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Abstract

Location-Based Services are increasingly present in our daily lives. Howe-
ver, regardless of the benefits that these services offer to users, the shared
data are not always and only used for the initial purpose. These data can be
made public or sold, for example, for commercial purposes. The fact that
location data contain information that can reveal the person’s identity, rou-
tines and habits, raises serious privacy concerns. In order to respond to this
problem, there are privacy-preserving mechanisms, namely, for obfuscation
and for anonymization of data. However, the correlation between location
reports, which can potentially be used by an adversary to estimate the po-
sition of the user, has been underlooked in privacy protection. The aim
of this thesis is to develop a user-centric Location Privacy-Preserving Me-
chanism, that is, a mechanism that protects privacy of a user at collection
time. In addition, it is intended to protect the users not only against sin-
gle reports, but also over time, against continuous reports. In this latter
scenario, we intent to develop a protection mechanism that is suitable to
different frequency of updates and/or to the correlation between reports
as to mitigate possible privacy violations that advent from exploring these
intrinsic characteristics of location data. Towards this end, we started by
evaluating the impact of the frequency of updates on location privacy. For
that, we implemented a state-of-the-art tracking attack that allows us to
assess the effect of the frequency of updates by estimating the exact user
locations. According to the performed analysis, we developed a new mecha-
nism based on geo-indistinguishability that creates obfuscation clusters to
aggregate closer locations. This developed mechanism is designated cluste-
ring geo-indistinguishability. To evaluate the utility of the mechanism, we
resorted to a real use-case based on geofencing. Lastly, the evaluation of
the mechanism enables us to conclude that it safeguards the level of privacy
and the utility of continuous reports of location data, in a way that it can
still be used for the purpose of a service.

Keywords

Location Privacy, Location Privacy-Preserving Mechanisms, Location-
Based Services, Geo-Indistinguishability, Clustering
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Resumo

Os serviços baseados em localização estão cada vez mais presentes no
nosso quotidiano. No entanto, apesar do benefício que estes serviços ofere-
cem aos utilizadores, os dados partilhados nem sempre são usados apenas
com o propósito inicial. Estes dados podem ser tornados públicos ou ven-
didos, por exemplo, para fins comerciais. O facto dos dados de localização
conterem informações passíveis de revelar a identidade, as rotinas e os hábi-
tos de uma pessoa, levantam sérias preocupações de privacidade. Para dar
resposta a este desiderato, existem mecanismos de preservação de privaci-
dade, nomeadamente, de ofuscação e anonimização dos dados. Contudo,
a correlação entre os dados de localização partilhados, que pode ser usada
por um adversário para estimar a posição de um utilizador, tem sido negli-
genciada na proteção da privacidade. O objetivo desta tese é desenvolver
um mecanismo de preservação de privacidade de localização centrado no
utilizador, isto é, um mecanismo que proteja os utilizadores no momento
da partilha de dados. Para além disso, pretende-se proteger o utilizador
não só quando este reporta localizações únicas, mas também ao longo do
tempo, isto é, quando reporta localizações de modo contínuo. Neste último
cenário, pretendemos desenvolver um mecanismo de proteção que seja ade-
quado a diferentes frequências de atualização de localização e/ou à correla-
ção existente entre as localizações partilhadas, de modo a mitigar possíveis
violações de privacidade que advenham da exploração destas características
intrínsecas dos dados de localização. Neste sentido, começámos por avaliar
o impacto da frequência na privacidade de localização. Para tal, imple-
mentámos um ataque considerado estado da arte que permite localizar o
utilizador ao longo do tempo e do espaço, viabilizando a avaliação do efeito
da frequência através da estimação da localização exata do utilizador. De
acordo com a análise efetuada, desenvolvemos um mecanismo novo base-
ado em geo-indistinguishability que cria áreas de ofuscação para agregar
localizações próximas. O mecanismo desenvolvido é designado clustering
geo-indistinguisahbility. Para avaliar a utilidade do mecanismo, utilizámos
um caso de uso real baseado em geofencing. Por fim, a avaliação do meca-
nismo permitiu-nos concluir que este salvaguarda o nível de privacidade e
a utilidade dos dados, de tal modo que continuam a poder ser usados para
o propósito do serviço.

Palavras-Chave

Privacidade de Localização, Mecanismos de Preservação de Privacidade
de Localização, Serviços Baseados em Localização, Geo-Indistinguishability,
Clustering
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Chapter 1

Introduction

1.1 Motivation

Nowadays, our personal information is exposed to possibly untrustworthy entities which
have the capacity to share the data collected with third parties. Although the analysis of
this data may be beneficial to several services and, hence, to consumers, much of the
collected data contains sensitive and private information, which raises privacy concerns.

Recently, the newspaper The New York Times published an article entitled “Your Apps
Know Where You Were Last Night, and They’re Not Keeping It Secret” [1] mentioning
that “Every moment of every day, mobile phone apps collect detailed location data”. This
interesting article exemplifies exactly one of the motivations of this thesis. It shows how
the data collected by the applications become public and it describes some cases that prove
the possibility of identifying a person by accessing those public data. For example, Lisa
Magrin is a math teacher, whose location information was gathered by a mobile app which
sold those data without her knowledge. The New York Times disclosed Ms. Magrin’s
identity by accessing the database. The app tracked every place she had been. Through
her location information was possible to reveal the path from home to work and the visit
to a doctor’s office and, specifically, the time spent there. The article also tackles the lack
of information on data collection given by apps to users and, the most worrisome, the lack
of people awareness in the context of privacy.

In another privacy-breach example, Vines et al. showed how online advertisement can
be used to track the users’ location and to have information about the installed applica-
tions [2]. The author showed that it is possible to create targeted advertising that allows
to perform privacy attacks for as little as 1000 USD. From the collected information, it
is possible to know as the users move from home to work and to other privacy sensitive
locations (e.g. hospitals or treatment/abortion centres). Moreover, it is possible to infer
about the interests of the users based on the installed applications and, therefore, acquire
personal information without user consent.

Privacy has been recognised as a people’s right and is enshrined in the Universal Dec-
laration of Human Rights [3] (Article 12), the European Convention on Human Rights [4]
(Article 8) and the European Charter of Fundamental Rights [5] (Article 7). However,
the right is defined in a restrict scope. According to Article 12, it only mentions that
“no one shall be subjected to arbitrary interference with his privacy, family, home or cor-
respondence”. Furthermore, the European Union General Data Protection Regulation
(GDPR) [6] was reshaped and since May 2018 it has been applied to all members of the
European Union. Personal information, according to GDPR, is “any information relating
to an [...] identifiable natural person”. Nevertheless, considering that location data as
personal information depends on the context, the GDPR is not clear on the definition of
location data privacy.

1
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Despite the aforementioned, there is not a standardised and universal definition of
privacy. Westin defined privacy as “the claim of individuals, groups, or institutions to
determine for themselves when, how, and to what extent information about them is com-
municated to others” and as “the ability of an individual to control the terms under which
personal information is acquired and used” [7]. Considering these definitions, the notion of
information’s privacy consists in having control of the personal data collected and handled
by others entities.

This thesis will focus on the privacy of the users’ location, which is part of the personal
information that can be collected by services. According to Blumberg and Eckersley,
location privacy “is the ability of an individual to move in public space with the expectation
that under normal circumstances their location will not be systematically and secretly
recorded for later use” [8]. In this sense and due to the attractiveness of Location-Based
Services (LBSs), which have proliferated as a result of the ubiquitousness of mobile devices,
the preservation of privacy of location data is becoming an emerging topic. LBSs consist
in services in where users share their location over time in exchange for geographically
and/or temporally related information, such as, finding nearby Points of Interest (PoIs).
However, regardless of the benefits for the user, this flow of information poses a threat to
their privacy. The providers of the services and the entities with whom they share data
have the opportunity to track the users’ location and use it maliciously [9].

The collection of users’ locations grants to service providers the constitution of datasets
that can become public or shared with third-parties for financial or research purposes.
Furthermore, dataset leakage is always a possibility. To prevent unwanted disclosure
and, hence, to protect/anonymize users’ location, a Location Privacy-Preserving Mech-
anism (LPPM) is required. Nevertheless, considering informed adversaries can perform
data deanonymization, the datasets can often be leveraged, even if the datasets are fully
anonymized [10]. This is specially critical for location data because human mobility traces
are highly unique and extremely predictable given that visited locations possibly reveal
the user’s identity, habits, addictions or even health conditions [11, 12, 13].

The considerations mentioned above constitute the main challenge motivating this
work. The objective of an LPPM is to preserve a certain level of privacy which can come
at the expenses of a degraded quality of service. LPPMs can be applied in different phases
of the data lifecycle, namely: data collection, data publishing, data distribution and at the
output of the data mining [14]. In this research, the focus will be the phase of data collec-
tion, where the protection mechanisms can be categorised as anonymization, obfuscation
and cryptographic techniques [11, 15]. Mechanisms that run at collection time, meaning,
run in-device before sharing data with providers, empower the users to have control over
data instead relying on possibly untrustworthy providers. In addition, the users are able to
choose the characteristics of the protection mechanism according to their privacy prefer-
ences. Therefore, and since the privacy mechanism protects each user independently, these
mechanisms are referred to as user-centric LPPMs [16].

Depending on the LBS, location data can be reported either continuously or rather
sporadically [17, 18]. The frequency of reports impacts directly the temporal correlation
between subsequent reports, which in turn can be used by an adversary to track users
over time and even predict future locations [11, 15, 19]. While some recent research has
started considering temporal and spatial correlations [19, 20], this topic is far from being
mature and is still considered an open issue [15]. In fact, in the context of sporadic release
of data, LPPMs typically consider reports to be independent between each other [17].
Therefore, we will explore this intrinsic characteristic of location data from the perspective
of privacy protection by proposing a user-centric LPPM that acts at collection time and
that is suitable for continuous reports of location data.

2
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1.2 Objectives

The main goal of this thesis is to develop a user-centric LPPM in order to protect users
at collection time. This goal is divided into the research objectives explained below.

The first research objective is to improve understanding of the existing LPPMs, attacks
and metrics of privacy and utility. This allows us to obtain insights about the focus of
previous works, the aspects that an LPPM or an attack should take into account, as well
as the analysis performed by them. Currently, the research community is beginning to
consider the temporal and spatial correlations in location data [15], which leads us to the
second objective.

The second research objective is to evaluate the impact of the frequency of updates in
the privacy and utility of protection mechanisms and attacks. Commonly, the geo-temporal
correlation between reported locations is used as an attack against location privacy. Our in-
tention is to understand how temporal correlation influences the mechanisms’ performance
and, more specifically, the privacy of users under attack.

Hereupon, the third research objective is the development of a privacy-enhancing mech-
anism that is suitable to different frequency of updates and/or to the correlation between
points. This objective focuses on tackling the impact that the frequency of updates can
have on privacy, as mentioned previously.

Lastly, the fourth research objective is the implementation and evaluation of the mech-
anism taking into account the privacy level and the utility metrics. Our focus is the
development of an LPPM that safeguards the level of privacy and the utility of data, in a
way that can still be used for the purpose of the service.

1.3 Contributions

From the developed work on this thesis, we submitted the following scientific article to
the conference MobiQuitous 2019 :

• Ricardo Mendes, Mariana Cunha and João P. Vilela. Impact of Frequency of Location
Reports on the Privacy Level of Geo-indistinguishability. In 16th EAI International
Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services.
2019.

This article reports the evaluation of the impact on the privacy level of geo-indistinguish-
ability under different frequencies of report. To do so, the privacy level of a geo-indistinguish-
able LPPM was measured against state-of-the-art localisation attacks and a tracking attack
for different frequencies of updates, using two real mobility datasets. Part of the work per-
formed in this thesis went into this article, in particular the selection and the pre-processing
of one of the mobility datasets, the implementation of the tracking attack, and the results
and respective analysis of the effect of the frequency of reports on this attack.

1.4 Thesis Structure

This thesis is structured in 5 chapters, whose contribution is summarised in this section.
The current chapter provides an overview of the thesis, specifying the motivations, the ob-
jectives, the research contributions and the structure of the document. Chapter 2 describes
the state of the art by explaining the privacy protection mechanisms, the mechanisms to
compromise location privacy and the metrics of privacy and utility. Following, in Chapter
3 is presented the work developed during the first semester, such as the implementation
of the LPPMs and the attacks, and the evaluation of the impact of frequency of reports
on them. Chapter 4 describes the proposed mechanism, the performed analysis and the
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obtained results. Finally, Chapter 5 draws the final conclusions and presents some ideas
for future work.

The work plan of the thesis is presented in Appendix A. In this appendix, we describe
the work plan for the first semester and for the second semester, including the scheduled
tasks and the Gantt charts for each semester.
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State of the Art

Location privacy, Location-Based Services (LBSs), and location information are con-
cepts briefly presented in this chapter as background knowledge. Then we will discuss
the state of the art of the following topics: privacy protection mechanisms for location
data (see Section 2.1), mechanisms to compromise location privacy (see Section 2.2), and
metrics of privacy and utility (see Section 2.3).

Location privacy is an emerging topic of research [11, 15, 21] due to the pervasiveness
of LBSs and always connected mobile devices. Figure 2.1 presents a system model of an
LBS, with its main components. In these systems, users obtain their location through
a positioning system, such as a Global Positioning System (GPS), using their devices
(e.g. smartphones). The location is then sent through a network to either a location
privacy server, where an Location Privacy-Preserving Mechanism (LPPM) is applied to
the data, or directly to an LBS server. After being applied an LPPM, the privacy server
also passes the data to the LBS server. The LBS then uses a content/data provider to
retrieve information related with the location of the user which is then sent back through
the network to either the user or to the privacy server, which then redirects it to the
former. It should be mentioned that a privacy server is optional, and in fact, depends
on the LPPM used by the user. User-centric LPPM typically run in-device. Furthermore,
both the content/data provider and the location privacy server can be owned by the service
providers or by third parties.

Figure 2.1: System model of an LBS (adapted from [15]).
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Wernke et al. defined location information as a tuple 〈identity, position, time〉 [21],
where identity is a property or a set of properties identifying the user, position is the
exact location of a user, and time is the point in time when the information was reported.
Considering these attributes, the user may choose which of them must be protected or
revealed. Their work discusses different approaches based on the protection goal chosen by
the user. The focus of this thesis will be the protection of the user’s position, taking into
account the time between the reports, in other words, the frequency of updates. Commonly,
the approach to protect the user’s location is the use of obfuscation mechanisms [15, 21],
whose state of the art will be presented in Section 2.1.

Shokri et al. classified LBSs as continuous or sporadic depending on the frequency of
location reports [17]. An LBS is considered continuous when the user’s location is reported
periodically, and it is considered sporadic when the user requests a single location query,
receives the result from the service and then terminates the query. Therefore, the study of
the state of the art of the mechanisms presented in Sections 2.1 and 2.2 will be based on
this classification.

2.1 Privacy Protection Mechanisms for Location Data

Considering the focus of this thesis, this section provides a study of the state of the
art of privacy protection mechanisms for obfuscation of location data at collection time.
The existing LPPMs have been developed for both continuous [16, 19] and sporadic scenar-
ios [22, 23, 24], depending on whether they consider the dependence or independence of the
temporal correlation between subsequent reports, respectively. Earlier research focused on
the sporadic scenario, whereas recently, studies on continuous reports have been emerging.
Thus, the discussion in this section will address these mechanisms chronologically.

Kido et al. proposed the first method of dummy-based privacy protection [25, 26],
for sporadic scenarios. In this method, the users generate a set of false positions, also
known as “dummies”, for their real position. Both the generated dummies and the users’
real location are sent to the LBS provider, which cannot distinguish or identify the user’s
real position. In these works, the authors performed a comparison among the number
of dummies, the size of the region where the dummies are generated, and the obtained
location anonymity. They concluded that their proposed method protects the location of
the users and that a higher number of dummies corresponds to higher protection of the
user’s location. However, the generation of the dummies can be hard, since they should
be realistic enough through space and time, or otherwise, the dummies could be easily
identified [20].

Location cloaking is an approach that protects the users’ location when they access
LBSs [27, 28]. This approach consists in replacing the users’ real location with a Cloaking
Region (CR) that encloses their real position. Ghinita et al. proposed a technique, based
on CRs, that protects the users against adversaries that use prior knowledge about the
maximum user velocity to perform linkage attacks [29], that is, attacks in where additional
information is used to better locate/identify the user. The results obtained by the authors
showed that the proposed mechanism achieves privacy without a significant quality of
service degradation.

Geo-indistinguishability is a proposed LPPM for sporadic scenarios, based on the classic
notion of differential privacy [22]. As shown in Figure 2.2, this LPPM guarantees the
users’ privacy within a radius r, making any disclosed location indistinguishable from
any other point within that radius. The privacy level achieved depends on the r and to
be achieved, the mechanism adds controlled random noise to the user’s position. The
Planar Laplace (PL) mechanism was the first geo-indistinguishable LPPM proposed. The
PL mechanism adds 2-dimensional Laplacian noise centred at the exact user’s location x
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following a Laplacian distribution. Figure 2.3 shows the probability density function (pdf)
of two PL functions, that is, the probability of generating a point z around the exact user
location x. For two users’ locations x, x′, the PL mechanism forces the corresponding
distributions to be at most εd(x, x′) distant [30]. The d(·) is naturally used as Euclidean
metric for location privacy, since we would like two points to be more distinguishable when
they are geographically closer [30]. Regardless of the efficiently draw of the noise by the
PL mechanism, in order to increase the utility of the data without decreasing the level of
privacy, remapping techniques have been proposed [23]. Currently, the PL mechanism with
optimal remapping is considered the state of the art of geo-indistinguishability in sporadic
location privacy [24].

Figure 2.2: Example of geo-indistinguishability.

Figure 2.3: Example of the probability density function of two planar Laplacian functions,
centred at (-2,-4) and at (5, 3) respectively, with ε = 1/5 (from [22]).

Chatzikokolakis et al. proposed a mechanism also based on differential privacy - a
predictive mechanism [31]. This work showed how correlations in traces can be used to
predict the next user’s location based on previous reports. To predict the user’s location,
the mechanism uses a private test which evaluates the quality of the predicted location. If
the test is successful the predicted location is reported, otherwise, a new predicted location
is generated with new noise. Regardless of the benefit of this mechanism and its efficient
way of drawing noise, if there is not a considerable correlation in the trace, the private
test can be considered an extra cost to the mechanism and can degrade its efficiency.
Moreover, this work suggests as future research determining the necessary time to break
the correlation in traces.
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Also based on differential privacy, Xiao and Xiong proposed a solution to preserve
location privacy in continuous scenarios, under temporal correlations, and with strong
privacy guarantees [19]. This work provided a new definition of “δ-location set” to consider
temporal correlations in location data. They defined δ-location set as a set of probable
locations where the user might be at each timestamp, disregarding locations with small
probabilities. The authors of [19] defined this probability as the prior probability of a user’s
location at each timestamp t and, hence, a δ-location set contains the minimum number
of locations with prior probability sum no less than 1− δ.

Shokri et al. proposed “a methodology that enables the design of optimal user-centric
location obfuscation mechanisms respecting each individual user’s service quality require-
ments” [16]. This methodology considers both the user’s objective, maximising location
privacy, and the adversary’s objective, minimising localisation error, which makes the solu-
tion optimal. Based on this, the authors of [16] developed two linear programs to optimise
both objectives, maximise the user’s objective and minimise the adversary’s objective.
Moreover, the LPPM developed by them deals with the correlation between past, current
and future user’s location. The aim of their LPPM is to protect the current location with-
out compromising the privacy of past locations, while maintaining the current obfuscation
compatible with potential future locations, that is, from the current location it is still
possible to reach a future location. As shown in Figure 2.4, attacker’s uncertainty can be
reduced when temporal correlation is disregarded.

(a) Time t−1: real location (2,2) (F);
exposed obfuscated location (2,2) (©).
As (2,2) was exposed, the user can only
be in the bottom left 3x3 square (F).
Since the user moves only to adjacent
locations, at time t she will be in the
bottom left 4x4 square.

(b) Time t: real location (3,3) (F);
exposed obfuscated location (4,4) (©).
As (4,4) was exposed, the user can only
be in the top right 3x3 square (F).
However, the correlation with the previ-
ous disclosure implies that the user can
only be in the dotted 2x2 square.

Figure 2.4: Example of how the correlation of user’s locations between times t − 1 and t
reduces attacker’s uncertainty about the user’s current location (time t) (from [16]).

Liu et al. provided a filter of dummies to be applied to existing dummy-based meth-
ods [20]. Recall that these methods append fake locations, also known as “dummies”, to the
exact user locations. The provided filter considers the spatiotemporal correlation from the
three following aspects: time reachability, direction similarity and in-degree/out-degree.
Time reachability consists on checking if the location Ci is reachable from location Ci−1 in
the time interval between these locations. Direction similarity is used to compare the sim-
ilarity of the angle between the reachable fake path and real path in movement direction.
Finally, in-degree/out-degree consists in the binomial in-degree and out-degree, where in-
degree corresponds to the number of movement paths which end at the location Ci and the
out-degree corresponds to the number of the movement paths which start from the location
Ci−1. The dummies generated will be reported if and only if they are feasible from the
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previous location. Moreover, the results given by the authors showed that the proposal is
effective and efficient. Figure 2.5 presents an example of spatiotemporal correlation, where
it is possible to perform the following analysis: (a) the LBS provider infers that Ci is a
dummy because, as there is a lake, the user cannot move from Ai−1, Bi−1, Ci−1 or Di−1 to
Ci; (b) the LBS provider identifies A′i−1 as a dummy because it is in the opposite direction
of the other reported locations, and, additionally, as there are three movement paths from
the set Loc′i−1 to C ′i the LBS provider can assume with a high level of confidence that C ′i
is the user’s real location.

Figure 2.5: Example of spatiotemporal correlation (from [20]).

Recently, an adaptive geo-indistinguishability mechanism was proposed for continuous
scenarios [32]. This work explores the effect of the correlation among the user’s obfuscated
locations on a certain privacy level and proposes an adaptive LPPM. This mechanism
considers the correlation level of the previous obfuscated locations z to adjust the amount
of noise required to obfuscate the exact user location x. The noise will be added if the
privacy level increases and, otherwise, the noise will be reduced to improve the utility
level. The results obtained by the authors showed that the adaptive mechanism achieves
better performance by adjusting the noise added according to the correlation of previous
obfuscated locations.

2.2 Mechanisms to Compromise Location Privacy

This section provides the state of the art of mechanisms to compromise location privacy,
in other words, location privacy attacks. The existing attacks can be classified depend-
ing on the adversary knowledge [21]. Specifically, the authors of [21] divided the attacker
knowledge into temporal information, if the attacker accesses a single user’s position or
to the information history (e.g. a set of collected positions during a trajectory), and con-
text information, when the attacker has context knowledge beyond the spatiotemporal
information (e.g. a map or a phone book).

Based on the attacker knowledge, the authors of [21] provided a classification of attacks
of location data and of all the other attributes of location information. Considering the
focus of this thesis, the classified attacks that can be applied to location data are the fol-
lowing: probability distribution attacks [18], where the attacker infers a probability of the
user’s position over the obfuscation area, based on additional context information (e.g. traf-
fic statistics); Map-Matching (MM) [33], whereby the attacker restricts the obfuscation area
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by removing areas where the user cannot be located; region intersection attacks [34], when
the user takes advantage of imprecise reported position updates or queries from a user
to calculate their intersection; and maximum movement boundary attacks [29], where the
attacker calculates the maximum movement boundary area to infer where the user could
have moved between two subsequent reports.

Notwithstanding, to choose an attack the adversary should define its target first. Ac-
cording to [15], sensitive place attacks (position attack) are chosen when the attacker wants
to disclosure important user’s locations, presence and absence disclosure attack (position
and discrete time attack) when the attacker wants to determine if a user is localised or
not at a place at a certain time, and tracking attack (position and continuous time attack)
when the attacker follows a user over time and space. Sensitive place attacks are also
known as inference attacks [33] and presence and absence disclosure attack are also known
as localisation attacks [17]. The localisation and tracking techniques are the most generic
type of attacks in the context of user-centric location privacy [17]. Similarly to the LPPMs,
these two types of attacks consider continuous and sporadic scenarios, respectively.

Considering the focus of this thesis, the relevant mechanisms to take into account should
attack the position and the time attributes. Based on this, we now discuss the state of the
art of localisation attacks and tracking attacks.

2.2.1 Localisation Attacks

Localisation attacks are more suited for sporadic data, since they consist in localising a
user at a certain place and at a certain period in time. Shokri et al. developed an optimal
attack for an attacker that has prior knowledge in the form of a mobility model [35]. This
attack considers the optimisation of the adversary’s objective, which is the correctness of
the resulting location, by minimising the average estimation error. The results obtained by
the authors showed that the optimal localisation attack proposed outperforms a Bayesian
inference attack. This latter attack was also proposed by Shokri et al. and consists in a
localisation attack using Bayesian inference for Hidden Markov Processes [17].

Recently, Oya et al. proposed an optimal attack, Profile Estimation Based Attack
(PEBA), that learns the user mobility profile as the user reports locations [24]. The PEBA
is based on a blank-slate model, which starts as a tabula rasa, only with probabilistic
information about the mobility profile π, computed from the training set. To acquire
additional information about this mobility profile π, the attacker uses both the user’s real
locations x and user’s obfuscated locations z observed. Considering this mobility model,
the attacker’s knowledge of π will be adapted after each query, which will be used to design
and to perform the attack. The PEBA attack was designed by decomposing the estimation
problem of user’s location x given the obfuscated locations zr into two steps. First, they
use the Maximum Likelihood Estimator (MLE) to estimate the mobility profile of the user,
knowing the user’s obfuscated locations zr. Second, given the obfuscated locations zr, they
estimate the user’s real location x assuming it follows the distribution given by π̂rML, which
is the MLE of the mobility profile π in the r-th query. Furthermore, the authors of [24]
showed that PEBA outperforms optimal attacks developed for hardwired models of user
mobility, when evaluated on data not used for training [23, 36].

2.2.2 Tracking Attacks

Tracking attacks are better suited for continuous data, since they consist in following
a user over time and space. MM is a technique used to localise a vehicle continuously on
a road network given noisy readings. Currently, there are three major surveys on MM [37,
38, 39]. The most recent survey [39] provides a selection and classification of existing MM
applications. Moreover, the authors performed an analysis of the trade-offs to consider
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when choosing a MMmethod and selected guidelines to help this choice. Generally, the MM
approaches are classified as low-sampling and high-sampling, depending on the frequency
of updates. In the context of MM, it is typically considered high frequency of updates
when reports are made up to every 1 minutes or least and low frequency techniques are
evaluated up to a maximum of 5-6 minutes [38]. However, in the context of LBSs there
is no formal nor quantitative boundary for the frequency of updates that defines what
intervals belong to the low-sampling or high-sampling scenarios.

Newson and Krumm provided a MM algorithm that uses a Hidden Markov Model
(HMM) to find the route represented by a sequence of points [40]. Moreover, their solution
considers noisy readings and sparse location data. The results obtained by the authors
showed how the accuracy of their method degrades when the frequency of updates decreases
and when the level of noise increases. This work is mentioned in [39] as a popular method
and considered by [41] as the state of the art. However, recently, Jagadeesh and Srikanthan
developed a MM solution for noisy and sparse location data to be applied in an online
way [41]. Their method is based on a HMM and on a route choice model, which considers
real driving data. The results obtained by the authors showed that their solution achieves
a higher accuracy when compared with the state-of-the-art algorithms [40], even at high
levels of noise.

Ghinita et al. tackled an attack for continuous scenarios that considers an adversary
with prior knowledge about the maximum user velocity [29]. In their work, they considered
two attackers showed in Figure 2.6. In (a), the attacker does not have access to information
about the sensitive locations on the map, and wants to ensure that the user can reach
some point in Cloaking Region (CR) B from any point in CR A. In (b), the attacker has
information about sensitive locations, and wants to ensure that the user can reach any
point in CR B from any point in CR A. Based on these attackers, the authors proposed a
mechanism that protects the users against them.

(a) Adversary without background knowledge

(b) Adversary with background knowledge

Figure 2.6: Attack model (from [29]).

2.3 Metrics of Privacy and Utility

This section gives an overview on privacy metrics (see Section 2.3.1), utility metrics (see
Section 2.3.2) and, lastly, a brief discussion on the trade-off between privacy and utility
(see Section 2.3.3).
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2.3.1 Privacy Metrics

In order to quantify the level of privacy, several metrics have been proposed. However,
finding a standard for evaluating privacy remains a challenge, because there are multiple
definitions of privacy. In this section, relevant works in this context will be presented.

The systematic survey of Wagner and Eckhoff provides an elaborated summary of
privacy metrics, not only in the scope of location privacy but in the general domain of
privacy [42]. This work covers more than eighty privacy metrics and introduces categori-
sations based on the following: the aspect of privacy to measure, the required inputs,
and the type of data to protect. The defined categories group the metrics by the outputs
they measure as follows: uncertainty, data similarity, time, error, information gain/loss,
indistinguishability, adversary’s success probability, and accuracy/precision. Each of the
categories has associated some privacy metrics, however, most of them are not considered
in location privacy domain.

Wagner and Eckhoff further present a set of nine questions that helps in the choice
of the right privacy metrics for a specific case. In the survey, the selection of questions
is followed by an explanation about the aspects considered and these questions are also
followed by information to take into account in the answer. Next, the questions from [42]
will be transcribed:

• Suitable Output Measures? Which aspects of privacy do we want to quantify?
Do we want to give privacy guarantees, or is some loss of privacy acceptable?

• Adversary Models? What are the characteristics of the adversary we consider?
How do we incorporate the adversary’s goals and their knowledge?

• Data Source? Which data sources do we aim to protect?

• Availability of Input Data? Which types of input data do we want to consider,
and which are available in our scenario?

• Target Audience? What is the intended audience for our study? What are their
expectations regarding the presentation of results, and do they understand the inter-
pretations of our metrics?

• Related Work? Which metrics are used by work that is related to ours, and would
those metrics be suitable in our work as well? Which mathematical concepts or for-
malisms are used by others in our field? Which of these are already available in the
tools we use?

• Quality of Metrics? Do any of the candidate metrics have known flaws? Is it
feasible to conduct a study that verifies that candidate metrics indeed behave as we
intend?

• Metrics Implementations? Are there implementations of the candidate metrics
that we can use, or compare our implementation with?

• Metrics Parameters? How should we choose the parameter values for the candidate
metrics?

Although the survey gives a summary of privacy in general, they mention the possibility
to use metrics from other domains or to combine different metrics. In the domain of LBSs,
they refer the work of Shokri et al. [18]. This work considers that location privacy, as shown
in Figure 2.7, should take into account the following three aspects: accuracy, certainty and
correctness. These aspects correspond to how accurate, how certain and how correct the
adversary’s estimations are.
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Correctness

Accuracy Certainty

Figure 2.7: Triangle for metrics of Privacy (adapted from [18]).

To quantify location privacy, the authors developed a framework that allows the analysis
of LPPMs. They also proposed and justified the right metric to determine users’ privacy
and explained some other metrics used in the context of location privacy, namely: k -
anonymity and entropy.

In summary, the analysis performed by Shokri et al. showed that correctness is the
right metric to measure users’ privacy. Considering that certainty measures the success of
an attack and that maximum accuracy of adversary’s estimations can be achieved under
resource constraints, neither of them allows the evaluation of an LPPM. To evaluate an
LPPM, it must be considered the exact location x and the adversary’s estimation x̂, in
order to measure the adversary’s correctness, which determines the privacy of users.

Conversely to the work of Shokri et al. [18], Oya et al. [36] have recently justified the
use of other metrics, such as conditional entropy, as auxiliaries to the design of LPPM.
In fact, they show that these complementary criteria are essential as no mechanism fares
efficiently in all privacy domains.

Liu et al. performed a recent systematic study on Location Privacy and Its Applica-
tions [15], where the works described above [18, 42] are also referred, and classified location
privacy metrics into five categories, as explained below. Although Shokri et al. mention
accuracy as a metric, Liu et al. dismiss it, since it is not commonly used.

Certainty

Certainty or uncertainty metrics evaluate the ambiguity of adversary’s estimations to
quantify the success of an attack. A high privacy level is related to a low certainty. Liu et
al. divided certainty in numerical metrics and entropy-based metrics [15].

The first one concerns to metrics that measure the level of privacy considering the
number of points sent by a user with a single location-based query. The privacy level
increases with the increasing number of points reported, which means more ambiguity.
There are LPPMs that use this type of metrics to evaluate the privacy level achieved.
For example, in k -anonymity, k is used to represent the level of privacy [43, 44], as well
as p-sensitivity uses p [45] and l -diversity uses l [46]. Briefly, k -anonymity consists in a
set of k individuals, where the identity of each person cannot be disclosed from at least
k-1 individuals in the same set. The p-sensitive mechanism satisfies the k -anonymity
property and guarantees that within a set of k individuals, for each group of confidential
key attributes, the number of distinct values is at least p for each confidential attribute
within the same group. In the latter example, l -diversity guarantees that the user’s position
is different from a set of k individuals and the individuals are located distant enough from
each other.

The entropy-based metrics evaluate how well an attack can disclose a user’s position
and an adversary can identify the user. Considering the observations o and the adversary’s
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estimations x̂, the entropy is defined by the following equation:

∑
x̂i∈X̂

p(x̂i|oi) log
1

p(x̂i|oi)
(2.1)

where p(x̂i|oi) is the probability of the adversary’s estimation x̂i to occur given the
observation oi, thus modeling the attack from an adversary. This equation measures how
well an adversary can identify a certain user.

Correctness

Liu et al. divided correctness in adversarial success rates and distance-based met-
rics [15]. The adversarial success measures the probability of success of an adversary or,
when there is more than one attempt, the percentage of success. The evaluation through
this metric depends on the context and, hence, the definition of success also depends on it.

The distance-based metrics are measured by the expected estimation error and quan-
tified using the distance between the exact locations x and the adversary’s estimations x̂.
Considering observations o, adversary’s estimations x̂, and a distance metric d(·), typi-
cally the Euclidean distance [35], the expected estimation error is defined by the following
equation: ∑

x̂i∈X̂

p(x̂i|oi)d(xi, x̂i) (2.2)

Information Gain or Loss

These metrics quantify the amount of information gained by an adversary, which cor-
responds to the amount of privacy lost by users. The increase of user’s privacy depends
on the least information an adversary can gain. In this context, Liu et al. defined a new
privacy metric, privacy degree, as the percentage of queries responded by the onboard unit
(i.e. the communication device mounted on vehicles) [47]. In fact, an onboard unit works
as a cached content in the local memory, which is more secure than using an LBS server.
According to [47], privacy degree corresponds to the percentage of queries made by the
users and responded by the cached content instead of the service provider.

Geo-Indistinguishability

Indistinguishability is recognised as a classic notion in the security domain. Based on
this notion, some metrics were introduced to measure if a pair of outcomes of a privacy
mechanism is indistinguishable to an adversary. In this case, a high level of privacy means
that an adversary cannot distinguish two outcomes within a given set of outcomes.

In the domain of statistical Databases (DBs), differential privacy was introduced, which
guarantees that any disclosure does not consider the presence or absence of an item in a
DB [48]. Briefly, differential privacy aims to minimise the risk of an individual or a record
entering in a DB, thereby encouraging the participation in data sharing. In particular,
the objective of differential privacy is that a DB reveals low information about a certain
individual/record, even if all the information about the others is known. That is, the
response to a query to the DB must be indistinguishable, whether the individual/record is
in the DB or not, which makes the individuals sure about the share of their data. The most
common mechanism of protection consists in add noise to the data, in order to provide
formal guarantees of privacy. In the domain of location privacy, geo-indistinguishability
was proposed based on differential privacy, to guarantee that any disclosed location is
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indistinguishable from any other point within a variable radius, which means that the user
takes ε-geo-indistinguishability [22]. An LPPM f ensures this definition if and only if:

dP
(
f(x), f(x′)

)
≤ εdx(x, x′) ∀x, x′ ∈ X (2.3)

where dx(·) is a distance function and dP(·) is the multiplicative distance between two
distributions, σ1 and σ2, on the same set S, defined as:

dP(σ1, σ2) = supS∈S

∣∣∣∣log
σ1(S)

σ2(S)

∣∣∣∣ (2.4)

From equation (2.3), for all locations x′ within a radius r from the true location x, the
probability of generating the obfuscated location z is bounded by the distance of r, which
depends on the parameter ε. This parameter represents the level of geo-indistinguishability.

Commonly [22, 23], ε is set to ε = l/r, where r and l are a user specified radius and
privacy level, such that for any x, x′:

dx(x, x′) ≤ r
dP
(
f(x), f(x′)

)
≤ l

(2.5)

Based on this, for closer x, x′ locations the probability functions are forced to be similar,
while for distant locations the similarity of probability functions is lower, which allows the
service provider to distinguish points far away from each other.

Time

Time-based metrics can be used in two different ways. On one hand, these metrics
are used to measure the time until the adversary’s success, assuming that the adversary
will succeed. In this case, a high level of privacy is related to a long time until the
adversary’s success [49]. On the other hand, these metrics are used to measure the time
until the adversary becomes confused, assuming that the privacy mechanisms will confuse
the adversary [28]. In this case, a high level of privacy is related to a short time until
the adversary is confused. According to [28], “the time to confusion is the tracking time
between two points where the adversary reached confusion (i.e., could not determine the
next sample with sufficient certainty)”.

2.3.2 Utility Metrics

Despite the importance of the privacy level of an LPPM, the utility of the outcome of
a protection mechanism should also be considered. Generally, utility is related to service-
quality and can be measured through data quality metrics. In previous works as [23, 35, 50],
some metrics have been proposed to measure utility and they will be presented below.

Shokri et al. mention that an effective LPPM, beyond the privacy requirements of the
users and the adversary’s model, should consider the maximum tolerated service quality
degradation [35]. In their work, they proposed an LPPM for an LBS that take into account
each user’s service quality constraints. To evaluate the performance of the LPPM against
these constraints, the authors of [35] used the service quality metric.

The works [23, 50] focused on obfuscation mechanisms. The first one studied methods of
location obfuscation and provided solutions with improved results of utility. In the latter,
the authors exploited the privacy level obtained with geo-indistinguishability, examined
the trade-off between privacy and utility and provided an equivalent formal definition of
ε-geo-indistinguishability as an adversary error.
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Based on the previous works, utility can be defined as the expected quality loss of a
mechanism [16, 35]. Formally, these works defined quality loss by the following equation:

Q(f,x, z) =
∑

x∈X ,z∈Z
f(x, z)d(x, z) (2.6)

where d(·) is a quality loss metric, typically the Euclidean distance, since the degra-
dation of LBSs can be quantified by the distance between the exact location x and the
obfuscated location z.

Another quality loss metric is the squared Euclidean distance d2 employed in [23]. This
metric is typically used by applications that retrieve information in a certain area. For
instance, considering an application that is used for finding Points of Interest (PoIs), when
the obfuscation level increases, the Area of Retrieval (AOR) increases with the squared
Euclidean distance between the exact user location x and the obfuscated location z. The
AOR consists of the area over which the LBS retrieves the information (e.g. nearby PoI)
to the user. Due to the fact that the AOR is centred at the obfuscated location z, this
area must be such that it contains the Area of Interest (AOI) of the user. The AOI is
centred at the exact user location and corresponds to the area over which the user wants
to receive information from the LBS. Figure 2.8 shows an example of an AOI and an
AOR, represented with a blue circle and a grey circle, respectively. From this figure, we
have a user that intents to know the PoIs within 300 m. To do so, the user requests
that information to the LBS within 1 km of the obfuscated location z. Thus, the AOI is
contained in the AOR and the user receives the wanted information.

Figure 2.8: Example of an AOI of 300 m radius and an AOR of 1 km radius (from [22]).

The work [51] introduced the notion of (α, δ)-usefulness, which was used by the authors
of geo-indistinguishability to measure its usefulness [22]. In this latter work, the authors
stated that “A location perturbation mechanism K is (α, δ)-useful if for every location x
the reported location z = K(x) satisfies d(x, z) ≤ α with probability at least δ.”. From the
perspective of the utility, a mechanism has a high utility level if the value of α is low and
the value of β is high, since a lower value of α corresponds to a smaller distance between
the exact user location x and the obfuscated location z.

In addition to the presented metrics, in the context of geo-indistinguishability, Oya et
al. considered the average loss, r̄, and the radius of the circular region centred around the
true location x where the obfuscated location z can appear with probability 0.95, r95 [50].
In particular, for the Planar Laplace mechanism, given the parameter ε, the average loss
is defined as follows: r̄ = 2/ε. The radius r95 can be calculated using the Lambert W
function as follows: rp = −1

ε

(
W−1

(
p−1
e

)
+ 1
)
, where p is the probability and W−1 is the

negative branch of the Lambert W function.

16



State of the Art

2.3.3 Trade-off Between Privacy and Utility

Designing privacy-preserving mechanisms inherently corresponds to setting a trade-off
between privacy and utility [14]. Specifically, in the case of obfuscation, the quality of the
data is degraded before being collected by a service provider, which in turn results in a
quality loss of the service. For example, reporting a location farther away from the exact
location when retrieving the nearest restaurant, may result in getting the wrong restaurant.

Shokri et al. performed an analysis on the trade-off between the privacy level and
the service quality loss [35]. As expected, they showed that a high level of privacy cor-
responds to a significant degradation of the service quality. Similar results were obtained
by Krumm [33], where the author shows how much noise and quantization is necessary to
preserve privacy against a realistic attacker.

The metrics presented in previous sections are the tools to measure the trade-off be-
tween privacy and utility. However, it should be clear that no widely accepted metric for
both privacy and utility exists. In fact, multiple criteria should be taken into account [36],
such as using complementary metrics (e.g. conditional entropy), specially due to the indi-
vidual nature of privacy and personal privacy preferences [52].

Figure 2.9 shows an example of how the presented metrics can be used to measure the
privacy and the utility level. The exact user locations x were obfuscated by an LPPM,
producing the obfuscated locations z, and the estimated locations x̂ were obtained by
applying an attack. In this case, the privacy level can be measured by the estimation error
and the utility error can be used as the quality loss metric. From this figure, we can also
observe the trade-off between privacy and utility. Once we improve the privacy level, that
is, increase the estimation error, we will degrade the utility of the LPPM.

Figure 2.9: Privacy and utility errors (from [32]).
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Chapter 3

Impact of Frequency of Reports on
Location Privacy

After completing the study of the state of the art (see Chapter 2), we now evaluate
how well the current techniques fare against the impact of the frequency of reports. To
do so, we selected the techniques with the best performance and evaluated empirically
against a dataset of real-world mobility data. The selection, analysis, and pre-processing
of the dataset were done based on the location information needed for the state-of-the-art
mechanisms. Furthermore, the pre-processing of the dataset included its sub-sampling, to
produce different levels of frequency of updates for evaluation.

Briefly, our approach consisted in applying the implemented LPPM to the subsampled
dataset, which resulted in a protected dataset. Then, the implemented attack is applied to
the protected dataset to produce the adversary’s estimation. Lastly, to assess the obtained
results, we resort to suitable privacy and utility metrics.

This chapter describes the implementation of the selected LPPMs, the MM technique
and corresponding attack, followed by the evaluation and the obtained results. The selected
LPPMs were the PL [22] and the adaptive geo-indistinguishability [32] and the selected
attacks were the MM proposed by Jagadeesh et al. [41] and an adaptation proposed by
us to consider Laplacian noise instead of Gaussian noise. The PL mechanism was selected
for the sporadic scenario, since it was the first mechanism that achieved the notion of geo-
indistinguishability, which provides the formal privacy guarantees of differential privacy
applied to location data. The adaptive geo-indistinguishability was selected for the contin-
uous scenario, since it is a recent mechanism based on the PL that explores the correlation
between reports for protecting location privacy. Regarding the attacks, since adversaries
may use maps to locate the users [21], we selected a state-of-the-art MM [39], which enables
us to locate vehicles on road networks. MM is usually applied for GPS navigation. To the
best of our knowledge, this is the first time MM is considered for a tracking attack against
location privacy.

3.1 Privacy Protection and Attack Mechanisms

This section describes in more detail the selected LPPMs (see Section 3.1.1) and the
selected attack and an adaptation we have made (see Section 3.1.2).

3.1.1 Privacy Protection Mechanism

Generically, an LPPM is modeled as a probability distribution and can be denoted
as [24]:

p(zi|zi−1,xi) (3.1)
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where zi is the obfuscated location and xi is the exact user location. Thus, it means
the probability of observing the obfuscated location zi generated from location xi.

This subsection details the implemented LPPMs, the PL geo-indistinguishability and
the adaptive geo-indistinguishability. These mechanisms were developed for the sporadic
scenario and the continuous scenario, respectively.

Geo-Indistinguishability

The geo-indistinguishable PL consists of adding 2-dimensional Laplacian noise centred
at the exact user location x and with the following Laplacian distribution, whose probability
density function (pdf) is:

p(z|x) = Dx(z) =
ε2

2π
e−εdx(x,z) (3.2)

To obtain z from x using equation (3.2), we can add a randomly drawn vector expressed
as a radius r and angle Θ. In this case, Θ is uniformly chosen from [0, 2π) and r is computed
by drawing p uniformly from [0, 1) and feeding it to the inverse planar Laplacian cumulative
distribution function. This function is calculated using the negative branch W−1 of the
Lambert W function and is defined as:

C−1(p) = −1

ε

(
W−1

(
p− 1

e

)
+ 1

)
(3.3)

Therefore, the obfuscation location z is calculated by z = x+ 〈r cos Θ, r sin Θ〉 and the
Euclidean average quality loss achieved by this mechanism is 2/ε.

In our work, the PL is applied under multiple values of ε. The used set is defined as
ε = [0.016, 0.032, 0.064, 0.128] m−1.

Adaptive Geo-Indistinguishability

The adaptive geo-indistinguishability was proposed for continuous scenarios. This
mechanism uses the PL with a dynamic ε that is computed according to the correlation
between the new location and the past locations. Based on this correlation, the adaptive
mechanism adjusts the amount of noise required to obfuscate the exact user location x.
Thus, the mechanism increases the privacy level when the correlation between reports is
high and improves the utility level when the correlation between reports is low. The cor-
relation is measured as the error between an estimation and the exact user location, where
the estimation is obtained using a simple linear regression. Formally, we can define the
dynamic ε as follows [53]:

ε =


α× ε, if d(x, x̂) < ∆1

ε, if ∆1 ≤ d(x, x̂) < ∆2

β × ε, if d(x, x̂) ≥ ∆2

(3.4)

where x is the exact user location, x̂ is the estimation, d(·) is the euclidean distance,
∆1 and ∆2 are two thresholds, and α and β are two constants. The authors also specify
the following constraints: ∆2 > ∆1, 0 < α < 1, and β > 1. From the first branch of
the equation (3.4), we have that if the distance between the exact user location and the
estimation is lower than a small threshold ∆1, i.e. high correlation, then privacy should
be improved. To do so, ε is decreased by a factor α < 1. On the other hand, when the
error is larger than a higher threshold ∆2, i.e. low correlation, the utility is enhanced by
multiplying ε with the factor β > 1 (third branch). Otherwise, when the error is between
[∆1,∆2[, the value of ε does not change. In Table 3.1 are presented the values defined for
the parameters of the mechanism in the original work [32].
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Parameter Value

∆1 0.96 / ε

∆2 2.7 / ε

α 0.1

β 5

Table 3.1: Parameters of the adaptive mechanism from [32].

In our work, the adaptive mechanism is applied considering the values of ε that were
used in the original PL mechanism. As parameters of the mechanism, we started by using
the values defined in the original work. Figure 3.1 shows the boxplot of the estimation
errors for the minimum and the maximum value of the used set of epsilon. From this figure,
we can observe how the estimation errors are related to the thresholds ∆1 and ∆2 used in
the original work. In particular, we can observe that the adaptive geo-indistinguishability
is benefiting the utility instead of the privacy level for the majority of the values of ε and
∆t, since most instanced appear above the ∆2 threshold. In order to have diversity in
the behaviour of the adaptive mechanism, we selected two different values of ∆1 and ∆2.
Figure 3.2 shows the boxplot of the estimation errors with the selected thresholds, ∆1 = 750
and ∆2 = 1750. This ensures that we encompass a set of scenarios in which adaptive geo-
indistinguishability optimises for privacy (lower values of ∆t, where most instances are
below ∆1), utility (higher values of ∆t) and intermediate cases. Lastly, regarding the
simple linear regression, we chose to use the parrot function because it exhibited the best
results [53]. The parrot function simply consists of returning the previous value as the
prediction.
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(a) ε = 0.016
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(b) ε = 0.128

Figure 3.1: Boxplot of the estimation errors of the adaptive geo-indistinguishability for
different values of epsilon ε, with varying minimum interval between points ∆t. Dashed
lines correspond to the thresholds ∆1 and ∆2 used in the original work [32].

3.1.2 Map-Matching

As mentioned before, we implemented two attacks, the original MM mechanism pro-
posed in [41] and an adaptation proposed by us to consider Laplacian noise instead of
Gaussian noise. Hereupon, the implementation of the mechanisms is described.
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Figure 3.2: Boxplot of the estimation errors of the adaptive geo-indistinguishability for
different values of epsilon ε, with varying minimum interval between points ∆t. Dashed
lines correspond to the thresholds ∆1 and ∆2 used in our work.

Let us denote the location report (referred as location observation or simply observation
in [41]) at timestamp i as oi ∈ R2. Although the report is not obfuscated, it is assumed
to be noisy due to measurement errors. To apply the MM mechanism it is required a road
network, which corresponds to a direct graph G = (V,E), where V is a set of nodes repre-
senting intersections and endpoints of road segments and E is the set of these segments. A
path p between nodes u and v is a sequence of edges e1, . . . , en such that u is the start of e1
and v is the end of en. Given a sequence of T noisy observations o1, . . . , oT , the objective
of a MM algorithm is to find a path p in G that corresponds to a sequence o1:T . Towards
this goal, in [41] a Hidden Markov Model (HMM) is used.

For each noisy observation oi, the HMM’s hidden states at time step i correspond
to potential locations on the road where the user can be. The kth potential location at
time step i can be denoted as si,k and the hidden true state can be denoted as s∗i = xi.
Generally, the location measurement error, that is, the distance between the true state and
the observed location, is assumed to follow a Gaussian distribution with zero mean [40, 41].
For a given state si,k, the probability of the observation oi to occur is designated emission
probability, which is defined as:

p(oi|si,k) =
1

σ
√

2π
e−

g(oi,si,k)
2

2σ2 (3.5)

where σ is the standard deviation of the measurement error and g(oi, si,k) is the great-
circle distance, that is, the shortest distance along the surface of the earth, between the
observation oi and the state si,k. From equation (3.5), it is possible to infer that closer
states to the observation will have a higher probability than farther states.

The probability that the vehicle moves from state si−1,j to si,k is designated transi-
tion probability and depends on both the circuitousness of the path and on the temporal
plausibility, that is, if the travelled distance is plausible given the time interval between
timestamps (ti − ti−1). To measure the circuitousness of the path, the authors of [41]
defined the following equation:

y(si−1,j , si,k) =
d(si−1,j , si,k)− g(si−1,j , si,k)

(ti − ti−1)
(3.6)

where g(si−1,j , si,k) is the great circle distance between the states and d(si−1,j , si,k) is the
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driving distance, which is the length of the minimum-travel-time path between si−1,j and
si,k on the road network, calculated using Dijkstra’s shortest path algorithm [54]. For the
temporal plausibility, the equation is given as:

z(si−1,j , si,k) =
max (f(si−1,j , si,k)− (ti − ti−1), 0)

(ti − ti−1)
(3.7)

where f(si−1,j , si,k) is the free-flow travel time, in seconds, of the optimal path between
the states si−1,j and si,k. Finally, the transition probability is defined as:

p(si,k|si−1,j) = λye
−λyy(si−1,j ,si,k)λze

−λzz(si−1,j ,si,k) (3.8)

where λy and λz are empirically determined parameters from equations (3.6) and (3.7),
respectively.

The most likely path from the HMM is computed using a Viterbi algorithm as follows:

V1,k = p(o1|s1,k)
Vi,k = p(oi|si,k) max

j
(Vi−1,jp(si,k|si−1,j)) (3.9)

where Vi,k corresponds to the joint probability of the most likely state sequence ending at
state si,k based on the observations o1, . . . , oi. The index j that maximises Vi,k is stored
for each k as it points to the predecessor state si−1,j that most likely leads to si,k. By
saving the j’s at each timestamp that maximise Vi,k, it is possible to obtain the most likely
sequence for observations o1, . . . , oT , starting in maxw VT,w. The path p is then obtained
by concatenating the optimal (shortest) paths between consecutive states in the most likely
sequence.

However, the optimal solution might not be obtained using the shortest segments to
connect the states. In [41], an heuristic was provided that uses features to take into
consideration drivers’ preferences and thus increase the likelihood of getting the right
segment between states. For this analysis, we will consider the shortest path as the optimal
solution, thus we will omit the proposed route choice model. Furthermore, as shown in [41],
the improvement obtained by the route choice model is less than 10%.

3.1.3 Map-Matching as an Attack to Location Privacy

MM can be used as a pre-processing technique in an LBS, where the location reports
oi are mapped to the most likely position for xi, that is, xi = s∗i . Nevertheless, MM can
also be used by an adversary to track/locate a user even if the latter is using an LPPM,
as described below.

The existing MM mechanisms have considered Gaussian noise in location data read-
ings, which has been proven effective for the measurement of noise from GPS or cellular
network readings [40, 41]. The usage of an LPPM acts as a noisy channel described by
equation (3.1). The implemented LPPM adds Laplacian noise instead of Gaussian noise.
Therefore, we decided to adapt the MM method previously described to consider Laplacian
noise as well. This adaptation is designated PLMM and solely consists in updating the
emission probability defined in equation (3.5) to the following:

p(oi|si,k) = p(zi|si,k) =
ε2

2π
e−εd(si,k,zi) (3.10)

Since the observation is now the obfuscated report (oi = zi), we replaced oi for zi. In-
tuitively, equation (3.10) is the probability of observing the obfuscated report zi generated
from position (hidden state) si,k.

To measure the obtained privacy, we can use the adversary error from equation (2.2)
using zi. However, for a tracking attack, a point-by-point metric would fail to assess the
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effectiveness of the tracking, as the error could be 0 and the estimated trajectory could be
different from the real trajectory. The authors of [41] define F -score, also called F1 score,
to evaluate the accuracy of the MM, which can be calculated by the following equations.

precision =
Lcorrect
Lmatched

recall =
Lcorrect
Ltruth

F1score = 2× precision× recall
precision+ recall

(3.11)

where Lmatched is the length of the output path, Ltruth is the length of the corresponding
ground-truth and Lcorrect is the length of the portions of the output path that overlap with
the ground-truth path. This metric basically measures how accurate the mechanism is
through the amount of overlapped path, Lcorrect, between the adversary’s estimated path,
Lmatched, and the ground-truth’s path, Ltruth. The value of F1 score varies between 0 and
1. From the utility perspective of the MM technique, the worst case corresponds to F1

score = 0 and the best case corresponds to F1 score = 1. The best case occurs when both
the precision and the recall are 1, that is, when the Lmatched is equal to the Ltruth and,
consequently, the Lcorrect is equal to the Ltruth. The worst case occurs when the Lmatched
does not overlap the Ltruth, which corresponds to Lcorrect = 0.

3.2 Evaluation

The following subsections describe the experimental setup, the methodology, and the
results.

3.2.1 Experimental Setup

This subsection describes the experimental setup for the experiments, namely, the
selected dataset and its pre-processing.

Dataset Selection

The choice of the dataset took into account the publicly available location datasets.
Considering the selected mechanisms, the location data should either be reports made
by vehicles or the dataset should have information about the method of transportation.
Regarding the frequency of reports, since we want to perform an analysis in continuous
scenarios, a dataset that allows downsampling is an important characteristic, that is, a
dataset with high frequency of reports. Therefore, we briefly present three public datasets
with the aforementioned characteristics:

• Taxi Cabs in USA [55] - constituted by more than 536 taxis travelling in the area
of San Francisco, with duration of 30 days and update rate of about 10 seconds. Each
report has information about the occupancy of the taxi cab;

• Taxi Cabs in Rome, Italy [56] - constituted by 306 taxis travelling in the area of
Rome, duration 30 days and update rate of about 7 seconds;

• GeoLife [57] - constituted by 182 users worldwide, with duration of 3 years and
variable update rate. It is divided by trajectories and it has reports from different
transports.
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Since the selected attack is a road network MM mechanism, only vehicular trajectories
can be considered. Based on the descriptions mentioned above and the performed analysis
of the datasets, we selected the Taxi Cabs in USA, whose frequency of updates is high and
the division into trajectories is possible through the occupancy of the taxi. The GeoLife
dataset has variable update rate and has reports from different transports, thus it will not
be considered for the experiments. On the other hand, the Taxi Cabs in Rome dataset does
not have information about the occupancy of the taxi and, hence, it is harder to divide the
data into trajectories.

The analysis performed to the datasets consisted in three main steps. The first step
was the comparison of the time interval between samples, which allowed us to discard the
GeoLife dataset due to the existing time gaps, that is, discontinuities in the reports along
a trajectory. Hence, the second and third steps were made in the datasets of taxis. The
second step consisted in checking the number of trajectories with and without passenger.
While the Taxi Cabs in USA has a flag for the occupancy, the Taxi Cabs in Rome dataset
has no information about it, which prevented us from dividing the data into trajectories in
a trivial way. Therefore, after the analysis of the number of occupied versus free trajectories
just for the Taxi Cabs in USA, we concluded that the number of trajectories with passengers
was enough (464246 out of 928301) and we could discard the remaining ones. The third step
consisted in checking the duration of trajectories, to evaluate if for different subsamples
(e.g. over 6 minutes) there were enough points to consider, which was confirmed. The
dataset is constituted by 1451 trajectories with a duration of at least 1 hour, that is,
considering a trajectory with a duration of 1 hour and a subsample of 60 seconds, the
trajectory is constituted by at least 60 points.

Dataset Pre-Processing

Since MM is computationally expensive, we started by selecting the relevant trajectories
as following. We first limited the distribution of trajectories to the peninsula of San
Francisco, as this is the most dense area as shown in Figure 3.3. Figure 3.4 shows this
bounding box. Then we considered only trajectories with passengers, where the flag of
occupancy is true [58]. This division allowed us to remove cases where the taxi was stopped
waiting for a client. Finally, we selected trajectories with a duration of at least 1 hour, with
intervals between reports of at most 100 seconds, to avoid temporal discontinuities between
reports. This pre-processing resulted in 46 trajectories. To observe if the dataset contained
noisy readings, we displayed the trajectories in the map and did a manual inspection of
some of these trajectories, which confirmed our premise. Figure 3.5 gives an example where
some GPS locations were reported in the ocean instead of in the bridge that the vehicle
was clearly crossing.

To enhance the original data, we first apply the MM mechanism described in Sec-
tion 3.1.2 to the 46 trajectories from the original dataset. Since we have no ground-truth
and the MM [41] was applied to mobile network location data, the estimated noise standard
deviation σ in [41] is considerably higher than in our dataset. Therefore, as we are unable
to estimate σ, we use the parameters from [59], which is the baseline to the work in [41]
and which uses GPS data as in our case. In [59] the estimated standard deviation was
σ = 6.86m and they limited the potential locations si,k to a bounding-box of 50m centred
in the noisy GPS reading oi. For the other parameters, we use the original values of [41]:
λy = 0.69 and λz = 13.35. The constraint of the 50m radius around oi produced observa-
tions without candidate points in 41 of the 46 trajectories due to the existing nodes of the
road network. For these observations, we consider the nearest node of the road network
as candidate. Moreover, after further manual inspection, we observed that in some of the
trajectories the taxi stays roughly in the same place, which we attribute to heavy traffic.
Consequently, we removed those trajectories and we obtained 30 trajectories as test data,
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(a) Points over and around San Francisco (b) Points over the peninsula of San Francisco

Figure 3.3: Distribution of the points of the dataset.

Figure 3.4: Bounding-box over the peninsula of San Francisco, defined from south and
west by the coordinates (37.5996104427, -122.5168704724) and from north and east by the
coordinates (37.81093499, -122.3535056708).

Figure 3.5: GPS locations reported with noise.
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henceforth referred as our ground-truth.
Finally, to vary the frequency of reports we subsample the dataset by suppressing

reports such that the interval between consecutive points is at least ∆t. Since our focus
was on continuous scenarios, we selected the following set of values from 60 to 600 seconds:
∆t = [60, 120, 180, 240, 300, 360, 420, 480, 540, 600] seconds. It should be noticed that the
values in our set are already considered low-sampling rate in the context of MM [39, 40].
In the selected MM technique [41], they consider a range of frequencies between 60 and
300 seconds.

3.2.2 Methodology

Figure 3.6 summarises the followed methodology. As explained in Section 3.2.1, the
GPS data is pre-processed using the MM technique, resulting in the ground-truth, which
in turn is subsampled considering the aforementioned values of ∆t. Then the LPPM is
applied to the subsampled data, i.e. to the exact locations, as explained in Section 3.1.1.
Finally, both the original MM (MM) and the adapted MM (PLMM), which considers
Laplacian noise (see Section 3.1.3), are executed on the obfuscated locations to obtain the
adversary’s estimations. To evaluate the privacy level of the LPPM, we used the average
adversary error, PAE , as a point-by-point metric, and the F1 score from equation (3.11)
as a trajectory metric. Moreover, we resort to the quality loss metric, Q, to evaluate the
trade-off between the privacy and the utility of the LPPM.

The parameters σ, λy and λz for the MM attack were estimated following the pro-
posal of the authors in [41]. To estimate the σ, i.e. the standard deviation of the location
measurement errors, we first measured the error between each user location and the corre-
sponding ground-truth location, using the great-circle distance g(·). Then, considering the
set gi constituted by the measurement errors and assuming that these errors are Guassian
distributed with zero mean, we used the Median Absolute Deviation (MAD), which is a
robust measure resilient to outliers, to calculate σ. Therefore, we calculated σ as follows:
σ = 1.4826 mediani(gi). To estimate λy and λz, we measured the circuitousness and the
temporal implausibility for a selected group of trajectories. Based on the obtained values,
we calculated the exponential distribution for both the circuitousness and the temporal
implausibility. The value of λy and λz correspond to the rate parameter of these dis-
tributions. Regarding the selection of the trajectories, the authors used the paths with
duration between 1 and 5 minutes, resulting in 4828 trajectories with an average length
of 2.6 km. In the same way, we used the trajectories with duration between 1 and 5
minutes that had at least 2 km of travelled distance, resulting in 6003 trajectories. The
estimation of the parameters resulted in the following values: λy ≈ 0.07 and λz ≈ 0.74.
In Appendix B, we describe the estimation of the parameters λy and λz and present the
respective distributions.

Furthermore, considering the efficiency of the attack, we only take into account candi-
date points within a radius computed for both MM and PLMM. To compute this radius,
we use the inverse distribution function of the Gaussian and Laplacian distributions, such
that the circle centred at the observation contains the exact location with 90% probability.
Intuitively, this corresponds to the case where the attacker computes the set of potential
locations, where with 90% probability the exact location is in the set. When there is not
a candidate within this radius, we consider the nearest node of the road network as can-
didate. The road network used covers the area defined by the bounding box represented
in Figure 3.4 and was obtained from OpenStreetMap using the OSMnx tool [60]. The
road network is in the form of a networkx multidigraph, which is manipulated using the
NetworkX tool [61].
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Figure 3.6: Diagram of the followed methodology.

3.2.3 Results

For our objective of evaluating of the impact of the frequency of reports on location
privacy, we will present here the results for the PL mechanism only. The results for adaptive
geo-indistinguishability, where epsilon is adjusted as function of the correlation between
reports will be used as comparison against our proposed scheme in Chapter 4.

As aforementioned, a point-by-point metric to measure the adversary’s estimation error
is not suitable for tracking attacks. Moreover, such a metric does not reveal the effect of
the frequency of the reports in both the MM and the PLMM, as shown in Figure 3.7,
where the average adversary error, PAE , is reasonably similar for all ∆t. In fact, this can
be explained because the adversary’s estimation error considers only the distance between
the exact location and the adversary’s estimation, which is not influenced by the temporal
correlation. Nevertheless, we can observe the effect of the obfuscation level. A higher ε
corresponds to a lower radius of obfuscation and, hence, to a lower adversary’s estimation
error. Lastly, we can observe from Figure 3.7 that the results of the PLMM are identical
to the results of the MM, with the maximum difference between both of approximately 15
m, for ∆t = 60 s.
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(b) PLMM

Figure 3.7: Average adversary error of MM and PLMM for different values of geo-
indistinguishability privacy parameter epsilon ε, with varying minimum interval between
points ∆t, and respective 95% confidence intervals.

In order to observe the impact of the ∆t on tracking attacks, we used the metric
proposed by the authors of [41], the F1 score from equation (3.11). Figure 3.8 shows
the effect of the correlation between reports on the MM attack and on the PLMM attack.
From this figure, we can observe that the decrease of the frequency of reports (i.e. increased
minimum interval ∆t values) leads to a degradation of both the MM and the PLMM. In
fact, as result of the decrease of the frequency of reports, the data become more sporadic
and, consequently, the trajectories will match with less precision. These results corroborate

28



Impact of Frequency of Reports on Location Privacy

that the variations of the frequency of reporting do have an impact in the effectiveness of
MM as a tracking attack.
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Figure 3.8: F1 score of MM and PLMM for different values of geo-indistinguishability pri-
vacy parameter epsilon ε, with varying minimum interval between points ∆t, and respective
95% confidence intervals.

Regarding the adapted MM, Figure 3.9 shows the comparison between the MM and the
proposed PLMM for selected values of ε, using the metric F1 score. From this figure, we
can observe that the adaptation PLMM has very similar results to the original MM, with
minor differences in terms of F1 score. This result reveals that the distribution used to
add noise does not have a considerable impact on MM as a tracking attack and, therefore,
in Chapter 4 we focus on the original MM only.

Finally, Figure 3.10 shows the privacy versus utility of MM and PLMM for different
values of ∆t, where each value of ∆t is represented by a different colour. To assess the
LPPMs performance, we measured the privacy and the utility through the average ad-
versary error, PAE , and the average quality loss, Q, respectively. For each value of ε, we
calculated the average adversary error as function of the average quality loss, resulting in
the pair (PAE , Q), which is represented with a point in the figure. The dashed vertical
lines correspond to the average value of epsilon at the empirical quality loss over all the
values of ∆t. For reference, the solid line corresponds to an adversary that uses the report
as the estimation. From this figure, we observe that the curves for the different values of
∆t are similar, which reveals again that a point-by-point metric fails to assess the impact
of the frequency of updates on the privacy level. Moreover, these results show that there
are some cases where using the attack gives an adversary’s estimation more distant to the
exact user location than the obfuscated point was. For instance, from Subfigure (a) of the
Figure 3.10, we can observe that the obtained estimations for the ε = 0.128 are above the
solid line, which represents the obfuscated point. Therefore, this means that the distance
between the estimations and the exact user location is bigger than the distance between
the obfuscated location and the exact user location. In fact, when the attack matches the
obfuscated point on the road, it makes the matched point closer to the obfuscation point,
however, the matched point is not necessarily closer to the exact user location.

29



Chapter 3

60 12
0

18
0

24
0

30
0

36
0

42
0

48
0

54
0

60
0

t (s)

0.0

0.2

0.4

0.6

0.8

1.0
F 1

 S
co

re
MM
PLMM

(a) ε = 0.016

60 12
0

18
0

24
0

30
0

36
0

42
0

48
0

54
0

60
0

t (s)

0.0

0.2

0.4

0.6

0.8

1.0

F 1
 S

co
re

MM
PLMM

(b) ε = 0.032

60 12
0

18
0

24
0

30
0

36
0

42
0

48
0

54
0

60
0

t (s)

0.0

0.2

0.4

0.6

0.8

1.0

F 1
 S

co
re

MM
PLMM

(c) ε = 0.064
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(d) ε = 0.128

Figure 3.9: F1 score comparison between the MM and the PLMM for different values of geo-
indistinguishability privacy parameter epsilon ε, with varying minimum interval between
points ∆t, and respective 95% confidence intervals.
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Figure 3.10: Privacy versus utility of MM and PLMM for different values of ∆t, where each
value of ∆t corresponds to a different colour. The points represent the pair (PAE , Q), which
is obtained for each value of ε. Dashed vertical lines are the average value of epsilon at the
empirical quality loss over all the values of ∆t. For reference, the solid line corresponds to
an adversary that uses the report as the estimation.
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Clustering Approach to Location
Privacy

In this chapter we propose a new location privacy-enhancing mechanism that considers
the frequency of updates and geo-temporal correlations. In order to implement a protection
mechanism against these intrinsic correlations of data, we took into consideration the
approaches previously discussed in the state of the art (see Chapter 2). We started by
looking at the implemented LPPM - PL - and took advantage of it for the sporadic scenario.
Targeting the continuous scenario as well, we focused on the distance between the reports,
which is influenced by the frequency of updates. Since a higher frequency of updates
(i.e. a lower time interval between the reports) corresponds to a lower distance between
the reports and to closer locations, our mechanism creates obfuscation clusters to protect
those locations, as we will explain in this chapter.

We start by describing the development and implementation of the new LPPM, fol-
lowed by the performed analysis and the obtained results. The evaluation of the developed
mechanism considered the privacy level and the utility of the obtained data. This evalua-
tion was performed based on the appropriate metrics, which were presented in Chapter 2.
To assess the utility of the mechanism, we considered the application of the mechanism
in a real use-case. Moreover, we compared our mechanism with existing mechanisms from
the literature. For the sporadic scenario, we compare against the original PL mechanism,
while for the continuous scenario, we assess against the adaptive geo-indistinguishability
mechanism, which was also developed for continuous scenarios.

4.1 Clustering Geo-Indistinguishability

In order to develop a new mechanism that can be used both in the sporadic scenario and
in the continuous scenario, we started by looking at the implemented geo-indistinguishable
LPPM - PL, which is considered the state-of-the-art LPPM for the sporadic scenario. From
the PL mechanism, we know that the exact user location x is reported as an obfuscated
location z, which is obtained by adding 2-dimensional Laplacian noise centred at the exact
user location. As we observed in the Chapter 3, the frequency of updates has impact on the
privacy preservation of the user location. Taking these notions into consideration, our idea
consists in creating a mechanism that obfuscates the exact user location x by applying the
PL mechanism. Then, an obfuscation cluster centred at the real location x is created, such
that the same obfuscated location z is reported for every real location inside the cluster.
With this approach, we take advantage of the original PL for sporadic scenarios (i.e. low
sampling frequency and distant reports), while providing a solution that leads to the same
obfuscated report for continuous scenarios, in which real locations are close by.

Therefore, our mechanism produces an obfuscated location zi within a certain radius
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of obfuscation r for the first user location xi, by directly applying the PL mechanism. The
location xi creates an obfuscation cluster centred at xc = xi, that is, a circle centred at xc,
whose obfuscated point is zi. For the next user location xi+1, the mechanism verifies if it
is inside the area of the previous obfuscation cluster centred at xc. If the user location is
inside the area, the mechanism reports the previous obfuscated point, that is, zi+1 = zi.
Otherwise, the LPPM obfuscates the location xi+1 with the PL mechanism and creates
a new obfuscation cluster centred at xc = xi+1. In order to verify if the user location is
inside the area of the previous cluster, the mechanism calculates the distance d between the
current location and the location that originated the previous cluster xc, using the great
circle distance g(·). The parameters of our scheme are then the radius of the obfuscation
cluster and the value of the privacy parameter ε. To reduce the number of parameters,
which in turn increases the usability of the mechanism, one can set r to depend on the ε
value.

Figure 4.1 presents an example of our approach, which will be explained starting from
subfigure (a) to subfigure (f). For the first user location x1, our mechanism produces an
obfuscated location z1 within a certain radius of obfuscation r, by directly applying the
PL mechanism. That obfuscation area centred at x1 constitutes an obfuscation cluster
centred at xc = x1. To simplify the description of the example, we will use xi instead of xc
to represent each location that originates a cluster, where i is the timestamp. For the next
user location x2, the mechanism calculates the distance d between the new user location
x2 and the centre of the previous cluster x1. Then, the mechanism verifies if it is inside
the previous cluster or not. As we can observe in the subfigure (b), the distance between
x1 and x2 is smaller than r, which means that the user location is inside the obfuscation
cluster of x1. Thus, our mechanism returns the obfuscated point z2, which is equal to
the previous obfuscated point z1. In the same way, for the user location x3, the distance
between x1 and x3 is calculated. As we can observe in subfigure (c), the distance d is
smaller than r and, consequently, the mechanism reports the point z3, which is equal to
z1. For the user location x4, we can observe in subfigure (d) that the distance d is bigger
than the radius r and, consequently, the mechanism produces a new obfuscated point z4,
by applying the PL mechanism as shown in subfigure (e). Finally, subfigure (f) shows the
reported obfuscated points z1, z2, z3 and z4 for the user locations x1, x2, x3 and x4, where
z1, z2 and z3 correspond to the same obfuscated point, due to our clustering mechanism.

Algorithm 1 shows the implemented approach. The parameters of the algorithm are
the exact user location xi, the privacy parameter ε and the radius of obfuscation r. By
applying this algorithm, the user location xi will be obfuscated and the algorithm will
return the obfuscated location zi. Regarding the parameters, the value of ε will be used
to apply the PL mechanism and the radius r will be used to compute the radius of the
obfuscation area of the clusters as explained above.

4.1.1 Privacy Analysis

As we observed in Chapter 3, the correlation between reports may degrade the privacy
level of the LPPMs. In particular, when a user reports several nearby points, the PL mech-
anism leads to the disclosure of the user’s information. For instance, if we consider the
most continuous scenario possible, i.e. when the user is continuously reporting the same
location, the PL mechanism will produce obfuscated locations for that user location, as
shown in Figure 4.2. From the obfuscated locations and considering the behaviour of the
Laplacian distribution used by the mechanism, we can delineate the centre of the obfusca-
tion area, which enables us to discover the exact user location. Our proposed mechanism
prevents this situation, since the clustering mechanism reports the same obfuscated point
for nearby locations, which is a clear advantage of our mechanism.

Regarding the nearby locations, by the definition of ε-geo-indistinguishability, if the
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Figure 4.1: Example of the clustering geo-indistinguishability mechanism.

Algorithm 1 LPPM based on clustering
1: function clustering(xi, ε, r)
2: if first report then
3: xc = xi
4: zi = planarLaplace(xi, ε)
5: else:
6: distance = g(xc, xi)
7: if distance ≤ r then
8: zi = zi−1
9: else

10: xc = xi
11: zi = planarLaplace(xi, ε)

12: return zi
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distance between two locations x, x′ is at most r, where r is the radius of obfuscation,
then the multiplicative distance between the distributions of x, x′ is at most l, where l
is the level of privacy (c.f. equation (2.5)). Thus, for closer locations, the distributions
are similar and, consequently, the probability of generating the same obfuscated location
is higher. Since our mechanism uses the same obfuscated point for locations that dist at
most r, it is guaranteed that the obfuscated locations reported by the proposed mechanism
are geo-indistinguishable, thus avoiding the need to use PL to produce a new obfuscated
location.

Furthermore, the privacy level of the geo-indistinguishability scales linearly with the
number of queries n [22]. Considering a mechanism K that is applied to a single query
and a mechanism K ′ that is applied to n queries, if the mechanism K satisfies ε-geo-
indistinguishably, then the mechanism K ′ will satisfy nε-geo-indistinguishability, due to its
scalability. Therefore, since the mechanism applies geo-indistinguishability to each point
independently, the privacy degradation increases with the increasing number of queries,
because n × ε grows. Each time the proposed mechanism uses the previous obfuscated
location, it avoids a new application of the PL to produce a new obfuscated location.
Therefore, our mechanism prevents the privacy degradation of the geo-indistinguishability
that comes from multiple applications of the protection mechanism.

Lastly, although the number of reported points does not decrease, as a result of applying
our mechanism, the reported point does not change in some of the cases, as shown in the
example of Figure 4.1. In fact, once the user reports the same location instead of a new
location, for the service, the user stays in the same location. Thus, there is less disclosure of
user’s information. Furthermore, since frequency of updates greatly impacts the distance
between reports, our clustering mechanism takes advantage of the effect of the frequency
of updates on the number of nearby points that require obfuscation.

r

Figure 4.2: Example of multiple obfuscations from PL mechanism for the same user location
within a radius r. The  represents the exact user location and the N represents the
obfuscated locations.

4.2 Evaluation

The following subsections describe the performance of the proposed clustering geo-
indistinguishability mechanism and evaluate the levels of privacy and the utility obtained.
Moreover, we present the comparison between our mechanism and two existing mecha-
nisms, the PL and the adaptive geo-indistinguishability.

In order to evaluate the performance of the clustering geo-indistinguishability, we used
the methodology presented in Section 3.2.2 for the original MM using the same mobility
dataset. The clustering mechanism was applied under multiple values of ε, using the
previous set that was defined as ε = [0.016, 0.032, 0.064, 0.128] m−1. To compute the

34



Clustering Approach to Location Privacy

obfuscation radius r, we resorted to the original definition of PL, such that ε = l
r or,

likewise, r = l
ε . For that, we considered the above set of ε values and l = log(4), as

suggested by the authors [22]. As we can observe, the same value of r can be obtained
with different combinations of values of ε and l. Therefore, the degrees of freedom of our
mechanism actually correspond to the value of ε and r, being that r is a function of epsilon.
As such, we focus our analysis on the effect of epsilon.

4.2.1 Number of Points per Cluster

Figure 4.3 shows the average of points per cluster obtained by applying clustering
geo-indistinguishability as a function of ∆t for various epsilon values. As aforementioned,
the clusters were created according to the obfuscation radius, that is related to the value
of ε. Thus, for the set of epsilon values, the used set of radiuses is approximately r =
[86.64, 43.32, 21.66, 10.83] m. As expected, for lower values of ∆t, the number of points per
cluster is higher than for higher values of ∆t. This can be explained by the proximity of
the locations when the time interval is lower. In particular, from this figure, we can observe
that the number of points per cluster is approximately less than three for the values of
∆t ≥ 360 s in all values of ε that we used. The other five values of ∆t correspond to time
intervals between 60 to 300 seconds, that is, from the case where the user is reporting at
every minute until the case where the user is reporting every 5 minutes. Therefore, as we
will detail in the following subsections, the impact of our mechanism on privacy and utility
will be higher for values of ∆t ≤ 300 s, that is, for time intervals smaller or equal than 5
minutes.

Furthermore, we can observe from Figure 4.3 that the average of points per cluster
increases with the decrease of the ε value, for all ∆t values. This can be explained by the
original definition of PL, such that ε = l

r and, likewise, r = l
ε . From this definition, we

have that a higher value of ε corresponds to a smaller radius r. Thus, the radius of the
obfuscation clusters is smaller for higher values of ε and, consequently, there are less points
per cluster for those ε values.
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Figure 4.3: Average of points per cluster obtained by applying the clustering geo-
indistinguishability for different values of epsilon ε, with varying minimum interval between
points ∆t, and respective 95% confidence intervals.
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4.2.2 Privacy Evaluation

To evaluate the privacy of the mechanism, we used the adversary error as a point-
by-point metric, and the F1 score as a trajectory metric. The obtained results will be
compared with the results of the PL and the adaptive geo-indistinguishability.

Adversary Error Metric

Figure 4.4 presents the average adversary error of the three mechanisms as a function
of ∆t for various epsilon values. As we can observe, the results of the clustering geo-
indistinguishability are similar to the results of the PL mechanism. In fact, these results
reveal that our mechanism maintains the privacy level point-by-point.

When we compare the results of the adaptive geo-indistinguishability with the results of
the clustering geo-indistinguishability, we observe that the difference between the average
adversary error is less than ∼10 m for ε = [0.016, 0.032] and ∆t ≥ 420 s, for ε = 0.064 and
∆t ≥ 300 s, and for ε = 0.128 and ∆t ≥ 240 s. For the remaining cases, the adaptive geo-
indistinguishability has a bigger adversary error, which can be explained by the fact that
the adaptive mechanism is mostly benefiting the privacy level in those cases. As mentioned
in Section 3.1.1, this behaviour is a consequence of the parameters used in the adaptive
mechanism. From equation (3.4) and from Figure 3.2, we have that: ε = β × ε when the
estimation errors are greater than ∆2; ε = ε when the estimation errors are between ∆1

and ∆2; and ε = α× ε when the estimation errors are lower than ∆1. Therefore, as we can
observe in Figure 3.2, the majority of the estimation errors for values of ∆t ≤ 240 s is lower
than ∆1, then the mechanism improves the privacy level by increasing the obfuscation level,
which results in larger adversary errors. For the remaining values of ∆t, the mechanism
does not change the value of ε or improves the utility, by increasing the value of ε, which
results in lower values of adversary error.
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(b) Clustering
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Figure 4.4: Average adversary error and respective 95% confidence intervals of PL, clus-
tering and adaptive mechanisms for different values of geo-indistinguishability privacy pa-
rameter epsilon ε, with varying minimum interval between points ∆t.

F1 Score Metric

Figure 4.5 shows the comparison between the three mechanisms. When we compare
the clustering geo-indistinguishability with the PL mechanism, we can observe that the
clustering mechanism has lower values of F1 score for all values of ∆t < 360 s and all values
of ε, which means higher privacy level. For the remaining values of ∆t, F1 score is lower
in some values of ∆t and ε and slightly higher in others. As we showed in Section 4.2.1,
the number of points per cluster is higher for ∆t < 360 s and, therefore, the impact of our
mechanism is more significant for these values of ∆t.
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Regarding the adaptive geo-indistinguishability, we can observe that the results of the
F1 score become similar to the results of the clustering geo-indistinguishability with the
increase of the ∆t values, which can be explained by the behaviour of the adaptive mech-
anism. Since for higher values of ∆t, the estimation errors are higher and, consequently,
the mechanism tends to improve the utility of the data. Moreover, the difference be-
tween the F1 score of the adaptive and the clustering mechanisms is less than ∼ 5% for
ε = [0.016, 0.032] and ∆t ≥ 300 s, and for ε = [0.064, 0.128] and ∆t ≥ 240 s. From Fig-
ure 4.5, we can further observe that the clustering geo-indistinguishability has lower values
of F1 score in some of these cases.

Lastly, we can observe from Figure 4.5 that for lower values of ∆t and epsilon, the
adaptive mechanism has an F1 score of about 20%. Recalling the meaning of this metric,
this value translates to an overlap between the output path and the ground-truth path
of approximately 20%. Thus, the mechanism discloses less than a quarter of the original
trajectory. While this is advantageous from a privacy perspective, it leads to a severe
degradation of utility as we will now show.
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(b) ε = 0.032
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(c) ε = 0.064
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(d) ε = 0.128

Figure 4.5: Comparison between the F1 score value of the PL, the adaptive geo-
indistinguishability and the clustering geo-indistinguishability for different values of ep-
silon ε, with varying minimum interval between points ∆t, and respective 95% confidence
intervals.
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4.2.3 Utility Evaluation

To evaluate the utility of the mechanisms, we consider a real use-case based on geofenc-
ing. Geofencing is the process of generating virtual geographical perimeters/areas in where
events occur when users enter or leave such perimeters. A location service provider can
create geofences around locations of interest (e.g. PoIs) as shown in Figure 4.6, such that
users traversing the geofence can receive relevant information with respect to the location
(e.g. marketing or discounts from supermarkets).

Therefore, we created geofences to several PoIs from San Francisco. In order to have
diversity of PoIs, we used PoIs from different domains, namely: hotels, museums and
supermarkets. These PoIs were obtained from OpenStreetMap using the OSMnx tool [60],
resulting in a total of 524 PoIs. Figure 4.7 shows the distribution of the PoIs over the
Peninsula of San Francisco. Moreover, the geofences were created under multiple values
of radius r. The used set was defined as r = [100, 200, 300, 500, 1000] m. This set was
chosen according to the guidelines for creating geofences for android developers [62], where
a minimum radius of 100-150 m is recommended.

In our work, when a user enters in the area of a geofence, the application retrieves
this PoI. Thus, we executed the application for the ground-truth user mobility locations to
obtain the ground-truth PoIs. Then, we executed the application for the obfuscated user
mobility locations that result from applying the PL, the adaptive geo-indistinguishability
and the clustering geo-indistinguishability, to obtain the reported PoIs. Finally, in order
to measure how the reported PoIs match the ground-truth PoIs, we used the classification
true/false positive/negative. Generically, this classification is defined as follows:

• A True Positive (TP) is an outcome where the positive class is predicted correctly
by the model;

• A True Negative (TN) is an outcome where the negative class is predicted correctly
by the model;

• A False Positive (FP) is an outcome where the positive class is predicted incorrectly
by the model;

• A False Negative (FN) is an outcome where the negative class is predicted incorrectly
by the model;

To classify the results as TP, TN, FP or FN, we first defined the positive class and the
negative class. Since the objective of the application is to return PoIs, we define returning
a PoI as the positive class and returning None as the negative class. When the reported
PoI is equal to the ground-truth PoI, we have a TP. When both the ground-truth and the
reported do not return any PoI, we have a TN. When the ground-truth returns a PoI or
None and the reported returns a different PoI, we have an FP. Lastly, when the reported
returns None and the ground-truth returned a PoI, we have an FN. This classification is
summarised in Table 4.1.

Based on this classification, we were interested in knowing how many PoIs were correctly
or incorrectly identified. To do so, we used the True Positive Rate (TPR) and the False
Positive Rate (FPR), which are defined as follows:

TPR =
TP

TP + FN

FPR =
FP

FP + TN

(4.1)
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Figure 4.6: Example of geofences centred at the PoIs with a radius r.
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Figure 4.7: Distribution of the selected PoIs in San Francisco. Each blue point represents
a PoI. The represented PoIs are hotels, museums and supermarkets.

39



Chapter 4

Ground-Truth Reported Classification

A given PoI Correct PoI True Positive

None None True Negative

A given PoI, None Incorrect PoI False Positive

A given PoI None False Negative

Table 4.1: Classification True/False Positive/Negative.

Although we used the TPR and FPR, we could have used the True Negative Rate
(TNR) and the False Negative Rate (FNR) because the metrics are complementary. How-
ever, from the point of view of the utility, the TPR is more relevant since it corresponds
to the cases of both the ground-truth and the LPPM returning the same PoI.

Figures 4.8 and 4.9 respectively represent the TPR and the FPR of the three mech-
anisms. Based on the performed analysis between the values of both the TPR and the
FPR for each value of ∆t, ε and geofence radius and the average for the all values of ∆t,
we observed that they have similar behaviours. Therefore, we will present the figures with
the average of both the TPR and the FPR for all values of ∆t, for each ε, and for each
geofence radius.

From Figure 4.8, we can observe that the TPR of all three mechanisms improves for
growing epsilon values. This is expected since higher epsilon values correspond to lower
obfuscation and, therefore, obfuscated locations that are closer to the real ones. This effect
of epsilon fades away with increasing geofence radius, since a larger radius increases the
size of the geofence region and, consequently, benefits the probability of getting the correct
PoI, irrespectively of the level of obfuscation applied.

Regarding the comparison between the mechanisms, we can observe that the adaptive
geo-indistinguishability has the lowest TPR for all values of ε and all values of the geofence
radius. As we observed before, the adaptive mechanism has higher adversary errors, which
means a higher distance between the reported point and the exact user location. Thus,
these results reveal that the adaptive mechanism is improving the privacy level by degrading
the utility of the data. On the other hand, the clustering geo-indistinguishability has the
highest TPR, except for the radius of the geofence 100 m and ε = 0.016. This exception can
be explained because the ε = 0.016 corresponds to an obfuscation radius of approximately
86 m. Thus, as the mechanism creates obfuscation clusters within a radius of 86 m,
the distance between the obfuscated locations and the exact user locations included in
the cluster can be higher than the radius of the geofence and, hence, the mechanism
reports an incorrect PoI. As we mentioned before, when the geofence radius increases,
the difference between the TPR of the clustering geo-indistinguishability and the other
mechanisms decreases. In particular, when the radius of the geofence is 1 km, the TPR
of the three mechanisms is similar for high values of ε, since the increase of the radius of
the geofence, i.e. the increase of the geofence region, benefits the probability of reporting
correct PoIs.

Figure 4.9 shows the FPR of the three mechanisms. Inversely to the TPR, here the FPR
decays with increasing epsilon, since higher epsilon values correspond to less obfuscation
and, therefore, improved FPR. As we can observe, the adaptive mechanism has the highest
value for all geofence radiuses, which means that this mechanism reports more incorrect
PoIs. On the other hand, the PL mechanism and the clustering geo-indistinguishability
report fewer incorrect PoIs, again with our scheme closely following PL. Lastly, as afore-
mentioned, when the radius of the geofence grows, the size of the geofence region increases
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and, consequently, the probability of reporting PoIs is higher. However, this also leads to
a high probability of reporting incorrect PoIs, which explains the increase of the FPR for
larger geofence radius.

Figure 4.8: Comparison between the TPR of the PL, the adaptive geo-indistinguishability
and the clustering geo-indistinguishability for the average of the ∆t values and for different
values of geofence radius and epsilon ε.

Figure 4.9: Comparison between the FPR of the PL, the adaptive geo-indistinguishability
and the clustering geo-indistinguishability for the average of the ∆t values and for different
values of geofence radius and epsilon ε.

4.2.4 Trade-off Between Privacy and Utility Evaluation

According to the performed evaluation of both the privacy and the utility level of the
mechanisms, we can conclude how the mechanisms lead with the trade-off between privacy
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and utility. In comparison with the PL mechanism, the clustering geo-indistinguishability
improves the privacy level for continuous reports of location data (i.e. lower values of ∆t),
with little to no penalty in terms of utility loss (measured by TPR), except for the case of
the combined lowest epsilon and lowest geofence radius explained earlier. The comparison
of our clustering scheme with adaptive geo-indistinguishability shows that the adaptive
mechanism is able to achieve higher privacy levels (i.e. lower F1 scores) for continuous sce-
narios (smaller ∆t values), albeit at a severe cost in terms of utility, as shown in the practical
geofence analysis. Therefore, we can conclude that the clustering geo-indistinguishability
provides a favourable trade-off between privacy and utility for continuous reports.
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Conclusion

Location privacy is an emerging topic of research due to the pervasiveness of Location-
Based Services (LBSs). Regardless of the benefits that these services offer to users, the
shared data are not always and only used for the initial purpose. In order to protect
the users, Location Privacy-Preserving Mechanisms (LPPMs) have been proposed. Our
objective was to develop a mechanism that protects users not only against single reports
but also over time, against continuous reports. Toward this goal, we developed a new
mechanism that is suitable for continuous reports of location data and that improves the
level of privacy for continuous reports, with limited or no loss in terms of utility.

To achieve our goal, we started by studying the state of the art of the existing tech-
niques. Building from this knowledge, we evaluated how an obfuscation LPPM protects
the privacy level of the users and what is the effect of the frequency of updates on lo-
cation privacy. It was possible to assess the effect of the obfuscation level given by the
geo-indistinguishability privacy parameter ε, being that a lower value of ε corresponds to
a higher level of obfuscation. The obtained results allowed us to observe the impact of
the frequency of updates in tracking attacks, even using an LPPM for sporadic scenarios
or for continuous scenarios. In particular, we conclude that a lower frequency of updates
degrades the effectiveness of the tracking attack and, consequently, improves the obtained
privacy level.

The second part of the thesis was focused on the development and evaluation of a
privacy-enhancing mechanism for location privacy. To develop the mechanism, we took into
consideration the geo-temporal correlations, namely the distance between the reported lo-
cations and the frequency of updates. Thus, we created a clustering geo-indistinguishability
mechanism that creates obfuscation clusters for closer locations, such that the mechanism
returns the same obfuscated point for nearby locations. According to the performed analy-
sis, our mechanism improves the privacy level in comparison with the Planar Laplace (PL)
mechanism, with little to no loss in terms of utility. Moreover, although the adaptive geo-
indistinguishability exhibits higher privacy levels, it does so at the cost of an undesirably
high loss of utility, as shown by our analysis of a practical geofence application.

Finally, we can conclude that the objectives of this thesis were achieved. Besides the
accomplishment of the tasks defined in the work plan, additional tasks were performed,
such as the adaptation of an existing tracking attack according to the implemented LPPM
and the evaluation of the utility of LPPMs through a real use-case based on geofencing.
The main contributions of this thesis were the evaluation of the impact of the frequency
of reports on location privacy, already reported in a submitted scientific article, and the
development and evaluation of a new LPPM that protects the users in both the continuous
and the sporadic scenarios while assuring relevant level of data utility.
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5.1 Future Work

As future work, we would like to perform more experiments with other configurations
of the implemented mechanisms, namely, more values of ε and different parameters for
the adaptive geo-indistinguishability and for the clustering geo-indistinguishability. In this
latter, we would like to study the effect of using the radius rp, i.e. the radius of the circular
region centred around the true location x where the obfuscated location z can appear with
a certain probability p, instead of using the radius of obfuscation r. Moreover, we would
like to compare with more LPPMs, such as the work that protects the users’ locations with
differential privacy under temporal correlations by using discretization [19]. Regarding the
attacks, we would like to implement the Kalman filter as an attack to location privacy and
compare its efficiency with the Map-Matching (MM) approach.

Moreover, we would like to develop a new mechanism that dynamically updates the
value of ε based on the velocity of the user and the velocity of reporting. We started by
exploring this idea and it seems a promissing approach to investigate. According to our
idea, we would adapt the obfuscation of the locations based on the correlation between
reports. For instance, since a higher velocity of the user corresponds to sparse locations
and a higher velocity of reporting corresponds to closer locations, we could adapt the
obfuscation level as a function of both the velocity of the user and the velocity of reporting.
Moreover, in order to improve the privacy and utility of the mechanism, we could combine
the new approach with our clustering approach. Thus, we could create obfuscation clusters
for closer locations and update dynamically the value of ε for the remaining locations.
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Appendix A

Work Plan

This appendix describes the work plan for the first and for the second semester, which
is presented in the first and in the second sections, respectively.

A.1 First Semester

According to the work plan proposed for this thesis, the first semester was focused in
studying the state of the art related to location privacy, namely, privacy-enabling mecha-
nisms for LBSs, methods to compromise location privacy and measures/metrics of privacy
and utility. These topics are related to the privacy paradigm, which implies the defini-
tion of a protection mechanism, an attacker model and a measure/metric of privacy. The
study of the state of the art and the analysis of the related works guaranteed the necessary
knowledge for this thesis.

Besides the study of the state of the art, the goals for the first semester were the
selection and the implementation of protection mechanisms and attacks, the evaluation of
the privacy and utility of the mechanisms implemented and the writing of the intermediate
report.

Furthermore, for the evaluation of the privacy and the utility of the implemented mech-
anisms, a real dataset was selected and pre-processed, and a road network was identified
and incorporated as required by the implemented attacks.

Figure A.1 presents the tasks performed during the first semester through a Gantt
chart.

Figure A.1: Gantt chart for the first semester.

A.2 Second Semester

Aside from the continuation of the implementation and evaluation of different protec-
tion mechanisms and attacks started in the first semester, the work plan for the second
semester consisted in three main tasks.
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The first task was the evaluation of the impact of the frequency of updates in the
privacy and utility of attacks and protection mechanisms. As shown in Chapter 3, in the
first semester it was performed an evaluation of that impact for the implemented protection
mechanism and attacks.

The second task consisted in the development of a privacy-enhancing mechanism for
location privacy that is suitable to different frequency of updates and/or to the correlation
between reports.

The third task consisted in the implementation and evaluation of the privacy-enhancing
mechanism taking into consideration the utility and privacy levels achieved.

The last task was writing the final report and a scientific article where the contributions
of this thesis were summarised.

Figure A.2 presents a Gantt chart with the tasks mentioned above and the planned
scheduling made in the first semester.

Figure A.2: Gantt chart for the second semester.

Figure A.3 shows the Gantt chart of the second semester with the revised scheduling.
The main difference between the charts is the duration of the implementation and eval-
uation of the privacy-enhancing mechanism. In fact, the task took more time than the
foreseen because we decided to evaluate the utility of our mechanism in a real use-case, as
explained in Chapter 4.

Figure A.3: Revised Gantt chart for the second semester.
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Estimation of Map-Matching
Parameters

This appendix details the estimation of the MM parameters λy and λz, following the
proposal of the authors in [41]. The parameters are used to compute the transition prob-
ability in the MM technique. This probability depends on both the circuitousness of the
path and the temporal implausibility, which in turn depend on the parameters λy and λz,
respectively.

To estimate λy and λz, we measured the circuitousness (c.f. equation (3.6)) and the
temporal implausibility (c.f. equation (3.7)) for a selected group of trajectories. In the orig-
inal work, the authors observed that about 95% of the considered paths had the value of
temporal implausibility equal to 0. However, since these paths are not relevant to estimate
the parameters, the authors considered only the paths with non-zero temporal implausi-
bility. In our work, we also observed a high number of paths with temporal implausibility
equal to 0 and, consequently, we discarded them. From the remaining obtained values,
we created the histograms for both the circuitousness and the temporal implausibility, as
shown in Figure B.1 and Figure B.2. Then, we calculated the exponential distribution of
each histogram, which is represented with an orange line. The value of λy and λz corre-
spond to the rate parameter of these distributions, which can be estimated as the inverse
of the average of all measured values. Regarding the selection of the trajectories, in the
original work [41] the authors used the paths with duration between 1 and 5 minutes,
resulting in 4828 trajectories with an average length of 2.6 km. In the same way, we used
the trajectories with duration between 1 and 5 minutes that had at least 2 km of travelled
distance, resulting in 6003 trajectories. The estimation of the parameters resulted in the
following values: λy ≈ 0.07 and λz ≈ 0.74.
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Figure B.1: Histogram of the circuitousness of the trajectories between 1 and 5 minutes that
had at least 2 km of travelled distance, where the orange line represents the exponential
distribution.
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Figure B.2: Histogram of the temporal implausibility of the trajectories between 1 and 5
minutes that had at least 2 km of travelled distance, where the orange line represents the
exponential distribution.
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