
Weighted Euclidean Steiner Trees for
Disaster-Aware Network Design

Luis Garrote1,2, Lúcia Martins1,3, Urbano J. Nunes1,2, Martin Zachariasen4
1 Electrical and Computer Engineering Department, University of Coimbra, Coimbra, Portugal

2 Institute of Systems and Robotics, Coimbra, Portugal
3 INESC Coimbra, Portugal

4 IT University of Copenhagen, Denmark
Email:{garrote,urbano}@isr.uc.pt,lucia@deec.uc.pt,marz@itu.dk

Abstract—We consider the problem of constructing a Eu-
clidean Steiner tree in a setting where the plane has been
divided into polygonal regions, each with an associated weight.
Given a set of points (terminals), the task is to construct a
shortest interconnection of the points, where the cost of a line
segment in a region is the Euclidean distance multiplied by the
weight of the region. The problem is a natural generalization of
the obstacle-avoiding Euclidean Steiner tree problem, and has
obvious applications in network design. We propose an efficient
heuristic strategy for the problem, and evaluate its performance
on both randomly generated and near-realistic problem instances.
The minimum cost Euclidean Steiner tree can be seen as an
optical backbone network (a Spine) avoiding disaster prone areas,
here represented as higher cost regions.

Index Terms—Euclidean Steiner Tree, Heuristic, Communica-
tion Networks Reliability

I. INTRODUCTION

The spine concept was introduced in [1] as a framework to
obtain in an efficient manner, i.e. without over-engineering
the network, high availability for critical services (such as
smart grid communications). A spine is a subset of links
and nodes with high availability, at the physical layer of
the network, that together with lower availability network
elements can offer redundancy to fulfill the given availability
requirements. Although it is a more general concept, the most
straightforward approach is to associate the spine to the optical
backbone network and, if all pairs of nodes are involved in
critical services, to consider a spanning tree as a spine [1].
However, other subgraphs, different from a spanning tree, can
be considered as a spine. In [2] the constructed spine also
guarantees that in case of a wide-area disaster with a maximum
diameter, the network will not disconnect: for each pair of
nodes (not affected by the disaster), there exist two geodiverse
disjoint paths in the spine — each with the desired availability
— such that at least one of these paths is outside of the disaster
area. Other approaches to improve network resilience based on
geodiverse routing can be found in [3], [4]. A general overview
of strategies to improve network resilience, and to avoid the
collapse of communication networks in case of large-scale
natural disasters, is presented in [5].

In this work the goal is to design a spine from scratch
connecting a set of nodes that represent communication equip-

ment, while avoiding disaster prone areas, through a minimum
length infrastructure. The classical Euclidean Steiner tree
problem in the plane is to construct a minimum-length tree
that interconnects a given set of points in the plane (terminals).
Computing a Euclidean minimum Steiner tree is a well-known
NP-hard problem [6]. In order to minimize length, additional
nodes, so-called Steiner nodes, may be added to the solution
tree. The Euclidean Steiner tree problem with obstacles is a
generalization of the classical problem where a set of solid
obstacles (polygonal regions in the plane) must be avoided by
the solution tree. Exact algorithms for the Euclidean Steiner
tree problem with and without obstacles are presented in [7],
[8].

Geographical areas more prone to natural disasters such as
hurricanes, floods or earthquakes can often be associated with
a probability of occurrence of such disasters in some amount
of time. Such hazard maps can be used to classify into the
same shared risk group (SRG) a set of links or nodes if they
are vulnerable to the same disaster. The use of SRG-disjoint
active and backup paths can be an effective strategy to improve
network resilience in case of disasters [9], [10]. In this work,
we propose to represent disaster prone areas in the Euclidean
plane as soft obstacles, i.e. obstacles that can be traversed with
a given cost per unity of length, and the purpose is to obtain a
low-cost Euclidean Steiner tree avoiding these disaster prone
areas.

The Euclidean Steiner problem with soft obstacles is a gen-
eralization of the obstacle-avoiding Euclidean Steiner problem,
and it has been considered in the context of rectilinear Steiner
trees [11]. (The rectilinear Steiner problem is a special case
where the tree edges must form right angles.) A variant of the
Euclidean problem was considered by Frommer, Golden and
Pundoor [12]; in this problem a Euclidean Steiner tree should
be constructed on a grid, where each node has an associated
cost.

The simpler problem of constructing a shortest path in the
presence of soft obstacles was introduced by Mitchell [13]; the
first exact algorithm for this problem was given by Mitchell
and Papadimitriou [14]. Rowe and Richbourg [15] described
and implemented the first practical algorithm for the shortest
path problem.

138

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional

purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

In this paper we propose a heuristic based on a local
search strategy to solve the Euclidean Steiner problem with
soft obstacles. To the best of our knowledge, this is the first
attempt to address this NP-hard problem. The purpose is to
obtain a low-cost tree representing the backbone network (the
spine) taking into account disaster prone areas, which are
represented in the Euclidean plane as polygons. Note that the
polygonal representation of the obstacles is not a limitation
because is is always possible to accurately approximate other
shapes by polygons. Also note that additional Steiner nodes
that appear in the solution may in practice have additional cost
if communication equipment is required in those nodes. In the
context of this work, those nodes will have no additional cost.
The obtained tree corresponds to the final layout of fibers or
microwave links of the transport network with high availability
(guaranteed by the quality and redundancy of the equipment
that should be deployed). Note that the final network topology
will have additional links which may have lower availability
and are not considered in this work.

The paper is organized as follows. In Section II, the pro-
posed heuristic approach is presented; the section is subdivided
into three subsections: in subsection II-A the computation of
shortest paths between two points in the presence of soft
obstacles is described; in subsection II-B a meta-heuristic to
solve the 3-points problem is proposed; and in subsection
II-C the proposed heuristic to obtain a low-cost Euclidean
Steiner tree is presented. In Section III the validation of the
proposed heuristic is presented with two distinct scenarios and
the obtained results are discussed. Conclusions are presented
in Section IV.

II. STEINER TREE APPROACH

The Euclidean Steiner tree problem with soft obstacles
(ESMT-SO) is defined as follows: given a division of the
plane into polygonal regions with weights assigned to each
region and a set of terminals t ∈ T : t = 1, . . . , |T | to
be interconnected, compute a weighted Euclidean minimum
Steiner tree. The terminal nodes are defined by 2D Cartesian
points pt = (xt, yt). The cost of the tree is defined as the
Euclidean distance multiplied by the underlying weight of each
region.

In general, obstacles can be divided into two classes:
solid and soft obstacles. Solid obstacles are non-traversable
obstacles, i.e. regions that cannot be crossed, whereas soft
obstacles can be crossed with a multiplicative length-increase
corresponding to its weight. The class of soft obstacles can
be further divided into homogeneous and non-homogeneous
obstacles. In homogeneous obstacles the cost is constant, and
for non-homogeneous obstacles the cost varies accordingly to
a predefined model (e.g., a Gaussian function).

The present work focuses on homogeneous soft obstacles,
leaving the non-homogeneous for future work. A soft obstacle
is a polygon defined by its extreme points. A homogeneous
soft obstacle o ∈ O is defined by a set of 2D Cartesian points
pok = (xok, y

o
k), (k = 1, . . . , no) and po1 = pono , and an

associated weight co where o ∈ O. Note that the soft obstacles

Fig. 1. Representation of a shortest path between two terminal points (blue
dots) passing through a soft obstacle in a scenario with five soft obstacles.
In red, connections inside the obstacles and in green connections outside the
obstacles.The zoomed section shows that the obstacle’s boundary corresponds
to a connection outside the obstacle.

are given as non-self-intersecting polygons and that obstacles
may overlap in their boundaries; in this case the weight is the
highest among the overlapping polygons.

A. Shortest Paths

The proposed shortest path approach
(ShortestPath SoftO), based on [16], converts the
Euclidean shortest path problem with soft obstacles into a
graph problem by uniformly discretizing the obstacle’s edges.
Therefore a set of points, known as portals (see Fig. 1), is
placed along the edges of the polygons creating a graph where
the shortest path is computed using Dijkstras algorithm.

Given two nodes, the shortest path considering the soft
obstacles requires the computation of all the edges between all
obstacles and between the two nodes. In Fig. 1 a representation
of the two points problem showing the connections over the
obstacles, between obstacles and between each terminal and
the obstacles is presented. In this work, connections on the
boundary of obstacles are computed with the cost of the region
outside of the obstacle or the highest cost in the case of
overlapping polygons.

The shortest path algorithm in this work employs Dijkstra
algorithm (recurring to a heap). The edges correspond to all
the connections between obstacles and the two terminal nodes
(see Fig. 1). Computing all connections is time consuming
and requires heavy computational resources for scenarios with
multiple obstacles; therefore, some heuristic approaches are
considered to tackle this problem.

In order to avoid the computation of shortest paths between
two points that have one or more obstacles in between,
meaning that the points are not visible to each other, it is
necessary to compute the intersection between the two points
and the edges of the obstacles. This computation is heavy,
particularly in the case where the polygons are non convex.
To speed up the computation we propose an intermediary
representation for each obstacle in the form of a 2D grid
(see zoomed area in Fig. 2a). A 2D grid is defined as a
two-dimensional (2D) environment representation bounded
between ([0, nrows], [0, ncols]), composed by a set of cells
cij with row i and column j. Each cell c is defined with

139

constant dimensions soc but is adjusted dynamically depending
on the size of the polygon and the minimum granularity of
the map. The anchor of the grid is defined in the geometric
centroid of the polygon poc = (xoc , y

o
c). Each cell in the

grid contains a value corresponding to one of the following
labels: free space, inside obstacle, polygon extremal point
or boundary. Converting between Cartesian coordinates (x, y)
and grid coordinates (i, j) is given by:

(i, j)←
(

(x−xo
c+

soc
2)

soc
+ ncols

2 ,
(y−yo

c+
soc
2)

soc
+ nrows

2

)
(1)

Converting grid (i, j) to Cartesian coordinates (x, y) is given
by:

(x, y)←
(
soc(i− ncols

2) + xoc , s
o
c(j − nrows

2) + yoc
)

(2)

Verifying if an edge intersects an obstacle in a 2D grid
requires only the use of a line algorithm such as Bresenham’s
[17] to check transitions between labels in the grid (e.g.,
free space to inside obstacle). Other verifications such as if
a terminal node is inside an obstacle, requires only the access
of a cell in the map and checking the label using (1).

All connections in Fig. 2b correspond to inner and inter-
obstacle connections which are viable candidates for future use
in the case of having more than two terminal nodes. Another
improvement was the use of bounding circumferences (see Fig.
2a). Bounding circumferences (No, o = 1, . . . , |O|) are disks
centered in the geometric centroid poc of a soft obstacle and
with radius equal to ro = max |poc − pok|. For two nodes (pA
and pB) a bounding circumference NAB is also computed,
centered in pAB = pA+pB

2 and with radius rAB = α |pA−pB |
2 ,

where α is an adaptable gain. Obstacles for which the bound-
ing circumferences No are not overlapping NAB are discarded
from the shortest path computation. The overlapping condition
is given by |poc−pAB | ≤ ro+rAB . Note that the adjustment of
α gives the opportunity to consider areas with lower costs that
might be of interest to the final solution. Figures 2c and 2d
denote the shortest paths between the terminal nodes and sur-
rounding obstacles considered for the final solution obtained
without and with the bounding circumferences, respectively.
With the bounding circumferences, the overall number of
connections between the nodes and the obstacles is reduced. In
particular, in scenarios containing multiple obstacles far from
the two nodes of interest, are completely discarded which in
turn, reduces the computation complexity of the shortest path
(smaller number of connections).

B. 3-points problem

The appearance of a Steiner point results from solving the
3-points problem. Given three points the goal is to compute
an additional point that minimizes the sum of shortest path
distances to the given points (see Fig. 3). Without obstacles
the solution is to solve the Fermat-Torricelli problem [6]
(Algorithm 1). For solid obstacles, a solution that builds on
the solution without obstacles, and avoiding the obstacles
is presented in Algorithm 2. For three points that are not
inside an obstacle, a heuristic solution is given by the nearest

(a) Bounding circumferences computed for each obstacle and
for the two terminal nodes.

(b) Representation of the connections inside and outside of the
obstacles without considering the terminal nodes.

(c) Representation of the connections to the terminal nodes
without bounding circumferences.

(d) Representation of the connections to the terminal nodes
with bounding circumferences.

Fig. 2. Scenario with five soft obstacles with polygonal and grid representa-
tions and two terminal nodes.

intersection between a line segment and the solid obstacles
(intersectsObstacle). The line segment is defined by the point
that corresponds to the triangle vertex adjacent to the internal
angle that gave rise to the Steiner point (computed without
obstacles) and that Steiner point. The solution can be further

140

Fig. 3. Simulation results depicting the problem where a Steiner node is
created inside an obstacle when the obstacle is ignored and the obstacle is
avoided.

Algorithm 1: Exact algorithm to compute the Steiner point
without obstacles – ESteiner(pA,pB ,pC).

Input: Input Nodes (pA,pB ,pC)
Output: Steiner point (pS)

1 θ ← ∠(pA, pB , pC);
2 α1 ← ∠(pA, pB), d1 ← |pA − pB |;
3 α2 ← ∠(pB , pC), d2 ← |pB − pC |;
4 s ← −sign(θ);
5 p1 ← (xB +d1 cos(α1 + s

π
3
−π), (yB +d1 sin(α1 + s

π
3
−π));

6 p2 ← (xB + d2 cos(α2 − sπ3), (yB + d2 sin(α2 − sπ3));
7 m1, b1 ← (yC−y1

xC−x1
, y1 −m1x1);

8 m2, b2 ← (yA−y2
xA−x2

, y2 −m2x2);
9 if |xA − x2| = 0 then

10 pS ← (x2,m1x2 + b1);

11 else if |xC − x1| = 0 then
12 pS ← (x1,m2x1 + b2);

13 else
14 pS ← (−b1+b2

m1−m2
,m1xS + b1);

refined by computing the shortest path between the three initial
points of the problem and the new Steiner point. This approach
generates in general more points (related to new paths defined
by the extreme points of obstacles), and transforms the 3-
points problem into a local minimum Steiner tree. In order to
obtain a solution such as the one presented in Fig. 3 (on the
right) at least two more iterations of the 3-points problem are
performed.

The problem to obtain the best point to connect 3 points
over soft obstacles in order to obtain a minimum cost weighted
Euclidean Steiner tree is rather involved. The complexity of
this problem is illustrated in Fig. 4. The figure shows the
variation of the cost for each point, in the region of interest
(discretized), of the 3-points Steiner tree that uses that point
as a Steiner point. The figure illustrates the variation of the
costs with increasing weight of the soft obstacles, as well as
the minimum cost solution for each case (the Steiner point
and the corresponding Steiner tree).

To address this problem a heuristic approach is proposed
based on a local search procedure combined with a diversi-
fication strategy to avoid local optimal solutions. The local
search procedure is focused in a point that is a candidate to
be a Steiner point and an intensive search for a better solution

Algorithm 2: Heuristic algorithm to compute the Steiner
point with solid obstacles – HSteinerO(pA,pB ,pC ,O).

Input: Input Nodes (pA,pB ,pC)
Obstacles (O)
Steiner point without obstacles (pS)

Output: Steiner point avoiding obstacles (pS)

1 collides ← intersectsObstacles(pB ,pS ,O) ;
2 if collides then
3 pS ← argmin (|pB − (pB pS

⋂
O)|);

around this point, as can be seen in the local search procedure
(Algorithm 3). The input parameter of this procedure Sc, the
set of seed nodes, is obtained through a diversification strategy
(Diversification procedure in Algorithm 5) that considers a
set of Steiner point candidates spread out over the entire region
of interest. Three important points are added to this set: 1)
the exact solution for 3-points problem without obstacles; 2)
the heuristic solution for the 3-points problem avoiding the
obstacles and; 3) the point that corresponds to the triangle
vertex adjacent to the internal angle that gives rise to the
previous Steiner points.

In Algorithm 3, the ∆ parameter controls the search of
a solution in the neighboring of each candidate c in Sc

through a circumference of a radius starting with that value ∆
and centered in the candidate (circumferencePoints). Each
candidate’s cost fc is evaluated by the WTreeCost procedure
and the best solution (the solution with minimum cost) is
stored in ps. The WTreeCost procedure computes the shortest
path between the three input points and a candidate point,
resulting in three shortest path computations (e.g., for the input
points pA, pB and pC and a candidate ps, the cost is given as
|SP (pA, ps)|+ |SP (ps, pB)|+ |SP (ps, pC)| where SP stands
for Shortest Path and the module operator |.| means a weighted
Euclidean distance).

For a given number of iterations K or until no more
explorations can be performed, for each candidate c in Sc, a set
of neighbor candidates C (circumferencePoints) is computed.
Each candidate in C has a ∆c distance associated, and for
each new candidate e in C a new cost fe is obtained. If the
cost of the candidate e is smaller than c the value is updated,
otherwise if none of the candidates in C provides a better
solution, the ∆c is decreased by a λ value, intensifying the
search of a solution around this candidate. The ∆c value is
decreased until it is less than a global threshold ∆min. When a
candidate reaches ∆min it is removed from C as it means that
this region of the solutions space is not going to be further
explored. If the new cost is smaller than the cost in ps the
best candidate is also updated. In the examples shown in Fig.
4 the solutions obtained by the proposed approach (using 5
seed nodes and 20 iterations) are the best solutions represented
in the figure (black dot).

C. Steiner Tree heuristic

As shown in the previous subsection, computing the 3-
points problem in the presence of soft obstacles is a difficult

141

Algorithm 3: Local search procedure to
compute the Steiner point with soft obstacles –
3PointsSO(pA, pB , pC ,O, Sc,K).

Input: Input Nodes (pA, pB , pC), Soft Obstacles (O)
Seed Nodes (Sc), Max Iterations (K)

Output: Steiner Point (ps) and cost fps

1 ps ← argmin
c∈Sc

(WTreeCost(c,O, pA, pB , pC));

2 for i = 0 to K do
3 foreach c ∈ Sc do
4 C ← circumferencePoints(c,∆c);
5 update ← false;
6 foreach e ∈ C do
7 fe ← WTreeCost(e,O,pA, pB , pC);
8 if fe < fc then
9 Sc ← Sc \ c;

10 Sc ← Sc

⋃
e;

11 c ← e;
12 fc ← fe;
13 update ← true;

14 if fe < fps
then

15 ps ← e;

16 if ¬ update then
17 ∆c ← ∆c − λ;
18 if ∆c ≤ ∆min then
19 Sc ← Sc \ c;

task, which means that assuming that the Euclidean Steiner
tree is generated by a combination of multiple 3-points prob-
lems, when some of them may even be codependent (two
independent solutions of the 3-points problem may connect to
each other, and may need to be iteratively adjusted), makes
this problem even more complex. To reduce some of the
complexity we compute an initial MST that must be refined
in order to reduce the overall cost of the final solution.
The proposed algorithm for the computation of the Euclidean
minimum Steiner tree considering soft obstacles is divided in
two steps. In the first step we generate a MST (Algorithm 4)
with soft obstacles (MSTO) using Prim’s Algorithm [18]. In
the second step an iterative process is applied to the MSTO
in order to obtain an ESMT-SO (Algorithm 5).

In the first step, the algorithm starts with the computation
of a triangular matrix containing the Euclidean distances
between the terminal nodes (InitializeNodeDistanceMatrix).
Then for each pair of nodes, the overlap is computed between
the line segment defined by the nodes and the obstacles
(overlapDetection). If a collision is detected, a new path is
computed that connects the two nodes using the previously
presented shortest path algorithm (ShortestPath SoftO). The
path is stored to be used later and the distance is updated
in the triangular matrix. Prim’s algorithm is then used on
the triangular matrix to compute the MST considering soft

(a)

(b)

Fig. 4. 3-points problem with soft obstacles - The first column of the first row
of (a) and (b) presents the three points and a soft obstacle. Each point in sub-
figures in columns 2 and 3 of row 1 and in row 2 of (a) and (b) corresponds
to a Steiner point for three terminal points and a soft obstacle. Smaller costs
are represented in blue, higher costs in red. The black dot corresponds to the
Steiner point with minimum cost. Rows 3 and 4 of (a) and (b) correspond to
the minimum cost solution (in blue). The obstacle costs are (increasing from
left to right and from top to down): 1, 1.1, 1.5, 2, 5 and 10.

obstacles (MSTO).
For the second step, and for each node in the MSTO, the

algorithm starts by checking if a node is valid or not (isValid).
Conditions to be valid include the existence of one or more
child nodes. The first step is to compute the minimum angle

142

Algorithm 4: Algorithm to obtain a minimum spanning
tree considering soft obstacles – MSTO(T,O).

Input: Terminal Nodes (T); Soft Obstacles (O)
Output: MST considering soft obstacles (MSTO)

1 M ← InitializeNodeDistanceMatrix();
2 foreach (pi, pj) ∈ T do
3 collides ← overlapDetection((pi, pj),O);
4 if collides then
5 L ← ShortestPath SoftO((pi, pj),O);
6 M(i, j) ← |L|;

7 MSTO ← Prim(M)

Algorithm 5: Algorithm to obtain an heuristic Steiner tree
considering soft obstacles.

Input: Terminal Nodes (T), Soft Obstacles (O) , Max
Iterations (K)

Output: Minimum Steiner Tree with obstacles (SMTO)

/* Initialization: Compute all the
obstacles’ connections */

1 MSTO ← MSTO(T ,O);
2 SMTO ← MSTO;
3 while MSTO 6= ∅ do
4 pi ← MSTO(i);
5 MSTO ← MSTO \ {pi};
6 if ¬isValid(pi) then
7 continue;

8 θ,pA,pB ,pC ← minj=1:|C(pi)|
(∠(P (pi) ∪ Cj+1(pi), pi, Cj(pi)));

9 if θ < 120◦ then
10 Sc ← ∅;
11 Sc ← Sc

⋃
ESteiner (pA,pB ,pC);

12 Sc ← Sc
⋃
HSteinerO (pA,pB ,pC ,O);

13 Sc ← Sc
⋃
Diversification (Sc,pA,pB ,pC);

14 fold ← |SP (pA,pB)+SP (pB ,pC)|;
15 ps, fps ← 3PointsSO(pA,pB ,pC ,O,Sc,K);
16 if fps < fold then
17 L1 ← ShortestPath SoftO(pA,ps,O);
18 L2 ← ShortestPath SoftO(pB ,ps,O);
19 L3 ← ShortestPath SoftO(pC ,ps,O);
20 SMTO ← SMTO \ (pA,pB ,pC);
21 SMTO ← SMTO

⋃
(L1,L2,L3);

between each triplet (parent node (P ()), actual node and child
node(C())) or (child node, actual node and child node) in the
tree. If the angle is smaller than 120◦ then, Steiner points are
computed as in Algorithms 1 and 2 and added to the seed set
Sc, the Diversification procedure is called in order to find
more seeds to be added to Sc. Given the triplet (pA, pB , pC),
the seed Sc and a set of soft obstacles, the 3-points problem is
computed using the Algorithm 3. If the cost of ps is smaller
than the initial cost the shortest paths L1, L2, L3 are inserted
or updated in the tree.

III. VALIDATION RESULTS

In order to validate the proposed approach to compute a
low-cost Euclidean Steiner tree with soft obstacles, two tests
were considered. In the first test some scenarios from [8] (see
Fig. 5) were considered where the costs associated with each
obstacle represent insurmountable regions. The goal was to
compare the proposed solution to the exact one in order to
assess how close the proposed heuristic solution is to the exact
solution when obstacles are avoided.

The second test (see Fig. 6) uses real data in order to
design the spine of a network from scratch in order to
connect a set of terminal nodes that represents communication
equipment, avoiding disaster prone areas, through a minimum
cost infrastructure. Disasters may occur at any time, so in order
to guarantee the availability of the network a solution must
be able to reduce the risk of being affected by them. Some
geographical areas are more prone to natural disasters than
others, in particular to the occurrence of hurricanes, floods
or earthquakes that to some degree can negatively impact a
communication network. For many types of disasters, models
may predict or assign a probability to the occurrence of
disasters for a given amount of time, based on the previous
history of events.

In [19], the 2013 European Seismic Hazard Model was
presented. For the validation of the proposed algorithms a
simple polygonal overlay of one of the models available in
[19] was done - see Fig. 18 “PGA exceedance probabilities
of 2 % in 50 years”. PGA (Peak Ground Acceleration) is one
of the most common parameters used for engineering design
purposes. The idea is not to provide an optimal solution to
the problem but to present a near realistic scenario. Also,
to generate a Euclidean Steiner tree in a realistic network,
the COST266 network [20] was adapted for the validation
scenario. At the end of this subsection we also present results
for the scenario in Fig. 1 for four different costs.

The results for the first test are shown in Table I, which
presents values for the weighted Euclidean length of the exact
and heuristic solution, as well as the weighted Euclidean
length for the MST. The error between the exact and the
heuristic solutions is also presented. The results show that in
more realistic scenarios, the error is small (e.g., ≤ 1% for
Scenarios 1-3) where for other scenarios it can go up to 4%.
The error of 10% is caused by the initial configuration of the
MST that makes it impossible to further improve the tree. For
the second test (see Fig. 6), the top figure represents the MST,
while the bottom figure the proposed heuristic. This represents
a more realistic scenario, as it is possible to notice some
interesting connections in the tree. When dealing with smaller
weight (e.g., border between Spain and France) the connection
follows the obstacle until the cost to traverse the obstacle
is minimal. On the other end (e.g., high cost obstacle over
Greece), the connection almost always forces the avoidance
of the high cost obstacles.

Simulations for the scenario presented in Figs. 1 and 2
using the proposed approach with multiple costs for a random

143

Fig. 5. Scenarios adapted from [8], white areas represent obstacles. The tree depicted in each scenario corresponds to the exact Euclidean Steiner Tree. From
left to right and upper to bottom, scenarios 1 to 18 are defined.

TABLE I
RESULTS FOR THE PROPOSED APPROACH APPLIED TO SOME SCENARIOS

OF THE DATASET USED IN [8] (SEE FIG. 5).

Exact Method Error % MST Scenario

1.23162 1.23238 0.06 1.3393 1
5.47342 5.52994 1.03 5.7883 2
5.93503 5.94813 0.22 6.21489 3
15.3413 15.342 0.00 16.0679 4
11.5136 11.588 0.65 12.8935 5
15.9702 15.9725 0.01 16.3397 6
6.00962 6.00994 0.01 6.94067 7
15.7772 17.3823 10.17 17.8215 8
1.11558 1.13176 1.45 1.27075 9
12.3587 12.8664 4.11 13.7153 10
15.0233 15.0233 0.00 15.1859 11

17.093 17.4281 1.96 17.6686 12
18.1115 18.1115 0.00 18.6193 13
2.18564 2.19636 0.49 2.4 14
2.19569 2.19687 0.05 2.4 15
2.29706 2.29706 0.00 2.4 16
14.1726 14.7803 4.29 16.0864 17
17.0214 17.4109 2.29 23.49 18

number of terminal nodes are presented in Fig. 7. From a
qualitative analysis of the results it is possible to see that
when increasing the weight, the obtained tree tends to find
the nearest exit in order to avoid the costs associated with the
obstacles.

IV. CONCLUSION

In this paper we presented a novel approach to compute
a Euclidean Steiner tree with soft obstacles. The problem is
a generalization of the obstacle-avoiding Euclidean Steiner
tree problem. We described solutions for the shortest path
problem with heuristic modifications to speed up the com-
putation process, a heuristic/meta-heuristic to solve the 3-
points problem and a heuristic approach to compute the
aforementioned tree. In particular, we highlighted in Fig.
4 the difficulty of computing an exact solution for the 3-
points problem due to the influence of the soft obstacles.
Presented evaluation tests show the flexibility of the proposed
approach and outline future directions of development and

research. In particular, the introduction of different polygons to
represent existing infrastructure such as highways and bridges
that may decrease the overall cost of a solution. Also the
introduction of additional costs for connections over the sea
may be of interest to better reflect a real communication
network. As a final remark it is worth to mention that in this
paper we considered soft obstacles as disaster prone areas,
but the presented approach can be applied in different fields.
Furthermore, this problem can also be considered as a bi-
criteria problem where the two objectives are the weighted
and the unweighted Euclidean distance. In this case obtaining
a set of Pareto’s optimal solutions (or an approximation to this
set) is an even more challenging problem.

ACKNOWLEDGMENT

Luis Garrote was supported by the Portuguese Foundation
for Science and Technology (FCT) under the PhD grant with
reference SFRH/BD/88459/2012.

Lúcia Martins has been supported by FCT (Fundação
para a Ciência e a Tecnologia) under project grant
UID/Multi/00308/2019 and by FEDER Funds and National
Funds through FCT under the project CENTRO-01-0145-
FEDER-029312.

This article is based upon work from COST Action CA1512
(“Resilient communication services protecting end-user appli-
cations from disaster based failures - RECODIS”) supported
by COST (European Cooperation in Science and Technology).

REFERENCES

[1] A. Alashaikh, T. Gomes, and D. Tipper, “The spine concept for improv-
ing network availability,” Comput. Netw., vol. 82, no. C, pp. 4–19, May
2015.

[2] A. de Sousa, T. Gomes, R. Girão-Silva, and L. Martins, “Minimizing the
network availability upgrade cost with geodiversity guarantees,” in 2017
9th International Workshop on Resilient Networks Design and Modeling
(RNDM), Sept 2017, pp. 1–8.

[3] Y. Cheng, D. Medhi, and J. P. G. Sterbenz, “Geodiverse routing with path
delay and skew requirement under area-based challenges,” Networks,
vol. 66, no. 4, pp. 335–346, 2015.

[4] A. de Sousa, D. Santos, and P. Monteiro, “Determination of the
minimum cost pair of d-geodiverse paths,” in The 2017 International
Conference on Design of Reliable Communication Networks (DRCN
2017, Munich, March 8-10 2017.

144

(a) Minimum Spanning Tree.

(b) Euclidean Minimum Steiner Tree.

Fig. 6. Representation of the COST 266 network [20] with soft obstacles
derived from the seismic hazard model [19]. Light green soft obstacles
represent the weight of 1.5, orange soft obstacles with weight 3 and red soft
obstacles the weight of 5.

[5] T. Gomes, J. Tapolcai, C. Esposito, D. Hutchison, F. Kuipers, J. Rak,
A. de Sousa, A. Iossifides, R. Travanca, J. André, L. Jorge, L. Martins,
P. O. Ugalde, A. Pašić, D. Pezaros, S. Jouet, S. Secci, and M. Tornatore,
“A survey of strategies for communication networks to protect against
large-scale natural disasters,” in 2016 8th International Workshop on
Resilient Networks Design and Modeling (RNDM), Sept 2016, pp. 11–
22.

[6] M. Brazil and M. Zachariasen, Optimal Interconnection Trees in the
Plane: Theory, Algorithms and Applications, ser. Algorithms and Com-
binatorics. Springer, 2015.

[7] P. Winter and M. Zachariasen, “Euclidean steiner minimum trees: An
improved exact algorithm,” NETWORKS, vol. 30, pp. 149–166, 1997.

[8] M. Zachariasen and P. Winter, Obstacle-Avoiding Euclidean Steiner
Trees in the Plane: An Exact Algorithm. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1999, pp. 286–299.

[9] S. S. Savas, M. F. Habib, M. Tornatore, F. Dikbiyik, and B. Mukherjee,
“Network adaptability to disaster disruptions by exploiting degraded-
service tolerance,” IEEE Communications Magazine, vol. 52, no. 12,
pp. 58–65, December 2014.

[10] F. Dikbiyik, M. Tornatore, and B. Mukherjee, “Minimizing the risk from
disaster failures in optical backbone networks,” Journal of Lightwave
Technology, vol. 32, no. 18, pp. 3175–3183, Sep. 2014.

[11] M. Zachariasen, “A catalog of hanan grid problems,” Networks, vol. 38,
no. 2, pp. 76–83, 2001.

[12] I. Frommer, B. L. Golden, and G. Pundoor, “Heuristic methods for
solving euclidean non-uniform steiner tree problems,” in Genetic and
Evolutionary Computation - GECCO 2004, Genetic and Evolutionary
Computation Conference, Seattle, WA, USA, June 26-30, 2004, Proceed-
ings, Part II, 2004, pp. 392–393.

[13] J. S. Mitchell, “An algorithmic approach to some problems in terrain
navigation,” Artificial Intelligence, vol. 37, no. 1, pp. 171 – 201, 1988.

[14] J. S. B. Mitchell and C. H. Papadimitriou, “The weighted region
problem: Finding shortest paths through a weighted planar subdivision,”
Cornell University Operations Research and Industrial Engineering,
Tech. Rep., 1990.

[15] N. C. Rowe and R. Richbourg, “An efficient snell’s law method
for optimal-path planning across multiple two-dimensional, irregular,
homogeneous-cost regions,” The International Journal of Robotics Re-
search, vol. 9, no. 6, pp. 48–66, 1990.

[16] M. Lanthier, A. Maheshwari, and J.-R. Sack, “Approximating weighted
shortest paths on polyhedral surfaces,” in Proceedings of the Thirteenth
Annual Symposium on Computational Geometry, ser. SCG ’97. New
York, NY, USA: ACM, 1997, pp. 485–486.

[17] J. E. Bresenham, “Algorithm for computer control of a digital plotter,”
IBM Systems Journal, vol. 4, no. 1, pp. 25–30, 1965.

[18] R. C. Prim, “Shortest connection networks and some generalizations,”
The Bell System Technical Journal, vol. 36, no. 6, pp. 1389–1401, Nov
1957.

[19] J. Woessner, D. Laurentiu, D. Giardini, H. Crowley, F. Cotton,
G. Grünthal, G. Valensise, R. Arvidsson, R. Basili, M. B. Demircioglu,
S. Hiemer, C. Meletti, R. W. Musson, A. N. Rovida, K. Sesetyan, and
M. Stucchi, “The 2013 european seismic hazard model: key components
and results,” Bulletin of Earthquake Engineering, vol. 13, no. 12, pp.
3553–3596, Dec 2015.

[20] S. Orlowski, R. Wessäly, M. Pioro, and A. Tomaszewski, “Sndlib 1.0—
survivable network design library,” vol. 55, pp. 276 – 286, 01 2009.

(a) Obstacles’ weight=1.25. (b) Obstacles’ weight=2.

(c) Obstacles’ weight=5. (d) Obstacles’ weight=10.

Fig. 7. Euclidean minimum Steiner tree considering soft obstacles with
different weights.

145

