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Abstract A new approach is considered to estimate risk-neutral densities (RND)
within a kernel regression framework, through local cubic polynomial estimation us-
ing intraday data. There is a new strategy for the definition of a criterion function used
in nonparametric regression that includes calls, puts, and weights in the optimization
problem associated with parameters estimation. No-arbitrage constraints are incorpo-
rated into the problem through equality and bound constraints. The approach consid-
ered yields directly density functions of interest with minimum requirements needed.
Within a simulation framework, it is demonstrated the robustness of proposed proce-
dures. Additionally, RNDs are estimated through option prices associated with two
indices, S&P500 and VIX.

Keywords Kernel functions · Local polynomials · No-arbitrage constraints · Option
prices · Risk-neutral density

1 Introduction

Risk-neutral densities (RND) are determinant when dealing with risk management
and pricing of new derivative products. In recent years, the amount of information
coming from intraday data allows improving and developing existing and new ap-
proaches. Nowadays, options are intensively traded in several markets, and these
transactions can reveal market expectations on the underlying asset, which are re-
flected in the corresponding RND. Observed option prices have been used to extract
information about the behavior of the underlying asset, since they give insights about
risk factors associated with it. RNDs can be used for different purposes, namely to
infer about risk in the market, and to price complex option contracts. A central fea-
ture that must be considered is that RND estimation is an indirect method as no
risk-neutral prices can be observed.
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We propose a novel approach for risk-neutral density estimation within the frame-
work of a nonparametric regression setting (Aı̈t-Sahalia and Lo, 1998; Aı̈t-Sahalia
and Duarte, 2003; Yatchew, 2003; Monteiro et al., 2008). The proposed approach
can address some main problems presented in previous attempts found in the litera-
ture, such as non-monotonicity and non-convexity of call and put pricing estimated
functions. There are also problems related to the violation of basic requirements as-
sociated with a density or distribution function, its limits, and the non-negativity as-
sociated with the density. Additionally, we would expect some degree of smoothness
for density estimation since a lack of regularity is not intuitive.

The novel approach is based on a local cubic polynomial kernel regression ap-
plied to intraday data. First, it yields the density of interest directly without the need
for further transformations. Usually, the literature presents estimation processes that
retrieve the call pricing function or its first derivative, and it is necessary to differen-
tiate to obtain the density (Aı̈t-Sahalia and Lo, 1998; Song and Xiu, 2016). Second, it
uses compatible information contained in observed call and put intraday prices with-
out using put-call parity. When using intraday data, the difficulty in synchronizing
call and put option prices with the underlying asset price can lead to errors (Aı̈t-
Sahalia and Lo, 1998; Fengler and Hin, 2015), our approach prevent these to occur. It
allows incorporating both prices in the optimization problem, increasing the amount
of information that is retrieved from the market, and avoiding errors from lack of syn-
chronicity. Third, it includes smoothly and intuitively no-arbitrage constraints in the
optimization problem. Smoothness is mainly a result of incorporating no-arbitrage
constraints, and two distinct bandwidths for calls and puts. It allows adapting the
optimization problem to different data sets. Also, it takes into account that the first
derivative of call and put pricing functions differ from a constant and the second
derivatives are equal. Fourth, to account for the relevance of each option price, we
introduce open-interest data as weights in the criterion function associated with the
problem. By this way, we add more information on market perspectives and beliefs.

The approach is tested against simulated data, which can confirm that the method
can recover density functions accurately. When applied to real data sets, constituted
by intraday data with less standard behavior, also gives robust and easily interpretable
results.

The remainder of the paper is organized as follows, Section 2 discusses the tech-
nical details of the risk-neutral density theory. Section 3 introduces the nonparametric
estimation based on kernel approaches. Monte Carlo simulated experiments and their
discussion are presented in Section 4. Section 5 presents the estimations from market
data. In the final section concluding remarks are exposed.

2 Risk-neutral density through option prices

Cox and Ross (1976) presented the risk-neutral density in the context of no-arbitrage
based models, assuming that investors are risk-neutral. Breeden and Litzenberger
(1978) and Banz and Miller (1978) proposed a way of estimating these densities
from prices of financial options by considering second derivatives of option pricing
functions.
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There are several approaches used to estimate RNDs from option prices. They are
extensive and can be divided into two main groups: structural and non-structural mod-
els. The former specifies a process for the underlying asset price, and sometimes for
volatility. Non-structural models describe the density behavior without prescribing a
stochastic process for the underlying asset price. In this last scenario, nonparametric
methods and estimation procedures have been developed. They are more flexible and
allow for a wide set of shapes. However, for densities in general, larger sample sizes
are required. By relaxing assumptions on the underlying process, these models try
to achieve a function that describes the data. Utilization of nonparametric estimation
methods based on kernel approaches, to obtain a RND implicit in option prices, dates
back to the seminal paper of Aı̈t-Sahalia and Lo (1998), revisited by Aı̈t-Sahalia and
Lo (2000), Aı̈t-Sahalia et al. (2001), and Aı̈t-Sahalia and Duarte (2003). The main
idea was to overcome some drawbacks associated with a parametric setting.

Usually, this kind of nonparametric estimators present rates of convergence sub-
stantially lower than their parametric counterparts, and to obtain similar degrees of
accuracy far larger sample sizes are needed. This fact is even more relevant when we
are considering estimators for first or second derivatives, which is fully addressed by
general references for nonparametric methods as Fan and Gijbels (1996), Yatchew
(2003), Härdle (1990), Li and Racine (2007), and for the specific application to RND
estimation by Aı̈t-Sahalia and Duarte (2003).

There are different goals when considering kernel estimation procedures dealing
with no-arbitrage constraints. Jackwerth (2000) computed a subjective distribution
based on a kernel estimator. Rosenberg and Engle (2002) estimated risk aversion
by considering a kernel function depending on the maturity. Aı̈t-Sahalia and Duarte
(2003) proposed shape restrictions for the optimization problem considering local
polynomial estimation. Yatchew and Härdle (2006) and Härdle and Hlávka (2009),
using smoothing splines, also imposed constraints on the estimation problem, in order
to guarantee convexity and monotonicity for call pricing functions. Monteiro et al.
(2008) proposed a nonparametric approach with no-arbitrage constraints based on
cubic splines through a semidefinite programming problem. Zhang et al. (2009) con-
sidered a local polynomial estimator together with a method based on Gram-Charlier
series expansion to obtain RNDs. Song and Xiu (2016) considered a nonparamet-
ric kernel approach for estimate RND, including volatility factors. They used local
polynomial linear estimators for first derivatives of option pricing functions, using
end-of-day data from S&P500 and VIX.

Data length is an essential issue in any estimation process. Aı̈t-Sahalia and Lo
(1998), and most of the subsequent studies, considered extensive time series. Most
papers from the literature consider data from a significant period and assume the
estimated risk-neutral density as an average of densities. Recently, intraday data has
become more accessible, and the amount of data collected in a few days gives enough
information to infer RNDs. Dalderop (2018) estimates time-varying RNDs by con-
sidering a kernel estimator as a function of time and moneyness, applied to intraday
data. The author uses different order approximations: local constant for time dimen-
sion and local cubic for moneyness.

Several frameworks have been used to derive call option pricing functions, which
by no-arbitrage arguments must be associated with a portfolio without risk and a
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risk-free interest rate. It has been found that corresponds to calculate the expected
future option value at expiration, computed through a risk-neutral density measure,
Q, discounted by the risk-free interest rate, which can be expressed as

C(St ,X ,σt ,τ,r,δ ) = e−rτ EQ [(ST −X)+
]

= StQS(ST > X)−Xe−rτ Q(ST > X)

= St P1−Xe−rτ P2.

where t represents the current date, X the strike price, r the risk-free interest rate,
St the current underlying asset price, ST the asset price at maturity, τ = T − t the
time-to-maturity, and δ the dividend yield. The main difference from Black-Scholes’
formula is related to probabilities P1 and P2, measured through risk-neutral densities.
The formula reveals that option price depends mainly on the underlying asset and
strike prices. Different variations can be considered by changing the structure of P1
and P2, which allows the use of mean pricing functions in different contexts through
minor changes.

Consider an economy with two state variables, the price of S&P 500 index S, and
an unobserved volatility V . Since the volatility is determinant for pricing S, also con-
sider the VIX option market and denote the variable by Z. As there are no contingent
claims written on V , we will consider option contracts on the volatility index VIX in
order to estimate the risk-neutral densities of S and Z.

The European call option price for contracts on S can be given by

C(St ,X ,σt ,τ,r,δ ) = e−r τ

∫
∞

X
(ST −X)g(ST |St ,σt ,r,δ ,τ)dST ,

where g(·) represents the conditional risk-neutral density for the underlying asset at
expiration T. Considering the same assumptions, the price of a European put option
is

P(St ,X ,σt ,τ,r,δ ) = e−r τ

∫ X

0
(X−ST )g(ST |St ,σt ,r,δ ,τ)dST .

The price of a European call option on VIX, with strike L, can be given similarly
by

J(Zt ,L,σt ,τ,r,δ ) = e−r τ

∫
∞

X
(ZT −L)h(ZT |Zt ,σt ,r,δ ,τ)dZT ,

where ZT is the VIX index price on the maturity, and h(·) is the conditional risk-
neutral density for ZT .

Breeden and Litzenberger (1978) and Banz and Miller (1978) proposed a rela-
tionship between second derivative of the call option price, with respect to the strike
price, and the risk-neutral density:

∂C(St ,X ,σt ,τ,r,δ )
∂ X

=
∂ (e−r τ

∫
∞

X (X−ST )g(ST |St ,σt ,r,δ ,τ)dST )

∂X
= e−r τ(G(X |St ,σt ,r,δ ,τ)−1), (1)
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where G(·) is the respective cumulative distribution function associated with g(·).
The second derivative is then expressed as

∂ 2 C(St ,X ,σt ,τ,r,δ )
∂ X2 = e−r τ g(X |St ,σt ,r,δ ,τ) (2)

and the risk-neutral density at expiration is

g(X |St ,σt ,r,δ ,τ) = erτ ∂ 2 C(St ,X ,σt ,τ,r,δ )
∂ X2 |X=ST .

The risk-neutral density can be established in an equivalent form using puts as
was considered for calls,

∂P(St ,X ,σt ,τ,r,δ )
∂ X

= e−r τ G(X |St ,σt ,r,δ ,τ) (3)

and
∂ 2 P(St ,X ,σt ,τ,r,δ )

∂ X2 = e−r τ g(X |St ,σt ,r,δ ,τ). (4)

g(X |St ,σt ,r,δ ,τ) = erτ ∂ 2 P(St ,X ,σt ,τ,r,δ )
∂ X2 |X=ST .

Considering VIX options

∂J(Zt ,L,σt ,τ,r,δ )
∂ L

=
∂ (e−r τ

∫
∞

X (L−ZT )h(ZT |Zt ,σt ,r,δ ,τ)dZT )

∂L
= e−r τ(H(L|Zt ,σt ,r,δ ,τ)−1),

where L represents the strike price, and H(·) is the respective cumulative distribution
function associated with h(·)

h(ZT |Zt ,σt ,r,δ ,τ) = erτ ∂ 2 J(Zt ,L,σt ,τ,r,δ )
∂ L2 |L=ZT .

By combining first and second derivatives of call and put pricing functions, we ob-
tain constraints to be imposed on our optimization problem. Since pricing functions,
in this context, are homogeneous of degree one in the strike (Fengler and Hin, 2015;
Song and Xiu, 2016), we can scale strikes and prices without changing the relation-
ship between variables.

3 Nonparametric estimation

A cornerstone for nonparametric methods applied to RND estimation is the seminal
paper of Aı̈t-Sahalia and Lo (1998). It is stressed out its importance, and how with
sufficient amount of data it is possible to get rid of ties associated with parametric
approaches.

Nonparametric approaches offer more flexible methods for modeling the evolu-
tion of mean option pricing function on strikes, and other relevant variables. The
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second derivative is related to RNDs. Using Aı̈t-Sahalia and Lo (1998) notation, sup-
pose there is a smooth function H(·) that can be seen as an option pricing function
depending on a vector U , set as U = (St ,X ,τ,r,δ ). A possible nonlinear relationship
is established as

Hi = H(Ui)+ εi, i = 1, . . . ,n.

In this formulation, εi is an error term expressing the fact that observed option prices
include measurement errors, possibly heteroscedastic, meaning that the error terms
are not identically distributed.

Nadaraya-Watson (NW) estimator is commonly used (Nadaraya, 1964; Watson,
1964), and assumes the form

Ĥ(Ui) =
∑

n
i=1 Kh (Ui−U) Hi

∑
n
i=1 Kh (Ui−U)

,

which can be seen as a weighted mean average of the U ′i s. A kernel function Kh(·),
depending on a bandwidth h, for a given point U , defines the weights. The appli-
cation of this estimator can be challenging. As nonparametric methods are data in-
tensive, their effectiveness rapidly decreases as the problem’s dimension increases
(number of explanatory variables). Without imposing adequate constraints, estimates
can contradict basic economic principles and even common sense. To overcome this
problem Aı̈t-Sahalia and Lo (1998) proposed some justifications for dimension re-
duction. They estimated RNDs by an indirect way, through an estimator for implied
volatility, which is plugged-in Black-Scholes’ formula. By this approach, it is natural
that RNDs inherit most characteristics obtained using a parametric model as the one
referred.

To address some problems associated with estimation procedures proposed in
Aı̈t-Sahalia and Lo (1998), Aı̈t-Sahalia and Duarte (2003) revisited the problem, and
a new approach was proposed that has been followed in subsequent literature. Instead
of local constant polynomial kernel regression, a more general setting was proposed
based on local linear polynomial regression, but more importantly, it was highlighted
the importance of shape restrictions on mean pricing functions, and respective deriva-
tives, for obtaining meaningful results. A univariate setting is adopted making option
prices depending only on strikes, and obtaining similar accuracy using fewer obser-
vations. Estimators were subjected to a series of shape constraints, and a kind of
double smoothing. They devised a two-step procedure which incorporates a complex
optimization problem, followed by a kernel smoothing estimation for obtaining the
desired densities.

NW estimator can be seen as a local constant polynomial kernel regression type
estimator. A more general approximation can soften some drawbacks associated with
it. Let us consider for simplicity a general formulation yi = m(xi)+ εi. For a local
polynomial of order p, kernel regression estimators are obtained by solving the prob-
lem

minimize
n

∑
i=1

(
yi−

p

∑
k=0

βk(x)
(xi− x)k

k!

)2

K
(

xi− x
h

)
,

where the decision vector is β (x). This general formulation encompasses constant
(p = 0), linear (p = 1), quadratic (p = 2), and cubic (p = 3) orders. Compared with



Risk-neutral density from option prices by kernel smoothing 7

NW estimator, nonparametric local linear polynomial approximation (p = 1) rep-
resents an important improvement in terms of flexibility and estimator’s properties
(Fan and Gijbels, 1996). Applying a local p-order polynomial criterion, the mean
function estimator, and respective derivatives, are given directly by m̂(x) = β̂0(x),
and m̂(k)(x) = k! β̂k(x).

Several authors accommodate no-arbitrage constraints in the definition of non-
parametric estimates for RNDs, as already mentioned. Aı̈t-Sahalia and Duarte (2003),
but also Yatchew and Härdle (2006), used constrained nonparametric least squares
problem, where constraints are defined through a penalty component. Yatchew and
Härdle (2006) consider Sobolev norms to calculate a matrix called representor, mak-
ing this approach less intuitive, and not easy to implement. Birke and Pilz (2008)
address the problem using an auxiliary inverse function associated with call pricing
function first derivative, that needs to be integrated or differentiated for obtaining call
pricing functions or risk-neutral densities, respectively.

We devise an alternative procedure in comparison with those mentioned above. In
contrast, a simple and intuitive framework to include no-arbitrage constraints directly
in a criterion function is developed. A fact not fully explored in literature is related
to the derivation of risk-neutral densities using information contained directly in both
calls and puts, without using put-call parity. As functions of strikes, call and put
pricing functions move in opposite directions, and also the variability. In left tail, call
prices vary more than puts, and vice versa in the right tail. Expressing parameters,
in a criterion function, as values of risk-neutral distributions and densities (the latter
coincides for calls and puts) allows easily to impose no-arbitrage constraints. The
contrast (variability) between call and put prices can be used as a valuable source of
information to define robust estimation procedures.

3.1 Nonparametric with no-arbitrage constraints

When RNDs are estimated implicitly through option prices, it is desired to obtain a
smooth function. The most area must be associated with a neighborhood around the
current value of the underlying asset. On tails direction, density values must tend to
zero. A fundamental problem is how tails behave, their rate of convergence to zero,
and comparisons between left and right tails.

No-arbitrage constraints are intimately related to monotonicity and convexity that
are established characteristics of call and put pricing functions. Following Birke and
Pilz (2008), no-arbitrage constraints assume the form

−e−r τ ≤ ∂C
∂X

(X) ≤ 0 (5)

∂ 2C
∂X2 (X) ≥ 0 (6)

C(X) ≥ 0, ∀X ∈ [0,∞[. (7)
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By using put-call parity, the same kind of constraints can be associated with put
pricing functions,

0≤ ∂P
∂X

(X) ≤ e−r τ (8)

∂ 2P
∂X2 (X) ≥ 0 (9)

P(X) ≥ 0 ∀X ∈ [0,∞[. (10)

Using these constraints, we define an extended criterion function within a constraint
nonparametric regression framework.

Let us designate ci and p j observed prices for calls and puts, with respective
strikes xi and x j, for i = 1, . . . ,n and j = 1, . . . ,m. The proposed criterion function is
an extension of a local cubic polynomial approximation within a nonparametric re-
gression setting. The extension accounts jointly call and put prices. This approach has
the advantage of representing a contrast of information, and also allows no-arbitrage
constraints straightforwardly.

In a kernel regression framework, where local approximations are defined around
x, kernel functions serve to weight the distance of sample observations to x. Two ker-
nel functions are considered, K((xi− x)/hc) for calls, and K((x j − x)/hp) for puts,
accounting for different bandwidths, hc and hp. As it is well documented in the lit-
erature (Härdle, 1990; Fan and Gijbels, 1996; Yatchew, 2003; Li and Racine, 2007),
these parameters have a major influence, namely, in comparison with the choice of the
kernel function. This fact leads to consider only Gaussian kernels, although different
kernels were tested without significant changes.

Within the regression framework considered, it is apparent that error’s terms vari-
ance is not constant, a fact also emphasized in Yatchew and Härdle (2006) in the
context of RND estimation. To cope with this data characteristic, different weights
could be attributed to different observations. More informative ones are represented
by at-the-money prices, deep-in-the-money or deep-out-of-the-money are less infor-
mative. These can be weighted by volume or open-interest values, represented for
calls by wi,c, and for puts by w j,p.

The estimation is performed by minimizing a criterion function subject to the set
of linear and bound constraints 1-10,

minimize
n

∑
i=1

wi,c

(
ci−β0,c(x)−

3

∑
k=1

βk,c(x)
(xi− x)k

k!

)2

K
(

xi− x
hc

)
+

m

∑
j=1

w j,p

(
p j−β0,p(x)−

3

∑
k=1

βk,p(x)
(x j− x)k

k!

)2

K
(

x j− x
hp

)
(11)
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subject to

−β1,c(x)+β1,p(x) = e−rτ (12)
β2,c(x)−β2,p(x) = 0 (13)

max(0,St − xe−r τ)≤ β0,c(x) ≤ St (14)
max(0,xe−r τ −St)≤ β0,p(x) ≤ ∞ (15)

−e−rτ ≤ β1,c(x) ≤ 0 (16)
0≤ β1,p(x) ≤ e−rτ (17)

β2,c(x) ≥ 0 (18)
β2,p(x) ≥ 0. (19)

For each local approximation at x, the problem (11-19) can be characterized as a
Generalized Least Squares (GLS) problem with constraints, which can be solved as a
Quadratic Programming (QP) problem. Let us designate y as the observations vector
for call and put prices, and consider matrices Xc(x) and Xp(x), with typical rows i and
j given by

Xi,c(x) = [1 (xi− x) (1/2)(xi− x)2 (1/6)(xi− x)3]

X j,p(x) = [1 (x j− x) (1/2)(x j− x)2 (1/6)(x j− x)3]

for the vectors and matrix defined as

y =
[

c
p

]
, β =

[
βc
βp

]
, X =

[
Xc(x) 0

0 Xp(x)

]
.

Given a matrix of weights represented by W , and a “kernel matrix” K =K(hc,hp),
the minimization problem (11-19) is expressed as a quadratic optimization problem

minimize (y−X β )>W 1/2KW 1/2(y−X β )

subject to β ∈B

where B is the set of constraints. By considering

y∗ = W 1/2K1/2 y

X∗ = W 1/2K1/2 X

the latter can be rewritten as a norm minimization problem subject to convex con-
straints,

minimize ||y∗−X∗β ||
subject to β ∈B

which can be translated to a QP optimization problem

minimize β>H β + f>β

subject to β ∈B

where H = X∗>X∗ and f =−X∗> y∗.
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By applying a local cubic polynomial approximation, at each point x we obtain
estimates for βi, j(x), with i= 0,1,2,3, j = c, p. The main aim are the estimates β̂2,c(x)
and β̂2,p(x), with β̂2,c(x) = β̂2,p(x), that represent the risk-neutral-density’s value at
x. Equally important are constraints implied by no-arbitrage arguments, that act as
smoothing components to obtain more reliable and intuitive RND estimates.

3.2 Bandwidths and weights selection

In nonparametric regression methods frameworks, kernel functions measure, locally,
the distance to a point x. Kernel functions are symmetric around x, and integrate
one. Its value depends on the distance of observations to x, scaled by a bandwidth
parameter, which is recognized as the most relevant factor in terms of characteristics
and quality of model fitting.

When approximating a mean function, using the Mean-Square Error (MSE) cri-
terion, an optimal bandwidth is chosen through a min-max optimization problem,
which is related to a trade-off between bias and variance. An MSE criterion allows
the definition of a local optimal bandwidth, which depends on many factors, for ex-
ample, sample size, curvature of the mean function, distribution of design variables,
and their respective variance. Usually, these quantities are unknown.

Local optimal bandwidths are challenging to define. A common approach tries to
approximate a global optimal bandwidth, which is defined through the minimization
of the Mean Integrated Square Error (MISE). In some cases, it is possible to define
an analytic expression to the global bandwidth. However, it depends on unknown
quantities. In practical terms, to define the optimal global bandwidth, Cross Valida-
tion (CV) methods are used. An obtained value is asymptotically optimal through the
MISE criterion.

In our approach, two bandwidths were considered, hc related to call observations,
and hp to puts. We apply CV to obtain a first approximation as only observed values
and estimated means can be compared. Considering again a general setting, yi =
m(xi)+ εi, i = 1, . . . ,n, and using the common approach for CV, which is leave-one-
out, h is chosen by

minimize CV (h) =
1
n

n

∑
i=1

(yi− m̂−i(xi))
2W (xi),

where m̂−i(xi) is the leave-one-out kernel estimator of m(xi), and W (·) is a weight
function, see Li and Racine (2007).

Adapting CV to define hc and hp, we take into account a fixed design framework,
where for each xi, i = 1, . . . ,n, ki observations for y are available, which means that
we have to implement the procedure leave-ki-out. The CV criterion is modified, and
bandwidths are chosen by

minimize CV (hc,hp) =
1
n

n

∑
i=1

ki

∑
j=1

(yc, j− m̂c
−ki

(xi))
2 Wc(xi)+

1
n

n

∑
i=1

ki

∑
j=1

(yp, j− m̂p
−ki

(xi))
2 Wp(xi),
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where kernel estimator for calls, m̂c
−ki

(xi), depend on hc and for puts, m̂p
−ki

(xi), depend
on hp. Weighing functions, Wc(xi) and Wp(xi), will also be different for calls and puts,
they reflect choices done when the criterion function, for parameters estimation, was
defined.

Weights used for parameters estimation and CV, account for the distance between
observations and a point representing at-the-money prices. As hc and hp define a
neighborhood around x, elements of Wc(·) and Wp(·) represent distance to a point
where observations carry more information (at-the-money). In this paper, the proxies
considered for these weighting functions are open-interest values, associated with
call and put option contracts.

4 Monte Carlo analysis

In this section, we present a simulation analysis that demonstrates the effectiveness
of the methods proposed in this study. Risk-neutral prices are not directly observable
but can be inferred indirectly through option prices. Except in the case of simulated
data, no confrontation between true and estimated RND can be done.

It is assumed that the stochastic process associated with an underlying asset is
given by a diffusion process subjected to stochastic volatility, which can be repre-
sented as

dSt = µdt +
√

vt St dWt

dvt = κ(θ − vt)dt +σ
√

vt dZt ,

where Wt and Zt are two standard Brownian motion processes with E(dWt dZt) =
ρ dt, κ represents the mean-reverting volatility parameter, θ the long-run volatility,
and σ the volatility of volatility. Under certain assumptions, given in Heston (1993),
there is a closed form solution for European-type option prices. The assumptions are
related to a risk-premium function and the current value of volatility. Henceforth,
assuming a given value for the current volatility, prices of calls and puts for different
strike values are generated by what we refer as Heston (1993) model.

The parameters adopted are κ = 5, θ = 0.03, σ = 0.3, and ρ = −0.7. In the
simulation a zero dividend yield, a risk-free rate r = 0.02, and a time to maturity of
3-months (τ = 0.25), are adopted. It is assumed that at t the price of the underlying
asset is St = 50, and the range of strikes is given by the interval [35,62]. For prices
obtained using the model, random noise was added to mimic observed market prices.
Using these perturbed prices, we illustrate the performance of nonparametric methods
developed in this paper. With Heston’s model, no analytic formula is available to
express RNDs. Nowadays, we can generate Heston’s prices for calls and puts within
a fine grid of strikes, and approximate RNDs smoothly and accurately using second
derivatives calculated numerically. For parameters’ values defined above, this kind
of calculations was performed and are depicted in Figure 1. An equally-spaced of
fine strike prices was considered and numerical second derivatives were calculated,
presenting high stability. True RND can be obtained with high-accuracy, this function
a positive and integrates one. It presents a slightly negative skewness, corresponding
to a negative value assumed by the leverage effect ρ =−0.7.
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Fig. 1 Heston’s model prices and RND.

35 40 45 50 55 60

Strikes

0

2

4

6

8

10

12

14

16

P
ri
c
e
s

Call and put prices vs mean estimates (black)

35 40 45 50 55 60

S
T

0

0.02

0.04

0.06

0.08

0.1

0.12

D
e
n
s
it
y

RND - true (blue); estimated (red)

Fig. 2 Simulated prices; mean and RND estimates.

To reproduce market data, for each strike a theoretical price is calculated, and
a series of observations are simulated adding some noise to the prices. Following
Yatchew and Härdle (2006), and assuming already a nonparametric framework, we
used the formula yi = m(xi)+ 0.03m(xi)εi, with εi ∼ N(0,1), where for each strike
one thousand observations were simulated. Resulting prices and comparisons be-
tween true and estimated RND are depicted in Figure 2. We obtain a good overall
fitting and the expected behavior for density tails. In the simulation, we have a very
controlled environment with equally-spaced strikes, an equal number of observations
for each strike; however, prices are highly perturbed. As it is also demonstrated in the
literature associated with RND estimation, obtaining a good fit for the mean pricing
function does not constitute a great challenge, in opposition to its second derivative
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Fig. 3 Simulated 95% confidence intervals for first derivatives and RND estimates (red dashed lines); true
functions (blue solid lines); median (red solid line).

estimation (Aı̈t-Sahalia and Duarte, 2003; Yatchew and Härdle, 2006; Birke and Pilz,
2008; Grith et al., 2012).

Regarding the robustness of methods proposed in this article, we present simu-
lated 95% confidence intervals for first derivatives and RND estimates. Our results
are comparable with the ones in Aı̈t-Sahalia and Duarte (2003) meaning that esti-
mates, and respective confidence intervals, are conformable with option pricing and
statistical theory, e.g., no-arbitrage constraints and proper density functions. The sim-
ulation setting is slightly different but comparable. We have used 79 observations for
each strike price assuming Heston’s model, with parameters defined previously. The
results are depicted in Figure 3, in blue we have the true RND, in red the median
estimates (solid line), and dashed lines refer to 95% confidence intervals. They are
obtained using a Monte Carlo approximation through 5000 iterations, from which
the respective quantiles were estimated.

Estimation methods perform satisfactorily, with very narrow confidence intervals,
especially for first derivatives, and RND tails. Limits of confidence intervals for first
derivatives are so narrow that are barely discernible in the figure. For RND, confi-
dence intervals are well visible, narrow and meaningful in the tails, and as it would
be expected wider in center where the curvature is more pronounced. This fact is
well-established regarding the properties of general nonparametric estimators, which
depend heavily on second derivatives.

5 Empirical demonstration

In this section, we provide nonparametric density estimations using S&P500 and VIX
options. Each underlying asset gives rise to a massive number of option contracts,
with different maturities available, and also many strikes. Considering only vanilla
options, a significant amount of put and call contracts makes difficult data retrieving,
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treatment and application of common data-cleaning procedures. For these tasks, it is
necessary to build data structures able to accommodate the diversity and complexity
in data. The number of contracts and maturity dates available for a given stock can
be different for calls and puts. Finally, most trades are done near-the-money, which
varies with the underlying asset price. Option contracts that are deep-in-the-money or
deep-out-of-the-money are rarely traded, which means that observed prices can carry
different amounts of information.

5.1 Data description

We use intraday data for options associated with two indices, S&P500 and VIX,
from CBOE. Options related to S&P500 index correspond to the SPXW version of
contracts. Data was collected from the publicly available site YahooFinance using
tailored software to record observations for every contract (strikes, maturities), during
regular daily negotiation time. The sample corresponds to observations obtained from
April 16 to April 20, 2018.

Despite the short period represented by one week, due to the diversity as men-
tioned earlier, the number of observed contracts are of orders 104 and 103. Added to
this fact, the frequency of observed data is 5 minutes, and each contract was con-
sidered 79 times in the sample. For SPXW with time-to-maturity of around one
month, 15964 and 21508 observations were considered for calls and puts, respec-
tively, whereas, for VIX, 1465 and 1196 observations are available. These numbers
are comparable with ones considered in literature that uses nonparametric methods to
estimate RND functions, see e.g. Aı̈t-Sahalia and Lo (1998), Song and Xiu (2016).

Following the literature, it can be clearly understood that due to heterogeneity
associated with options data, data-cleaning procedures are needed. The main aim is
to remove troublesome data points in terms of compatibility with theoretical results,
e.g., no-arbitrage constraints, and points that are irrelevant as correspond to contracts
that have never been traded. In our approach, data-cleaning is reduced to minimal
procedures. First, we eliminate duplicate observations that result from working with
high-frequency data. Second, option contracts with bid or open interest equal to zero
are also eliminated. This last step assumes less importance since we use open-interest
as a weight in the estimation procedures, which eliminates automatically such obser-
vations.

In the literature, out-of-the-money and in-the-money call and put prices are con-
sidered separately because they accommodate different information. The well-known
put-call parity formula is used, converting put into call prices. This conversion is not
absent from difficulties, mainly because lack of synchronization, which can only be
softened using end-of-day data (Song and Xiu, 2016), but not entirely resolved. We
include directly in estimation procedures call and put contract prices. By taking ad-
vantage of this inclusion, avoiding using put-call parity conversions, new information
is added allowing better estimates to be obtained.

As the sample period considered is short, less variation of elements that deter-
mine option prices need to be accounted for. Examples are the risk-free interest rate,
dividend yield, and underlying stock prices. Long sample periods may raise concerns
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Fig. 4 Call and put bid-ask mean prices with expiration date May 18, 2018 (τ = 1/12) on S&P 500 index,
and May 16, 2018 (τ = 1/12) on VIX index.

about structure maintenance of prices. Contrasting with Aı̈t-Sahalia and Lo (1998)
that have considered, around one year of daily data, and Song and Xiu (2016) with
seventeen years, we use a short period of intraday data that allows us to compare
results with the referred ones in terms of data dimension. As we deal with a short
sample period, we only considered contracts with a fixed short maturity date. Time-
to-maturity is fixed, and in RND estimation setting, this resembles a cross-section
approach.

Aı̈t-Sahalia and Lo (1998) and Song and Xiu (2016) performed an analysis by
rolling forward contracts, and defined results for a mean maturity period. Due to us-
ing intraday data, we do not need such data manipulation procedure. By considering
options in the sample mentioned above, a time-to-maturity of around one month was
considered, May 18 for S&P500, and May 16 for VIX. Bid-ask mean prices were
used to represent observed prices, and for each strike, a series was obtained, for calls
and puts. Data is depicted in Figure 4, where graphics were truncated to show the
most relevant parts. For S&P500, strikes and prices were scaled by a 10−2 factor,
representing a change of unity justified by pricing functions homogeneity, and allow-
ing better visualization of data.

5.2 Estimation results

Using intraday data, a series of prices is obtained for each strike, and a mean func-
tion can be approximated by simple averaging option prices. Considering yet a non-
parametric approach, even with a local constant estimator (Nadaraya-Watson), mean
function estimates cannot be ruled out by any economic or statistical argument. It is
assumed that option pricing functions are twice differentiable, and are expected to be
monotone and convex, consequently for an interior point the estimator is consistent.
However, when first and second derivatives are estimated, statistical properties de-
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grade with a substantial decrease of convergence rates. More importantly, estimates
start to lack economic sense, and go against established theoretical results. These
facts are well-established in Aı̈t-Sahalia and Duarte (2003) and Yatchew and Härdle
(2006), which constitute main motivations for presenting new methods for dealing
with such drawbacks.

Considering the estimation applied to S&P500 data set (Figure 4), as we used one
hundred units to refer S&P500 data, the less troublesome region is defined by strikes
between 24 and 28 for calls and puts, respectively. Below strike 24, for calls, strikes
grid is sparser, the same happens for puts with values above 28. Regions where in-
formation for calls is lacking are compensated by information from puts, and vice
versa. For the performed estimation, time-to-maturity was set to τ = 1/12 and, based
on Treasury Bills data, a value of 2% was considered to be the risk-free interest rate
r. Our main contribution was to devise a method able to cope with such different
sets within the estimation of a unique RND. A smooth and reliable RND is estimated
guaranteeing non-negative density values, an expected behavior for tails, and an area
under the curve near one. Results for estimated RND from S&P500, are depicted
in Figure 5 (solid line), and reveal the effectiveness of proposed methods. Estima-
tion procedures were also applied to VIX, with similar data problems (Figure 4) as
found for S&P500. The same effect of information compatibility and smoothness is
reflected for RND estimation, which is depicted in Figure 6 (solid line).

Mean pricing functions are not difficult to estimate, however, if we consider only
call (put) prices a greater variability can be observed for those functions. This affects
RND left tail estimation when using only calls, and RND right tail when using only
puts. Considering an estimation procedure involving only calls, we obtain less intu-
itive and robust results, as can be perceived in Figure 7. In this case, it was considered
a local cubic polynomial with bound constraints only related to mean, first and second
derivatives. Further arbitrage constraints, related to the link between calls and puts,
are missing. Due to the lack of structure, which is induced by joint contribution of
calls and puts, results are less stable, and can even contradict basic theoretical results.
On the other hand, if we do not consider open-interest weights in the optimization
problem, former results are improved without achieving the effectiveness associated
with the full structured model, as shown in Figure 7. Estimations were performed to
S&P500, and same type of results are obtained for VIX.

Following the suggestions of an anonymous referee, we agree that accuracy mea-
sures are needed for the analysis of the results. Bootstrap methods might be used to
approximate confidence intervals for nonparametric estimates.

The implementation of such methods can be delicate as bootstrap algorithms’
efficiency may depend on the data generation process, estimator’s form, and their
statistical properties. Results on bootstrap methods can be found in Efron (1982), Wu
(1986), Härdle (1990), and Hall (2013). Particularly, when applied to nonparametric
estimation and confidence intervals, we can refer to Efron and Tibshirani (1986), Hall
(1988), Härdle and Bowman (1988), Cao-Abad (1991), Härdle and Marron (1991)
and DiCiccio and Efron (1996). Wu (1986) and Liu (1988) are relevant for the appli-
cation of bootstrap methods in RND estimation, the first accounts for the possibility
of unbalanced regression data, and second for non-i.i.d. models.
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Fig. 5 Estimated call and put mean functions; RND estimates (solid line); and confidence intervals (dashed
lines), for contracts with expiration date of May 18, 2018 (τ = 1/12) on the S&P500 index.
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Fig. 6 Estimated call and put mean functions; RND estimates (solid line); and confidence intervals (dashed
lines), for contracts with expiration date of May 16, 2018 (τ = 1/12) on the VIX index.

Yatchew and Härdle (2006) used residuals and wild bootstrap. We use a pairs
bootstrapping scheme, which is a more straightforward approach to implement. In
fact, we softened our concerns with the well-known bias problem as samples of high
dimension are considered. Also, we seek mainly to get the extent of confidence inter-
vals amplitude, including directly the effect of heteroscedastic errors.

Wu (1986), in a linear regression context, using X from the model y = Xβ + e,
proposed to define a non-uniform bootstrapping resampling scheme. Also, Liu (1988)
considered that “i.i.d. observations are drawn from an external population ... which
is totally unrelated to the original data set”. As standard pairs bootstrappring does
not account for the possibility of non-i.i.d. data generating processes or unbalanced
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Fig. 7 Estimation results comparisons for S&P500: only with calls, and without weights. Confidence
intervals with dashed-lines.

samples, following both authors, we have also considered a non-uniform resampling
scheme. In this case, bootstrapping probabilities are defined through the open-interest
sample, which was also used to define weights in the criterion function associated
with estimation. Open-interest data accounts for different amounts of information
for each observation, mimicking the heteroscedasticity correction performed in a
GLS setting. Without such new resampling scheme, bootstrap confidence intervals
obtained are not interpretable.

Confidence intervals were approximated through 5000 iterations within the boot-
strap method, and they are defined as the Monte Carlo sample quantiles. As depicted
in Figures 5 and 6, we superimposed confidence intervals to estimated RNDs for
S&P500 and VIX, they give us an idea for the estimates’ accuracy. As we can see,
for S&P500 confidence intervals are very narrow, for VIX’s RND, they are wider
near the mode, where the curvature takes more effect. VIX data is less symmetrical
(Figure 4) around at-the-money region, however, still being compatible with accurate
and interpretable estimates. These results are also comparable with ones presented
in Song and Xiu (2016), whom for the same type of options found similar results in
terms of confidence intervals, very narrow for S&P500, and wider for VIX.

We mainly present confidence intervals for RND estimates, except for S&P500
first derivative, Figure 7, which are barely discernible. Here, there is an overlap with
Figure 5, to show that our method of including the contrast between calls and puts
information and a weighting scheme based on open-interest values, can improve sub-
stantially RND estimation. Less efficient methods give estimates outside confidence
intervals obtained from more robust methods. Confidence intervals were also calcu-
lated for mean functions, we do not present them here as they are incredible narrow,
representing a high degree of accuracy. In fact, they are not very illustrative of the
variability of estimates, in the same line of ones presented in Yatchew and Härdle
(2006).
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Fig. 8 One-day rolling window density estimation.

Having used one week of intraday data, obtained RNDs correspond to an average
assuming that some factors influencing option prices are constant, apart from under-
lying asset price and volatility. To show the robustness of implemented methods, we
compare the average density with densities obtained using one-day data in a rolling
window. The results are depicted in Figure 8, where shapes of estimated densities do
not vary significantly. Similar estimates are obtained, tails configurations are very ro-
bust, and the slight shifts in modes are essentially consequences of end-of-day price
variation of the underlying asset. Results are presented for S&P500 index options,
considering VIX, similar results are obtained.

Finally, we have to highlight the difference in shape of both RND estimates (Fig-
ures 5 and 6). Results are intuitive and confirm what seems to be expected consider-
ing the different nature of the underlying assets. When subscribing S&P500 options,
the main interest is the left tail, since it reveals a possibility of drop in prices, or
eventually a default. For VIX, the main interest is the right tail, as it is related to
the possibility of an increase in volatility. This difference is clearly reflected in the
estimation performed is this paper, and seems to reinforce the meaningfulness of pro-
posed extensions.

6 Concluding remarks

This paper has developed and tested a new nonparametric approach for estimating
RNDs from European option prices, using intraday data. The resulting problem is a
quadratic programming problem, with a convex objective function, linear constraints,
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upper and lower bounds on variables. This is a challenging problem since RNDs are
obtained through estimates for second derivatives. Naive approaches do not guaran-
tee non-negativity, integration to one, and RND smoothness. Although, by defining
a problem that includes calls, puts, and respective weights, it is guaranteed to ob-
tain aforementioned features. Using simulated data we demonstrated that the method
is able to recover, with acceptable accuracy, true RNDs. We applied the method to
S&P500 and VIX options with results that are robust and easily interpretable. Accu-
racy measures were also calculated through confidence intervals for estimates using
bootstrap methods. Results confirm the robustness of proposed procedures. Compar-
ison between both RNDs reveals main motivations for subscribing such securities:
protection against decreases (S&P500) and increases (VIX) on values of respective
underlying assets.
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