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por serem vocês e por estarem sempre lá. Guardo eternamente todos os momentos,
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Resumo

A descoberta de potenciais Interações Fármaco-Alvo é uma etapa determinante no

processo de descoberta e reposicionamento de fármacos, uma vez que a eficácia

do tratamento antibiótico dispońıvel está a diminuir, provocado pelo aumento da

sua utilização indevida. Apesar dos esforços colocados nos métodos tradicionais in

vivo ou in vitro, o investimento financeiro farmacêutico foi reduzido ao longo dos

anos. Desta forma, estabelecer métodos computacionais eficazes, é decisivo para

encontrar novos propósitos cĺınicos para os fármacos dispońıveis (leads) num tempo

considerável.

Abordagens bem sucedidas, incluindo aprendizagem de máquina e profunda, foram

apresentadas para resolver e identificar corretamente novos leads e DTIs, contudo,

raramente são utilizados, em conjunto, dados estruturais e sequências de protéınas.

Neste trabalho, propomos um modelo de arquitetura de aprendizagem profunda,

que explora a habilidade particular das Redes Neuronais Convolucionais para au-

tomaticamente presumir e identificar regiões sequenciais e estruturais, e extrair

representações 1D das sequências de protéınas (sequências de aminoácidos) e das

SMILES strings dos compostos. Estas representações podem ser interpretadas como

carateŕısticas que expressam dependências locais ou padrões e, que por sua vez, po-

dem ser usadas numa Rede Neural Completamente Conectada, funcionando como

um classificador binário.

Os resultados alcançados demonstram que usar CNNs para obter representações

dos dados, em vez dos descritores tradicionais, levam a um aumento do desem-

penho. O método proposto de aprendizagem profunda de ponta a ponta superou

os métodos tradicionais de aprendizagem de máquina na classificação correta de in-

terações positivas e negativas, alcançando elevados valores de sensibilidade (0.861)

e especificidade (0.961).

Palavras-Chave: Reposicionamento de Fármacos, Interação Fármaco-Alvo, Apren-

dizagem Profunda, Rede Neuronal Convolucional, Rede Neuronal Completamente
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Abstract

The discovery of potential Drug-Target Interactions is a determining step in the

drug discovery and repositioning process, as the effectiveness of the currently avail-

able antibiotic treatment, arisen from the increased misuse, is declining. Although

putting efforts on the traditional in vivo or in vitro methods, pharmaceutical fi-

nancial investment has been reduced over the years. Thus, establishing effective

computational methods is decisive to find new clinical purposes for the available

drugs (leads) in a reasonable amount of time.

Successful approaches, including machine and deep learning, have been presented to

solve and correctly identify new leads and DTIs, but seldom protein sequences and

structured data are used together. In this work, we propose a deep learning architec-

ture model, which exploits the particular ability of Convolutional Neural Networks

to automatically surmise and identify important sequential and structural regions

and extract 1D representations from protein sequences (amino acid sequences) and

compounds SMILES strings. These representations can be interpreted as features

that express local dependencies or patterns that can be used in a Fully Connected

Neural Network, acting as a binary classifier.

The achieved results demonstrate that using CNNs to obtain representations of the

data, instead of the traditional descriptors, lead to improved performance. The pro-

posed end-to-end deep learning method outperformed traditional machine learning

approaches in the correct classification of both positive and negative interactions,

reaching high scores of sensitivity (0.861) and specificity (0.961).

Keywords: Drug Repositioning, Drug-Target Interaction, Deep Learning, Convo-

lutional Neural Network, Fully Connected Neural Network.
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1

Introduction

1.1 Context

The Role of Proteins

Human and other organisms, e.g., bacterias, proteome is constituted by a consider-

able amount of different proteins [1]. Proteins are identified as key working molecules

that reside in every organism cells and are responsible for unique functions. Each

protein consists of one or more polypetide chains, which are described as linear

chains of amino acids connected by peptide bonds in a specific order, that fold into

complex 3D structures [2]. The protein’s biological function is determined by the

unique amino acid sequence, as each amino acid has a particular chemical behav-

ior and each polypeptide a specific amino acid order, and also by the interactions

that occur within the chains, which are responsible for the folding and therefore the

structure.

The primary structure of every protein, defined as the amino acid sequence, is

determined by the DNA, specifically the gene, that encodes that protein. Hence,

any mutation in the DNA sequence might affect the protein’s structure and function.

Additionally, proteins are also affected by chemical, biological and environmental

factors, which might lead to the loss of shape or functionality [3].

Several unique functions are carried out by proteins, including structure, signaling,

maintenance, substance transport, protection, storage and biochemical reactions.

Thus, they are essential to maintain the biological, chemical and physiological bal-

ance within every organism.

Most proteins fulfill their role by interacting with other proteins or molecules, where

their activity depends on the type of binding that occurs. Thus, a protein’s function

rate can easily be altered based on the interaction with potential “invasive” ligands

that dominate over the natural ligands at the binding regions, leading to the rise or

1



1. Introduction

decline of its natural function.

The Importance of Drugs

Drugs play an important role in the modern medicine, as many diseases, illnesses and

infections are prevented, controlled and treated using these compounds. Although

natural products (raw drugs) have been used since ancient times [4], most of the

actual drugs are derived from combinatorial chemistry, chemical synthesis or related

to substances produced by microorganisms.

These chemical compounds have been accountable for the majority of the humanity

survival, as they are responsible for enhancing certain substances, e.g., proteins, and

their activity (acting as agonists) or, on the contrary, having antagonistic effects,

affecting even a bacteria’s physiology and biochemistry, resulting in their cell death

and cessation of growth [5].

Antibiotics, which target bacterias, have revolutionized human development and

survival, enabling the human race to survive and prevent several bacterial infections.

Additionally, they are also responsible for major advances in medicine, surgery,

transplants and chemotherapy [6]. These type of drugs, starting with the Penicillin,

discovered by Sir Alexander Fleming in 1928 [7] and used to treat bacterial infections

during World War II, were the pinnacle for the modern medicine development.

The structure of a drug is usually divided into two main parts, specifically the essen-

tial part, which is involved in the drug-target interaction and therefore responsible

for the biological/pharmacological response of the drug, and non-essential, allowing

the transport of the drug and the interaction with secondary receptors, without

changing drastically the drug’s biological activity [8].

Drugs predominantly target proteins, including enzymes, receptors or transporters.

The accurate identification of targets is essential for the pharmacological action of

a drug.

The drug discovery process is usually associated with six different steps [9], includ-

ing target discovery, lead discovery, lead optimization, pre-clinical, clinical trials and

regulatory approval. Target and lead discovery are related to identifying which lig-

and binds to a certain drug or which drug binds to a certain ligand, respectively. On

the other hand, lead optimization is associated with using lead compounds, known

as potential drugs for new clinical purposes, and perform chemical modifications

to improve potency, selectivity or pharmacokinetic features. Pre-Clinical, known

as ADMET, is defined as a number of conditions that a certain drug must met to

2



1. Introduction

be viable for human consumption. Clinical trials is one of the final stages and are

divided into several steps, to evaluate all the effects of the drug and validate the

effectiveness and the viability for consumption. These clinical trials usually start

with animals and end in human trials. Finally, the drug needs to be registered and

approved by a drug administration department, e.g., FDA in the USA.

Drug-Protein Interactions

The pharmacological action of a drug is the result of the intrinsic properties as well

as the interaction with the complementary chemical groups of a specific cellular

component, designed as receptor, which initiates several biological and physiological

modifications, altering the function rate of that receptor.

The interaction between a protein and a drug, which can be reversible or irreversible,

is the consequence of several bond types, including ionic, hydrogen, hydrophobic,

Van der Waals and covalent [10]. The binding is usually divided into primary bind-

ing, responsible for a firm binding (ionic interaction), and secondary binding, which

is a supplementary binding to hold the drug. Even though the complementary of

the chemical groups is essential to form bonds, there are several factors that af-

fect the interaction, including physical, chemical and physiological. Additionally,

not all regions of the protein are responsible to form bonds, only specific regions,

denominated of active or binding sites, interact with the drug [11].

Drugs are potential modulators of the functions performed by several proteins, there-

fore their ability to bind, defined as affinity, is essential for the interaction. However,

the capacity to execute their pharmacological activity, identified as intrinsic activ-

ity, is determined by the recognition of certain functional groups in the 3D space,

including their electron densities, by the receptor. These two factors, affinity and

intrinsic activity, determine the role enforced by the drug, which can be an agonist,

antagonist or partial agonist.

In order to reach the site of action, where the pharmacological task is achieved,

drug molecules need to cross natural barriers and circulate in the blood stream [12].

Thus, there are several secondary interactions that are responsible and necessary for

the transportation, storage, metabolism and excretion of the drug molecules. These

interactions are essential to regulate the effects of the drug molecule in the body.

3



1. Introduction

1.2 Motivation

Multi-drug resistant bacterias are a rising health concern to the overall population

and pharmaceutical industry as more and more drugs are becoming ineffective and

unresponsive to the symptoms and diseases associated with these kind of infections,

leading to a situation where some infections have no cure [13, 14]. Modern medicine

is aligned with antibiotic treatment, however the discovery of new, potential and

effective drugs is declining, as there is an irrational and injudicious misuse of the

current available medicine, causing a resistance effect to these kinds of agents [15],

as well as a free path for the bacterias to evolve and start resisting these compounds.

The pharmaceutical financial investment has been reduced over the years, making it

difficult for researchers to keep up with the current population and pharmaceutical

needs [16]. The amount of new drugs discovered every year is declining, conversely

to number of new variants of the already existing infections and diseases. Traditional

de novo drug discovery is very time consuming, as it may take 10 to 17 years from

concept to marketed drug [17], expensive, in the realm of thousands of millions, and

it is associated with a low probability of success, as there is a considerable number

of conditions to be met in order to be viable for human consumption. Aligning

drug repositioning, that is, finding new clinical purposes for existing drugs, with

computational methods [18] is crucial and decisive to find potential drug-target

interactions and new leads (hit compounds) in a reasonable amount of time. Besides,

drug repositioning allows to ignore some of the steps of the traditional de novo drug

discovery, as most of the drug candidates have already been through the validation

phases.

The process of developing new drugs has the common basis of using a compound to

produce some kind of pharmacological response on a certain target, however, that

drug must interact with several secondary targets before reaching its site of action.

Taking into consideration the intrinsic characteristics of drug-target interactions,

the fact that a certain protein target binds several drugs and a certain drug binds

several protein targets and also the amount of unintended side effects that a drug

may produce [19], it is possible to affirm that there are several new possibilities for

a given drug. Thus, finding new purposes, new targets and all the side effects is

important in the discovery of new leads.

Despite all the efforts and the existing successful approaches to find new DTIs and

leads, protein sequences and structural data are rarely used together. Although

there are several factors that affect the drug-target interaction, the protein sequence,

4



1. Introduction

specifically the binding regions of the protein, and the chemical structure of the com-

pound, which is divided essentially into two parts, one related to main interaction

and the other to the secondary interactions, are determinant for the interaction.

Thus, combining computational methods with sequential and structural informa-

tion may lead to new decisive findings.

1.3 Objectives

The main goal of this master thesis is to develop an end-to-end deep learning ap-

proach capable of predicting DTIs using 1D raw data, protein amino acid sequences

and SMILES strings, which represent the drug’s chemical structure. Conventional

physicochemical and/or structural descriptors are general descriptors of the whole

sequence or chemical structure and therefore non relevant, in most cases, to a possi-

ble real interaction. Besides, the amount of available known 3D structures is limited

or highly complex, which makes them impractical to use. Therefore, there are six

objectives to fulfill:

1. Explore a pipeline to process and represent the 1D sequential and structural

data.

2. Exploit the particular ability of CNNs to uncover deep patterns (representa-

tions or local dependencies) from raw data.

3. Build a deep learning architecture model based on two CNNs and a FCNN.

4. Evaluate the proposed model and compare it with machine and deep learning

approaches.

5. Compare the differences of using deep representation over traditional and con-

ventional descriptors of the proteins and compounds.

6. Evaluate the influence of specific descriptors in the prediction of DTIs.

1.4 Workflow

The rising antibiotic resistance and reduced financial investment in the traditional in

vitro and in vivo drug discovery methodologies led to the pursuing of drug reposition-

ing approaches. This works focus on aligning drug repositioning with computational

methods to increase the reward-time trade-off and diminish the dependence of using

traditional laboratory experimental methods to identify potential drug-target inter-

actions and discover new leads. Besides, drug repositioning allows to skip some steps

5
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of the traditional drug discovery process as most of the drugs used are already val-

idated, reducing exponentially the time needed. Plus, a deep learning architecture

is applied to automatically identify meaningful hidden and complex patterns and

relationships on 1D sequential and structural data to the prediction of DTIs. On

that account, it allows to learn and identify potential leads and DTIs using intrinsic

information of the proteins and drugs, requiring less time and money, as it does not

need to verify each interaction experimentally, and also surpassing the traditional

approaches on its capacity to spot potential complex relationships.

Figure 1.1: Drug discovery versus drug repositioning aligned with computational
methods: The use of sequential and structural data combined.
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1.5 Research Contributions

The work developed during this thesis resulted in the following contributions:

Papers

1. Nelson R. C. Monteiro, Bernardete Ribeiro, Joel P. Arrais. “Drug-Target

Interaction Prediction: End-to-End Deep Learning Approach”. IEEE/ACM

Transactions on Computational Biology and Bioinformatics, IF: 2.428 (Sub-

mitted on 15th April 2019 as a full paper and under revision)

2. Nelson R. C. Monteiro, Bernardete Ribeiro, Joel P. Arrais. “Deep Neural

Network Architecture for Drug-Target Interaction Prediction”. ICANN2019,

28th International Conference on Artificial Neural Networks, CORE rank: B.

(Submitted on 8th April 2019 and accepted as a short paper)

Posters

1. Nelson R. C. Monteiro, Bernardete Ribeiro, Joel P. Arrais. “Drug-Target In-

teraction Prediction: End-to-End Deep Learning Approach”. EJIBCE2018,

Structural Computational Biology Meeting of Junior Researchers (Poster Pre-

sentation on December 2018).

2. Nelson R. C. Monteiro, Bernardete Ribeiro, Joel P. Arrais. “Drug-Target

Interaction Prediction: End-to-End Deep Learning Approach”. BOD2019,

Bioinformatics Open Days (Poster Presentation on February 2019).

3. Nelson R. C. Monteiro, Bernardete Ribeiro, Joel P. Arrais. “End-to-End Deep

Learning Approach for Drug-Target Interaction Prediction”. Ciência2019, Sci-

ence and Technology Summit (Poster Presentation on July 2019).

1.6 Document Structure

The rest of this document is organized into 6 different chapters. The Chapter 2,

State of the Art, provides a showdown of the principal computational approaches

used in the drug-target interaction area, presenting several research works related

to each one of them, as well as an explanation of the reasons behind them. The

Chapter 3, Data Preparation, describes the used pipeline to process and encode the

data. The Chapter 4, Model, presents the deep neural network architectures used to

build the proposed model and the hyperparameter optimization approach applied.

7
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The Chapter 5, Experimental Setup, describes the different stages of the experi-

mental setup, including the construction of the datasets and the different models

used to compare the performance of the proposed setup. The Chapter 6, Results

and Discussion, shows the results obtained and the discussion of the whole process,

including the advantages and disadvantages. Finally, the Chapter 7, Conclusion,

concludes the master thesis and presents future approaches and possibilities for the

proposed work.
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State of the Art

There are many factors involved in the interaction between drugs and targets, in-

cluding external elements that modulate and regulate the interaction. Thus, several

successful approaches, based on different perspectives, have been presented and ex-

plored to solve the problem of identifying new DTIs. Computational methods for

DTI prediction are divided into three main approaches [20]: ligand based, docking

simulation and chemogenomic.

Figure 2.1: Main computational approaches for DTI prediction.

2.1 Ligand Based

Ligand based approaches are built upon the concept that similar molecules have

similar properties among them and therefore should bind and interact with the same

group of proteins. These kind of approaches are used to make predictions on possible

potential interactions by comparing a new ligand with known proteins ligands [21].

Therefore, they are limited to the amount of known and available ligands, performing

insufficiently when this number is scarce or there is no knowledge available about

known interactions.
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Most of the ligand based approaches use Quantitative Structure-Activity Relation-

ships, which are essentially statistical based methods used to correlate the chemical

structures with the biological activity. QSAR models have the fundamental ba-

sis that variations in the biological activity associated with a group of ligands are

related to variations in their structural, physical and chemical properties, hence

similar ligands should interact with similar proteins [22]. The choice of relevant de-

scriptors, which can be related to molecular (2D QSAR) or 3D structural geometric

(3D QSAR) properties, capable of encoding important structural information asso-

ciated with the biological activity is fundamental for a good performance, as they

are the basis of association. Additionally, the statistical method used to correlate

the chemical structure with the biological activity, which can be a linear or non

linear relationship, needs to be convenient and fitting for the problem.

Keiser et al. (2008) [21] developed a method, Similarity Ensemble Approach (SEA),

where receptors (proteins) were quantitatively related based on the chemical sim-

ilarity among their ligands. The similarity was calculated using ligand topology,

expressed as a Tanimoto Coefficient, which is considered as a distance measure be-

tween two points, and ranked statistically. This approach enabled the discovery

of new and unexpected associations, as well as, the discovery of potential related

proteins.

Humberto et al. (2011) [23] proposed a Multi-target QSAR Web Server to make large

scale predictions, derived from chemical structures and 3D structures of target pro-

teins. This approach is combined with a Markov Chain Model, MARCHINSIDE, to

calculate structural parameters of drugs, based on different physicochemical molec-

ular properties, and proteins, derived from 3D potentials, e.g., average value of elec-

trostatic potential, for different types of interactions. Linear Discriminant Analysis

(LDA) was used to select the best model.

Cheng et al. (2012) [24] established multi-target quantitative structure–activity re-

lationships, mt-QSAR, and chemogenomics methods based on substructure patterns

(MACCS Keys) and protein sequences descriptors to predict chemical–protein inter-

actions. The mt-QSAR method was decomposed as a multiple binary classification

problem using an SVM model to classify the associations. The multiple binary

models were combined in the end to make DTI predictions.
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2.2 Docking Simulation

Docking simulation approaches are used to predict the 3D structure of the receptor-

ligand complex, based on the 3D structures of the receptor and the ligand [25]. These

kind of approaches are adopted essentially for structure based drug design, where

the interaction is simulated and scored, according essentially to the intermolecular

interaction energy. This process can be seen on figure 2.2.

Figure 2.2: Docking simulation process. Image from “CABS-dock web server for
the flexible docking of peptides to proteins without prior knowledge of the binding
site” [26].

Most of the docking algorithms uses the receptor and ligand’s coordinates to predict

the coordinates of the resulting complex, based on given potential ligand-binding

locations or, in the case there is not any knowledge available of potential binding

locations or any 3D structures of a complex of the receptor, blindly docking the

ligands onto the receptor structure [27]. To predict the coordinates of the resulting

complex, there are different degrees of molecular flexibility that can be considered,

specifically both rigid, receptor rigid and ligand flexible or both flexible [28]. Proteins

are in constant motion between different conformation states with similar energies

and change their conformation to promote the interaction, therefore the receptor’s

flexibility needs to be considered in most cases, which is a limitation in most docking

simulation approaches due to all the different possible conformations.

The scoring function used in a docking simulation is essential to correctly predict

the 3D structure of the resulting receptor-ligand complex, as it is used to evaluate

each search result. Given the huge computational cost to use a very accurate scoring

function, most of scoring functions apply assumptions and simplifications. These

functions are essentially based on the intermolecular interaction energy and on the
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individual contributions of the receptor and the ligand [29].

The use of 3D structures is a realistic approach to model the interaction between

proteins and drugs, yet, the lack of information, the complexity of 3D structures and

the amount of time it takes to simulate, makes this kind of approaches inapplicable,

inefficient and unreliable in most cases. Besides, when the receptor’s 3D structure is

not available and there are proteins with similar sequence and structure known, it is

possible to use homology modeling [30] to predict the 3D structure. However, most

of the resulting structures are unreliable due to the fact that the resulting folding

of two proteins with similar sequences might be completely different.

Li et al. (2006) [31] developed an useful tool for target identification, Target Fishing

Dock (TarFisDock), which combines a database of potential drug targets with a

reverse ligand-protein docking approach to seek and identify possible protein targets

for a given small molecule. TarFisDock generates a protein target list, docks a small

molecule into the possible binding sites of the proteins and calculates the interaction

energy, based on Van der Waals and electrostatic interaction terms, to score the

resulting complex. The database contains proteins, with known 3D structures, that

are identified as targets in different therapeutic areas. This approach only considers

the ligand’s flexibility, not taking into account the receptor’s flexibility. Additionally,

it was able to correctly identify targets for vitamin E and 4H-tamoxifen.

Cheng et al. (2007) [32] designed a binding free energy model combined with param-

eters for drug like properties to predict the maximal affinity by a drug-like molecule

(drugability) using the crystal structure and physiochemical properties of the target

binding site. Computational geometry methods were used to represent the binding

site and calculate the necessary parameters of curvature and surface area from 3D

crystal structures. The affinity was calculated based on molecular driving forces for

binding.

Yang et al. (2011) [33] established a docking based method, Antithesis Chemical-

Protein Interactome, to mimic the differences in the drug-protein interactions across

a set of human proteins. The docking method gives a score array containing informa-

tion about the binding conformation and the binding strength. The docking scores

were normalized by drug and protein, resulting in a z-score capable of representing

essentially chemical and chemical-protein interactive effects. This approach was able

to identify an important biomarker, HSPA1A, an off-target of clozapine.
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2.3 Chemogenomic

The growth of available biological and chemical data useful for prediction resulted in

a higher usage of chemogenomic methods over the traditional methods. Chemoge-

nomic approaches are based on the chemical space of compounds, genomic space of

target proteins and/or the pharmacological space (interactions between proteins and

drugs) to predict new potential interactions [34]. Although these kind of approaches

can be divided into four major classes, including graph-based, network-based, ma-

chine learning and deep learning, the last two are mainly pursued due to the their

improved performance, to their capacity to fully use all the available information

and data to learn and discover new relevant interactions and also to the achievable

time-reward trade-off.

Yamanishi et al. (2008) [35] proposed a supervised method to infer DTIs, related

to four classes of important drug–target interactions in human involving enzymes,

ion channels, GPCRs and nuclear receptors, by integrating the chemical space and

genomic space into an unified space defined as the pharmacological space. The

chemical space is represented by a similarity matrix based on the similarity score

between chemical structures, the genomic space by a similarity matrix based on

Smith-Waterman’s normalized scores, which gives information about the similarity

between two protein sequences, and the pharmacological space by a bi-partite graph

projected into an Euclidean space, which represents the interactions between pro-

teins and chemicals. The proposed work uses a bi-partite graph learning method to

learn the correlation (similarity or closeness) between the chemical/genomic space

and the interaction space to infer new possible interactions (high scoring compound-

protein pairs). Although this method was not validated experimentally, the major

four datasets used in this work are still the base of many DTI studies. The bi-partite

graph learning method can be seen on figure 2.3.

Cheng et al. (2012) [36] proposed a network based inference (NBI) approach using

FDA approved drug-target binary links to infer new predictions. This method only

uses known drug-target bipartite network topology similarity to calculate predic-

tive scores for each drug and unlinked target. Unlike the work of Yamanishi et al.

(2008) [35], this approach makes new predictions solely based on the network topol-

ogy similarity, discarding the genome and chemical space similarity and therefore

not relying on any structural (3D) or sequential information. Besides, it only uses

known DTI information, thus for each new drug without any target information,

this approach can not make any target prediction. Some of the predictions were
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validated experimentally by in vitro assays, validating the prediction capacity of

this approach.

Figure 2.3: Yamanishi et al. (2008) bi-partite graph learning method. Image from
“Prediction of drug–target interaction networks from the integration of chemical
and genomic spaces” [35].

2.3.1 Machine Learning

The ability to make computers automatically learn how to perform particular tasks

based on a given sample of information led to the rise of machine learning methods.

These can be divided into 3 major groups, specifically, unsupervised, semi-supervised

and supervised [37]. Unsupervised methods are usually related to clustering and

associations problems, where the only information available is the input and there

is no knowledge about the corresponding output and therefore the goal is to learn

the intrinsic properties and relationships within the data, in order to organize it

into groups or to define rules. Supervised methods are used to predict the output

based on the input data, where the corresponding output is known for all the data.

Semi-supervised are a mix of these two, where unsupervised and supervised methods

are both applied and only a portion of the data has a known corresponding output.

In the problem context, most of the machine learning approaches pursued are su-

pervised or semi-supervised due to the considerable amount of available data, their

ability to learn relationships and patterns among the data related to proteins and

drugs and also because they can make new predictions based on the already known

and validated interactions. Each receptor and ligand is characterized by a set of

attributes (features), that combined describe a particular interaction. The machine

learning model can learn from these features and a target vector, which identifies
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the type of interaction (classification) or, on the contrary, gives information about

a specific continuous or discrete binding metric value (regression).

Given the bountiful variety of information available, it is possible to extract many

features related to receptors and ligands. Even though the amount of information is a

plus for machine learning approaches, most of these features are usually redundant

or not discriminating for a predictive model. Besides, if the number of features

is too great for the amount of samples, the performance of the model is usually

inferior in new data due to the curse of dimensionality. Therefore, nearly all machine

learning models require some kind of preprocessing over the data, which is usually

characterized as an effective search to assess and extract significant features. There

are many methods to evaluate the quality of the data and they are usually divided

into filters, wrappers or embedded, depending if they are independent or dependent

of the classifier or integrated, respectively [38].

Cobanoglu et al. (2013) [39] presented a method using probabilistic matrix factor-

ization (PMF) combined with active learning, without reliance on chemical/target

similarity or external data. This approach decomposes the connectivity matrix,

related to the DTI network, as a product of two matrices of latent variables that

express each drug/target, which objective is to determine the missing interactions

that are likely to exist. The active learning strategy used maximizes the discovery

of unknown predictions by updating the model based on new unknown predictions

discovered.

There are several machine learning approaches used in the prediction of DTIs, yet

RF and SVM are the most popular methods due to the performance achieved in

several studies. RF is an ensemble learning method that generates a chosen number

of decision trees and returns the class that is the mode of the classes across the output

of each individual decision tree [40]. SVM defines a hyperplane that maximizes the

separation margin between different classes and in the case of non linear separable

problems, it usually uses kernel tricks to map the data into high dimensional spaces

where it is possible to classify with linear decision surfaces [41].

Nagamine et al. (2007) [42] used SVM as the predictive model to infer new interac-

tions. Instead of using the conventional chemical and genomic descriptors, protein

sequences, chemical structures and mass spectrometry, which generates information

about the structure and physico-chemical properties, were encoded into numerical

values, based on the existence or frequency, and concatenated into features vectors.

Plus, this work evidenced the advantage of integrating mass spectrometry informa-

tion.
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Yamanishi et al. (2009) [43] proposed a supervised prediction method using bi-

partite local models, one based on chemical structure similarity and another one

based on sequence similarity between proteins. The prediction is done using two

SVMs to predict target proteins and drugs for a given drug or protein, respectively.

The results are combined to give a definitive prediction for each interaction.

Yu et al. (2012) [44] proposed a machine learning method, using RF and SVM as

the predictive models, to infer new interactions. In this work, chemical and protein

descriptors were combined to create the feature vectors. Additionally, the model was

validated using four different datasets associated with targets with pharmacology

relevance, specifically involving human enzymes, ion channels, GPCRs and nuclear

receptors.

Cao et al. (2014) [45] combined chemical data, MACCS fingerprints and/or sub-

structure fingerprints, biological data, protein descriptors, and network properties,

presence or absence of association, into feature vectors to be used in a predictive RF

model, to identify new DTIs. Four independent datasets related to interactions asso-

ciated with human enzymes, ion channels, GPCRs and nuclear receptors were used

to evaluate the performance. Additionally, this work demonstrated the usefulness

of using network topology data to predict DTIs.

2.3.2 Deep Learning

Biological learning systems are based on complex networks of interconnected neu-

rons, which concedes the ability to transfer information from several locations to

the place of action, assimilating knowledge and performing actions. The informa-

tion flows from one neuron to another across a synapse, which depends on action

potentials and chemical neurotransmitters. Neural computation is inspired by neu-

rons and their adaptive connections. An ANN is a computational model based on

the architecture of the brain, composed by several artificial neurons, which are iden-

tified as processing elements. Neurons are interlinked with other neurons in multiple

layers, defined as hidden layers [46]. An ANN architecture is usually composed by

an input layer, multiple hidden layers and an output layer. The input layer is asso-

ciated with the independent values that will be fed to the neurons that constitute

the hidden layers. The hidden layers are the middle layers between the input and

output, responsible to transform the input value into something capable of being

used by the output layer, optimizing the data according to the expected result. The

output layer is the result of the weighted sum of all the outputs given by the previous

layer, to which is applied an activation function. Therefore, each artificial neuron
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(Figure 2.4) is organized into 5 building elements:

Figure 2.4: Comparison of a biological neuron with an artificial neuron. Image
adapted from “www.alive.com/health/can-rewire-brains”.

1. Input: independent value that is fed to the neuron.

2. Weight: determines the influence/importance of that input/neuron.

3. Bias: “extra neuron” that moves the activation function to grant a better

representation of the data.

4. Activation Function: responsible for the activation or not of that neuron,

by applying a limit/transformation to the resulting value of the weighted sum.

5. Output: result of the weighted sum of all the outputs given by the previous

connected neurons, to which is applied the activation function. The output of

the ith neuron can be given by:

f(ai) = f(
∑
j

W ijX j + bi) (2.1)

, where W is the weight, X the input value and b the bias.

Additionally, neural networks, during the training phase, compare the output with

the expected result in order to update the network weights and reduce the error be-

tween these two. This process, done in each iteration, is defined as backpropagation

and depends on the optimizer, which defines the type of update, and loss function,

that measures the inconsistency between predicted and real values. The choice of

the optimizer and loss function is usually related to the type of data and problem

context, e.g., prediction or regression.

Deep learning can be defined as neural network architectures that have several hid-

den layers, usually three or more [47]. Even thought deep learning might be a subset

of machine learning, it is considered as the evolution of machine learning and there-
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fore standing on its own ground. These type of algorithms are capable of exploiting

the unknown structures in the data and discover hidden patterns that are capable of

representing high level features in terms of lower level features. Besides, conversely

to machine learning, they automatically discover the features that are going to be

considered as discriminating and important, without the need of any kind of fea-

ture engineering. Deep learning methods grow potentially with the amount of data

given to train, capable of further boosting the performance as more and more data

is fed to the network. They are considered as the state of the art in several areas of

interest, including image recognition and natural language processing [48].

Traditional machine learning approaches usually result in good performance, al-

though with the increased computational power and the vast amount of available

data, deep learning approaches are being used more often in DTI prediction, re-

sulting in even higher performance in most cases, due to their ability to identify

hidden and complex patterns (representations) of the data without using any kind

of feature engineering.

Tian et al. (2016) [49] proposed a deep neural network approach, based on a feedfor-

ward architecture, DL-CPI, to predict compound-protein interactions, where chem-

ical fingerprints and protein domains, which are binary vectors where “1” and “0”

indicate the presence or the absence of certain features, respectively, were used as

features. A deep feedforward architecture is constituted by several hidden layers

where the information flows in one direction, from the input layer, going through

the hidden layers, to the output layer. The proposed approach can be seen on Figure

2.5.

Figure 2.5: Deep feedforward neural network architecture. Image from “Boosting
compound-protein interaction prediction by deep learning” [49].

Peng Wei et al. (2016) [50] developed an approach known as multi-scale features
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deep representations inferring interactions (MFDR), where a certain type of deep

neural network architecture, autoenconder, is used to extract low dimensional rep-

resentations from chemical structure and protein sequence descriptors to be used

as features in an SVM model. Autoencoders use an unsupervised learning process

to compress and uncompress data into something that closely matches the original

data. The main purpose of this architecture is to extract a smaller set of features

that are able to represent the input data, performing reduction of the dimensionality.

Wen et al. (2017) [51] proposed a deep learning method, DeepDTIs, based on DBN.

This type of neural network architecture is made by stacking restricted Boltzmann

machines (RBMs), which is a graphical model that can learn a probability distri-

bution from input data. Therefore, DBN is a graphical model that learns how to

extract a deep hierarchical feature by modeling the distribution between the training

sample and the hidden layers. The features used were extracted from chemical sub-

structures and sequence order information (descriptors). The deep belief network

architecture can be seen on Figure 2.6.

Figure 2.6: Deep belief neural network architecture. Image from “Deep Learning
Based Drug Target Interaction Prediction” [51].

Xie et al. (2018) [52] used transcriptome data, z-score of genome wide gene expres-

sions, in a deep feedforward neural network to predict new drug-target interactions.

Besides, the approach had a built-in ability to adapt parameters according to the

changes of the surrounding environment. The results achieved, proved the effective-

ness of using transcriptome data in the prediction of DTIs.
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Data Preparation

3.1 Processing

Conversely to several studies in Section 2.3, where a DTI pair is represented by

a set of global and conventional descriptors related to different properties, we use

protein sequences and SMILES strings, which represent the chemical structure of

compounds, directly. Therefore, each amino acid of the sequence and each character

of the SMILE string is considered as a feature.

Proteins are constituted by an unique amino acid sequence, hence different proteins

have different sequence’s lengths. Identically to the proteins, each SMILES string is

composed by a unique set of characters that represent the chemical structure. Thus,

it was necessary to define a threshold for the length of the proteins sequences and

SMILES strings in order to guarantee that each protein and drug is characterized

by the same amount and “type” (order) of features, respectively.

In order to define the threshold, the distributions of the lengths of the proteins

and SMILES, respectively, of the datset are evaluated and an information threshold

based on a certain percentage, e.g., 95 %, is applied. Every protein and SMILES

string with a length superior or inferior to the threshold are removed or padded,

respectively. Although there were two possible methods to evade the elimination

of entries, one based on adding zeros to the maximum length of the distribution

(padding) and the other one based on identifying the binding regions and removing

only the non essential regions, it would lead to a lot of training noise or, in the case

of the second method, most of the times the locations of the binding regions are not

known for that specific interaction.

The processing methodology applied for the protein sequences and SMILES strings

is illustrated on Figure 3.1.
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Figure 3.1: Processing methodology applied for the protein sequences and SMILES
strings based on a length threshold derived from the lengths distributions and a
chosen percentage of information.

3.2 Representation

Due to the fact that we are using protein amino acid sequences and SMILES strings

directly, it was necessary to perform some kind of encoding to transform each se-

quential or structural character, respectively, into a numerical value, capable of

being used by the model. There are many types of encoding, all with the objec-

tive of transforming the initial input, usually categorical, into something useful and

usable by the model.

Fraction or frequency based encoding (Figure 3.2) are associated with representing

each character as the fraction or frequency, respectively, of each character type.

Figure 3.2: Fraction and frequency based encoding.

Integer based encoding (Figure 3.3) is a simpler kind of encoding that transforms

each character into an integer, based on the number of different characters.

Figure 3.3: Integer based encoding.

Relationships based encoding (Figure 3.4), known as word embedding or embed-

ding, transforms each character into a continuous numeric vector, mapping semantic
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meaning into a geometric space. A numeric vector is associated with each charac-

ter, where the distance between two vectors are capable of capturing the semantic

relationship between the two characters associated. This type of encoding allows to

find similarity between objects and represent the dependency of one character on

the other characters [53].

Figure 3.4: Word/Character embedding.

There is no golden rule to choose which encoding to use, however given the prob-

lem context, it is important to maintain the raw sequential and structural infor-

mation (type or character and order) and also to establish a good representation-

dimensionality trade-off.

3.2.1 Protein Sequence Encoding

We used Yu et al. (2010) [54] protein substitution table (Table 3.1), which orga-

nizes amino acids into 7 groups according to their physicochemical properties. Each

amino acid was encoded into an integer based on the corresponding group. This

representation allows to directly use protein amino acid sequences, preserve the se-

quential information (type and order) and also to reduce the amount of categories

from 20, associated with the number of possible amino acids, to 7.

Table 3.1: Yu et al. (2010) [54] protein substitution.

Groups Amino Acids

1 Ala, Gly, Val
2 Ile, Leu, Phe, Pro
3 Tyr, Met, Thr, Ser
4 His, Asn, Gln, Trp
5 Arg, Lys
6 Asp, Glu
7 Cys
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3.2.2 SMILES String Encoding

A simple integer encoding, based on the number of different characters, was used

to transform each character of the SMILES strings into a integer. A dictionary

containing 32 categories (number of different characters) was established (Table

3.2). This representation preserves the structural information, character and order,

and has a low computational cost given the amount of different characters.

Table 3.2: SMILES char-integer dictionary.

Integer Character

1 I
... ...
7 [
... ...
25 P
... ...
32 g
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Model

4.1 One-Hot Encoding Layer

Each amino acid and character of the proteins sequences and SMILES strings, re-

spectively, were encoded into integers according to the corresponding type of encod-

ing. However, these integers are recognized as categorical variables, representing the

amino acid group or type of character, therefore it was necessary to use an one-hot

encoding layer. This encoding scheme was applied to normalize the importance of

each categorical value, since higher categorical values would have more influence

than the others in the training process, leading to possible errors and misclassifica-

tions by the model. One-Hot Layer was used to assign a binary variable for each

unique integer value, converting every integer into a binary vector, which sets the

corresponding integer to “1” and “0” to the rest. In particular, this is illustrated in

Figure 4.1 with respect to myocyte-specific enhancer factor 2B (protein).

Figure 4.1: One-Hot encoding applied to myocyte-specific enhancer factor 2B.
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4.2 Convolutional Neural Network

Figure 4.2: Convolutional neural network architecture.

CNNs (Figure 4.2) are a specialized kind of neural networks, based on the visual

cortex where some neurons are only activated in the presence of edges in certain

orientations. Neurons in the convolutional layer look for specific features, producing

a stronger activation when they find them. These neural networks are known as

motif detectors and features extractors, capable of identifying deep patterns from

the data by moving from low level features to abstract concepts using learnable

feature maps. Although they are mostly a feature engineering tool, they are capable

of extracting representations not easily identified in the data and therefore known

as feature extractors. There are mainly three types of CNNs: 1D, 2D and 3D,

depending on the depth of the input.

They perform scattered interactions, conversely to the traditional neural networks

where a matrix multiplication, identified as the weighted sum of all the outputs given

by the previous connected neurons and to which is applied the activation function,

is performed and the neurons are all interlinked. These scattered interactions limit

the number of connections for each input, however, they are capable of describing

complex interactions between many variables using a lower amount of interactions.

The convolution layer is composed by filters, which are the basic units and identified

as arrays of weights that slide over the entire input. These filters work as feature

identifiers and convolute at each particular location, originating activation maps,

which are learnable feature maps used as the input in the next layer. The weights

of the filters are usually randomized at the start and then updated according to

the objective. The output volume depth (number of feature maps) is equal to the

number of filters in the layer and the depth of the filter has to be the same as the

depth of the input.

Convolution (Figure 4.3) is a specialized kind of linear operation, described as an
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element-by-element multiplication between a particular location of the input (ma-

trix) and the filter, followed by the sum of the results. Similar to the traditional

neural networks, an activation function is applied to every value of the feature maps.

Figure 4.3: Convolution operation.

The output can be given by:

Output =
Input Size− Filter Size+ 2 ∗ Padding

Stride
+ 1 (4.1)

Each filter can only extract one kind of features due to the parameter sharing,

as contrarily to the traditional neural networks, where each element of the weight

matrix is used once when computing the output of the layer and therefore the weights

and the bias of neurons are independent, the weights associated with the filter are

used in every position of the input where it slides over. Thus, in order to learn

more kinds of features, it is necessary to use more filters in parallel. However, the

parameter sharing allows to learn only one set of weights for every location for each

filter, reducing the number of weights necessary to be learned.

The number of steps that a filter moves along the input matrix, known as sliding

size, is defined as stride. This parameter, that usually has the value 1 in both

directions, can be modified to reduce the computational cost at the price of not

extracting important features.

Convolution layers are the main layers in a CNN, however depending on the problem

context, pooling layers and padding can also be applied. Pooling reduces the spatial

size, width and height, by replacing the output (feature maps) at a specific location

based on the nearby values and a specific function, e.g., max pooling extract the

maximum value within a selected neighborhood area of the output. This method is

usually used for dimensionality reduction, reducing the number of features and thus

useful to lower the number of parameters to be learned in the following layers, but
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also to preserve only the information about the presence of a certain feature rather

than its exact location, promoting the invariance of the input to translations. The

output of a pooling layer can be given by:

Output Pooling =
Input Size− Pool Size

Stride
+ 1 (4.2)

On the other hand, given the fact that after each convolution, the output reduces

in size, it is possible to use padding, which is characterized as adding “zeros”, to

preserve and control the size of the output.

These type of neural networks are known as the state of the art for image classi-

fication [55, 56, 57, 58], outperforming several traditional approaches due to their

capacity of being invariant to translations of the input, needing less parameters

(reduced computational power) and for not depending on several pre-processing

methodologies. Plus, some of the most recent studies apply this specific type of

deep neural architectures to learn deep hidden patterns from sequences or strings

[59, 60, 61, 62].

Two series of 1D convolutional layers were used, one for the protein sequences and

another for the SMILES strings, to uncover deep patterns (representations or lo-

cal dependencies) instead of the conventional physicochemical and/or structural

descriptors, as they are general descriptors of the whole sequence or chemical struc-

ture and therefore being non relevant, in most cases, to a possible real interaction,

or 3D structures, as the amount of available known structures is limited or highly

complex.

A global max pooling layer (Figure 4.4) was applied, after each series of convolutional

layers, to reduce the spatial size of each feature map to its maximum representative

feature. The obtained deep representations were concatenated into a single feature

vector, characterizing a DTI pair. The resulting features vectors were then used as

the input of a FCNN architecture.

Figure 4.4: Global max pooling.
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This whole process is illustrated in Figure 4.5. The two series of 1D convolutional

layers are applied to the protein sequences and SMILES strings, respectively, result-

ing in several feature maps, depending on the number of layers and filters. Then, to

each feature map, a global max pooling is applied, extracting the maximum repre-

sentative feature. The resulting features, obtained from the feature maps associated

with the proteins and SMILES, respectively, are concatenated into a single feature

vector, characterizing a DTI pair.

Figure 4.5: Two parallel CNNs, followed by a global max pooling, are applied to
protein sequences and SMILES strings, resulting in deep representations that are
concatenated into feature vectors.

4.3 Fully Connected Neural Network

Figure 4.6: Fully Connected Neural Network Architecture.

A FCNN (Figure 4.6) was used as a binary classifier to predict DTIs as positive

or negative. This type of neural networks are similar to the traditional neural

networks, where all the neurons are interlinked and the output is the result of the
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weighted sum of all the outputs given by the previous connected neurons and to

which an activation function, which determines the activation or not of the neuron,

is applied, and the path is only forward, as there are not feedback connections

between the neurons. The input of this architecture is the resulting representations

vectors obtained from the CNN architectures and the output a binary value, 0 or 1,

representing a negative or positive interaction, respectively. This architecture differs

from a traditional neural network by having more hidden layers (three or more).

Additionally, dropout (Figure 4.7) was applied between each fully connected layer,

known as a dense layer composed by several artificial neurons, to reduce the over-

fitting [63]. Deep neural network architectures have many non-linear hidden lay-

ers, therefore there are many complex relationships to be learned between inputs

and outputs, which can lead to training noise. Dropout is seen as a regularization

strategy, which helps reducing learning inter-dependency and improve the general-

ization of the model. It works by deactivating a given percentage of neuron which

develop co-dependency amongst each other during training. Although there are

several regularization strategies, dropout is an inexpensive but powerful method of

regularization.

Figure 4.7: Dropout technique applied to a portion of a FCNN.

This architecture was followed by an output layer, which is essentially composed by

one neuron that returns the type of interaction, 0 or 1, as it is a binary classification

problem, classifying the interaction as negative or positive, respectively.

This process is demonstrated in Figure 4.8. The resulting feature vectors, which

characterize DTI pairs, obtained from the two parallel CNNs model, are used as the

input of a FCNN architecture. Between each dense layer of the FCNN, a dropout

layer is applied, deactivating a given percentage of neurons. The final layer, identi-

fied as the output layer and constituted only by one neuron, gives a binary output,

predicting the DTI pair as positive or negative.
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Figure 4.8: Feature vectors, obtained from the two parallel CNNs model, are used
as the input of a FCNN, which is followed by a binary output layer.

4.4 Model Overview

The proposed approach is based on the combination of two deep neural network

architectures, CNN and FCNN, constituting a deep learning model to predict the

interactions between targets (proteins) and compounds (drugs) directly using 1D

raw data, protein amino acid sequences and SMILES strings.

Protein sequences and SMILES strings are initially processed based on the length,

as mentioned in Section 3.1, and then encoded into integer values according to the

encoding scheme, Section 3.2.1 and 3.2.2, respectively.

These integer values are still considered as categorical values, therefore an one-hot

encoding layer is applied to normalize the importance and assign a binary vector to

each value.

Two parallel CNNs are used to extract deep representations from the protein se-

quences and SMILES, respectively. These deep representations are identified as

deep patterns or local dependencies that express relevant sequential and structural

regions for the prediction of DTIs.

The representations obtained are concatenated into feature vectors, characterizing

DTIs, and used as the input of a FCNN. This architecture acts as a binary classifier,

predicting the type of interaction as positive or negative.

The proposed end-to-end deep learning approach to predict DTIs is illustrated in

Figure 4.9.
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Figure 4.9: Drug-Target Interaction model architecture.
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4.5 Hyperparameter Optimization Approach

The most common approach to determine the best model architecture and set of

parameters is grid search with cross-validation, where the dataset is divided into

training to train the model, validation to evaluate the model architecture and pa-

rameters and testing to evaluate the performance and generalization of the model.

However, another strategy was applied for hyperparameter optimization (Figure

4.10) due to the fact that dividing the training set into training and validation led

to high scores for every model architecture and set of parameters in both training

and validation. Therefore, it was not possible to select the best model using this

approach, as every model was supposedly good in the validation set but the results

were inconsistent when applied to the testing set.

Figure 4.10: Hyperparameter optimization model based on grid search.

Two simultaneous methods, combined with grid search were used to determine the

best model, early stopping and model checkpoint. Early stopping allows to interrupt

the training process if, after a chosen number of epochs, there is no improvement of

the evaluation metric. On the other hand, model checkpoint saves the best model,

including the parameters, for that training run, independently of the finishing epoch.

Considering that splitting the training set into training and validation was not rele-

vant for the discovery of the best model, we used the whole training set for training

and the testing set to evaluate the model performance at each epoch. Since the test-

ing set is highly imbalanced, F1-score, which is an harmonic mean that considers

both the precision and recall and therefore an overall goodness of the classification,
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was used for this evaluation.

The resulting methodology for hyperparameter optimization can be considered as

a valid choice due to the fact that both datasets are independent and with a low

similarity between the drug pairs that composed them. Besides, the main goal is

to evaluate the capacity of CNNs to obtain useful representations of sequential and

structural data to predict DTIs and how they perform against using global and

conventional descriptors.
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Experimental Setup

5.1 Datasets

5.1.1 Protein Sequences & SMILES Strings Dataset

DTI Pairs

Coelho et al. (2016) [64] DTI dataset, mainly the interactions pairs, was used as

benchmark to evaluate and validate the proposed model. Positive interaction dataset

was obtained from DrugBank [65] and Yamanishi et al. (2008) [35], where all entries

related to specific classes of protein targets and proteins with unreviewed status were

removed. On the other hand, the negative interaction dataset was collected from

BioLiP [66] and BindingDB [67], where a bioactivity threshold of 10 µM was used

to identify weak binding interactions. Interactions with a Kd, which is related to

how tightly the compound is bound to a protein and therefore known as a binding

affinity metric, superior of 10 µM are considered as true negative [68]. A ratio of

1.5 negative to positive was adopted, resulting in 7206 positive and 10,912 negative

DTI pairs for training and 3,530 positive and 5,297 negative DTI pairs for testing.

Additionally, only Yamanishi et al. (2008) [35] and DrugBank [65] positive entries

were used for training and testing, respectively.

The original work [64] ensured the discriminating power by evaluating the sequence

similarity within each dataset and across all datasets and guaranteeing that less

than 1% of all possible drug pairs had a sequence similarity score greater than 0.85,

excluding any possibility of redundancy between the two datatsets, training and

testing.

Table 5.1 summarizes the amount of unique drug, targets and drug-target inter-

actions extracted from the databases and used to create the training and testing

datasets, respectively.
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Table 5.1: Unique drugs, targets and DTIs.

Positive Negative

DrugBank [65]
Yamanishi

et al. (2008) [35]
BioLip [66] BindingDB [67]

Drugs 1328 790 894 12454
Targets 706 1371 636 404

DTI 3530 7206 1223 14985

Protein Data

The protein sequences were all extracted from UniProt [69] using their identifiers,

e.g., P00489. Since we are using proteins sequences directly and not global descrip-

tors of the sequence, each amino acid that constitutes the sequence is considered as

a feature. Therefore, it was necessary to define a threshold based on their length, as

mentioned in Section 3.1. An information threshold of 95 % was used, resulting in

a maximum length of 1205 for the protein sequence. Every protein sequence with

a length superior or inferior to the threshold was removed or padded, respectively.

Figures 5.1a and 5.1b show the protein sequence length distribution for the training

and testing set, respectively.

Chemical Data

The SMILES strings were collected exclusively from PubChem [70], in their canon-

ical format, to guarantee a consistent notation to represent the chemical structures

of all drugs across both datasets. Each character of the SMILES string is considered

as a feature, therefore if different notations were to be used to represent the chemical

structures, equal segments of the compounds would be seen as different components

by the model, resulting in eventual errors.

The dataset contains IDs from multiple databases, including PDB [71], KEGG [72],

ZINC [73, 74] and Drugbank [65], thus it was necessary to convert them to PubChem

[70] compounds IDs first in order to extract the SMILES strings. Python packages,

PyPDB [75], BioServices [76] and PubChemPy [77], were used for conversion and

extraction. Identical to the protein sequences, a threshold based on their length

was also applied, resulting in a maximum length of 90 for the SMILES strings, and

all compounds with a length superior or inferior to the threshold were removed

or padded, respectively. Figures 5.1c and 5.1d show the SMILES string length

distribution for the training and testing set, respectively.
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(a) (b)

(c) (d)

Figure 5.1: Distribution of the proteins and SMILES lengths of training and testing
datasets. (a) Training protein sequences. (b) Testing protein sequences. (c) Training
SMILES. (d) Testing SMILES.

Training & Testing Synopsis

All entries duplicated or containing missing characters in one of the datasets, training

and testing, were removed. Table 5.2 summarizes the result of elimination and Table

5.3 the amount of unique targets, drugs and number of targets for the training and

testing datasets, respectively, after elimination.

Table 5.2: Training and testing datasets after elimination.

Positive Negative Total

Training 5839 10172 16011
Testing 3012 4914 7926
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Table 5.3: Unique targets, drugs and number of targets for the training and testing
datasets.

Unique Number of Targets

Targets Drugs 1 >1
Training 1790 9583 8026 1557
Testing 1068 5718 4884 834

5.1.2 Coelho et al. (2016) Descriptors Dataset

The effectiveness of using representations over descriptors was evaluated by using

the original work descriptors [64]. This dataset contains a total of 432 protein de-

scriptors and 323 drug descriptors, all collected using PyDPI package [78]. The

protein descriptors are divided into amino acid composition, Moran autocorrelation

and CTD descriptors. On the other hand, drug descriptors are divided into molec-

ular constitutional, molecular connectivity, molecular property, kappa shape and

charge descriptors, MACCS keys and E-state fingerprints.

There was no feature selection performed as the main purpose was to compare

the performance of using the CNNs to obtain important sequential and structural

representations with already performed work using global descriptors. This dataset

was used in the Section 5.3, 5.4 and 5.5 models.

5.1.3 Specific Descriptors Dataset

The model of Section 5.6 evaluates the influence of a specific group of descriptors,

namely CTD descriptors for proteins and charge, molecular property and molec-

ular connectivity descriptors for compounds. The CTD descriptors represent sev-

eral structural and physicochemical properties, specifically hydrophobicity, polarity,

charge, polarizability, normalized Van der Waals volume, secondary structures and

solvent accessibility. On the other hand, charge descriptors express electronic fea-

tures and molecular property and connectivity descriptors represent a handful of

physicochemical properties. The main reason behind the choice of these descrip-

tors was that they represent specific and intrinsic properties of the proteins and

compounds.

The Python package PyDPI [78] was used to extract all the descriptors, resulting in

a total of 147 CTD (21 Composition, 21 Transition and 105 Distribution) descrip-

tors, 44 molecular connectivity descriptors, 25 charge descriptors and 6 molecular
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property descriptors.

5.2 Main Model

A deep neural network architecture is used to predict the interaction, as positive

or negative, between drugs and targets based on 1D raw data, protein amino acid

sequences and SMILES strings. Conversely to the traditional hyperparameter op-

timization approaches, we used the testing set to evaluate the model performance,

based on F1-score, at each epoch, as it was explained in Section 4.5, to find the best

model and set of parameters. The model has several parameters possible to hyperop-

timize, however we only selected six: number of filters for proteins and compounds,

filter length for proteins, filter length for compounds, number of neurons for each

dense layer, dropout rate and optimizer learning rate. A wide range of possible val-

ues was given for each hyperparameter and the number of convolutional layers and

dense layers was fixed at three. There is currently no golden rule to determine the

number of layers for each neural network architecture (CNN and FCNN), however

an exponential increase of the number of layers usually does not result in better

performance due to the higher computational power and tendency to overfitting.

The goal of deep neural networks is to learn representations from the lower layers

that can be used by the higher layers and each individual neural network architec-

ture with an optimized choice of parameters should be able to fulfill they purpose

without needing an excessive number of layers.

The training/learning process of a deep learning neural network architecture highly

depends on the activation function, gradient descent optimizer and loss function.

The activation function is responsible for the activation or not of each neuron, by

applying a limit/transformation to the result of the weighted sum. There are many

different types of activation functions, including linear, sigmoid and ReLU. Linear is

the simplest activation function, where the value does not suffer any transformation.

It is easier to train with but can not learn complex relationships in the data.

L(x) = x (5.1)

Sigmoid is a non linear activation function, also known as the logistic function,

where the input is transformed into a value between 0 and 1. In the case that the

input is lower or larger than 0 or 1, they are transformed to 0 or 1, respectively. The

drawbacks of non linear activation functions is that they easily saturate, making

it difficult for the learning algorithm to continue to adapt the weights, leading to
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the gradient vanishing problem, which makes it difficult to know which direction

the parameters should move to improve the loss function, and are only sensitive to

changes around their mid-point. Nonetheless, this function was used as the output

activation function of the FCNN, given the fact that this layer’s only purpose is

to classify the interaction as positive or negative, if the previous value is higher or

lower than 0.5, respectively.

S(x) =
1

1 + e−x
(5.2)

ReLU is a nearly linear activation function that preserves the main properties of the

linear and non linear activation functions. It returns zero if it receives any negative

input (non linear) or the value itself if any positive input (linear). This activation

function allows to learn complex relationships in the data, provides sensitivity to

the activation sum input, avoids saturation and easier to optimize with gradient-

based methods. Besides, it is simple to compute and used in most deep learning

architectures.

R(x) = max(0,x) (5.3)

Gradient descent is used to train the deep neural network architecture and is consid-

ered as an optimization algorithm. It tries to minimize an objective function based

on the model’s parameters by updating the parameters in the opposite direction

of the gradient of the objective function. This type of algorithms are associated

with a learning rate that determines the size of the steps it takes to reach a local

minimum. In other words, a prediction error, determined by the chosen loss func-

tion, is calculated and used to estimate a gradient that is propagated backwards

(backpropagation) through the network from the output layer to the input layer

and updates the weights. There are two types of problems that may happen during

the gradient descent optimization, specifically the vanishing gradient and exploding

gradient. The vanishing gradient problem happens when the error is so small that

when it reaches the input layer, the update it performs has very little effect. On the

other hand, the exploding gradient problem occurs when the gradient exponentially

increases as it is propagated backwards. There are many different types of gradi-

ent descent based methods, e.g., SGD, RMSprop and Adam. However, given the

problem context and the usually good performance obtained from using Adam, we

decided to use only Adam in the CNNs and FCNN.

Adam [79], known as a combination of RMSprop and SGD with momentum, is

an adaptive learning rate optimization algorithm that computes individual learning

rates for each parameter. It uses estimators of the first and second moments of
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gradient, mean and uncentered variance, respectively, to adapt the learning rate for

each weight. Additionally, it was combined with mini-batch, which instead of using

the entire dataset to compute the gradient, only a certain number of samples are

used in every iteration, reducing the variance of the parameter updates and being

less prone to overfitting.

Wt = Wt 1 − η
m̂t√
v̂t + ε

(5.4)

, where W is the weight, η the step size and m and v the moving averages.

Loss functions are used to measure the inconsistency between predicted and real val-

ues and therefore play an important role in the learning/training process of the deep

neural network architecture. Binary cross entropy was selected as the loss function

and measures the divergence between two probability distributions, in which y is

the label and p(y) is the predicted probability:

L(θ) = − 1

n

n∑
i=1

[yilog(pi) + (1− yi)log(1− pi)] (5.5)

Additionally, taking in account the existing class imbalance of the training set (64%

and 36 % for the negative and positive class, respectively) we decided to switch class

weights, giving special attention to the positive class, as the primary focus is around

positive interactions.

Table 5.4 summarizes the hyper-parameters obtained from grid search.

The proposed model performance was compared with an RF approach, an FCNN

architecture, an SVM approach and also an CNN, autoencoder and FCNN combined

model. Random forest and Support vector machine are the most used traditional

machine learning approaches and considered as the state of the art in several studies

mentioned in Section 2.3.1, therefore it was important to compare the performance of

the proposed setup (deep learning architecture) with these two methods as well as the

effectiveness of using representations over descriptors. Besides, RF was the method

used in the referenced work [64], which is based on descriptors, thus important to

validate and evaluate the capacity of the proposed setup.

Additionally, it was crucial to compare the differences of using deep learning using

both representations and descriptors, in order to evaluate the quality and discrimi-

natory power of the representations obtained from the CNNs and also the disparity

of using deep and machine learning with the same data as input.
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Table 5.4: Parameter settings for the proposed model.* Initial number of epochs
to allow convergence of the model, however early stopping and model checkpoint
were used.

Parameters Value

Number of Convolutional Layers 3
Number of Dense Layers (FC) 3
Number of Filters [128, 256, 384]
Filter Length (Proteins) [3,4,5]
Filter Length (Compounds) [3,4,5]
Epochs* 500
Hidden Neurons [128,128,128]
Batch Size 256
Dropout Rate 0.5
Optimizer Adam
Learning Rate 0.0001
Loss Function Binary Cross Entropy
Activation Function (CNN) ReLU
Activation Function (FC) ReLU
Activation Function Output) Sigmoid
Class Weights (imbalanced classes) {0: 0.36, 1: 0.64}

Even thought the novelty of the proposed work is to use 1D sequential and structural

data combined, discarding completely the use of conventional and global descriptors

of the proteins and drugs, to predict DTIs, we decided to evaluate the influence

of characteristics considered as intrinsic properties of the proteins and drugs in the

correct prediction of DTIs.

Python 3.6.6 and Keras [80] with TensorFlow [81] back-end were used to develop the

proposed model. The experiments were run on 2.20GHz Intel i7-8750H and GeForce

GTX 1060 6GB.

5.3 Random Forest

RF is an ensemble learning method that generates a chosen number of decision

trees and returns the class that is the mode of the classes across the output of

each individual decision tree. Decision trees are the building blocks of the forest

and they can be defined as series of if-then-else rules that divide the dataset into

smaller subsets until the predicted class or value is achieved or when the impurity

can no longer be reduced. The rules (nodes) are based on a single feature and a

specific threshold according to the combination that generates the less impurity,

e.g., entropy, for the tree. Each decision tree, at each node, in the RF approach,

only considers a subset of features that are randomly chosen. Additionally, not all
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samples are used to build each tree, only a random selected portion of the dataset

is used to build the tree, where the other one is used to estimate the generalization

accuracy (out-of-bag). The randomness of the whole process increases the diversity

among the trees, making them grow dissimilar and uncorrelated. This method is

capable of describing the relationship between independent and dependent variables

with high flexibility and sufficient accuracy due to being highly adaptive to data.

Figure 5.2: Random Forest.

RF was the ensemble learning method used by the original work [64] to make pre-

dictions on drug-target interactions. The hyperparameters setting for this method

was the same as the original work and obtained using 5-fold cross-validation. This

method, denominated of K-fold cross-validation, splits the training set into K sub-

sets and then uses 1 for testing/evaluation and the rest for training, repeating the

process K-1 times. It is usually used to evaluate the current model settings and also

to investigate if it is overfitting.
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Figure 5.3: K-fold cross-validation.

Table 5.5 summarizes the parameter settings for the RF model.

Table 5.5: Parameter settings for the RF model.

Parameters Value

n estimators 150
max features 100
criterion Gini
max depth None
min samples split 2
min samples leaf 1
max leaf nodes None

The n estimators refers to the number of trees in the forest, max features to the

number of features to consider when looking for the best split, criterion to the

measure of impurity, which Gini was selected and measures how often a randomly

chosen element would be mislabeled if it was randomly labeled according to the

distribution of labels in the respectively subset, max depth to the maximum depth

of the tree, min samples split to the minimum number of samples to split a node,

min samples leaf to the minimum number of samples to form a node and max leaf

nodes to the limit of nodes.

Coelho et al. (2016) [64] descriptors and protein and SMILES representations ex-

tracted from the pre-trained proposed setup were used to evaluate the performance

of this approach. Scikit-learn [82] was used to implement the RF method.
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5.4 Fully Connected Neural Network

Figure 5.4: FCNN model using descriptors as input.

The proposed approach already uses a FCNN as a binary classifier, however the

performance of this method was evaluated using descriptors, in order to compare

the performance of using representations over descriptors and also the performance

of using deep learning over traditional machine learning.

The parameter settings for the architecture were obtained by grid search using the

hyperparameter optimization approach mentioned in Section 4.5. Table 5.6 summa-

rizes the parameter settings for this architecture.

Table 5.6: Parameter settings for the FCNN model using descriptors as input.
*Initial number of epochs to allow convergence of the model, however early stopping
and model checkpoint were used.

Parameters Value

Number of Dense Layers (FC) 3
Epochs* 500
Hidden Neurons [128,1024,256]
Batch Size 256
Dropout Rate 0.2
Optimizer Adam
Learning Rate 0.001
Loss Function Binary Cross Entropy
Activation Function (FC) ReLU
Activation Function (Output) Sigmoid
Class Weights (imbalanced classes) {0: 0.36, 1: 0.64}

5.5 Support Vector Machine

SVM defines a hyperplane that maximizes the separation margin between different

classes. In the case of problems that are not linearly separable, SVM uses two
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different approaches: soft-margin and kernel tricks. Soft-margin tolerates violations

of the margins and gives a penalty term for misclassifications. The tolerance given

when finding the decision boundary is represented by the penalty term C, which is

responsible for the number of violations allowed. Given the amount of features and

that most of the problems are not linearly separable, kernels, which are identified as

functions capable of transforming the data, are used to map data to high dimensional

spaces where it is possible to classify with linear decision surfaces. Some of the

kernels used are Linear, Gaussian Radial Basis Function, Polynomial and Sigmoid.

Figure 5.5: Support Vector Machine. Image from “Support vector machines for
drug discovery” [83].

The parameter settings were obtained using 5-fold stratified cross-validation, which

contrarily to K-fold cross-validation, ensures that each fold contains roughly the

same proportion of each class. Table 5.7 summarizes the parameter settings for the

SVM model.

Table 5.7: Parameters Setting for the SVM Model.

Parameters Value

C 1.0
kernel rbf
gamma scale
tol 0.001

The parameter C refers to the penalty term and is responsible for the number

of violations allowed, tol to the tolerance for the stopping criterion, kernel to the

function used to transform and map the data and gamma to a coefficient of the
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kernels and associated with the “spread” or decision region of the kernel. RBF uses

the following equation to transform the data:

K(x,x′) = exp(−|| x− x
′ ||2

2σ2
) = exp(−γ || x− x′ ||2) (5.6)

, where x and x’ are two data points, || x − x′ ||2 the euclidean distance be-

tween the two data points and σ a free parameter that is usually represented in

the form of γ, where γ = 1
2σ2 . The parameter γ set to “scale” uses for it’s value

1
num features∗variance(x)

Similar to the RF approach, both descriptors and protein and SMILES deep rep-

resentations were used to evaluate the performance. Scikit-learn [82] was used to

implement this classifier.

5.6 CNN, Autoencoder and FCNN Combined

Model

In order to determine the influence of specific descriptors to the overall prediction

of drug-target interaction, a model based on CNNs, Autoenconders and FCNNs was

used to evaluate this influence and compare it with the proposed setup (Figure 5.6).

Identical to the proposed model, two parallel CNNs were used to extract deep rep-

resentations from protein sequences and SMILES strings, where the pre-trained

proposed setup was applied for this purpose.

Autoencoders (Figure 5.7) are a specific type of neural network architecture, where

the learning process is done in an unsupervised manner. The main purpose of this

architecture is to perform a reduction of the feature input space by compressing the

data and then uncompress it into something that closely matches the original data.

Hence, it allows to extract a smaller set of features that represent the input data,

by performing dimensionality reduction with some data “denoising”. The select

layer, known as “the bottleneck” or code layer, is where the smaller set is extracted

from and in which maximum reduction is achieved through encoding. The goal

behind using this architecture is to represent a specific group of descriptors in a

lower dimension space, in the form of deep representations.
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Figure 5.6: CNN, Autoencoder and FCNN combined model.

An autoencoder was applied on the particular group of descriptors mentioned in

Section 5.1.3. The model uses a stack of dense layers, three for encoding and de-

coding, respectively. Early stopping and model checkpoint based on the loss value

were applied to find the best set of weights for the network. The difference between

the output and input is the goal to minimize, therefore MSE was used as the loss

function:

MSE =
1

n

n∑
i=1

(Y i − Ŷ i)
2 (5.7)

, where n is the number of values, Y i the real values and Ŷ i the predicted values.
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Figure 5.7: Autoencoder architecture.

This resulted in a dimensionality reduction of 222 descriptors to 32 deep representa-

tions. Keras [80] with TensorFlow [81] back-end was used to build this architecture.

Table 5.8 summarizes the parameter settings for the autoencoder model.

Table 5.8: Parameter settings for the autoencoder model. * Initial number of
epochs, however early stopping and model checkpoint were applied.

Parameters Value

Number of Encoding Dense Layers 3
Number of Decoding Dense Layers 3
Encoding Hidden Neurons [128, 64, 32]
Decoding Hidden Neurons [64,128,222]
Epochs* 500
Batch Size 256
Optimizer Adam
Learning Rate 0.0001
Loss Function Mean Squared Error
Activation Function ReLU
Activation Function (Output) Sigmoid

The obtained features from the two pre-trained models were concatenated into a

single feature vector and used as the input of a FCNN. Grid search based on the

hyperparameter optimization approach of Section 4.5 was performed. Table 5.9

summarizes the parameter settings for the FCNN architecture.
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Table 5.9: Parameter settings for the FCNN related to the combined model. *
Initial number of epochs, however early stopping and model checkpoint were applied.

Parameters Value

Number of Dense Layers (FC) 3
Epochs* 500
Hidden Neurons [512,256,1024]
Batch Size 256
Dropout Rate 0.2
Optimizer Adam
Learning Rate 0.001
Loss Function Binary Cross Entropy
Activation Function (FC) ReLU
Activation Function Output) Sigmoid
Class Weights (imbalanced classes) {0: 0.36, 1: 0.64}

5.7 Evaluation Metrics

There are many metrics used to evaluate the performance and the capacity of the

models as predictors. However, the choice of which ones to use, highly depends

on the problem context and the distribution of the labels of the testing set. Even

though the basis of them all is to compare the predict labels with the true labels,

each evaluation metric evaluates particular things and is influenced differently by

the distribution of the labels and results.

For performance comparison, the following evaluation metrics were used:

1. Accuracy: rate of predictions correctly classified.

Accuracy =
TP + TN

TP + FP + TN + FN
(5.8)

2. Sensitivity: rate of positives correctly classified.

Sensitivity =
TP

TP + FN
(5.9)

3. Specificity: rate of negatives correctly classified.

Specificity =
TN

TN + FP
(5.10)
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4. F1-Score: harmonic mean between precision and recall.

Precision =
TP

TP + FP
(5.11)

Recall =
TP

TP + FN
(5.12)

F1− Score = 2 ∗ precision ∗ recall
precision+ recall

(5.13)

5. Confusion Matrix: two-dimensional table that allows visualization of the

performance of the algorithm.

Figure 5.8: Confusion matrix.

TP: True Positive, TN: True Negative, FP: False Positive, FN: False Negative

Accuracy is one of the most used metrics to evaluate the performance of a predictive

model, as it is a direct comparison of the results with the expected labels. However, it

can be misleading if the testing set is highly imbalanced, resulting in good values even

when the classifier is performing poorly, e.g., it correctly classifies only the dominant

class/classes. Sensitivity and Specificity are usually used in binary classification

problems to evaluate the capacity of the model to predict both classes. F1-score

is highly used, specifically in imbalanced problems, due to the fact that it gives an

overall idea of the performance of the model.
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In the context of drug repositioning and finding new leads, identifying correctly

positive interactions should be the central focus, as negative interactions are not

normally registered and therefore based on possible hypotheses or absence of in-

formation. Nonetheless, the model needs to be able to accurately distinguish both

types of interactions, positive and negative, in order to validate its effectiveness and

also to guarantee that possible new findings, that is, the discover of new positive

interactions associated with a certain drug, are potentially credible and therefore

legitimate the identification of that drug as a possible lead.

Table 6.1 and Table 6.2 show the overall experimental results for the deep learning

and machine learning approaches, respectively, in terms of the metrics mentioned in

Section 5.7. The confusion matrix for the proposed setup is shown in Figure 6.1.

Table 6.1: Prediction results of testing set for the deep learning approaches.

Model

CNN+FCNN CNN+Autoencoder+FCNN FCNN

CNN Representations CNN+Descriptors Representations Descriptors

M
e
tr

ic Sensitivity 0.861 0.880 0.827
Specificity 0.961 0.948 0.963
F1-Score 0.895 0.896 0.876
Accuracy 0.923 0.922 0.911

Table 6.2: Prediction results of testing set for the machine learning approaches.

Model

Random Forest SVM RBF

Descriptors CNN Representations Descriptors CNN Representations

M
e
tr

ic Sensitivity 0.809 0.821 0.739 0.769
Specificity 0.989 0.992 0.989 0.993
F1-Score 0.886 0.896 0.842 0.864
Accuracy 0.921 0.927 0.894 0.908
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Figure 6.1: Confusion matrix of testing set classification for the proposed model.

The differences in performance between all models can be interpreted as a result

of the difference between using deep representations, obtained using protein se-

quences and SMILES strings, and global descriptors. Besides, it is also possible

to highlight the difference between applying traditional machine learning and deep

learning approaches. Thus, there are essentially four research questions that need

to be answered:

1. How does the proposed model performs in the correct prediction of

both positive and negative interactions?

The proposed approach is based on the concept of using an end-to-end deep learning

process, capable of extracting deep representations from data and then use them as

input of another deep learning architecture. Two parallel CNNs were used to extract

deep representations from protein sequences and SMILES strings and then used as

the input of a FCNN.

The end-to-end deep learning proposed method resulted in a high sensitivity (0.861)

and specificity (0.961) when compared to the other models, which obtained a high

specificity and a low sensitivity, with the exception of the CNN, autoencoder and

FCNN combined model that resulted in a high sensitivity (0.880) and a low speci-

ficity (0.948).

The testing set is imbalanced, 62% negatives and 38% positives, thus our approach

exceeds other models in its capability to correctly classify both positive and negative

drug-target interactions, achieving better results overall.

2. How discriminating are the representations in comparison to the global

descriptors?
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The results obtained by the proposed model validate the effectiveness of CNNs as fea-

ture extractors and their capacity to automatically surmise and identify important

sequential and structural regions for drug-target interactions, as they outperform

completely the results achieved using a FCNN with global descriptors.

The RF method evidences that using deep representations outperforms conventional

global descriptors in every evaluation metric, which is also manifested when using

a SVM. Besides, RF surpasses SVM in both configurations, which is in agreement

with the notion that this method usually runs adequately on large datasets and is

less susceptible to overfitting.

Protein and compound representations learned from sequential and structural infor-

mation with CNNs are more discriminating for classification than global descriptors.

Furthermore, these representations are extracted from sequential and structural raw

data, hence the CNNs are automatically learning which sequential and structural

regions are relevant for a drug-target interaction. Conversely, conventional descrip-

tors are general information about the whole sequence or structure and not specific

to the binding regions.

3. Does deep learning completely outperforms traditional machine learn-

ing in every situation?

The model based on a FCNN architecture with conventional descriptors as input,

shows that deep learning in its essence is not enough to completely outperform

traditional machine learning approaches. This is illustrated when comparing the

evaluation metrics, which are higher, specifically the sensitivity (0.827), F1-score

(0.876) and accuracy (0.911), than the SVM approach but lower, with the excep-

tion of the sensitivity (0.827), than RF method in both configurations, respectively.

Moreover, it highlights the inefficiency of using global descriptors over deep repre-

sentations extracted from CNNs. Inevitably, the quality and discriminatory power

of the input data have a great influence in the performance achieved.

4. How useful are specific descriptors in the correct prediction of inter-

actions?

Although the efficiency of using CNNs to extract deep representations over global

descriptors is verified, we decided to evaluate the influence of specific descriptors

encoded as deep representations by an autoencoder combined with proteins and

SMILES deep representations. The results demonstrate that using additional in-

formation may be useful to correctly identify positive interactions, which is verified

by achieving the highest sensitivity (0.880). However, it has the lowest specificity
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of all models (0.948), meaning it has more difficulty to accurately classify negative

(non existing) interactions. Nonetheless, the majority of the input is obtained from

the CNN model, 768 protein and SMILES deep representations and 32 descriptors

deep representations, which proves again the capability of this deep feature extrac-

tor model. Moreover, it reinforces the fact that using end-to-end deep learning

approaches result in better performance overall.

Shortcomings

The results achieved with the proposed model, when compared to traditional ma-

chine learning methods and the conventional use of global descriptors, indicate a

notably better performance, leading to significant confidence in its capacity and ef-

ficiency in the prediction of DTIs. Nevertheless, there are some points that can be

further improved and in which the model struggles to achieve maximum effective-

ness.

The main purpose of this work was to evaluate the capacity of CNNs to automatically

identify important sequential and structural regions and extract useful representa-

tions from 1D raw data for DTI prediction and also to compare the performance

against using global and conventional descriptors. Therefore, it was essentially to

select a valid dataset that was used in a DTI prediction study based on descriptors

and machine learning and also that the drug pairs of the training and testing set

had a low similarity between them, to ensure the discriminatory power of the model.

However, deep learning architectures substantially improve with the amount of data

given to train, enabling the discovery of more and potential hidden relationships and

patterns. On that account, the size of the dataset used to train could be improved.

Nonetheless, the results are surprisingly good given the size and the class disparity

of the dataset.

Usually, data is divided into three datasets, training, validation and testing sets.

However, we had to use the hyperparameter optimization approach of Section 4.5

due to the fact that dividing the training set into training and validation led to

high scores for every model architecture and set of parameters in both training and

validation and the results were inconsistent when applied to the testing set. Even

though the training and testing are completely independent and with low similarity

between the drug pairs that composed them, there is no external validation set,

which can lead to the idea that model is “overfitting” the testing data. Still, we

believe that in order to validate and evaluate this approach and its capacity to
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predict DTIs, the method used for hyperparameter optimization was a valid choice,

given the facts considered.

Lastly, the proposed approach is a binary classification model, which only classifies

the interactions as positive or negative. Thus, it does not give any information

about the binding affinity or binding strength of the interactions and hence not

being specific to the chemical nature of the interaction. However, the main goal was

to validate the effectiveness of using sequential and structural data combined and

also the capacity of CNNs to automatically extract meaningful deep representations

of these type of data in the prediction of DTIs. On that account, given the results

obtained, we believe that the goal was fulfilled.
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Conclusion

We proposed an end-to-end deep learning approach for drug-target interaction pre-

diction, capable of automatically feature (deep representations) extraction from 1D

sequential and structural raw data, protein sequences and SMILES strings, using

two parallel CNNs. We compared the performance of this model with traditional

machine learning methods, RF and SVM, using both descriptors and deep repre-

sentations, a deep learning approach based on a FCNN with global descriptors as

the input and also an CNN, autoencoder and FCNN combined model, that uses

as input a combination of deep sequential representations obtained from the CNNs

and deep descriptors representations from the autoencoder. Our approach yielded

better results in the correct classification of both positive and negative interactions,

demonstrating its viability for practical use.

Deep learning has shown an overwhelming success in many classification studies for

its capacity to learn deep hidden patterns from the data. Additionally, our model

illustrates the remarkable ability of applying these approaches, specifically CNNs,

to automatically extract deep representations, identified as local patterns or depen-

dencies, and use them to describe drug-target interactions. The results obtained

showed that using these representations outperformed completely global descriptors

in every model applied, demonstrating the importance and relevance of the fea-

tures extracted and also the capacity to identify and learn particular sequential and

structural regions meaningful to the interaction. Nonetheless, deep learning does

not always surpass traditional machine learning approaches, as demonstrated when

comparing the FCNN model and RF.

In addition, we also evaluated the influence of particular descriptors, encoded into

deep representations, combined with sequential and structural deep representations

extracted from protein sequences and SMILES strings. The results demonstrated

that additional information may prove to be useful to correctly identify positive

interactions, as this model obtained the highest sensitivity (0.880).
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The preeminent contribution of this master thesis and work is the proposal of

a novel end-to-end deep learning approach for drug-target interaction prediction,

solely based on the use of sequential and structural information to represent the

proteins and drugs, respectively, without depending on several methodologies of

feature engineering and extraction.

Future Work

The ability of the models to learn and identify potential DTIs and leads is consider-

ably based on the datasets given as input. On that account, as future work, would

be interesting to validate the whole proposed setup on bigger and more diverse and

representative datasets, and explore the potential identified leads. On top of that,

having more data would increase the capacity of the CNNs to learn and identify more

hidden relationships in the data meaningful to the interaction between a protein and

a drug, promoting the identification of more and new relationships.

The findings associated with the influence of particular descriptors demonstrated

that integrating more information might be useful for the correct classification of

positive interactions. Hence, building an effective ensemble of meaningful infor-

mation for interaction, to be further integrated in the proposed end-to-end deep

learning model, could yield appealing results.

The proposed end-to-end deep learning setup is identified as a binary classification

model, thus transforming it into a multi-class classification model could be inter-

esting to evaluate its capacity on identifying several types of specific interactions.

Plus, modifying it into a regression model, with Kd as the binding affinity metric,

could provide exciting results and heighten the whole effectiveness of the model.

The representation of the data when using sequential and structural data plays an

important role in the whole performance of the model. Thence, exploring the use

of the binding sites, which are identified as the regions of a protein that actively

interact, instead of the whole sequences, could further validate the usefulness of the

proposed model as well as be integrated on it.

Ultimately, the future approach that could be linked and integrated with this setup

and have the greatest impact on the whole process, would be the ability to move

backwards, resulting in the capacity to verify which regions of the protein sequences

and SMILES strings had more influence and henceforth use that information to

exploit possible modifications on the compounds to achieve certain properties.
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Finally, this setup could be integrated in an ensemble pipeline, capable of using only

1D sequential and structural data to identify and validate DTIs.
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