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Abstract 

Drug discovery aims to identify potential new medicines through a multidisciplinary 

process, including several scientific areas, such as biology, chemistry and pharmacology. 

Nowadays, multiple strategies and methodologies have been developed to discover, test and 

optimise new drugs. However, there is a long process from target identification to an optimal 

marketable molecule. The main purpose of this dissertation is to develop computational 

models able to propose new drug compounds. In order to achieve this goal, the artificial 

neural networks explored and trained to generate new drugs in the form of Simplified 

Molecular-Input Line-Entry System (SMILES). The explored neural networks model were 

Recurrent Neural Network (RNN), Long-Short Term Memory (LSTM), Gated Recurrent Unit 

(GRU) and Bidirectional Long-Short Term Memory (BLSTM). A consistent dataset was 

chosen, and the generated SMILES by the model were syntactically and biochemically 

validated. In order to restrict the generation of SMILES, a technique denominated 

Fragmentation Growing Procedure was used, where made it possible to choose a fragment 

and generate SMILES from that. To analyse the recurrent network that fits the best and the 

respective parameters, some tests were performed, and the network contained in the model 

that reached the best result, 98% of valid SMILES and 93% of unique SMILES, was an LSTM 

with two layers. The technique to restrict the generation was used in the best model and 

reached 99% of valid SMILES and 79% of unique SMILES. 

Keywords 

Drug Discovery, Deep Learning, Recurrent Models, Validation, Fragmentation Growing 

Procedure 

 

 





iii 

 

Resumo 

A descoberta de medicamentos visa identificar potenciais novos medicamentos através de 

um processo multidisciplinar, incluindo várias áreas científicas, como a biologia, a química 

e a farmacologia. Atualmente, múltiplas estratégias e metodologias têm sido desenvolvidas 

para descobrir, testar e otimizar novos medicamentos. No entanto, há um longo processo 

que vai desde a identificação de alvos até uma molécula comercializável. O objetivo principal 

desta dissertação é desenvolver um modelo computacional capaz de propor novos 

compostos. Para atingir este objetivo, foi explorado e treinado um modelo recorrente para 

gerar um novo Simplified molecular-input line-entry system (SMILES). As Artificial Neural 

Network (ANN) estudadas nesta dissertação foram Recurrent Neural Network (RNN), Long-

Short Term Memory (LSTM), Gated Recurrent Unit (GRU) e Bidirectional Long-Short Term 

Memory (BLSTM). Um conjunto de dados consistente foi escolhido e os SMILES gerados pelo 

modelo foram sintática e bioquimicamente validados. Para restringir a geração de SMILES, 

foi utilizada uma técnica denominada Fragmentation Growing Procedure, onde é possível 

escolher um fragmento e gerar SMILES a partir dele. Para analisar a rede recorrente que 

melhor se ajusta e os respetivos parâmetros, foram realizados alguns testes e a rede contida 

no modelo que atingiu o melhor resultado, 98% SMILES válidos e 93% SMILES únicos, foi 

uma LSTM com 2 camadas. A técnica de restrição de geração foi utilizada no melhor modelo 

e atingiu 99% dos SMILES válidos e 79% dos SMILES únicos.  

Palavras-chave 

Drug Discovery, Deep Learning, Modelos Recurrentes, Validação, Fragmentation Growing 

Procedure 
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Chapter 1  

Introduction 

1.1 Context 

Artificial Intelligence (AI) is a reality in all areas of science. Its application brings, as 

main advantages, the process to analyse scientific data in a systematic, precise and 

reproducible way [1].  

Machine Learning (ML) is a sub discipline of AI. In this decade, the most promising 

form of ML used is Deep Learning (DL) [2], which allows ML to support large quantities of 

raw data and discovers the representations necessary for detection or classification [3]. 

There are numerous methods that use ML algorithms, they are used for very distinct 

purposes. Examples of methods used in ongoing works are: Support Vector Machine (SVM), 

Bayes Method, Regression, Random Forests and Neural Network. These methods have been 

adopted in several biomedical applications, such as diagnose, prognosis, virtual screening, 

progress of cancer, regulator research and others contexts [4]. 

Thus, in the field of medicine, multiple works explores the use of DL in cardiology [5], 

ophthalmology [6], radiology [7], pneumology [8], psychiatry [9] and oncology, such as 

lymphoma [10] and breast cancer [11], among other specialities.  

 Moreover, ML have been applied in pharmaceutical area. Modern ML techniques have 

been used to learn Quantitative Structure Activity Relationships (QSAR) and to develop AI 

programs that accurately predict in silico how chemical modifications might influence 

biological behaviour, such as Absorption, Distribution, Metabolism and Excretion (ADME) 

properties [12]. 
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Therefore, DL have been successfully used in drug discovery, as it is possible to 

observe in several projects [13]. Drug discovery aims to identify potential new medicines 

through a multidisciplinary process, including scientific areas, such as biology, chemistry 

and pharmacology [14]. This process is composed of six main steps: target identification, 

library development and chemical synthesis, high-throughput screening, lead optimization, 

clinical trials and drug approval [13].  

In order to discover a new medicine, bioinformatics use different methodologies; each 

of them has distinct goals, inputs, outputs, and are target-oriented or diversity-oriented [15]. 

There are many computational use cases that lay on DL to help in different steps of drug 

discovery process. Some of those cases are the property and activity prediction, drug-target 

interactions, synthesis planning, virtual and reverse screening, low-data drug discovery and, 

finally, de novo drug design [16, 17].  

The de novo drug design approach aims to generate new chemical structures, through 

recurrent models as more common types of neural network chosen. SMILES (Simplified 

Molecular Input Line Entry Specification) are the elected type of compound representation 

[18-20].  

 

1.2 Motivation 

Presently, all over the world, health systems face several challenges. The rising of the 

number of different diseases, commonly in the same person, called multimorbidity, the 

disability due to aging, the epidemiological transition, the higher expectations in health 

services and society, the increasing expenses in health and poor productivity, are some of 

the most pressing ones. The current scenario of economic austerity policies that are 

constraining investment in health systems does not help to identify those problems and 

challenges [3]. 

Drug Discovery is a process that consumes time, labour, money, and, it is very risky. 

In fact, developing a drug usually takes 10-15 years, 1.8 billion US dollars and the success 
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rate of developing a new molecular entity is only 2.01%, on average. The FDA reports that 

the number of drugs approved by itself has been declining since 1995, although, the 

investment in this area has been gradually increasing [21]. The majority of the drug 

candidates fail to become an approved drug in the late steps of clinical trials due to some 

unexpected side effect or toxicity problems. 

Computational drug discovery has the potential to improve efficiency and 

effectiveness of the experimental process of drug discovery [3]. These computational 

techniques allow the reduction of human mistakes, usually made during drug design, the 

reduction of the amount of candidate compound, the reduction of the time needed for testing 

each candidate, the improvement of the optimization and, also, the improvement of the 

recapitulation of disease biology [13]. 

Moreover, new systems and methods are being developed in order to detect toxicity 

of candidate compound at early stages of drug discovery, these strategies combined with in 

vitro and in vivo biological testing can drastically decrease the time and the cost of the process, 

and also improve safety evaluation [13, 22]. 

Finally, these technologies combined with the availability of huge databases of 

chemicals or compounds potentialize the shortening of the time needed for the whole 

process of drug discovery from drug design until the clinical trials [13]. 

 

1.3 Goals 

The main goal of this dissertation is to explore the use of multiple architectures of 

recurrent neural networks to generate new and valid molecules that can be used as drug 

candidates in further studies. Toward this aim SMILES, a linear textual representation of 

molecules, will be used, and the explored models will be inspired on the current state of the 

art for text generation. 

Furthermore, there are secondary aspirations, such as: 

• Define a dataset of SMILES that can be used as a consistent benchmark; 
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• Evaluate multiple recurrent networks and find its optimal parameters. 

• Define a procedure to restrict the generation of SMILES. 

• Define a procedure to syntactically and biochemically validate the generated 

SMILES; 

1.4 Document Structure 

This dissertation is constituted of five chapters. This chapter includes the context, the 

motivation and the goals for this work. The second chapter corresponds to the State of the 

Art and consists in the explanation of the context of this study and other strategies/options 

already created to solve the existing problems. The third chapter corresponds to the 

Methods, where the methodology used to achieve the goals are explained. The fourth chapter 

presents the Results and Discussion of the applied methodology The obtained results for the 

several tests performed are presented and analysed to the proposed and created method. 

Finally, the fifth chapter presents the Conclusions of this work, and also future steps of this 

study 
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Chapter 2  

State of the Art 

In this chapter, it will be defined concepts of AI, ML, DL and Artificial Neural 

Networks (ANN), and it will be clarified how they relate with each other and with drug 

discovery. Moreover, some examples of strategies used nowadays in drug discovery will be 

explained. 

AI, ML and DL are fundamental concepts in this dissertation. As it is possible to 

observe in Figure 1, these three concepts are intimately related, since ML is a sub discipline 

of AI, and DL is a form of ML. 
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2.1 From Artificial Intelligence to Deep Learning 

 

Figure 1 - Relations between AI, ML, DL and ANN concepts 

The term AI was proposed by John McCarthy in 1956, however there were intelligent 

and thinking machines way before that time. The first references about medical AI date to 

the early 1970s [23]. Since then, AI and technology, in general, have been evolving very 

rapidly, allowing the developing of solutions in fields such as industrial production 

processes, logistics, mobility, shopping, personal assistant and digital marketing [24]. AI can 

be defined as an extensive scientific discipline with its roots in philosophy, mathematics and 

computer science, that has the purpose of learning and developing systems that show 

properties of intelligence [3]. 

ML is a sub discipline of AI, where algorithms learn how to predict something from 

associations in datasets, in others words, it is possible to say that ML is the application of 

statistical models to data using computer programs [3]. 

ML is a powerful tool for interpreting biological data. However, DL techniques, a non-

traditional form of ML algorithms, are very popular and more effective ways of reaching 

good results. They are based on models with fewer assumptions about underlying data and 

they can handle more complex data [3]. 
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DL methods allow a machine to learn from large amounts of raw data with the purpose 

of discover how to represent it in order to promote its detection or classification. These 

methods depend on multiple layers of representation of the data with consecutive 

transformations, which highlight the more relevant information and censor irrelevant one. 

The representations of data can assume multiple levels of abstraction [3, 25]. 

DL methods have been responsible for significative advances in ML. Moreover, DL 

can find complex structures in large datasets. It uses a backpropagation algorithm in order 

to show how the machine should change its internal parameters, which are used to compute 

the representation in each layer from the representations in the previous one [25]. 

DL uses ANNs. There are different types of ANN, with different architectures and 

purposes. ANNs are a type of computer model which use the human brain functioning as 

an inspiration. These neural networks are very efficient at solving well defined problems that 

involve pattern recognition and categorisation, while traditional computer systems are 

programmed to develop applications. This property makes neural networks very adaptable 

to solve a wide variety of problems, even problems that traditional computing approaches 

could not solve until now [26, 27]. 

There are many types of ANN architectures, with different purposes and applications. 

Figure 2 displays a complete chart of Neural Networks, where it is possible to highlight 

some, such as Deep Feed Forward (DFF), Recurrent Neural Network (RNN), Long-short 

Term Memory (LSTM) and Convolutional Neural Networks (CNN).  
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Figure 2 - A mostly complete graph of neural networks, obtained from [28] 
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2.1.1 Applications 

DL has been used extensively in a wide range of fields, especially through the 

utilization of ANNs. 

 CNNs have provided major breakthroughs in image classification, since they were 

created with the purpose of extract information from raw signals. For example, they can be 

used in face recognition, scene labelling, image classification, action recognition, human pose 

estimation and document analysis [29]. A more specific example it is radiology, since it can 

interpret the images taken from the human body [30]. 

RNNs and its variants were created to deal with time series event. For example, they 

can be used in text summarization [31], translation [32], speech recognition [33] and text 

recommendations [34] and automatic music composition [35]. 

 

2.2 Drug Discovery 

Drug discovery is a multidimensional problem that involves the research of different 

properties of natural and synthetic compounds, such as safety, pharmacokinetics and 

efficacy, during drug candidate selection. AI, ML and DL, with the evolution of technology 

started to become part of this process [3]. 

The traditional drug discovery consumes a lot of resources, and most of the drug 

candidates fail to become an approved drug in late steps of clinical trials, due to some 

unexpected side effect or toxicity problem. Computational drug discovery has the potential 

to improve efficiency and effectiveness of the process, through aspects, such as reduction of 

human mistakes, reduction in the amount of candidate compound, reduction of the time 

needed for testing, detection of candidate compound toxicity in early stages, improving 

safety evaluation and, finally, decreasing the time and the cost of the all process [3, 13, 22]. 

ANN started to be used in molecular informatics and drug discovery, approximately, 

two decades ago, and since then the use of DL in drug discovery evolved significantly. 
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Nowadays, the interest in adapting advanced ANN architectures for medical and 

pharmaceutical research was renewed, and every day appears a different and new strategy 

[36]. 

 

2.2.1 Steps of Drug Discovery 

The process of drug discovery, normally, is triggered by the appearing of a disease or 

a clinical condition that does not have a therapy available in the market. Under the necessity 

to find a new drug, the drug discovery process starts, the steps of this process are enumerated 

below [13]. 

1. Target Identification 

2. Target Validation 

3. Lead Identification 

4. Lead Optimization 

5. Preclinical Development 

6. Clinical trials 

7. Registration 

In Portugal, the registration of the new drug into the market needs the approval of 

INFARMED (“Autoridade Nacional do Medicamento e Produtos de Saúde”, created by Decreto-Lei 

n.º 495/99 de 18, de Novembro [37] and updated by Decreto-Lei n.º 269/2007, de 26 de Julho [38]) 

(and, also, the approval of European Medicines Agency (EMA) [39]. In the United States of 

America (USA), the agency that regulates the entry of drug in the market is called Food and 

Drug Administration (FDA) [40]. 

The drug discovery process is slow and expensive. For those reasons, the investment 

in computational methods is risen and covers the first four steps of this process, target 

identification, target validation, lead identification and lead optimization. 
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2.2.2 Computational Drug discovery 

Computational drug discovery evolved significantly in the last decade, some use cases 

examples will be explained in this subsection, such as property and activity prediction, drug-

target interactions, synthesis planning, virtual and reverse screening, de novo drug design, 

and low-data drug discovery. 

 

Property and Activity Prediction 

In drug discovery, it is essential that the candidate compounds have a set of criteria 

and properties in order to succeed in clinical trials. Therefore, compound optimization is a 

multidimensional challenge, since it is crucial to optimize or exclude compounds that could 

fail in following phases of the drug discovery process because of its properties [16].  

There were already methods that use ML algorithms to predict properties, such as 

Support Vector Machines (SVM) [16, 41], Random Forests (RF) [42, 43] and Bayesian learning 

[44]. However, DL algorithms achieved better results than the previous algorithms, since 

Deep Neural Networks (DNN) can handle a huge amount of descriptors without the need 

of feature selection, use dropout to avoid overfitting and have a set of hyperparameters that 

can be used to adjust the model to the problem in hands [17]. The success of these methods 

helps the drug repositioning strategy. This strategy consists in identifying new usage for the 

existing drugs on the market [45]. 

Over time, there were some DL methods to predict activity and properties. When the 

compounds were represented for its molecular descriptors, the easier way to achieve the 

purpose was to use a fully connected DNN [46]. Years later, two distinct methods emerged, 

the first one used a variant of RNN, called UGRNN, which first converted molecular 

structures into vectors of the same length as the molecular representation, and then used 

them to fully connect a neural network [47]. The second method was similar to the UGRNN, 

since it also used neural networks to generate a vector that would be used to train the 

network. That second method was called graph convolution model [17, 48]. 
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Until now, the molecules were represented by its descriptors, but the opportunity to 

represent the molecule by a SMILES string appeared, and it became the input necessary to 

build a predictive model, using LSTMs, without the need to generate molecular descriptors. 

Furthermore, images of 2D drawings of molecules were used with CNNs and achieved great 

results comparing with the other models. This possibility of feeding networks with the direct 

structure of the molecules and without the need of descriptors was a revolutionary and  

essential feature that distinguish DL from the other ML methods [17]. 

 

Drug-Target Interactions 

The identification of drug-target interactions is a massive part of the drug discovery 

process. The drug-target interactions are usually classified in a binary way, 0 or 1, whether 

there is or not an interaction between them. However, protein-ligand interactions assume a 

continuum of binding strength values, called binding affinity. The knowledge of affinity data 

is increasing in databases. Consequently, it allows the use of advanced learning techniques 

such as DL architectures in the prediction of binding affinities in drug-target pairs [49]. 

Drug-target interactions were, until recently, approached as a binary classification 

problem. However, this approach neglected important information about protein-ligand 

interactions, since binding affinity provides information on the strength of the interactions, 

and it can be expressed in measures such as dissociation constant (Kd), inhibition constant 

(ki) and the half maximal inhibitory concentration (IC50) [49].  

Nowadays, the use of this type of characterization using the binding affinity score, 

instead of the binary classification, provides datasets more realistic and predicts more values 

for the strength of the interaction between drug-target pairs [49]. Some works use CNNs to 

score the protein-ligand interaction [17, 50]. 
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Synthesis Planning 

 The organic synthesis phase is one of the most critical step in drug discovery process, 

since it is necessary to synthetize the new molecules in order to proceed the compound 

optimization path and to identify molecules with improved properties. Since this phase is 

really important, its planning is essential for success [16, 51, 52].  

 Some computational approaches have been implemented to help the synthesis 

planning. Three main aspects can be highlight: 1) prediction of the result of a reaction with 

a given set of reagents, 2) prediction of the yield of a chemical reaction, 3) as well as 

retrosynthetic planning [16, 53, 54]. 

Synthesis planning may be divided in forward synthesis and retro synthesis.  

Two main approaches for forward synthesis predictions are: 1) the combination of quantum 

chemical descriptors with manual encoded rules and ML to predict a reaction and its 

products, and 2) training DNN with millions of reactions[55, 56]. One approach used for 

retrosynthetic analysis uses RNNs fed with reactants and products in form of SMILES string 

in an encoder-decoder architecture [16, 57]. 

 

Virtual and Reverse Screening 

Virtual Screening has emerged, in the past decades, to identify interactions between 

components, as drugs and their targets. Find these interactions is crucial for drug discovery 

process. However, experimental approaches to achieve it are ineffective due to feasibility 

problems. They are labour intensive, costly and time consuming [13]. Despite of recent 

advances in combinatorial chemistry and high-throughput screening, which allowed 

chemists to synthesize large amounts of compounds, just a small percentage could be 

manufactured. Virtual screening uses several computational techniques that allow chemists 

and bioinformatics to reduce a huge virtual library to a more manageable size. Then, it will 

be possible to identify which structure are most likely to bind to a drug target, typically a 

protein, receptor or enzyme [58]. 
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It is possible to say that virtual screening has emerged as a reliable, inexpensive 

method for identifying candidate compounds, and, because of that, it has a positive impact 

on the drug discovery process [59]. 

Conventional virtual screening consists of a group of compounds that are screened 

against a chosen specific target, and the interactions are identified as its candidate. On the 

other hand, there is, also, the reverse virtual screening method that works the other way 

around, since the goal is to identify a candidate target, so a compound is sought against 

multiple proteins [13]. 

 

Low-data Drug Discovery  

DNNs have been demonstrated to be crucial in the field of prediction, when inferring 

the properties and activities of small-molecule compounds. Nevertheless, these techniques 

require a large amount of training data and this aspect is a limitation of these techniques. 

One-shot learning associated with DL, mainly, with ANN, can reach good predictions, using 

small amounts of training data, unlike most of the ML techniques used. Thus, one-shot 

learning can use a small dataset, or even just one image or sample in order to generate very 

accurate predictions [60]. 

Some successful works done with limited data available as dataset used LSTM 

networks, but a recent type of architecture has been used in DL too, called memory 

augmented neural networks [17, 61]. 

 

De novo Drug Design  

Approximately 25 years ago, the development of the de novo design with the aim to 

generate new compound without reference compounds started to show results. Since then, 

numerous approaches arose [16, 62, 63].  
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One of the first method used was Variational AutoEncoder (VAE). Its purpose was to 

generate chemical structures. This method was used as a molecular descriptor generator and 

was coupled with a Generative Adversarial Network (GAN), which is a special neural 

network architecture [64, 65].  

Another promising method developed used RNNs to generate new compounds. This 

method relies on a large dataset constituted of SMILES strings and generates new valid 

SMILES strings that were not in the used dataset for the training [19]. RNN can be classified 

as a generative model for molecule structures, since this type of ANN learns the probability 

of the distribution of characters in SMILES strings to generate new valid ones. This method 

allied with other techniques generate improved results. Two of the techniques used were 

transfer learning and reinforcement learning. The first one consists in training the RNN with 

a 1st general dataset, and then training with a 2nd target-specific dataset. The second 

technique uses score functions to evaluate the generated SMILES and achieve SMILES with 

chosen properties [17, 66]. 

 

2.2.3 Related Works 

 In this subsection, it will be shown three related studies which share goals and/or 

methods with this dissertation. The goals of this dissertation (already exhibited in the 

previous chapter), are included in the de novo drug design use case explained before, more 

precisely, in the recurrent models that aim to generate new chemical structures. 

 In the work “Drug Analogs from Fragment Based Long Short-Term Memory 

Generative Neural Networks” [20], the authors used LSTM generative neural networks with 

SMILES of drug-like molecules from four sources, such as ChEMBL, DrugBank. Fragments 

from commercial catalogues and FDB17. They created 6 different primary datasets with 

different features to test and used transfer learning with 10 different drugs that cover a broad 

range of size and complexity. These 6 datasets and 10 drugs were combined for the training, 

which means that every dataset was trained with each selected drug. However, the 

hyperparameters of the LSTM and its layers were kept in all of the tests. The model chosen 

is constituted by three LSTM layers, a dropout layer and a time distributed layer. The 
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dropout rate was 0.2, the activation function was softmax and the optimizer was Adagrad. 

For the primary dataset, the number of epochs was 50, but the batch-size was dependent on 

the dataset, 16, 32 or 64. For the transfer learning the number of epochs was 20 and batch size 

4. After the training and prediction, the valid SMILES were retained, the duplicates were 

removed, and SMILES, with undesirable functional groups, were also removed. The last step 

was to select high similarity structure analogs and conclude how the primary dataset 

influences this similarity, depending on the selected drug. This implementation was done 

using Python, Keras, TensorFlow, Numpy and RDKit [20]. 

 The second related work was “Generating Focussed Molecule Libraries for Drug 

Discovery with Recurrent Neural Networks” [19]. This work used LSTM to generate models 

for molecular structures, allied to transfer learning in order to restrict the generated SMILES. 

To encode the SMILES, the authors used one-hot encoding, and the prediction was done 

symbol by symbol. The end of line (EOL) symbol represents the end of one SMILES 

generated. As main dataset, they used 1.4 million canonical SMILES taken from ChEMBL 

The LSTM model trained had three stacked LSTM layers, each one followed by a dropout 

layer, with a dropout ratio of 0.2, a batch-size of 128 and Adam as optimizer. They used a 

standard target prediction to verify whether the generated molecules were active on the 

desired targets. They chose three different targets and the tests with transfer learning were 

made with them. The percentage of generated SMILES was 97.7%, according to CDK toolkit, 

SMILES duplicated, or part of the training dataset was removed. After these steps, the 

authors checked whether the molecules generated could be considered as valid starting 

points to drug discovery process, using internal AstraZeneca filters, and the percentage 

obtained was 75%. Thus, they conclude that the implemented model could generate a huge 

number of SMILES with similar physico-chemical properties to the training molecules and 

that transfer learning enables the creation of new molecules with the desired activity. To 

implement this work they used tools as Keras, Scikit-Learn and XG Boost [19].  

 The third chosen was “Generative Recurrent Networks for De Novo Drug Design” 

[18]. This work aimed to predict SMILES for specific molecular targets. The authors used 

LSTM neural networks and their chosen compound representation notation was SMILES. 

They used transfer learning in order to restrict the generation of the compounds and also a 

fragment-based strategy. The main dataset used was constituted by 541,555 SMILEs taken 
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from ChEBML22; and, for the transfer leaning, they used three different datasets of varying 

sizes. The pre-processing of the dataset consisted in padding, mapping and one-hot 

encoding. The trained LSTM had 2 layers and a dropout rate was 0.3. Softmax was used as 

activation function, and the number of epochs for the main dataset were 22, and for the 

transfer learning was set to 12. The generated SMILES were validated with RDKit, and, when 

the softmax temperature were 0.5, they obtained 98% of valid SMILES. The final step 

consisted in a fragment-based strategy, in this case benzamidine, as a start point of the 

prediction of each SMILES, 97% of the generated SMILES were valid. 
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Chapter 3  

Methods 

This chapter explains the methods and methodologies used in this thesis, from the 

dataset until the validation process. Figure 3 summarizes the relationship between each 

component of the methodology chosen and those are explained in the following sections. 

The first section describes the dataset used to train the models implemented and better 

explains the definition of SMILES. Furthermore, some examples are given in order to help 

the reader to understand the content of the dataset. The second section identifies and justifies 

the tools used to achieve the goals at stake. The third section describes the four types of 

ANNs that were implemented and analysed. 

These first three sections prepare the reader for the fourth section, which contains all 

the methodology and strategy used in the created model. The fifth section explains the 

definitions of the parameters of recurrent networks architectures that were used and tested 

in this work. The sixth and last section is about validation. In fact, one of the goals of this 

work is to be able to validate the generated SMILES by the model explained in this chapter. 
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Figure 3 - Scheme of the proposed methodology 

 

3.1 Dataset 

 

Figure 4 - Dataset component 

The dataset (Figure 4) used to train the model implemented was obtained from 

PubChem. PubChem is an open chemistry database from the National Institutes of Health 

(NIH) launched in 2004. This database allows the users to upload their scientific data, which 

allows that others researcher use it; for that reason, it became an essential resource for 

scientists, students and the general public. PubChem is mostly constituted by small 

molecules, but also by larger ones such as nucleotides, lipids, carbohydrates and chemically-

modified macromolecules [67]. Table 1 contains the types and quantity of data existing in 
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PubChem. The set of data with 481,194 canonical SMILES, used as dataset in this work, was 

taken from the almost 96M of compound in SMILES notation from this database. 

In the tests, this dataset was divided into two sub-datasets, since the training of the 

networks is done in two steps. First the network is trained with the sub-dataset 1, and then 

with the sub-dataset 2. 

Table 1 - Available public data in PubChem, data taken from [68] 

Data Collection Quantity 

Compounds 95,689,405 

Substances 234,675,576 

BioAssays 1,340,530 

Bioactivities 265,364,936 

Gene Targets 58,029 

Protein Targets 17,847 

Taxonomy Targets 3,746 

Literature 29772917 

Patents 3142716 

 

Simplified Molecular Input Line Entry Specification (SMILES) is a line notation for 

entering and representing molecules and reactions, as the name suggested. This notation is 

a simple way of representing a compound, one of the main advantages to choose SMILES as 
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input and output of the model. Table 2 shows some typical examples of compounds with its 

respective SMILES string [69]. These examples have the purpose to familiarize the reader 

with this notation, but it is important to clarify that a compound can be written, in this 

notation, in very different ways. However, there are a standard way of writing SMILES, 

designated as canonical SMILES. 

 

Table 2 - Examples of SMILES of some compounds [44] 

Compound name SMILES Structure 

Ethane CC 
 

Carbon dioxide O=C=O 
 

Hydrogen cyanide C#N 
 

Triethylamine CCN(CC)CC 
 

Acetic acid CC(=O)O 
 

Cyclohexane C1CCCCC1 
 

Benzene c1ccccc1 

 

Hydronium ion [OH3+] 
 

Deuterium oxide [2H]O[2H] 
 

Uranium-235 [235U] 
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3.2 Tools  

The model and the validation tests were all written in the same programming 

language, Python. This is a simple language with multiple free libraries available, that can 

be crucial to the goal of this dissertation.  

There were five libraries used in the model implementation: NumPy, Keras, 

TensorFlow MolVS and PubChemPy. NumPy is the fundamental package for scientific 

computing with Python [70], this was used to build and shape the input and output matrices. 

The second library used was Keras. It is a high-level neural networks API that can run on 

top of TensorFlow, CNTK, or Theano. It was developed in Python with the goal of allowing 

fast experimentation [71]. The third library was TensorFlow that is an open source library 

for high performance numerical computation [72]. The fourth library, MolVS was used to 

validate the generated SMILES by the model, its function will be explained in section 3.5. 

Finally, the fifth library, PubChemPy was used to analyse the SMILES, since this library 

allows the user to search for compounds in the PubChem database. 

 There are many options of libraries to build DL model, but the choice was Keras, 

because: 1) previous and similar works used this library, 2) the internet is full of examples 

using Keras, and 3) documentation is really complete and useful. The reasons to choose 

TensorFlow were similar to Keras. 

All code was written in Sublime text 3 and was executed in the command line of a 

Windows and an Ubuntu operating system. 

 

3.3 Recurrent Neural Networks Architectures 

This section explains how the four types of variations of RNN used in this dissertation 

work and highlights the major differences between them. The ANNs will be presented in the 

following order, firstly simple RNN, then LSTM, GRU and finally, BLSTM. 
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3.3.1 Simple Recurrent Neural Networks (RNN) 

 A simple RNN is a type of ANN where the output from the previous step are fed into 

the current step as an input. In cases that the purpose is to predict the next element of a 

sentence, it is essential to know which was the previous word. RNNs were created to solve 

issues in this field, and a hidden layer is the most important feature of an RNN (Figure 5), 

because it is this component that allows the network to keep some information about a 

sequence [73]. 

 

Figure 5 - Most important feature of an RNN – Hidden Layer, based on [74] 

 

 This type of ANN has a “memory” since it remembers all information about the 

weights that were already calculated. The same parameters are used for each input as it 

completes the same assignment on all the inputs or hidden layers to produce the output. This 

strategy reduces the complexity of parameters, in contrary to other types of ANNs [75]. In 

more detail, in other ANNs, each layer is independent and has its own set of weights and 

biases. Each layer does not memorize the previous outputs. However, RNNs using the same 

parameter in all of the inputs join together all of the hidden layers into a single recurrent 

layer, as it is shown in Figure 6 [68]. 

 

Figure 6 - An unrolled RNN, obtained from [76] 
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 There are three formulas that make this process possible, the first one has as its own 

purpose to calculate the current state, the second one allows the application of the activation 

function (tanh), and the third formula is to calculate the output. The three formulas and its 

variables are shown in Figure 7 [77]. 

 

Figure 7 - RNN formulas, obtained from [74] 

 

3.3.2 Long-Short Term Memory (LSTM) 

An LSTM is an ANN classified as a type of an RNN. LSTM solves the main problems 

of RNNs, namely the failure to derive context from time steps, which are much far behind. 

LSTM networks structure remains the same as in RNN, whereas the repeating module does 

more operations, such as: forget gate operation, input gate operation and output gate 

operation. A simple LSTM cell consists of 3 gates that are represented in Figure 8 [77, 78]. 

 

Figure 8 - LSTM cells connected to each other, obtained from [79] 
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An LSTM structure finds its key in the cell state, the horizontal line running through 

the top of the cell, shown in Figure 9. The cell works like a conveyor belt that runs through 

the entire chain. It is easy to keep the information unchanged, although the LSTM can 

remove or add information to the cell state. These changes are regulated by structures called 

gates, that are composed of a sigmoid neural net layer and a pointwise multiplication 

operation. Each sigmoid layer outputs a number between 0 and 1, where 0 means that no 

information is let through, and 1 means that everything will be let through [77, 78].  

 

Figure 9 - LSTM core line, obtained from [80] 

 

The first step, in the flow of information in an LSTM, is to decide which information 

will be forgotten. This decision called “forget gate layer”, is made by a sigmoid layer This 

gate and its calculation are represented in Figure 10 [77, 78]. 

 

Figure 10 - Forget gate layer, obtained from [80] 
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The second step is to decide what new information will be stored in the cell state. To 

do that, first a sigmoid layer called “input gate layer” decides which values of the 

information will be updated. Secondly, a tanh layer creates a vector of new candidate values, 

that could be added to the state. This gate and its calculation are represented in Figure 11 

[77, 78]. 

 

Figure 11 - Input gate layer, obtained from [80] 

 

The third step consists in the update of the old cell into the new cell state. In order to 

update it, it will be necessary to combine the two values before (it and 𝐶̅t) to create an update 

to the state. This update is represented in Figure 12 [77, 78]. 

 

Figure 12 - Update of the cell state, obtained from [80] 
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Finally, the output must be decided based on the cell state. First, a sigmoid layer called 

output gate layer decides what parts of the cell state will be outputted. Secondly, the cell 

state will be put through a tanh layer to push the values to be between -1 and 1, and then 

multiply it by the output of the sigmoid gate. Figure 13 represents the gate and its 

calculations [77, 78]. 

 

Figure 13 - Output gate layer, obtained from [80] 

 

3.3.3 Gated Recurrent Unit (GRU) 

 GRU is one variant of LSTM. This ANN keeps the resisting vanishing gradient 

properties of LSTM, but internally it is faster and simpler than an LSTM. 

 LSTM and GRU have two main differences. 1) LSTM has 3 gates input, output and 

forget gate, as it was explained before, and GRU has only two gates, an update z and a reset 

gate r. 2) GRU does not have a persistent cell state distinct from the hidden state, as in LSTM. 

The update gate z determines how much of memory must be kept, and the reset input r 

decides how to combine the new input with the previous value. Figure 14 represents a GRU 

cell and its formulas [73]. 
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Figure 14 - GRU gating mechanism formulas, obtained from [81] 

 

3.3.4 Bidirectional Long-Short Term Memory (BLSTM) 

Unidirectional LSTM or, simply, LSTM just preserves information of the past, because 

its inputs are only from the past and fed into the normal time order. However, bidirectional 

LSTM uses two hidden states combined to run the inputs in both directions; forward and 

backwards (Figure 15). This feature allows the network to save the data from the next inputs, 

which means that at any point in time there are information of the previous and the following 

steps. In simple words, BLSTM is an LSTM that can access to information from the past and 

from the future, and combine them to calculate the weights just like an LSTM [82]. 

 

Figure 15 - BLSTM, obtained from [83] 
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3.4 Parameters of Recurrent Architectures 

The RNNs architecture used in this work have a group of hyperparameters that can be 

changed and adapted to the purpose of the work in hands. 

In this work, some of the parameters were tested in order to choose the best value for 

each parameter and to reach the best possible result. The parameters in test were:  

• Number of epochs for the sub-dataset 1; 

• Number of epochs for the sub-dataset 2; 

• Batch size for the sub-dataset 1; 

• Batch size for the sub-dataset 2; 

• Optimizer; 

• Dropout; 

• Softmax temperature; 

• Number of SMILES in the sub-dataset 1; 

• Number of SMILES in the sub-dataset 2; 

• Number of layers 

The first and second parameters were the number of epochs for the training of each 

sub-dataset. An epoch is when an entire dataset is passed through the neural network once, 

in another words is an iteration on a dataset [84].  

The third and fourth parameters were the batch-size used to train each sub-dataset. As 

it was explained before, an epoch is when an entire dataset is passed through the neural 

network once, but it is not possible to pass the entire dataset into the network at once, so the 

dataset is divided into number of batches or parts. 

The fifth parameter was the optimizer, which has the function of shaping and 

moulding the model into its most accurate form by tampering with the weights. In these 

tests, there were tested the following optimizers, available in Keras [75]: 

• Adam; 

• Stochastic gradient descent (SGD); 

• RMSprop; 

• Adagrad; 

• Adadelta; 

• Adamax; 

• Nesterov Adam (Nadam). 
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The sixth parameter was dropout, which is a technique to reduce overfitting in neural 

networks by preventing complex co-adaptations on training data [85]. Basically, a percentage 

of units (both hidden and visible) in a network are ignored during the training phase. This 

choice is random [86]. For example, if the dropout value is 0.3, it means that 30% of the units 

are going to be ignored. Figure 16 shows an example of a network without dropout (A) and 

a network with dropout (B). 

 

Figure 16 - Dropout example 

 

The seventh parameter was softmax temperature. Softmax is an activation function. 

Activation functions introduce non-linear properties to the networks and their main purpose 

is to convert the input signal of a networks’ node to the output signal. In Keras there are 

some distinct activation functions but softmax is the only one that produced results for the 

models in test [87]. Softmax function normalizes the candidates at each iteration of the 

network based on their exponential values by ensuring that the outputs of the network are 

all between 0 and 1 at every timestep. 

Temperature is a hyperparameter of neural networks used to control the randomness 

of predictions by scaling the logits before applying softmax. The following formula shows 

the calculations done by softmax, where q is the probability vector, T is temperature and z is 

the class probabilities with logit produced by the network. 
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 The eighth parameter used in the tests is not a hyperparameter. However, the 

number of SMILES in the training sub-dataset is an important aspect that influences the 

training and consequently the results obtained. 

 Finally, the number of layers in each model, that is not a hyperparameter too. It is a 

situation that had to be taken into consideration. Despite the fact that the 8 models chosen 

were already using 1 and 2 layers, in one point of the test there was the need of trying another 

number of layers. 

 

3.5 Methodology 

 

Figure 17 - SMILES generator component 

 

 The methodology used to generate SMILES can be divided into three main parts: 

encoding data, the training model and the output generation. The first two parts are done 
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twice, one for each sub-dataset. Furthermore, there are a secondary element integrated in the 

output generation step, which also allows choosing features for the SMILES generation. A 

scheme of this methodology is shown in the SMILES generator component in Figure 17. 

 

Encoding Data 

Firstly, the program reads the sub-dataset, then the encoding data starts. This 

segment of the SMILES generation process has three primary steps: mapping symbols, 

padding and one-hot encoding. 

 Mapping symbols rely on a dictionary that contains all of the possible characters 

included in SMILES. Figure 18 shows this dictionary constituted of atoms, special characters 

and padding characters, which will be explained in detail. Each SMILES existing in the 

dataset is read and saved in a string format, and at that point each different atom or special 

character is tokenized into a char type. For example, in Figure 19 it is possible to observe that 

the SMILES presented was decomposed into atoms and special character, carbon 

represented by a “C” is an atom, chlorine represented by “Cl” is another atom, and a 

parenthesis, represented by “(“ is a special character. 

 

Figure 18 - Dictionary of existing characters 
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Figure 19 - Mapping SMILES 

 

The second step is padding the SMILES, for that it is necessary to count the length of 

each SMILES and keep the length of the longest one. For example, as shown in Figure 20,-a 

the longest size is 9, then, character “G”, meaning “go” is added at the start of each SMILES, 

and character “E” is added to the end, meaning “end” (Figure 20 - B). After adding these two 

letters, obviously, the length of the longest string increases from 9 to 11. At last, every 

SMILES in the dataset is normalized. To achieve this, it is needed to add “A”s after the “E”, 

so that all the SMILES can have the same size. In the example, it is observed that the SMILES 

“CC”, in step B, just has as size 4 and need to reach 11, so 7 “A”s were added. 

 

Figure 20 - Padding SMILES. A – Count the length of SMILES. B – Add “G” and “E”. C – Normalize the 

length and padding with character “A” 

 

The third step is one-hot encoding. In this step, each character in each SMILES will be 

transformed into a one-hot encoded array. For example, in Figure 21, the SMILES “CF(Cl)C” 

has as its first character the “G”, so it is necessary to search for “G” in the dictionary, keep 

its position and then generate an array with zeros, and in the position saved will be a “1”. 

The same process is to be done for all the characters of the SMILES. At the end, there is an 

array with all the characters encoded, ready to use as training set to the networks. 
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Figure 21 - One-hot encoding 

 

Training Models 

After these three steps of the encoding data part, an array is ready to feed the models. 

There are 8 models used in this dissertation, constituted by 4 ANNs: RNN, LSTM, GRU and 

BLSTM. Each of them was used with 1 and 2 layers, as it is possible to observe in Figure 22.  
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Figure 22 - Models trained 

 

The models are built with the tool Keras, where the layers are already implemented, 

and it is only necessary to choose some parameters or choose the default values. For example, 

Figure 23 shows the layers existing in the model using LSTM with 2 layers, and Figure 24 

shows one simple implementation of that model. In this example, there are 2 LSTM layers 

and one Dense layer. Dense layer is a linear operation which every input is connected to 

every output by a weight [88]. The other models are implemented in the same way, it is just 

necessary to choose the number of layers, 1 or 2 and the type of ANN. 

 

Figure 23 - Model using LSTM with 2 layers 

 



Methods 

 

37 

 

 

Figure 24 - Example of the code of the implementation of the model in Figure 23 with Keras 

 

Output Generation 

After the training done by the networks in the chosen model, it is necessary to choose 

the strategy to predict the SMILES. In this dissertation, the strategy chosen was to predict 

symbol by symbol, which means that, in each iteration, a symbol is predicted depend on 

the previously predicted symbol. Figure 25 shows an example of this process. 

 

Figure 25 - Prediction symbol by symbol 

 

Fragmentation Growing Procedure 

 The methodology explained already does not use an oriented generation of SMILES.  

However, the fragmentation growing procedure adds this feature to the methodology. The 
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procedure consists in choosing a compound and make it part of all the SMILES generated in 

that run. For example, in Figure 26 the compound chosen to be the fragment was 3-

Methylpyrazole. SMILES A and B are two examples of generated SMILES using this 

fragment. In that case, the fragment is at the beginning of the generated SMILES, but, 

depending on the fragments and its features, it could be in a different position. 

 

Figure 26 - Fragmentation growing procedure 

 

3.6 Validation 

 

Figure 27 - Validation component 

 

The SMILES generated by the model proposed had to be syntactically and 

biochemically validated (Figure 27), in order to evaluate the model, and study the set of ideal 

parameters, which generate the major percentage of valid possible SMILES. To achieve this 

goal, a tool named MolVS was chosen. This tool, written in Python, provides very convenient 

functionalities for molecular standardization and validation. MolVS was released under the 

MIT License, but it is allowed for commercial use, modifications, distribution, sublicensing 
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and private use. Furthermore, MolVS is built using the RDKit chemical framework [89], 

which is an open source toolkit for cheminformatics with a huge set of functions in this field 

[90]. 

In order to use this tool, it was necessary to install it, but also Python. It is simple to 

use tool, and it is well documented. In generated SMILES validation process, it was just 

necessary to use a function called “validate_smiles()”, as observed Figure 28 shows. In the 

examples shown, this tool worked, first with benzene, evaluating it as a valid SMILE, and 

then, secondly evaluating “CCC1” as the invalid SMILES that it is. 

   

Figure 28 - Use of MolVS to validate the SMILES 

 

According to the chosen tool, a SMILES is identified as invalid when [91]: 

• RDKit failed to parse the input format; 

• The molecule has no atoms; 

• 1,2-dichloroethane is present; 

• Certain fragments are present; 

• The system it is not overall neutral; 

• The molecule contains isotopes. 

To understand these set of rules some tests were made with valid and invalid SMILES 

with different types of errors. The dataset chosen, and described in section 3.1, was validated 

with this tool. All the SMILES followed this procedure, all were tested for validation.  
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Chapter 4  

Results and Discussion 

This chapter contains the results obtained from the tests done with the methodology 

implemented in this thesis, and their discussion.  

The main purpose of these tests was to evaluate the set of parameters that reaches 

the higher ratio of valid SMILES. In each set of tests, only one parameter evaluated, therefore 

it was possible to obtain the ideal value for each parameter selected. 

The tests are divided into four phases, since it was possible to, gradually, exclude the 

least efficient models. In other words, the tests started with 8 models and ended up with just 

the best model with the best parameters. 

Furthermore, after the best model was selected, it was possible to test the 

fragmentation growing procedure. 

 

4.1 Phase 1 

As it was explained in the previous chapter, there were 8 models in test, which used 

4 different artificial neural networks, RNN, LSTM, GRU and Bidirectional, as it is presented 

in Figure 29, each model were attributed an ID. Each type was implemented with 1 and 2 

layers. 
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Figure 29 - Models in test – Phase 1 

Fi 

 

These 8 models were tested with a set of initial parameters and then the set of tests 

done to choose the ideal value for the parameter number of epochs for the sub-dataset 1. 

 

4.1.1 Initial Parameters  

To start the tests, it was necessary to choose a value for each parameter applied, that 

choices were done taking into consideration some of related works [18-20], as discussed in 

chapter 2.  

The initial parameters chosen were: 

• Number of epochs for the sub-dataset 1: 22; 

• Number of epochs for the sub-dataset 2: 15; 

• Batch-size for the sub-dataset 1: 256; 

• Batch-size for the sub-dataset 2: 16; 

• Optimizer: Adam; 
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• Dropout: 0.3; 

• Softmax temperature: 1; 

• Number of SMILES in the sub-dataset 1: 100,000; 

• Number of SMILES in the sub-dataset 2: 100,000. 

This first test was done with this set of parameters in order to have an initial idea of 

which were the results achieved by each of the 8 models studied. 

 Table 3 contains the percentage of valid and unique SMILES that were generated 

with the 8 different models in test. The “valid” SMILES are the SMILES that passed through 

the validation process (See more details in Section 3.6), while the “unique” SMILES are the 

generated SMILES that were not repeated. For example, for the model RNN – 1 Layer, there 

were generated 10,000 SMILES, 1.55% were valid and 1.53% were unique. The results are all 

expressed in percentage, although all the tests performed in this study generated 10,000 

SMILES.  

Analysing Table 3, it is possible to observe that the models 1 and 2 reached low 

results, such as 1.55% and 2.50% of valid SMILES, and 1.53% and 2.23% of unique SMILES, 

respectively. The models 3 and 4 reached percentages of valid SMILES of 60.99% and 71.03%, 

and 60.98% and 71.02% of unique SMILES, respectively. Similarly, the models 5 and 6 

reached values such as 60.79% and 67.75% of valid SMILES, and 60.79% and 67.74% of 

unique SMILES, respectively. Finally, the models, 7 and 8 reached results of 73.97% and 

1.54% of valid SMILES, and 0.19% and 0.04% of unique SMILES, respectively. 

Considering Table 3 and Figure 30, it was possible to understand that the models 

tested, except model 7 and 8, have similar percentages of valid SMILES and unique SMILES; 

which means that there were a reduced number of repeated SMILES. Conversely, in models 

7 and 8, almost all of the generated SMILES were equal, since the percentage of unique 

SMILES is almost zero. These models correspond to the models that use BLSTM, which 

should be an improvement of LSTMs, but in this case and with the pre-processing done, this 

network did not present good results. The main incompatibility of BLSTM in this 

methodology is the padding, since BLSTM read forward and backward and because of the 

characters “G”, “E” and “A”, it will very often predict one of those characters and the 

SMILES will be completed. This fact justifies the redundancy of the SMILES generated.  
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Comparing the efficiency of the models, models 1 and 2 presented very low 

percentages of SMILES generated. These models use RNN, which is the simpler network in 

test and lose the context of the training data unlike the other three type of tested networks. 

Models 3, 4, 5 and 6 presented much higher percentage of valid and unique SMILES 

than the other four models and seem to be the more consistent models. 

Table 3 - Results with the initial parameters (%) 

ID Models Valid (%)  Unique (%) 

1 RNN - 1 Layer 1.55 1.53 

2 RNN - 2 Layers 2.50 2.23 

3 LSTM - 1 Layer 60.99 60.98 

4 LSTM - 2 Layers 71.03 71.02 

5 GRU - 1 Layer 60.79 60.79 

6 GRU - 2 Layers 67.75 67.74 

7 BLSTM - 1 Layer 73.97 0.19 

8 BLSTM - 2 Layers 1.54 0.04 

 

 

 

Figure 30 - Results with the initial parameters 
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4.1.2 Number of Epochs for the Sub-dataset 1 

The first parameter tested was the number of epochs for the sub-dataset 1. 

In the tests performed in the 8 models, in order to reach the ideal value for this 

parameter, the number of epochs for the sub-dataset 1 used were 4, 8, 12, 16, 20, 24 and 28. 

For example, if the number of epochs was 4, the sub-dataset 1 would be used 4 times to train 

the network.  

Table 4 shows the results of the 8 models for the set of values that were chosen to be 

tested for this parameter. The 1st and 2nd models reached 3.24% and 2.32% of valid SMILES, 

respectively, when the number of epochs was 8. The 3rd and 8th models had their best results 

when the number of epochs was 20, 62.56% and 20.57% of valid SMILES, respectively. Finally, 

4th, 5th, 6th and 7th models presented their best result at 24 epochs, 77.59%, 67.14%, 67.42% and 

90.55%, respectively. 

Considering Table 4 and Figure 31 to Figure 38, it was possible to observe that model 

1 and 2 present the worst values of valid SMILES, while models 7 and 8, although the values 

of valid SMILES were relevant, the number of unique SMILES was also really low. 

Conversely, models 3 to 6 have shown the best percentages. These results are aligned with 

previous subsection and share the same reasons. Thus, to choose the best value for this 

parameter, models 1, 2, 7 and 8 were ignored, since the generated SMILES were almost all 

invalid or equal between them. Then, analysing the models 3 to 6, the choice had to be 

between 20 and 24 epochs. However, the best number seems to be 24 epochs, and for now, 

the best model appears to be model 4.  

 

 

 

 

 



Chapter 4 

46 

 

Table 4 – Results for the parameter number of epochs for the sub-dataset 1 (%) 

 Models 

 ID 1 2 3 4 5 6 7 8 

No of 
epochs 

 
RNN 1 
Layer 

RNN 2 
Layers 

LSTM 1 
Layer 

LSTM 2 
Layers 

GRU 1 
Layer 

GRU 2 
Layers 

BLSTM 1 
Layer 

BLSTM 
2 

Layers 

4 

Valid 
(%) 

2.48 0.34 58.37 76.80 63.85 64.91 57.94 1.78 

Unique 
(%) 

2.12 0.33 58.36 76.79 63.85 64.88 0.19 0.08 

8 

Valid 
(%) 

3.24 2.32 59.68 76.99 62.19 58.54 94.17 0.01 

Unique 
(%) 

2.57 2.16 59.68 76.99 62.18 58.53 0.24 0.01 

12 

Valid 
(%) 

1.12 0.32 60.19 73.24 61.91 59.18 66.58 1.09 

Unique 
(%) 

1.11 0.31 60.19 73.23 61.91 59.18 0.25 0.06 

16 

Valid 
(%) 

2.87 0.66 61.80 75.81 61.63 66.37 65.78 0.03 

Unique 
(%) 

2.62 0.63 61.80 75.80 61.62 66.37 0.17 0.03 

20 

Valid 
(%) 

1.27 2.15 62.56 72.90 63.37 56.22 62.04 20.57 

Unique 
(%) 

1.15 1.98 62.55 72.90 63.36 65.22 0.26 0.08 

24 

Valid 
(%) 

2.22 0.49 58.54 77.59 67.14 67.42 90.55 1.96 

Unique 
(%) 

2.09 0.45 58.54 77.59 67.14 67.41 0.31 0.06 

28 

Valid 
(%) 

1.79 0.25 59.75 75.21 64.77 59.73 33.78 1.34 

Unique 
(%) 

1.75 0.24 59.75 75.21 64.77 59.73 0.20 0.05 
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Figure 31 - Epochs for the sub-dataset 1 - RNN - 

1 layer 

 

Figure 32 - Epochs for the sub-dataset 1 - RNN - 

2 layers 

 

Figure 33 - Epochs for the sub-dataset 1 - LSTM - 

1 layer 

 

Figure 34 - Epochs for the sub-dataset 1 - LSTM - 

2 layers 
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Figure 35 - Epochs for the sub-dataset 1 - GRU - 

1 layer 

 

Figure 36 -Epochs for the sub-dataset 1 - GRU - 2 

layers 

 

Figure 37 - Epochs for the sub-dataset 1 -BLSTM 

- 1 layer 

 

Figure 38 -Epochs for the sub-dataset 1  - BLSTM 

- 2 layers 

After the previous set of tests and its analysis, the worst models were excluded from 

the study, and were not included in following tests performed. The results of models 1, 2, 7 

and 8 were very disappointing and much lower than the other 4 models. At this stage of the 

study, the models using RNN and Bidirectional were eliminated, and the models that stayed 

in test were the ones using LSTM and GRU. 

58

60

62

64

66

68

4 8 12 16 20 24 28

P
er

ce
n

ta
ge

 (
%

)

Epochs for the sub-dataset 1

GRU model with 1 layer

Valid Unique

58

60

62

64

66

68

4 8 12 16 20 24 28

P
er

ce
n

ta
ge

 (
%

)

Epochs for the sub-dataset 1

GRU model with 2 layers

Valid Unique

0

20

40

60

80

100

4 8 12 16 20 24 28

P
er

ce
n

ta
ge

 (
%

)

Epochs for the sub-dataset 1

BLSTM with 1 layer

Valid Unique

0

5

10

15

20

25

4 8 12 16 20 24 28

P
er

ce
n

ta
ge

 (
%

)

Epochs for the sub-dataset 1

BLSTM with 2 layers

Valid Unique



Results and Discussion 

49 

 

4.2 Phase 2 

Figure 39 represents the models in test in phase 2. These models were the ones that 

reached best results in phase 1. 

 

Figure 39 - Models in test – Phase 2 

 

 These four models were tested to reach the ideal values for the parameters number 

of epochs for the sub-dataset 2, batch-size for the sub-dataset 1 and batch-size for the sub-

dataset 2. 

 

4.2.1 Number of Epochs for the Sub-dataset 2 

The second parameter tested was the number of epochs for the sub-dataset 2. The 

values tested in the remaining models were 10, 15 and 20.  

 Table 5 presents the results of the tests performed in order to choose the ideal value 

of epochs for the sub-dataset 2. The model 3 achieved 61.15% of valid SMILES with 20 

epochs, and models 4, 5 and 6 achieved 77.59%, 67.14% and 67.42% of valid SMILES with 15 

epochs, respectively 

 Analysing Table 5 and Figure 40 to Figure 43, the value selected, as the best value, 

were 15 epochs for the sub-dataset 2, which means that the sub-dataset 2 will be passed 

through 15 times to train the network. 
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The number of epochs needed to train the network with the sub-dataset 2 is smaller 

than with the sub-dataset 1, since the model was already trained, and 15 epochs were enough 

to reach the best result. 

Table 5 - Results for the parameter number of epochs for the sub-dataset 2 (%) 

 Models 

 ID 3 4 5 6 

No epochs 
 

LSTM 1 Layer LSTM 2 Layers GRU 1 Layer GRU 2 Layers 

10 
Valid (%) 56.89 72.43 60.89 64.91 

Unique (%) 56.88 72.40 60.89 64.91 

15 
Valid (%) 58.54 77.59 67.14 67.42 

Unique (%) 58.54 77.59 67.14 67.41 

20 
Valid (%) 61.15 74.80 59.78 63.07 

Unique (%) 61.15 74.80 59.77 63.06 

 

Figure 40 - Epochs for the sub-dataset 2 - LSTM - 

1 layer 

 

Figure 41 - Epochs for the sub-dataset 2 - LSTM - 

2 layers 
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Figure 42 - Epochs for the sub-dataset 2 - GRU - 

1 layer 

 

Figure 43 - Epochs for the sub-dataset 2- GRU - 2 

layers 

4.2.2 Batch-size for the Sub-dataset 1 

The third parameter analysed was the batch size for the sub-dataset 1.  

In this subsection, the values tested were 64, 128, 256 and 512 for the model using 

LSTM and GRU. 

 Table 6 showed that model 3 archived 64.52% of valid SMILES when the batch size 

was equal to 64, model 4 and model 6 archived 78.14% and 69.12% of valid SMILES, 

respectively, when the batch was 128. Moreover, model 5 archived 67.14% of valid SMILES 

when the batch size selected was 256.  

 Analysing Table 6 and Figure 44 to Figure 47, it was possible to observe that the best 

result obtained was using the model 4, while the 2nd best model was model 6. As it happened 

in the previous tests, the best model are the ones with 2 layers. Thus, the value chosen for 

this parameter in study was 128, since the bests results were obtained with this value. 
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Table 6 – Results for the parameter batch size for the sub-dataset 1 (%) 

 
Models 

 ID 3 4 5 6 

Batch size  LSTM 1 Layer LSTM 2 Layers GRU 1 Layer GRU 2 Layers 

64 
Valid (%) 64.52 76.34 62.64 39.38 

Unique (%) 64.52 76.32 62.64 39.38 

128 
Valid (%) 60.65 78.14 62.80 69.12 

Unique (%) 60.65 78.13 62.80 69.12 

256 
Valid (%) 58.54 77.59 67.14 67.42 

Unique (%) 58.54 77.59 67.14 67.41 

512 
Valid (%) 60.10 69.11 61.44 62.39 

Unique (%) 60.10 69.11 61.44 62.37 

 

 

 

Figure 44 -Batch size for the sub-dataset 1 - 

LSTM - 1 layer 

 

Figure 45 - Batch size for the sub-dataset 1 - 

LSTM - 2 layers 
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Figure 46 - Batch size for the sub-dataset 1 - 

GRU - 1 layer 

 

Figure 47 - Batch size for the sub-dataset 1 - 

GRU - 2 layer

 

4.2.3 Batch-size for the Sub-dataset 2 

The fourth parameter analysed was the batch size for the sub-dataset 2. All the other 

parameters were maintained, and the batch size values tested were 8, 16, 32 and 64. 

 Table 7 shows the percentages of generated SMILES in each model tested. Once again 

valid and unique SMILES percentages are similar per each model. Therefore, only the 

percentage of valid SMILES was observed. Analysing these results, the best percentages 

obtained per each model were: 60.78% of valid SMILES by model 8, when the batch size was 

8; 78.14% and 69.12% of valid SMILES for model 4 and model 6, respectively, using batch 

size 16; and 63.41% of valid SMILES for model 5, when the batch size was 32. 

 Considering Table 7 and Figure 48 to Figure 51, it was possible to observe that the 

best result obtained was again using the model 4, while the 2nd best model was model 6. 

Thus, the value chosen for this parameter in study was 16, since the best results were 

obtained with this batch size. 

 The ideal value for the batch-size of the sub-dataset 2 is smaller than for the batch-

size for the sub-dataset 1. That means that the sub-dataset 2 should be split into less parts, 

since the network was already trained, the second training do not need be that precise.  
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Table 7 - Results for the parameter batch size for the sub-dataset 2 (%) 

 Models 

 ID 3 4 5 6 

Batch size  LSTM 1 Layer LSTM 2 Layers GRU 1 Layer GRU 2 Layers 

8 
Valid (%) 60.78 76.76 59.07 23.66 

Unique (%) 60.78 76.74 59.07 23.66 

16 
Valid (%) 60.65 78.14 62.80 69.12 

Unique (%) 60.65 78.13 62.80 69.12 

32 
Valid (%) 61.05 74.16 63.41 67.76 

Unique (%) 61.05 74.15 63.40 67.75 

64 
Valid (%) 56.84 75.41 62.82 68.29 

Unique (%) 56.83 75.40 62.81 68.28 

 

 

Figure 48 - Batch size for the sub-dataset 2 - 

LSTM - 1 layer 

 

Figure 49 - Batch size for the sub-dataset 2 - 

LSTM - 2 layers 
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Figure 50 - Batch size for the sub-dataset 2 - 

GRU - 1 layer 

 

Figure 51 - Batch size for the sub-dataset 2 - 

GRU - 2 layer 

 

At this point, it was possible to conclude that models 4 and 6 were always the best 

models in test, which correspond to the models with 2 layers. Therefore, model 3 and 5 were 

now on excluded from the study. 

 

4.3 Phase 3 

 The remaining models at this phase of the study, phase 3, are shown in Figure 52. 

 

Figure 52 - Models in test – Phase 3 
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 The models 4 and 6 where tested to reach to the ideal values of the parameters 

optimizers, dropout and softmax temperature. 

 

4.3.1 Optimizers 

The fifth parameter analysed during this study was the optimizer.  

shows the results obtained by the last two models in study using the optimizers 

selected. Model 4 showed the best results. Two optimizers presented similar results, 78.14% 

and 78.69% of valid SMILES for Adam and RMSprop, respectively. Model 6 reached a 69.12% 

of valid SMILES, with Adam optimizer. 

Thus, taking in consideration, Figure 53 and Figure 54, where model 4 presented the 

best results, and the percentages of valid SMILES very similar for both optimizers RMSprop 

and Adam, both were selected to the next steps. Regarding, model 6 only Adam will be 

considered, which means that instead of 2 models to test the next parameters, there will be 

used 3 models. 

The results for the optimizers tested were consistent, where the model 4 presents 

result better results than 6. However, SGD optimizer is the worse in these tests, which means 

that this optimizer is not successful in this type of model. Furthermore, in Nadam optimizer 

it is visible a huge different between the two types of networks and that has to be related 

with the two differences between LSTM and GRU, the gates and the persistent cell state. 
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Table 8 - Results for the parameter optimizer (%) 

  Optimizers 

ID Models 
 

Adam SGD RMSprop Adagrad Adadelta Adamax Nadam 

4 
LSTM 2 
Layers 

Valid 
(%) 

78.14 0.21 78.69 39.96 57.43 71.31 66.95 

Unique 
(%) 

78.13 0.21 78.67 39.95 57.42 71.30 66.94 

6 
GRU 2 
Layers 

Valid 
(%) 

69.12 0.31 62.00 49.19 59.48 68.03 0.11 

Unique 
(%) 

69.12 0.31 61.98 49.19 59.48 68.03 0.11 

 

 

Figure 53 - Optimizers - LSTM - 2 layers 

 

Figure 54 - Optimizers - GRU - 2 layers 

 

4.3.2 Dropout 

The sixth parameter analysed was dropout. 

For these tests, there were used the values 0.1; 0.2; 0.3; 0.4 and 0.5 of dropout applied 

to the 3 models previously selected (subsection 4.3.2). 
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 Table 9 shows the percentages of generated SMILES created by the models under 

study. Considering the most efficient results, model 4A archived 78.69% of valid SMILES 

when the dropout was 0.3, while the model 4B best result was using 0.2 of dropout, which 

gave rise to 78.57% of valid SMILES (similar value to 0.2 dropout, 78.14% of valid SMILES). 

Models 6A and 6B archived 67.09% and 72.25% of valid SMILES, respectively, when dropout 

was 0.1. 

 Analysing Table 9 and Figure 55 to Figure 58, the choice of the ideal dropout value 

for all models in study was difficult. Therefore, it has been decided to keep the best value of 

dropout for each model. Thus, each one of the 4 models tested in this step kept the value of 

dropout that made them reach the best result. However, model 4B presented approximated 

results for two values of dropout, 0.2 and 0.3, and in order to make sure that the best model 

would be achieved, the decision was to take them both in consideration for the next tests. 

 As it was already explained before, the dropout is the term used to designate the 

percentage of units (hidden or visible) that are dropped. The successful values of dropout 

were the smaller ones, since the percentage of units removed cannot be very significant 

because relevant data would be removed too. 
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Table 9 - Results for the parameter dropout (%) 

  Models 

 ID 4A 4B 6A 6B 

Drop
out 

 
LSTM 2 Layer - 

Adam 
LSTM 2 Layers - 

RMSprop 
GRU 2 Layers - 

Adam 
GRU 2 Layers - 

RMSprop 

0.1 

Valid 
(%) 

77.53 77.34 67.09 72.25 

Unique 
(%) 

77.50 77.34 67.07 72.22 

0.2 

Valid 
(%) 

78.05 78.57 65.74 65.65 

Unique 
(%) 

78.00 78.57 65.74 65.64 

0.3 

Valid 
(%) 

78.69 78.14 62.00 69.12 

Unique 
(%) 

78.67 78.13 61.98 69.12 

0.4 

Valid 
(%) 

72.11 72.73 54.77 62.47 

Unique 
(%) 

72.10 72.69 54.77 62.47 

0.5 

Valid 
(%) 

67.87 68.79 53.73 54.61 

Unique 
(%) 

67.84 68.79 53.72 54.61 
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Figure 55 - Dropout - LSTM - 2 layers - Adam 

 

Figure 56 - Dropout - LSTM - 2 layers - RMSprop 

 

Figure 57 - Dropout - GRU - 2 layers - Adam 

 

Figure 58 - Dropout - GRU - 2 layers - RMSprop 

 

4.3.3 Softmax Temperature 

The seventh parameter evaluated was the softmax temperature.  

Softmax function normalizes, at each iteration, the candidates, based on their 

exponential values, by establishing that network’s outputs are all between one and zero. 
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Temperature is a variable of softmax used to control the randomness of predictions by 

scaling the logits before applying softmax [87]. 

In this subsection, the values of temperature used were 0.3; 0.5, 08; 1. and 1.5. 

Table 10 presents the results obtained by the models at different temperatures. Models 

4A1, 4A2, 4B and 6A reached their best results when the temperature was set at 0.5, 95.36%, 

95.01%, 97.43% and 94.47% of valid SMILES, respectively, while the model 6B achieved 

94.14% of valid SMILES. 

Considering Table 10 and Figure 59 to Figure 63, it was straightforward that the best 

temperature value was 0.5. Therefore, it is the best choice to use in the study. As the 

temperature increases the difference between valid and unique SMILES is smaller. However, 

from 0.5 the of valid and unique decreases significantly. 
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Table 10 - Results for the parameter Software temperature (%) 

  Models 

 ID 4A1 4A2 4B 6A 6B 

Softmax 
temperature 

 
LSTM 2 
Layers - 

Adam 0.3 

LSTM 2 
Layers - 

Adam 0.2 

LSTM 2 Layers 
- RMSprop 0.3 

GRU 2 
Layers - 

Adam 0.1 

GRU 2 Layers - 
RMSprop 0.1 

0.3 

Valid 
(%) 

89.80 92.29 97.06 93.21 94.14 

Unique 
(%) 

56.93 63.03 41.59 50.98 46.03 

0.5 

Valid 
(%) 

95.46 95.01 97.43 94.47 92.62 

Unique 
(%) 

89.57 91.81 89.88 89.81 86.06 

0.8 

Valid 
(%) 

86.50 89.94 89.77 85.98 81.54 

Unique 
(%) 

86.43 89.79 89.55 85.89 81.43 

1.0 

Valid 
(%) 

78.14 78.57 78.69 72.25 67.09 

Unique 
(%) 

78.13 78.57 78.67 72.22 67.07 

1.2 

Valid 
(%) 

54.29 62.27 61.97 53.57 50.67 

Unique 
(%) 

54.28 62.27 61.97 53.57 50.67 

1.5 

Valid 
(%) 

27.87 33.87 35.61 28.08 24.73 

Unique 
(%) 

27.85 33.87 35.61 28.07 24.73 
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Figure 59 - Software temperature - LSTM - 2 

layers - Adam – 0.3 

 

Figure 60 - Software temperature - LSTM - 2 

layers - Adam – 0.2

 

Figure 61 - Software temperature - LSTM - 2 

layers - RMSprop – 0.3 
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Figure 62 - Software temperature - GRU - 2 

layers - Adam- 0.1 

 

Figure 63 - Software temperature - GRU - 2 

layers - RMSprop – 0.1 

After the previous tests and its analysis, it was possible to observe a tendency that 

models using LSTM were always better than models using GRU. For this reason, model 5A 

and 5B were removed from the models in test.  

 

4.4 Phase 4 

At this point, there were just one original model being tested, the one that uses LSTM 

networks with 2 layers (Figure 64), even though there were 3 sets of parameters being used 

for this model. 

 

Figure 64 - Models in test – Phase 4 
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4.4.1 Sub-datasets Size 

The eighth and ninth parameters tested were the number of SMILES in the sub-dataset 

1 and the sub-dataset 2. In the several tests already done, the number of SMILES in each sub-

dataset were 100,000 SMILES, however in this specific test the number of SMILES in each 

sub-dataset increased to 240,000. 

 Analysing Table 11 and Figure 65, it was observed that the best result corresponded 

to the model 4A1, 98.04% of valid SMILES. The increase in the number of SMILES gave rise 

to a rise of valid SMILES from 95.46% to 98.04%, a great improvement. This fact means that 

a bigger dataset could improve the results, but due to lack of memory available in the 

machines, these tests could not be completed.  

 At this phase, the best sub model was 4A1, LSTM with 2 layers, with Adam optimizer 

and dropout equals to 0.3. That meant that the ideal parameters were set for the best model, 

and the best model was model 3. 

 

Table 11 - Results for the parameter sub-datasets size (%) 

 
Models 

ID 4A1 4A2 4B 
 

LSTM 2 Layers – 

Adam 0.3 

LSTM 2 Layers – 

Adam 0.2 

LSTM 2 Layers – 

RMSprop 0.3 

Valid (%) 98.04 96.86 96.30 

Unique (%) 93.38 89.74 90.69 
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Figure 65 - Sub-datasets size - LSTM - 2 layers 

 

4.4.2 Layers 

The best model, model 4, was chosen. However, to ensure that the choice was the right 

one, this model was subject to a final test. The final test consisted in testing the model with 

3, 4 and 5 layers. Since it was already established that the model 3 with just 1 layer was worse 

than the model 4 with 2 layers, maybe the increase of layers may have a positive impact in 

efficiency. 

Results of this final test was presented in Table 12. 

Analysing Table 12 and Figure 66, it was possible to see that the choice taken before 

was the right one and the best model should have just 2 layers. 
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Table 12 - Results for the final test with different number of layers (%) 

No Layers Valid (%) Unique (%) 

2 98.04 93.38 

3 97.25 90.16 

4 91.40 88.74 

5 96.59 91.29 

 

 

Figure 66 - Layers of the best model 
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• Dropout: 0.3; 

• Softmax temperature: 0.5; 

• Number of SMILES in the sub-dataset 1: 240,000; 

• Number of SMILES in the sub-dataset 2: 241,000. 

The percentages achieved with the best model and the ideal values for each 

parameter was: 98.04% of valid SMILES and 93.38% of unique SMILES.  

At this point the best model and parameters were chosen, therefore, a different 

analysis was done with the generated SMILES. Besides the percentages of valid and unique 

SMILES, the generated SMILES were: 1) compared with the dataset, to know how many 

SMILES were duplicated; 2)searched in the PubChem database; 3) searched in another 

collection of databases and datasets, both to understand how many SMILES were already 

included known in these databases. 

 The best model was run 30 times with the ideal values for the parameters (Table 13). 

In average, there were 97.51% of valid SMILES with a deviation of 0.31% (Figure 67), 91.43% 

of unique SMILES with a deviation of 0.92% and 1.85% already existed in the dataset of the 

training (Figure 68). Furthermore, 7.39% of the generated SMILES were found in PubChem 

(Figure 69), while 2.56% were found in the database that contains a collection of different 

datasets and databases (Figure 70). Yet, on average each run took 13 hours and 48 minutes, 

the loss of the training of the sub-dataset 1 was 0.4462 and loss of the sub-dataset 2 was 

0.4388. 

 

Table 13 - Best Model analysis 

 Valid (%) 
Unique 

(%) 
Dataset 

replicates (%) 
PubChem (%) Databases (%) 

LSTM - 2 layer 
(average) 

97.51 91.43 7.39 1.85 2.56 
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Figure 67 - Best Model - Validity 

 

Figure 68 - Best Model - Dataset replicates 

 

Figure 69 - Best Model - PubChem 

 

Figure 70 - Best Model - Databases 

4.6 Fragmentation Growing Procedure 

The fragmentation growing procedure, previously explained in Chapter 3, is 

presented in this section with the purpose to ensure to the reader that this model can actually 

achieve good results. 

The fragmentation growing procedure was composed of tests taken with two 

fragments of SMILES, benzamidine and 3-Methylpyrazole (Figure 71). Table 14 shows the 

results obtain in this strategy. The run using benzamidine, as a fragment, reached 84.77% of 

valid SMILES, (Figure 72) and 39.65% of unique SMILES. More efficiently, the run using 3-
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2.49
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Methylpyrazole achieved an almost perfect result, 99.14% of valid SMILES (Figure 73) and 

77.98% of unique SMILES. 

 

 

Figure 71 - SMILES used in the fragmentation growing procedure. A - 3-Methylpyrazole. B – Benzamidine 

 

Table 14 - Results of fragmentation growing procedure (%) 

Name Fragment Valid Unique 

Benzamidine NC(=[NH2+])C1=CC=CC=C1 84.77 39.65 

3-Methylpyrazole Cc1cc([nH]n1) 99.14 77.98 

 

 

Figure 72 - Fragmentation growing procedure - 

Benzamidine - Validity 

 

Figure 73 - Fragmentation growing procedure - 

3-Methylpyrazole - Validity  
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In Figure 74 and Figure 75, there are presented 6 SMILES generated with the 

fragmentation growing procedure. The first 3 SMILES of Figure 74 are examples of SMILES 

generated with benzamidine, as the fragment, and Figure 75 shows examples of SMILES 

which fragment was 3-Methylpyrazole. Comparing the SMILES Figure 74 of with Figure 71B, 

it was possible to observe that the fragment is actually in the SMILES. The same happens in 

Figure 75 SMILES. 

 This strategy presented successful results, which means that it was possible to choose 

fragments, and therefore features existing in the generated SMILES. 

 

 

Figure 74 - SMILES generated with the fragment Benzamidine 

 

Figure 75 - SMILES generated with the fragment 3-Methylpirazole 
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4.7 General Discussion 

After analysing all the tests done, it is possible to conclude that the best recurrent 

network to achieve the main goal is an LSTM with 2 layers, using Adam optimizer. The best 

percentage of valid SMILES obtained was 98.04%, but in 97.5%±0.31% of valid SMILES. The 

parameter that influenced more the results was softmax temperature, since it was noticed 

that existed a significant increment in the result when that parameter was chosen. Regarding 

the fragmentation growing procedure, the best result was obtained with the 3-

Methylpyrazole, 99.14%. 

Comparing with previous works, the percentage of valid SMILES obtained in those 

studies was similar to the average of valid SMILES obtained in this work (97,5%±0.31%) [18, 

19]. Regarding the fragmentation growing procedure, the best value obtained in this work 

(99.14%) is bigger than the related work of Gupta et al., (97%) which applied the same 

strategy [18]. These comparisons are useful in the way that it is possible to conclude that the 

results obtained in this work are coherent, respecting its purpose. 

The parameters chosen after each set of tests are similar to the ones used by the authors 

in the related works. However, the optimizer parameter was the more surprising one, since 

two related works presented used Adam [18, 19] while the other one used Adagrad [20]. 

Conversely, the optimizer tested in this work, RMSprop optimizer, presented good results, 

sometimes better than Adam that was the optimizer chosen. RMSprop was a surprise since 

it is not usual to see authors using this optimizer in works in this area. 

The main limitations in the performance of these tests were time and memory, since 

the available machines to perform the tests had a good GPU with low memory or a good 

RAM with only CPU. In fact, the lack of memory prevented the use of a bigger dataset in the 

study, which could lead to slightly better results. The excessive duration of each run was also 

a problem. The absence of available time to complete this work lead to the exclusion of the 

worse models while the tests were done. 

Finally, the second dataset can be used in transfer learning, since this model was 

implemented taking this aspect into account and its ready for that. Despite, this work does 

not cover this strategy, it could be a possibility in the future.
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Chapter 5  

Conclusion 

The strategy applied in this study gave rise to 97.5% of valid SMILES, on average. It 

was a percentage close to 100%, which means that the developed model fulfilled its main 

purpose, to generate new molecules using the SMILES format. 

The choice of the dataset and the validation of the model are fundamental for the 

triumph of the model and, therefore, of this work, because the first one trains the model and 

the second validates it. In one hand, a consistent dataset is a key player for the success of the 

neural networks training, since the good results obtained are directly proportional to the 

suitability of the dataset chosen. In the other hand, the procedure for the validation covers 

the syntactically and biochemically validation of the generated SMILES. This validation was 

essential to validate the whole work since the better way to evaluate the model was by 

analysing its results. 

 The fragmentation growing procedure proved to be a good strategy to restrict the 

feature space of the generated SMILES. For this reason, this element completed the main 

component adding this aspect, where the best result obtained was 99% of valid SMILES. 

 In fact, from this work and the tests performed, it can be concluded that the 

implemented system is a delicate set of small components, such as datasets, validations and 

hyperparameters of each layer of the recurrent models. Each component and variable must 

be well studied and tested to achieve the best results, in, this case is essentially the percentage 

of valid SMILES. 

 In this work, some techniques and variables were defined. However, they could be 

improved. For example, the model could be trained with a bigger dataset. However, that was 

not possible because of the lack of powerful machines, that could not tolerate more data. 

Thus, with a more powerful machine available the results obtained could be better, while 
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with a GPU the time for each execution could be more efficient. Moreover, the transfer 

learning technique remained to be used, since the purpose of this work could be achieved 

without that technique. However, choosing the second dataset with specific characteristics, 

the model developed could be used with that technique.  

 In summary, this work tested four types of recurrent networks, RNN, LSTM, GRU 

and BLSTM with a wide variety of values for a set of hyperparameters of the networks. From 

the tests, it was clear that the best model used was LSTM with 2 layers and the optimizer 

chosen was Adam.
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