2 after sorting, for the more general case it requires computing
the hypervolume indicator in exponential time in d of a set of Ω((m(i) +m(j))⌊d/2⌋)
points [67]. Therefore, the applicability of this model may be somewhat limited to
a low number of dimensions and/or low number of points associated with each indi-
vidual/solution. Still, it is worth studying this model as it may provide advantages
that other selection methods/indicators do not.

The extended uncertainty model for SVO problems leads to a new instance of
the Sharpe-ratio indicator (see Definition 5.1) which is a more general version of the
HSR indicator (see Definition 5.2). It is formally defined as:

Definition 5.4 (Extended Hypervolume Sharpe-Ratio Indicator). Let A =
{A(1), ...,A(n)} ⊂ 2R

d be a non-empty set where A(i) denotes a finite non-empty
nondominated point set, i ∈ {1, ..., n}. Given A, the points l, u ∈ Rd such that
l ≪ u, and the Sharpe ratio function hA

EHSR(x, l, u) where the expected return p
and the covariance Q are computed as expressed in (5.55) to (5.57), the extended
hypervolume Sharpe-ratio indicator IEHSR(A, l, u) is given by:

IEHSR(A, l, u) = max
x∈Ω

hA
EHSR(x, l, u) (5.58)

where Ω ⊂ Rn is the set of solutions that satisfy the constraints of Problem 2.2.

5.6.3 Experiments and Discussion

A lot has to be considered when working with problems where each solution
maps to a single point in the objective space: what is a good solution, how are
known preferences expressed, if any, what is a good and diverse set of solutions, and
so on. Considering that each solution maps to a set of (nondominated) points does
not make it any easier to answer these questions, on the contrary. Hence, only some
small experiments will be presented in this section. The aim is to give some insight
on how investment is assigned by the EHSR indicator, just to have an idea of what
to expect and to raise interest in the new indicator. A more thorough experimental
and theoretical studies is left for future work.

Figure 5.15 shows a few small examples of how investment is distributed by the
EHSR indicator. In the first example (Figure 5.15(a)) considering two solutions, a
higher investment is assigned to the solution with higher expected return. Adding
a dominated solution to this set of solutions does not affect their investment as
the dominated solution is assigned zero investment (see Figure 5.15(b)). This ob-
servation is consistent with the HSR indicator, for which every dominated solution
is assigned zero investment (as proved in Lemma 5.4). Thus, it is reasonable to
conjecture that this also holds for the more general EHSR-indicator case. Another
scenario is presented in Figure 5.15(c), where no solution is dominated. However,
the two points of one solution (marked with squares) are dominated by the union
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Figure 5.15: Examples of the EHSR indicator in the two-dimensional case. The fig-
ures show how the optimal investment is distributed between the two/three solutions
considered. The set of points (in the objective space) corresponding to a solution
(in the decision space) share the same color and marker. The region dominated by
such set is delimited and shaded in that color. The labels indicate the expected
return of each solution/point set (the area dominated) and, in round brackets, the
investment assigned to that set. The Sharpe ratio is shown in the title.

of the points of the remaining solutions. Nevertheless, the two-point solution is
assigned greater investment (0.72) than the others. Note that the most valued solu-
tion in this example is the one that the method by Carrano et al. [45], based on raw
fitness, would disregard (see Section 5.6.1). The EHSR indicator may be valuing
more nondominated solutions that dominate more space in [l, u].

Figures 5.15(d) to 5.15(f) explore cases where there are different solutions with
equal expected return. In the first case (Figure 5.15(d)), the optimal investment is
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split equally between the two solutions. In the second case (Figure 5.15(e)), which
adds a third distinct solution to the example of Figure 5.15(d) with equal expected
return, the same cannot be observed. In this case, the solution whose exclusive
dominated region is the smallest (represented with squares) is assigned lower invest-
ment (only 0.19). The remaining investment is unevenly distributed between the
other two solutions, where the solution with higher exclusive dominated region has
higher investment. If the third nondominated solution added to Figure 5.15(d) had
considerably less expected return, it would still receive investment, but in this case
(Figure 5.15(f)) less investment would be withdrawn from the other solutions. The
solution that loses more investment is the one that has a larger amount of its dom-
inated region become dominated by the third solution. Figures 5.15(g) to 5.15(i)
show more examples which seem to be in accordance to the above observations.

The results presented indicate that (some) dominated solutions are assigned zero
investment. The assignment of strictly positive investment seems to be related to
the size of the region dominated (the more, the better) but it also seems to depend
on how much of that region is dominated by other solutions (the less, the better).
These observations give a good idea of what to expect from the EHSR indicator
and do show that it might provide novelty to the way SVO problems are solved, in
particular, in what comes to selecting a diverse set of solutions. It can be used for
both environmental selection as well as for fitness assignment, as the HSR indicator,
and it seems to implicitly invest in good solutions and in diverse sets of solutions
as well. Therefore, it is worth studying the EHSR indicator more thoroughly in the
future.

5.7 Preferability Hypervolume Sharpe-Ratio Indi-
cator

In the underlying uncertainty model of the HSR indicator, DM preferences are ex-
pressed as a random goal vector in objective space, where a solution is acceptable
to the DM if it (weakly) dominates such goal vector. Thus, computing the expected
return, i.e., the probability of a solution being acceptable, becomes equivalent to
computing the proportion of random goal vectors it dominates (assuming a uniform
distribution). Therefore, such a preference model is constructed upon the Pareto-
dominance relation. However, such a relation is not adequate for constrained mul-
tiobjective optimization problems, as solutions cannot be compared based solely on
objective values. For example, it is typically accepted that an infeasible solution
should not be preferred over a feasible one, independently of their objective val-
ues. Therefore, the preference model of the HSR indicator has to be extended to
account for the feasibility of solutions [133]. A way to do that is to extend the
model by replacing the underlying dominance relation with another outperformance
relation [87]. Such a relation should be Pareto-dominance compliant over feasible
solutions, and should reflect preferences also over infeasible solutions. For that pur-
pose, the preferability relation [66] (see Preference Information in Section 2.3.2) will
be considered.

The resulting model allows preferences to be expressed in such a way that feasible
solutions are preferred to infeasible solutions, and among infeasible solutions, those
that are closer to satisfying all (inequality) constraints are preferred. This leads to
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a new instance of the Sharpe-ratio indicator class that deals with infeasible solu-
tions in an integrated way1. The new indicator, that will be called Preferability
HSR indicator (PHSR indicator), is identical to HSR indicator but where the com-
putation of the expected return (and covariance) is, in part, different. The Sharpe-
ratio indicator can then be directly computed without any further changes.

5.7.1 Formulation
Consider a constrained optimization problem consisting in minimizing d objective
functions subject to nc constraints expressed as c(x) ≤ g, where c : Ω → Rnc and
where Ω, Rd and Rnc denote the decision, the objective and the constraint spaces,
respectively. The (goal) vector g = (g1, . . . , gnc) defines the constraint bounds.

To replace the dominance relation in HSR indicator by the preferability relation,
the space defined by the Cartesian product between objective and constraint spaces,
Rd × Rnc , has to be considered. DM preferences are now expressed in terms of a
random goal vector drawn from the uniform distribution on an orthogonal range
[l, u] × [lc, uc] ⊂ Rd × Rnc , where l, u ∈ Rd and lc, uc ∈ Rnc such that l ≪ u and
lc ≪ uc. The preference vector for a constrained optimization problem is given
by the low priority goal vector (−∞, . . . ,−∞) for the objectives and by the high
priority goal vector g for the constraints [66]. Therefore, two vectors in [l, u]× [lc, uc]
are first compared based on their constraint values, and only if those are satisfactory
they are then compared based on their objective values. Therefore, an individual is
either acceptable or not acceptable, depending on whether it is weakly preferred to
the random goal vector given the preference vector. As for the HSR indicator, the
return of an individual can be seen as a Bernoulli random variable, and the expected
return is the probability of being acceptable. In this case, this is equivalent to the
proportion of random goal vectors that are worse than the individual considered
according to the preferability relation.

Consider a population A = {a(1), ..., a(n)} ⊂ Rd × Rnc with n individuals, here
represented by their mapping onto objective and constraint spaces. Let (a, ac) =
(a1, . . . , ad, a

c
1, . . . , a

c
nc) ∈ A be one such individual. For simplicity, assume that

a ∈ [l, u] and ac, g ∈ [lc, uc]. Consequently, if (a, ac) is an infeasible solution, let I⌣
and I⌢ be a partition of the set {1, . . . , nc} denoting the constraint indexes satisfied
and not satisfied by ac, respectively. Then, according to the preferability relation,
the expected return, r, of such an infeasible solution (a, ac) is given by:

r = p =
Λ(
∏

i∈I⌣ [lci , u
c
i ]×

∏
i∈I⌢ [aci , u

c
i ]× [l, u])

Λ([lc, uc]× [l, u])
(5.59)

where × denotes the Cartesian product. If (a, ac) is a feasible solution instead, then
the expected return of (a, ac), r, is given by:

r = p =
Λ(([lc, uc]\[lc, g])× [l, u]) + Λ([lc, g])× [a, u])

Λ([lc, uc]× [l, u])
(5.60)

The probability to simultaneously accepting two solutions is computed in an analo-
gous way, where a and ac are replaced with the component-wise maximum between

1This model was used in the experiments by Yevseyeva et al. [133] but without detailing it.
This section formalizes and details how the expected return is computed.
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the objective vectors and between the constraint vectors of the two solutions, re-
spectively. With the probability of accepting an individual, and of simultaneously
accepting two individuals, the covariance matrix can then be computed as for the
HSR indicator and the EHSR indicator (see expression(5.57)). Given that rf = 0
under such a model, and the above definition, the new indicator can now be formal-
ized:
Definition 5.5 (Preferability Hypervolume Sharpe-Ratio Indicator). Given
a non-empty set A = {a(1), ..., a(n)} ⊂ Rd × Rnc , the points l, u ∈ Rd where
l ≪ u, the points lc, uc, g ∈ Rnc where lc ≪ uc, and the Sharpe ratio function
hA
PHSR(x, l, u, l

c, uc, g) where the expected return and the covariance matrix are
computed as expressed in (5.59), (5.60) and (5.57), the preferability hypervolume
Sharpe-ratio indicator IPHSR(A, l, u, lc, uc, g) is given by:

IPHSR(A, l, u, lc, uc, g) = max
x∈Ω

hA
PHSR(x, l, u, l

c, uc, g) (5.61)

where Ω ⊂ Rn is the set of solutions that satisfy the constraints of Problem 2.2.

(a) Infeasible solution (b) Feasible solution

Figure 5.16: An example of the region measured, in [l, u]× [lc, uc] ⊂ Rd×Rnc space,
to compute the expected return of a feasible and an infeasible solution with objective
value a and constraint value ac. The objective and the constraint correspond to the
x and y-axis, respectively, where g denotes the constraint goal.

Figure 5.16 shows a simple example of the area measured when computing the
expected return of an infeasible solution (Figure 5.16(a)) and of a feasible solution
(Figure 5.16(b)), considering a single objective (d = 1) and a single constraint (nc =
1). Assume, without loss of generality, that Λ([lc, uc]) = Λ([l, u]) = 1. The expected
return of an infeasible solution (a, ac) is the measure of the region containing all
infeasible solutions (i.e., all goal vectors) that are worse than (a, ac), in this case
represented by region C. That is, a solution is worse than (a, ac) if it violates all
constraints that (a, ac) violates (i.e., constraints I⌢) at least as much, but not equally
in all cases, independently of how it performs in the constraints that (a, ac) satisfies
(i.e., constraints I⌣) and in the objective space. Although a solution that equally
violates all constraints that (a, ac) violates may also be worse than (a, ac) according
to the preferability relation, the set of such solutions has zero measure in constraint
space, and does not affect the probability of (a, ac) being acceptable to the random
DM. The expected return of a feasible solution (a, ac) is the measure of the region
containing all infeasible solutions (region A) plus the region containing all feasible
solutions that a dominates (region B).
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5.8 Discussion and Concluding Remarks
The Sharpe-ratio indicator class has been formalized, and theoretical results on
the particular HSR indicator have been presented regarding independence of one
of the reference points, scaling independence, monotonicity properties, and optimal
µ-distributions on two-objective linear fronts.

Although the formulation of the HSR indicator involves two reference points,
only one needs to be set in practice. The second reference point is just a technical
parameter that is required by the formulation. Indeed, the optimal investment is not
affected by the linear objective rescaling implied by changes to this second reference
point, and the indicator is scaling independent under such transformations. Thus,
the HSR indicator does not require more parameters to be set than, for example,
the hypervolume indicator.

Furthermore, the HSR indicator is both weakly monotonic with respect to weak
set dominance and strictly monotonic with respect to elementwise set dominance,
the latter property guaranteeing that at least one nondominated point is included in
any indicator-optimal subset. More specifically, the HSR indicator is such that dom-
inated points are always assigned zero investment, and at least two nondominated
points are assigned strictly positive investment if they exist in a set. As a conse-
quence, the population of an indicator-based EMOA implementing environmental
selection based on the HSR indicator will in fact tend to move closer to the Pareto
front as new nondominated points are found.

Finally, the optimal µ-distribution of the HSR indicator on two-objective linear
fronts is unique and identical to that of the hypervolume indicator, where all points
are equally spaced between two outer points, and the location of the outer points
depends on the position of the front relatively to the (upper) reference point. In
contrast to the hypervolume indicator, however, the HSR indicator assigns to each
point in a set a weight (investment) that can be interpreted as fitness and used to
perform parental selection in EAs. Still for a two-objective linear front, the optimal
investment in the inner points turns out to be proportional to the distance between
their two direct neighbours regardless of where in between those neighbours each
point lies, which resembles the concept of crowding distance in NSGA II [53]. Since
all inner points in the optimal µ-distribution are equally crowded, the corresponding
investment/fitness is the same for all of them. On the other hand, the outer points
are assigned greater or equal investment than the inner points. The farther away
from the front the upper reference point is, the greater the investment in the outer
points of the optimal µ-distribution, as if to promote the expansion of the front
beyond its boundaries. This suggests that it may be desirable to adjust the upper
reference point during the execution of an HSR indicator-based EMOA.

The experimental results on the HSR indicator extend the understanding of
this indicator to other than linear fronts. The results clearly show a bias towards
knee regions and extreme points, which is accentuated the farther away the upper
reference point is. This is merely a reflection of the underlying preference model,
where the effect of setting the upper reference point far away can be viewed as a way
to explicitly give less importance to a solution which improves in an objective less
than it loses in the other in comparison to its neighbors. From a practical point-of-
view in EMO, the characterization of the reflected preferences over sets of the HSR
indicator is a very important result taken from this chapter as it allows to better
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understand the indicator and make a better use of it.
Besides providing tools for the theoretical and experimental characterization of

Sharpe ratio based indicators, this chapter also provides examples of two other in-
stances of this class of indicators. These instances show how problems with different
characteristics can be considered in an integrated way. These indicators explore just
part of the potential and the flexibility of the class of Sharpe-ratio indicators for
preference integration. For instance, the different ways of expressing preferences
studied in MCDA could be considered.

Overall, this chapter opens up several paths for future work. Firstly, it shows
how the HSR indicator can be theoretically and experimentally characterized. Such
tools can be used to extend the results on HSR indicator for the 3-dimensional case
and/or for other instances of the Sharpe-ratio indicator class, such as the PHSR
indicator. Note that, proving a variant of Lemma 5.4 where the dominance relation
is replaced by another Pareto-compliant relation, such as the preferability relation
(PHSR indicator), should suffice to show that a Sharpe-ratio based indicator based
on such a relation has the same monotonic properties as the HSR indicator. A
worthy future study is on whether the EHSR indicator propagates the monotonic
properties of the HSR indicator to sets of solutions where each solution is represented
by a nondominated point set. Finally, the validation of the HSR indicator opens up
a path for the formulation of other instances for both cases of known and unknown
preference information.
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Chapter 6

Portfolio Selection in EMOAs:
Experimental Results

An immediate consequence of the algorithms to compute/update contributions pro-
posed in Chapter 4 is the runtime improvement of (µ + 1) EMOAs based on the
exact solution of the HSSP, such as SMS-EMOA, in three and four-objective cases.
However, using such exact algorithms in the general (µ + λ) case is still too expen-
sive. The greedy incremental/decremental approaches to the HSSP were shown to
produce good approximations, and in a short amount of time with the algorithms
proposed in Chapter 4. This indicates that they can be a good alternative to ex-
act algorithms, which can make hypervolume-based environmental selection more
affordable and appealing, at least in d = 3, 4. Moreover, the theoretical properties of
the HSR Indicator shown in Chapter 5, its computational cost and its formulation
make it an interesting indicator for EMOAs. As discussed in [133], the portfolio
formulation naturally suggests that the HSR indicator can be used, in an integrated
way, for both environmental selection and fitness assignment. Consequently, the
next natural step is to integrate the proposed greedy algorithms for the HSSP and
the HSR indicator in EMOAs, and study their performance on benchmark problems.

The intent of this chapter is not to show which EMOA, with which operator
combination, is the best. The goal is merely to study the suitability for environmen-
tal selection in (µ+ λ)-EMOAs of Archiving Algorithms (AAs) based either on the
hypervolume indicator or on the HSR indicator, and to study how their behavior dif-
fers for different settings of λ in problems with up to four dimensions. Moreover, in
the case of hypervolume-based AAs, the goal is mainly to study the impact of using
a (either incremental or decremental) greedy strategy to approximate the HSSP
instead of solving it exactly, and whether the results observed in Section 4.6 for
predetermined sequences of (nondominated) solutions are also observed in a more
stochastic environment provided by the inclusion of variation operators. Therefore,
the EMOAs and the experimental setup were constructed so as to keep the experi-
ments as controlled as possible, with the aim of having results more dependent on
the environmental selection method used, and less on stochastic aspects.

Four EMOAs using different environmental selection and/or fitness assignment
methods were implemented and evaluated. The EMOAs will be described next in
Section 6.1, and all the implementation details specific to the optimization strategy
(e.g., how invalid and dominated solutions were dealt with) are detailed as well. The
benchmark problems used for testing the EMOAs are then described in Section 6.2,
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as well as the implementation details specific to those problems (e.g., representation,
variation operators). Finally, the results are presented and discussed in Section 6.3
and concluding remarks are drawn in Section 6.4.

6.1 EMO Algorithms
Four (µ+ λ)-EMOAs were tested, namely:

• HSSP-EMOA (only for d=2)
• gHSS-EMOA (only for d=2,3)
• gHSSD-EMOA
• POSEA

The first three algorithms are alike and only differ in the (nondecreasing) archiving
algorithm used for environmental selection. HSSP-EMOA uses an exact algorithm
for the HSSP for environmental selection, while the remaining two use, as the
names suggest, the two greedy strategies to approximate the HSSP discussed in
Chapter 4, the incremental (gHSS) and decremental (gHSSD), respectively. The
particular cases of HSSP-EMOA and of gHSSD-EMOA with λ = 1 are equivalent
to SMS-EMOA, and thus will work as a baseline. POSEA (Portfolio Optimization
Selection Evolutionary Algorithm) uses the HSR indicator discussed in Chapter 5
for environmental selection and fitness assignment. Apart from this and parental
selection, POSEA has the same characteristics as the hypervolume-based EMOAs
(variation operators, etc).

6.1.1 Implementation Details
Several aspects of the construction and implementation of an EMOA are indepen-
dent of the problem to be optimized. Some regard the evolutionary algorithm setup:

• the environmental selection method
• the fitness assignment method
• the parental selection method

while others are mainly related to issues related to solution handling:

• how to deal with infeasible solutions
• how to deal with dominated solutions
• how to deal with repeated points (in objective space)

Regarding environmental selection, the results observed in Section 4.6 point to
a superior performance of nondecreasing archiving algorithms compared to their
possibly decreasing counterpart. Consequently, the archiving algorithms used for
environmental selection are nondecreasing, with respect to both the hypervolume
indicator (HSSP-, gHSSD- and gHSS-EMOAs), and the HSR-indicator (POSEA).
This means that whenever the selected candidate population has a lower value of the
indicator being maximized than that of the last population, then the last population
survives instead of the the new candidate one. The implemented EMOAs and the
choices made concerning the other aspects are described next.
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HSSP- gHSSD- and gHSS-EMOAs

Apart from the algorithm used for environmental selection, HSSP- gHSSD- and
gHSS-EMOAs share the same operators and implementation details which were cho-
sen based on SMS-EMOA. In the parental selection, the λ individuals are randomly
selected, where each individual is selected at most ⌈λ/µ⌉ times, which means that
the same individual is not selected more than once if λ ≤ µ. Thus, there is no need
for a fitness assignment method. In this way, these methods are consistent with
the original SMS-EMOA and EMOA performance becomes more dependent on the
environmental selection and less on the parental selection and fitness assignment
methods, thus resulting in a fairer comparison of environmental selection methods.

HSSP, gHSSD and gHSS algorithms are used in the corresponding EMOAs only
when there are more than µ nondominated (feasible) solutions, in which case all in-
feasible and all dominated solutions are discarded, and the respective subset selection
algorithm is applied to the remaining nondominated (feasible) solutions. Otherwise,
environmental selection consists in deciding which dominated/infeasible solutions to
discard and which to keep. In that case, the oldest (with respect to the generation in
which they were added to the population) λ solutions among the infeasible and dom-
inated ones are discarded. Although different from the original SMS-EMOA, this
method of discarding dominated/infeasible solutions was used because, as observed
in [89], the achieved results are similar and it is computationally less expensive as
HSSP/gHSSD/gHSS has to be computed fewer times.

When more than one solution among the µ+ λ solutions map to the same point
in the objective space (there are repeated points), the oldest one is seen as being
nondominated while the remaining copies are considered dominated solutions.

POSEA

The HSR indicator is used in POSEA both for environmental selection and for fit-
ness assignment. The investment assigned by the HSR indicator is directly used as
the solution fitness in the parental selection method, in this case, Stochastic Uni-
versal Sampling (SUS) [11]. Ideally, a cardinality constraint would be added to
the portfolio selection formulation to forbid more than µ solutions to be assigned
strictly positive investment. Although it would be possible to do this, the prob-
lem would not be a quadratic programming problem anymore but a mixed integer
programming problem instead. To avoid the additional computational effort, the
following (relaxed) method was used. After computing the HSR indicator for the
µ+ λ solutions, solutions are sorted in descending order of the assigned investment,
and those assigned equal investment are sorted in ascending order of solution age.
The first µ solutions are the selected ones (environmental selection). When more
than µ solutions are assigned strictly positive investment, the new population may
happen to be worse than the previous one, with respect to the HSR indicator. To
prevent this, when the highest investment assigned to a discarded solution is higher
than a threshold (10−6), the HSR indicator is recomputed for the µ solutions se-
lected. Then, the new population is only accepted if its HSR indicator value does
not degrade in comparison to the previous population (working as a nondecreasing
archiving algorithm). Recomputing the HSR indicator in such cases also ensures
that the investment used later in parental selection as the solution fitness is the
optimal investment.
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Regarding repeated points in objective space, only one occurrence is used in the
computation of the HSR indicator (to ensure that the covariance matrix Q has full
rank and that the QP problem has a unique solution) and then the investment
is split evenly among all copies. The HSR indicator is computed considering the
(feasible) nondominated and the dominated solutions.

In the case of constrained optimization problems, the population may contain
infeasible solutions as well. To account for feasible and infeasible solutions under the
same model, the preferability relation was used instead of the dominance relation
for computing the expected return and return covariance matrix (see Section 5.7).

In addition to POSEA, which was implemented as described above, a variant of
POSEA where a limit is imposed on the maximum investment a solution can get
and where repeated solutions are treated differently was considered. This variant is
identified here as POSEA-L, and differs from POSEA in the following. Regarding
repeated solutions in objective space, only one occurrence is used in the computation
of the HSR indicator while the copies are assigned zero investment. Moreover, to
ensure that, at least, min(λ, µ) solutions are assigned positive investment, the in-
vestment was limited to a maximum of 1/min(λ, µ) by adding linear constraints to
the QP formulation of the HSR indicator. In this way, an individual is selected in
the parental selection at most ⌈λ/µ⌉ times. Note that dominated and/or infeasible
solutions may be assigned non-zero investment due to this imposition. This is ob-
viously true for a data set containing a single (feasible) nondominated solution and
λ > 1.

6.2 Problem Description
Two types of problem were used in the experiments, continuous and combinatorial
optimization problems. The continuous problems used were selected from the DTLZ
test suite [54] and the combinatorial problem used was the Multiobjective Knapsack
Problem (MKP). These problems will be explained in Sections 6.2.1 and 6.2.2, re-
spectively. Together with the explanation, the implementation details specific to
each problem are described, namely, the representation, the generation of the ini-
tial population, and the mutation operator used. Note that, to avoid adding more
stochastic behaviour, crossover was not used.

6.2.1 DTLZ Fronts
The DTLZ test suite [54] provides a set of seven continuous problems (DTLZ1-
DTLZ7) to be used for benchmarking EMOAs in any number of dimensions d.
Each problem consists of m = d + t − 1 decision variables in [0, 1]m, d objective
functions and a function h : Rm → R that, together with the last t decision vari-
ables (xd, . . . , xm given a solution x ∈ [0, 1]m), augments the search space and is
used, for example, to introduce many local minima. The objective functions model
the Pareto front when h evaluates to zero. The optimal solutions correspond to
finding the values of the variables xd to xm such that h is minimized (h(x) = 0) and
the values of the variables x1 to xd−1 that minimize the objective functions. The
recommended number of additional decision variables, t, depends on the problem.
In these experiments, decision variables were only allowed to take values between

190 Chapter 6



Portfolio Selection in Evolutionary Algorithms

0 and 1 and therefore, all solutions generated by the EMOAs are feasible solutions,
which avoids the need to deal with constraints.

Implementation details

Representation Each solution is represented by a real vector in [0, 1]m.

Initial Population All individuals in the initial population are randomly gener-
ated by drawing a value between 0 and 1 uniformly at random for each decision
variable.

Mutation The mutation operator used was the variable-wise Polynomial Muta-
tion [92]. The parameter ηm required by this operator was set to a standard value
of 20. Each decision variable was mutated with a probability of 1

m
.

Objective Space All objective vectors are contained in the orthogonal range [l, u]
of the objective space defined by the origin and the coordinate-wise maximum of
each objective, i.e., l = (0, . . . , 0) and u = (M1, . . . ,Md) where Mi for i = 1, . . . , d is
the maximum value of each of the objective functions.

Instances To discuss in detail the performance of the EMOAs under considera-
tion, particularly regarding the final populations, only the results for the DTLZ1
and DTLZ2 fronts are presented. The Pareto front of DTLZ1 is a linear front de-
fined by the hyperplane

∑d
i=1 fi(x) = 0.5 while that of DTLZ2 is a spherical concave

front with radius 1 and center at (0, . . . , 0). The parameter t was set to the recom-
mended values, i.e., to t = 5 and t = 10 for the DTLZ1 and DTLZ2 test problems,
respectively. Additionally, the test problem DTLZ2convex is also presented which
is analogous to DTLZ2 but has a spherical convex Pareto front instead, where the
center of the sphere is at (1, . . . , 1). The following table indicates the maximum
function values that define u ∈ Rd, the upper bound of the orthogonal range in
objective space containing all feasible solutions.

problem u
DTLZ1 (1125,...,1125)
DTLZ2 (3.5, ..., 3.5)
DTLZ2convex (3.5,..., 3.5)

6.2.2 Multiobjective Knapsack Problem
The Knapsack Problem (KP) is the problem of selecting a set of items to fill a knap-
sack with limited weight capacity, such that the total item value is maximized. The
multiobjective version of this problem [145] considers the simultaneous maximiza-
tion of the total value of the selected items in each one of d knapsacks, which may
all have different capacities. Each item may add a different weight and/or value to
each knapsack. The multiobjective knapsack problem is formally defined as follows.
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Problem 6.1 (Multiobjective Knapsack Problem). Let m be the number of
available items and d the number of knapsacks. Let pij and wij denote the (positive)
profit and the weight, respectively, of item i in knapsack j, and let Wj denote the
maximum capacity of knapsack j, where i ∈ {1, . . . ,m} and j ∈ {1, . . . , d}. The
element xi of a solution x ∈ {0, 1}m is a binary variable representing whether the
item i is selected (xi = 1) or not (xi = 0). Then, solve:

max
x∈{0,1}m

fj(x) =
m∑
i=1

pijxi, j = 1, . . . , d (6.1a)

subject to f c
j (x) =

m∑
i=1

wijxi ≤ Wj, j = 1, . . . , d (6.1b)

The objective vector associated with a solution x ∈ {0, 1}m is given by (f1(x), . . . , fd(x))
while the constraint vector is given by (f c

1(x), . . . , f
c
d(x)) where fj(x) and f c

j (x) repre-
sents the total value and the total weight of the solution x on knapsack j ∈ {1, . . . , d},
respectively. The vector with the capacities of the knapsacks, g = (W1, . . . ,Wd),
represents the goal vector g that a solution must attain in order to be considered a
feasible solution.

Implementation details

Representation Each solution is represented by a m-sized binary vector.

Initial Population All individuals in the initial population are randomly gener-
ated by choosing 0 or 1 uniformly at random for each index.

Mutation The mutation operator used consists of sampling uniformly at random
from the 1-flip-exchange neighborhood [104]. A mutation is either a bit flip move
(a 0 becomes 1 or vice-versa, i.e., either an item is discarded or an item is selected)
or a bit exchange move (a 0 becomes 1 and a 1 becomes 0, i.e., a selected item is
discarded and another one becomes selected). Each type of move is applied with
a given probability that depends on the number of neighbors (i.e., total number of
individuals reachable through a mutation):

|N(x)| = m+H(x)[m−H(x)], where H(x) =
m∑
i=1

xi

where N(x) denotes the set of neighbors of x. A bit flip is performed with probability
m

|N(x)| , otherwise a bit exchange is performed. The index among the ones/zeros of
which bit to flip/exchange is selected uniformly at random.

Objective Space Because the EMOAs were implemented considering minimiza-
tion problems, the objective values provided to the EMOAs correspond to the nega-
tive of the objective functions given each solution. All objective vectors are contained
in the orthogonal range [l, u] in objective space defined by minus the coordinate-
wise maximum of each objective and the origin, i.e., l = (−M1, . . . ,−Md) and
u = (0, . . . , 0) where Mj =

∑m
i=1 pij and j ∈ {1, . . . , d}.
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Constraint Space All constraint vectors are contained in the orthogonal range
[lc, uc] of the constraint space defined by the origin and the coordinate-wise maximum
of each constraint, i.e., lc = (0, . . . , 0) and uc = (M c

1 , . . . ,M
c
d) where M c

j =
∑m

i=1wij

and j ∈ {1, . . . , d}.

Instances The instances used were taken from an online Test Problem Suite1.
Here, only the results for the 500-item instances in d = 2, 3, 4 are shown. The
following table indicates the negative of the total value (in the left column) and the
total weight (in the right column) of all items in each knapsack which are used to
define the l ∈ Rd vector and the uc ∈ Rd vector, respectively. Vectors l and uc

are then used to delimit the considered orthogonal ranges in objective space and
constraint space, respectively, for each instance:

d l uc

2 (-27088, -28014) (27487, 26714)
3 (-26680, -28086, -28090) (26640, 26260, 27913)
4 (-27069, -27302, -27357, -26957) (26998, 27510, 26908, 27800)

6.3 Experimental Results
6.3.1 Parameter Settings
The EMOAs were tested for a fixed population size of µ = 100. The number of
offspring considered was λ = 1, µ/4, µ/2, µ, 2µ, i.e., λ = 1, 25, 50, 100, 200. A total
of 30 runs were considered for each combination of EMOAs, λ value and problem
instance. A maximum of 106 function evaluations was the stopping criterion used
for all combination of algorithms and λ value, on every problem considered. The
mutation operator is applied to every individual selected in parental selection.

The experiments were set in a way that the initial population of size µ was the
same for all EMOAs for each problem instance, by fixing the random seed for each
run, i.e., the same seed was used for the ith run for all algorithms. Consequently, the
hypervolume-based EMOAs with the same λ, and on the same problem, will have
the same behavior (will select the same population) from the beginning of the run
until a generation is reached where environmental selection has to discard nondom-
inated solutions. That is, when the number of nondominated solutions among the
population and the offspring is higher than µ. When such a generation is reached,
even if two different EMOAs select the same individuals, the following generation is
not guaranteed to be equal unless the algorithms used for environmental selection
were the same. The reason is that the order of selected individuals provided by
the environmental selection may differ and that order will influence the following
stochastic steps.

The reference points are fixed and set as the minimum/maximum possible objec-
tive/constraint values for each problem instance. This ensures that the indicators
are always computed with respect to proper reference points, that the indicator val-
ues are comparable and that the order imposed by indicators on sets does not change

1http://www.tik.ee.ethz.ch/sop/download/supplementary/testProblemSuite/
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throughout the runs execution. On the other hand, the upper reference point may
be set too far from the Pareto front which will possibly lead to final populations
less uniformly distributed in objective space, but at least they will be distributed in
a predictable way justified through the known theoretical results. Recall from the
problem descriptions that all objective vectors are contained in the orthogonal range
[l, u] where l, u ∈ Rd and, in case of constrained problems, all constraint vectors are
contained in the orthogonal range [lc, uc] where lc, uc ∈ Rnc . Taking into account
the considered settings of l, u, lc and uc for each instance as described in Section 6.2,
for the hypervolume indicator the reference point, r, was set to u, while for the HSR
indicator, l and u were used and so were lc and uc for the multiobjective knapsack
problem.

6.3.2 Results
For every pair of EMOA and λ setting tested, data was collected 200 times through-
out each run. The data is always collected after generating the initial population,
and once the run is over, while the remaining cases occurred after a fixed number
of generations so as to collect the data at even function evaluations intervals. The
data collected include the hypervolume and the HSR indicators of the current pop-
ulation, and the number of (feasible) nondominated solutions it contains. For the
hypervolume-based EMOAs, the average number of nondominated solutions among
the population and offspring in the interval of generations between data point col-
lections is also recorded. For example, if data is collected after the 4th and 7th
generation and the number of nondominated solutions among population and off-
spring in generations 5, 6 and 7 is 110, 130 and 124, respectively, the average in
the interval between the 4th and 7th generation collected after the 7th generation is
121.3.

Plots

Most of the results presented here refer to the final populations obtained by the
EMOAs. The first set of figures summarizes the information from all 30 runs for a
given problem instance. In particular, Figures 6.1 to 6.3 refer to the DTLZ1, DTLZ2
and DTLZ2convex problems in d = 2, respectively. Figure 6.17 is analogous but for
the multiobjective knapsack problem in d = 3. In these figures, each column of plots
shows information regarding a particular EMOA, the name of which is indicated in
the top plot. The plots in the first two rows of each figure show, as boxplots, the
hypervolume indicator (first row), and the HSR indicator (second row), obtained
for the 30 final populations. Each plot contains 5 boxplots that refer to the same
EMOA but for a different λ setting, specified in the x-axis. The y-axis shows the
indicator value. As the axis range is fixed for all plots in the same row, they can all
be directly compared. When the indicator values obtained by different EMOAs are
too far away, the y-axis is split in two to omit a range of indicator values that were
not obtained by any EMOA, and the scale of the two new ranges is kept the same
to facilitate the boxplot comparison (e.g., see Figure 6.2).

The bottom row of Figures 6.1 to 6.3 and Figure 6.17, shows the average number
of nondominated solutions along runs. For POSEA (leftmost column), these results
refer to the number of nondominated solutions in the population at the generation
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at which the data was collected (averaged across all runs). For the hypervolume-
based EMOAs, the results refer to the average number of nondominated solutions
among population and offspring in the measured interval of generations previous to
the generation at which the data was collected (averaged across all runs).

For every problem instance there is a set of figures showing the final population
of the first run of each EMOA for the d = 2 or the d = 3 case. See Figures 6.4, 6.6
and 6.7 for the d = 2 case and Figures 6.8, 6.11, 6.13 and 6.18 for the d = 3 case,
where the problem instance is identified in the figure caption. Additionally, the
50% Empirical Attainment Function (EAF) [67] for d = 2 is presented in Figure 6.5
and, for d = 3 in Figures 6.9, 6.12, 6.14 to 6.10 and 6.19. The EAF captures the
stochastic behaviour of EMOAs by allowing to study the distribution of an EMOA’s
outcome in objective space, making it possible to infer the probability that an EMOA
has of finding a better solution than any given solution in objective space. The 50%
EAF shows the region of the objective space attained by, at least, half of the 30 final
populations, i.e., for every point (weakly) dominated by the 50% EAF there were,
at least, 15 final populations that dominated it. Pairwise comparisons of the final
populations or EAFs are shown only when they can provide additional information.
For example, in most of the d = 2 cases such plots are not shown because the final
populations of EMOAs are overlapped. For d = 3, such plots are shown only for the
convex shaped fronts because for other fronts, there were overlapping surfaces which
were not properly rendered. The final population and EAF plots are shown only
for a single setting of λ for each EMOA, in particular, they are shown for POSEA
with λ = 100 and hypervolume-based EMOAs with λ = 1. The value of λ was
selected based on the EMOA overall performance regarding the indicator it tries to
maximize, among all problem in all dimensions. Recall that, gHSSD-EMOA with
λ = 1 takes the role of the base case as it is equivalent to SMS-EMOA.

An additional type of plots, let us call it dominance table (see Figures 6.16
and 6.20), is presented. It shows, in a given cell, the average percentage of non-
dominated solutions in the final population of an EMOA (in that column cell) that
are strictly dominated by the final population of another EMOA (in that row cell).
These are computed through pairwise comparison of every EMOA setting for each
run. For example, given a problem instance, to compare the final populations ob-
tained by POSEA with λ = 100 and by gHSS-EMOA with λ = 1 in their first
run, let us assume that POSEA obtained 80 nondominated solution of which gHSS-
EMOA dominates 8, while gHSS-EMOA obtained 100 nondominated solutions of
which POSEA dominates 25. Then, gHSS-EMOA dominates 10% of POSEA non-
dominated solutions while POSEA dominates 25% of gHSS-EMOA nondominated
solutions. This is computed for the remaining 29 runs and the values are aver-
aged. Only the final populations from the same run index are compared because the
EMOAs start with the same initial population, which indicates how they compare
to one another when the starting condition is the same.

In this section, only a few representative results are shown. In particular, the
boxplots results are shown for all continuous problems in d = 2, the final popula-
tions are shown for d = 2 and d = 3 and EAFs are shown only for d = 3. For
the multiobjective knapsack problem, only a few results are show for d = 3. The
remaining results, and in particular on d = 4, are not shown as they do not provide
additional information.
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Figure 6.1: Summarized results from 30 runs of POSEA and of gHSSD-, gHSS- and
HSSP-EMOAs for DTLZ1 in d = 2 (from left to right column, respectively).
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Figure 6.2: Summarized results from 30 runs of POSEA and of gHSSD-, gHSS- and
HSSP-EMOAs for DTLZ2 in d = 2 (from left to right column, respectively).
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Figure 6.3: Summarized results from 30 runs of POSEA and of gHSSD-, gHSS- and
HSSP-EMOAs for DTLZ2convex in d = 2 (from left to right column, respectively).
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Figure 6.4: Final populations for DTLZ1 in d = 2.
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Figure 6.5: The 50% EAFs for DTLZ1 in d = 2.
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Figure 6.6: Final populations for DTLZ2 in d = 2.
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Figure 6.7: Final populations for DTLZ2convex in d = 2.
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Figure 6.8: Final populations for DTLZ1 in d = 3.
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Figure 6.11: Final populations for DTLZ2 in d = 3.
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Figure 6.12: The 50% EAFs for DTLZ2 in d = 3.
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Figure 6.13: Final populations for DTLZ2convex in d = 3.
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Figure 6.14: The 50% EAFs for DTLZ2convex in d = 3.
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Figure 6.15: The 50% EAFs for gHSS-EMOA on DTLZ2convex in d = 3.
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Figure 6.16: Each cell shows the average percentage of nondominated solutions in
the final population of an EMOA (column) with λ ∈ {1, 25, 50, 100, 200} which are
strictly dominated by the final population of another EMOA (row) with a given
λ ∈ {1, 25, 50, 100, 200}, for the DTLZ problems in d = 2.
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Figure 6.17: Summarized results from 30 runs of POSEA and of gHSSD- and gHSS-
EMOAs for the multiobjective knapsack problem in d = 3 with 500 items (from left
to right column, respectively).
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Figure 6.18: Final populations for the multiobjective knapsack problem in d = 3
with 500 items.
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Figure 6.19: 50% EAFs for the multiobjective knapsack problem in d = 3 with 500
items.
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Figure 6.20: Average percentage of dominated solutions for the multiobjective knap-
sack problem with 500 items.
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6.3.3 Hypervolume-Based EMOAs
HSSP-EMOA: Steady-state vs Generational

Although the generational environmental selection (λ = µ) based on the exact com-
putation of the HSSP currently has theoretical advantages (is effective) over the
steady-state one (λ = 1), the results in Figures 6.1 to 6.3 do not show a clear dif-
ference in their performance. In fact, the average hypervolume indicator values are
close for all values of λ, although a tendency for improvement was observable for
increasing values of λ in the deterministic simulations in Section 4.5.1. The EMOA
dynamics could be one of the reasons for this observation. Now the population
moves towards the Pareto front and the mutation operator influences the searched
space which will likely lead to different (sequences of) generated solutions for differ-
ent settings of λ. Despite this, the main reason for the observed results may have
to do with the actual number of nondominated solutions which the environmental
selection can choose from at each generation. The last rows of Figures 6.1 to 6.3
show that, independently of the λ setting, the environmental selection operator has
to choose 100 nondominated solution from a set, in average, of at most 115. These
observations indicate that even though the EMOA is a generational EMOA from
the parameter setting point-of-view, in practice it is far from being generational.
In practice, the observed performance of HSSP-EMOA is comparable to that of
HSSP-EMOA in Section 4.5.1 with a setting of λ between 1 and µ/4.

Greedy EMOAs: Increasing λ

Similarly to HSSP-EMOA, there is no clear (dis)advantage of a specific setting of λ
over the others concerning the average hypervolume indicator values obtained with
gHSSD-EMOA, which contradicts the results from Section 4.5.1. The reason for
this may also have to due with the introduction of stochastic behavior and also
with the number of nondominated solutions to choose from at the environmental
selection stage. Only with gHSS-EMOA and only in a few continuous problem
instances (DTLZ2 and DTLZ2convex in d = 2, 3), is a decrease of hypervolume
values observed as λ increases. A justification for observing this for gHSS-EMOA
but not for gHSSD-EMOA may have to do with a possibly lower sensitivity of gHSS
to stochastic aspects due to its choice consistency, i.e., the algorithm selects solutions
in the same way as in the previous generation (chooses solutions from the parent
population in the same order) until an offspring is selected. Even if the selected
solutions are not the same as in the previous generation, it is possible that they are
close in objective space. This consistency of gHSS is somewhat observable in the
central region of the 50% EAF for DTLZ1 (see Figure 6.9), and even more for the
50% EAF for DTLZ2convex and as λ increases (see Figure 6.15). The prominent
regions show a preference towards some regions of the objective space.

Incremental greedy vs decremental greedy

For the continuous problems, gHSS-EMOA with λ = 1 was, in general, competitive
with gHSSD-EMOA with any setting of λ. With increasing values of λ for gHSS-
EMOA there is a tendency to become outperformed by gHSSD-EMOA. However, for
the multiobjective knapsack problem, both of them are competitive for any setting
of λ.
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The pairwise comparisons between the two greedy approaches in the dominance
tables (see Figure 6.16 for example) do not show considerable differences in the av-
erage percentage of dominated solutions in the final population. This indicates that
the differences in hypervolume values may not have to do so much with proximity to
the Pareto front, but with different distribution of the final populations. In fact, the
comparisons between the final populations and the 50% EAFs in Figures 6.8 to 6.14
show that the algorithms seem to complement each other, by finding solutions in
the spaces left by one another.

There is no visible difference between the final populations and the 50% EAFs
obtained by gHSS-EMOA and gHSSD-EMOA in two-dimensional instances (see Fig-
ures 6.4 to 6.7, for example), so let us look only at the three-dimensional ones. In
the case of DTLZ1, it is visible in the example of Figure 6.8, that gHSSD-EMOA
was able to retain a population that is very much uniformly distributed. Although
gHSS-EMOA also retains solutions that are more or less well distributed, they do
not look as uniform. This is not unexpected as in this case (λ = 1) gHSSD selects
optimally and gHSS may not. For the DTLZ2, they both seem to obtain very simi-
lar distributions (see Figures 6.11 and 6.12). Note that they are well distributed in
the center and in the boundary while the gap between the center and the boundary
has to do with having the reference point set too far away. In the DTLZ2convex
case (see Figures 6.13 and 6.14), the populations also seem equally well distributed
and have many solutions in the boundary because the reference point is far away.
The same was observed for the λ = 100 cases (not shown). Similar observations
to this later case can be made concerning the final populations obtained for the
multiobjective knapsack problem (see Figures 6.18 and 6.19). Note that as the front
is not continuous, it is unlikely that in this case a more uniform distribution can be
obtained.

Greedy vs Exact HSSP computation

The results for the d = 2 case observed in Figures 6.1 to 6.3 show that gHSSD-
EMOA and also gHSS-EMOA (particularly for λ = 1) are generally competitive
with HSSP-EMOA regarding the hypervolume indicator of the final populations.
Looking at the distribution of the final populations and at the 50% EAF obtained
with the three EMOAs (see Figures 6.4 to 6.7), there is no visible difference between
them. Although one cannot be sure that this will generalize for the d > 2, and for
all problems, these results are encouraging. The greedy algorithms could be a good
alternative to expensive exact algorithms to perform environmental selection.

Hypervolume Indicator vs HSR indicator

The paper by Yevseyeva et al. [133] evidences that an increase of the hypervolume
indicator of SMS-EMOAs population throughout the evolution is typically accom-
panied by an increase of the the HSR indicator. The same was observed in these
experiments for all hypervolume-based EMOAs and thus, the plots were omitted.
This behavior is expected as both indicators are strictly ≺·-monotonic and thus,
during the run and particularly in the beginning, it is expected that the current
population dominates the previous one, and in such cases none of the two indicators
will deteriorate. However, recall that maximizing the hypervolume indicator with
a given number of points does not imply the maximization of HSR indicator nor
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vice-versa, as discussed in Section 5.5. Concerning increasing values of λ, if the av-
erage hypervolume of an EMOA’s final population is visibly decreasing/increasing,
typically so is the HSR indicator (for example, see Figures 6.1 to 6.3).

6.3.4 Sharpe-Ratio-Based EMOA
POSEA uses the HSR indicator for environmental selection and fitness assignment.
For the DTLZ problems, the HSR indicator is used without modification while for the
multiobjective knapsack problem, the Pareto dominance relation in the original HSR
indicator is replaced by the preferability relation to account for infeasible solutions
under a single model. Even though the latter is also Pareto dominance compliant, it
is not immediately clear whether it also inherits the properties of the former. Thus,
only the results on the DTLZ problems can be directly compared to the theoretical
and experimental results from the previous chapter. For this reason, the results are
discussed separately for each type of problem, first for the DTLZ problems and then,
in the last part of this section, for the multiobjective knapsack problem.

Increasing λ

In general, the setting of λ does not seem to impact the quality of POSEA final
populations regarding the HSR indicator and also the hypervolume indicator. See
in Figures 6.1 to 6.3 that there is no clear advantage of a setting of λ over the others.
Moreover, no clear differences are observable in the dominance tables either (see
Figure 6.16). However, this does not imply that the outcome distributions will be
similar. Although there is no clear difference in the 50% EAFs obtained by POSEA
on most problem instances, those obtained for the linear fronts in d = 3 are visibly
different (see Figure 6.10).

Hypervolume indicator vs HSR indicator

Similarly to the hypervolume-based EMOAs, but now with the roles of the two indi-
cators exchanged, the increase of the HSR indicator (the indicator being maximized)
typically lead to an increase of the hypervolume indicator during the run. Never-
theless, it may happen that a loss of hypervolume occurs along the run (this was
observed only for the DTLZ2convex front in d = 3).

Final population distribution: DTLZ1

Given the theoretical results in Section 5.4.3 for the d = 2 linear front, the conver-
gence of POSEA towards the optimal µ-distribution was expected, i.e., towards a
set of µ points uniformly distributed on the Pareto front, including the two extreme
points. It was also expected that as the population moves towards the Pareto front,
and away from the reference point, the investment assigned to the extreme points
would increase.

Figure 6.1 shows that the average number of nondominated solutions in the
population along a run of POSEA is lower than µ (but becomes closer to µ as the
number of dimensions increase). In the particular case of d = 2, the final population
has, in average, less than 70 nondominated solutions. Figure 6.4 suggests that most
of such nondominated solutions are located near the extremes. The 50% EAF in
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Figure 6.5 confirms it, where the extremes of the EAF surface are closer to the Pareto
front than the rest of the surface. Although a convergence to sets more uniformly
distributed was expected, these results are not completely surprising. This is likely
a consequence of setting the reference point too far. For example, assume that the
populations contains only optimal solutions, including the extremes (points (0, 0.5)
and (0.5, 0)), and recall that l = (0, 0) and u = (1125, 1125). Then, by Theorem 5.11,
the investment assigned to each extreme point would be, at least, 0.49977 while
an inner point would be assigned, at most, 5e−4. Moreover, the experiments in
Section 5.5.2 (in particular, see Figure 5.8) tell that if a non-extreme point is in a
concave region, its investment will decrease to zero the closer it is to being dominated.
The results observed for d = 2 seem to generalize to d = 3 (see Figures 6.8 and 6.10).
In this case, it is more evident that POSEA focuses more on the extremes.

To conclude, the results suggest that the upper reference point is affecting
POSEA’s ability to find solution on the Pareto front. On the one hand, because of
such a point, POSEA is likely to be strongly investing in the extreme points, and
using mainly such points for parental selection. This will likely lead to generating
many solutions close to the extremes, which makes the population move towards
the front more quickly near the extremes than in the rest of the front. On the other
hand, the investment in points between the extremes is either zero or very close
to zero which leads to difficulties in maintaining such points (with zero investment
they are likely to be discarded), and in generating points in the interior region of
the front.

Final population distribution: DTLZ2

The results for the DTLZ2 front are as expected. The experiments in Section 5.5
for the d = 2 concave front already shown that only the extreme points are assigned
strictly positive investment when the upper reference point is slightly far from the
front. It is reasonable to expected a similar result for the d = 3 case. Consequently,
POSEA obtains a final population that is in agreement with the expected results, i.e.,
with the preferences it expresses. In this case, the average number of nondominated
solutions in the population is very low, at most 4 in the d = 2 case (see Figure 6.2)
and at most 7 and 20 in the d = 3 and d = 4 cases, respectively (omitted plots). Note
that any solution close to the extreme points, as it is in a concave region, will mostly
likely get zero investment. Therefore, the low number of nondominated solutions
is a consequence of having only a few solutions that have positive investment, and
environmental selection will retain these few solutions while the remaining ones are
selected arbitrarily to fill the population.

Final population distribution: DTLZ2convex

The results from Section 5.5 showed that the HSR indicator is interested in convex
regions. Thus, it was expected that for a convex front POSEA would be able to
find a good distribution as it is the case in the results shown in Figures 6.7 and 6.13.
Note that the points in the 50% EAF in Figure 6.14 are very well distributed in
the sense that there are no gaps nor prominent regions, i.e., the EAF retains the
convex shape. Only for the convex fronts, POSEA has a population filled with
nondominated solutions as all points in the front have positive investment and thus,
environmental selection tries to keep as many nondominated solutions as possible.
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Hypervolume-based vs HSR-based EMOAs

One of the main differences between POSEA and hypervolume-based EMOAs is
that the latter fill the population with as many nondominated solutions as possible,
which is a consequence of the strict ≺-monotonicity of the hypervolume indicator.
The same is not ensured by the strict ≺·-monotonicity of the HSR-indicator, and
thus, it is possible for some nondominated solutions to be considered irrelevant from
the indicator’s point of view, and be assigned zero investment. This seems to happen,
resulting in cases where only a few nondominated solutions survive and/or are given
enough investment (fitness) to have a chance of reproduction. This leads to a more
focused/greedy search by POSEA towards the regions that are more interesting
according to its underlying preferences. The EMOAs also differ in how they are
affected by the (upper) reference point. If set too far away, for linear and concave
fronts POSEA becomes more interested in their extremes, while hypervolume-based
EMOAs become more interested in boundary points if the front is convex or concave.

Even though the final populations found by POSEA for DTLZ1 did not contain
as many points and as well uniformly distributed as hypervolume-based EMOAs,
their average hypervolume indicator was very close, and their average HSR indicator
was consistently better with POSEA than with hypervolume-based EMOAs. An
explanation for this is that POSEA may be finding points slightly closer to the
extremes of the Pareto front, and as the reference point is far away, any slight
improvement is reflected in the indicator values. This is more clearly observed in
the case of DTLZ2, where POSEA achieves better HSR indicator values, although
the final population of POSEA contains very few nondominated solutions. The
dominance table in Figure 6.16 shows that a final population of POSEA dominates,
in average, approximately 5% of the nondominated solutions in a final population
of hypervolume-based EMOAs (i.e., in average, dominates 5 out of 100 solutions),
and vice-versa. Note that, as POSEA finds very few nondominated solutions then,
if one solution was dominated in average, that would be around 30%− 50% of them
in the d = 2 case (and 10% − 20% in the d = 3 case). This indicates that the few
nondominated solutions found by POSEA rarely are dominated by those found by
hypervolume-based EMOAs. Thus POSEA can, indeed, obtain solutions closer to
the Pareto front extremes than hypervolume-based EMOAs.

For both concave and convex fronts (DTLZ2 and DTLZ2convex), the final pop-
ulations obtained by POSEA consistently have lower hypervolume indicator than
those by hypervolume-based EMOAs but, on the other hand, they consistently have
higher HSR indicator. The gap between the indicator values obtained with both
types of EMOAs accentuates as the number of dimensions increase. This clearly
shows that maximizing one indicator is not the same as maximizing the other when
the fronts are not linear. It is clear from the dominance tables and from the mono-
tonicity properties of the indicators, that these differences are a reflection of finding
different point distributions, and not of one EMOA finding a population dominating
the population found by the other. For example, for the d = 3 convex front, the
HSR indicator is less biased towards the boundary which allows the population in
POSEA to get closer to the Pareto front altogether while gHSS-EMOA and gHSSD-
EMOA concentrate a lot of points in the boundary (see Figures 6.13 and 6.14). Each
EMOA is, as expected, biased towards the distributions and/or regions in objective
space that better fulfill the indicator preferences.
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The Multiobjective Knapsack Problem

Recall that, for the multiobjective knapsack problem, POSEA uses the PHSR indi-
cator, which is a version of the HSR indicator whose underlying preference model
was replaced to consider the preferability relation, so that it better accommodates
infeasible solutions (see Section 5.7 for more details). Although the properties of the
HSR indicator are not clearly inherited by the PHSR indicator in spite of their simi-
larities, it would not be surprising if PHSR indicator exhibited identical preferences
regarding feasible solutions.

It is reasonable to expect the Pareto front of the multiobjective knapsack problem
instances to contain, loosely speaking, both convex and concave regions, and to
see POSEA invest mostly in the former. From the optimization strategy point
of view, it may be desirable to avoid investing too much in the convex regions,
and to avoid having only a few solutions with strictly positive investment as it
was observed for DTLZ1 and DTLZ2 problems. Thus, let us consider also the
alternative POSEA-L that limits the maximum investment so that selection pressure
is adjusted. POSEA-L forces the spread of investment and consequently, reduces the
selective pressure. As referred in the original paper by Yevseyeva et al. [133], this
imposition on investment may give rise to an investment strategy that can be viewed
as disruptive selection, where some investment is assigned to dominated solutions,
and which may benefit evolution.

Although in the experiments of Figure 6.17 both POSEA and POSEA-L use the
PHSR indicator, the HSR indicator is still used to evaluate the final populations.
In this case, the investment constraint is beneficial both regarding the hypervolume
and the HSR indicator values of the final population. With POSEA-L, there is a
clear difference in its performance with different settings of λ, the greater λ is, the
better, at least up to λ = µ. Note that the investment constraint forces POSEA-L
to invest in, at least, λ solutions when λ < µ and in µ solutions otherwise. Having
at least µ solutions with strictly positive investment (possibly equally distributed)
when λ ≥ µ, is helpful to the environmental selection. Otherwise, the population
has to be filled with arbitrarily selected solutions. It is possible that the performance
improvement is more related to this fact, that µ solutions are explicitly chosen with
the maximization of the PHSR indicator, and not so much with the setting of λ.

Figure 6.17 shows that POSEA-L outperforms POSEA regarding both indica-
tors. Similarly to the results on DTLZ fronts, in comparison to hypervolume-based
EMOAs, the Sharpe-ratio based EMOAs consistently obtained better results on
the HSR indicator, and worse results regarding the hypervolume indicator. In Fig-
ure 6.18, the final population of the first run suggests that the Pareto front has a
convex shape even though it might have some locally concave regions. POSEA and
POSEA-L cannot find very well distributed solutions, but it is evident that they can
approximate the Pareto front better in the inner region, whereas hypervolume-based
EMOAs are better at finding solutions in the boundary (similarly to DTLZ2convex).
POSEA-L seems to obtain slightly better distributions of solutions than POSEA,
which is observed more clearly in the 50% EAFs (see Figure 6.19). Actually, POSEA-
L approximates the behavior of POSEA in a continuous convex front. In this case,
POSEA-L can better approximate the Pareto front in the center and hypervolume-
based EMOAs approximate better in the boundary as can be observed in Fig-
ures 6.18 and 6.19.

In general, POSEA-L can approximate the Pareto front better than hypervolume-
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based EMOAs. See in Figure 6.20 that the average number of solutions in the
final population of hypervolume-based EMOAs that are dominated by the final
population found by POSEA-L (with λ ≥ µ) is approximately, 50%− 60% in d = 2
case, 40% in d = 3 case, and 20% in d = 4 case. On the other hand, almost none of
the solutions found by POSEA-L are dominated by the final populations found by
hypervolume-based EMOAs. This may be the reason why POSEA-L consistently
obtains better HSR indicator and worse hypervolume indicator than hypervolume-
based EMOAs. The former seems to value more the proximity to the Pareto front
while the latter seems to value more a well spread distribution slightly away from
it.

6.4 Concluding Remarks
The first main result of this chapter is the validation of POSEA and, in particular,
of the use of the Sharpe-ratio indicator for both environmental selection and fitness
assignment. Moreover, the experiments allow to understand POSEA and get some
insight on what to expect from it. They also allow to understand that the Sharpe
ratio’s underlying model can be easily modified to help enhance the optimization
search process, for example, by introducing constraints limiting the investment in
a single solution. The second main result is the validation of greedy algorithms
for environmental selection as a way of approximating the HSSP and replacing
the expensive computation required to solve it exactly. The results showed that
greedy-based EMOAs are competitive with an EMOA based on exact solutions to
the HSSP with any setting of λ in the d = 2 case and, in d = 3, 4 are competitive
with HSSP-EMOA with λ = 1 (equivalent to SMS-EMOA and gHSSD-EMOA with
λ = 1).

The fact that POSEA may tend to disregard solutions in concave regions and,
sometimes, to only focus on a few solutions (in the convex regions) should not be
interpreted as bad performance. It is only a reflection of its underlying preferences.
Although the upper reference point for HSR indicator can be used to state a prefer-
ence for extreme solutions, in these experiments it was set far away only to guarantee
that all feasible solutions dominate it. However, it might be the case that the DM
is not more interested in an extreme solution than it is in any other nondominated
solutions. The upper reference point could be adjusted along the run. However,
that could change the ranking of sets and consequently the search process. If the
HSR indicator does not reflect the DM preferences given some set of points, then an
alternative is to change the underlying model and take advantage of the flexibility
of the class of Sharpe Ratio indicators.

Finally, the results show that each indicator-based EMOA seeks subsets of so-
lutions that are the best according to its indicator, and thus frequently one finds
solutions that are not attained by another EMOA and vice-versa. This chapter
shows that, in such cases, one cannot generally say that a particular EMOA is bet-
ter than another as, in the end, what matters is that DM preferences are satisfied.
If such preferences are not known then there is no guarantee that the best choice is
to maximize the hypervolume indicator or another indicator. It is important how-
ever, to understand the preferences underlying an indicator so that one can say that
some EMOA is better at fulfilling these or those preferences based on how well it
maximizes the indicator.
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Chapter 7

Conclusion

The focus of this thesis was the selection step in Evolutionary Algorithms (EAs) from
the more general perspective of Portfolio Selection. Throughout the last decades,
the perspective on selection in EAs for multiobjective optimization problems has
evolved. Initially, the focus was mainly on the solution (individual) quality but soon
the importance of having diverse solutions in the population led to the inclusion of
diversity preservation techniques. Later on, the use of quality indicators became
a successful means of selecting sets of individuals accounting both for individual
solution quality and diversity in the selected set in an integrated way. With such
approaches, the focus changed to the quality of the set of selected solutions. Until
recently, environmental and fitness assignment have been mostly viewed as two
separate problems in EAs. The more recent approach that looks at selection from
a Portfolio Selection perspective includes fitness assignment as part of the selection
problem and sheds new light on the integration of preferences.

An increasing concern with the theoretical properties of selection methods has
accompanied the change of perspective over selection in EAs. The current view of
environmental selection as a subset selection problem, formulated as the search for
a subset maximizing a quality indicator, is strengthened by the use of theoretically
backed up quality indicators that led to equipping indicator-based EMOAs with
theoretical support. Note that, for example, in the unknown DM preferences sce-
nario, although many solutions are incomparable, selection methods in EMOAs will
inevitable have to choose some solutions over other incomparable ones. The theoret-
ical characterization of a quality indicator allows one to understand the biases (the
inner preferences) and possible limitations introduced by selection methods based on
such an indicator and, consequently, learn about what to expect from the outcome
of the resulting indicator-based EMOA. Understanding the theoretical properties
granted by selection methods became an important aspect in EMOAs.

There are, at least, two possible paths to improve upon the state-of-the-art se-
lection methods aligned with the concern for theoretically supported selection mech-
anisms, and this thesis pursued both of these paths. One is to solve the obstacles
of known theoretically-strong selection methods, the other is to theoretically study
new approaches to selection in EMOAs. In line with these two paths, the contri-
butions of this thesis can be grouped into two major contributions, each one with
different impacts. The first major contribution has immediate practical implications
and consists of lowering the computational barriers to hypervolume-based selection.
The second major contribution, and perhaps the one with greater implications for
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the future of selection in EAs, concerns the study of selection from the point of
view of a Portfolio Selection Problem (through a particular formulation based on
the Sharpe ratio). To complement these major contributions, a study on the impact
of such selection methods on the outcome quality of EMOAs was provided.

7.1 Hypervolume-Based Selection
The theoretical properties of the hypervolume indicator motivated the development
of several new algorithms for low dimensional cases of hypervolume-based problems
(in Chapter 4) matching or improving upon the practical and asymptotic perfor-
mance of the state-of-the-art algorithms. As the ultimate goal was to efficiently
solve the Hypervolume Subset Selection Problem (HSSP) in the context of EMOAs,
the first step was to exploit the behavior of steady-state hypervolume-based EMOAs,
in particular, of SMS-EMOA. Thus, at the core of the new algorithms is the update
of previously computed solutions. In particular, an algorithm to update the HSSP
with k = n− 1 for the d = 3 case in linear time was developed, which was based on
the update of hypervolume contributions. This algorithm allowed to take advantage
of results known from previous generations in SMS-EMOA. Because of the intrinsic
relation between the several hypervolume-related problems (discussed in Chapter 3),
the application of such update algorithm goes beyond the efficient update of SMS-
EMOA populations and of the solution of HSSP given k = n − 1. For example, it
boosted the following work on greedy algorithms to approximate the HSSP.

New algorithms for 3 and/or 4 dimensions were proposed using one of two greedy
approaches, an incremental and a decremental one, supported on the update of hy-
pervolume contributions. To strengthen the adequacy of such approaches as alter-
natives to the currently very expensive algorithms for the exact computation of the
HSSP, this thesis narrowed down the knowledge gap on their approximation guaran-
tees by providing approximation ratios to the optimal solution. Together with the
experiments in Chapter 6 these approximation algorithms were shown to provide a
good and computationally cheaper alternative to the exact computation of HSSP.
Overall, the work developed resulted in a set of algorithms that contribute to mak-
ing hypervolume-based selection more affordable while still providing theoretical
support.

7.2 Portfolio-Based Selection
The positive results [133] obtained in the first study of EA selection formulated as a
portfolio selection problem, solved through the Sharpe ratio maximization, provided
the motivation for a deeper study of such a formulation. This thesis focused mainly
on studying whether such a formulation can also be theoretically supported and on
exploring some of its potential advantages. The first step was to formalize a new class
of indicators, the Sharpe ratio indicator class. The indicator in [133] was formalized
as an instance of this class, the HSR indicator. This thesis presented the first
analytical and numerical studies on the characterization of such an indicator. The
indicator is shown to have monotonicity properties, and to be scaling invariant under
linear transformations. The optimal µ-distributions on a 2-dimensional objective
space were determined exactly for linear fronts, and were numerically approximated
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for other fronts (in Chapter 5). These results were complemented and validated
with experimental results on EMOAs using such an indicator both for environmental
selection and for fitness assignment (in Chapter 6). The theoretical and experimental
results on the HSR indicator are a proof-of-concept of the portfolio selection view of
EA selection. Two other instances of the Sharpe ratio indicator class were formalized,
covering the preference uncertainty scenarios for two other classes of multiobjective
optimization problems, one for constrained multiobjective optimization problems
and another for set-valued optimization problems (in Chapter 6). These formulations
unveil the flexibility of the HSR indicator class (and of the portfolio selection model,
in general) to accept different preference models and, through these models, allow
different types of problems to be contemplated without any modification to the
selection method. The interesting exploratory results shown for these formulations
motivate a more in-depth study as future work.

7.3 Future Work
The work developed in Chapter 5 on Portfolio-based selection opens up several
directions for future work, of which (a combination of) the following can be outlined:

1. extend theoretical and numerical analysis to more than two dimensions and
to other Sharpe ratio indicator instances;

2. integrate DM preference information over objective/decision space;

3. study extensions of the Sharpe ratio model to enhance preference-based search
in EAs;

4. study portfolio selection formulations alternative to the Sharpe ratio-based
one;

5. consider uncertainty in the objective functions.

The first direction for future work describes the obvious extensions to the work
in Chapter 5. Regarding the second direction, although in this thesis all Sharpe
ratio-based instances considered the scenario of unknown DM preferences, the sce-
narios where preference information of different types is available can be considered
as well. Preferences can be integrated in different ways. One way is by replacing the
dominance relation used in the formalization of HSR indicator by another one (as
was done with, for example, the preferability relation). Another way is to consider
that the goal vector expressing the DM preferences is drawn from a distribution
other than the uniform one. It is also plausible to expect that MCDA methods
for expressing preferences can be used as well. The integration of such information
would allow Sharpe ratio-based indicators that are compliant with the DM prefer-
ences to be formalized, which could be used for assessing how well a set/portfolio
satisfies the DM and/or for use in preference-based search in EAs.

The third future work direction is related to how the portfolio selection model
could be extended to enhance the EA search process. For example, in Chapter 6, the
integration of a constraint limiting the investment on each individual was beneficial
to the EA search process for the combinatorial problem. Different constraints can be
added, such as one defining that a given asset cannot be assigned more investment
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than another one. Concerning the fourth direction, different ways of balancing
expected return and risk can be considered. For example, the Sharpe ratio could be
replaced by other performance indexes, such as Sortino and Traynor ratios. That
would lead to formulations possibly easier to compute (e.g., linear programming
problem), and to use a different investment strategy thus leading to indicators with
different characteristics.

Finally, the last direction of future work is to consider selection over multiobjec-
tive optimization problems subject to uncertain objective functions, whether or not
in combination with the already considered uncertainty regarding DM preferences.
This type of problems was only superficially discussed in Chapter 5 with the exam-
ple of worst case robustness problems (see Section 5.6.1), and the work developed
in Section 5.6.2 points out a possible direction for modeling the associated uncer-
tainty. The PSP formulation of this type of problems is already gaining interest in
the scientific community, where an alternative model considering both sources of
uncertainty is being developed [94, Sect. 4.1].

7.4 Final Remarks
Overall, this thesis explored the selection at the core of EAs mostly from the mul-
tiobjective optimization perspective, but instead of interpreting it as just a subset
selection problem, it explores the more general view as a portfolio selection problem.
This thesis validates this view and lays the foundations for the formulation of other
Sharpe-ratio indicator instances and for their analysis, and motivates other formu-
lations of portfolio-based selection methods in EAs. This thesis explored a part of
the potential of the formulation of environmental selection and fitness assignment
as a Portfolio Selection Problem. The scope of portfolio selection in EAs is much
wider, and this work opens up a new perspective on a formulation of selection that
can be used for both known and unknown DM preference information, and for single
and multiple objective optimization. The balance between individual quality and
population diversity can be achieved with the Sharpe ratio or another method that
adjusts better to the desired balance between the two. Finally, the impact of this
work is not restricted to EAs. The problem at the core of this work is a decision
making problem and thus, this work finds application, for example, in MCDA, to
aid Decision Makers. To conclude, this thesis sheds new light on decision making
and on selection in EAs, which can change the way in which preference information
is integrated in the decision process.
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